
SQLAlchemy 1.1 Documentation

From: SQLAlchemy 1.1 Documentation

Overview

The SQLAlchemy SQL Toolkit and Object Relational Mapper
is a comprehensive set of tools for working with
databases and Python. It has several distinct areas of
functionality which can be used individually or combined
together. Its major components are illustrated in below,
with component dependencies organized into layers:

[image: _images/sqla_arch_small.png]
Above, the two most significant front-facing portions of
SQLAlchemy are the Object Relational Mapper and the
SQL Expression Language. SQL Expressions can be used
independently of the ORM. When using the ORM, the SQL
Expression language remains part of the public facing API
as it is used within object-relational configurations and
queries.

Documentation Overview

The documentation is separated into three sections: SQLAlchemy ORM,
SQLAlchemy Core, and Dialects.

In SQLAlchemy ORM, the Object Relational Mapper is introduced and fully
described. New users should begin with the Object Relational Tutorial. If you
want to work with higher-level SQL which is constructed automatically for you,
as well as management of Python objects, proceed to this tutorial.

In SQLAlchemy Core, the breadth of SQLAlchemy’s SQL and database
integration and description services are documented, the core of which is the
SQL Expression language. The SQL Expression Language is a toolkit all its own,
independent of the ORM package, which can be used to construct manipulable SQL
expressions which can be programmatically constructed, modified, and executed,
returning cursor-like result sets. In contrast to the ORM’s domain-centric
mode of usage, the expression language provides a schema-centric usage
paradigm. New users should begin here with SQL Expression Language Tutorial.
SQLAlchemy engine, connection, and pooling services are also described in
SQLAlchemy Core.

In Dialects, reference documentation for all provided
database and DBAPI backends is provided.

Code Examples

Working code examples, mostly regarding the ORM, are included in the
SQLAlchemy distribution. A description of all the included example
applications is at ORM Examples.

There is also a wide variety of examples involving both core SQLAlchemy
constructs as well as the ORM on the wiki. See
Theatrum Chemicum.

Installation Guide

Supported Platforms

SQLAlchemy has been tested against the following platforms:

	cPython since version 2.6, through the 2.xx series

	cPython version 3, throughout all 3.xx series

	Pypy 2.1 or greater

Changed in version 0.9: Python 2.6 is now the minimum Python version supported.

Platforms that don’t currently have support include Jython, IronPython.
Jython has been supported in the past and may be supported in future
releases as well, depending on the state of Jython itself.

Supported Installation Methods

SQLAlchemy installation is via standard Python methodologies that are
based on setuptools, either
by referring to setup.py directly or by using
pip or other setuptools-compatible
approaches.

Changed in version 1.1: setuptools is now required by the setup.py file;
plain distutils installs are no longer supported.

Install via pip

When pip is available, the distribution can be
downloaded from Pypi and installed in one step:

pip install SQLAlchemy

This command will download the latest released version of SQLAlchemy from the Python
Cheese Shop and install it to your system.

In order to install the latest prerelease version, such as 1.1.0b1,
pip requires that the --pre flag be used:

pip install --pre SQLAlchemy

Where above, if the most recent version is a prerelease, it will be installed
instead of the latest released version.

Installing using setup.py

Otherwise, you can install from the distribution using the setup.py script:

python setup.py install

Installing the C Extensions

SQLAlchemy includes C extensions which provide an extra speed boost for
dealing with result sets. The extensions are supported on both the 2.xx
and 3.xx series of cPython.

setup.py will automatically build the extensions if an appropriate platform is
detected. If the build of the C extensions fails, due to missing compiler or
other issue, the setup process will output a warning message, and re-run the
build without the C extensions, upon completion reporting final status.

To run the build/install without even attempting to compile the C extensions,
the DISABLE_SQLALCHEMY_CEXT environment variable may be specified. The
use case for this is either for special testing circumstances, or in the rare
case of compatibility/build issues not overcome by the usual “rebuild”
mechanism:

export DISABLE_SQLALCHEMY_CEXT=1; python setup.py install

Changed in version 1.1: The legacy --without-cextensions flag has been
removed from the installer as it relies on deprecated features of
setuptools.

Installing on Python 3

SQLAlchemy runs directly on Python 2 or Python 3, and can be installed in
either environment without any adjustments or code conversion.

Installing a Database API

SQLAlchemy is designed to operate with a DBAPI implementation built for a
particular database, and includes support for the most popular databases.
The individual database sections in Dialects enumerate
the available DBAPIs for each database, including external links.

Checking the Installed SQLAlchemy Version

This documentation covers SQLAlchemy version 1.1. If you’re working on a
system that already has SQLAlchemy installed, check the version from your
Python prompt like this:

>>> import sqlalchemy
>>> sqlalchemy.__version__ # doctest: +SKIP
1.1.0

1.0 to 1.1 Migration

Notes on what’s changed from 1.0 to 1.1 is available here at What’s New in SQLAlchemy 1.1?.

SQLAlchemy ORM

Here, the Object Relational Mapper is introduced and fully described. If you
want to work with higher-level SQL which is constructed automatically for you,
as well as automated persistence of Python objects, proceed first to the
tutorial.

	Object Relational Tutorial
	Version Check

	Connecting

	Declare a Mapping

	Create a Schema

	Create an Instance of the Mapped Class

	Creating a Session

	Adding and Updating Objects

	Rolling Back

	Querying

	Building a Relationship

	Working with Related Objects

	Querying with Joins

	Eager Loading

	Deleting

	Building a Many To Many Relationship

	Further Reference

	Mapper Configuration
	Types of Mappings

	Mapping Columns and Expressions

	Mapping Class Inheritance Hierarchies

	Non-Traditional Mappings

	Configuring a Version Counter

	Class Mapping API

	Relationship Configuration
	Basic Relationship Patterns

	Adjacency List Relationships

	Linking Relationships with Backref

	Configuring how Relationship Joins

	Collection Configuration and Techniques

	Special Relationship Persistence Patterns

	Relationships API

	Loading Objects
	Loading Columns

	Relationship Loading Techniques

	Constructors and Object Initialization

	Query API

	Using the Session
	Session Basics

	State Management

	Cascades

	Transactions and Connection Management

	Additional Persistence Techniques

	Contextual/Thread-local Sessions

	Tracking Object and Session Changes with Events

	Session API

	Events and Internals
	ORM Events

	ORM Internals

	ORM Exceptions

	Deprecated ORM Event Interfaces

	ORM Extensions
	Association Proxy

	Automap

	Baked Queries

	Declarative

	Mutation Tracking

	Ordering List

	Horizontal Sharding

	Hybrid Attributes

	Indexable

	Alternate Class Instrumentation

	ORM Examples
	Mapping Recipes

	Inheritance Mapping Recipes

	Special APIs

	Extending the ORM

Object Relational Tutorial

The SQLAlchemy Object Relational Mapper presents a method of associating
user-defined Python classes with database tables, and instances of those
classes (objects) with rows in their corresponding tables. It includes a
system that transparently synchronizes all changes in state between objects
and their related rows, called a unit of work, as well as a system
for expressing database queries in terms of the user defined classes and their
defined relationships between each other.

The ORM is in contrast to the SQLAlchemy Expression Language, upon which the
ORM is constructed. Whereas the SQL Expression Language, introduced in
SQL Expression Language Tutorial, presents a system of representing the primitive
constructs of the relational database directly without opinion, the ORM
presents a high level and abstracted pattern of usage, which itself is an
example of applied usage of the Expression Language.

While there is overlap among the usage patterns of the ORM and the Expression
Language, the similarities are more superficial than they may at first appear.
One approaches the structure and content of data from the perspective of a
user-defined domain model which is transparently
persisted and refreshed from its underlying storage model. The other
approaches it from the perspective of literal schema and SQL expression
representations which are explicitly composed into messages consumed
individually by the database.

A successful application may be constructed using the Object Relational Mapper
exclusively. In advanced situations, an application constructed with the ORM
may make occasional usage of the Expression Language directly in certain areas
where specific database interactions are required.

The following tutorial is in doctest format, meaning each >>> line
represents something you can type at a Python command prompt, and the
following text represents the expected return value.

Version Check

A quick check to verify that we are on at least version 1.1 of SQLAlchemy:

>>> import sqlalchemy
>>> sqlalchemy.__version__
1.1.0

Connecting

For this tutorial we will use an in-memory-only SQLite database. To connect we
use create_engine():

>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite:///:memory:', echo=True)

The echo flag is a shortcut to setting up SQLAlchemy logging, which is
accomplished via Python’s standard logging module. With it enabled, we’ll
see all the generated SQL produced. If you are working through this tutorial
and want less output generated, set it to False. This tutorial will format
the SQL behind a popup window so it doesn’t get in our way; just click the
“SQL” links to see what’s being generated.

The return value of create_engine() is an instance of
Engine, and it represents the core interface to the
database, adapted through a dialect that handles the details
of the database and DBAPI in use. In this case the SQLite
dialect will interpret instructions to the Python built-in sqlite3
module.

Lazy Connecting

The Engine, when first returned by create_engine(),
has not actually tried to connect to the database yet; that happens
only the first time it is asked to perform a task against the database.

The first time a method like Engine.execute() or Engine.connect()
is called, the Engine establishes a real DBAPI connection to the
database, which is then used to emit the SQL. When using the ORM, we typically
don’t use the Engine directly once created; instead, it’s used
behind the scenes by the ORM as we’ll see shortly.

See also

Database Urls - includes examples of create_engine()
connecting to several kinds of databases with links to more information.

Declare a Mapping

When using the ORM, the configurational process starts by describing the database
tables we’ll be dealing with, and then by defining our own classes which will
be mapped to those tables. In modern SQLAlchemy,
these two tasks are usually performed together,
using a system known as Declarative, which allows us to create
classes that include directives to describe the actual database table they will
be mapped to.

Classes mapped using the Declarative system are defined in terms of a base class which
maintains a catalog of classes and
tables relative to that base - this is known as the declarative base class. Our
application will usually have just one instance of this base in a commonly
imported module. We create the base class using the declarative_base()
function, as follows:

>>> from sqlalchemy.ext.declarative import declarative_base

>>> Base = declarative_base()

Now that we have a “base”, we can define any number of mapped classes in terms
of it. We will start with just a single table called users, which will store
records for the end-users using our application.
A new class called User will be the class to which we map this table. Within
the class, we define details about the table to which we’ll be mapping, primarily
the table name, and names and datatypes of columns:

>>> from sqlalchemy import Column, Integer, String
>>> class User(Base):
... __tablename__ = 'users'
...
... id = Column(Integer, primary_key=True)
... name = Column(String)
... fullname = Column(String)
... password = Column(String)
...
... def __repr__(self):
... return "<User(name='%s', fullname='%s', password='%s')>" % (
... self.name, self.fullname, self.password)

Tip

The User class defines a __repr__() method,
but note that is optional; we only implement it in
this tutorial so that our examples show nicely
formatted User objects.

A class using Declarative at a minimum
needs a __tablename__ attribute, and at least one
Column which is part of a primary key [1]. SQLAlchemy never makes any
assumptions by itself about the table to which
a class refers, including that it has no built-in conventions for names,
datatypes, or constraints. But this doesn’t mean
boilerplate is required; instead, you’re encouraged to create your
own automated conventions using helper functions and mixin classes, which
is described in detail at Mixin and Custom Base Classes.

When our class is constructed, Declarative replaces all the Column
objects with special Python accessors known as descriptors; this is a
process known as instrumentation. The “instrumented” mapped class
will provide us with the means to refer to our table in a SQL context as well
as to persist and load the values of columns from the database.

Outside of what the mapping process does to our class, the class remains
otherwise mostly a normal Python class, to which we can define any
number of ordinary attributes and methods needed by our application.

	[1]
	For information on why a primary key is required, see
How do I map a table that has no primary key?.

Create a Schema

With our User class constructed via the Declarative system, we have defined information about
our table, known as table metadata. The object used by SQLAlchemy to represent
this information for a specific table is called the Table object, and here Declarative has made
one for us. We can see this object by inspecting the __table__ attribute:

>>> User.__table__
Table('users', MetaData(bind=None),
 Column('id', Integer(), table=<users>, primary_key=True, nullable=False),
 Column('name', String(), table=<users>),
 Column('fullname', String(), table=<users>),
 Column('password', String(), table=<users>), schema=None)

Classical Mappings

The Declarative system, though highly recommended,
is not required in order to use SQLAlchemy’s ORM.
Outside of Declarative, any
plain Python class can be mapped to any Table
using the mapper() function directly; this
less common usage is described at Classical Mappings.

When we declared our class, Declarative used a Python metaclass in order to
perform additional activities once the class declaration was complete; within
this phase, it then created a Table object according to our
specifications, and associated it with the class by constructing
a Mapper object. This object is a behind-the-scenes object we normally
don’t need to deal with directly (though it can provide plenty of information
about our mapping when we need it).

The Table object is a member of a larger collection
known as MetaData. When using Declarative,
this object is available using the .metadata
attribute of our declarative base class.

The MetaData
is a registry which includes the ability to emit a limited set
of schema generation commands to the database. As our SQLite database
does not actually have a users table present, we can use MetaData
to issue CREATE TABLE statements to the database for all tables that don’t yet exist.
Below, we call the MetaData.create_all() method, passing in our Engine
as a source of database connectivity. We will see that special commands are
first emitted to check for the presence of the users table, and following that
the actual CREATE TABLE statement:

>>> Base.metadata.create_all(engine)
SELECT ...
PRAGMA table_info("users")
()
CREATE TABLE users (
 id INTEGER NOT NULL, name VARCHAR,
 fullname VARCHAR,
 password VARCHAR,
 PRIMARY KEY (id)
)
()
COMMIT

Minimal Table Descriptions vs. Full Descriptions

Users familiar with the syntax of CREATE TABLE may notice that the
VARCHAR columns were generated without a length; on SQLite and Postgresql,
this is a valid datatype, but on others, it’s not allowed. So if running
this tutorial on one of those databases, and you wish to use SQLAlchemy to
issue CREATE TABLE, a “length” may be provided to the String type as
below:

Column(String(50))

The length field on String, as well as similar precision/scale fields
available on Integer, Numeric, etc. are not referenced by
SQLAlchemy other than when creating tables.

Additionally, Firebird and Oracle require sequences to generate new
primary key identifiers, and SQLAlchemy doesn’t generate or assume these
without being instructed. For that, you use the Sequence construct:

from sqlalchemy import Sequence
Column(Integer, Sequence('user_id_seq'), primary_key=True)

A full, foolproof Table generated via our declarative
mapping is therefore:

class User(Base):
 __tablename__ = 'users'
 id = Column(Integer, Sequence('user_id_seq'), primary_key=True)
 name = Column(String(50))
 fullname = Column(String(50))
 password = Column(String(12))

 def __repr__(self):
 return "<User(name='%s', fullname='%s', password='%s')>" % (
 self.name, self.fullname, self.password)

We include this more verbose table definition separately
to highlight the difference between a minimal construct geared primarily
towards in-Python usage only, versus one that will be used to emit CREATE
TABLE statements on a particular set of backends with more stringent
requirements.

Create an Instance of the Mapped Class

With mappings complete, let’s now create and inspect a User object:

>>> ed_user = User(name='ed', fullname='Ed Jones', password='edspassword')
>>> ed_user.name
'ed'
>>> ed_user.password
'edspassword'
>>> str(ed_user.id)
'None'

the __init__() method

Our User class, as defined using the Declarative system, has
been provided with a constructor (e.g. __init__() method) which automatically
accepts keyword names that match the columns we’ve mapped. We are free
to define any explicit __init__() method we prefer on our class, which
will override the default method provided by Declarative.

Even though we didn’t specify it in the constructor, the id attribute
still produces a value of None when we access it (as opposed to Python’s
usual behavior of raising AttributeError for an undefined attribute).
SQLAlchemy’s instrumentation normally produces this default value for
column-mapped attributes when first accessed. For those attributes where
we’ve actually assigned a value, the instrumentation system is tracking
those assignments for use within an eventual INSERT statement to be emitted to the
database.

Creating a Session

We’re now ready to start talking to the database. The ORM’s “handle” to the
database is the Session. When we first set up
the application, at the same level as our create_engine()
statement, we define a Session class which
will serve as a factory for new Session
objects:

>>> from sqlalchemy.orm import sessionmaker
>>> Session = sessionmaker(bind=engine)

In the case where your application does not yet have an
Engine when you define your module-level
objects, just set it up like this:

>>> Session = sessionmaker()

Later, when you create your engine with create_engine(),
connect it to the Session using
configure():

>>> Session.configure(bind=engine) # once engine is available

Session Lifecycle Patterns

The question of when to make a Session depends a lot on what
kind of application is being built. Keep in mind,
the Session is just a workspace for your objects,
local to a particular database connection - if you think of
an application thread as a guest at a dinner party, the Session
is the guest’s plate and the objects it holds are the food
(and the database...the kitchen?)! More on this topic
available at When do I construct a Session, when do I commit it, and when do I close it?.

This custom-made Session class will create
new Session objects which are bound to our
database. Other transactional characteristics may be defined when calling
sessionmaker as well; these are described in a later
chapter. Then, whenever you need to have a conversation with the database, you
instantiate a Session:

>>> session = Session()

The above Session is associated with our
SQLite-enabled Engine, but it hasn’t opened any connections yet. When it’s first
used, it retrieves a connection from a pool of connections maintained by the
Engine, and holds onto it until we commit all changes and/or close the
session object.

Adding and Updating Objects

To persist our User object, we add() it to our Session:

>>> ed_user = User(name='ed', fullname='Ed Jones', password='edspassword')
>>> session.add(ed_user)

At this point, we say that the instance is pending; no SQL has yet been issued
and the object is not yet represented by a row in the database. The
Session will issue the SQL to persist Ed
Jones as soon as is needed, using a process known as a flush. If we
query the database for Ed Jones, all pending information will first be
flushed, and the query is issued immediately thereafter.

For example, below we create a new Query object
which loads instances of User. We “filter by” the name attribute of
ed, and indicate that we’d like only the first result in the full list of
rows. A User instance is returned which is equivalent to that which we’ve
added:

sql>>> our_user = session.query(User).filter_by(name='ed').first() # doctest:+NORMALIZE_WHITESPACE
BEGIN (implicit)
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('ed', 'Ed Jones', 'edspassword')
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name = ?
 LIMIT ? OFFSET ?
('ed', 1, 0)

>>> our_user
<User(name='ed', fullname='Ed Jones', password='edspassword')>

In fact, the Session has identified that the
row returned is the same row as one already represented within its
internal map of objects, so we actually got back the identical instance as
that which we just added:

>>> ed_user is our_user
True

The ORM concept at work here is known as an identity map
and ensures that
all operations upon a particular row within a
Session operate upon the same set of data.
Once an object with a particular primary key is present in the
Session, all SQL queries on that
Session will always return the same Python
object for that particular primary key; it also will raise an error if an
attempt is made to place a second, already-persisted object with the same
primary key within the session.

We can add more User objects at once using
add_all():

>>> session.add_all([
... User(name='wendy', fullname='Wendy Williams', password='foobar'),
... User(name='mary', fullname='Mary Contrary', password='xxg527'),
... User(name='fred', fullname='Fred Flinstone', password='blah')])

Also, we’ve decided the password for Ed isn’t too secure, so lets change it:

>>> ed_user.password = 'f8s7ccs'

The Session is paying attention. It knows,
for example, that Ed Jones has been modified:

>>> session.dirty
IdentitySet([<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>])

and that three new User objects are pending:

>>> session.new # doctest: +SKIP
IdentitySet([<User(name='wendy', fullname='Wendy Williams', password='foobar')>,
<User(name='mary', fullname='Mary Contrary', password='xxg527')>,
<User(name='fred', fullname='Fred Flinstone', password='blah')>])

We tell the Session that we’d like to issue
all remaining changes to the database and commit the transaction, which has
been in progress throughout. We do this via commit(). The
Session emits the UPDATE statement
for the password change on “ed”, as well as INSERT statements for the
three new User objects we’ve added:

sql>>> session.commit()
UPDATE users SET password=? WHERE users.id = ?
('f8s7ccs', 1)
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('wendy', 'Wendy Williams', 'foobar')
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('mary', 'Mary Contrary', 'xxg527')
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('fred', 'Fred Flinstone', 'blah')
COMMIT

commit() flushes whatever remaining changes remain to the
database, and commits the transaction. The connection resources referenced by
the session are now returned to the connection pool. Subsequent operations
with this session will occur in a new transaction, which will again
re-acquire connection resources when first needed.

If we look at Ed’s id attribute, which earlier was None, it now has a value:

sql>>> ed_user.id # doctest: +NORMALIZE_WHITESPACE
BEGIN (implicit)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.id = ?
(1,)

1

After the Session inserts new rows in the
database, all newly generated identifiers and database-generated defaults
become available on the instance, either immediately or via
load-on-first-access. In this case, the entire row was re-loaded on access
because a new transaction was begun after we issued commit(). SQLAlchemy
by default refreshes data from a previous transaction the first time it’s
accessed within a new transaction, so that the most recent state is available.
The level of reloading is configurable as is described in Using the Session.

Session Object States

As our User object moved from being outside the Session, to
inside the Session without a primary key, to actually being
inserted, it moved between three out of four
available “object states” - transient, pending, and persistent.
Being aware of these states and what they mean is always a good idea -
be sure to read Quickie Intro to Object States for a quick overview.

Rolling Back

Since the Session works within a transaction,
we can roll back changes made too. Let’s make two changes that we’ll revert;
ed_user‘s user name gets set to Edwardo:

>>> ed_user.name = 'Edwardo'

and we’ll add another erroneous user, fake_user:

>>> fake_user = User(name='fakeuser', fullname='Invalid', password='12345')
>>> session.add(fake_user)

Querying the session, we can see that they’re flushed into the current transaction:

sql>>> session.query(User).filter(User.name.in_(['Edwardo', 'fakeuser'])).all()
UPDATE users SET name=? WHERE users.id = ?
('Edwardo', 1)
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('fakeuser', 'Invalid', '12345')
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name IN (?, ?)
('Edwardo', 'fakeuser')

[<User(name='Edwardo', fullname='Ed Jones', password='f8s7ccs')>, <User(name='fakeuser', fullname='Invalid', password='12345')>]

Rolling back, we can see that ed_user‘s name is back to ed, and
fake_user has been kicked out of the session:

sql>>> session.rollback()
ROLLBACK

sql>>> ed_user.name
BEGIN (implicit)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.id = ?
(1,)

u'ed'
>>> fake_user in session
False

issuing a SELECT illustrates the changes made to the database:

sql>>> session.query(User).filter(User.name.in_(['ed', 'fakeuser'])).all()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name IN (?, ?)
('ed', 'fakeuser')

[<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>]

Querying

A Query object is created using the
query() method on
Session. This function takes a variable
number of arguments, which can be any combination of classes and
class-instrumented descriptors. Below, we indicate a
Query which loads User instances. When
evaluated in an iterative context, the list of User objects present is
returned:

sql>>> for instance in session.query(User).order_by(User.id):
... print(instance.name, instance.fullname)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users ORDER BY users.id
()

ed Ed Jones
wendy Wendy Williams
mary Mary Contrary
fred Fred Flinstone

The Query also accepts ORM-instrumented
descriptors as arguments. Any time multiple class entities or column-based
entities are expressed as arguments to the
query() function, the return result
is expressed as tuples:

sql>>> for name, fullname in session.query(User.name, User.fullname):
... print(name, fullname)
SELECT users.name AS users_name,
 users.fullname AS users_fullname
FROM users
()

ed Ed Jones
wendy Wendy Williams
mary Mary Contrary
fred Fred Flinstone

The tuples returned by Query are named
tuples, supplied by the KeyedTuple class, and can be treated much like an
ordinary Python object. The names are
the same as the attribute’s name for an attribute, and the class name for a
class:

sql>>> for row in session.query(User, User.name).all():
... print(row.User, row.name)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
()

<User(name='ed', fullname='Ed Jones', password='f8s7ccs')> ed
<User(name='wendy', fullname='Wendy Williams', password='foobar')> wendy
<User(name='mary', fullname='Mary Contrary', password='xxg527')> mary
<User(name='fred', fullname='Fred Flinstone', password='blah')> fred

You can control the names of individual column expressions using the
label() construct, which is available from
any ColumnElement-derived object, as well as any class attribute which
is mapped to one (such as User.name):

sql>>> for row in session.query(User.name.label('name_label')).all():
... print(row.name_label)
SELECT users.name AS name_label
FROM users
()
ed
wendy
mary
fred

The name given to a full entity such as User, assuming that multiple
entities are present in the call to query(), can be controlled using
aliased() :

>>> from sqlalchemy.orm import aliased
>>> user_alias = aliased(User, name='user_alias')

sql>>> for row in session.query(user_alias, user_alias.name).all():
... print(row.user_alias)
SELECT user_alias.id AS user_alias_id,
 user_alias.name AS user_alias_name,
 user_alias.fullname AS user_alias_fullname,
 user_alias.password AS user_alias_password
FROM users AS user_alias
()
<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>
<User(name='wendy', fullname='Wendy Williams', password='foobar')>
<User(name='mary', fullname='Mary Contrary', password='xxg527')>
<User(name='fred', fullname='Fred Flinstone', password='blah')>

Basic operations with Query include issuing
LIMIT and OFFSET, most conveniently using Python array slices and typically in
conjunction with ORDER BY:

sql>>> for u in session.query(User).order_by(User.id)[1:3]:
... print(u)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users ORDER BY users.id
LIMIT ? OFFSET ?
(2, 1)
<User(name='wendy', fullname='Wendy Williams', password='foobar')>
<User(name='mary', fullname='Mary Contrary', password='xxg527')>

and filtering results, which is accomplished either with
filter_by(), which uses keyword arguments:

sql>>> for name, in session.query(User.name).\
... filter_by(fullname='Ed Jones'):
... print(name)
SELECT users.name AS users_name FROM users
WHERE users.fullname = ?
('Ed Jones',)

ed

...or filter(), which uses more flexible SQL
expression language constructs. These allow you to use regular Python
operators with the class-level attributes on your mapped class:

sql>>> for name, in session.query(User.name).\
... filter(User.fullname=='Ed Jones'):
... print(name)
SELECT users.name AS users_name FROM users
WHERE users.fullname = ?
('Ed Jones',)

ed

The Query object is fully generative, meaning
that most method calls return a new Query
object upon which further criteria may be added. For example, to query for
users named “ed” with a full name of “Ed Jones”, you can call
filter() twice, which joins criteria using
AND:

sql>>> for user in session.query(User).\
... filter(User.name=='ed').\
... filter(User.fullname=='Ed Jones'):
... print(user)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name = ? AND users.fullname = ?
('ed', 'Ed Jones')

<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>

Common Filter Operators

Here’s a rundown of some of the most common operators used in
filter():

	equals:

query.filter(User.name == 'ed')

	not equals:

query.filter(User.name != 'ed')

	LIKE:

query.filter(User.name.like('%ed%'))

	IN:

query.filter(User.name.in_(['ed', 'wendy', 'jack']))

works with query objects too:
query.filter(User.name.in_(
 session.query(User.name).filter(User.name.like('%ed%'))
))

	NOT IN:

query.filter(~User.name.in_(['ed', 'wendy', 'jack']))

	IS NULL:

query.filter(User.name == None)

alternatively, if pep8/linters are a concern
query.filter(User.name.is_(None))

	IS NOT NULL:

query.filter(User.name != None)

alternatively, if pep8/linters are a concern
query.filter(User.name.isnot(None))

	AND:

use and_()
from sqlalchemy import and_
query.filter(and_(User.name == 'ed', User.fullname == 'Ed Jones'))

or send multiple expressions to .filter()
query.filter(User.name == 'ed', User.fullname == 'Ed Jones')

or chain multiple filter()/filter_by() calls
query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones')

Note

Make sure you use and_() and not the
Python and operator!

	OR:

from sqlalchemy import or_
query.filter(or_(User.name == 'ed', User.name == 'wendy'))

Note

Make sure you use or_() and not the
Python or operator!

	MATCH:

query.filter(User.name.match('wendy'))

Note

match() uses a database-specific MATCH
or CONTAINS function; its behavior will vary by backend and is not
available on some backends such as SQLite.

Returning Lists and Scalars

A number of methods on Query
immediately issue SQL and return a value containing loaded
database results. Here’s a brief tour:

	all() returns a list:

>>> query = session.query(User).filter(User.name.like('%ed')).order_by(User.id)
sql>>> query.all()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name LIKE ? ORDER BY users.id
('%ed',)

[<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>,
 <User(name='fred', fullname='Fred Flinstone', password='blah')>]

	first() applies a limit of one and returns
the first result as a scalar:

sql>>> query.first()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name LIKE ? ORDER BY users.id
 LIMIT ? OFFSET ?
('%ed', 1, 0)

<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>

	one() fully fetches all rows, and if not
exactly one object identity or composite row is present in the result, raises
an error. With multiple rows found:

>>> user = query.one()
Traceback (most recent call last):
...
MultipleResultsFound: Multiple rows were found for one()

With no rows found:

>>> user = query.filter(User.id == 99).one()
Traceback (most recent call last):
...
NoResultFound: No row was found for one()

The one() method is great for systems that expect to handle
“no items found” versus “multiple items found” differently; such as a RESTful
web service, which may want to raise a “404 not found” when no results are found,
but raise an application error when multiple results are found.

	one_or_none() is like one(), except that if no
results are found, it doesn’t raise an error; it just returns None. Like
one(), however, it does raise an error if multiple results are
found.

	scalar() invokes the one() method, and upon
success returns the first column of the row:

>>> query = session.query(User.id).filter(User.name == 'ed').\
... order_by(User.id)
sql>>> query.scalar()
SELECT users.id AS users_id
FROM users
WHERE users.name = ? ORDER BY users.id
('ed',)

1

Using Textual SQL

Literal strings can be used flexibly with
Query, by specifying their use
with the text() construct, which is accepted
by most applicable methods. For example,
filter() and
order_by():

>>> from sqlalchemy import text
sql>>> for user in session.query(User).\
... filter(text("id<224")).\
... order_by(text("id")).all():
... print(user.name)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE id<224 ORDER BY id
()

ed
wendy
mary
fred

Bind parameters can be specified with string-based SQL, using a colon. To
specify the values, use the params()
method:

sql>>> session.query(User).filter(text("id<:value and name=:name")).\
... params(value=224, name='fred').order_by(User.id).one()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE id<? and name=? ORDER BY users.id
(224, 'fred')

<User(name='fred', fullname='Fred Flinstone', password='blah')>

To use an entirely string-based statement, a text() construct
representing a complete statement can be passed to
from_statement(). Without additional
specifiers, the columns in the string SQL are matched to the model columns
based on name, such as below where we use just an asterisk to represent
loading all columns:

sql>>> session.query(User).from_statement(
... text("SELECT * FROM users where name=:name")).\
... params(name='ed').all()
SELECT * FROM users where name=?
('ed',)

[<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>]

Matching columns on name works for simple cases but can become unwieldy when
dealing with complex statements that contain duplicate column names or when
using anonymized ORM constructs that don’t easily match to specific names.
Additionally, there is typing behavior present in our mapped columns that
we might find necessary when handling result rows. For these cases,
the text() construct allows us to link its textual SQL
to Core or ORM-mapped column expressions positionally; we can achieve this
by passing column expressions as positional arguments to the
TextClause.columns() method:

>>> stmt = text("SELECT name, id, fullname, password "
... "FROM users where name=:name")
>>> stmt = stmt.columns(User.name, User.id, User.fullname, User.password)
sql>>> session.query(User).from_statement(stmt).params(name='ed').all()
SELECT name, id, fullname, password FROM users where name=?
('ed',)

[<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>]

New in version 1.1: The TextClause.columns() method now accepts column expressions
which will be matched positionally to a plain text SQL result set,
eliminating the need for column names to match or even be unique in the
SQL statement.

When selecting from a text() construct, the Query
may still specify what columns and entities are to be returned; instead of
query(User) we can also ask for the columns individually, as in
any other case:

>>> stmt = text("SELECT name, id FROM users where name=:name")
>>> stmt = stmt.columns(User.name, User.id)
sql>>> session.query(User.id, User.name).\
... from_statement(stmt).params(name='ed').all()
SELECT name, id FROM users where name=?
('ed',)

[(1, u'ed')]

See also

Using Textual SQL - The text() construct explained
from the perspective of Core-only queries.

Counting

Query includes a convenience method for
counting called count():

sql>>> session.query(User).filter(User.name.like('%ed')).count()
SELECT count(*) AS count_1
FROM (SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name LIKE ?) AS anon_1
('%ed',)

2

Counting on count()

Query.count() used to be a very complicated method
when it would try to guess whether or not a subquery was needed
around the
existing query, and in some exotic cases it wouldn’t do the right thing.
Now that it uses a simple subquery every time, it’s only two lines long
and always returns the right answer. Use func.count() if a
particular statement absolutely cannot tolerate the subquery being present.

The count() method is used to determine
how many rows the SQL statement would return. Looking
at the generated SQL above, SQLAlchemy always places whatever it is we are
querying into a subquery, then counts the rows from that. In some cases
this can be reduced to a simpler SELECT count(*) FROM table, however
modern versions of SQLAlchemy don’t try to guess when this is appropriate,
as the exact SQL can be emitted using more explicit means.

For situations where the “thing to be counted” needs
to be indicated specifically, we can specify the “count” function
directly using the expression func.count(), available from the
func construct. Below we
use it to return the count of each distinct user name:

>>> from sqlalchemy import func
sql>>> session.query(func.count(User.name), User.name).group_by(User.name).all()
SELECT count(users.name) AS count_1, users.name AS users_name
FROM users GROUP BY users.name
()

[(1, u'ed'), (1, u'fred'), (1, u'mary'), (1, u'wendy')]

To achieve our simple SELECT count(*) FROM table, we can apply it as:

sql>>> session.query(func.count('*')).select_from(User).scalar()
SELECT count(?) AS count_1
FROM users
('*',)

4

The usage of select_from() can be removed if we express the count in terms
of the User primary key directly:

sql>>> session.query(func.count(User.id)).scalar()
SELECT count(users.id) AS count_1
FROM users
()

4

Building a Relationship

Let’s consider how a second table, related to User, can be mapped and
queried. Users in our system
can store any number of email addresses associated with their username. This
implies a basic one to many association from the users to a new
table which stores email addresses, which we will call addresses. Using
declarative, we define this table along with its mapped class, Address:

>>> from sqlalchemy import ForeignKey
>>> from sqlalchemy.orm import relationship

>>> class Address(Base):
... __tablename__ = 'addresses'
... id = Column(Integer, primary_key=True)
... email_address = Column(String, nullable=False)
... user_id = Column(Integer, ForeignKey('users.id'))
...
... user = relationship("User", back_populates="addresses")
...
... def __repr__(self):
... return "<Address(email_address='%s')>" % self.email_address

>>> User.addresses = relationship(
... "Address", order_by=Address.id, back_populates="user")

The above class introduces the ForeignKey construct, which is a
directive applied to Column that indicates that values in this
column should be constrained to be values present in the named remote
column. This is a core feature of relational databases, and is the “glue” that
transforms an otherwise unconnected collection of tables to have rich
overlapping relationships. The ForeignKey above expresses that
values in the addresses.user_id column should be constrained to
those values in the users.id column, i.e. its primary key.

A second directive, known as relationship(),
tells the ORM that the Address class itself should be linked
to the User class, using the attribute Address.user.
relationship() uses the foreign key
relationships between the two tables to determine the nature of
this linkage, determining that Address.user will be many to one.
An additional relationship() directive is placed on the
User mapped class under the attribute User.addresses. In both
relationship() directives, the parameter
relationship.back_populates is assigned to refer to the
complementary attribute names; by doing so, each relationship()
can make intelligent decision about the same relationship as expressed
in reverse; on one side, Address.user refers to a User instance,
and on the other side, User.addresses refers to a list of
Address instances.

Note

The relationship.back_populates parameter is a newer
version of a very common SQLAlchemy feature called
relationship.backref. The relationship.backref
parameter hasn’t gone anywhere and will always remain available!
The relationship.back_populates is the same thing, except
a little more verbose and easier to manipulate. For an overview
of the entire topic, see the section Linking Relationships with Backref.

The reverse side of a many-to-one relationship is always one to many.
A full catalog of available relationship() configurations
is at Basic Relationship Patterns.

The two complementing relationships Address.user and User.addresses
are referred to as a bidirectional relationship, and is a key
feature of the SQLAlchemy ORM. The section Linking Relationships with Backref
discusses the “backref” feature in detail.

Arguments to relationship() which concern the remote class
can be specified using strings, assuming the Declarative system is in
use. Once all mappings are complete, these strings are evaluated
as Python expressions in order to produce the actual argument, in the
above case the User class. The names which are allowed during
this evaluation include, among other things, the names of all classes
which have been created in terms of the declared base.

See the docstring for relationship() for more detail on argument style.

Did you know ?

	a FOREIGN KEY constraint in most (though not all) relational databases can
only link to a primary key column, or a column that has a UNIQUE constraint.

	a FOREIGN KEY constraint that refers to a multiple column primary key, and itself
has multiple columns, is known as a “composite foreign key”. It can also
reference a subset of those columns.

	FOREIGN KEY columns can automatically update themselves, in response to a change
in the referenced column or row. This is known as the CASCADE referential action,
and is a built in function of the relational database.

	FOREIGN KEY can refer to its own table. This is referred to as a “self-referential”
foreign key.

	Read more about foreign keys at Foreign Key - Wikipedia.

We’ll need to create the addresses table in the database, so we will issue
another CREATE from our metadata, which will skip over tables which have
already been created:

sql>>> Base.metadata.create_all(engine)
PRAGMA...
CREATE TABLE addresses (
 id INTEGER NOT NULL,
 email_address VARCHAR NOT NULL,
 user_id INTEGER,
 PRIMARY KEY (id),
 FOREIGN KEY(user_id) REFERENCES users (id)
)
()
COMMIT

Working with Related Objects

Now when we create a User, a blank addresses collection will be
present. Various collection types, such as sets and dictionaries, are possible
here (see Customizing Collection Access for details), but by
default, the collection is a Python list.

>>> jack = User(name='jack', fullname='Jack Bean', password='gjffdd')
>>> jack.addresses
[]

We are free to add Address objects on our User object. In this case we
just assign a full list directly:

>>> jack.addresses = [
... Address(email_address='jack@google.com'),
... Address(email_address='j25@yahoo.com')]

When using a bidirectional relationship, elements added in one direction
automatically become visible in the other direction. This behavior occurs
based on attribute on-change events and is evaluated in Python, without
using any SQL:

>>> jack.addresses[1]
<Address(email_address='j25@yahoo.com')>

>>> jack.addresses[1].user
<User(name='jack', fullname='Jack Bean', password='gjffdd')>

Let’s add and commit Jack Bean to the database. jack as well
as the two Address members in the corresponding addresses
collection are both added to the session at once, using a process
known as cascading:

>>> session.add(jack)
sql>>> session.commit()
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('jack', 'Jack Bean', 'gjffdd')
INSERT INTO addresses (email_address, user_id) VALUES (?, ?)
('jack@google.com', 5)
INSERT INTO addresses (email_address, user_id) VALUES (?, ?)
('j25@yahoo.com', 5)
COMMIT

Querying for Jack, we get just Jack back. No SQL is yet issued for Jack’s addresses:

sql>>> jack = session.query(User).\
... filter_by(name='jack').one()
BEGIN (implicit)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name = ?
('jack',)

>>> jack
<User(name='jack', fullname='Jack Bean', password='gjffdd')>

Let’s look at the addresses collection. Watch the SQL:

sql>>> jack.addresses
SELECT addresses.id AS addresses_id,
 addresses.email_address AS
 addresses_email_address,
 addresses.user_id AS addresses_user_id
FROM addresses
WHERE ? = addresses.user_id ORDER BY addresses.id
(5,)

[<Address(email_address='jack@google.com')>, <Address(email_address='j25@yahoo.com')>]

When we accessed the addresses collection, SQL was suddenly issued. This
is an example of a lazy loading relationship. The addresses collection
is now loaded and behaves just like an ordinary list. We’ll cover ways
to optimize the loading of this collection in a bit.

Querying with Joins

Now that we have two tables, we can show some more features of Query,
specifically how to create queries that deal with both tables at the same time.
The Wikipedia page on SQL JOIN offers a good introduction to
join techniques, several of which we’ll illustrate here.

To construct a simple implicit join between User and Address,
we can use Query.filter() to equate their related columns together.
Below we load the User and Address entities at once using this method:

sql>>> for u, a in session.query(User, Address).\
... filter(User.id==Address.user_id).\
... filter(Address.email_address=='jack@google.com').\
... all():
... print(u)
... print(a)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password,
 addresses.id AS addresses_id,
 addresses.email_address AS addresses_email_address,
 addresses.user_id AS addresses_user_id
FROM users, addresses
WHERE users.id = addresses.user_id
 AND addresses.email_address = ?
('jack@google.com',)

<User(name='jack', fullname='Jack Bean', password='gjffdd')>
<Address(email_address='jack@google.com')>

The actual SQL JOIN syntax, on the other hand, is most easily achieved
using the Query.join() method:

sql>>> session.query(User).join(Address).\
... filter(Address.email_address=='jack@google.com').\
... all()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users JOIN addresses ON users.id = addresses.user_id
WHERE addresses.email_address = ?
('jack@google.com',)

[<User(name='jack', fullname='Jack Bean', password='gjffdd')>]

Query.join() knows how to join between User
and Address because there’s only one foreign key between them. If there
were no foreign keys, or several, Query.join()
works better when one of the following forms are used:

query.join(Address, User.id==Address.user_id) # explicit condition
query.join(User.addresses) # specify relationship from left to right
query.join(Address, User.addresses) # same, with explicit target
query.join('addresses') # same, using a string

As you would expect, the same idea is used for “outer” joins, using the
outerjoin() function:

query.outerjoin(User.addresses) # LEFT OUTER JOIN

The reference documentation for join() contains detailed information
and examples of the calling styles accepted by this method; join()
is an important method at the center of usage for any SQL-fluent application.

What does Query select from if there’s multiple entities?

The Query.join() method will typically join from the leftmost
item in the list of entities, when the ON clause is omitted, or if the
ON clause is a plain SQL expression. To control the first entity in the list
of JOINs, use the Query.select_from() method:

query = Session.query(User, Address).select_from(Address).join(User)

Using Aliases

When querying across multiple tables, if the same table needs to be referenced
more than once, SQL typically requires that the table be aliased with
another name, so that it can be distinguished against other occurrences of
that table. The Query supports this most
explicitly using the aliased construct. Below we join to the Address
entity twice, to locate a user who has two distinct email addresses at the
same time:

>>> from sqlalchemy.orm import aliased
>>> adalias1 = aliased(Address)
>>> adalias2 = aliased(Address)
sql>>> for username, email1, email2 in \
... session.query(User.name, adalias1.email_address, adalias2.email_address).\
... join(adalias1, User.addresses).\
... join(adalias2, User.addresses).\
... filter(adalias1.email_address=='jack@google.com').\
... filter(adalias2.email_address=='j25@yahoo.com'):
... print(username, email1, email2)
SELECT users.name AS users_name,
 addresses_1.email_address AS addresses_1_email_address,
 addresses_2.email_address AS addresses_2_email_address
FROM users JOIN addresses AS addresses_1
 ON users.id = addresses_1.user_id
JOIN addresses AS addresses_2
 ON users.id = addresses_2.user_id
WHERE addresses_1.email_address = ?
 AND addresses_2.email_address = ?
('jack@google.com', 'j25@yahoo.com')

jack jack@google.com j25@yahoo.com

Using Subqueries

The Query is suitable for generating statements
which can be used as subqueries. Suppose we wanted to load User objects
along with a count of how many Address records each user has. The best way
to generate SQL like this is to get the count of addresses grouped by user
ids, and JOIN to the parent. In this case we use a LEFT OUTER JOIN so that we
get rows back for those users who don’t have any addresses, e.g.:

SELECT users.*, adr_count.address_count FROM users LEFT OUTER JOIN
 (SELECT user_id, count(*) AS address_count
 FROM addresses GROUP BY user_id) AS adr_count
 ON users.id=adr_count.user_id

Using the Query, we build a statement like this
from the inside out. The statement accessor returns a SQL expression
representing the statement generated by a particular
Query - this is an instance of a select()
construct, which are described in SQL Expression Language Tutorial:

>>> from sqlalchemy.sql import func
>>> stmt = session.query(Address.user_id, func.count('*').\
... label('address_count')).\
... group_by(Address.user_id).subquery()

The func keyword generates SQL functions, and the subquery() method on
Query produces a SQL expression construct
representing a SELECT statement embedded within an alias (it’s actually
shorthand for query.statement.alias()).

Once we have our statement, it behaves like a
Table construct, such as the one we created for
users at the start of this tutorial. The columns on the statement are
accessible through an attribute called c:

sql>>> for u, count in session.query(User, stmt.c.address_count).\
... outerjoin(stmt, User.id==stmt.c.user_id).order_by(User.id):
... print(u, count)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password,
 anon_1.address_count AS anon_1_address_count
FROM users LEFT OUTER JOIN
 (SELECT addresses.user_id AS user_id, count(?) AS address_count
 FROM addresses GROUP BY addresses.user_id) AS anon_1
 ON users.id = anon_1.user_id
ORDER BY users.id
('*',)

<User(name='ed', fullname='Ed Jones', password='f8s7ccs')> None
<User(name='wendy', fullname='Wendy Williams', password='foobar')> None
<User(name='mary', fullname='Mary Contrary', password='xxg527')> None
<User(name='fred', fullname='Fred Flinstone', password='blah')> None
<User(name='jack', fullname='Jack Bean', password='gjffdd')> 2

Selecting Entities from Subqueries

Above, we just selected a result that included a column from a subquery. What
if we wanted our subquery to map to an entity ? For this we use aliased()
to associate an “alias” of a mapped class to a subquery:

sql>>> stmt = session.query(Address).\
... filter(Address.email_address != 'j25@yahoo.com').\
... subquery()
>>> adalias = aliased(Address, stmt)
>>> for user, address in session.query(User, adalias).\
... join(adalias, User.addresses):
... print(user)
... print(address)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password,
 anon_1.id AS anon_1_id,
 anon_1.email_address AS anon_1_email_address,
 anon_1.user_id AS anon_1_user_id
FROM users JOIN
 (SELECT addresses.id AS id,
 addresses.email_address AS email_address,
 addresses.user_id AS user_id
 FROM addresses
 WHERE addresses.email_address != ?) AS anon_1
 ON users.id = anon_1.user_id
('j25@yahoo.com',)

<User(name='jack', fullname='Jack Bean', password='gjffdd')>
<Address(email_address='jack@google.com')>

Using EXISTS

The EXISTS keyword in SQL is a boolean operator which returns True if the
given expression contains any rows. It may be used in many scenarios in place
of joins, and is also useful for locating rows which do not have a
corresponding row in a related table.

There is an explicit EXISTS construct, which looks like this:

>>> from sqlalchemy.sql import exists
>>> stmt = exists().where(Address.user_id==User.id)
sql>>> for name, in session.query(User.name).filter(stmt):
... print(name)
SELECT users.name AS users_name
FROM users
WHERE EXISTS (SELECT *
FROM addresses
WHERE addresses.user_id = users.id)
()

jack

The Query features several operators which make
usage of EXISTS automatically. Above, the statement can be expressed along the
User.addresses relationship using any():

sql>>> for name, in session.query(User.name).\
... filter(User.addresses.any()):
... print(name)
SELECT users.name AS users_name
FROM users
WHERE EXISTS (SELECT 1
FROM addresses
WHERE users.id = addresses.user_id)
()

jack

any() takes criterion as well, to limit the rows matched:

sql>>> for name, in session.query(User.name).\
... filter(User.addresses.any(Address.email_address.like('%google%'))):
... print(name)
SELECT users.name AS users_name
FROM users
WHERE EXISTS (SELECT 1
FROM addresses
WHERE users.id = addresses.user_id AND addresses.email_address LIKE ?)
('%google%',)

jack

has() is the same operator as
any() for many-to-one relationships
(note the ~ operator here too, which means “NOT”):

sql>>> session.query(Address).\
... filter(~Address.user.has(User.name=='jack')).all()
SELECT addresses.id AS addresses_id,
 addresses.email_address AS addresses_email_address,
 addresses.user_id AS addresses_user_id
FROM addresses
WHERE NOT (EXISTS (SELECT 1
FROM users
WHERE users.id = addresses.user_id AND users.name = ?))
('jack',)

[]

Common Relationship Operators

Here’s all the operators which build on relationships - each one
is linked to its API documentation which includes full details on usage
and behavior:

	__eq__() (many-to-one “equals” comparison):

query.filter(Address.user == someuser)

	__ne__() (many-to-one “not equals” comparison):

query.filter(Address.user != someuser)

	IS NULL (many-to-one comparison, also uses __eq__()):

query.filter(Address.user == None)

	contains() (used for one-to-many collections):

query.filter(User.addresses.contains(someaddress))

	any() (used for collections):

query.filter(User.addresses.any(Address.email_address == 'bar'))

also takes keyword arguments:
query.filter(User.addresses.any(email_address='bar'))

	has() (used for scalar references):

query.filter(Address.user.has(name='ed'))

	Query.with_parent() (used for any relationship):

session.query(Address).with_parent(someuser, 'addresses')

Eager Loading

Recall earlier that we illustrated a lazy loading operation, when
we accessed the User.addresses collection of a User and SQL
was emitted. If you want to reduce the number of queries (dramatically, in many cases),
we can apply an eager load to the query operation. SQLAlchemy
offers three types of eager loading, two of which are automatic, and a third
which involves custom criterion. All three are usually invoked via functions known
as query options which give additional instructions to the Query on how
we would like various attributes to be loaded, via the Query.options() method.

Subquery Load

In this case we’d like to indicate that User.addresses should load eagerly.
A good choice for loading a set of objects as well as their related collections
is the orm.subqueryload() option, which emits a second SELECT statement
that fully loads the collections associated with the results just loaded.
The name “subquery” originates from the fact that the SELECT statement
constructed directly via the Query is re-used, embedded as a subquery
into a SELECT against the related table. This is a little elaborate but
very easy to use:

>>> from sqlalchemy.orm import subqueryload
sql>>> jack = session.query(User).\
... options(subqueryload(User.addresses)).\
... filter_by(name='jack').one()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name = ?
('jack',)
SELECT addresses.id AS addresses_id,
 addresses.email_address AS addresses_email_address,
 addresses.user_id AS addresses_user_id,
 anon_1.users_id AS anon_1_users_id
FROM (SELECT users.id AS users_id
 FROM users WHERE users.name = ?) AS anon_1
JOIN addresses ON anon_1.users_id = addresses.user_id
ORDER BY anon_1.users_id, addresses.id
('jack',)

>>> jack
<User(name='jack', fullname='Jack Bean', password='gjffdd')>

>>> jack.addresses
[<Address(email_address='jack@google.com')>, <Address(email_address='j25@yahoo.com')>]

Note

subqueryload() when used in conjunction with limiting such as
Query.first(), Query.limit() or Query.offset()
should also include Query.order_by() on a unique column in order to
ensure correct results. See The Importance of Ordering.

Joined Load

The other automatic eager loading function is more well known and is called
orm.joinedload(). This style of loading emits a JOIN, by default
a LEFT OUTER JOIN, so that the lead object as well as the related object
or collection is loaded in one step. We illustrate loading the same
addresses collection in this way - note that even though the User.addresses
collection on jack is actually populated right now, the query
will emit the extra join regardless:

>>> from sqlalchemy.orm import joinedload

sql>>> jack = session.query(User).\
... options(joinedload(User.addresses)).\
... filter_by(name='jack').one()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password,
 addresses_1.id AS addresses_1_id,
 addresses_1.email_address AS addresses_1_email_address,
 addresses_1.user_id AS addresses_1_user_id
FROM users
 LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE users.name = ? ORDER BY addresses_1.id
('jack',)

>>> jack
<User(name='jack', fullname='Jack Bean', password='gjffdd')>

>>> jack.addresses
[<Address(email_address='jack@google.com')>, <Address(email_address='j25@yahoo.com')>]

Note that even though the OUTER JOIN resulted in two rows, we still only got
one instance of User back. This is because Query applies a “uniquing”
strategy, based on object identity, to the returned entities. This is specifically
so that joined eager loading can be applied without affecting the query results.

While joinedload() has been around for a long time, subqueryload()
is a newer form of eager loading. subqueryload() tends to be more appropriate
for loading related collections while joinedload() tends to be better suited
for many-to-one relationships, due to the fact that only one row is loaded
for both the lead and the related object.

joinedload() is not a replacement for join()

The join created by joinedload() is anonymously aliased such that
it does not affect the query results. An Query.order_by()
or Query.filter() call cannot reference these aliased
tables - so-called “user space” joins are constructed using
Query.join(). The rationale for this is that joinedload() is only
applied in order to affect how related objects or collections are loaded
as an optimizing detail - it can be added or removed with no impact
on actual results. See the section The Zen of Eager Loading for
a detailed description of how this is used.

Explicit Join + Eagerload

A third style of eager loading is when we are constructing a JOIN explicitly in
order to locate the primary rows, and would like to additionally apply the extra
table to a related object or collection on the primary object. This feature
is supplied via the orm.contains_eager() function, and is most
typically useful for pre-loading the many-to-one object on a query that needs
to filter on that same object. Below we illustrate loading an Address
row as well as the related User object, filtering on the User named
“jack” and using orm.contains_eager() to apply the “user” columns to the Address.user
attribute:

>>> from sqlalchemy.orm import contains_eager
sql>>> jacks_addresses = session.query(Address).\
... join(Address.user).\
... filter(User.name=='jack').\
... options(contains_eager(Address.user)).\
... all()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password,
 addresses.id AS addresses_id,
 addresses.email_address AS addresses_email_address,
 addresses.user_id AS addresses_user_id
FROM addresses JOIN users ON users.id = addresses.user_id
WHERE users.name = ?
('jack',)

>>> jacks_addresses
[<Address(email_address='jack@google.com')>, <Address(email_address='j25@yahoo.com')>]

>>> jacks_addresses[0].user
<User(name='jack', fullname='Jack Bean', password='gjffdd')>

For more information on eager loading, including how to configure various forms
of loading by default, see the section Relationship Loading Techniques.

Deleting

Let’s try to delete jack and see how that goes. We’ll mark as deleted in
the session, then we’ll issue a count query to see that no rows remain:

>>> session.delete(jack)
sql>>> session.query(User).filter_by(name='jack').count()
UPDATE addresses SET user_id=? WHERE addresses.id = ?
((None, 1), (None, 2))
DELETE FROM users WHERE users.id = ?
(5,)
SELECT count(*) AS count_1
FROM (SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name = ?) AS anon_1
('jack',)

0

So far, so good. How about Jack’s Address objects ?

sql>>> session.query(Address).filter(
... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com'])
...).count()
SELECT count(*) AS count_1
FROM (SELECT addresses.id AS addresses_id,
 addresses.email_address AS addresses_email_address,
 addresses.user_id AS addresses_user_id
FROM addresses
WHERE addresses.email_address IN (?, ?)) AS anon_1
('jack@google.com', 'j25@yahoo.com')

2

Uh oh, they’re still there ! Analyzing the flush SQL, we can see that the
user_id column of each address was set to NULL, but the rows weren’t
deleted. SQLAlchemy doesn’t assume that deletes cascade, you have to tell it
to do so.

Configuring delete/delete-orphan Cascade

We will configure cascade options on the User.addresses relationship
to change the behavior. While SQLAlchemy allows you to add new attributes and
relationships to mappings at any point in time, in this case the existing
relationship needs to be removed, so we need to tear down the mappings
completely and start again - we’ll close the Session:

>>> session.close()
ROLLBACK

and use a new declarative_base():

>>> Base = declarative_base()

Next we’ll declare the User class, adding in the addresses relationship
including the cascade configuration (we’ll leave the constructor out too):

>>> class User(Base):
... __tablename__ = 'users'
...
... id = Column(Integer, primary_key=True)
... name = Column(String)
... fullname = Column(String)
... password = Column(String)
...
... addresses = relationship("Address", back_populates='user',
... cascade="all, delete, delete-orphan")
...
... def __repr__(self):
... return "<User(name='%s', fullname='%s', password='%s')>" % (
... self.name, self.fullname, self.password)

Then we recreate Address, noting that in this case we’ve created
the Address.user relationship via the User class already:

>>> class Address(Base):
... __tablename__ = 'addresses'
... id = Column(Integer, primary_key=True)
... email_address = Column(String, nullable=False)
... user_id = Column(Integer, ForeignKey('users.id'))
... user = relationship("User", back_populates="addresses")
...
... def __repr__(self):
... return "<Address(email_address='%s')>" % self.email_address

Now when we load the user jack (below using get(),
which loads by primary key), removing an address from the
corresponding addresses collection will result in that Address
being deleted:

load Jack by primary key
sql>>> jack = session.query(User).get(5)
BEGIN (implicit)
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.id = ?
(5,)

remove one Address (lazy load fires off)
sql>>> del jack.addresses[1]
SELECT addresses.id AS addresses_id,
 addresses.email_address AS addresses_email_address,
 addresses.user_id AS addresses_user_id
FROM addresses
WHERE ? = addresses.user_id
(5,)

only one address remains
sql>>> session.query(Address).filter(
... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com'])
...).count()
DELETE FROM addresses WHERE addresses.id = ?
(2,)
SELECT count(*) AS count_1
FROM (SELECT addresses.id AS addresses_id,
 addresses.email_address AS addresses_email_address,
 addresses.user_id AS addresses_user_id
FROM addresses
WHERE addresses.email_address IN (?, ?)) AS anon_1
('jack@google.com', 'j25@yahoo.com')

1

Deleting Jack will delete both Jack and the remaining Address associated
with the user:

>>> session.delete(jack)

sql>>> session.query(User).filter_by(name='jack').count()
DELETE FROM addresses WHERE addresses.id = ?
(1,)
DELETE FROM users WHERE users.id = ?
(5,)
SELECT count(*) AS count_1
FROM (SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name = ?) AS anon_1
('jack',)

0

sql>>> session.query(Address).filter(
... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com'])
...).count()
SELECT count(*) AS count_1
FROM (SELECT addresses.id AS addresses_id,
 addresses.email_address AS addresses_email_address,
 addresses.user_id AS addresses_user_id
FROM addresses
WHERE addresses.email_address IN (?, ?)) AS anon_1
('jack@google.com', 'j25@yahoo.com')

0

More on Cascades

Further detail on configuration of cascades is at Cascades.
The cascade functionality can also integrate smoothly with
the ON DELETE CASCADE functionality of the relational database.
See Using Passive Deletes for details.

Building a Many To Many Relationship

We’re moving into the bonus round here, but lets show off a many-to-many
relationship. We’ll sneak in some other features too, just to take a tour.
We’ll make our application a blog application, where users can write
BlogPost items, which have Keyword items associated with them.

For a plain many-to-many, we need to create an un-mapped Table construct
to serve as the association table. This looks like the following:

>>> from sqlalchemy import Table, Text
>>> # association table
>>> post_keywords = Table('post_keywords', Base.metadata,
... Column('post_id', ForeignKey('posts.id'), primary_key=True),
... Column('keyword_id', ForeignKey('keywords.id'), primary_key=True)
...)

Above, we can see declaring a Table directly is a little different
than declaring a mapped class. Table is a constructor function, so
each individual Column argument is separated by a comma. The
Column object is also given its name explicitly, rather than it being
taken from an assigned attribute name.

Next we define BlogPost and Keyword, using complementary
relationship() constructs, each referring to the post_keywords
table as an association table:

>>> class BlogPost(Base):
... __tablename__ = 'posts'
...
... id = Column(Integer, primary_key=True)
... user_id = Column(Integer, ForeignKey('users.id'))
... headline = Column(String(255), nullable=False)
... body = Column(Text)
...
... # many to many BlogPost<->Keyword
... keywords = relationship('Keyword',
... secondary=post_keywords,
... back_populates='posts')
...
... def __init__(self, headline, body, author):
... self.author = author
... self.headline = headline
... self.body = body
...
... def __repr__(self):
... return "BlogPost(%r, %r, %r)" % (self.headline, self.body, self.author)

>>> class Keyword(Base):
... __tablename__ = 'keywords'
...
... id = Column(Integer, primary_key=True)
... keyword = Column(String(50), nullable=False, unique=True)
... posts = relationship('BlogPost',
... secondary=post_keywords,
... back_populates='keywords')
...
... def __init__(self, keyword):
... self.keyword = keyword

Note

The above class declarations illustrate explicit __init__() methods.
Remember, when using Declarative, it’s optional!

Above, the many-to-many relationship is BlogPost.keywords. The defining
feature of a many-to-many relationship is the secondary keyword argument
which references a Table object representing the
association table. This table only contains columns which reference the two
sides of the relationship; if it has any other columns, such as its own
primary key, or foreign keys to other tables, SQLAlchemy requires a different
usage pattern called the “association object”, described at
Association Object.

We would also like our BlogPost class to have an author field. We will
add this as another bidirectional relationship, except one issue we’ll have is
that a single user might have lots of blog posts. When we access
User.posts, we’d like to be able to filter results further so as not to
load the entire collection. For this we use a setting accepted by
relationship() called lazy='dynamic', which
configures an alternate loader strategy on the attribute:

>>> BlogPost.author = relationship(User, back_populates="posts")
>>> User.posts = relationship(BlogPost, back_populates="author", lazy="dynamic")

Create new tables:

sql>>> Base.metadata.create_all(engine)
PRAGMA...
CREATE TABLE keywords (
 id INTEGER NOT NULL,
 keyword VARCHAR(50) NOT NULL,
 PRIMARY KEY (id),
 UNIQUE (keyword)
)
()
COMMIT
CREATE TABLE posts (
 id INTEGER NOT NULL,
 user_id INTEGER,
 headline VARCHAR(255) NOT NULL,
 body TEXT,
 PRIMARY KEY (id),
 FOREIGN KEY(user_id) REFERENCES users (id)
)
()
COMMIT
CREATE TABLE post_keywords (
 post_id INTEGER NOT NULL,
 keyword_id INTEGER NOT NULL,
 PRIMARY KEY (post_id, keyword_id),
 FOREIGN KEY(post_id) REFERENCES posts (id),
 FOREIGN KEY(keyword_id) REFERENCES keywords (id)
)
()
COMMIT

Usage is not too different from what we’ve been doing. Let’s give Wendy some blog posts:

sql>>> wendy = session.query(User).\
... filter_by(name='wendy').\
... one()
SELECT users.id AS users_id,
 users.name AS users_name,
 users.fullname AS users_fullname,
 users.password AS users_password
FROM users
WHERE users.name = ?
('wendy',)

>>> post = BlogPost("Wendy's Blog Post", "This is a test", wendy)
>>> session.add(post)

We’re storing keywords uniquely in the database, but we know that we don’t
have any yet, so we can just create them:

>>> post.keywords.append(Keyword('wendy'))
>>> post.keywords.append(Keyword('firstpost'))

We can now look up all blog posts with the keyword ‘firstpost’. We’ll use the
any operator to locate “blog posts where any of its keywords has the
keyword string ‘firstpost’”:

sql>>> session.query(BlogPost).\
... filter(BlogPost.keywords.any(keyword='firstpost')).\
... all()
INSERT INTO keywords (keyword) VALUES (?)
('wendy',)
INSERT INTO keywords (keyword) VALUES (?)
('firstpost',)
INSERT INTO posts (user_id, headline, body) VALUES (?, ?, ?)
(2, "Wendy's Blog Post", 'This is a test')
INSERT INTO post_keywords (post_id, keyword_id) VALUES (?, ?)
(...)
SELECT posts.id AS posts_id,
 posts.user_id AS posts_user_id,
 posts.headline AS posts_headline,
 posts.body AS posts_body
FROM posts
WHERE EXISTS (SELECT 1
 FROM post_keywords, keywords
 WHERE posts.id = post_keywords.post_id
 AND keywords.id = post_keywords.keyword_id
 AND keywords.keyword = ?)
('firstpost',)

[BlogPost("Wendy's Blog Post", 'This is a test', <User(name='wendy', fullname='Wendy Williams', password='foobar')>)]

If we want to look up posts owned by the user wendy, we can tell
the query to narrow down to that User object as a parent:

sql>>> session.query(BlogPost).\
... filter(BlogPost.author==wendy).\
... filter(BlogPost.keywords.any(keyword='firstpost')).\
... all()
SELECT posts.id AS posts_id,
 posts.user_id AS posts_user_id,
 posts.headline AS posts_headline,
 posts.body AS posts_body
FROM posts
WHERE ? = posts.user_id AND (EXISTS (SELECT 1
 FROM post_keywords, keywords
 WHERE posts.id = post_keywords.post_id
 AND keywords.id = post_keywords.keyword_id
 AND keywords.keyword = ?))
(2, 'firstpost')

[BlogPost("Wendy's Blog Post", 'This is a test', <User(name='wendy', fullname='Wendy Williams', password='foobar')>)]

Or we can use Wendy’s own posts relationship, which is a “dynamic”
relationship, to query straight from there:

sql>>> wendy.posts.\
... filter(BlogPost.keywords.any(keyword='firstpost')).\
... all()
SELECT posts.id AS posts_id,
 posts.user_id AS posts_user_id,
 posts.headline AS posts_headline,
 posts.body AS posts_body
FROM posts
WHERE ? = posts.user_id AND (EXISTS (SELECT 1
 FROM post_keywords, keywords
 WHERE posts.id = post_keywords.post_id
 AND keywords.id = post_keywords.keyword_id
 AND keywords.keyword = ?))
(2, 'firstpost')

[BlogPost("Wendy's Blog Post", 'This is a test', <User(name='wendy', fullname='Wendy Williams', password='foobar')>)]

Further Reference

Query Reference: query_api_toplevel

Mapper Reference: Mapper Configuration

Relationship Reference: Relationship Configuration

Session Reference: Using the Session

Mapper Configuration

This section describes a variety of configurational patterns that are usable
with mappers. It assumes you’ve worked through Object Relational Tutorial and
know how to construct and use rudimentary mappers and relationships.

	Types of Mappings
	Declarative Mapping

	Classical Mappings

	Runtime Introspection of Mappings, Objects

	Mapping Columns and Expressions
	Mapping Table Columns

	SQL Expressions as Mapped Attributes

	Changing Attribute Behavior

	Composite Column Types

	Mapping Class Inheritance Hierarchies
	Joined Table Inheritance

	Single Table Inheritance

	Concrete Table Inheritance

	Using Relationships with Inheritance

	Using Inheritance with Declarative

	Non-Traditional Mappings
	Mapping a Class against Multiple Tables

	Mapping a Class against Arbitrary Selects

	Multiple Mappers for One Class

	Configuring a Version Counter
	Simple Version Counting

	Custom Version Counters / Types

	Server Side Version Counters

	Programmatic or Conditional Version Counters

	Class Mapping API

Types of Mappings

Modern SQLAlchemy features two distinct styles of mapper configuration.
The “Classical” style is SQLAlchemy’s original mapping API, whereas
“Declarative” is the richer and more succinct system that builds on top
of “Classical”. Both styles may be used interchangeably, as the end
result of each is exactly the same - a user-defined class mapped by the
mapper() function onto a selectable unit, typically a Table.

Declarative Mapping

The Declarative Mapping is the typical way that
mappings are constructed in modern SQLAlchemy.
Making use of the Declarative
system, the components of the user-defined class as well as the
Table metadata to which the class is mapped are defined
at once:

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 name = Column(String)
 fullname = Column(String)
 password = Column(String)

Above, a basic single-table mapping with four columns. Additional
attributes, such as relationships to other mapped classes, are also
declared inline within the class definition:

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 name = Column(String)
 fullname = Column(String)
 password = Column(String)

 addresses = relationship("Address", backref="user", order_by="Address.id")

class Address(Base):
 __tablename__ = 'address'

 id = Column(Integer, primary_key=True)
 user_id = Column(ForeignKey('user.id'))
 email_address = Column(String)

The declarative mapping system is introduced in the
Object Relational Tutorial. For additional details on how this system
works, see Declarative.

Classical Mappings

A Classical Mapping refers to the configuration of a mapped class using the
mapper() function, without using the Declarative system. This is
SQLAlchemy’s original class mapping API, and is still the base mapping
system provided by the ORM.

In “classical” form, the table metadata is created separately with the
Table construct, then associated with the User class via
the mapper() function:

from sqlalchemy import Table, MetaData, Column, Integer, String, ForeignKey
from sqlalchemy.orm import mapper

metadata = MetaData()

user = Table('user', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('fullname', String(50)),
 Column('password', String(12))
)

class User(object):
 def __init__(self, name, fullname, password):
 self.name = name
 self.fullname = fullname
 self.password = password

mapper(User, user)

Information about mapped attributes, such as relationships to other classes, are provided
via the properties dictionary. The example below illustrates a second Table
object, mapped to a class called Address, then linked to User via relationship():

address = Table('address', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_id', Integer, ForeignKey('user.id')),
 Column('email_address', String(50))
)

mapper(User, user, properties={
 'addresses' : relationship(Address, backref='user', order_by=address.c.id)
})

mapper(Address, address)

When using classical mappings, classes must be provided directly without the benefit
of the “string lookup” system provided by Declarative. SQL expressions are typically
specified in terms of the Table objects, i.e. address.c.id above
for the Address relationship, and not Address.id, as Address may not
yet be linked to table metadata, nor can we specify a string here.

Some examples in the documentation still use the classical approach, but note that
the classical as well as Declarative approaches are fully interchangeable. Both
systems ultimately create the same configuration, consisting of a Table,
user-defined class, linked together with a mapper(). When we talk about
“the behavior of mapper()”, this includes when using the Declarative system
as well - it’s still used, just behind the scenes.

Runtime Introspection of Mappings, Objects

The Mapper object is available from any mapped class, regardless
of method, using the Runtime Inspection API system. Using the
inspect() function, one can acquire the Mapper from a
mapped class:

>>> from sqlalchemy import inspect
>>> insp = inspect(User)

Detailed information is available including Mapper.columns:

>>> insp.columns
<sqlalchemy.util._collections.OrderedProperties object at 0x102f407f8>

This is a namespace that can be viewed in a list format or
via individual names:

>>> list(insp.columns)
[Column('id', Integer(), table=<user>, primary_key=True, nullable=False), Column('name', String(length=50), table=<user>), Column('fullname', String(length=50), table=<user>), Column('password', String(length=12), table=<user>)]
>>> insp.columns.name
Column('name', String(length=50), table=<user>)

Other namespaces include Mapper.all_orm_descriptors, which includes all mapped
attributes as well as hybrids, association proxies:

>>> insp.all_orm_descriptors
<sqlalchemy.util._collections.ImmutableProperties object at 0x1040e2c68>
>>> insp.all_orm_descriptors.keys()
['fullname', 'password', 'name', 'id']

As well as Mapper.column_attrs:

>>> list(insp.column_attrs)
[<ColumnProperty at 0x10403fde0; id>, <ColumnProperty at 0x10403fce8; name>, <ColumnProperty at 0x1040e9050; fullname>, <ColumnProperty at 0x1040e9148; password>]
>>> insp.column_attrs.name
<ColumnProperty at 0x10403fce8; name>
>>> insp.column_attrs.name.expression
Column('name', String(length=50), table=<user>)

See also

Runtime Inspection API

Mapper

InstanceState

Mapping Columns and Expressions

The following sections discuss how table columns and SQL expressions are
mapped to individual object attributes.

	Mapping Table Columns
	Naming Columns Distinctly from Attribute Names

	Automating Column Naming Schemes from Reflected Tables

	Naming All Columns with a Prefix

	Using column_property for column level options

	Mapping a Subset of Table Columns

	SQL Expressions as Mapped Attributes
	Using a Hybrid

	Using column_property

	Using a plain descriptor

	Changing Attribute Behavior
	Simple Validators

	Using Descriptors and Hybrids

	Synonyms

	Operator Customization

	Composite Column Types
	Tracking In-Place Mutations on Composites

	Redefining Comparison Operations for Composites

Mapping Table Columns

The default behavior of mapper() is to assemble all the columns in
the mapped Table into mapped object attributes, each of which are
named according to the name of the column itself (specifically, the key
attribute of Column). This behavior can be
modified in several ways.

Naming Columns Distinctly from Attribute Names

A mapping by default shares the same name for a
Column as that of the mapped attribute - specifically
it matches the Column.key attribute on Column, which
by default is the same as the Column.name.

The name assigned to the Python attribute which maps to
Column can be different from either Column.name or Column.key
just by assigning it that way, as we illustrate here in a Declarative mapping:

class User(Base):
 __tablename__ = 'user'
 id = Column('user_id', Integer, primary_key=True)
 name = Column('user_name', String(50))

Where above User.id resolves to a column named user_id
and User.name resolves to a column named user_name.

When mapping to an existing table, the Column object
can be referenced directly:

class User(Base):
 __table__ = user_table
 id = user_table.c.user_id
 name = user_table.c.user_name

Or in a classical mapping, placed in the properties dictionary
with the desired key:

mapper(User, user_table, properties={
 'id': user_table.c.user_id,
 'name': user_table.c.user_name,
})

In the next section we’ll examine the usage of .key more closely.

Automating Column Naming Schemes from Reflected Tables

In the previous section Naming Columns Distinctly from Attribute Names, we showed how
a Column explicitly mapped to a class can have a different attribute
name than the column. But what if we aren’t listing out Column
objects explicitly, and instead are automating the production of Table
objects using reflection (e.g. as described in Reflecting Database Objects)?
In this case we can make use of the DDLEvents.column_reflect() event
to intercept the production of Column objects and provide them
with the Column.key of our choice:

@event.listens_for(Table, "column_reflect")
def column_reflect(inspector, table, column_info):
 # set column.key = "attr_<lower_case_name>"
 column_info['key'] = "attr_%s" % column_info['name'].lower()

With the above event, the reflection of Column objects will be intercepted
with our event that adds a new ”.key” element, such as in a mapping as below:

class MyClass(Base):
 __table__ = Table("some_table", Base.metadata,
 autoload=True, autoload_with=some_engine)

If we want to qualify our event to only react for the specific MetaData
object above, we can check for it in our event:

@event.listens_for(Table, "column_reflect")
def column_reflect(inspector, table, column_info):
 if table.metadata is Base.metadata:
 # set column.key = "attr_<lower_case_name>"
 column_info['key'] = "attr_%s" % column_info['name'].lower()

Naming All Columns with a Prefix

A quick approach to prefix column names, typically when mapping
to an existing Table object, is to use column_prefix:

class User(Base):
 __table__ = user_table
 __mapper_args__ = {'column_prefix':'_'}

The above will place attribute names such as _user_id, _user_name,
_password etc. on the mapped User class.

This approach is uncommon in modern usage. For dealing with reflected
tables, a more flexible approach is to use that described in
Automating Column Naming Schemes from Reflected Tables.

Using column_property for column level options

Options can be specified when mapping a Column using the
column_property() function. This function
explicitly creates the ColumnProperty used by the
mapper() to keep track of the Column; normally, the
mapper() creates this automatically. Using column_property(),
we can pass additional arguments about how we’d like the Column
to be mapped. Below, we pass an option active_history,
which specifies that a change to this column’s value should
result in the former value being loaded first:

from sqlalchemy.orm import column_property

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 name = column_property(Column(String(50)), active_history=True)

column_property() is also used to map a single attribute to
multiple columns. This use case arises when mapping to a join()
which has attributes which are equated to each other:

class User(Base):
 __table__ = user.join(address)

 # assign "user.id", "address.user_id" to the
 # "id" attribute
 id = column_property(user_table.c.id, address_table.c.user_id)

For more examples featuring this usage, see Mapping a Class against Multiple Tables.

Another place where column_property() is needed is to specify SQL expressions as
mapped attributes, such as below where we create an attribute fullname
that is the string concatenation of the firstname and lastname
columns:

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 firstname = Column(String(50))
 lastname = Column(String(50))
 fullname = column_property(firstname + " " + lastname)

See examples of this usage at SQL Expressions as Mapped Attributes.

	
sqlalchemy.orm.column_property(*columns, **kwargs)

	Provide a column-level property for use with a Mapper.

Column-based properties can normally be applied to the mapper’s
properties dictionary using the Column element directly.
Use this function when the given column is not directly present within
the mapper’s selectable; examples include SQL expressions, functions,
and scalar SELECT queries.

Columns that aren’t present in the mapper’s selectable won’t be
persisted by the mapper and are effectively “read-only” attributes.

	Parameters:
	
	*cols¶ – list of Column objects to be mapped.

	active_history=False¶ – When True, indicates that the “previous” value for a
scalar attribute should be loaded when replaced, if not
already loaded. Normally, history tracking logic for
simple non-primary-key scalar values only needs to be
aware of the “new” value in order to perform a flush. This
flag is available for applications that make use of
attributes.get_history() or Session.is_modified()
which also need to know
the “previous” value of the attribute.

New in version 0.6.6.

	comparator_factory¶ – a class which extends
ColumnProperty.Comparator which provides custom SQL
clause generation for comparison operations.

	group¶ – a group name for this property when marked as deferred.

	deferred¶ – when True, the column property is “deferred”, meaning that
it does not load immediately, and is instead loaded when the
attribute is first accessed on an instance. See also
deferred().

	doc¶ – optional string that will be applied as the doc on the
class-bound descriptor.

	expire_on_flush=True¶ – Disable expiry on flush. A column_property() which refers
to a SQL expression (and not a single table-bound column)
is considered to be a “read only” property; populating it
has no effect on the state of data, and it can only return
database state. For this reason a column_property()’s value
is expired whenever the parent object is involved in a
flush, that is, has any kind of “dirty” state within a flush.
Setting this parameter to False will have the effect of
leaving any existing value present after the flush proceeds.
Note however that the Session with default expiration
settings still expires
all attributes after a Session.commit() call, however.

New in version 0.7.3.

	info¶ – Optional data dictionary which will be populated into the
MapperProperty.info attribute of this object.

New in version 0.8.

	extension¶ – an
AttributeExtension
instance, or list of extensions, which will be prepended
to the list of attribute listeners for the resulting
descriptor placed on the class.
Deprecated. Please see AttributeEvents.

Mapping a Subset of Table Columns

Sometimes, a Table object was made available using the
reflection process described at Reflecting Database Objects to load
the table’s structure from the database.
For such a table that has lots of columns that don’t need to be referenced
in the application, the include_properties or exclude_properties
arguments can specify that only a subset of columns should be mapped.
For example:

class User(Base):
 __table__ = user_table
 __mapper_args__ = {
 'include_properties' :['user_id', 'user_name']
 }

...will map the User class to the user_table table, only including
the user_id and user_name columns - the rest are not referenced.
Similarly:

class Address(Base):
 __table__ = address_table
 __mapper_args__ = {
 'exclude_properties' : ['street', 'city', 'state', 'zip']
 }

...will map the Address class to the address_table table, including
all columns present except street, city, state, and zip.

When this mapping is used, the columns that are not included will not be
referenced in any SELECT statements emitted by Query, nor will there
be any mapped attribute on the mapped class which represents the column;
assigning an attribute of that name will have no effect beyond that of
a normal Python attribute assignment.

In some cases, multiple columns may have the same name, such as when
mapping to a join of two or more tables that share some column name.
include_properties and exclude_properties can also accommodate
Column objects to more accurately describe which columns
should be included or excluded:

class UserAddress(Base):
 __table__ = user_table.join(addresses_table)
 __mapper_args__ = {
 'exclude_properties' :[address_table.c.id],
 'primary_key' : [user_table.c.id]
 }

Note

insert and update defaults configured on individual
Column objects, i.e. those described at Column Insert/Update Defaults
including those configured by the default, update,
server_default and server_onupdate arguments, will continue to
function normally even if those Column objects are not mapped.
This is because in the case of default and update, the
Column object is still present on the underlying
Table, thus allowing the default functions to take place when
the ORM emits an INSERT or UPDATE, and in the case of server_default
and server_onupdate, the relational database itself maintains these
functions.

SQL Expressions as Mapped Attributes

Attributes on a mapped class can be linked to SQL expressions, which can
be used in queries.

Using a Hybrid

The easiest and most flexible way to link relatively simple SQL expressions to a class is to use a so-called
“hybrid attribute”,
described in the section Hybrid Attributes. The hybrid provides
for an expression that works at both the Python level as well as at the
SQL expression level. For example, below we map a class User,
containing attributes firstname and lastname, and include a hybrid that
will provide for us the fullname, which is the string concatenation of the two:

from sqlalchemy.ext.hybrid import hybrid_property

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 firstname = Column(String(50))
 lastname = Column(String(50))

 @hybrid_property
 def fullname(self):
 return self.firstname + " " + self.lastname

Above, the fullname attribute is interpreted at both the instance and
class level, so that it is available from an instance:

some_user = session.query(User).first()
print(some_user.fullname)

as well as usable within queries:

some_user = session.query(User).filter(User.fullname == "John Smith").first()

The string concatenation example is a simple one, where the Python expression
can be dual purposed at the instance and class level. Often, the SQL expression
must be distinguished from the Python expression, which can be achieved using
hybrid_property.expression(). Below we illustrate the case where a conditional
needs to be present inside the hybrid, using the if statement in Python and the
sql.expression.case() construct for SQL expressions:

from sqlalchemy.ext.hybrid import hybrid_property
from sqlalchemy.sql import case

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 firstname = Column(String(50))
 lastname = Column(String(50))

 @hybrid_property
 def fullname(self):
 if self.firstname is not None:
 return self.firstname + " " + self.lastname
 else:
 return self.lastname

 @fullname.expression
 def fullname(cls):
 return case([
 (cls.firstname != None, cls.firstname + " " + cls.lastname),
], else_ = cls.lastname)

Using column_property

The orm.column_property() function can be used to map a SQL
expression in a manner similar to a regularly mapped Column.
With this technique, the attribute is loaded
along with all other column-mapped attributes at load time. This is in some
cases an advantage over the usage of hybrids, as the value can be loaded
up front at the same time as the parent row of the object, particularly if
the expression is one which links to other tables (typically as a correlated
subquery) to access data that wouldn’t normally be
available on an already loaded object.

Disadvantages to using orm.column_property() for SQL expressions include that
the expression must be compatible with the SELECT statement emitted for the class
as a whole, and there are also some configurational quirks which can occur
when using orm.column_property() from declarative mixins.

Our “fullname” example can be expressed using orm.column_property() as
follows:

from sqlalchemy.orm import column_property

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 firstname = Column(String(50))
 lastname = Column(String(50))
 fullname = column_property(firstname + " " + lastname)

Correlated subqueries may be used as well. Below we use the select()
construct to create a SELECT that links together the count of Address
objects available for a particular User:

from sqlalchemy.orm import column_property
from sqlalchemy import select, func
from sqlalchemy import Column, Integer, String, ForeignKey

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 user_id = Column(Integer, ForeignKey('user.id'))

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 address_count = column_property(
 select([func.count(Address.id)]).\
 where(Address.user_id==id).\
 correlate_except(Address)
)

In the above example, we define a select() construct like the following:

select([func.count(Address.id)]).\
 where(Address.user_id==id).\
 correlate_except(Address)

The meaning of the above statement is, select the count of Address.id rows
where the Address.user_id column is equated to id, which in the context
of the User class is the Column named id (note that id is
also the name of a Python built in function, which is not what we want to use
here - if we were outside of the User class definition, we’d use User.id).

The select.correlate_except() directive indicates that each element in the
FROM clause of this select() may be omitted from the FROM list (that is, correlated
to the enclosing SELECT statement against User) except for the one corresponding
to Address. This isn’t strictly necessary, but prevents Address from
being inadvertently omitted from the FROM list in the case of a long string
of joins between User and Address tables where SELECT statements against
Address are nested.

If import issues prevent the column_property() from being defined
inline with the class, it can be assigned to the class after both
are configured. In Declarative this has the effect of calling Mapper.add_property()
to add an additional property after the fact:

User.address_count = column_property(
 select([func.count(Address.id)]).\
 where(Address.user_id==User.id)
)

For many-to-many relationships, use and_() to join the fields of the
association table to both tables in a relation, illustrated
here with a classical mapping:

from sqlalchemy import and_

mapper(Author, authors, properties={
 'book_count': column_property(
 select([func.count(books.c.id)],
 and_(
 book_authors.c.author_id==authors.c.id,
 book_authors.c.book_id==books.c.id
)))
 })

Using a plain descriptor

In cases where a SQL query more elaborate than what orm.column_property()
or hybrid_property can provide must be emitted, a regular Python
function accessed as an attribute can be used, assuming the expression
only needs to be available on an already-loaded instance. The function
is decorated with Python’s own @property decorator to mark it as a read-only
attribute. Within the function, object_session()
is used to locate the Session corresponding to the current object,
which is then used to emit a query:

from sqlalchemy.orm import object_session
from sqlalchemy import select, func

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 firstname = Column(String(50))
 lastname = Column(String(50))

 @property
 def address_count(self):
 return object_session(self).\
 scalar(
 select([func.count(Address.id)]).\
 where(Address.user_id==self.id)
)

The plain descriptor approach is useful as a last resort, but is less performant
in the usual case than both the hybrid and column property approaches, in that
it needs to emit a SQL query upon each access.

Changing Attribute Behavior

Simple Validators

A quick way to add a “validation” routine to an attribute is to use the
validates() decorator. An attribute validator can raise
an exception, halting the process of mutating the attribute’s value, or can
change the given value into something different. Validators, like all
attribute extensions, are only called by normal userland code; they are not
issued when the ORM is populating the object:

from sqlalchemy.orm import validates

class EmailAddress(Base):
 __tablename__ = 'address'

 id = Column(Integer, primary_key=True)
 email = Column(String)

 @validates('email')
 def validate_email(self, key, address):
 assert '@' in address
 return address

Changed in version 1.0.0: - validators are no longer triggered within
the flush process when the newly fetched values for primary key
columns as well as some python- or server-side defaults are fetched.
Prior to 1.0, validators may be triggered in those cases as well.

Validators also receive collection append events, when items are added to a
collection:

from sqlalchemy.orm import validates

class User(Base):
 # ...

 addresses = relationship("Address")

 @validates('addresses')
 def validate_address(self, key, address):
 assert '@' in address.email
 return address

The validation function by default does not get emitted for collection
remove events, as the typical expectation is that a value being discarded
doesn’t require validation. However, validates() supports reception
of these events by specifying include_removes=True to the decorator. When
this flag is set, the validation function must receive an additional boolean
argument which if True indicates that the operation is a removal:

from sqlalchemy.orm import validates

class User(Base):
 # ...

 addresses = relationship("Address")

 @validates('addresses', include_removes=True)
 def validate_address(self, key, address, is_remove):
 if is_remove:
 raise ValueError(
 "not allowed to remove items from the collection")
 else:
 assert '@' in address.email
 return address

The case where mutually dependent validators are linked via a backref
can also be tailored, using the include_backrefs=False option; this option,
when set to False, prevents a validation function from emitting if the
event occurs as a result of a backref:

from sqlalchemy.orm import validates

class User(Base):
 # ...

 addresses = relationship("Address", backref='user')

 @validates('addresses', include_backrefs=False)
 def validate_address(self, key, address):
 assert '@' in address.email
 return address

Above, if we were to assign to Address.user as in some_address.user = some_user,
the validate_address() function would not be emitted, even though an append
occurs to some_user.addresses - the event is caused by a backref.

Note that the validates() decorator is a convenience function built on
top of attribute events. An application that requires more control over
configuration of attribute change behavior can make use of this system,
described at AttributeEvents.

	
sqlalchemy.orm.validates(*names, **kw)

	Decorate a method as a ‘validator’ for one or more named properties.

Designates a method as a validator, a method which receives the
name of the attribute as well as a value to be assigned, or in the
case of a collection, the value to be added to the collection.
The function can then raise validation exceptions to halt the
process from continuing (where Python’s built-in ValueError
and AssertionError exceptions are reasonable choices), or can
modify or replace the value before proceeding. The function should
otherwise return the given value.

Note that a validator for a collection cannot issue a load of that
collection within the validation routine - this usage raises
an assertion to avoid recursion overflows. This is a reentrant
condition which is not supported.

	Parameters:
	
	*names¶ – list of attribute names to be validated.

	include_removes¶ – if True, “remove” events will be
sent as well - the validation function must accept an additional
argument “is_remove” which will be a boolean.

New in version 0.7.7.

	include_backrefs¶ – defaults to True; if False, the
validation function will not emit if the originator is an attribute
event related via a backref. This can be used for bi-directional
validates() usage where only one validator should emit per
attribute operation.

New in version 0.9.0.

See also

Simple Validators - usage examples for validates()

Using Descriptors and Hybrids

A more comprehensive way to produce modified behavior for an attribute is to
use descriptors. These are commonly used in Python using the property()
function. The standard SQLAlchemy technique for descriptors is to create a
plain descriptor, and to have it read/write from a mapped attribute with a
different name. Below we illustrate this using Python 2.6-style properties:

class EmailAddress(Base):
 __tablename__ = 'email_address'

 id = Column(Integer, primary_key=True)

 # name the attribute with an underscore,
 # different from the column name
 _email = Column("email", String)

 # then create an ".email" attribute
 # to get/set "._email"
 @property
 def email(self):
 return self._email

 @email.setter
 def email(self, email):
 self._email = email

The approach above will work, but there’s more we can add. While our
EmailAddress object will shuttle the value through the email
descriptor and into the _email mapped attribute, the class level
EmailAddress.email attribute does not have the usual expression semantics
usable with Query. To provide these, we instead use the
hybrid extension as follows:

from sqlalchemy.ext.hybrid import hybrid_property

class EmailAddress(Base):
 __tablename__ = 'email_address'

 id = Column(Integer, primary_key=True)

 _email = Column("email", String)

 @hybrid_property
 def email(self):
 return self._email

 @email.setter
 def email(self, email):
 self._email = email

The .email attribute, in addition to providing getter/setter behavior when we have an
instance of EmailAddress, also provides a SQL expression when used at the class level,
that is, from the EmailAddress class directly:

from sqlalchemy.orm import Session
session = Session()

sqladdress = session.query(EmailAddress).\
 filter(EmailAddress.email == 'address@example.com').\
 one()
SELECT address.email AS address_email, address.id AS address_id
FROM address
WHERE address.email = ?
('address@example.com',)

address.email = 'otheraddress@example.com'
sqlsession.commit()
UPDATE address SET email=? WHERE address.id = ?
('otheraddress@example.com', 1)
COMMIT

The hybrid_property also allows us to change the behavior of the
attribute, including defining separate behaviors when the attribute is
accessed at the instance level versus at the class/expression level, using the
hybrid_property.expression() modifier. Such as, if we wanted to add a
host name automatically, we might define two sets of string manipulation
logic:

class EmailAddress(Base):
 __tablename__ = 'email_address'

 id = Column(Integer, primary_key=True)

 _email = Column("email", String)

 @hybrid_property
 def email(self):
 """Return the value of _email up until the last twelve
 characters."""

 return self._email[:-12]

 @email.setter
 def email(self, email):
 """Set the value of _email, tacking on the twelve character
 value @example.com."""

 self._email = email + "@example.com"

 @email.expression
 def email(cls):
 """Produce a SQL expression that represents the value
 of the _email column, minus the last twelve characters."""

 return func.substr(cls._email, 0, func.length(cls._email) - 12)

Above, accessing the email property of an instance of EmailAddress
will return the value of the _email attribute, removing or adding the
hostname @example.com from the value. When we query against the email
attribute, a SQL function is rendered which produces the same effect:

sqladdress = session.query(EmailAddress).filter(EmailAddress.email == 'address').one()
SELECT address.email AS address_email, address.id AS address_id
FROM address
WHERE substr(address.email, ?, length(address.email) - ?) = ?
(0, 12, 'address')

Read more about Hybrids at Hybrid Attributes.

Synonyms

Synonyms are a mapper-level construct that allow any attribute on a class
to “mirror” another attribute that is mapped.

In the most basic sense, the synonym is an easy way to make a certain
attribute available by an additional name:

class MyClass(Base):
 __tablename__ = 'my_table'

 id = Column(Integer, primary_key=True)
 job_status = Column(String(50))

 status = synonym("job_status")

The above class MyClass has two attributes, .job_status and
.status that will behave as one attribute, both at the expression
level:

>>> print(MyClass.job_status == 'some_status')
my_table.job_status = :job_status_1

>>> print(MyClass.status == 'some_status')
my_table.job_status = :job_status_1

and at the instance level:

>>> m1 = MyClass(status='x')
>>> m1.status, m1.job_status
('x', 'x')

>>> m1.job_status = 'y'
>>> m1.status, m1.job_status
('y', 'y')

The synonym() can be used for any kind of mapped attribute that
subclasses MapperProperty, including mapped columns and relationships,
as well as synonyms themselves.

Beyond a simple mirror, synonym() can also be made to reference
a user-defined descriptor. We can supply our
status synonym with a @property:

class MyClass(Base):
 __tablename__ = 'my_table'

 id = Column(Integer, primary_key=True)
 status = Column(String(50))

 @property
 def job_status(self):
 return "Status: " + self.status

 job_status = synonym("status", descriptor=job_status)

When using Declarative, the above pattern can be expressed more succinctly
using the synonym_for() decorator:

from sqlalchemy.ext.declarative import synonym_for

class MyClass(Base):
 __tablename__ = 'my_table'

 id = Column(Integer, primary_key=True)
 status = Column(String(50))

 @synonym_for("status")
 @property
 def job_status(self):
 return "Status: " + self.status

While the synonym() is useful for simple mirroring, the use case
of augmenting attribute behavior with descriptors is better handled in modern
usage using the hybrid attribute feature, which
is more oriented towards Python descriptors. Technically, a synonym()
can do everything that a hybrid_property can do, as it also supports
injection of custom SQL capabilities, but the hybrid is more straightforward
to use in more complex situations.

	
sqlalchemy.orm.synonym(name, map_column=None, descriptor=None, comparator_factory=None, doc=None, info=None)

	Denote an attribute name as a synonym to a mapped property,
in that the attribute will mirror the value and expression behavior
of another attribute.

	Parameters:
	
	name¶ – the name of the existing mapped property. This
can refer to the string name of any MapperProperty
configured on the class, including column-bound attributes
and relationships.

	descriptor¶ – a Python descriptor that will be used
as a getter (and potentially a setter) when this attribute is
accessed at the instance level.

	map_column¶ – if True, the synonym() construct will
locate the existing named MapperProperty based on the
attribute name of this synonym(), and assign it to a new
attribute linked to the name of this synonym().
That is, given a mapping like:

class MyClass(Base):
 __tablename__ = 'my_table'

 id = Column(Integer, primary_key=True)
 job_status = Column(String(50))

 job_status = synonym("_job_status", map_column=True)

The above class MyClass will now have the job_status
Column object mapped to the attribute named
_job_status, and the attribute named job_status will refer
to the synonym itself. This feature is typically used in
conjunction with the descriptor argument in order to link a
user-defined descriptor as a “wrapper” for an existing column.

	info¶ – Optional data dictionary which will be populated into the
InspectionAttr.info attribute of this object.

New in version 1.0.0.

	comparator_factory¶ – A subclass of PropComparator
that will provide custom comparison behavior at the SQL expression
level.

Note

For the use case of providing an attribute which redefines both
Python-level and SQL-expression level behavior of an attribute,
please refer to the Hybrid attribute introduced at
Using Descriptors and Hybrids for a more effective technique.

See also

Synonyms - examples of functionality.

Using Descriptors and Hybrids - Hybrids provide a better approach for
more complicated attribute-wrapping schemes than synonyms.

Operator Customization

The “operators” used by the SQLAlchemy ORM and Core expression language
are fully customizable. For example, the comparison expression
User.name == 'ed' makes usage of an operator built into Python
itself called operator.eq - the actual SQL construct which SQLAlchemy
associates with such an operator can be modified. New
operations can be associated with column expressions as well. The operators
which take place for column expressions are most directly redefined at the
type level - see the
section Redefining and Creating New Operators for a description.

ORM level functions like column_property(), relationship(),
and composite() also provide for operator redefinition at the ORM
level, by passing a PropComparator subclass to the comparator_factory
argument of each function. Customization of operators at this level is a
rare use case. See the documentation at PropComparator
for an overview.

Composite Column Types

Sets of columns can be associated with a single user-defined datatype. The ORM
provides a single attribute which represents the group of columns using the
class you provide.

Changed in version 0.7: Composites have been simplified such that
they no longer “conceal” the underlying column based attributes. Additionally,
in-place mutation is no longer automatic; see the section below on
enabling mutability to support tracking of in-place changes.

Changed in version 0.9: Composites will return their object-form, rather than as individual columns,
when used in a column-oriented Query construct. See Composite attributes are now returned as their object form when queried on a per-attribute basis.

A simple example represents pairs of columns as a Point object.
Point represents such a pair as .x and .y:

class Point(object):
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __composite_values__(self):
 return self.x, self.y

 def __repr__(self):
 return "Point(x=%r, y=%r)" % (self.x, self.y)

 def __eq__(self, other):
 return isinstance(other, Point) and \
 other.x == self.x and \
 other.y == self.y

 def __ne__(self, other):
 return not self.__eq__(other)

The requirements for the custom datatype class are that it have a constructor
which accepts positional arguments corresponding to its column format, and
also provides a method __composite_values__() which returns the state of
the object as a list or tuple, in order of its column-based attributes. It
also should supply adequate __eq__() and __ne__() methods which test
the equality of two instances.

We will create a mapping to a table vertices, which represents two points
as x1/y1 and x2/y2. These are created normally as Column
objects. Then, the composite() function is used to assign new
attributes that will represent sets of columns via the Point class:

from sqlalchemy import Column, Integer
from sqlalchemy.orm import composite
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Vertex(Base):
 __tablename__ = 'vertices'

 id = Column(Integer, primary_key=True)
 x1 = Column(Integer)
 y1 = Column(Integer)
 x2 = Column(Integer)
 y2 = Column(Integer)

 start = composite(Point, x1, y1)
 end = composite(Point, x2, y2)

A classical mapping above would define each composite()
against the existing table:

mapper(Vertex, vertices_table, properties={
 'start':composite(Point, vertices_table.c.x1, vertices_table.c.y1),
 'end':composite(Point, vertices_table.c.x2, vertices_table.c.y2),
})

We can now persist and use Vertex instances, as well as query for them,
using the .start and .end attributes against ad-hoc Point instances:

>>> v = Vertex(start=Point(3, 4), end=Point(5, 6))
>>> session.add(v)
>>> q = session.query(Vertex).filter(Vertex.start == Point(3, 4))
sql>>> print(q.first().start)
BEGIN (implicit)
INSERT INTO vertices (x1, y1, x2, y2) VALUES (?, ?, ?, ?)
(3, 4, 5, 6)
SELECT vertices.id AS vertices_id,
 vertices.x1 AS vertices_x1,
 vertices.y1 AS vertices_y1,
 vertices.x2 AS vertices_x2,
 vertices.y2 AS vertices_y2
FROM vertices
WHERE vertices.x1 = ? AND vertices.y1 = ?
 LIMIT ? OFFSET ?
(3, 4, 1, 0)

Point(x=3, y=4)

	
sqlalchemy.orm.composite(class_, *attrs, **kwargs)

	Return a composite column-based property for use with a Mapper.

See the mapping documentation section Composite Column Types for a
full usage example.

The MapperProperty returned by composite()
is the CompositeProperty.

	Parameters:
	
	class_¶ – The “composite type” class.

	*cols¶ – List of Column objects to be mapped.

	active_history=False¶ – When True, indicates that the “previous” value for a
scalar attribute should be loaded when replaced, if not
already loaded. See the same flag on column_property().

Changed in version 0.7: This flag specifically becomes meaningful
- previously it was a placeholder.

	group¶ – A group name for this property when marked as deferred.

	deferred¶ – When True, the column property is “deferred”, meaning that it does
not load immediately, and is instead loaded when the attribute is
first accessed on an instance. See also
deferred().

	comparator_factory¶ – a class which extends
CompositeProperty.Comparator which provides custom SQL
clause generation for comparison operations.

	doc¶ – optional string that will be applied as the doc on the
class-bound descriptor.

	info¶ – Optional data dictionary which will be populated into the
MapperProperty.info attribute of this object.

New in version 0.8.

	extension¶ – an AttributeExtension instance,
or list of extensions, which will be prepended to the list of
attribute listeners for the resulting descriptor placed on the
class. Deprecated. Please see AttributeEvents.

Tracking In-Place Mutations on Composites

In-place changes to an existing composite value are
not tracked automatically. Instead, the composite class needs to provide
events to its parent object explicitly. This task is largely automated
via the usage of the MutableComposite mixin, which uses events
to associate each user-defined composite object with all parent associations.
Please see the example in Establishing Mutability on Composites.

Changed in version 0.7: In-place changes to an existing composite value are no longer
tracked automatically; the functionality is superseded by the
MutableComposite class.

Redefining Comparison Operations for Composites

The “equals” comparison operation by default produces an AND of all
corresponding columns equated to one another. This can be changed using
the comparator_factory argument to composite(), where we
specify a custom CompositeProperty.Comparator class
to define existing or new operations.
Below we illustrate the “greater than” operator, implementing
the same expression that the base “greater than” does:

from sqlalchemy.orm.properties import CompositeProperty
from sqlalchemy import sql

class PointComparator(CompositeProperty.Comparator):
 def __gt__(self, other):
 """redefine the 'greater than' operation"""

 return sql.and_(*[a>b for a, b in
 zip(self.__clause_element__().clauses,
 other.__composite_values__())])

class Vertex(Base):
 ___tablename__ = 'vertices'

 id = Column(Integer, primary_key=True)
 x1 = Column(Integer)
 y1 = Column(Integer)
 x2 = Column(Integer)
 y2 = Column(Integer)

 start = composite(Point, x1, y1,
 comparator_factory=PointComparator)
 end = composite(Point, x2, y2,
 comparator_factory=PointComparator)

Mapping Class Inheritance Hierarchies

SQLAlchemy supports three forms of inheritance: single table inheritance,
where several types of classes are represented by a single table, concrete table
inheritance, where each type of class is represented by independent tables,
and joined
table inheritance, where the class hierarchy is broken up
among dependent tables, each class represented by its own table that only
includes those attributes local to that class.

The most common forms of inheritance are single and joined table, while
concrete inheritance presents more configurational challenges.

When mappers are configured in an inheritance relationship, SQLAlchemy has the
ability to load elements polymorphically, meaning that a single query can
return objects of multiple types.

Joined Table Inheritance

In joined table inheritance, each class along a particular classes’ list of
parents is represented by a unique table. The total set of attributes for a
particular instance is represented as a join along all tables in its
inheritance path. Here, we first define the Employee class.
This table will contain a primary key column (or columns), and a column
for each attribute that’s represented by Employee. In this case it’s just
name:

class Employee(Base):
 __tablename__ = 'employee'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 type = Column(String(50))

 __mapper_args__ = {
 'polymorphic_identity':'employee',
 'polymorphic_on':type
 }

The mapped table also has a column called type. The purpose of
this column is to act as the discriminator, and stores a value
which indicates the type of object represented within the row. The column may
be of any datatype, though string and integer are the most common.

Warning

Currently, only one discriminator column may be set, typically
on the base-most class in the hierarchy. “Cascading” polymorphic columns
are not yet supported.

The discriminator column is only needed if polymorphic loading is
desired, as is usually the case. It is not strictly necessary that
it be present directly on the base mapped table, and can instead be defined on a
derived select statement that’s used when the class is queried;
however, this is a much more sophisticated configuration scenario.

The mapping receives additional arguments via the __mapper_args__
dictionary. Here the type column is explicitly stated as the
discriminator column, and the polymorphic identity of employee
is also given; this is the value that will be
stored in the polymorphic discriminator column for instances of this
class.

We next define Engineer and Manager subclasses of Employee.
Each contains columns that represent the attributes unique to the subclass
they represent. Each table also must contain a primary key column (or
columns), and in most cases a foreign key reference to the parent table:

class Engineer(Employee):
 __tablename__ = 'engineer'
 id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
 engineer_name = Column(String(30))

 __mapper_args__ = {
 'polymorphic_identity':'engineer',
 }

class Manager(Employee):
 __tablename__ = 'manager'
 id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
 manager_name = Column(String(30))

 __mapper_args__ = {
 'polymorphic_identity':'manager',
 }

It is standard practice that the same column is used for both the role
of primary key as well as foreign key to the parent table,
and that the column is also named the same as that of the parent table.
However, both of these practices are optional. Separate columns may be used for
primary key and parent-relationship, the column may be named differently than
that of the parent, and even a custom join condition can be specified between
parent and child tables instead of using a foreign key.

Joined inheritance primary keys

One natural effect of the joined table inheritance configuration is that the
identity of any mapped object can be determined entirely from the base table.
This has obvious advantages, so SQLAlchemy always considers the primary key
columns of a joined inheritance class to be those of the base table only.
In other words, the id
columns of both the engineer and manager tables are not used to locate
Engineer or Manager objects - only the value in
employee.id is considered. engineer.id and manager.id are
still of course critical to the proper operation of the pattern overall as
they are used to locate the joined row, once the parent row has been
determined within a statement.

With the joined inheritance mapping complete, querying against Employee will return a combination of
Employee, Engineer and Manager objects. Newly saved Engineer,
Manager, and Employee objects will automatically populate the
employee.type column with engineer, manager, or employee, as
appropriate.

Basic Control of Which Tables are Queried

The orm.with_polymorphic() function and the
with_polymorphic() method of
Query affects the specific tables
which the Query selects from. Normally, a query such as this:

session.query(Employee).all()

...selects only from the employee table. When loading fresh from the
database, our joined-table setup will query from the parent table only, using
SQL such as this:

SELECT employee.id AS employee_id,
 employee.name AS employee_name, employee.type AS employee_type
FROM employee
[]

As attributes are requested from those Employee objects which are
represented in either the engineer or manager child tables, a second
load is issued for the columns in that related row, if the data was not
already loaded. So above, after accessing the objects you’d see further SQL
issued along the lines of:

SELECT manager.id AS manager_id,
 manager.manager_data AS manager_manager_data
FROM manager
WHERE ? = manager.id
[5]
SELECT engineer.id AS engineer_id,
 engineer.engineer_info AS engineer_engineer_info
FROM engineer
WHERE ? = engineer.id
[2]

This behavior works well when issuing searches for small numbers of items,
such as when using Query.get(), since the full range of joined tables are not
pulled in to the SQL statement unnecessarily. But when querying a larger span
of rows which are known to be of many types, you may want to actively join to
some or all of the joined tables. The with_polymorphic feature
provides this.

Telling our query to polymorphically load Engineer and Manager
objects, we can use the orm.with_polymorphic() function
to create a new aliased class which represents a select of the base
table combined with outer joins to each of the inheriting tables:

from sqlalchemy.orm import with_polymorphic

eng_plus_manager = with_polymorphic(Employee, [Engineer, Manager])

query = session.query(eng_plus_manager)

The above produces a query which joins the employee table to both the
engineer and manager tables like the following:

query.all()

SELECT employee.id AS employee_id,
 engineer.id AS engineer_id,
 manager.id AS manager_id,
 employee.name AS employee_name,
 employee.type AS employee_type,
 engineer.engineer_info AS engineer_engineer_info,
 manager.manager_data AS manager_manager_data
FROM employee
 LEFT OUTER JOIN engineer
 ON employee.id = engineer.id
 LEFT OUTER JOIN manager
 ON employee.id = manager.id
[]

The entity returned by orm.with_polymorphic() is an AliasedClass
object, which can be used in a Query like any other alias, including
named attributes for those attributes on the Employee class. In our
example, eng_plus_manager becomes the entity that we use to refer to the
three-way outer join above. It also includes namespaces for each class named
in the list of classes, so that attributes specific to those subclasses can be
called upon as well. The following example illustrates calling upon attributes
specific to Engineer as well as Manager in terms of eng_plus_manager:

eng_plus_manager = with_polymorphic(Employee, [Engineer, Manager])
query = session.query(eng_plus_manager).filter(
 or_(
 eng_plus_manager.Engineer.engineer_info=='x',
 eng_plus_manager.Manager.manager_data=='y'
)
)

orm.with_polymorphic() accepts a single class or
mapper, a list of classes/mappers, or the string '*' to indicate all
subclasses:

join to the engineer table
entity = with_polymorphic(Employee, Engineer)

join to the engineer and manager tables
entity = with_polymorphic(Employee, [Engineer, Manager])

join to all subclass tables
entity = with_polymorphic(Employee, '*')

use the 'entity' with a Query object
session.query(entity).all()

It also accepts a third argument selectable which replaces the automatic
join creation and instead selects directly from the selectable given. This
feature is normally used with “concrete” inheritance, described later, but can
be used with any kind of inheritance setup in the case that specialized SQL
should be used to load polymorphically:

custom selectable
employee = Employee.__table__
manager = Manager.__table__
engineer = Engineer.__table__
entity = with_polymorphic(
 Employee,
 [Engineer, Manager],
 employee.outerjoin(manager).outerjoin(engineer)
)

use the 'entity' with a Query object
session.query(entity).all()

Note that if you only need to load a single subtype, such as just the
Engineer objects, orm.with_polymorphic() is
not needed since you would query against the Engineer class directly.

Query.with_polymorphic() has the same purpose
as orm.with_polymorphic(), except is not as
flexible in its usage patterns in that it only applies to the first full
mapping, which then impacts all occurrences of that class or the target
subclasses within the Query. For simple cases it might be
considered to be more succinct:

session.query(Employee).with_polymorphic([Engineer, Manager]).\
 filter(or_(Engineer.engineer_info=='w', Manager.manager_data=='q'))

New in version 0.8: orm.with_polymorphic(), an improved version of
Query.with_polymorphic() method.

The mapper also accepts with_polymorphic as a configurational argument so
that the joined-style load will be issued automatically. This argument may be
the string '*', a list of classes, or a tuple consisting of either,
followed by a selectable:

class Employee(Base):
 __tablename__ = 'employee'
 id = Column(Integer, primary_key=True)
 type = Column(String(20))

 __mapper_args__ = {
 'polymorphic_on':type,
 'polymorphic_identity':'employee',
 'with_polymorphic':'*'
 }

class Engineer(Employee):
 __tablename__ = 'engineer'
 id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
 __mapper_args__ = {'polymorphic_identity':'engineer'}

class Manager(Employee):
 __tablename__ = 'manager'
 id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
 __mapper_args__ = {'polymorphic_identity':'manager'}

The above mapping will produce a query similar to that of
with_polymorphic('*') for every query of Employee objects.

Using orm.with_polymorphic() or Query.with_polymorphic()
will override the mapper-level with_polymorphic setting.

	
sqlalchemy.orm.with_polymorphic(base, classes, selectable=False, flat=False, polymorphic_on=None, aliased=False, innerjoin=False, _use_mapper_path=False, _existing_alias=None)

	Produce an AliasedClass construct which specifies
columns for descendant mappers of the given base.

New in version 0.8: orm.with_polymorphic() is in addition to the existing
Query method Query.with_polymorphic(),
which has the same purpose but is not as flexible in its usage.

Using this method will ensure that each descendant mapper’s
tables are included in the FROM clause, and will allow filter()
criterion to be used against those tables. The resulting
instances will also have those columns already loaded so that
no “post fetch” of those columns will be required.

See the examples at Basic Control of Which Tables are Queried.

	Parameters:
	
	base¶ – Base class to be aliased.

	classes¶ – a single class or mapper, or list of
class/mappers, which inherit from the base class.
Alternatively, it may also be the string '*', in which case
all descending mapped classes will be added to the FROM clause.

	aliased¶ – when True, the selectable will be wrapped in an
alias, that is (SELECT * FROM <fromclauses>) AS anon_1.
This can be important when using the with_polymorphic()
to create the target of a JOIN on a backend that does not
support parenthesized joins, such as SQLite and older
versions of MySQL.

	flat¶ –
	Boolean, will be passed through to the

	FromClause.alias() call so that aliases of Join
objects don’t include an enclosing SELECT. This can lead to more
efficient queries in many circumstances. A JOIN against a nested JOIN
will be rewritten as a JOIN against an aliased SELECT subquery on
backends that don’t support this syntax.

Setting flat to True implies the aliased flag is
also True.

New in version 0.9.0.

See also

Join.alias()

	selectable¶ – a table or select() statement that will
be used in place of the generated FROM clause. This argument is
required if any of the desired classes use concrete table
inheritance, since SQLAlchemy currently cannot generate UNIONs
among tables automatically. If used, the selectable argument
must represent the full set of tables and columns mapped by every
mapped class. Otherwise, the unaccounted mapped columns will
result in their table being appended directly to the FROM clause
which will usually lead to incorrect results.

	polymorphic_on¶ – a column to be used as the “discriminator”
column for the given selectable. If not given, the polymorphic_on
attribute of the base classes’ mapper will be used, if any. This
is useful for mappings that don’t have polymorphic loading
behavior by default.

	innerjoin¶ – if True, an INNER JOIN will be used. This should
only be specified if querying for one specific subtype only

Advanced Control of Which Tables are Queried

The with_polymorphic functions work fine for
simplistic scenarios. However, direct control of table rendering
is called for, such as the case when one wants to
render to only the subclass table and not the parent table.

This use case can be achieved by using the mapped Table
objects directly. For example, to
query the name of employees with particular criterion:

engineer = Engineer.__table__
manager = Manager.__table__

session.query(Employee.name).\
 outerjoin((engineer, engineer.c.employee_id==Employee.employee_id)).\
 outerjoin((manager, manager.c.employee_id==Employee.employee_id)).\
 filter(or_(Engineer.engineer_info=='w', Manager.manager_data=='q'))

The base table, in this case the “employees” table, isn’t always necessary. A
SQL query is always more efficient with fewer joins. Here, if we wanted to
just load information specific to manager or engineer, we can instruct
Query to use only those tables. The FROM clause is determined by
what’s specified in the Session.query(), Query.filter(), or
Query.select_from() methods:

session.query(Manager.manager_data).select_from(manager)

session.query(engineer.c.id).\
 filter(engineer.c.engineer_info==manager.c.manager_data)

Creating Joins to Specific Subtypes

The of_type() method is a
helper which allows the construction of joins along
relationship() paths while narrowing the criterion to
specific subclasses. Suppose the employees table represents a collection
of employees which are associated with a Company object. We’ll add a
company_id column to the employees table and a new table
companies:

class Company(Base):
 __tablename__ = 'company'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 employees = relationship("Employee",
 backref='company',
 cascade='all, delete-orphan')

class Employee(Base):
 __tablename__ = 'employee'
 id = Column(Integer, primary_key=True)
 type = Column(String(20))
 company_id = Column(Integer, ForeignKey('company.id'))
 __mapper_args__ = {
 'polymorphic_on':type,
 'polymorphic_identity':'employee',
 'with_polymorphic':'*'
 }

class Engineer(Employee):
 __tablename__ = 'engineer'
 id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
 engineer_info = Column(String(50))
 __mapper_args__ = {'polymorphic_identity':'engineer'}

class Manager(Employee):
 __tablename__ = 'manager'
 id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
 manager_data = Column(String(50))
 __mapper_args__ = {'polymorphic_identity':'manager'}

When querying from Company onto the Employee relationship, the
join() method as well as the any() and has() operators will create
a join from company to employee, without including engineer or
manager in the mix. If we wish to have criterion which is specifically
against the Engineer class, we can tell those methods to join or subquery
against the joined table representing the subclass using the
of_type() operator:

session.query(Company).\
 join(Company.employees.of_type(Engineer)).\
 filter(Engineer.engineer_info=='someinfo')

A longhand version of this would involve spelling out the full target
selectable within a 2-tuple:

employee = Employee.__table__
engineer = Engineer.__table__

session.query(Company).\
 join((employee.join(engineer), Company.employees)).\
 filter(Engineer.engineer_info=='someinfo')

of_type() accepts a
single class argument. More flexibility can be achieved either by
joining to an explicit join as above, or by using the orm.with_polymorphic()
function to create a polymorphic selectable:

manager_and_engineer = with_polymorphic(
 Employee, [Manager, Engineer],
 aliased=True)

session.query(Company).\
 join(manager_and_engineer, Company.employees).\
 filter(
 or_(manager_and_engineer.Engineer.engineer_info=='someinfo',
 manager_and_engineer.Manager.manager_data=='somedata')
)

Above, we use the aliased=True argument with orm.with_polymorhpic()
so that the right hand side of the join between Company and manager_and_engineer
is converted into an aliased subquery. Some backends, such as SQLite and older
versions of MySQL can’t handle a FROM clause of the following form:

FROM x JOIN (y JOIN z ON <onclause>) ON <onclause>

Using aliased=True instead renders it more like:

FROM x JOIN (SELECT * FROM y JOIN z ON <onclause>) AS anon_1 ON <onclause>

The above join can also be expressed more succinctly by combining of_type()
with the polymorphic construct:

manager_and_engineer = with_polymorphic(
 Employee, [Manager, Engineer],
 aliased=True)

session.query(Company).\
 join(Company.employees.of_type(manager_and_engineer)).\
 filter(
 or_(manager_and_engineer.Engineer.engineer_info=='someinfo',
 manager_and_engineer.Manager.manager_data=='somedata')
)

The any() and has() operators also can be used with
of_type() when the embedded
criterion is in terms of a subclass:

session.query(Company).\
 filter(
 Company.employees.of_type(Engineer).
 any(Engineer.engineer_info=='someinfo')
).all()

Note that the any() and has() are both shorthand for a correlated
EXISTS query. To build one by hand looks like:

session.query(Company).filter(
 exists([1],
 and_(Engineer.engineer_info=='someinfo',
 employees.c.company_id==companies.c.company_id),
 from_obj=employees.join(engineers)
)
).all()

The EXISTS subquery above selects from the join of employees to
engineers, and also specifies criterion which correlates the EXISTS
subselect back to the parent companies table.

New in version 0.8: of_type() accepts
orm.aliased() and orm.with_polymorphic() constructs in conjunction
with Query.join(), any() and has().

Eager Loading of Specific or Polymorphic Subtypes

The joinedload(), subqueryload(), contains_eager() and
other loading-related options also support
paths which make use of of_type().
Below we load Company rows while eagerly loading related Engineer
objects, querying the employee and engineer tables simultaneously:

session.query(Company).\
 options(
 subqueryload(Company.employees.of_type(Engineer)).
 subqueryload("machines")
)
)

As is the case with Query.join(), of_type()
also can be used with eager loading and orm.with_polymorphic()
at the same time, so that all sub-attributes of all referenced subtypes
can be loaded:

manager_and_engineer = with_polymorphic(
 Employee, [Manager, Engineer],
 aliased=True)

session.query(Company).\
 options(
 joinedload(Company.employees.of_type(manager_and_engineer))
)
)

New in version 0.8: joinedload(), subqueryload(), contains_eager()
and related loader options support
paths that are qualified with
of_type(), supporting
single target types as well as orm.with_polymorphic() targets.

Another option for the above query is to state the two subtypes separately;
the joinedload() directive should detect this and create the
above with_polymorphic construct automatically:

session.query(Company).\
 options(
 joinedload(Company.employees.of_type(Manager)),
 joinedload(Company.employees.of_type(Engineer)),
)
)

New in version 1.0: Eager loaders such as joinedload() will create a polymorphic
entity when multiple overlapping of_type()
directives are encountered.

Single Table Inheritance

Single table inheritance is where the attributes of the base class as well as
all subclasses are represented within a single table. A column is present in
the table for every attribute mapped to the base class and all subclasses; the
columns which correspond to a single subclass are nullable. This configuration
looks much like joined-table inheritance except there’s only one table. In
this case, a type column is required, as there would be no other way to
discriminate between classes. The table is specified in the base mapper only;
for the inheriting classes, leave their table parameter blank:

class Employee(Base):
 __tablename__ = 'employee'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 manager_data = Column(String(50))
 engineer_info = Column(String(50))
 type = Column(String(20))

 __mapper_args__ = {
 'polymorphic_on':type,
 'polymorphic_identity':'employee'
 }

class Manager(Employee):
 __mapper_args__ = {
 'polymorphic_identity':'manager'
 }

class Engineer(Employee):
 __mapper_args__ = {
 'polymorphic_identity':'engineer'
 }

Note that the mappers for the derived classes Manager and Engineer omit the
__tablename__, indicating they do not have a mapped table of
their own.

Concrete Table Inheritance

This form of inheritance maps each class to a distinct table. As concrete
inheritance has a bit more conceptual overhead, first we’ll illustrate
what these tables look like as Core table metadata:

employees_table = Table(
 'employee', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50)),
)

managers_table = Table(
 'manager', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('manager_data', String(50)),
)

engineers_table = Table(
 'engineer', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('engineer_info', String(50)),
)

Notice in this case there is no type column; for polymorphic loading,
additional steps will be needed in order to “manufacture” this information
during a query.

Using classical mapping, we can map our three classes independently without
any relationship between them; the fact that Engineer and Manager
inherit from Employee does not have any impact on a classical mapping:

class Employee(object):
 pass

class Manager(Employee):
 pass

class Engineer(Employee):
 pass

mapper(Employee, employees_table)
mapper(Manager, managers_table)
mapper(Engineer, engineers_table)

However when using Declarative, Declarative assumes an inheritance mapping
between the classes because they are already in an inheritance relationship.
So to map our three classes declaratively, we must include the
orm.mapper.concrete parameter within the __mapper_args__:

class Employee(Base):
 __tablename__ = 'employee'

 id = Column(Integer, primary_key=True)
 name = Column(String(50))

class Manager(Employee):
 __tablename__ = 'manager'

 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 manager_data = Column(String(50))

 __mapper_args__ = {
 'concrete': True
 }

class Engineer(Employee):
 __tablename__ = 'engineer'

 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 engineer_info = Column(String(50))

 __mapper_args__ = {
 'concrete': True
 }

Two critical points should be noted:

	We must define all columns explicitly on each subclass, even those of
the same name. A column such as
Employee.name here is not copied out to the tables mapped
by Manager or Engineer for us.

	while the Engineer and Manager classes are
mapped in an inheritance relationship with Employee, they still do not
include polymorphic loading.

Concrete Polymorphic Loading

To load polymorphically, the orm.mapper.with_polymorphic argument is required, along
with a selectable indicating how rows should be loaded. Polymorphic loading
is most inefficient with concrete inheritance, so if we do seek this style of
loading, while it is possible it’s less recommended. In the case of concrete
inheritance, it means we must construct a UNION of all three tables.

First illustrating this with classical mapping, SQLAlchemy includes a helper
function to create this UNION called polymorphic_union(), which
will map all the different columns into a structure of selects with the same
numbers and names of columns, and also generate a virtual type column for
each subselect. The function is called after all three tables are declared,
and is then combined with the mappers:

from sqlalchemy.orm import polymorphic_union

pjoin = polymorphic_union({
 'employee': employees_table,
 'manager': managers_table,
 'engineer': engineers_table
}, 'type', 'pjoin')

employee_mapper = mapper(Employee, employees_table,
 with_polymorphic=('*', pjoin),
 polymorphic_on=pjoin.c.type,
 polymorphic_identity='employee')
manager_mapper = mapper(Manager, managers_table,
 inherits=employee_mapper,
 concrete=True,
 polymorphic_identity='manager')
engineer_mapper = mapper(Engineer, engineers_table,
 inherits=employee_mapper,
 concrete=True,
 polymorphic_identity='engineer')

Upon select, the polymorphic union produces a query like this:

session.query(Employee).all()

SELECT
 pjoin.id AS pjoin_id,
 pjoin.name AS pjoin_name,
 pjoin.type AS pjoin_type,
 pjoin.manager_data AS pjoin_manager_data,
 pjoin.engineer_info AS pjoin_engineer_info
FROM (
 SELECT
 employee.id AS id,
 employee.name AS name,
 CAST(NULL AS VARCHAR(50)) AS manager_data,
 CAST(NULL AS VARCHAR(50)) AS engineer_info,
 'employee' AS type
 FROM employee
 UNION ALL
 SELECT
 manager.id AS id,
 manager.name AS name,
 manager.manager_data AS manager_data,
 CAST(NULL AS VARCHAR(50)) AS engineer_info,
 'manager' AS type
 FROM manager
 UNION ALL
 SELECT
 engineer.id AS id,
 engineer.name AS name,
 CAST(NULL AS VARCHAR(50)) AS manager_data,
 engineer.engineer_info AS engineer_info,
 'engineer' AS type
 FROM engineer
) AS pjoin

The above UNION query needs to manufacture “NULL” columns for each subtable
in order to accommodate for those columns that aren’t part of the mapping.

In order to map with concrete inheritance and polymorphic loading using
Declarative, the challenge is to have the polymorphic union ready to go
when the mappings are created. One way to achieve this is to continue to
define the table metadata before the actual mapped classes, and specify
them to each class using __table__:

class Employee(Base):
 __table__ = employee_table
 __mapper_args__ = {
 'polymorphic_on':pjoin.c.type,
 'with_polymorphic': ('*', pjoin),
 'polymorphic_identity':'employee'
 }

class Engineer(Employee):
 __table__ = engineer_table
 __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True}

class Manager(Employee):
 __table__ = manager_table
 __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True}

Using the Declarative Helper Classes

Another way is to use a special helper class that takes on the fairly
complicated task of deferring the production of Mapper objects
until all table metadata has been collected, and the polymorphic union to which
the mappers will be associated will be available. This is available via
the AbstractConcreteBase and ConcreteBase classes. For
our example here, we’re using a “concrete” base, e.g. an Employee row
can exist by itself that is not an Engineer or a Manager. The
mapping would look like:

from sqlalchemy.ext.declarative import ConcreteBase

class Employee(ConcreteBase, Base):
 __tablename__ = 'employee'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))

 __mapper_args__ = {
 'polymorphic_identity':'employee',
 'concrete':True
 }

class Manager(Employee):
 __tablename__ = 'manager'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 manager_data = Column(String(40))

 __mapper_args__ = {
 'polymorphic_identity':'manager',
 'concrete':True
 }

class Engineer(Employee):
 __tablename__ = 'engineer'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 engineer_info = Column(String(40))

 __mapper_args__ = {
 'polymorphic_identity':'engineer',
 'concrete':True
 }

There is also the option to use a so-called “abstract” base; where we wont
actually have an employee table at all, and instead will only have
manager and engineer tables. The Employee class will never be
instantiated directly. The change here is that the base mapper is mapped
directly to the “polymorphic union” selectable, which no longer includes
the employee table. In classical mapping, this is:

from sqlalchemy.orm import polymorphic_union

pjoin = polymorphic_union({
 'manager': managers_table,
 'engineer': engineers_table
}, 'type', 'pjoin')

employee_mapper = mapper(Employee, pjoin,
 with_polymorphic=('*', pjoin),
 polymorphic_on=pjoin.c.type)
manager_mapper = mapper(Manager, managers_table,
 inherits=employee_mapper,
 concrete=True,
 polymorphic_identity='manager')
engineer_mapper = mapper(Engineer, engineers_table,
 inherits=employee_mapper,
 concrete=True,
 polymorphic_identity='engineer')

Using the Declarative helpers, the AbstractConcreteBase helper
can produce this; the mapping would be:

from sqlalchemy.ext.declarative import AbstractConcreteBase

class Employee(AbstractConcreteBase, Base):
 pass

class Manager(Employee):
 __tablename__ = 'manager'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 manager_data = Column(String(40))

 __mapper_args__ = {
 'polymorphic_identity':'manager',
 'concrete':True
 }

class Engineer(Employee):
 __tablename__ = 'engineer'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 engineer_info = Column(String(40))

 __mapper_args__ = {
 'polymorphic_identity':'engineer',
 'concrete':True
 }

See also

Concrete Table Inheritance - in the Declarative reference documentation

Using Relationships with Inheritance

Both joined-table and single table inheritance scenarios produce mappings
which are usable in relationship() functions; that is,
it’s possible to map a parent object to a child object which is polymorphic.
Similarly, inheriting mappers can have relationship()
objects of their own at any level, which are inherited to each child class.
The only requirement for relationships is that there is a table relationship
between parent and child. An example is the following modification to the
joined table inheritance example, which sets a bi-directional relationship
between Employee and Company:

employees_table = Table('employees', metadata,
 Column('employee_id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('company_id', Integer, ForeignKey('companies.company_id'))
)

companies = Table('companies', metadata,
 Column('company_id', Integer, primary_key=True),
 Column('name', String(50)))

class Company(object):
 pass

mapper(Company, companies, properties={
 'employees': relationship(Employee, backref='company')
})

Relationships with Concrete Inheritance

In a concrete inheritance scenario, mapping relationships is more challenging
since the distinct classes do not share a table. In this case, you can
establish a relationship from parent to child if a join condition can be
constructed from parent to child, if each child table contains a foreign key
to the parent:

companies = Table('companies', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50)))

employees_table = Table('employees', metadata,
 Column('employee_id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('company_id', Integer, ForeignKey('companies.id'))
)

managers_table = Table('managers', metadata,
 Column('employee_id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('manager_data', String(50)),
 Column('company_id', Integer, ForeignKey('companies.id'))
)

engineers_table = Table('engineers', metadata,
 Column('employee_id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('engineer_info', String(50)),
 Column('company_id', Integer, ForeignKey('companies.id'))
)

mapper(Employee, employees_table,
 with_polymorphic=('*', pjoin),
 polymorphic_on=pjoin.c.type,
 polymorphic_identity='employee')

mapper(Manager, managers_table,
 inherits=employee_mapper,
 concrete=True,
 polymorphic_identity='manager')

mapper(Engineer, engineers_table,
 inherits=employee_mapper,
 concrete=True,
 polymorphic_identity='engineer')

mapper(Company, companies, properties={
 'employees': relationship(Employee)
})

The big limitation with concrete table inheritance is that
relationship() objects placed on each concrete mapper do
not propagate to child mappers. If you want to have the same
relationship() objects set up on all concrete mappers,
they must be configured manually on each. To configure back references in such
a configuration the back_populates keyword may be used instead of
backref, such as below where both A(object) and B(A)
bidirectionally reference C:

ajoin = polymorphic_union({
 'a':a_table,
 'b':b_table
 }, 'type', 'ajoin')

mapper(A, a_table, with_polymorphic=('*', ajoin),
 polymorphic_on=ajoin.c.type, polymorphic_identity='a',
 properties={
 'some_c':relationship(C, back_populates='many_a')
})
mapper(B, b_table,inherits=A, concrete=True,
 polymorphic_identity='b',
 properties={
 'some_c':relationship(C, back_populates='many_a')
})
mapper(C, c_table, properties={
 'many_a':relationship(A, collection_class=set,
 back_populates='some_c'),
})

Using Inheritance with Declarative

Declarative makes inheritance configuration more intuitive. See the docs at Inheritance Configuration.

Non-Traditional Mappings

Mapping a Class against Multiple Tables

Mappers can be constructed against arbitrary relational units (called
selectables) in addition to plain tables. For example, the join()
function creates a selectable unit comprised of
multiple tables, complete with its own composite primary key, which can be
mapped in the same way as a Table:

from sqlalchemy import Table, Column, Integer, \
 String, MetaData, join, ForeignKey
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import column_property

metadata = MetaData()

define two Table objects
user_table = Table('user', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String),
)

address_table = Table('address', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_id', Integer, ForeignKey('user.id')),
 Column('email_address', String)
)

define a join between them. This
takes place across the user.id and address.user_id
columns.
user_address_join = join(user_table, address_table)

Base = declarative_base()

map to it
class AddressUser(Base):
 __table__ = user_address_join

 id = column_property(user_table.c.id, address_table.c.user_id)
 address_id = address_table.c.id

In the example above, the join expresses columns for both the
user and the address table. The user.id and address.user_id
columns are equated by foreign key, so in the mapping they are defined
as one attribute, AddressUser.id, using column_property() to
indicate a specialized column mapping. Based on this part of the
configuration, the mapping will copy
new primary key values from user.id into the address.user_id column
when a flush occurs.

Additionally, the address.id column is mapped explicitly to
an attribute named address_id. This is to disambiguate the
mapping of the address.id column from the same-named AddressUser.id
attribute, which here has been assigned to refer to the user table
combined with the address.user_id foreign key.

The natural primary key of the above mapping is the composite of
(user.id, address.id), as these are the primary key columns of the
user and address table combined together. The identity of an
AddressUser object will be in terms of these two values, and
is represented from an AddressUser object as
(AddressUser.id, AddressUser.address_id).

Mapping a Class against Arbitrary Selects

Similar to mapping against a join, a plain select() object can be used with a
mapper as well. The example fragment below illustrates mapping a class
called Customer to a select() which includes a join to a
subquery:

from sqlalchemy import select, func

subq = select([
 func.count(orders.c.id).label('order_count'),
 func.max(orders.c.price).label('highest_order'),
 orders.c.customer_id
]).group_by(orders.c.customer_id).alias()

customer_select = select([customers, subq]).\
 select_from(
 join(customers, subq,
 customers.c.id == subq.c.customer_id)
).alias()

class Customer(Base):
 __table__ = customer_select

Above, the full row represented by customer_select will be all the
columns of the customers table, in addition to those columns
exposed by the subq subquery, which are order_count,
highest_order, and customer_id. Mapping the Customer
class to this selectable then creates a class which will contain
those attributes.

When the ORM persists new instances of Customer, only the
customers table will actually receive an INSERT. This is because the
primary key of the orders table is not represented in the mapping; the ORM
will only emit an INSERT into a table for which it has mapped the primary
key.

Note

The practice of mapping to arbitrary SELECT statements, especially
complex ones as above, is
almost never needed; it necessarily tends to produce complex queries
which are often less efficient than that which would be produced
by direct query construction. The practice is to some degree
based on the very early history of SQLAlchemy where the mapper()
construct was meant to represent the primary querying interface;
in modern usage, the Query object can be used to construct
virtually any SELECT statement, including complex composites, and should
be favored over the “map-to-selectable” approach.

Multiple Mappers for One Class

In modern SQLAlchemy, a particular class is mapped by only one so-called
primary mapper at a time. This mapper is involved in three main
areas of functionality: querying, persistence, and instrumentation of the
mapped class. The rationale of the primary mapper relates to the fact
that the mapper() modifies the class itself, not only
persisting it towards a particular Table, but also instrumenting
attributes upon the class which are structured specifically according to the
table metadata. It’s not possible for more than one mapper
to be associated with a class in equal measure, since only one mapper can
actually instrument the class.

However, there is a class of mapper known as the non primary mapper
with allows additional mappers to be associated with a class, but with
a limited scope of use. This scope typically applies to
being able to load rows from an alternate table or selectable unit, but
still producing classes which are ultimately persisted using the primary
mapping. The non-primary mapper is created using the classical style
of mapping against a class that is already mapped with a primary mapper,
and involves the use of the non_primary
flag.

The non primary mapper is of very limited use in modern SQLAlchemy, as the
task of being able to load classes from subqueries or other compound statements
can be now accomplished using the Query object directly.

There is really only one use case for the non-primary mapper, which is that
we wish to build a relationship() to such a mapper; this is useful
in the rare and advanced case that our relationship is attempting to join two
classes together using many tables and/or joins in between. An example of this
pattern is at Relationship to Non Primary Mapper.

As far as the use case of a class that can actually be fully persisted
to different tables under different scenarios, very early versions of
SQLAlchemy offered a feature for this adapted from Hibernate, known
as the “entity name” feature. However, this use case became infeasable
within SQLAlchemy once the mapped class itself became the source of SQL
expression construction; that is, the class’ attributes themselves link
directly to mapped table columns. The feature was removed and replaced
with a simple recipe-oriented approach to accomplishing this task
without any ambiguity of instrumentation - to create new subclasses, each
mapped individually. This pattern is now available as a recipe at Entity Name.

Configuring a Version Counter

The Mapper supports management of a version id column, which
is a single table column that increments or otherwise updates its value
each time an UPDATE to the mapped table occurs. This value is checked each
time the ORM emits an UPDATE or DELETE against the row to ensure that
the value held in memory matches the database value.

Warning

Because the versioning feature relies upon comparison of the in memory
record of an object, the feature only applies to the Session.flush()
process, where the ORM flushes individual in-memory rows to the database.
It does not take effect when performing
a multirow UPDATE or DELETE using Query.update() or Query.delete()
methods, as these methods only emit an UPDATE or DELETE statement but otherwise
do not have direct access to the contents of those rows being affected.

The purpose of this feature is to detect when two concurrent transactions
are modifying the same row at roughly the same time, or alternatively to provide
a guard against the usage of a “stale” row in a system that might be re-using
data from a previous transaction without refreshing (e.g. if one sets expire_on_commit=False
with a Session, it is possible to re-use the data from a previous
transaction).

Concurrent transaction updates

When detecting concurrent updates within transactions, it is typically the
case that the database’s transaction isolation level is below the level of
repeatable read; otherwise, the transaction will not be exposed
to a new row value created by a concurrent update which conflicts with
the locally updated value. In this case, the SQLAlchemy versioning
feature will typically not be useful for in-transaction conflict detection,
though it still can be used for cross-transaction staleness detection.

The database that enforces repeatable reads will typically either have locked the
target row against a concurrent update, or is employing some form
of multi version concurrency control such that it will emit an error
when the transaction is committed. SQLAlchemy’s version_id_col is an alternative
which allows version tracking to occur for specific tables within a transaction
that otherwise might not have this isolation level set.

See also

Repeatable Read Isolation Level - Postgresql’s implementation of repeatable read, including a description of the error condition.

Simple Version Counting

The most straightforward way to track versions is to add an integer column
to the mapped table, then establish it as the version_id_col within the
mapper options:

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 version_id = Column(Integer, nullable=False)
 name = Column(String(50), nullable=False)

 __mapper_args__ = {
 "version_id_col": version_id
 }

Above, the User mapping tracks integer versions using the column
version_id. When an object of type User is first flushed, the
version_id column will be given a value of “1”. Then, an UPDATE
of the table later on will always be emitted in a manner similar to the
following:

UPDATE user SET version_id=:version_id, name=:name
WHERE user.id = :user_id AND user.version_id = :user_version_id
{"name": "new name", "version_id": 2, "user_id": 1, "user_version_id": 1}

The above UPDATE statement is updating the row that not only matches
user.id = 1, it also is requiring that user.version_id = 1, where “1”
is the last version identifier we’ve been known to use on this object.
If a transaction elsewhere has modified the row independently, this version id
will no longer match, and the UPDATE statement will report that no rows matched;
this is the condition that SQLAlchemy tests, that exactly one row matched our
UPDATE (or DELETE) statement. If zero rows match, that indicates our version
of the data is stale, and a StaleDataError is raised.

Custom Version Counters / Types

Other kinds of values or counters can be used for versioning. Common types include
dates and GUIDs. When using an alternate type or counter scheme, SQLAlchemy
provides a hook for this scheme using the version_id_generator argument,
which accepts a version generation callable. This callable is passed the value of the current
known version, and is expected to return the subsequent version.

For example, if we wanted to track the versioning of our User class
using a randomly generated GUID, we could do this (note that some backends
support a native GUID type, but we illustrate here using a simple string):

import uuid

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 version_uuid = Column(String(32))
 name = Column(String(50), nullable=False)

 __mapper_args__ = {
 'version_id_col':version_uuid,
 'version_id_generator':lambda version: uuid.uuid4().hex
 }

The persistence engine will call upon uuid.uuid4() each time a
User object is subject to an INSERT or an UPDATE. In this case, our
version generation function can disregard the incoming value of version,
as the uuid4() function
generates identifiers without any prerequisite value. If we were using
a sequential versioning scheme such as numeric or a special character system,
we could make use of the given version in order to help determine the
subsequent value.

See also

Backend-agnostic GUID Type

Server Side Version Counters

The version_id_generator can also be configured to rely upon a value
that is generated by the database. In this case, the database would need
some means of generating new identifiers when a row is subject to an INSERT
as well as with an UPDATE. For the UPDATE case, typically an update trigger
is needed, unless the database in question supports some other native
version identifier. The Postgresql database in particular supports a system
column called xmin
which provides UPDATE versioning. We can make use
of the Postgresql xmin column to version our User
class as follows:

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 name = Column(String(50), nullable=False)
 xmin = Column("xmin", Integer, system=True)

 __mapper_args__ = {
 'version_id_col': xmin,
 'version_id_generator': False
 }

With the above mapping, the ORM will rely upon the xmin column for
automatically providing the new value of the version id counter.

creating tables that refer to system columns

In the above scenario, as xmin is a system column provided by Postgresql,
we use the system=True argument to mark it as a system-provided
column, omitted from the CREATE TABLE statement.

The ORM typically does not actively fetch the values of database-generated
values when it emits an INSERT or UPDATE, instead leaving these columns as
“expired” and to be fetched when they are next accessed, unless the eager_defaults
mapper() flag is set. However, when a
server side version column is used, the ORM needs to actively fetch the newly
generated value. This is so that the version counter is set up before
any concurrent transaction may update it again. This fetching is also
best done simultaneously within the INSERT or UPDATE statement using RETURNING,
otherwise if emitting a SELECT statement afterwards, there is still a potential
race condition where the version counter may change before it can be fetched.

When the target database supports RETURNING, an INSERT statement for our User class will look
like this:

INSERT INTO "user" (name) VALUES (%(name)s) RETURNING "user".id, "user".xmin
{'name': 'ed'}

Where above, the ORM can acquire any newly generated primary key values along
with server-generated version identifiers in one statement. When the backend
does not support RETURNING, an additional SELECT must be emitted for every
INSERT and UPDATE, which is much less efficient, and also introduces the possibility of
missed version counters:

INSERT INTO "user" (name) VALUES (%(name)s)
{'name': 'ed'}

SELECT "user".version_id AS user_version_id FROM "user" where
"user".id = :param_1
{"param_1": 1}

It is strongly recommended that server side version counters only be used
when absolutely necessary and only on backends that support RETURNING,
e.g. Postgresql, Oracle, SQL Server (though SQL Server has
major caveats when triggers are used), Firebird.

New in version 0.9.0: Support for server side version identifier tracking.

Programmatic or Conditional Version Counters

When version_id_generator is set to False, we can also programmatically
(and conditionally) set the version identifier on our object in the same way
we assign any other mapped attribute. Such as if we used our UUID example, but
set version_id_generator to False, we can set the version identifier
at our choosing:

import uuid

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 version_uuid = Column(String(32))
 name = Column(String(50), nullable=False)

 __mapper_args__ = {
 'version_id_col':version_uuid,
 'version_id_generator': False
 }

u1 = User(name='u1', version_uuid=uuid.uuid4())

session.add(u1)

session.commit()

u1.name = 'u2'
u1.version_uuid = uuid.uuid4()

session.commit()

We can update our User object without incrementing the version counter
as well; the value of the counter will remain unchanged, and the UPDATE
statement will still check against the previous value. This may be useful
for schemes where only certain classes of UPDATE are sensitive to concurrency
issues:

will leave version_uuid unchanged
u1.name = 'u3'
session.commit()

New in version 0.9.0: Support for programmatic and conditional version identifier tracking.

Class Mapping API

	
sqlalchemy.orm.mapper(class_, local_table=None, properties=None, primary_key=None, non_primary=False, inherits=None, inherit_condition=None, inherit_foreign_keys=None, extension=None, order_by=False, always_refresh=False, version_id_col=None, version_id_generator=None, polymorphic_on=None, _polymorphic_map=None, polymorphic_identity=None, concrete=False, with_polymorphic=None, allow_partial_pks=True, batch=True, column_prefix=None, include_properties=None, exclude_properties=None, passive_updates=True, passive_deletes=False, confirm_deleted_rows=True, eager_defaults=False, legacy_is_orphan=False, _compiled_cache_size=100)

	Return a new Mapper object.

This function is typically used behind the scenes
via the Declarative extension. When using Declarative,
many of the usual mapper() arguments are handled
by the Declarative extension itself, including class_,
local_table, properties, and inherits.
Other options are passed to mapper() using
the __mapper_args__ class variable:

class MyClass(Base):
 __tablename__ = 'my_table'
 id = Column(Integer, primary_key=True)
 type = Column(String(50))
 alt = Column("some_alt", Integer)

 __mapper_args__ = {
 'polymorphic_on' : type
 }

Explicit use of mapper()
is often referred to as classical mapping. The above
declarative example is equivalent in classical form to:

my_table = Table("my_table", metadata,
 Column('id', Integer, primary_key=True),
 Column('type', String(50)),
 Column("some_alt", Integer)
)

class MyClass(object):
 pass

mapper(MyClass, my_table,
 polymorphic_on=my_table.c.type,
 properties={
 'alt':my_table.c.some_alt
 })

See also

Classical Mappings - discussion of direct usage of
mapper()

	Parameters:
	
	class_¶ – The class to be mapped. When using Declarative,
this argument is automatically passed as the declared class
itself.

	local_table¶ – The Table or other selectable
to which the class is mapped. May be None if
this mapper inherits from another mapper using single-table
inheritance. When using Declarative, this argument is
automatically passed by the extension, based on what
is configured via the __table__ argument or via the
Table produced as a result of the __tablename__
and Column arguments present.

	always_refresh¶ – If True, all query operations for this mapped
class will overwrite all data within object instances that already
exist within the session, erasing any in-memory changes with
whatever information was loaded from the database. Usage of this
flag is highly discouraged; as an alternative, see the method
Query.populate_existing().

	allow_partial_pks¶ – Defaults to True. Indicates that a
composite primary key with some NULL values should be considered as
possibly existing within the database. This affects whether a
mapper will assign an incoming row to an existing identity, as well
as if Session.merge() will check the database first for a
particular primary key value. A “partial primary key” can occur if
one has mapped to an OUTER JOIN, for example.

	batch¶ – Defaults to True, indicating that save operations
of multiple entities can be batched together for efficiency.
Setting to False indicates
that an instance will be fully saved before saving the next
instance. This is used in the extremely rare case that a
MapperEvents listener requires being called
in between individual row persistence operations.

	column_prefix¶ – A string which will be prepended
to the mapped attribute name when Column
objects are automatically assigned as attributes to the
mapped class. Does not affect explicitly specified
column-based properties.

See the section Naming All Columns with a Prefix for an example.

	concrete¶ – If True, indicates this mapper should use concrete
table inheritance with its parent mapper.

See the section Concrete Table Inheritance for an example.

	confirm_deleted_rows¶ – defaults to True; when a DELETE occurs
of one more rows based on specific primary keys, a warning is
emitted when the number of rows matched does not equal the number
of rows expected. This parameter may be set to False to handle the
case where database ON DELETE CASCADE rules may be deleting some of
those rows automatically. The warning may be changed to an
exception in a future release.

New in version 0.9.4: - added
mapper.confirm_deleted_rows as well as conditional
matched row checking on delete.

	eager_defaults¶ – if True, the ORM will immediately fetch the
value of server-generated default values after an INSERT or UPDATE,
rather than leaving them as expired to be fetched on next access.
This can be used for event schemes where the server-generated values
are needed immediately before the flush completes. By default,
this scheme will emit an individual SELECT statement per row
inserted or updated, which note can add significant performance
overhead. However, if the
target database supports RETURNING, the default values will
be returned inline with the INSERT or UPDATE statement, which can
greatly enhance performance for an application that needs frequent
access to just-generated server defaults.

Changed in version 0.9.0: The eager_defaults option can now
make use of RETURNING for backends which support it.

	exclude_properties¶ – A list or set of string column names to
be excluded from mapping.

See Mapping a Subset of Table Columns for an example.

	extension¶ – A MapperExtension instance or
list of MapperExtension instances which will be applied
to all operations by this Mapper. Deprecated.
Please see MapperEvents.

	include_properties¶ – An inclusive list or set of string column
names to map.

See Mapping a Subset of Table Columns for an example.

	inherits¶ – A mapped class or the corresponding Mapper
of one indicating a superclass to which this Mapper
should inherit from. The mapped class here must be a subclass
of the other mapper’s class. When using Declarative, this argument
is passed automatically as a result of the natural class
hierarchy of the declared classes.

See also

Mapping Class Inheritance Hierarchies

	inherit_condition¶ – For joined table inheritance, a SQL
expression which will
define how the two tables are joined; defaults to a natural join
between the two tables.

	inherit_foreign_keys¶ – When inherit_condition is used and
the columns present are missing a ForeignKey
configuration, this parameter can be used to specify which columns
are “foreign”. In most cases can be left as None.

	legacy_is_orphan¶ – Boolean, defaults to False.
When True, specifies that “legacy” orphan consideration
is to be applied to objects mapped by this mapper, which means
that a pending (that is, not persistent) object is auto-expunged
from an owning Session only when it is de-associated
from all parents that specify a delete-orphan cascade towards
this mapper. The new default behavior is that the object is
auto-expunged when it is de-associated with any of its parents
that specify delete-orphan cascade. This behavior is more
consistent with that of a persistent object, and allows behavior to
be consistent in more scenarios independently of whether or not an
orphanable object has been flushed yet or not.

See the change note and example at The consideration of a “pending” object as an “orphan” has been made more aggressive
for more detail on this change.

New in version 0.8: - the consideration of a pending object as
an “orphan” has been modified to more closely match the
behavior as that of persistent objects, which is that the object
is expunged from the Session as soon as it is
de-associated from any of its orphan-enabled parents. Previously,
the pending object would be expunged only if de-associated
from all of its orphan-enabled parents. The new flag
legacy_is_orphan is added to orm.mapper() which
re-establishes the legacy behavior.

	non_primary¶ – Specify that this Mapper is in addition
to the “primary” mapper, that is, the one used for persistence.
The Mapper created here may be used for ad-hoc
mapping of the class to an alternate selectable, for loading
only.

Mapper.non_primary is not an often used option, but
is useful in some specific relationship() cases.

See also

Relationship to Non Primary Mapper

	order_by¶ – A single Column or list of Column
objects for which selection operations should use as the default
ordering for entities. By default mappers have no pre-defined
ordering.

Deprecated since version 1.1: The Mapper.order_by parameter
is deprecated. Use Query.order_by() to determine the
ordering of a result set.

	passive_deletes¶ – Indicates DELETE behavior of foreign key
columns when a joined-table inheritance entity is being deleted.
Defaults to False for a base mapper; for an inheriting mapper,
defaults to False unless the value is set to True
on the superclass mapper.

When True, it is assumed that ON DELETE CASCADE is configured
on the foreign key relationships that link this mapper’s table
to its superclass table, so that when the unit of work attempts
to delete the entity, it need only emit a DELETE statement for the
superclass table, and not this table.

When False, a DELETE statement is emitted for this mapper’s
table individually. If the primary key attributes local to this
table are unloaded, then a SELECT must be emitted in order to
validate these attributes; note that the primary key columns
of a joined-table subclass are not part of the “primary key” of
the object as a whole.

Note that a value of True is always forced onto the
subclass mappers; that is, it’s not possible for a superclass
to specify passive_deletes without this taking effect for
all subclass mappers.

New in version 1.1.

See also

Using Passive Deletes - description of similar feature as
used with relationship()

mapper.passive_updates - supporting ON UPDATE
CASCADE for joined-table inheritance mappers

	passive_updates¶ – Indicates UPDATE behavior of foreign key
columns when a primary key column changes on a joined-table
inheritance mapping. Defaults to True.

When True, it is assumed that ON UPDATE CASCADE is configured on
the foreign key in the database, and that the database will handle
propagation of an UPDATE from a source column to dependent columns
on joined-table rows.

When False, it is assumed that the database does not enforce
referential integrity and will not be issuing its own CASCADE
operation for an update. The unit of work process will
emit an UPDATE statement for the dependent columns during a
primary key change.

See also

Mutable Primary Keys / Update Cascades - description of a similar feature as
used with relationship()

mapper.passive_deletes - supporting ON DELETE
CASCADE for joined-table inheritance mappers

	polymorphic_on¶ – Specifies the column, attribute, or
SQL expression used to determine the target class for an
incoming row, when inheriting classes are present.

This value is commonly a Column object that’s
present in the mapped Table:

class Employee(Base):
 __tablename__ = 'employee'

 id = Column(Integer, primary_key=True)
 discriminator = Column(String(50))

 __mapper_args__ = {
 "polymorphic_on":discriminator,
 "polymorphic_identity":"employee"
 }

It may also be specified
as a SQL expression, as in this example where we
use the case() construct to provide a conditional
approach:

class Employee(Base):
 __tablename__ = 'employee'

 id = Column(Integer, primary_key=True)
 discriminator = Column(String(50))

 __mapper_args__ = {
 "polymorphic_on":case([
 (discriminator == "EN", "engineer"),
 (discriminator == "MA", "manager"),
], else_="employee"),
 "polymorphic_identity":"employee"
 }

It may also refer to any attribute
configured with column_property(), or to the
string name of one:

class Employee(Base):
 __tablename__ = 'employee'

 id = Column(Integer, primary_key=True)
 discriminator = Column(String(50))
 employee_type = column_property(
 case([
 (discriminator == "EN", "engineer"),
 (discriminator == "MA", "manager"),
], else_="employee")
)

 __mapper_args__ = {
 "polymorphic_on":employee_type,
 "polymorphic_identity":"employee"
 }

Changed in version 0.7.4: polymorphic_on may be specified as a SQL expression,
or refer to any attribute configured with
column_property(), or to the string name of one.

When setting polymorphic_on to reference an
attribute or expression that’s not present in the
locally mapped Table, yet the value
of the discriminator should be persisted to the database,
the value of the
discriminator is not automatically set on new
instances; this must be handled by the user,
either through manual means or via event listeners.
A typical approach to establishing such a listener
looks like:

from sqlalchemy import event
from sqlalchemy.orm import object_mapper

@event.listens_for(Employee, "init", propagate=True)
def set_identity(instance, *arg, **kw):
 mapper = object_mapper(instance)
 instance.discriminator = mapper.polymorphic_identity

Where above, we assign the value of polymorphic_identity
for the mapped class to the discriminator attribute,
thus persisting the value to the discriminator column
in the database.

Warning

Currently, only one discriminator column may be set, typically
on the base-most class in the hierarchy. “Cascading” polymorphic
columns are not yet supported.

See also

Mapping Class Inheritance Hierarchies

	polymorphic_identity¶ – Specifies the value which
identifies this particular class as returned by the
column expression referred to by the polymorphic_on
setting. As rows are received, the value corresponding
to the polymorphic_on column expression is compared
to this value, indicating which subclass should
be used for the newly reconstructed object.

	properties¶ – A dictionary mapping the string names of object
attributes to MapperProperty instances, which define the
persistence behavior of that attribute. Note that Column
objects present in
the mapped Table are automatically placed into
ColumnProperty instances upon mapping, unless overridden.
When using Declarative, this argument is passed automatically,
based on all those MapperProperty instances declared
in the declared class body.

	primary_key¶ – A list of Column objects which define
the primary key to be used against this mapper’s selectable unit.
This is normally simply the primary key of the local_table, but
can be overridden here.

	version_id_col¶ – A Column
that will be used to keep a running version id of rows
in the table. This is used to detect concurrent updates or
the presence of stale data in a flush. The methodology is to
detect if an UPDATE statement does not match the last known
version id, a
StaleDataError exception is
thrown.
By default, the column must be of Integer type,
unless version_id_generator specifies an alternative version
generator.

See also

Configuring a Version Counter - discussion of version counting
and rationale.

	version_id_generator¶ – Define how new version ids should
be generated. Defaults to None, which indicates that
a simple integer counting scheme be employed. To provide a custom
versioning scheme, provide a callable function of the form:

def generate_version(version):
 return next_version

Alternatively, server-side versioning functions such as triggers,
or programmatic versioning schemes outside of the version id
generator may be used, by specifying the value False.
Please see Server Side Version Counters for a discussion
of important points when using this option.

New in version 0.9.0: version_id_generator supports
server-side version number generation.

See also

Custom Version Counters / Types

Server Side Version Counters

	with_polymorphic¶ – A tuple in the form (<classes>,
<selectable>) indicating the default style of “polymorphic”
loading, that is, which tables are queried at once. <classes> is
any single or list of mappers and/or classes indicating the
inherited classes that should be loaded at once. The special value
'*' may be used to indicate all descending classes should be
loaded immediately. The second tuple argument <selectable>
indicates a selectable that will be used to query for multiple
classes.

See also

Basic Control of Which Tables are Queried - discussion of polymorphic querying
techniques.

	
sqlalchemy.orm.object_mapper(instance)

	Given an object, return the primary Mapper associated with the object
instance.

Raises sqlalchemy.orm.exc.UnmappedInstanceError
if no mapping is configured.

This function is available via the inspection system as:

inspect(instance).mapper

Using the inspection system will raise
sqlalchemy.exc.NoInspectionAvailable if the instance is
not part of a mapping.

	
sqlalchemy.orm.class_mapper(class_, configure=True)

	Given a class, return the primary Mapper associated
with the key.

Raises UnmappedClassError if no mapping is configured
on the given class, or ArgumentError if a non-class
object is passed.

Equivalent functionality is available via the inspect()
function as:

inspect(some_mapped_class)

Using the inspection system will raise
sqlalchemy.exc.NoInspectionAvailable if the class is not mapped.

	
sqlalchemy.orm.configure_mappers()

	Initialize the inter-mapper relationships of all mappers that
have been constructed thus far.

This function can be called any number of times, but in
most cases is invoked automatically, the first time mappings are used,
as well as whenever mappings are used and additional not-yet-configured
mappers have been constructed.

Points at which this occur include when a mapped class is instantiated
into an instance, as well as when the Session.query() method
is used.

The configure_mappers() function provides several event hooks
that can be used to augment its functionality. These methods include:

	MapperEvents.before_configured() - called once before
configure_mappers() does any work; this can be used to establish
additional options, properties, or related mappings before the operation
proceeds.

	MapperEvents.mapper_configured() - called as each indivudal
Mapper is configured within the process; will include all
mapper state except for backrefs set up by other mappers that are still
to be configured.

	MapperEvents.after_configured() - called once after
configure_mappers() is complete; at this stage, all
Mapper objects that are known to SQLAlchemy will be fully
configured. Note that the calling application may still have other
mappings that haven’t been produced yet, such as if they are in modules
as yet unimported.

	
sqlalchemy.orm.clear_mappers()

	Remove all mappers from all classes.

This function removes all instrumentation from classes and disposes
of their associated mappers. Once called, the classes are unmapped
and can be later re-mapped with new mappers.

clear_mappers() is not for normal use, as there is literally no
valid usage for it outside of very specific testing scenarios. Normally,
mappers are permanent structural components of user-defined classes, and
are never discarded independently of their class. If a mapped class
itself is garbage collected, its mapper is automatically disposed of as
well. As such, clear_mappers() is only for usage in test suites
that re-use the same classes with different mappings, which is itself an
extremely rare use case - the only such use case is in fact SQLAlchemy’s
own test suite, and possibly the test suites of other ORM extension
libraries which intend to test various combinations of mapper construction
upon a fixed set of classes.

	
sqlalchemy.orm.util.identity_key(*args, **kwargs)

	Generate “identity key” tuples, as are used as keys in the
Session.identity_map dictionary.

This function has several call styles:

	identity_key(class, ident)

This form receives a mapped class and a primary key scalar or
tuple as an argument.

E.g.:

>>> identity_key(MyClass, (1, 2))
(<class '__main__.MyClass'>, (1, 2))

	param class:
	mapped class (must be a positional argument)

	param ident:
	primary key, may be a scalar or tuple argument.

	identity_key(instance=instance)

This form will produce the identity key for a given instance. The
instance need not be persistent, only that its primary key attributes
are populated (else the key will contain None for those missing
values).

E.g.:

>>> instance = MyClass(1, 2)
>>> identity_key(instance=instance)
(<class '__main__.MyClass'>, (1, 2))

In this form, the given instance is ultimately run though
Mapper.identity_key_from_instance(), which will have the
effect of performing a database check for the corresponding row
if the object is expired.

	param instance:
	object instance (must be given as a keyword arg)

	identity_key(class, row=row)

This form is similar to the class/tuple form, except is passed a
database result row as a RowProxy object.

E.g.:

>>> row = engine.execute("select * from table where a=1 and b=2").first()
>>> identity_key(MyClass, row=row)
(<class '__main__.MyClass'>, (1, 2))

	param class:
	mapped class (must be a positional argument)

	param row:
	RowProxy row returned by a ResultProxy
(must be given as a keyword arg)

	
sqlalchemy.orm.util.polymorphic_union(table_map, typecolname, aliasname='p_union', cast_nulls=True)

	Create a UNION statement used by a polymorphic mapper.

See Concrete Table Inheritance for an example of how
this is used.

	Parameters:
	
	table_map¶ – mapping of polymorphic identities to
Table objects.

	typecolname¶ – string name of a “discriminator” column, which will be
derived from the query, producing the polymorphic identity for
each row. If None, no polymorphic discriminator is generated.

	aliasname¶ – name of the alias()
construct generated.

	cast_nulls¶ – if True, non-existent columns, which are represented
as labeled NULLs, will be passed into CAST. This is a legacy behavior
that is problematic on some backends such as Oracle - in which case it
can be set to False.

	
class sqlalchemy.orm.mapper.Mapper(class_, local_table=None, properties=None, primary_key=None, non_primary=False, inherits=None, inherit_condition=None, inherit_foreign_keys=None, extension=None, order_by=False, always_refresh=False, version_id_col=None, version_id_generator=None, polymorphic_on=None, _polymorphic_map=None, polymorphic_identity=None, concrete=False, with_polymorphic=None, allow_partial_pks=True, batch=True, column_prefix=None, include_properties=None, exclude_properties=None, passive_updates=True, passive_deletes=False, confirm_deleted_rows=True, eager_defaults=False, legacy_is_orphan=False, _compiled_cache_size=100)

	Bases: sqlalchemy.orm.base.InspectionAttr

Define the correlation of class attributes to database table
columns.

The Mapper object is instantiated using the
mapper() function. For information
about instantiating new Mapper objects, see
that function’s documentation.

When mapper() is used
explicitly to link a user defined class with table
metadata, this is referred to as classical mapping.
Modern SQLAlchemy usage tends to favor the
sqlalchemy.ext.declarative extension for class
configuration, which
makes usage of mapper() behind the scenes.

Given a particular class known to be mapped by the ORM,
the Mapper which maintains it can be acquired
using the inspect() function:

from sqlalchemy import inspect

mapper = inspect(MyClass)

A class which was mapped by the sqlalchemy.ext.declarative
extension will also have its mapper available via the __mapper__
attribute.

	
__init__(class_, local_table=None, properties=None, primary_key=None, non_primary=False, inherits=None, inherit_condition=None, inherit_foreign_keys=None, extension=None, order_by=False, always_refresh=False, version_id_col=None, version_id_generator=None, polymorphic_on=None, _polymorphic_map=None, polymorphic_identity=None, concrete=False, with_polymorphic=None, allow_partial_pks=True, batch=True, column_prefix=None, include_properties=None, exclude_properties=None, passive_updates=True, passive_deletes=False, confirm_deleted_rows=True, eager_defaults=False, legacy_is_orphan=False, _compiled_cache_size=100)

	Construct a new Mapper object.

This constructor is mirrored as a public API function; see mapper() for a full usage and argument description.

	
add_properties(dict_of_properties)

	Add the given dictionary of properties to this mapper,
using add_property.

	
add_property(key, prop)

	Add an individual MapperProperty to this mapper.

If the mapper has not been configured yet, just adds the
property to the initial properties dictionary sent to the
constructor. If this Mapper has already been configured, then
the given MapperProperty is configured immediately.

	
all_orm_descriptors

	A namespace of all InspectionAttr attributes associated
with the mapped class.

These attributes are in all cases Python descriptors
associated with the mapped class or its superclasses.

This namespace includes attributes that are mapped to the class
as well as attributes declared by extension modules.
It includes any Python descriptor type that inherits from
InspectionAttr. This includes
QueryableAttribute, as well as extension types such as
hybrid_property, hybrid_method and
AssociationProxy.

To distinguish between mapped attributes and extension attributes,
the attribute InspectionAttr.extension_type will refer
to a constant that distinguishes between different extension types.

When dealing with a QueryableAttribute, the
QueryableAttribute.property attribute refers to the
MapperProperty property, which is what you get when
referring to the collection of mapped properties via
Mapper.attrs.

Warning

The Mapper.all_orm_descriptors accessor namespace is an
instance of OrderedProperties. This is
a dictionary-like object which includes a small number of
named methods such as OrderedProperties.items()
and OrderedProperties.values(). When
accessing attributes dynamically, favor using the dict-access
scheme, e.g. mapper.all_orm_descriptors[somename] over
getattr(mapper.all_orm_descriptors, somename) to avoid name
collisions.

New in version 0.8.0.

See also

Mapper.attrs

	
attrs

	A namespace of all MapperProperty objects
associated this mapper.

This is an object that provides each property based on
its key name. For instance, the mapper for a
User class which has User.name attribute would
provide mapper.attrs.name, which would be the
ColumnProperty representing the name
column. The namespace object can also be iterated,
which would yield each MapperProperty.

Mapper has several pre-filtered views
of this attribute which limit the types of properties
returned, inclding synonyms, column_attrs,
relationships, and composites.

Warning

The Mapper.attrs accessor namespace is an
instance of OrderedProperties. This is
a dictionary-like object which includes a small number of
named methods such as OrderedProperties.items()
and OrderedProperties.values(). When
accessing attributes dynamically, favor using the dict-access
scheme, e.g. mapper.attrs[somename] over
getattr(mapper.attrs, somename) to avoid name collisions.

See also

Mapper.all_orm_descriptors

	
base_mapper = None

	The base-most Mapper in an inheritance chain.

In a non-inheriting scenario, this attribute will always be this
Mapper. In an inheritance scenario, it references
the Mapper which is parent to all other Mapper
objects in the inheritance chain.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
c = None

	A synonym for columns.

	
cascade_iterator(type_, state, halt_on=None)

	Iterate each element and its mapper in an object graph,
for all relationships that meet the given cascade rule.

	Parameters:
	
	type_¶ – The name of the cascade rule (i.e. "save-update", "delete",
etc.).

Note

the "all" cascade is not accepted here. For a generic
object traversal function, see How do I walk all objects that are related to a given object?.

	state¶ – The lead InstanceState. child items will be processed per
the relationships defined for this object’s mapper.

	Returns:
	the method yields individual object instances.

See also

Cascades

How do I walk all objects that are related to a given object? - illustrates a generic function to
traverse all objects without relying on cascades.

	
class_ = None

	The Python class which this Mapper maps.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
class_manager = None

	The ClassManager which maintains event listeners
and class-bound descriptors for this Mapper.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
column_attrs

	Return a namespace of all ColumnProperty
properties maintained by this Mapper.

See also

Mapper.attrs - namespace of all MapperProperty
objects.

	
columns = None

	A collection of Column or other scalar expression
objects maintained by this Mapper.

The collection behaves the same as that of the c attribute on
any Table object, except that only those columns included in
this mapping are present, and are keyed based on the attribute name
defined in the mapping, not necessarily the key attribute of the
Column itself. Additionally, scalar expressions mapped
by column_property() are also present here.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
common_parent(other)

	Return true if the given mapper shares a
common inherited parent as this mapper.

	
composites

	Return a namespace of all CompositeProperty
properties maintained by this Mapper.

See also

Mapper.attrs - namespace of all MapperProperty
objects.

	
concrete = None

	Represent True if this Mapper is a concrete
inheritance mapper.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
configured = None

	Represent True if this Mapper has been configured.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

See also

configure_mappers().

	
entity

	Part of the inspection API.

Returns self.class_.

	
get_property(key, _configure_mappers=True)

	return a MapperProperty associated with the given key.

	
get_property_by_column(column)

	Given a Column object, return the
MapperProperty which maps this column.

	
identity_key_from_instance(instance)

	Return the identity key for the given instance, based on
its primary key attributes.

If the instance’s state is expired, calling this method
will result in a database check to see if the object has been deleted.
If the row no longer exists,
ObjectDeletedError is raised.

This value is typically also found on the instance state under the
attribute name key.

	
identity_key_from_primary_key(primary_key)

	Return an identity-map key for use in storing/retrieving an
item from an identity map.

	Parameters:
	primary_key¶ – A list of values indicating the identifier.

	
identity_key_from_row(row, adapter=None)

	Return an identity-map key for use in storing/retrieving an
item from the identity map.

	Parameters:
	row¶ – A RowProxy instance. The columns which are
mapped by this Mapper should be locatable in the row,
preferably via the Column object directly (as is the case
when a select() construct is executed), or via string names of
the form <tablename>_<colname>.

	
inherits = None

	References the Mapper which this Mapper
inherits from, if any.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
is_mapper = True

	Part of the inspection API.

	
isa(other)

	Return True if the this mapper inherits from the given mapper.

	
iterate_properties

	return an iterator of all MapperProperty objects.

	
local_table = None

	The Selectable which this Mapper manages.

Typically is an instance of Table or Alias.
May also be None.

The “local” table is the
selectable that the Mapper is directly responsible for
managing from an attribute access and flush perspective. For
non-inheriting mappers, the local table is the same as the
“mapped” table. For joined-table inheritance mappers, local_table
will be the particular sub-table of the overall “join” which
this Mapper represents. If this mapper is a
single-table inheriting mapper, local_table will be None.

See also

mapped_table.

	
mapped_table = None

	The Selectable to which this Mapper is mapped.

Typically an instance of Table, Join, or
Alias.

The “mapped” table is the selectable that
the mapper selects from during queries. For non-inheriting
mappers, the mapped table is the same as the “local” table.
For joined-table inheritance mappers, mapped_table references the
full Join representing full rows for this particular
subclass. For single-table inheritance mappers, mapped_table
references the base table.

See also

local_table.

	
mapper

	Part of the inspection API.

Returns self.

	
non_primary = None

	Represent True if this Mapper is a “non-primary”
mapper, e.g. a mapper that is used only to selet rows but not for
persistence management.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
polymorphic_identity = None

	Represent an identifier which is matched against the
polymorphic_on column during result row loading.

Used only with inheritance, this object can be of any type which is
comparable to the type of column represented by
polymorphic_on.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
polymorphic_iterator()

	Iterate through the collection including this mapper and
all descendant mappers.

This includes not just the immediately inheriting mappers but
all their inheriting mappers as well.

To iterate through an entire hierarchy, use
mapper.base_mapper.polymorphic_iterator().

	
polymorphic_map = None

	A mapping of “polymorphic identity” identifiers mapped to
Mapper instances, within an inheritance scenario.

The identifiers can be of any type which is comparable to the
type of column represented by polymorphic_on.

An inheritance chain of mappers will all reference the same
polymorphic map object. The object is used to correlate incoming
result rows to target mappers.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
polymorphic_on = None

	The Column or SQL expression specified as the
polymorphic_on argument
for this Mapper, within an inheritance scenario.

This attribute is normally a Column instance but
may also be an expression, such as one derived from
cast().

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
primary_key = None

	An iterable containing the collection of Column objects
which comprise the ‘primary key’ of the mapped table, from the
perspective of this Mapper.

This list is against the selectable in mapped_table. In
the case of inheriting mappers, some columns may be managed by a
superclass mapper. For example, in the case of a Join, the
primary key is determined by all of the primary key columns across all
tables referenced by the Join.

The list is also not necessarily the same as the primary key column
collection associated with the underlying tables; the Mapper
features a primary_key argument that can override what the
Mapper considers as primary key columns.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
primary_key_from_instance(instance)

	Return the list of primary key values for the given
instance.

If the instance’s state is expired, calling this method
will result in a database check to see if the object has been deleted.
If the row no longer exists,
ObjectDeletedError is raised.

	
primary_mapper()

	Return the primary mapper corresponding to this mapper’s class key
(class).

	
relationships

	A namespace of all RelationshipProperty properties
maintained by this Mapper.

Warning

the Mapper.relationships accessor namespace is an
instance of OrderedProperties. This is
a dictionary-like object which includes a small number of
named methods such as OrderedProperties.items()
and OrderedProperties.values(). When
accessing attributes dynamically, favor using the dict-access
scheme, e.g. mapper.relationships[somename] over
getattr(mapper.relationships, somename) to avoid name
collisions.

See also

Mapper.attrs - namespace of all MapperProperty
objects.

	
selectable

	The select() construct this Mapper selects from
by default.

Normally, this is equivalent to mapped_table, unless
the with_polymorphic feature is in use, in which case the
full “polymorphic” selectable is returned.

	
self_and_descendants

	The collection including this mapper and all descendant mappers.

This includes not just the immediately inheriting mappers but
all their inheriting mappers as well.

	
single = None

	Represent True if this Mapper is a single table
inheritance mapper.

local_table will be None if this flag is set.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
synonyms

	Return a namespace of all SynonymProperty
properties maintained by this Mapper.

See also

Mapper.attrs - namespace of all MapperProperty
objects.

	
tables = None

	An iterable containing the collection of Table objects
which this Mapper is aware of.

If the mapper is mapped to a Join, or an Alias
representing a Select, the individual Table
objects that comprise the full construct will be represented here.

This is a read only attribute determined during mapper construction.
Behavior is undefined if directly modified.

	
validators = None

	An immutable dictionary of attributes which have been decorated
using the validates() decorator.

The dictionary contains string attribute names as keys
mapped to the actual validation method.

	
with_polymorphic_mappers

	The list of Mapper objects included in the
default “polymorphic” query.

Relationship Configuration

This section describes the relationship() function and in depth discussion
of its usage. For an introduction to relationships, start with the
Object Relational Tutorial and head into Building a Relationship.

	Basic Relationship Patterns
	One To Many

	Many To One

	One To One

	Many To Many

	Association Object

	Adjacency List Relationships
	Composite Adjacency Lists

	Self-Referential Query Strategies

	Configuring Self-Referential Eager Loading

	Linking Relationships with Backref
	Backref Arguments

	One Way Backrefs

	Configuring how Relationship Joins
	Handling Multiple Join Paths

	Specifying Alternate Join Conditions

	Creating Custom Foreign Conditions

	Using custom operators in join conditions

	Overlapping Foreign Keys

	Non-relational Comparisons / Materialized Path

	Self-Referential Many-to-Many Relationship

	Composite “Secondary” Joins

	Relationship to Non Primary Mapper

	Building Query-Enabled Properties

	Collection Configuration and Techniques
	Working with Large Collections

	Customizing Collection Access

	Custom Collection Implementations

	Collection Internals

	Special Relationship Persistence Patterns
	Rows that point to themselves / Mutually Dependent Rows

	Mutable Primary Keys / Update Cascades

	Relationships API

Basic Relationship Patterns

A quick walkthrough of the basic relational patterns.

The imports used for each of the following sections is as follows:

from sqlalchemy import Table, Column, Integer, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

One To Many

A one to many relationship places a foreign key on the child table referencing
the parent. relationship() is then specified on the parent, as referencing
a collection of items represented by the child:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 children = relationship("Child")

class Child(Base):
 __tablename__ = 'child'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('parent.id'))

To establish a bidirectional relationship in one-to-many, where the “reverse”
side is a many to one, specify an additional relationship() and connect
the two using the relationship.back_populates parameter:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 children = relationship("Child", back_populates="parent")

class Child(Base):
 __tablename__ = 'child'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('parent.id'))
 parent = relationship("Parent", back_populates="children")

Child will get a parent attribute with many-to-one semantics.

Alternatively, the backref option may be used
on a single relationship() instead of using
back_populates:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 children = relationship("Child", backref="parent")

Many To One

Many to one places a foreign key in the parent table referencing the child.
relationship() is declared on the parent, where a new scalar-holding
attribute will be created:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 child_id = Column(Integer, ForeignKey('child.id'))
 child = relationship("Child")

class Child(Base):
 __tablename__ = 'child'
 id = Column(Integer, primary_key=True)

Bidirectional behavior is achieved by adding a second relationship()
and applying the relationship.back_populates parameter
in both directions:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 child_id = Column(Integer, ForeignKey('child.id'))
 child = relationship("Child", back_populates="parents")

class Child(Base):
 __tablename__ = 'child'
 id = Column(Integer, primary_key=True)
 parents = relationship("Parent", back_populates="child")

Alternatively, the backref parameter
may be applied to a single relationship(), such as Parent.child:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 child_id = Column(Integer, ForeignKey('child.id'))
 child = relationship("Child", backref="parents")

One To One

One To One is essentially a bidirectional relationship with a scalar
attribute on both sides. To achieve this, the uselist flag indicates
the placement of a scalar attribute instead of a collection on the “many” side
of the relationship. To convert one-to-many into one-to-one:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 child = relationship("Child", uselist=False, back_populates="parent")

class Child(Base):
 __tablename__ = 'child'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('parent.id'))
 parent = relationship("Parent", back_populates="child")

Or for many-to-one:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 child_id = Column(Integer, ForeignKey('child.id'))
 child = relationship("Child", back_populates="parent")

class Child(Base):
 __tablename__ = 'child'
 id = Column(Integer, primary_key=True)
 parent = relationship("Parent", back_populates="child", uselist=False)

As always, the relationship.backref and backref() functions
may be used in lieu of the relationship.back_populates approach;
to specify uselist on a backref, use the backref() function:

from sqlalchemy.orm import backref

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 child_id = Column(Integer, ForeignKey('child.id'))
 child = relationship("Child", backref=backref("parent", uselist=False))

Many To Many

Many to Many adds an association table between two classes. The association
table is indicated by the secondary argument to
relationship(). Usually, the Table uses the MetaData
object associated with the declarative base class, so that the ForeignKey
directives can locate the remote tables with which to link:

association_table = Table('association', Base.metadata,
 Column('left_id', Integer, ForeignKey('left.id')),
 Column('right_id', Integer, ForeignKey('right.id'))
)

class Parent(Base):
 __tablename__ = 'left'
 id = Column(Integer, primary_key=True)
 children = relationship("Child",
 secondary=association_table)

class Child(Base):
 __tablename__ = 'right'
 id = Column(Integer, primary_key=True)

For a bidirectional relationship, both sides of the relationship contain a
collection. Specify using relationship.back_populates, and
for each relationship() specify the common association table:

association_table = Table('association', Base.metadata,
 Column('left_id', Integer, ForeignKey('left.id')),
 Column('right_id', Integer, ForeignKey('right.id'))
)

class Parent(Base):
 __tablename__ = 'left'
 id = Column(Integer, primary_key=True)
 children = relationship(
 "Child",
 secondary=association_table,
 back_populates="parents")

class Child(Base):
 __tablename__ = 'right'
 id = Column(Integer, primary_key=True)
 parents = relationship(
 "Parent",
 secondary=association_table,
 back_populates="children")

When using the backref parameter instead of
relationship.back_populates, the backref will automatically use
the same secondary argument for the reverse relationship:

association_table = Table('association', Base.metadata,
 Column('left_id', Integer, ForeignKey('left.id')),
 Column('right_id', Integer, ForeignKey('right.id'))
)

class Parent(Base):
 __tablename__ = 'left'
 id = Column(Integer, primary_key=True)
 children = relationship("Child",
 secondary=association_table,
 backref="parents")

class Child(Base):
 __tablename__ = 'right'
 id = Column(Integer, primary_key=True)

The secondary argument of relationship() also accepts a callable
that returns the ultimate argument, which is evaluated only when mappers are
first used. Using this, we can define the association_table at a later
point, as long as it’s available to the callable after all module initialization
is complete:

class Parent(Base):
 __tablename__ = 'left'
 id = Column(Integer, primary_key=True)
 children = relationship("Child",
 secondary=lambda: association_table,
 backref="parents")

With the declarative extension in use, the traditional “string name of the table”
is accepted as well, matching the name of the table as stored in Base.metadata.tables:

class Parent(Base):
 __tablename__ = 'left'
 id = Column(Integer, primary_key=True)
 children = relationship("Child",
 secondary="association",
 backref="parents")

Deleting Rows from the Many to Many Table

A behavior which is unique to the secondary argument to relationship()
is that the Table which is specified here is automatically subject
to INSERT and DELETE statements, as objects are added or removed from the collection.
There is no need to delete from this table manually. The act of removing a
record from the collection will have the effect of the row being deleted on flush:

row will be deleted from the "secondary" table
automatically
myparent.children.remove(somechild)

A question which often arises is how the row in the “secondary” table can be deleted
when the child object is handed directly to Session.delete():

session.delete(somechild)

There are several possibilities here:

	If there is a relationship() from Parent to Child, but there is
not a reverse-relationship that links a particular Child to each Parent,
SQLAlchemy will not have any awareness that when deleting this particular
Child object, it needs to maintain the “secondary” table that links it to
the Parent. No delete of the “secondary” table will occur.

	If there is a relationship that links a particular Child to each Parent,
suppose it’s called Child.parents, SQLAlchemy by default will load in
the Child.parents collection to locate all Parent objects, and remove
each row from the “secondary” table which establishes this link. Note that
this relationship does not need to be bidrectional; SQLAlchemy is strictly
looking at every relationship() associated with the Child object
being deleted.

	A higher performing option here is to use ON DELETE CASCADE directives
with the foreign keys used by the database. Assuming the database supports
this feature, the database itself can be made to automatically delete rows in the
“secondary” table as referencing rows in “child” are deleted. SQLAlchemy
can be instructed to forego actively loading in the Child.parents
collection in this case using the passive_deletes
directive on relationship(); see Using Passive Deletes for more details
on this.

Note again, these behaviors are only relevant to the secondary option
used with relationship(). If dealing with association tables that
are mapped explicitly and are not present in the secondary option
of a relevant relationship(), cascade rules can be used instead
to automatically delete entities in reaction to a related entity being
deleted - see Cascades for information on this feature.

Association Object

The association object pattern is a variant on many-to-many: it’s used
when your association table contains additional columns beyond those
which are foreign keys to the left and right tables. Instead of using
the secondary argument, you map a new class
directly to the association table. The left side of the relationship
references the association object via one-to-many, and the association
class references the right side via many-to-one. Below we illustrate
an association table mapped to the Association class which
includes a column called extra_data, which is a string value that
is stored along with each association between Parent and
Child:

class Association(Base):
 __tablename__ = 'association'
 left_id = Column(Integer, ForeignKey('left.id'), primary_key=True)
 right_id = Column(Integer, ForeignKey('right.id'), primary_key=True)
 extra_data = Column(String(50))
 child = relationship("Child")

class Parent(Base):
 __tablename__ = 'left'
 id = Column(Integer, primary_key=True)
 children = relationship("Association")

class Child(Base):
 __tablename__ = 'right'
 id = Column(Integer, primary_key=True)

As always, the bidirectional version make use of relationship.back_populates
or relationship.backref:

class Association(Base):
 __tablename__ = 'association'
 left_id = Column(Integer, ForeignKey('left.id'), primary_key=True)
 right_id = Column(Integer, ForeignKey('right.id'), primary_key=True)
 extra_data = Column(String(50))
 child = relationship("Child", back_populates="parents")
 parent = relationship("Parent", back_populates="children")

class Parent(Base):
 __tablename__ = 'left'
 id = Column(Integer, primary_key=True)
 children = relationship("Association", back_populates="parent")

class Child(Base):
 __tablename__ = 'right'
 id = Column(Integer, primary_key=True)
 parents = relationship("Association", back_populates="child")

Working with the association pattern in its direct form requires that child
objects are associated with an association instance before being appended to
the parent; similarly, access from parent to child goes through the
association object:

create parent, append a child via association
p = Parent()
a = Association(extra_data="some data")
a.child = Child()
p.children.append(a)

iterate through child objects via association, including association
attributes
for assoc in p.children:
 print(assoc.extra_data)
 print(assoc.child)

To enhance the association object pattern such that direct
access to the Association object is optional, SQLAlchemy
provides the Association Proxy extension. This
extension allows the configuration of attributes which will
access two “hops” with a single access, one “hop” to the
associated object, and a second to a target attribute.

Warning

The association object pattern does not coordinate changes with a
separate relationship that maps the association table as “secondary”.

Below, changes made to Parent.children will not be coordinated
with changes made to Parent.child_associations or
Child.parent_associations in Python; while all of these relationships will continue
to function normally by themselves, changes on one will not show up in another
until the Session is expired, which normally occurs automatically
after Session.commit():

class Association(Base):
 __tablename__ = 'association'

 left_id = Column(Integer, ForeignKey('left.id'), primary_key=True)
 right_id = Column(Integer, ForeignKey('right.id'), primary_key=True)
 extra_data = Column(String(50))

 child = relationship("Child", back_populates="parent_associations")
 parent = relationship("Parent", back_populates="child_associations")

class Parent(Base):
 __tablename__ = 'left'
 id = Column(Integer, primary_key=True)

 children = relationship("Child", secondary="association")

class Child(Base):
 __tablename__ = 'right'
 id = Column(Integer, primary_key=True)

Additionally, just as changes to one relationship aren’t reflected in the
others automatically, writing the same data to both relationships will cause
conflicting INSERT or DELETE statements as well, such as below where we
establish the same relationship between a Parent and Child object
twice:

p1 = Parent()
c1 = Child()
p1.children.append(c1)

redundant, will cause a duplicate INSERT on Association
p1.parent_associations.append(Association(child=c1))

It’s fine to use a mapping like the above if you know what
you’re doing, though it may be a good idea to apply the viewonly=True parameter
to the “secondary” relationship to avoid the issue of redundant changes
being logged. However, to get a foolproof pattern that allows a simple
two-object Parent->Child relationship while still using the association
object pattern, use the association proxy extension
as documented at Association Proxy.

Adjacency List Relationships

The adjacency list pattern is a common relational pattern whereby a table
contains a foreign key reference to itself. This is the most common
way to represent hierarchical data in flat tables. Other methods
include nested sets, sometimes called “modified preorder”,
as well as materialized path. Despite the appeal that modified preorder
has when evaluated for its fluency within SQL queries, the adjacency list model is
probably the most appropriate pattern for the large majority of hierarchical
storage needs, for reasons of concurrency, reduced complexity, and that
modified preorder has little advantage over an application which can fully
load subtrees into the application space.

In this example, we’ll work with a single mapped
class called Node, representing a tree structure:

class Node(Base):
 __tablename__ = 'node'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('node.id'))
 data = Column(String(50))
 children = relationship("Node")

With this structure, a graph such as the following:

root --+---> child1
 +---> child2 --+--> subchild1
 | +--> subchild2
 +---> child3

Would be represented with data such as:

id parent_id data
--- ------- ----
1 NULL root
2 1 child1
3 1 child2
4 3 subchild1
5 3 subchild2
6 1 child3

The relationship() configuration here works in the
same way as a “normal” one-to-many relationship, with the
exception that the “direction”, i.e. whether the relationship
is one-to-many or many-to-one, is assumed by default to
be one-to-many. To establish the relationship as many-to-one,
an extra directive is added known as remote_side, which
is a Column or collection of Column objects
that indicate those which should be considered to be “remote”:

class Node(Base):
 __tablename__ = 'node'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('node.id'))
 data = Column(String(50))
 parent = relationship("Node", remote_side=[id])

Where above, the id column is applied as the remote_side
of the parent relationship(), thus establishing
parent_id as the “local” side, and the relationship
then behaves as a many-to-one.

As always, both directions can be combined into a bidirectional
relationship using the backref() function:

class Node(Base):
 __tablename__ = 'node'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('node.id'))
 data = Column(String(50))
 children = relationship("Node",
 backref=backref('parent', remote_side=[id])
)

There are several examples included with SQLAlchemy illustrating
self-referential strategies; these include Adjacency List and
XML Persistence.

Composite Adjacency Lists

A sub-category of the adjacency list relationship is the rare
case where a particular column is present on both the “local” and
“remote” side of the join condition. An example is the Folder
class below; using a composite primary key, the account_id
column refers to itself, to indicate sub folders which are within
the same account as that of the parent; while folder_id refers
to a specific folder within that account:

class Folder(Base):
 __tablename__ = 'folder'
 __table_args__ = (
 ForeignKeyConstraint(
 ['account_id', 'parent_id'],
 ['folder.account_id', 'folder.folder_id']),
)

 account_id = Column(Integer, primary_key=True)
 folder_id = Column(Integer, primary_key=True)
 parent_id = Column(Integer)
 name = Column(String)

 parent_folder = relationship("Folder",
 backref="child_folders",
 remote_side=[account_id, folder_id]
)

Above, we pass account_id into the remote_side list.
relationship() recognizes that the account_id column here
is on both sides, and aligns the “remote” column along with the
folder_id column, which it recognizes as uniquely present on
the “remote” side.

New in version 0.8: Support for self-referential composite keys in relationship()
where a column points to itself.

Self-Referential Query Strategies

Querying of self-referential structures works like any other query:

get all nodes named 'child2'
session.query(Node).filter(Node.data=='child2')

However extra care is needed when attempting to join along
the foreign key from one level of the tree to the next. In SQL,
a join from a table to itself requires that at least one side of the
expression be “aliased” so that it can be unambiguously referred to.

Recall from Using Aliases in the ORM tutorial that the
orm.aliased() construct is normally used to provide an “alias” of
an ORM entity. Joining from Node to itself using this technique
looks like:

from sqlalchemy.orm import aliased

nodealias = aliased(Node)
sqlsession.query(Node).filter(Node.data=='subchild1').\
 join(nodealias, Node.parent).\
 filter(nodealias.data=="child2").\
 all()
SELECT node.id AS node_id,
 node.parent_id AS node_parent_id,
 node.data AS node_data
FROM node JOIN node AS node_1
 ON node.parent_id = node_1.id
WHERE node.data = ?
 AND node_1.data = ?
['subchild1', 'child2']

Query.join() also includes a feature known as
Query.join.aliased that can shorten the verbosity self-
referential joins, at the expense of query flexibility. This feature
performs a similar “aliasing” step to that above, without the need for
an explicit entity. Calls to Query.filter() and similar
subsequent to the aliased join will adapt the Node entity to
be that of the alias:

sqlsession.query(Node).filter(Node.data=='subchild1').\
 join(Node.parent, aliased=True).\
 filter(Node.data=='child2').\
 all()
SELECT node.id AS node_id,
 node.parent_id AS node_parent_id,
 node.data AS node_data
FROM node
 JOIN node AS node_1 ON node_1.id = node.parent_id
WHERE node.data = ? AND node_1.data = ?
['subchild1', 'child2']

To add criterion to multiple points along a longer join, add
Query.join.from_joinpoint to the additional
join() calls:

get all nodes named 'subchild1' with a
parent named 'child2' and a grandparent 'root'
sqlsession.query(Node).\
 filter(Node.data=='subchild1').\
 join(Node.parent, aliased=True).\
 filter(Node.data=='child2').\
 join(Node.parent, aliased=True, from_joinpoint=True).\
 filter(Node.data=='root').\
 all()
SELECT node.id AS node_id,
 node.parent_id AS node_parent_id,
 node.data AS node_data
FROM node
 JOIN node AS node_1 ON node_1.id = node.parent_id
 JOIN node AS node_2 ON node_2.id = node_1.parent_id
WHERE node.data = ?
 AND node_1.data = ?
 AND node_2.data = ?
['subchild1', 'child2', 'root']

Query.reset_joinpoint() will also remove the “aliasing” from filtering
calls:

session.query(Node).\
 join(Node.children, aliased=True).\
 filter(Node.data == 'foo').\
 reset_joinpoint().\
 filter(Node.data == 'bar')

For an example of using Query.join.aliased to
arbitrarily join along a chain of self-referential nodes, see
XML Persistence.

Configuring Self-Referential Eager Loading

Eager loading of relationships occurs using joins or outerjoins from parent to
child table during a normal query operation, such that the parent and its
immediate child collection or reference can be populated from a single SQL
statement, or a second statement for all immediate child collections.
SQLAlchemy’s joined and subquery eager loading use aliased tables in all cases
when joining to related items, so are compatible with self-referential
joining. However, to use eager loading with a self-referential relationship,
SQLAlchemy needs to be told how many levels deep it should join and/or query;
otherwise the eager load will not take place at all. This depth setting is
configured via join_depth:

class Node(Base):
 __tablename__ = 'node'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('node.id'))
 data = Column(String(50))
 children = relationship("Node",
 lazy="joined",
 join_depth=2)

sqlsession.query(Node).all()
SELECT node_1.id AS node_1_id,
 node_1.parent_id AS node_1_parent_id,
 node_1.data AS node_1_data,
 node_2.id AS node_2_id,
 node_2.parent_id AS node_2_parent_id,
 node_2.data AS node_2_data,
 node.id AS node_id,
 node.parent_id AS node_parent_id,
 node.data AS node_data
FROM node
 LEFT OUTER JOIN node AS node_2
 ON node.id = node_2.parent_id
 LEFT OUTER JOIN node AS node_1
 ON node_2.id = node_1.parent_id
[]

Linking Relationships with Backref

The backref keyword argument was first introduced in Object Relational Tutorial, and has been
mentioned throughout many of the examples here. What does it actually do ? Let’s start
with the canonical User and Address scenario:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String)

 addresses = relationship("Address", backref="user")

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 email = Column(String)
 user_id = Column(Integer, ForeignKey('user.id'))

The above configuration establishes a collection of Address objects on User called
User.addresses. It also establishes a .user attribute on Address which will
refer to the parent User object.

In fact, the backref keyword is only a common shortcut for placing a second
relationship() onto the Address mapping, including the establishment
of an event listener on both sides which will mirror attribute operations
in both directions. The above configuration is equivalent to:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String)

 addresses = relationship("Address", back_populates="user")

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 email = Column(String)
 user_id = Column(Integer, ForeignKey('user.id'))

 user = relationship("User", back_populates="addresses")

Above, we add a .user relationship to Address explicitly. On
both relationships, the back_populates directive tells each relationship
about the other one, indicating that they should establish “bidirectional”
behavior between each other. The primary effect of this configuration
is that the relationship adds event handlers to both attributes
which have the behavior of “when an append or set event occurs here, set ourselves
onto the incoming attribute using this particular attribute name”.
The behavior is illustrated as follows. Start with a User and an Address
instance. The .addresses collection is empty, and the .user attribute
is None:

>>> u1 = User()
>>> a1 = Address()
>>> u1.addresses
[]
>>> print(a1.user)
None

However, once the Address is appended to the u1.addresses collection,
both the collection and the scalar attribute have been populated:

>>> u1.addresses.append(a1)
>>> u1.addresses
[<__main__.Address object at 0x12a6ed0>]
>>> a1.user
<__main__.User object at 0x12a6590>

This behavior of course works in reverse for removal operations as well, as well
as for equivalent operations on both sides. Such as
when .user is set again to None, the Address object is removed
from the reverse collection:

>>> a1.user = None
>>> u1.addresses
[]

The manipulation of the .addresses collection and the .user attribute
occurs entirely in Python without any interaction with the SQL database.
Without this behavior, the proper state would be apparent on both sides once the
data has been flushed to the database, and later reloaded after a commit or
expiration operation occurs. The backref/back_populates behavior has the advantage
that common bidirectional operations can reflect the correct state without requiring
a database round trip.

Remember, when the backref keyword is used on a single relationship, it’s
exactly the same as if the above two relationships were created individually
using back_populates on each.

Backref Arguments

We’ve established that the backref keyword is merely a shortcut for building
two individual relationship() constructs that refer to each other. Part of
the behavior of this shortcut is that certain configurational arguments applied to
the relationship()
will also be applied to the other direction - namely those arguments that describe
the relationship at a schema level, and are unlikely to be different in the reverse
direction. The usual case
here is a many-to-many relationship() that has a secondary argument,
or a one-to-many or many-to-one which has a primaryjoin argument (the
primaryjoin argument is discussed in Specifying Alternate Join Conditions). Such
as if we limited the list of Address objects to those which start with “tony”:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String)

 addresses = relationship("Address",
 primaryjoin="and_(User.id==Address.user_id, "
 "Address.email.startswith('tony'))",
 backref="user")

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 email = Column(String)
 user_id = Column(Integer, ForeignKey('user.id'))

We can observe, by inspecting the resulting property, that both sides
of the relationship have this join condition applied:

>>> print(User.addresses.property.primaryjoin)
"user".id = address.user_id AND address.email LIKE :email_1 || '%%'
>>>
>>> print(Address.user.property.primaryjoin)
"user".id = address.user_id AND address.email LIKE :email_1 || '%%'
>>>

This reuse of arguments should pretty much do the “right thing” - it
uses only arguments that are applicable, and in the case of a many-to-
many relationship, will reverse the usage of
primaryjoin and
secondaryjoin to correspond to the other
direction (see the example in Self-Referential Many-to-Many Relationship for
this).

It’s very often the case however that we’d like to specify arguments
that are specific to just the side where we happened to place the
“backref”. This includes relationship() arguments like
lazy,
remote_side,
cascade and
cascade_backrefs. For this case we use
the backref() function in place of a string:

<other imports>
from sqlalchemy.orm import backref

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String)

 addresses = relationship("Address",
 backref=backref("user", lazy="joined"))

Where above, we placed a lazy="joined" directive only on the Address.user
side, indicating that when a query against Address is made, a join to the User
entity should be made automatically which will populate the .user attribute of each
returned Address. The backref() function formatted the arguments we gave
it into a form that is interpreted by the receiving relationship() as additional
arguments to be applied to the new relationship it creates.

One Way Backrefs

An unusual case is that of the “one way backref”. This is where the
“back-populating” behavior of the backref is only desirable in one
direction. An example of this is a collection which contains a
filtering primaryjoin condition. We’d
like to append items to this collection as needed, and have them
populate the “parent” object on the incoming object. However, we’d
also like to have items that are not part of the collection, but still
have the same “parent” association - these items should never be in
the collection.

Taking our previous example, where we established a
primaryjoin that limited the collection
only to Address objects whose email address started with the word
tony, the usual backref behavior is that all items populate in
both directions. We wouldn’t want this behavior for a case like the
following:

>>> u1 = User()
>>> a1 = Address(email='mary')
>>> a1.user = u1
>>> u1.addresses
[<__main__.Address object at 0x1411910>]

Above, the Address object that doesn’t match the criterion of “starts with ‘tony’”
is present in the addresses collection of u1. After these objects are flushed,
the transaction committed and their attributes expired for a re-load, the addresses
collection will hit the database on next access and no longer have this Address object
present, due to the filtering condition. But we can do away with this unwanted side
of the “backref” behavior on the Python side by using two separate relationship() constructs,
placing back_populates only on one side:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String)
 addresses = relationship("Address",
 primaryjoin="and_(User.id==Address.user_id, "
 "Address.email.startswith('tony'))",
 back_populates="user")

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 email = Column(String)
 user_id = Column(Integer, ForeignKey('user.id'))
 user = relationship("User")

With the above scenario, appending an Address object to the .addresses
collection of a User will always establish the .user attribute on that
Address:

>>> u1 = User()
>>> a1 = Address(email='tony')
>>> u1.addresses.append(a1)
>>> a1.user
<__main__.User object at 0x1411850>

However, applying a User to the .user attribute of an Address,
will not append the Address object to the collection:

>>> a2 = Address(email='mary')
>>> a2.user = u1
>>> a2 in u1.addresses
False

Of course, we’ve disabled some of the usefulness of
backref here, in that when we do append an
Address that corresponds to the criteria of
email.startswith('tony'), it won’t show up in the
User.addresses collection until the session is flushed, and the
attributes reloaded after a commit or expire operation. While we
could consider an attribute event that checks this criterion in
Python, this starts to cross the line of duplicating too much SQL
behavior in Python. The backref behavior itself is only a slight
transgression of this philosophy - SQLAlchemy tries to keep these to a
minimum overall.

Configuring how Relationship Joins

relationship() will normally create a join between two tables
by examining the foreign key relationship between the two tables
to determine which columns should be compared. There are a variety
of situations where this behavior needs to be customized.

Handling Multiple Join Paths

One of the most common situations to deal with is when
there are more than one foreign key path between two tables.

Consider a Customer class that contains two foreign keys to an Address
class:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class Customer(Base):
 __tablename__ = 'customer'
 id = Column(Integer, primary_key=True)
 name = Column(String)

 billing_address_id = Column(Integer, ForeignKey("address.id"))
 shipping_address_id = Column(Integer, ForeignKey("address.id"))

 billing_address = relationship("Address")
 shipping_address = relationship("Address")

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 street = Column(String)
 city = Column(String)
 state = Column(String)
 zip = Column(String)

The above mapping, when we attempt to use it, will produce the error:

sqlalchemy.exc.AmbiguousForeignKeysError: Could not determine join
condition between parent/child tables on relationship
Customer.billing_address - there are multiple foreign key
paths linking the tables. Specify the 'foreign_keys' argument,
providing a list of those columns which should be
counted as containing a foreign key reference to the parent table.

The above message is pretty long. There are many potential messages
that relationship() can return, which have been carefully tailored
to detect a variety of common configurational issues; most will suggest
the additional configuration that’s needed to resolve the ambiguity
or other missing information.

In this case, the message wants us to qualify each relationship()
by instructing for each one which foreign key column should be considered, and
the appropriate form is as follows:

class Customer(Base):
 __tablename__ = 'customer'
 id = Column(Integer, primary_key=True)
 name = Column(String)

 billing_address_id = Column(Integer, ForeignKey("address.id"))
 shipping_address_id = Column(Integer, ForeignKey("address.id"))

 billing_address = relationship("Address", foreign_keys=[billing_address_id])
 shipping_address = relationship("Address", foreign_keys=[shipping_address_id])

Above, we specify the foreign_keys argument, which is a Column or list
of Column objects which indicate those columns to be considered “foreign”,
or in other words, the columns that contain a value referring to a parent table.
Loading the Customer.billing_address relationship from a Customer
object will use the value present in billing_address_id in order to
identify the row in Address to be loaded; similarly, shipping_address_id
is used for the shipping_address relationship. The linkage of the two
columns also plays a role during persistence; the newly generated primary key
of a just-inserted Address object will be copied into the appropriate
foreign key column of an associated Customer object during a flush.

When specifying foreign_keys with Declarative, we can also use string
names to specify, however it is important that if using a list, the list
is part of the string:

billing_address = relationship("Address", foreign_keys="[Customer.billing_address_id]")

In this specific example, the list is not necessary in any case as there’s only
one Column we need:

billing_address = relationship("Address", foreign_keys="Customer.billing_address_id")

Changed in version 0.8: relationship() can resolve ambiguity between foreign key targets on the
basis of the foreign_keys argument alone; the primaryjoin
argument is no longer needed in this situation.

Specifying Alternate Join Conditions

The default behavior of relationship() when constructing a join
is that it equates the value of primary key columns
on one side to that of foreign-key-referring columns on the other.
We can change this criterion to be anything we’d like using the
primaryjoin
argument, as well as the secondaryjoin
argument in the case when a “secondary” table is used.

In the example below, using the User class
as well as an Address class which stores a street address, we
create a relationship boston_addresses which will only
load those Address objects which specify a city of “Boston”:

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String)
 boston_addresses = relationship("Address",
 primaryjoin="and_(User.id==Address.user_id, "
 "Address.city=='Boston')")

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 user_id = Column(Integer, ForeignKey('user.id'))

 street = Column(String)
 city = Column(String)
 state = Column(String)
 zip = Column(String)

Within this string SQL expression, we made use of the and_() conjunction construct to establish
two distinct predicates for the join condition - joining both the User.id and
Address.user_id columns to each other, as well as limiting rows in Address
to just city='Boston'. When using Declarative, rudimentary SQL functions like
and_() are automatically available in the evaluated namespace of a string
relationship() argument.

The custom criteria we use in a primaryjoin
is generally only significant when SQLAlchemy is rendering SQL in
order to load or represent this relationship. That is, it’s used in
the SQL statement that’s emitted in order to perform a per-attribute
lazy load, or when a join is constructed at query time, such as via
Query.join(), or via the eager “joined” or “subquery” styles of
loading. When in-memory objects are being manipulated, we can place
any Address object we’d like into the boston_addresses
collection, regardless of what the value of the .city attribute
is. The objects will remain present in the collection until the
attribute is expired and re-loaded from the database where the
criterion is applied. When a flush occurs, the objects inside of
boston_addresses will be flushed unconditionally, assigning value
of the primary key user.id column onto the foreign-key-holding
address.user_id column for each row. The city criteria has no
effect here, as the flush process only cares about synchronizing
primary key values into referencing foreign key values.

Creating Custom Foreign Conditions

Another element of the primary join condition is how those columns
considered “foreign” are determined. Usually, some subset
of Column objects will specify ForeignKey, or otherwise
be part of a ForeignKeyConstraint that’s relevant to the join condition.
relationship() looks to this foreign key status as it decides
how it should load and persist data for this relationship. However, the
primaryjoin argument can be used to create a join condition that
doesn’t involve any “schema” level foreign keys. We can combine primaryjoin
along with foreign_keys and remote_side explicitly in order to
establish such a join.

Below, a class HostEntry joins to itself, equating the string content
column to the ip_address column, which is a Postgresql type called INET.
We need to use cast() in order to cast one side of the join to the
type of the other:

from sqlalchemy import cast, String, Column, Integer
from sqlalchemy.orm import relationship
from sqlalchemy.dialects.postgresql import INET

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class HostEntry(Base):
 __tablename__ = 'host_entry'

 id = Column(Integer, primary_key=True)
 ip_address = Column(INET)
 content = Column(String(50))

 # relationship() using explicit foreign_keys, remote_side
 parent_host = relationship("HostEntry",
 primaryjoin=ip_address == cast(content, INET),
 foreign_keys=content,
 remote_side=ip_address
)

The above relationship will produce a join like:

SELECT host_entry.id, host_entry.ip_address, host_entry.content
FROM host_entry JOIN host_entry AS host_entry_1
ON host_entry_1.ip_address = CAST(host_entry.content AS INET)

An alternative syntax to the above is to use the foreign() and
remote() annotations,
inline within the primaryjoin expression.
This syntax represents the annotations that relationship() normally
applies by itself to the join condition given the foreign_keys and
remote_side arguments. These functions may
be more succinct when an explicit join condition is present, and additionally
serve to mark exactly the column that is “foreign” or “remote” independent
of whether that column is stated multiple times or within complex
SQL expressions:

from sqlalchemy.orm import foreign, remote

class HostEntry(Base):
 __tablename__ = 'host_entry'

 id = Column(Integer, primary_key=True)
 ip_address = Column(INET)
 content = Column(String(50))

 # relationship() using explicit foreign() and remote() annotations
 # in lieu of separate arguments
 parent_host = relationship("HostEntry",
 primaryjoin=remote(ip_address) == \
 cast(foreign(content), INET),
)

Using custom operators in join conditions

Another use case for relationships is the use of custom operators, such
as Postgresql’s “is contained within” << operator when joining with
types such as postgresql.INET and postgresql.CIDR.
For custom operators we use the Operators.op() function:

inet_column.op("<<")(cidr_column)

However, if we construct a primaryjoin using this
operator, relationship() will still need more information. This is because
when it examines our primaryjoin condition, it specifically looks for operators
used for comparisons, and this is typically a fixed list containing known
comparison operators such as ==, <, etc. So for our custom operator
to participate in this system, we need it to register as a comparison operator
using the is_comparison parameter:

inet_column.op("<<", is_comparison=True)(cidr_column)

A complete example:

class IPA(Base):
 __tablename__ = 'ip_address'

 id = Column(Integer, primary_key=True)
 v4address = Column(INET)

 network = relationship("Network",
 primaryjoin="IPA.v4address.op('<<', is_comparison=True)"
 "(foreign(Network.v4representation))",
 viewonly=True
)
class Network(Base):
 __tablename__ = 'network'

 id = Column(Integer, primary_key=True)
 v4representation = Column(CIDR)

Above, a query such as:

session.query(IPA).join(IPA.network)

Will render as:

SELECT ip_address.id AS ip_address_id, ip_address.v4address AS ip_address_v4address
FROM ip_address JOIN network ON ip_address.v4address << network.v4representation

New in version 0.9.2: - Added the Operators.op.is_comparison
flag to assist in the creation of relationship() constructs using
custom operators.

Overlapping Foreign Keys

A rare scenario can arise when composite foreign keys are used, such that
a single column may be the subject of more than one column
referred to via foreign key constraint.

Consider an (admittedly complex) mapping such as the Magazine object,
referred to both by the Writer object and the Article object
using a composite primary key scheme that includes magazine_id
for both; then to make Article refer to Writer as well,
Article.magazine_id is involved in two separate relationships;
Article.magazine and Article.writer:

class Magazine(Base):
 __tablename__ = 'magazine'

 id = Column(Integer, primary_key=True)

class Article(Base):
 __tablename__ = 'article'

 article_id = Column(Integer)
 magazine_id = Column(ForeignKey('magazine.id'))
 writer_id = Column()

 magazine = relationship("Magazine")
 writer = relationship("Writer")

 __table_args__ = (
 PrimaryKeyConstraint('article_id', 'magazine_id'),
 ForeignKeyConstraint(
 ['writer_id', 'magazine_id'],
 ['writer.id', 'writer.magazine_id']
),
)

class Writer(Base):
 __tablename__ = 'writer'

 id = Column(Integer, primary_key=True)
 magazine_id = Column(ForeignKey('magazine.id'), primary_key=True)
 magazine = relationship("Magazine")

When the above mapping is configured, we will see this warning emitted:

SAWarning: relationship 'Article.writer' will copy column
writer.magazine_id to column article.magazine_id,
which conflicts with relationship(s): 'Article.magazine'
(copies magazine.id to article.magazine_id). Consider applying
viewonly=True to read-only relationships, or provide a primaryjoin
condition marking writable columns with the foreign() annotation.

What this refers to originates from the fact that Article.magazine_id is
the subject of two different foreign key constraints; it refers to
Magazine.id directly as a source column, but also refers to
Writer.magazine_id as a source column in the context of the
composite key to Writer. If we associate an Article with a
particular Magazine, but then associate the Article with a
Writer that’s associated with a different Magazine, the ORM
will overwrite Article.magazine_id non-deterministically, silently
changing which magazine we refer towards; it may
also attempt to place NULL into this columnn if we de-associate a
Writer from an Article. The warning lets us know this is the case.

To solve this, we need to break out the behavior of Article to include
all three of the following features:

	Article first and foremost writes to
Article.magazine_id based on data persisted in the Article.magazine
relationship only, that is a value copied from Magazine.id.

	Article can write to Article.writer_id on behalf of data
persisted in the Article.writer relationship, but only the
Writer.id column; the Writer.magazine_id column should not
be written into Article.magazine_id as it ultimately is sourced
from Magazine.id.

	Article takes Article.magazine_id into account when loading
Article.writer, even though it doesn’t write to it on behalf
of this relationship.

To get just #1 and #2, we could specify only Article.writer_id as the
“foreign keys” for Article.writer:

class Article(Base):
 # ...

 writer = relationship("Writer", foreign_keys='Article.writer_id')

However, this has the effect of Article.writer not taking
Article.magazine_id into account when querying against Writer:

SELECT article.article_id AS article_article_id,
 article.magazine_id AS article_magazine_id,
 article.writer_id AS article_writer_id
FROM article
JOIN writer ON writer.id = article.writer_id

Therefore, to get at all of #1, #2, and #3, we express the join condition
as well as which columns to be written by combining
primaryjoin fully, along with either the
foreign_keys argument, or more succinctly by
annotating with foreign():

class Article(Base):
 # ...

 writer = relationship(
 "Writer",
 primaryjoin="and_(Writer.id == foreign(Article.writer_id), "
 "Writer.magazine_id == Article.magazine_id)")

Changed in version 1.0.0: the ORM will attempt to warn when a column is used
as the synchronization target from more than one relationship
simultaneously.

Non-relational Comparisons / Materialized Path

Warning

this section details an experimental feature.

Using custom expressions means we can produce unorthodox join conditions that
don’t obey the usual primary/foreign key model. One such example is the
materialized path pattern, where we compare strings for overlapping path tokens
in order to produce a tree structure.

Through careful use of foreign() and remote(), we can build
a relationship that effectively produces a rudimentary materialized path
system. Essentially, when foreign() and remote() are
on the same side of the comparison expression, the relationship is considered
to be “one to many”; when they are on different sides, the relationship
is considered to be “many to one”. For the comparison we’ll use here,
we’ll be dealing with collections so we keep things configured as “one to many”:

class Element(Base):
 __tablename__ = 'element'

 path = Column(String, primary_key=True)

 descendants = relationship('Element',
 primaryjoin=
 remote(foreign(path)).like(
 path.concat('/%')),
 viewonly=True,
 order_by=path)

Above, if given an Element object with a path attribute of "/foo/bar2",
we seek for a load of Element.descendants to look like:

SELECT element.path AS element_path
FROM element
WHERE element.path LIKE ('/foo/bar2' || '/%') ORDER BY element.path

New in version 0.9.5: Support has been added to allow a single-column
comparison to itself within a primaryjoin condition, as well as for
primaryjoin conditions that use ColumnOperators.like() as the comparison
operator.

Self-Referential Many-to-Many Relationship

Many to many relationships can be customized by one or both of primaryjoin
and secondaryjoin - the latter is significant for a relationship that
specifies a many-to-many reference using the secondary argument.
A common situation which involves the usage of primaryjoin and secondaryjoin
is when establishing a many-to-many relationship from a class to itself, as shown below:

from sqlalchemy import Integer, ForeignKey, String, Column, Table
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

node_to_node = Table("node_to_node", Base.metadata,
 Column("left_node_id", Integer, ForeignKey("node.id"), primary_key=True),
 Column("right_node_id", Integer, ForeignKey("node.id"), primary_key=True)
)

class Node(Base):
 __tablename__ = 'node'
 id = Column(Integer, primary_key=True)
 label = Column(String)
 right_nodes = relationship("Node",
 secondary=node_to_node,
 primaryjoin=id==node_to_node.c.left_node_id,
 secondaryjoin=id==node_to_node.c.right_node_id,
 backref="left_nodes"
)

Where above, SQLAlchemy can’t know automatically which columns should connect
to which for the right_nodes and left_nodes relationships. The primaryjoin
and secondaryjoin arguments establish how we’d like to join to the association table.
In the Declarative form above, as we are declaring these conditions within the Python
block that corresponds to the Node class, the id variable is available directly
as the Column object we wish to join with.

Alternatively, we can define the primaryjoin
and secondaryjoin arguments using strings, which is suitable
in the case that our configuration does not have either the Node.id column
object available yet or the node_to_node table perhaps isn’t yet available.
When referring to a plain Table object in a declarative string, we
use the string name of the table as it is present in the MetaData:

class Node(Base):
 __tablename__ = 'node'
 id = Column(Integer, primary_key=True)
 label = Column(String)
 right_nodes = relationship("Node",
 secondary="node_to_node",
 primaryjoin="Node.id==node_to_node.c.left_node_id",
 secondaryjoin="Node.id==node_to_node.c.right_node_id",
 backref="left_nodes"
)

A classical mapping situation here is similar, where node_to_node can be joined
to node.c.id:

from sqlalchemy import Integer, ForeignKey, String, Column, Table, MetaData
from sqlalchemy.orm import relationship, mapper

metadata = MetaData()

node_to_node = Table("node_to_node", metadata,
 Column("left_node_id", Integer, ForeignKey("node.id"), primary_key=True),
 Column("right_node_id", Integer, ForeignKey("node.id"), primary_key=True)
)

node = Table("node", metadata,
 Column('id', Integer, primary_key=True),
 Column('label', String)
)
class Node(object):
 pass

mapper(Node, node, properties={
 'right_nodes':relationship(Node,
 secondary=node_to_node,
 primaryjoin=node.c.id==node_to_node.c.left_node_id,
 secondaryjoin=node.c.id==node_to_node.c.right_node_id,
 backref="left_nodes"
)})

Note that in both examples, the backref
keyword specifies a left_nodes backref - when
relationship() creates the second relationship in the reverse
direction, it’s smart enough to reverse the
primaryjoin and
secondaryjoin arguments.

Composite “Secondary” Joins

Note

This section features some new and experimental features of SQLAlchemy.

Sometimes, when one seeks to build a relationship() between two tables
there is a need for more than just two or three tables to be involved in
order to join them. This is an area of relationship() where one seeks
to push the boundaries of what’s possible, and often the ultimate solution to
many of these exotic use cases needs to be hammered out on the SQLAlchemy mailing
list.

In more recent versions of SQLAlchemy, the secondary
parameter can be used in some of these cases in order to provide a composite
target consisting of multiple tables. Below is an example of such a
join condition (requires version 0.9.2 at least to function as is):

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)
 b_id = Column(ForeignKey('b.id'))

 d = relationship("D",
 secondary="join(B, D, B.d_id == D.id)."
 "join(C, C.d_id == D.id)",
 primaryjoin="and_(A.b_id == B.id, A.id == C.a_id)",
 secondaryjoin="D.id == B.d_id",
 uselist=False
)

class B(Base):
 __tablename__ = 'b'

 id = Column(Integer, primary_key=True)
 d_id = Column(ForeignKey('d.id'))

class C(Base):
 __tablename__ = 'c'

 id = Column(Integer, primary_key=True)
 a_id = Column(ForeignKey('a.id'))
 d_id = Column(ForeignKey('d.id'))

class D(Base):
 __tablename__ = 'd'

 id = Column(Integer, primary_key=True)

In the above example, we provide all three of secondary,
primaryjoin, and secondaryjoin,
in the declarative style referring to the named tables a, b, c, d
directly. A query from A to D looks like:

sess.query(A).join(A.d).all()

SELECT a.id AS a_id, a.b_id AS a_b_id
FROM a JOIN (
 b AS b_1 JOIN d AS d_1 ON b_1.d_id = d_1.id
 JOIN c AS c_1 ON c_1.d_id = d_1.id)
 ON a.b_id = b_1.id AND a.id = c_1.a_id JOIN d ON d.id = b_1.d_id

In the above example, we take advantage of being able to stuff multiple
tables into a “secondary” container, so that we can join across many
tables while still keeping things “simple” for relationship(), in that
there’s just “one” table on both the “left” and the “right” side; the
complexity is kept within the middle.

New in version 0.9.2: Support is improved for allowing a join()
construct to be used directly as the target of the secondary
argument, including support for joins, eager joins and lazy loading,
as well as support within declarative to specify complex conditions such
as joins involving class names as targets.

Relationship to Non Primary Mapper

In the previous section, we illustrated a technique where we used
secondary in order to place additional
tables within a join condition. There is one complex join case where
even this technique is not sufficient; when we seek to join from A
to B, making use of any number of C, D, etc. in between,
however there are also join conditions between A and B
directly. In this case, the join from A to B may be
difficult to express with just a complex
primaryjoin condition, as the intermediary
tables may need special handling, and it is also not expressable with
a secondary object, since the
A->secondary->B pattern does not support any references between
A and B directly. When this extremely advanced case
arises, we can resort to creating a second mapping as a target for the
relationship. This is where we use mapper() in order to make a
mapping to a class that includes all the additional tables we need for
this join. In order to produce this mapper as an “alternative” mapping
for our class, we use the non_primary flag.

Below illustrates a relationship() with a simple join from A to
B, however the primaryjoin condition is augmented with two additional
entities C and D, which also must have rows that line up with
the rows in both A and B simultaneously:

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)
 b_id = Column(ForeignKey('b.id'))

class B(Base):
 __tablename__ = 'b'

 id = Column(Integer, primary_key=True)

class C(Base):
 __tablename__ = 'c'

 id = Column(Integer, primary_key=True)
 a_id = Column(ForeignKey('a.id'))

class D(Base):
 __tablename__ = 'd'

 id = Column(Integer, primary_key=True)
 c_id = Column(ForeignKey('c.id'))
 b_id = Column(ForeignKey('b.id'))

1. set up the join() as a variable, so we can refer
to it in the mapping multiple times.
j = join(B, D, D.b_id == B.id).join(C, C.id == D.c_id)

2. Create a new mapper() to B, with non_primary=True.
Columns in the join with the same name must be
disambiguated within the mapping, using named properties.
B_viacd = mapper(B, j, non_primary=True, properties={
 "b_id": [j.c.b_id, j.c.d_b_id],
 "d_id": j.c.d_id
 })

A.b = relationship(B_viacd, primaryjoin=A.b_id == B_viacd.c.b_id)

In the above case, our non-primary mapper for B will emit for
additional columns when we query; these can be ignored:

sess.query(A).join(A.b).all()

SELECT a.id AS a_id, a.b_id AS a_b_id
FROM a JOIN (b JOIN d ON d.b_id = b.id JOIN c ON c.id = d.c_id) ON a.b_id = b.id

Building Query-Enabled Properties

Very ambitious custom join conditions may fail to be directly persistable, and
in some cases may not even load correctly. To remove the persistence part of
the equation, use the flag viewonly on the
relationship(), which establishes it as a read-only
attribute (data written to the collection will be ignored on flush()).
However, in extreme cases, consider using a regular Python property in
conjunction with Query as follows:

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)

 def _get_addresses(self):
 return object_session(self).query(Address).with_parent(self).filter(...).all()
 addresses = property(_get_addresses)

Collection Configuration and Techniques

The relationship() function defines a linkage between two classes.
When the linkage defines a one-to-many or many-to-many relationship, it’s
represented as a Python collection when objects are loaded and manipulated.
This section presents additional information about collection configuration
and techniques.

Working with Large Collections

The default behavior of relationship() is to fully load
the collection of items in, as according to the loading strategy of the
relationship. Additionally, the Session by default only knows how to delete
objects which are actually present within the session. When a parent instance
is marked for deletion and flushed, the Session loads its full list of child
items in so that they may either be deleted as well, or have their foreign key
value set to null; this is to avoid constraint violations. For large
collections of child items, there are several strategies to bypass full
loading of child items both at load time as well as deletion time.

Dynamic Relationship Loaders

A key feature to enable management of a large collection is the so-called “dynamic”
relationship. This is an optional form of relationship() which
returns a Query object in place of a collection
when accessed. filter() criterion may be
applied as well as limits and offsets, either explicitly or via array slices:

class User(Base):
 __tablename__ = 'user'

 posts = relationship(Post, lazy="dynamic")

jack = session.query(User).get(id)

filter Jack's blog posts
posts = jack.posts.filter(Post.headline=='this is a post')

apply array slices
posts = jack.posts[5:20]

The dynamic relationship supports limited write operations, via the
append() and remove() methods:

oldpost = jack.posts.filter(Post.headline=='old post').one()
jack.posts.remove(oldpost)

jack.posts.append(Post('new post'))

Since the read side of the dynamic relationship always queries the
database, changes to the underlying collection will not be visible
until the data has been flushed. However, as long as “autoflush” is
enabled on the Session in use, this will occur
automatically each time the collection is about to emit a
query.

To place a dynamic relationship on a backref, use the backref()
function in conjunction with lazy='dynamic':

class Post(Base):
 __table__ = posts_table

 user = relationship(User,
 backref=backref('posts', lazy='dynamic')
)

Note that eager/lazy loading options cannot be used in conjunction dynamic relationships at this time.

Note

The dynamic_loader() function is essentially the same
as relationship() with the lazy='dynamic' argument specified.

Warning

The “dynamic” loader applies to collections only. It is not valid
to use “dynamic” loaders with many-to-one, one-to-one, or uselist=False
relationships. Newer versions of SQLAlchemy emit warnings or exceptions
in these cases.

Setting Noload, RaiseLoad

A “noload” relationship never loads from the database, even when
accessed. It is configured using lazy='noload':

class MyClass(Base):
 __tablename__ = 'some_table'

 children = relationship(MyOtherClass, lazy='noload')

Above, the children collection is fully writeable, and changes to it will
be persisted to the database as well as locally available for reading at the
time they are added. However when instances of MyClass are freshly loaded
from the database, the children collection stays empty. The noload
strategy is also available on a query option basis using the
orm.noload() loader option.

Alternatively, a “raise”-loaded relationship will raise an
InvalidRequestError where the attribute would normally
emit a lazy load:

class MyClass(Base):
 __tablename__ = 'some_table'

 children = relationship(MyOtherClass, lazy='raise')

Above, attribute access on the children collection will raise an exception
if it was not previously eagerloaded. This includes read access but for
collections will also affect write access, as collections can’t be mutated
without first loading them. The rationale for this is to ensure that an
application is not emitting any unexpected lazy loads within a certain context.
Rather than having to read through SQL logs to determine that all necessary
attributes were eager loaded, the “raise” strategy will cause unloaded
attributes to raise immediately if accessed. The raise strategy is
also available on a query option basis using the orm.raiseload()
loader option.

New in version 1.1: added the “raise” loader strategy.

Using Passive Deletes

Use passive_deletes to disable child object loading on a DELETE
operation, in conjunction with “ON DELETE (CASCADE|SET NULL)” on your database
to automatically cascade deletes to child objects:

class MyClass(Base):
 __tablename__ = 'mytable'
 id = Column(Integer, primary_key=True)
 children = relationship("MyOtherClass",
 cascade="all, delete-orphan",
 passive_deletes=True)

class MyOtherClass(Base):
 __tablename__ = 'myothertable'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer,
 ForeignKey('mytable.id', ondelete='CASCADE')
)

Note

To use “ON DELETE CASCADE”, the underlying database engine must
support foreign keys.

	When using MySQL, an appropriate storage engine must be
selected. See CREATE TABLE arguments including Storage Engines for details.

	When using SQLite, foreign key support must be enabled explicitly.
See Foreign Key Support for details.

When passive_deletes is applied, the children relationship will not be
loaded into memory when an instance of MyClass is marked for deletion. The
cascade="all, delete-orphan" will take effect for instances of
MyOtherClass which are currently present in the session; however for
instances of MyOtherClass which are not loaded, SQLAlchemy assumes that
“ON DELETE CASCADE” rules will ensure that those rows are deleted by the
database.

See also

orm.mapper.passive_deletes - similar feature on mapper()

Customizing Collection Access

Mapping a one-to-many or many-to-many relationship results in a collection of
values accessible through an attribute on the parent instance. By default,
this collection is a list:

class Parent(Base):
 __tablename__ = 'parent'
 parent_id = Column(Integer, primary_key=True)

 children = relationship(Child)

parent = Parent()
parent.children.append(Child())
print(parent.children[0])

Collections are not limited to lists. Sets, mutable sequences and almost any
other Python object that can act as a container can be used in place of the
default list, by specifying the collection_class option on
relationship():

class Parent(Base):
 __tablename__ = 'parent'
 parent_id = Column(Integer, primary_key=True)

 # use a set
 children = relationship(Child, collection_class=set)

parent = Parent()
child = Child()
parent.children.add(child)
assert child in parent.children

Dictionary Collections

A little extra detail is needed when using a dictionary as a collection.
This because objects are always loaded from the database as lists, and a key-generation
strategy must be available to populate the dictionary correctly. The
attribute_mapped_collection() function is by far the most common way
to achieve a simple dictionary collection. It produces a dictionary class that will apply a particular attribute
of the mapped class as a key. Below we map an Item class containing
a dictionary of Note items keyed to the Note.keyword attribute:

from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.orm.collections import attribute_mapped_collection
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Item(Base):
 __tablename__ = 'item'
 id = Column(Integer, primary_key=True)
 notes = relationship("Note",
 collection_class=attribute_mapped_collection('keyword'),
 cascade="all, delete-orphan")

class Note(Base):
 __tablename__ = 'note'
 id = Column(Integer, primary_key=True)
 item_id = Column(Integer, ForeignKey('item.id'), nullable=False)
 keyword = Column(String)
 text = Column(String)

 def __init__(self, keyword, text):
 self.keyword = keyword
 self.text = text

Item.notes is then a dictionary:

>>> item = Item()
>>> item.notes['a'] = Note('a', 'atext')
>>> item.notes.items()
{'a': <__main__.Note object at 0x2eaaf0>}

attribute_mapped_collection() will ensure that
the .keyword attribute of each Note complies with the key in the
dictionary. Such as, when assigning to Item.notes, the dictionary
key we supply must match that of the actual Note object:

item = Item()
item.notes = {
 'a': Note('a', 'atext'),
 'b': Note('b', 'btext')
 }

The attribute which attribute_mapped_collection() uses as a key
does not need to be mapped at all! Using a regular Python @property allows virtually
any detail or combination of details about the object to be used as the key, as
below when we establish it as a tuple of Note.keyword and the first ten letters
of the Note.text field:

class Item(Base):
 __tablename__ = 'item'
 id = Column(Integer, primary_key=True)
 notes = relationship("Note",
 collection_class=attribute_mapped_collection('note_key'),
 backref="item",
 cascade="all, delete-orphan")

class Note(Base):
 __tablename__ = 'note'
 id = Column(Integer, primary_key=True)
 item_id = Column(Integer, ForeignKey('item.id'), nullable=False)
 keyword = Column(String)
 text = Column(String)

 @property
 def note_key(self):
 return (self.keyword, self.text[0:10])

 def __init__(self, keyword, text):
 self.keyword = keyword
 self.text = text

Above we added a Note.item backref. Assigning to this reverse relationship, the Note
is added to the Item.notes dictionary and the key is generated for us automatically:

>>> item = Item()
>>> n1 = Note("a", "atext")
>>> n1.item = item
>>> item.notes
{('a', 'atext'): <__main__.Note object at 0x2eaaf0>}

Other built-in dictionary types include column_mapped_collection(),
which is almost like attribute_mapped_collection() except given the Column
object directly:

from sqlalchemy.orm.collections import column_mapped_collection

class Item(Base):
 __tablename__ = 'item'
 id = Column(Integer, primary_key=True)
 notes = relationship("Note",
 collection_class=column_mapped_collection(Note.__table__.c.keyword),
 cascade="all, delete-orphan")

as well as mapped_collection() which is passed any callable function.
Note that it’s usually easier to use attribute_mapped_collection() along
with a @property as mentioned earlier:

from sqlalchemy.orm.collections import mapped_collection

class Item(Base):
 __tablename__ = 'item'
 id = Column(Integer, primary_key=True)
 notes = relationship("Note",
 collection_class=mapped_collection(lambda note: note.text[0:10]),
 cascade="all, delete-orphan")

Dictionary mappings are often combined with the “Association Proxy” extension to produce
streamlined dictionary views. See Proxying to Dictionary Based Collections and Composite Association Proxies
for examples.

	
sqlalchemy.orm.collections.attribute_mapped_collection(attr_name)

	A dictionary-based collection type with attribute-based keying.

Returns a MappedCollection factory with a keying based on the
‘attr_name’ attribute of entities in the collection, where attr_name
is the string name of the attribute.

The key value must be immutable for the lifetime of the object. You
can not, for example, map on foreign key values if those key values will
change during the session, i.e. from None to a database-assigned integer
after a session flush.

	
sqlalchemy.orm.collections.column_mapped_collection(mapping_spec)

	A dictionary-based collection type with column-based keying.

Returns a MappedCollection factory with a keying function
generated from mapping_spec, which may be a Column or a sequence
of Columns.

The key value must be immutable for the lifetime of the object. You
can not, for example, map on foreign key values if those key values will
change during the session, i.e. from None to a database-assigned integer
after a session flush.

	
sqlalchemy.orm.collections.mapped_collection(keyfunc)

	A dictionary-based collection type with arbitrary keying.

Returns a MappedCollection factory with a keying function
generated from keyfunc, a callable that takes an entity and returns a
key value.

The key value must be immutable for the lifetime of the object. You
can not, for example, map on foreign key values if those key values will
change during the session, i.e. from None to a database-assigned integer
after a session flush.

Custom Collection Implementations

You can use your own types for collections as well. In simple cases,
inherting from list or set, adding custom behavior, is all that’s needed.
In other cases, special decorators are needed to tell SQLAlchemy more detail
about how the collection operates.

Do I need a custom collection implementation?

In most cases not at all! The most common use cases for a “custom” collection
is one that validates or marshals incoming values into a new form, such as
a string that becomes a class instance, or one which goes a
step beyond and represents the data internally in some fashion, presenting
a “view” of that data on the outside of a different form.

For the first use case, the orm.validates() decorator is by far
the simplest way to intercept incoming values in all cases for the purposes
of validation and simple marshaling. See Simple Validators
for an example of this.

For the second use case, the Association Proxy extension is a
well-tested, widely used system that provides a read/write “view” of a
collection in terms of some attribute present on the target object. As the
target attribute can be a @property that returns virtually anything, a
wide array of “alternative” views of a collection can be constructed with
just a few functions. This approach leaves the underlying mapped collection
unaffected and avoids the need to carefully tailor collection behavior on a
method-by-method basis.

Customized collections are useful when the collection needs to
have special behaviors upon access or mutation operations that can’t
otherwise be modeled externally to the collection. They can of course
be combined with the above two approaches.

Collections in SQLAlchemy are transparently instrumented. Instrumentation
means that normal operations on the collection are tracked and result in
changes being written to the database at flush time. Additionally, collection
operations can fire events which indicate some secondary operation must take
place. Examples of a secondary operation include saving the child item in the
parent’s Session (i.e. the save-update
cascade), as well as synchronizing the state of a bi-directional relationship
(i.e. a backref()).

The collections package understands the basic interface of lists, sets and
dicts and will automatically apply instrumentation to those built-in types and
their subclasses. Object-derived types that implement a basic collection
interface are detected and instrumented via duck-typing:

class ListLike(object):
 def __init__(self):
 self.data = []
 def append(self, item):
 self.data.append(item)
 def remove(self, item):
 self.data.remove(item)
 def extend(self, items):
 self.data.extend(items)
 def __iter__(self):
 return iter(self.data)
 def foo(self):
 return 'foo'

append, remove, and extend are known list-like methods, and will
be instrumented automatically. __iter__ is not a mutator method and won’t
be instrumented, and foo won’t be either.

Duck-typing (i.e. guesswork) isn’t rock-solid, of course, so you can be
explicit about the interface you are implementing by providing an
__emulates__ class attribute:

class SetLike(object):
 __emulates__ = set

 def __init__(self):
 self.data = set()
 def append(self, item):
 self.data.add(item)
 def remove(self, item):
 self.data.remove(item)
 def __iter__(self):
 return iter(self.data)

This class looks list-like because of append, but __emulates__ forces
it to set-like. remove is known to be part of the set interface and will
be instrumented.

But this class won’t work quite yet: a little glue is needed to adapt it for
use by SQLAlchemy. The ORM needs to know which methods to use to append,
remove and iterate over members of the collection. When using a type like
list or set, the appropriate methods are well-known and used
automatically when present. This set-like class does not provide the expected
add method, so we must supply an explicit mapping for the ORM via a
decorator.

Annotating Custom Collections via Decorators

Decorators can be used to tag the individual methods the ORM needs to manage
collections. Use them when your class doesn’t quite meet the regular interface
for its container type, or when you otherwise would like to use a different method to
get the job done.

from sqlalchemy.orm.collections import collection

class SetLike(object):
 __emulates__ = set

 def __init__(self):
 self.data = set()

 @collection.appender
 def append(self, item):
 self.data.add(item)

 def remove(self, item):
 self.data.remove(item)

 def __iter__(self):
 return iter(self.data)

And that’s all that’s needed to complete the example. SQLAlchemy will add
instances via the append method. remove and __iter__ are the
default methods for sets and will be used for removing and iteration. Default
methods can be changed as well:

from sqlalchemy.orm.collections import collection

class MyList(list):
 @collection.remover
 def zark(self, item):
 # do something special...

 @collection.iterator
 def hey_use_this_instead_for_iteration(self):
 # ...

There is no requirement to be list-, or set-like at all. Collection classes
can be any shape, so long as they have the append, remove and iterate
interface marked for SQLAlchemy’s use. Append and remove methods will be
called with a mapped entity as the single argument, and iterator methods are
called with no arguments and must return an iterator.

	
class sqlalchemy.orm.collections.collection

	Decorators for entity collection classes.

The decorators fall into two groups: annotations and interception recipes.

The annotating decorators (appender, remover, iterator, linker, converter,
internally_instrumented) indicate the method’s purpose and take no
arguments. They are not written with parens:

@collection.appender
def append(self, append): ...

The recipe decorators all require parens, even those that take no
arguments:

@collection.adds('entity')
def insert(self, position, entity): ...

@collection.removes_return()
def popitem(self): ...

	
static adds(arg)

	Mark the method as adding an entity to the collection.

Adds “add to collection” handling to the method. The decorator
argument indicates which method argument holds the SQLAlchemy-relevant
value. Arguments can be specified positionally (i.e. integer) or by
name:

@collection.adds(1)
def push(self, item): ...

@collection.adds('entity')
def do_stuff(self, thing, entity=None): ...

	
static appender(fn)

	Tag the method as the collection appender.

The appender method is called with one positional argument: the value
to append. The method will be automatically decorated with ‘adds(1)’
if not already decorated:

@collection.appender
def add(self, append): ...

or, equivalently
@collection.appender
@collection.adds(1)
def add(self, append): ...

for mapping type, an 'append' may kick out a previous value
that occupies that slot. consider d['a'] = 'foo'- any previous
value in d['a'] is discarded.
@collection.appender
@collection.replaces(1)
def add(self, entity):
 key = some_key_func(entity)
 previous = None
 if key in self:
 previous = self[key]
 self[key] = entity
 return previous

If the value to append is not allowed in the collection, you may
raise an exception. Something to remember is that the appender
will be called for each object mapped by a database query. If the
database contains rows that violate your collection semantics, you
will need to get creative to fix the problem, as access via the
collection will not work.

If the appender method is internally instrumented, you must also
receive the keyword argument ‘_sa_initiator’ and ensure its
promulgation to collection events.

	
static converter(fn)

	Tag the method as the collection converter.

This optional method will be called when a collection is being
replaced entirely, as in:

myobj.acollection = [newvalue1, newvalue2]

The converter method will receive the object being assigned and should
return an iterable of values suitable for use by the appender
method. A converter must not assign values or mutate the collection,
its sole job is to adapt the value the user provides into an iterable
of values for the ORM’s use.

The default converter implementation will use duck-typing to do the
conversion. A dict-like collection will be convert into an iterable
of dictionary values, and other types will simply be iterated:

@collection.converter
def convert(self, other): ...

If the duck-typing of the object does not match the type of this
collection, a TypeError is raised.

Supply an implementation of this method if you want to expand the
range of possible types that can be assigned in bulk or perform
validation on the values about to be assigned.

	
static internally_instrumented(fn)

	Tag the method as instrumented.

This tag will prevent any decoration from being applied to the
method. Use this if you are orchestrating your own calls to
collection_adapter() in one of the basic SQLAlchemy
interface methods, or to prevent an automatic ABC method
decoration from wrapping your implementation:

normally an 'extend' method on a list-like class would be
automatically intercepted and re-implemented in terms of
SQLAlchemy events and append(). your implementation will
never be called, unless:
@collection.internally_instrumented
def extend(self, items): ...

	
static iterator(fn)

	Tag the method as the collection remover.

The iterator method is called with no arguments. It is expected to
return an iterator over all collection members:

@collection.iterator
def __iter__(self): ...

	
static link(fn)

	deprecated; synonym for collection.linker().

	
static linker(fn)

	Tag the method as a “linked to attribute” event handler.

This optional event handler will be called when the collection class
is linked to or unlinked from the InstrumentedAttribute. It is
invoked immediately after the ‘_sa_adapter’ property is set on
the instance. A single argument is passed: the collection adapter
that has been linked, or None if unlinking.

Deprecated since version 1.0.0: - the collection.linker() handler
is superseded by the AttributeEvents.init_collection()
and AttributeEvents.dispose_collection() handlers.

	
static remover(fn)

	Tag the method as the collection remover.

The remover method is called with one positional argument: the value
to remove. The method will be automatically decorated with
removes_return() if not already decorated:

@collection.remover
def zap(self, entity): ...

or, equivalently
@collection.remover
@collection.removes_return()
def zap(self,): ...

If the value to remove is not present in the collection, you may
raise an exception or return None to ignore the error.

If the remove method is internally instrumented, you must also
receive the keyword argument ‘_sa_initiator’ and ensure its
promulgation to collection events.

	
static removes(arg)

	Mark the method as removing an entity in the collection.

Adds “remove from collection” handling to the method. The decorator
argument indicates which method argument holds the SQLAlchemy-relevant
value to be removed. Arguments can be specified positionally (i.e.
integer) or by name:

@collection.removes(1)
def zap(self, item): ...

For methods where the value to remove is not known at call-time, use
collection.removes_return.

	
static removes_return()

	Mark the method as removing an entity in the collection.

Adds “remove from collection” handling to the method. The return
value of the method, if any, is considered the value to remove. The
method arguments are not inspected:

@collection.removes_return()
def pop(self): ...

For methods where the value to remove is known at call-time, use
collection.remove.

	
static replaces(arg)

	Mark the method as replacing an entity in the collection.

Adds “add to collection” and “remove from collection” handling to
the method. The decorator argument indicates which method argument
holds the SQLAlchemy-relevant value to be added, and return value, if
any will be considered the value to remove.

Arguments can be specified positionally (i.e. integer) or by name:

@collection.replaces(2)
def __setitem__(self, index, item): ...

Custom Dictionary-Based Collections

The MappedCollection class can be used as
a base class for your custom types or as a mix-in to quickly add dict
collection support to other classes. It uses a keying function to delegate to
__setitem__ and __delitem__:

from sqlalchemy.util import OrderedDict
from sqlalchemy.orm.collections import MappedCollection

class NodeMap(OrderedDict, MappedCollection):
 """Holds 'Node' objects, keyed by the 'name' attribute with insert order maintained."""

 def __init__(self, *args, **kw):
 MappedCollection.__init__(self, keyfunc=lambda node: node.name)
 OrderedDict.__init__(self, *args, **kw)

When subclassing MappedCollection, user-defined versions
of __setitem__() or __delitem__() should be decorated
with collection.internally_instrumented(), if they call down
to those same methods on MappedCollection. This because the methods
on MappedCollection are already instrumented - calling them
from within an already instrumented call can cause events to be fired off
repeatedly, or inappropriately, leading to internal state corruption in
rare cases:

from sqlalchemy.orm.collections import MappedCollection,\
 collection

class MyMappedCollection(MappedCollection):
 """Use @internally_instrumented when your methods
 call down to already-instrumented methods.

 """

 @collection.internally_instrumented
 def __setitem__(self, key, value, _sa_initiator=None):
 # do something with key, value
 super(MyMappedCollection, self).__setitem__(key, value, _sa_initiator)

 @collection.internally_instrumented
 def __delitem__(self, key, _sa_initiator=None):
 # do something with key
 super(MyMappedCollection, self).__delitem__(key, _sa_initiator)

The ORM understands the dict interface just like lists and sets, and will
automatically instrument all dict-like methods if you choose to subclass
dict or provide dict-like collection behavior in a duck-typed class. You
must decorate appender and remover methods, however- there are no compatible
methods in the basic dictionary interface for SQLAlchemy to use by default.
Iteration will go through itervalues() unless otherwise decorated.

Note

Due to a bug in MappedCollection prior to version 0.7.6, this
workaround usually needs to be called before a custom subclass
of MappedCollection which uses collection.internally_instrumented()
can be used:

from sqlalchemy.orm.collections import _instrument_class, MappedCollection
_instrument_class(MappedCollection)

This will ensure that the MappedCollection has been properly
initialized with custom __setitem__() and __delitem__()
methods before used in a custom subclass.

	
class sqlalchemy.orm.collections.MappedCollection(keyfunc)

	Bases: __builtin__.dict

A basic dictionary-based collection class.

Extends dict with the minimal bag semantics that collection
classes require. set and remove are implemented in terms
of a keying function: any callable that takes an object and
returns an object for use as a dictionary key.

	
__init__(keyfunc)

	Create a new collection with keying provided by keyfunc.

keyfunc may be any callable that takes an object and returns an object
for use as a dictionary key.

The keyfunc will be called every time the ORM needs to add a member by
value-only (such as when loading instances from the database) or
remove a member. The usual cautions about dictionary keying apply-
keyfunc(object) should return the same output for the life of the
collection. Keying based on mutable properties can result in
unreachable instances “lost” in the collection.

	
clear() → None. Remove all items from D.

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
popitem() → (k, v), remove and return some (key, value) pair as a

	2-tuple; but raise KeyError if D is empty.

	
remove(value, _sa_initiator=None)

	Remove an item by value, consulting the keyfunc for the key.

	
set(value, _sa_initiator=None)

	Add an item by value, consulting the keyfunc for the key.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

Instrumentation and Custom Types

Many custom types and existing library classes can be used as a entity
collection type as-is without further ado. However, it is important to note
that the instrumentation process will modify the type, adding decorators
around methods automatically.

The decorations are lightweight and no-op outside of relationships, but they
do add unneeded overhead when triggered elsewhere. When using a library class
as a collection, it can be good practice to use the “trivial subclass” trick
to restrict the decorations to just your usage in relationships. For example:

class MyAwesomeList(some.great.library.AwesomeList):
 pass

... relationship(..., collection_class=MyAwesomeList)

The ORM uses this approach for built-ins, quietly substituting a trivial
subclass when a list, set or dict is used directly.

Collection Internals

Various internal methods.

	
sqlalchemy.orm.collections.bulk_replace(values, existing_adapter, new_adapter)

	Load a new collection, firing events based on prior like membership.

Appends instances in values onto the new_adapter. Events will be
fired for any instance not present in the existing_adapter. Any
instances in existing_adapter not present in values will have
remove events fired upon them.

	Parameters:
	
	values¶ – An iterable of collection member instances

	existing_adapter¶ – A CollectionAdapter of
instances to be replaced

	new_adapter¶ – An empty CollectionAdapter
to load with values

	
class sqlalchemy.orm.collections.collection

	Decorators for entity collection classes.

The decorators fall into two groups: annotations and interception recipes.

The annotating decorators (appender, remover, iterator, linker, converter,
internally_instrumented) indicate the method’s purpose and take no
arguments. They are not written with parens:

@collection.appender
def append(self, append): ...

The recipe decorators all require parens, even those that take no
arguments:

@collection.adds('entity')
def insert(self, position, entity): ...

@collection.removes_return()
def popitem(self): ...

	
sqlalchemy.orm.collections.collection_adapter = <operator.attrgetter object>

	Fetch the CollectionAdapter for a collection.

	
class sqlalchemy.orm.collections.CollectionAdapter(attr, owner_state, data)

	Bridges between the ORM and arbitrary Python collections.

Proxies base-level collection operations (append, remove, iterate)
to the underlying Python collection, and emits add/remove events for
entities entering or leaving the collection.

The ORM uses CollectionAdapter exclusively for interaction with
entity collections.

	
class sqlalchemy.orm.collections.InstrumentedDict

	Bases: __builtin__.dict

An instrumented version of the built-in dict.

	
class sqlalchemy.orm.collections.InstrumentedList

	Bases: __builtin__.list

An instrumented version of the built-in list.

	
class sqlalchemy.orm.collections.InstrumentedSet

	Bases: __builtin__.set

An instrumented version of the built-in set.

	
sqlalchemy.orm.collections.prepare_instrumentation(factory)

	Prepare a callable for future use as a collection class factory.

Given a collection class factory (either a type or no-arg callable),
return another factory that will produce compatible instances when
called.

This function is responsible for converting collection_class=list
into the run-time behavior of collection_class=InstrumentedList.

Special Relationship Persistence Patterns

Rows that point to themselves / Mutually Dependent Rows

This is a very specific case where relationship() must perform an INSERT and a
second UPDATE in order to properly populate a row (and vice versa an UPDATE
and DELETE in order to delete without violating foreign key constraints). The
two use cases are:

	A table contains a foreign key to itself, and a single row will
have a foreign key value pointing to its own primary key.

	Two tables each contain a foreign key referencing the other
table, with a row in each table referencing the other.

For example:

 user

user_id name related_user_id
 1 'ed' 1

Or:

 widget entry
--- ---------------------------------
widget_id name favorite_entry_id entry_id name widget_id
 1 'somewidget' 5 5 'someentry' 1

In the first case, a row points to itself. Technically, a database that uses
sequences such as PostgreSQL or Oracle can INSERT the row at once using a
previously generated value, but databases which rely upon autoincrement-style
primary key identifiers cannot. The relationship()
always assumes a “parent/child” model of row population during flush, so
unless you are populating the primary key/foreign key columns directly,
relationship() needs to use two statements.

In the second case, the “widget” row must be inserted before any referring
“entry” rows, but then the “favorite_entry_id” column of that “widget” row
cannot be set until the “entry” rows have been generated. In this case, it’s
typically impossible to insert the “widget” and “entry” rows using just two
INSERT statements; an UPDATE must be performed in order to keep foreign key
constraints fulfilled. The exception is if the foreign keys are configured as
“deferred until commit” (a feature some databases support) and if the
identifiers were populated manually (again essentially bypassing
relationship()).

To enable the usage of a supplementary UPDATE statement,
we use the post_update option
of relationship(). This specifies that the linkage between the
two rows should be created using an UPDATE statement after both rows
have been INSERTED; it also causes the rows to be de-associated with
each other via UPDATE before a DELETE is emitted. The flag should
be placed on just one of the relationships, preferably the
many-to-one side. Below we illustrate
a complete example, including two ForeignKey constructs:

from sqlalchemy import Integer, ForeignKey, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class Entry(Base):
 __tablename__ = 'entry'
 entry_id = Column(Integer, primary_key=True)
 widget_id = Column(Integer, ForeignKey('widget.widget_id'))
 name = Column(String(50))

class Widget(Base):
 __tablename__ = 'widget'

 widget_id = Column(Integer, primary_key=True)
 favorite_entry_id = Column(Integer,
 ForeignKey('entry.entry_id',
 name="fk_favorite_entry"))
 name = Column(String(50))

 entries = relationship(Entry, primaryjoin=
 widget_id==Entry.widget_id)
 favorite_entry = relationship(Entry,
 primaryjoin=
 favorite_entry_id==Entry.entry_id,
 post_update=True)

When a structure against the above configuration is flushed, the “widget” row will be
INSERTed minus the “favorite_entry_id” value, then all the “entry” rows will
be INSERTed referencing the parent “widget” row, and then an UPDATE statement
will populate the “favorite_entry_id” column of the “widget” table (it’s one
row at a time for the time being):

>>> w1 = Widget(name='somewidget')
>>> e1 = Entry(name='someentry')
>>> w1.favorite_entry = e1
>>> w1.entries = [e1]
>>> session.add_all([w1, e1])
sql>>> session.commit()
BEGIN (implicit)
INSERT INTO widget (favorite_entry_id, name) VALUES (?, ?)
(None, 'somewidget')
INSERT INTO entry (widget_id, name) VALUES (?, ?)
(1, 'someentry')
UPDATE widget SET favorite_entry_id=? WHERE widget.widget_id = ?
(1, 1)
COMMIT

An additional configuration we can specify is to supply a more
comprehensive foreign key constraint on Widget, such that
it’s guaranteed that favorite_entry_id refers to an Entry
that also refers to this Widget. We can use a composite foreign key,
as illustrated below:

from sqlalchemy import Integer, ForeignKey, String, \
 Column, UniqueConstraint, ForeignKeyConstraint
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class Entry(Base):
 __tablename__ = 'entry'
 entry_id = Column(Integer, primary_key=True)
 widget_id = Column(Integer, ForeignKey('widget.widget_id'))
 name = Column(String(50))
 __table_args__ = (
 UniqueConstraint("entry_id", "widget_id"),
)

class Widget(Base):
 __tablename__ = 'widget'

 widget_id = Column(Integer, autoincrement='ignore_fk', primary_key=True)
 favorite_entry_id = Column(Integer)

 name = Column(String(50))

 __table_args__ = (
 ForeignKeyConstraint(
 ["widget_id", "favorite_entry_id"],
 ["entry.widget_id", "entry.entry_id"],
 name="fk_favorite_entry"
),
)

 entries = relationship(Entry, primaryjoin=
 widget_id==Entry.widget_id,
 foreign_keys=Entry.widget_id)
 favorite_entry = relationship(Entry,
 primaryjoin=
 favorite_entry_id==Entry.entry_id,
 foreign_keys=favorite_entry_id,
 post_update=True)

The above mapping features a composite ForeignKeyConstraint
bridging the widget_id and favorite_entry_id columns. To ensure
that Widget.widget_id remains an “autoincrementing” column we specify
autoincrement to the value "ignore_fk"
on Column, and additionally on each
relationship() we must limit those columns considered as part of
the foreign key for the purposes of joining and cross-population.

Mutable Primary Keys / Update Cascades

When the primary key of an entity changes, related items
which reference the primary key must also be updated as
well. For databases which enforce referential integrity,
the best strategy is to use the database’s ON UPDATE CASCADE
functionality in order to propagate primary key changes
to referenced foreign keys - the values cannot be out
of sync for any moment unless the constraints are marked as “deferrable”,
that is, not enforced until the transaction completes.

It is highly recommended that an application which seeks to employ
natural primary keys with mutable values to use the ON UPDATE CASCADE
capabilities of the database. An example mapping which
illustrates this is:

class User(Base):
 __tablename__ = 'user'
 __table_args__ = {'mysql_engine': 'InnoDB'}

 username = Column(String(50), primary_key=True)
 fullname = Column(String(100))

 addresses = relationship("Address")

class Address(Base):
 __tablename__ = 'address'
 __table_args__ = {'mysql_engine': 'InnoDB'}

 email = Column(String(50), primary_key=True)
 username = Column(String(50),
 ForeignKey('user.username', onupdate="cascade")
)

Above, we illustrate onupdate="cascade" on the ForeignKey
object, and we also illustrate the mysql_engine='InnoDB' setting
which, on a MySQL backend, ensures that the InnoDB engine supporting
referential integrity is used. When using SQLite, referential integrity
should be enabled, using the configuration described at
Foreign Key Support.

See also

Using Passive Deletes - supporting ON DELETE CASCADE with relationships

orm.mapper.passive_updates - similar feature on mapper()

Simulating limited ON UPDATE CASCADE without foreign key support

In those cases when a database that does not support referential integrity
is used, and natural primary keys with mutable values are in play,
SQLAlchemy offers a feature in order to allow propagation of primary key
values to already-referenced foreign keys to a limited extent,
by emitting an UPDATE statement against foreign key columns that immediately
reference a primary key column whose value has changed.
The primary platforms without referential integrity features are
MySQL when the MyISAM storage engine is used, and SQLite when the
PRAGMA foreign_keys=ON pragma is not used. The Oracle database also
has no support for ON UPDATE CASCADE, but because it still enforces
referential integrity, needs constraints to be marked as deferrable
so that SQLAlchemy can emit UPDATE statements.

The feature is enabled by setting the
passive_updates flag to False,
most preferably on a one-to-many or
many-to-many relationship(). When “updates” are no longer
“passive” this indicates that SQLAlchemy will
issue UPDATE statements individually for
objects referenced in the collection referred to by the parent object
with a changing primary key value. This also implies that collections
will be fully loaded into memory if not already locally present.

Our previous mapping using passive_updates=False looks like:

class User(Base):
 __tablename__ = 'user'

 username = Column(String(50), primary_key=True)
 fullname = Column(String(100))

 # passive_updates=False *only* needed if the database
 # does not implement ON UPDATE CASCADE
 addresses = relationship("Address", passive_updates=False)

class Address(Base):
 __tablename__ = 'address'

 email = Column(String(50), primary_key=True)
 username = Column(String(50), ForeignKey('user.username'))

Key limitations of passive_updates=False include:

	it performs much more poorly than direct database ON UPDATE CASCADE,
because it needs to fully pre-load affected collections using SELECT
and also must emit UPDATE statements against those values, which it
will attempt to run in “batches” but still runs on a per-row basis
at the DBAPI level.

	the feature cannot “cascade” more than one level. That is,
if mapping X has a foreign key which refers to the primary key
of mapping Y, but then mapping Y’s primary key is itself a foreign key
to mapping Z, passive_updates=False cannot cascade a change in
primary key value from Z to X.

	Configuring passive_updates=False only on the many-to-one
side of a relationship will not have a full effect, as the
unit of work searches only through the current identity
map for objects that may be referencing the one with a
mutating primary key, not throughout the database.

As virtually all databases other than Oracle now support ON UPDATE CASCADE,
it is highly recommended that traditional ON UPDATE CASCADE support be used
in the case that natural and mutable primary key values are in use.

Functional constructs for ORM configuration.

See the SQLAlchemy object relational tutorial and mapper configuration
documentation for an overview of how this module is used.

Relationships API

	
sqlalchemy.orm.relationship(argument, secondary=None, primaryjoin=None, secondaryjoin=None, foreign_keys=None, uselist=None, order_by=False, backref=None, back_populates=None, post_update=False, cascade=False, extension=None, viewonly=False, lazy=True, collection_class=None, passive_deletes=False, passive_updates=True, remote_side=None, enable_typechecks=True, join_depth=None, comparator_factory=None, single_parent=False, innerjoin=False, distinct_target_key=None, doc=None, active_history=False, cascade_backrefs=True, load_on_pending=False, bake_queries=True, strategy_class=None, _local_remote_pairs=None, query_class=None, info=None)

	Provide a relationship between two mapped classes.

This corresponds to a parent-child or associative table relationship.
The constructed class is an instance of
RelationshipProperty.

A typical relationship(), used in a classical mapping:

mapper(Parent, properties={
 'children': relationship(Child)
})

Some arguments accepted by relationship() optionally accept a
callable function, which when called produces the desired value.
The callable is invoked by the parent Mapper at “mapper
initialization” time, which happens only when mappers are first used,
and is assumed to be after all mappings have been constructed. This
can be used to resolve order-of-declaration and other dependency
issues, such as if Child is declared below Parent in the same
file:

mapper(Parent, properties={
 "children":relationship(lambda: Child,
 order_by=lambda: Child.id)
})

When using the Declarative extension, the Declarative
initializer allows string arguments to be passed to
relationship(). These string arguments are converted into
callables that evaluate the string as Python code, using the
Declarative class-registry as a namespace. This allows the lookup of
related classes to be automatic via their string name, and removes the
need to import related classes at all into the local module space:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 children = relationship("Child", order_by="Child.id")

See also

Relationship Configuration - Full introductory and
reference documentation for relationship().

Building a Relationship - ORM tutorial introduction.

	Parameters:
	
	argument¶ – a mapped class, or actual Mapper instance, representing
the target of the relationship.

argument may also be passed as a callable
function which is evaluated at mapper initialization time, and may
be passed as a Python-evaluable string when using Declarative.

See also

Configuring Relationships - further detail
on relationship configuration when using Declarative.

	secondary¶ – for a many-to-many relationship, specifies the intermediary
table, and is typically an instance of Table.
In less common circumstances, the argument may also be specified
as an Alias construct, or even a Join construct.

secondary may
also be passed as a callable function which is evaluated at
mapper initialization time. When using Declarative, it may also
be a string argument noting the name of a Table that is
present in the MetaData collection associated with the
parent-mapped Table.

The secondary keyword argument is
typically applied in the case where the intermediary Table
is not otherwise expressed in any direct class mapping. If the
“secondary” table is also explicitly mapped elsewhere (e.g. as in
Association Object), one should consider applying the
viewonly flag so that this
relationship() is not used for persistence operations which
may conflict with those of the association object pattern.

See also

Many To Many - Reference example of “many
to many”.

Building a Many To Many Relationship - ORM tutorial introduction to
many-to-many relationships.

Self-Referential Many-to-Many Relationship - Specifics on using
many-to-many in a self-referential case.

Configuring Many-to-Many Relationships - Additional options when using
Declarative.

Association Object - an alternative to
secondary when composing association
table relationships, allowing additional attributes to be
specified on the association table.

Composite “Secondary” Joins - a lesser-used pattern which
in some cases can enable complex relationship() SQL
conditions to be used.

New in version 0.9.2: secondary works
more effectively when referring to a Join instance.

	active_history=False¶ – When True, indicates that the “previous” value for a
many-to-one reference should be loaded when replaced, if
not already loaded. Normally, history tracking logic for
simple many-to-ones only needs to be aware of the “new”
value in order to perform a flush. This flag is available
for applications that make use of
attributes.get_history() which also need to know
the “previous” value of the attribute.

	backref¶ – indicates the string name of a property to be placed on the related
mapper’s class that will handle this relationship in the other
direction. The other property will be created automatically
when the mappers are configured. Can also be passed as a
backref() object to control the configuration of the
new relationship.

See also

Linking Relationships with Backref - Introductory documentation and
examples.

back_populates - alternative form
of backref specification.

backref() - allows control over relationship()
configuration when using backref.

	back_populates¶ – Takes a string name and has the same meaning as
backref, except the complementing
property is not created automatically, and instead must be
configured explicitly on the other mapper. The complementing
property should also indicate
back_populates to this relationship to
ensure proper functioning.

See also

Linking Relationships with Backref - Introductory documentation and
examples.

backref - alternative form
of backref specification.

	bake_queries=True¶ – Use the BakedQuery cache to cache the construction of SQL
used in lazy loads, when the bake_lazy_loaders() function has
first been called. Defaults to True and is intended to provide an
“opt out” flag per-relationship when the baked query cache system is
in use.

Warning

This flag only has an effect when the application-wide
bake_lazy_loaders() function has been called. It
defaults to True so is an “opt out” flag.

Setting this flag to False when baked queries are otherwise in
use might be to reduce
ORM memory use for this relationship(), or to work around
unresolved stability issues observed within the baked query
cache system.

New in version 1.0.0.

See also

Baked Queries

	cascade¶ – a comma-separated list of cascade rules which determines how
Session operations should be “cascaded” from parent to child.
This defaults to False, which means the default cascade
should be used - this default cascade is "save-update, merge".

The available cascades are save-update, merge,
expunge, delete, delete-orphan, and refresh-expire.
An additional option, all indicates shorthand for
"save-update, merge, refresh-expire,
expunge, delete", and is often used as in "all, delete-orphan"
to indicate that related objects should follow along with the
parent object in all cases, and be deleted when de-associated.

See also

Cascades - Full detail on each of the available
cascade options.

Configuring delete/delete-orphan Cascade - Tutorial example describing
a delete cascade.

	cascade_backrefs=True¶ – a boolean value indicating if the save-update cascade should
operate along an assignment event intercepted by a backref.
When set to False, the attribute managed by this relationship
will not cascade an incoming transient object into the session of a
persistent parent, if the event is received via backref.

See also

Controlling Cascade on Backrefs - Full discussion and examples on how
the cascade_backrefs option is used.

	collection_class¶ – a class or callable that returns a new list-holding object. will
be used in place of a plain list for storing elements.

See also

Customizing Collection Access - Introductory documentation and
examples.

	comparator_factory¶ – a class which extends RelationshipProperty.Comparator
which provides custom SQL clause generation for comparison
operations.

See also

PropComparator - some detail on redefining comparators
at this level.

Operator Customization - Brief intro to this feature.

	distinct_target_key=None¶ – Indicate if a “subquery” eager load should apply the DISTINCT
keyword to the innermost SELECT statement. When left as None,
the DISTINCT keyword will be applied in those cases when the target
columns do not comprise the full primary key of the target table.
When set to True, the DISTINCT keyword is applied to the
innermost SELECT unconditionally.

It may be desirable to set this flag to False when the DISTINCT is
reducing performance of the innermost subquery beyond that of what
duplicate innermost rows may be causing.

New in version 0.8.3: -
distinct_target_key allows the
subquery eager loader to apply a DISTINCT modifier to the
innermost SELECT.

Changed in version 0.9.0: -
distinct_target_key now defaults to
None, so that the feature enables itself automatically for
those cases where the innermost query targets a non-unique
key.

See also

Relationship Loading Techniques - includes an introduction to subquery
eager loading.

	doc¶ – docstring which will be applied to the resulting descriptor.

	extension¶ – an AttributeExtension instance, or list of extensions,
which will be prepended to the list of attribute listeners for
the resulting descriptor placed on the class.

Deprecated since version 0.7: Please see AttributeEvents.

	foreign_keys¶ – a list of columns which are to be used as “foreign key”
columns, or columns which refer to the value in a remote
column, within the context of this relationship()
object’s primaryjoin condition.
That is, if the primaryjoin
condition of this relationship() is a.id ==
b.a_id, and the values in b.a_id are required to be
present in a.id, then the “foreign key” column of this
relationship() is b.a_id.

In normal cases, the foreign_keys
parameter is not required. relationship() will
automatically determine which columns in the
primaryjoin conditition are to be
considered “foreign key” columns based on those
Column objects that specify ForeignKey,
or are otherwise listed as referencing columns in a
ForeignKeyConstraint construct.
foreign_keys is only needed when:

	There is more than one way to construct a join from the local
table to the remote table, as there are multiple foreign key
references present. Setting foreign_keys will limit the
relationship() to consider just those columns specified
here as “foreign”.
Changed in version 0.8: A multiple-foreign key join ambiguity can be resolved by
setting the foreign_keys
parameter alone, without the need to explicitly set
primaryjoin as well.

	The Table being mapped does not actually have
ForeignKey or ForeignKeyConstraint
constructs present, often because the table
was reflected from a database that does not support foreign key
reflection (MySQL MyISAM).

	The primaryjoin argument is used to
construct a non-standard join condition, which makes use of
columns or expressions that do not normally refer to their
“parent” column, such as a join condition expressed by a
complex comparison using a SQL function.

The relationship() construct will raise informative
error messages that suggest the use of the
foreign_keys parameter when
presented with an ambiguous condition. In typical cases,
if relationship() doesn’t raise any exceptions, the
foreign_keys parameter is usually
not needed.

foreign_keys may also be passed as a
callable function which is evaluated at mapper initialization time,
and may be passed as a Python-evaluable string when using
Declarative.

See also

Handling Multiple Join Paths

Creating Custom Foreign Conditions

foreign() - allows direct annotation of the “foreign”
columns within a primaryjoin condition.

New in version 0.8: The foreign() annotation can also be applied
directly to the primaryjoin
expression, which is an alternate, more specific system of
describing which columns in a particular
primaryjoin should be considered
“foreign”.

	info¶ – Optional data dictionary which will be populated into the
MapperProperty.info attribute of this object.

New in version 0.8.

	innerjoin=False¶ – when True, joined eager loads will use an inner join to join
against related tables instead of an outer join. The purpose
of this option is generally one of performance, as inner joins
generally perform better than outer joins.

This flag can be set to True when the relationship references an
object via many-to-one using local foreign keys that are not
nullable, or when the reference is one-to-one or a collection that
is guaranteed to have one or at least one entry.

The option supports the same “nested” and “unnested” options as
that of joinedload.innerjoin. See that flag
for details on nested / unnested behaviors.

See also

joinedload.innerjoin - the option as specified by
loader option, including detail on nesting behavior.

What Kind of Loading to Use ? - Discussion of some details of
various loader options.

	join_depth¶ – when non-None, an integer value indicating how many levels
deep “eager” loaders should join on a self-referring or cyclical
relationship. The number counts how many times the same Mapper
shall be present in the loading condition along a particular join
branch. When left at its default of None, eager loaders
will stop chaining when they encounter a the same target mapper
which is already higher up in the chain. This option applies
both to joined- and subquery- eager loaders.

See also

Configuring Self-Referential Eager Loading - Introductory documentation
and examples.

	lazy='select'¶ – specifies
how the related items should be loaded. Default value is
select. Values include:

	select - items should be loaded lazily when the property is
first accessed, using a separate SELECT statement, or identity map
fetch for simple many-to-one references.

	immediate - items should be loaded as the parents are loaded,
using a separate SELECT statement, or identity map fetch for
simple many-to-one references.

	joined - items should be loaded “eagerly” in the same query as
that of the parent, using a JOIN or LEFT OUTER JOIN. Whether
the join is “outer” or not is determined by the
innerjoin parameter.

	subquery - items should be loaded “eagerly” as the parents are
loaded, using one additional SQL statement, which issues a JOIN to
a subquery of the original statement, for each collection
requested.

	noload - no loading should occur at any time. This is to
support “write-only” attributes, or attributes which are
populated in some manner specific to the application.

	raise - lazy loading is disallowed; accessing
the attribute, if its value were not already loaded via eager
loading, will raise an InvalidRequestError.
New in version 1.1.

	dynamic - the attribute will return a pre-configured
Query object for all read
operations, onto which further filtering operations can be
applied before iterating the results. See
the section Dynamic Relationship Loaders for more details.

	True - a synonym for ‘select’

	False - a synonym for ‘joined’

	None - a synonym for ‘noload’

See also

Relationship Loading Techniques - Full documentation on relationship loader
configuration.

Dynamic Relationship Loaders - detail on the dynamic option.

Setting Noload, RaiseLoad - notes on “noload” and “raise”

	load_on_pending=False¶ – Indicates loading behavior for transient or pending parent objects.

When set to True, causes the lazy-loader to
issue a query for a parent object that is not persistent, meaning it
has never been flushed. This may take effect for a pending object
when autoflush is disabled, or for a transient object that has been
“attached” to a Session but is not part of its pending
collection.

The load_on_pending flag does not improve
behavior when the ORM is used normally - object references should be
constructed at the object level, not at the foreign key level, so
that they are present in an ordinary way before a flush proceeds.
This flag is not not intended for general use.

See also

Session.enable_relationship_loading() - this method
establishes “load on pending” behavior for the whole object, and
also allows loading on objects that remain transient or
detached.

	order_by¶ – indicates the ordering that should be applied when loading these
items. order_by is expected to refer to
one of the Column objects to which the target class is
mapped, or the attribute itself bound to the target class which
refers to the column.

order_by may also be passed as a callable
function which is evaluated at mapper initialization time, and may
be passed as a Python-evaluable string when using Declarative.

	passive_deletes=False¶ – Indicates loading behavior during delete operations.

A value of True indicates that unloaded child items should not
be loaded during a delete operation on the parent. Normally,
when a parent item is deleted, all child items are loaded so
that they can either be marked as deleted, or have their
foreign key to the parent set to NULL. Marking this flag as
True usually implies an ON DELETE <CASCADE|SET NULL> rule is in
place which will handle updating/deleting child rows on the
database side.

Additionally, setting the flag to the string value ‘all’ will
disable the “nulling out” of the child foreign keys, when there
is no delete or delete-orphan cascade enabled. This is
typically used when a triggering or error raise scenario is in
place on the database side. Note that the foreign key
attributes on in-session child objects will not be changed
after a flush occurs so this is a very special use-case
setting.

See also

Using Passive Deletes - Introductory documentation
and examples.

	passive_updates=True¶ – Indicates the persistence behavior to take when a referenced
primary key value changes in place, indicating that the referencing
foreign key columns will also need their value changed.

When True, it is assumed that ON UPDATE CASCADE is configured on
the foreign key in the database, and that the database will
handle propagation of an UPDATE from a source column to
dependent rows. When False, the SQLAlchemy relationship()
construct will attempt to emit its own UPDATE statements to
modify related targets. However note that SQLAlchemy cannot
emit an UPDATE for more than one level of cascade. Also,
setting this flag to False is not compatible in the case where
the database is in fact enforcing referential integrity, unless
those constraints are explicitly “deferred”, if the target backend
supports it.

It is highly advised that an application which is employing
mutable primary keys keeps passive_updates set to True,
and instead uses the referential integrity features of the database
itself in order to handle the change efficiently and fully.

See also

Mutable Primary Keys / Update Cascades - Introductory documentation and
examples.

mapper.passive_updates - a similar flag which
takes effect for joined-table inheritance mappings.

	post_update¶ – this indicates that the relationship should be handled by a
second UPDATE statement after an INSERT or before a
DELETE. Currently, it also will issue an UPDATE after the
instance was UPDATEd as well, although this technically should
be improved. This flag is used to handle saving bi-directional
dependencies between two individual rows (i.e. each row
references the other), where it would otherwise be impossible to
INSERT or DELETE both rows fully since one row exists before the
other. Use this flag when a particular mapping arrangement will
incur two rows that are dependent on each other, such as a table
that has a one-to-many relationship to a set of child rows, and
also has a column that references a single child row within that
list (i.e. both tables contain a foreign key to each other). If
a flush operation returns an error that a “cyclical
dependency” was detected, this is a cue that you might want to
use post_update to “break” the cycle.

See also

Rows that point to themselves / Mutually Dependent Rows - Introductory documentation and examples.

	primaryjoin¶ – a SQL expression that will be used as the primary
join of this child object against the parent object, or in a
many-to-many relationship the join of the primary object to the
association table. By default, this value is computed based on the
foreign key relationships of the parent and child tables (or
association table).

primaryjoin may also be passed as a
callable function which is evaluated at mapper initialization time,
and may be passed as a Python-evaluable string when using
Declarative.

See also

Specifying Alternate Join Conditions

	remote_side¶ – used for self-referential relationships, indicates the column or
list of columns that form the “remote side” of the relationship.

relationship.remote_side may also be passed as a
callable function which is evaluated at mapper initialization time,
and may be passed as a Python-evaluable string when using
Declarative.

Changed in version 0.8: The remote() annotation can also be applied
directly to the primaryjoin expression, which is an
alternate, more specific system of describing which columns in a
particular primaryjoin should be considered “remote”.

See also

Adjacency List Relationships - in-depth explanation of how
remote_side
is used to configure self-referential relationships.

remote() - an annotation function that accomplishes the
same purpose as remote_side, typically
when a custom primaryjoin condition
is used.

	query_class¶ – a Query subclass that will be used as the base of the
“appender query” returned by a “dynamic” relationship, that
is, a relationship that specifies lazy="dynamic" or was
otherwise constructed using the orm.dynamic_loader()
function.

See also

Dynamic Relationship Loaders - Introduction to “dynamic”
relationship loaders.

	secondaryjoin¶ – a SQL expression that will be used as the join of
an association table to the child object. By default, this value is
computed based on the foreign key relationships of the association
and child tables.

secondaryjoin may also be passed as a
callable function which is evaluated at mapper initialization time,
and may be passed as a Python-evaluable string when using
Declarative.

See also

Specifying Alternate Join Conditions

	single_parent¶ – when True, installs a validator which will prevent objects
from being associated with more than one parent at a time.
This is used for many-to-one or many-to-many relationships that
should be treated either as one-to-one or one-to-many. Its usage
is optional, except for relationship() constructs which
are many-to-one or many-to-many and also
specify the delete-orphan cascade option. The
relationship() construct itself will raise an error
instructing when this option is required.

See also

Cascades - includes detail on when the
single_parent flag may be appropriate.

	uselist¶ – a boolean that indicates if this property should be loaded as a
list or a scalar. In most cases, this value is determined
automatically by relationship() at mapper configuration
time, based on the type and direction
of the relationship - one to many forms a list, many to one
forms a scalar, many to many is a list. If a scalar is desired
where normally a list would be present, such as a bi-directional
one-to-one relationship, set uselist to
False.

The uselist flag is also available on an
existing relationship() construct as a read-only attribute,
which can be used to determine if this relationship() deals
with collections or scalar attributes:

>>> User.addresses.property.uselist
True

See also

One To One - Introduction to the “one to
one” relationship pattern, which is typically when the
uselist flag is needed.

	viewonly=False¶ – when set to True, the relationship is used only for loading objects,
and not for any persistence operation. A relationship()
which specifies viewonly can work
with a wider range of SQL operations within the
primaryjoin condition, including
operations that feature the use of a variety of comparison operators
as well as SQL functions such as cast(). The
viewonly flag is also of general use when
defining any kind of relationship() that doesn’t represent
the full set of related objects, to prevent modifications of the
collection from resulting in persistence operations.

	
sqlalchemy.orm.backref(name, **kwargs)

	Create a back reference with explicit keyword arguments, which are the
same arguments one can send to relationship().

Used with the backref keyword argument to relationship() in
place of a string argument, e.g.:

'items':relationship(
 SomeItem, backref=backref('parent', lazy='subquery'))

See also

Linking Relationships with Backref

	
sqlalchemy.orm.relation(*arg, **kw)

	A synonym for relationship().

	
sqlalchemy.orm.dynamic_loader(argument, **kw)

	Construct a dynamically-loading mapper property.

This is essentially the same as
using the lazy='dynamic' argument with relationship():

dynamic_loader(SomeClass)

is the same as

relationship(SomeClass, lazy="dynamic")

See the section Dynamic Relationship Loaders for more details
on dynamic loading.

	
sqlalchemy.orm.foreign(expr)

	Annotate a portion of a primaryjoin expression
with a ‘foreign’ annotation.

See the section Creating Custom Foreign Conditions for a
description of use.

New in version 0.8.

See also

Creating Custom Foreign Conditions

remote()

	
sqlalchemy.orm.remote(expr)

	Annotate a portion of a primaryjoin expression
with a ‘remote’ annotation.

See the section Creating Custom Foreign Conditions for a
description of use.

New in version 0.8.

See also

Creating Custom Foreign Conditions

foreign()

Loading Objects

Notes and features regarding the general loading of mapped objects.

For an in-depth introduction to querying with the SQLAlchemy ORM, please see the Object Relational Tutorial.

	Loading Columns
	Deferred Column Loading

	Column Bundles

	Relationship Loading Techniques
	Using Loader Strategies: Lazy Loading, Eager Loading

	The Importance of Ordering

	Loading Along Paths

	Default Loading Strategies

	Per-Entity Default Loading Strategies

	The Zen of Eager Loading

	What Kind of Loading to Use ?

	Routing Explicit Joins/Statements into Eagerly Loaded Collections

	Creating Custom Load Rules

	Relationship Loader API

	Constructors and Object Initialization

	Query API
	The Query Object

	ORM-Specific Query Constructs

Loading Columns

This section presents additional options regarding the loading of columns.

Deferred Column Loading

This feature allows particular columns of a table be loaded only
upon direct access, instead of when the entity is queried using
Query. This feature is useful when one wants to avoid
loading a large text or binary field into memory when it’s not needed.
Individual columns can be lazy loaded by themselves or placed into groups that
lazy-load together, using the orm.deferred() function to
mark them as “deferred”. In the example below, we define a mapping that will load each of
.excerpt and .photo in separate, individual-row SELECT statements when each
attribute is first referenced on the individual object instance:

from sqlalchemy.orm import deferred
from sqlalchemy import Integer, String, Text, Binary, Column

class Book(Base):
 __tablename__ = 'book'

 book_id = Column(Integer, primary_key=True)
 title = Column(String(200), nullable=False)
 summary = Column(String(2000))
 excerpt = deferred(Column(Text))
 photo = deferred(Column(Binary))

Classical mappings as always place the usage of orm.deferred() in the
properties dictionary against the table-bound Column:

mapper(Book, book_table, properties={
 'photo':deferred(book_table.c.photo)
})

Deferred columns can be associated with a “group” name, so that they load
together when any of them are first accessed. The example below defines a
mapping with a photos deferred group. When one .photo is accessed, all three
photos will be loaded in one SELECT statement. The .excerpt will be loaded
separately when it is accessed:

class Book(Base):
 __tablename__ = 'book'

 book_id = Column(Integer, primary_key=True)
 title = Column(String(200), nullable=False)
 summary = Column(String(2000))
 excerpt = deferred(Column(Text))
 photo1 = deferred(Column(Binary), group='photos')
 photo2 = deferred(Column(Binary), group='photos')
 photo3 = deferred(Column(Binary), group='photos')

You can defer or undefer columns at the Query
level using options, including orm.defer() and orm.undefer():

from sqlalchemy.orm import defer, undefer

query = session.query(Book)
query = query.options(defer('summary'))
query = query.options(undefer('excerpt'))
query.all()

orm.deferred() attributes which are marked with a “group” can be undeferred
using orm.undefer_group(), sending in the group name:

from sqlalchemy.orm import undefer_group

query = session.query(Book)
query.options(undefer_group('photos')).all()

Load Only Cols

An arbitrary set of columns can be selected as “load only” columns, which will
be loaded while deferring all other columns on a given entity, using orm.load_only():

from sqlalchemy.orm import load_only

session.query(Book).options(load_only("summary", "excerpt"))

New in version 0.9.0.

Deferred Loading with Multiple Entities

To specify column deferral options within a Query that loads multiple types
of entity, the Load object can specify which parent entity to start with:

from sqlalchemy.orm import Load

query = session.query(Book, Author).join(Book.author)
query = query.options(
 Load(Book).load_only("summary", "excerpt"),
 Load(Author).defer("bio")
)

To specify column deferral options along the path of various relationships,
the options support chaining, where the loading style of each relationship
is specified first, then is chained to the deferral options. Such as, to load
Book instances, then joined-eager-load the Author, then apply deferral
options to the Author entity:

from sqlalchemy.orm import joinedload

query = session.query(Book)
query = query.options(
 joinedload(Book.author).load_only("summary", "excerpt"),
)

In the case where the loading style of parent relationships should be left
unchanged, use orm.defaultload():

from sqlalchemy.orm import defaultload

query = session.query(Book)
query = query.options(
 defaultload(Book.author).load_only("summary", "excerpt"),
)

New in version 0.9.0: support for Load and other options which
allow for better targeting of deferral options.

Column Deferral API

	
sqlalchemy.orm.deferred(*columns, **kw)

	Indicate a column-based mapped attribute that by default will
not load unless accessed.

	Parameters:
	
	*columns¶ – columns to be mapped. This is typically a single
Column object, however a collection is supported in order
to support multiple columns mapped under the same attribute.

	**kw¶ – additional keyword arguments passed to
ColumnProperty.

See also

Deferred Column Loading

	
sqlalchemy.orm.defer(key, *addl_attrs)

	Indicate that the given column-oriented attribute should be deferred, e.g.
not loaded until accessed.

This function is part of the Load interface and supports
both method-chained and standalone operation.

e.g.:

from sqlalchemy.orm import defer

session.query(MyClass).options(
 defer("attribute_one"),
 defer("attribute_two"))

session.query(MyClass).options(
 defer(MyClass.attribute_one),
 defer(MyClass.attribute_two))

To specify a deferred load of an attribute on a related class,
the path can be specified one token at a time, specifying the loading
style for each link along the chain. To leave the loading style
for a link unchanged, use orm.defaultload():

session.query(MyClass).options(defaultload("someattr").defer("some_column"))

A Load object that is present on a certain path can have
Load.defer() called multiple times, each will operate on the same
parent entity:

session.query(MyClass).options(
 defaultload("someattr").
 defer("some_column").
 defer("some_other_column").
 defer("another_column")
)

	Parameters:
	
	key¶ – Attribute to be deferred.

	*addl_attrs¶ – Deprecated; this option supports the old 0.8 style
of specifying a path as a series of attributes, which is now superseded
by the method-chained style.

See also

Deferred Column Loading

orm.undefer()

	
sqlalchemy.orm.load_only(*attrs)

	Indicate that for a particular entity, only the given list
of column-based attribute names should be loaded; all others will be
deferred.

This function is part of the Load interface and supports
both method-chained and standalone operation.

Example - given a class User, load only the name and fullname
attributes:

session.query(User).options(load_only("name", "fullname"))

Example - given a relationship User.addresses -> Address, specify
subquery loading for the User.addresses collection, but on each
Address object load only the email_address attribute:

session.query(User).options(
 subqueryload("addresses").load_only("email_address")
)

For a Query that has multiple entities, the lead entity can be
specifically referred to using the Load constructor:

session.query(User, Address).join(User.addresses).options(
 Load(User).load_only("name", "fullname"),
 Load(Address).load_only("email_addres")
)

New in version 0.9.0.

	
sqlalchemy.orm.undefer(key, *addl_attrs)

	Indicate that the given column-oriented attribute should be undeferred,
e.g. specified within the SELECT statement of the entity as a whole.

The column being undeferred is typically set up on the mapping as a
deferred() attribute.

This function is part of the Load interface and supports
both method-chained and standalone operation.

Examples:

undefer two columns
session.query(MyClass).options(undefer("col1"), undefer("col2"))

undefer all columns specific to a single class using Load + *
session.query(MyClass, MyOtherClass).options(
 Load(MyClass).undefer("*"))

	Parameters:
	
	key¶ – Attribute to be undeferred.

	*addl_attrs¶ – Deprecated; this option supports the old 0.8 style
of specifying a path as a series of attributes, which is now superseded
by the method-chained style.

See also

Deferred Column Loading

orm.defer()

orm.undefer_group()

	
sqlalchemy.orm.undefer_group(name)

	Indicate that columns within the given deferred group name should be
undeferred.

The columns being undeferred are set up on the mapping as
deferred() attributes and include a “group” name.

E.g:

session.query(MyClass).options(undefer_group("large_attrs"))

To undefer a group of attributes on a related entity, the path can be
spelled out using relationship loader options, such as
orm.defaultload():

session.query(MyClass).options(
 defaultload("someattr").undefer_group("large_attrs"))

Changed in version 0.9.0: orm.undefer_group() is now specific to a
particiular entity load path.

See also

Deferred Column Loading

orm.defer()

orm.undefer()

Column Bundles

The Bundle may be used to query for groups of columns under one
namespace.

New in version 0.9.0.

The bundle allows columns to be grouped together:

from sqlalchemy.orm import Bundle

bn = Bundle('mybundle', MyClass.data1, MyClass.data2)
for row in session.query(bn).filter(bn.c.data1 == 'd1'):
 print(row.mybundle.data1, row.mybundle.data2)

The bundle can be subclassed to provide custom behaviors when results
are fetched. The method Bundle.create_row_processor() is given
the Query and a set of “row processor” functions at query execution
time; these processor functions when given a result row will return the
individual attribute value, which can then be adapted into any kind of
return data structure. Below illustrates replacing the usual KeyedTuple
return structure with a straight Python dictionary:

from sqlalchemy.orm import Bundle

class DictBundle(Bundle):
 def create_row_processor(self, query, procs, labels):
 """Override create_row_processor to return values as dictionaries"""
 def proc(row):
 return dict(
 zip(labels, (proc(row) for proc in procs))
)
 return proc

Changed in version 1.0: The proc() callable passed to the create_row_processor()
method of custom Bundle classes now accepts only a single
“row” argument.

A result from the above bundle will return dictionary values:

bn = DictBundle('mybundle', MyClass.data1, MyClass.data2)
for row in session.query(bn).filter(bn.c.data1 == 'd1'):
 print(row.mybundle['data1'], row.mybundle['data2'])

The Bundle construct is also integrated into the behavior
of composite(), where it is used to return composite attributes as objects
when queried as individual attributes.

Relationship Loading Techniques

A big part of SQLAlchemy is providing a wide range of control over how related objects get loaded when querying. This behavior
can be configured at mapper construction time using the lazy parameter to the relationship() function,
as well as by using options with the Query object.

Using Loader Strategies: Lazy Loading, Eager Loading

By default, all inter-object relationships are lazy loading. The scalar or
collection attribute associated with a relationship()
contains a trigger which fires the first time the attribute is accessed. This
trigger, in all but one case, issues a SQL call at the point of access
in order to load the related object or objects:

sql>>> jack.addresses
SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address,
addresses.user_id AS addresses_user_id
FROM addresses
WHERE ? = addresses.user_id
[5]

[<Address(u'jack@google.com')>, <Address(u'j25@yahoo.com')>]

The one case where SQL is not emitted is for a simple many-to-one relationship, when
the related object can be identified by its primary key alone and that object is already
present in the current Session.

This default behavior of “load upon attribute access” is known as “lazy” or
“select” loading - the name “select” because a “SELECT” statement is typically emitted
when the attribute is first accessed.

In the Object Relational Tutorial, we introduced the concept of Eager
Loading. We used an option in conjunction with the
Query object in order to indicate that a
relationship should be loaded at the same time as the parent, within a single
SQL query. This option, known as joinedload(), connects a JOIN (by default
a LEFT OUTER join) to the statement and populates the scalar/collection from the
same result set as that of the parent:

sql>>> jack = session.query(User).\
... options(joinedload('addresses')).\
... filter_by(name='jack').all() #doctest: +NORMALIZE_WHITESPACE
SELECT addresses_1.id AS addresses_1_id, addresses_1.email_address AS addresses_1_email_address,
addresses_1.user_id AS addresses_1_user_id, users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password
FROM users LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE users.name = ?
['jack']

In addition to “joined eager loading”, a second option for eager loading
exists, called “subquery eager loading”. This kind of eager loading emits an
additional SQL statement for each collection requested, aggregated across all
parent objects:

sql>>> jack = session.query(User).\
... options(subqueryload('addresses')).\
... filter_by(name='jack').all()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname,
users.password AS users_password
FROM users
WHERE users.name = ?
('jack',)
SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address,
addresses.user_id AS addresses_user_id, anon_1.users_id AS anon_1_users_id
FROM (SELECT users.id AS users_id
FROM users
WHERE users.name = ?) AS anon_1 JOIN addresses ON anon_1.users_id = addresses.user_id
ORDER BY anon_1.users_id, addresses.id
('jack',)

The default loader strategy for any relationship()
is configured by the lazy keyword argument, which defaults to select - this indicates
a “select” statement .
Below we set it as joined so that the children relationship is eager
loaded using a JOIN:

load the 'children' collection using LEFT OUTER JOIN
class Parent(Base):
 __tablename__ = 'parent'

 id = Column(Integer, primary_key=True)
 children = relationship("Child", lazy='joined')

We can also set it to eagerly load using a second query for all collections,
using subquery:

load the 'children' collection using a second query which
JOINS to a subquery of the original
class Parent(Base):
 __tablename__ = 'parent'

 id = Column(Integer, primary_key=True)
 children = relationship("Child", lazy='subquery')

When querying, all three choices of loader strategy are available on a
per-query basis, using the joinedload(),
subqueryload() and lazyload()
query options:

set children to load lazily
session.query(Parent).options(lazyload('children')).all()

set children to load eagerly with a join
session.query(Parent).options(joinedload('children')).all()

set children to load eagerly with a second statement
session.query(Parent).options(subqueryload('children')).all()

The Importance of Ordering

A query which makes use of subqueryload() in conjunction with a
limiting modifier such as Query.first(), Query.limit(),
or Query.offset() should always include Query.order_by()
against unique column(s) such as the primary key, so that the additional queries
emitted by subqueryload() include
the same ordering as used by the parent query. Without it, there is a chance
that the inner query could return the wrong rows:

incorrect, no ORDER BY
session.query(User).options(subqueryload(User.addresses)).first()

incorrect if User.name is not unique
session.query(User).options(subqueryload(User.addresses)).order_by(User.name).first()

correct
session.query(User).options(subqueryload(User.addresses)).order_by(User.name, User.id).first()

See also

Why is ORDER BY required with LIMIT (especially with subqueryload())? - detailed example

Loading Along Paths

To reference a relationship that is deeper than one level, method chaining
may be used. The object returned by all loader options is an instance of
the Load class, which provides a so-called “generative” interface:

session.query(Parent).options(
 joinedload('foo').
 joinedload('bar').
 joinedload('bat')
).all()

Using method chaining, the loader style of each link in the path is explicitly
stated. To navigate along a path without changing the existing loader style
of a particular attribute, the defaultload() method/function may be used:

session.query(A).options(
 defaultload("atob").joinedload("btoc")
).all()

Changed in version 0.9.0: The previous approach of specifying dot-separated paths within loader
options has been superseded by the less ambiguous approach of the
Load object and related methods. With this system, the user
specifies the style of loading for each link along the chain explicitly,
rather than guessing between options like joinedload() vs. joinedload_all().
The orm.defaultload() is provided to allow path navigation without
modification of existing loader options. The dot-separated path system
as well as the _all() functions will remain available for backwards-
compatibility indefinitely.

Default Loading Strategies

New in version 0.7.5: Default loader strategies as a new feature.

Each of joinedload(), subqueryload(), lazyload(),
noload(), and raiseload() can be used to set the default
style of relationship() loading
for a particular query, affecting all relationship() -mapped
attributes not otherwise
specified in the Query. This feature is available by passing
the string '*' as the argument to any of these options:

session.query(MyClass).options(lazyload('*'))

Above, the lazyload('*') option will supersede the lazy setting
of all relationship() constructs in use for that query,
except for those which use the 'dynamic' style of loading.
If some relationships specify
lazy='joined' or lazy='subquery', for example,
using lazyload('*') will unilaterally
cause all those relationships to use 'select' loading, e.g. emit a
SELECT statement when each attribute is accessed.

The option does not supersede loader options stated in the
query, such as eagerload(),
subqueryload(), etc. The query below will still use joined loading
for the widget relationship:

session.query(MyClass).options(
 lazyload('*'),
 joinedload(MyClass.widget)
)

If multiple '*' options are passed, the last one overrides
those previously passed.

Per-Entity Default Loading Strategies

New in version 0.9.0: Per-entity default loader strategies.

A variant of the default loader strategy is the ability to set the strategy
on a per-entity basis. For example, if querying for User and Address,
we can instruct all relationships on Address only to use lazy loading
by first applying the Load object, then specifying the * as a
chained option:

session.query(User, Address).options(Load(Address).lazyload('*'))

Above, all relationships on Address will be set to a lazy load.

The Zen of Eager Loading

The philosophy behind loader strategies is that any set of loading schemes can be
applied to a particular query, and the results don’t change - only the number
of SQL statements required to fully load related objects and collections changes. A particular
query might start out using all lazy loads. After using it in context, it might be revealed
that particular attributes or collections are always accessed, and that it would be more
efficient to change the loader strategy for these. The strategy can be changed with no other
modifications to the query, the results will remain identical, but fewer SQL statements would be emitted.
In theory (and pretty much in practice), nothing you can do to the Query would make it load
a different set of primary or related objects based on a change in loader strategy.

How joinedload() in particular achieves this result of not impacting
entity rows returned in any way is that it creates an anonymous alias of the joins it adds to your
query, so that they can’t be referenced by other parts of the query. For example,
the query below uses joinedload() to create a LEFT OUTER JOIN from users
to addresses, however the ORDER BY added against Address.email_address
is not valid - the Address entity is not named in the query:

>>> jack = session.query(User).\
... options(joinedload(User.addresses)).\
... filter(User.name=='jack').\
... order_by(Address.email_address).all()
SELECT addresses_1.id AS addresses_1_id, addresses_1.email_address AS addresses_1_email_address,
addresses_1.user_id AS addresses_1_user_id, users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password
FROM users LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE users.name = ? ORDER BY addresses.email_address <-- this part is wrong !
['jack']

Above, ORDER BY addresses.email_address is not valid since addresses is not in the
FROM list. The correct way to load the User records and order by email
address is to use Query.join():

>>> jack = session.query(User).\
... join(User.addresses).\
... filter(User.name=='jack').\
... order_by(Address.email_address).all()

SELECT users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password
FROM users JOIN addresses ON users.id = addresses.user_id
WHERE users.name = ? ORDER BY addresses.email_address
['jack']

The statement above is of course not the same as the previous one, in that the columns from addresses
are not included in the result at all. We can add joinedload() back in, so that
there are two joins - one is that which we are ordering on, the other is used anonymously to
load the contents of the User.addresses collection:

>>> jack = session.query(User).\
... join(User.addresses).\
... options(joinedload(User.addresses)).\
... filter(User.name=='jack').\
... order_by(Address.email_address).all()
SELECT addresses_1.id AS addresses_1_id, addresses_1.email_address AS addresses_1_email_address,
addresses_1.user_id AS addresses_1_user_id, users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password
FROM users JOIN addresses ON users.id = addresses.user_id
LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE users.name = ? ORDER BY addresses.email_address
['jack']

What we see above is that our usage of Query.join() is to supply JOIN clauses we’d like
to use in subsequent query criterion, whereas our usage of joinedload() only concerns
itself with the loading of the User.addresses collection, for each User in the result.
In this case, the two joins most probably appear redundant - which they are. If we
wanted to use just one JOIN for collection loading as well as ordering, we use the
contains_eager() option, described in Routing Explicit Joins/Statements into Eagerly Loaded Collections below. But
to see why joinedload() does what it does, consider if we were filtering on a
particular Address:

>>> jack = session.query(User).\
... join(User.addresses).\
... options(joinedload(User.addresses)).\
... filter(User.name=='jack').\
... filter(Address.email_address=='someaddress@foo.com').\
... all()
SELECT addresses_1.id AS addresses_1_id, addresses_1.email_address AS addresses_1_email_address,
addresses_1.user_id AS addresses_1_user_id, users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password
FROM users JOIN addresses ON users.id = addresses.user_id
LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE users.name = ? AND addresses.email_address = ?
['jack', 'someaddress@foo.com']

Above, we can see that the two JOINs have very different roles. One will match exactly
one row, that of the join of User and Address where Address.email_address=='someaddress@foo.com'.
The other LEFT OUTER JOIN will match all Address rows related to User,
and is only used to populate the User.addresses collection, for those User objects
that are returned.

By changing the usage of joinedload() to another style of loading, we can change
how the collection is loaded completely independently of SQL used to retrieve
the actual User rows we want. Below we change joinedload() into
subqueryload():

>>> jack = session.query(User).\
... join(User.addresses).\
... options(subqueryload(User.addresses)).\
... filter(User.name=='jack').\
... filter(Address.email_address=='someaddress@foo.com').\
... all()
SELECT users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password
FROM users JOIN addresses ON users.id = addresses.user_id
WHERE users.name = ? AND addresses.email_address = ?
['jack', 'someaddress@foo.com']

... subqueryload() emits a SELECT in order
to load all address records ...

When using joined eager loading, if the
query contains a modifier that impacts the rows returned
externally to the joins, such as when using DISTINCT, LIMIT, OFFSET
or equivalent, the completed statement is first
wrapped inside a subquery, and the joins used specifically for joined eager
loading are applied to the subquery. SQLAlchemy’s
joined eager loading goes the extra mile, and then ten miles further, to
absolutely ensure that it does not affect the end result of the query, only
the way collections and related objects are loaded, no matter what the format of the query is.

What Kind of Loading to Use ?

Which type of loading to use typically comes down to optimizing the tradeoff
between number of SQL executions, complexity of SQL emitted, and amount of
data fetched. Lets take two examples, a relationship()
which references a collection, and a relationship() that
references a scalar many-to-one reference.

	One to Many Collection

	When using the default lazy loading, if you load 100 objects, and then access a collection on each of
them, a total of 101 SQL statements will be emitted, although each statement will typically be a
simple SELECT without any joins.

	When using joined loading, the load of 100 objects and their collections will emit only one SQL
statement. However, the
total number of rows fetched will be equal to the sum of the size of all the collections, plus one
extra row for each parent object that has an empty collection. Each row will also contain the full
set of columns represented by the parents, repeated for each collection item - SQLAlchemy does not
re-fetch these columns other than those of the primary key, however most DBAPIs (with some
exceptions) will transmit the full data of each parent over the wire to the client connection in
any case. Therefore joined eager loading only makes sense when the size of the collections are
relatively small. The LEFT OUTER JOIN can also be performance intensive compared to an INNER join.

	When using subquery loading, the load of 100 objects will emit two SQL statements. The second
statement will fetch a total number of rows equal to the sum of the size of all collections. An
INNER JOIN is used, and a minimum of parent columns are requested, only the primary keys. So a
subquery load makes sense when the collections are larger.

	When multiple levels of depth are used with joined or subquery loading, loading collections-within-
collections will multiply the total number of rows fetched in a cartesian fashion. Both forms
of eager loading always join from the original parent class.

	Many to One Reference

	When using the default lazy loading, a load of 100 objects will like in the case of the collection
emit as many as 101 SQL statements. However - there is a significant exception to this, in that
if the many-to-one reference is a simple foreign key reference to the target’s primary key, each
reference will be checked first in the current identity map using Query.get(). So here,
if the collection of objects references a relatively small set of target objects, or the full set
of possible target objects have already been loaded into the session and are strongly referenced,
using the default of lazy=’select’ is by far the most efficient way to go.

	When using joined loading, the load of 100 objects will emit only one SQL statement. The join
will be a LEFT OUTER JOIN, and the total number of rows will be equal to 100 in all cases.
If you know that each parent definitely has a child (i.e. the foreign
key reference is NOT NULL), the joined load can be configured with
innerjoin set to True, which is
usually specified within the relationship(). For a load of objects where
there are many possible target references which may have not been loaded already, joined loading
with an INNER JOIN is extremely efficient.

	Subquery loading will issue a second load for all the child objects, so for a load of 100 objects
there would be two SQL statements emitted. There’s probably not much advantage here over
joined loading, however, except perhaps that subquery loading can use an INNER JOIN in all cases
whereas joined loading requires that the foreign key is NOT NULL.

Routing Explicit Joins/Statements into Eagerly Loaded Collections

The behavior of joinedload() is such that joins are
created automatically, using anonymous aliases as targets, the results of which
are routed into collections and
scalar references on loaded objects. It is often the case that a query already
includes the necessary joins which represent a particular collection or scalar
reference, and the joins added by the joinedload feature are redundant - yet
you’d still like the collections/references to be populated.

For this SQLAlchemy supplies the contains_eager()
option. This option is used in the same manner as the
joinedload() option except it is assumed that the
Query will specify the appropriate joins
explicitly. Below, we specify a join between User and Address
and addtionally establish this as the basis for eager loading of User.addresses:

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 addresses = relationship("Address")

class Address(Base):
 __tablename__ = 'address'

 # ...

q = session.query(User).join(User.addresses).\
 options(contains_eager(User.addresses))

If the “eager” portion of the statement is “aliased”, the alias keyword
argument to contains_eager() may be used to indicate it.
This is sent as a reference to an aliased() or Alias
construct:

use an alias of the Address entity
adalias = aliased(Address)

construct a Query object which expects the "addresses" results
query = session.query(User).\
 outerjoin(adalias, User.addresses).\
 options(contains_eager(User.addresses, alias=adalias))

get results normally
sqlr = query.all()
SELECT users.user_id AS users_user_id, users.user_name AS users_user_name, adalias.address_id AS adalias_address_id,
adalias.user_id AS adalias_user_id, adalias.email_address AS adalias_email_address, (...other columns...)
FROM users LEFT OUTER JOIN email_addresses AS email_addresses_1 ON users.user_id = email_addresses_1.user_id

The path given as the argument to contains_eager() needs
to be a full path from the starting entity. For example if we were loading
Users->orders->Order->items->Item, the string version would look like:

query(User).options(contains_eager('orders').contains_eager('items'))

Or using the class-bound descriptor:

query(User).options(contains_eager(User.orders).contains_eager(Order.items))

Using contains_eager() to load a custom-filtered collection result

When we use contains_eager(), we are constructing ourselves the
SQL that will be used to populate collections. From this, it naturally follows
that we can opt to modify what values the collection is intended to store,
by writing our SQL to load a subset of elements for collections or
scalar attributes.

As an example, we can load a User object and eagerly load only particular
addresses into its .addresses collection just by filtering:

q = session.query(User).join(User.addresses).\
 filter(Address.email.like('%ed%')).\
 options(contains_eager(User.addresses))

The above query will load only User objects which contain at
least Address object that contains the substring 'ed' in its
email field; the User.addresses collection will contain only
these Address entries, and not any other Address entries that are
in fact associated with the collection.

Warning

Keep in mind that when we load only a subset of objects into a collection,
that collection no longer represents what’s actually in the database. If
we attempted to add entries to this collection, we might find ourselves
conflicting with entries that are already in the database but not locally
loaded.

In addition, the collection will fully reload normally once the
object or attribute is expired. This expiration occurs whenever the
Session.commit(), Session.rollback() methods are used
assuming default session settings, or the Session.expire_all()
or Session.expire() methods are used.

For these reasons, prefer returning separate fields in a tuple rather
than artificially altering a collection, when an object plus a custom
set of related objects is desired:

q = session.query(User, Address).join(User.addresses).\
 filter(Address.email.like('%ed%'))

Advanced Usage with Arbitrary Statements

The alias argument can be more creatively used, in that it can be made
to represent any set of arbitrary names to match up into a statement.
Below it is linked to a select() which links a set of column objects
to a string SQL statement:

label the columns of the addresses table
eager_columns = select([
 addresses.c.address_id.label('a1'),
 addresses.c.email_address.label('a2'),
 addresses.c.user_id.label('a3')])

select from a raw SQL statement which uses those label names for the
addresses table. contains_eager() matches them up.
query = session.query(User).\
 from_statement("select users.*, addresses.address_id as a1, "
 "addresses.email_address as a2, addresses.user_id as a3 "
 "from users left outer join addresses on users.user_id=addresses.user_id").\
 options(contains_eager(User.addresses, alias=eager_columns))

Creating Custom Load Rules

Warning

This is an advanced technique! Great care and testing
should be applied.

The ORM has various edge cases where the value of an attribute is locally
available, however the ORM itself doesn’t have awareness of this. There
are also cases when a user-defined system of loading attributes is desirable.
To support the use case of user-defined loading systems, a key function
attributes.set_committed_value() is provided. This function is
basically equivalent to Python’s own setattr() function, except that
when applied to a target object, SQLAlchemy’s “attribute history” system
which is used to determine flush-time changes is bypassed; the attribute
is assigned in the same way as if the ORM loaded it that way from the database.

The use of attributes.set_committed_value() can be combined with another
key event known as InstanceEvents.load() to produce attribute-population
behaviors when an object is loaded. One such example is the bi-directional
“one-to-one” case, where loading the “many-to-one” side of a one-to-one
should also imply the value of the “one-to-many” side. The SQLAlchemy ORM
does not consider backrefs when loading related objects, and it views a
“one-to-one” as just another “one-to-many”, that just happens to be one
row.

Given the following mapping:

from sqlalchemy import Integer, ForeignKey, Column
from sqlalchemy.orm import relationship, backref
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)
 b_id = Column(ForeignKey('b.id'))
 b = relationship("B", backref=backref("a", uselist=False), lazy='joined')

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)

If we query for an A row, and then ask it for a.b.a, we will get
an extra SELECT:

>>> a1.b.a
SELECT a.id AS a_id, a.b_id AS a_b_id
FROM a
WHERE ? = a.b_id

This SELECT is redundant becasue b.a is the same value as a1. We
can create an on-load rule to populate this for us:

from sqlalchemy import event
from sqlalchemy.orm import attributes

@event.listens_for(A, "load")
def load_b(target, context):
 if 'b' in target.__dict__:
 attributes.set_committed_value(target.b, 'a', target)

Now when we query for A, we will get A.b from the joined eager load,
and A.b.a from our event:

sqla1 = s.query(A).first()
SELECT a.id AS a_id, a.b_id AS a_b_id, b_1.id AS b_1_id
FROM a LEFT OUTER JOIN b AS b_1 ON b_1.id = a.b_id
 LIMIT ? OFFSET ?
(1, 0)

assert a1.b.a is a1

Relationship Loader API

	
sqlalchemy.orm.contains_alias(alias)

	Return a MapperOption that will indicate to the Query
that the main table has been aliased.

This is a seldom-used option to suit the
very rare case that contains_eager()
is being used in conjunction with a user-defined SELECT
statement that aliases the parent table. E.g.:

define an aliased UNION called 'ulist'
ulist = users.select(users.c.user_id==7).\
 union(users.select(users.c.user_id>7)).\
 alias('ulist')

add on an eager load of "addresses"
statement = ulist.outerjoin(addresses).\
 select().apply_labels()

create query, indicating "ulist" will be an
alias for the main table, "addresses"
property should be eager loaded
query = session.query(User).options(
 contains_alias(ulist),
 contains_eager(User.addresses))

then get results via the statement
results = query.from_statement(statement).all()

	Parameters:
	alias¶ – is the string name of an alias, or a
Alias object representing
the alias.

	
sqlalchemy.orm.contains_eager(*keys, **kw)

	Indicate that the given attribute should be eagerly loaded from
columns stated manually in the query.

This function is part of the Load interface and supports
both method-chained and standalone operation.

The option is used in conjunction with an explicit join that loads
the desired rows, i.e.:

sess.query(Order).\
 join(Order.user).\
 options(contains_eager(Order.user))

The above query would join from the Order entity to its related
User entity, and the returned Order objects would have the
Order.user attribute pre-populated.

contains_eager() also accepts an alias argument, which is the
string name of an alias, an alias()
construct, or an aliased() construct. Use this when
the eagerly-loaded rows are to come from an aliased table:

user_alias = aliased(User)
sess.query(Order).\
 join((user_alias, Order.user)).\
 options(contains_eager(Order.user, alias=user_alias))

See also

Routing Explicit Joins/Statements into Eagerly Loaded Collections

	
sqlalchemy.orm.defaultload(*keys)

	Indicate an attribute should load using its default loader style.

This method is used to link to other loader options, such as
to set the orm.defer() option on a class that is linked to
a relationship of the parent class being loaded, orm.defaultload()
can be used to navigate this path without changing the loading style
of the relationship:

session.query(MyClass).options(defaultload("someattr").defer("some_column"))

See also

orm.defer()

orm.undefer()

	
sqlalchemy.orm.eagerload(*args, **kwargs)

	A synonym for joinedload().

	
sqlalchemy.orm.eagerload_all(*args, **kwargs)

	A synonym for joinedload_all()

	
sqlalchemy.orm.immediateload(*keys)

	Indicate that the given attribute should be loaded using
an immediate load with a per-attribute SELECT statement.

This function is part of the Load interface and supports
both method-chained and standalone operation.

See also

Relationship Loading Techniques

orm.joinedload()

orm.lazyload()

relationship.lazy

	
sqlalchemy.orm.joinedload(*keys, **kw)

	Indicate that the given attribute should be loaded using joined
eager loading.

This function is part of the Load interface and supports
both method-chained and standalone operation.

examples:

joined-load the "orders" collection on "User"
query(User).options(joinedload(User.orders))

joined-load Order.items and then Item.keywords
query(Order).options(joinedload(Order.items).joinedload(Item.keywords))

lazily load Order.items, but when Items are loaded,
joined-load the keywords collection
query(Order).options(lazyload(Order.items).joinedload(Item.keywords))

	Parameters:
	innerjoin¶ – if True, indicates that the joined eager load should
use an inner join instead of the default of left outer join:

query(Order).options(joinedload(Order.user, innerjoin=True))

In order to chain multiple eager joins together where some may be
OUTER and others INNER, right-nested joins are used to link them:

query(A).options(
 joinedload(A.bs, innerjoin=False).
 joinedload(B.cs, innerjoin=True)
)

The above query, linking A.bs via “outer” join and B.cs via “inner” join
would render the joins as “a LEFT OUTER JOIN (b JOIN c)”. When using
SQLite, this form of JOIN is translated to use full subqueries as this
syntax is otherwise not directly supported.

The innerjoin flag can also be stated with the term "unnested".
This will prevent joins from being right-nested, and will instead
link an “innerjoin” eagerload to an “outerjoin” eagerload by bypassing
the “inner” join. Using this form as follows:

query(A).options(
 joinedload(A.bs, innerjoin=False).
 joinedload(B.cs, innerjoin="unnested")
)

Joins will be rendered as “a LEFT OUTER JOIN b LEFT OUTER JOIN c”, so that
all of “a” is matched rather than being incorrectly limited by a “b” that
does not contain a “c”.

Note

The “unnested” flag does not affect the JOIN rendered
from a many-to-many association table, e.g. a table configured
as relationship.secondary, to the target table; for
correctness of results, these joins are always INNER and are
therefore right-nested if linked to an OUTER join.

New in version 0.9.4: Added support for “nesting” of eager “inner”
joins. See Right-nested inner joins available in joined eager loads.

Changed in version 1.0.0: innerjoin=True now implies
innerjoin="nested", whereas in 0.9 it implied
innerjoin="unnested". In order to achieve the pre-1.0 “unnested”
inner join behavior, use the value innerjoin="unnested".
See Right inner join nesting now the default for joinedload with innerjoin=True.

Note

The joins produced by orm.joinedload() are anonymously
aliased. The criteria by which the join proceeds cannot be
modified, nor can the Query refer to these joins in any way,
including ordering.

To produce a specific SQL JOIN which is explicitly available, use
Query.join(). To combine explicit JOINs with eager loading
of collections, use orm.contains_eager(); see
Routing Explicit Joins/Statements into Eagerly Loaded Collections.

See also

Relationship Loading Techniques

Routing Explicit Joins/Statements into Eagerly Loaded Collections

orm.subqueryload()

orm.lazyload()

relationship.lazy

relationship.innerjoin - relationship()-level
version of the joinedload.innerjoin option.

	
sqlalchemy.orm.joinedload_all(*keys, **kw)

	Produce a standalone “all” option for orm.joinedload().

Deprecated since version 0.9.0: The “_all()” style is replaced by method chaining, e.g.:

session.query(MyClass).options(
 joinedload("someattribute").joinedload("anotherattribute")
)

	
sqlalchemy.orm.lazyload(*keys)

	Indicate that the given attribute should be loaded using “lazy”
loading.

This function is part of the Load interface and supports
both method-chained and standalone operation.

See also

relationship.lazy

	
sqlalchemy.orm.noload(*keys)

	Indicate that the given relationship attribute should remain unloaded.

This function is part of the Load interface and supports
both method-chained and standalone operation.

orm.noload() applies to relationship() attributes; for
column-based attributes, see orm.defer().

	
sqlalchemy.orm.raiseload(*keys)

	Indicate that the given relationship attribute should disallow lazy loads.

A relationship attribute configured with orm.raiseload() will
raise an InvalidRequestError upon access. The
typical way this is useful is when an application is attempting to ensure
that all relationship attributes that are accessed in a particular context
would have been already loaded via eager loading. Instead of having
to read through SQL logs to ensure lazy loads aren’t occurring, this
strategy will cause them to raise immediately.

This function is part of the Load interface and supports
both method-chained and standalone operation.

orm.raiseload() applies to relationship() attributes only.

New in version 1.1.

	
sqlalchemy.orm.subqueryload(*keys)

	Indicate that the given attribute should be loaded using
subquery eager loading.

This function is part of the Load interface and supports
both method-chained and standalone operation.

examples:

subquery-load the "orders" collection on "User"
query(User).options(subqueryload(User.orders))

subquery-load Order.items and then Item.keywords
query(Order).options(subqueryload(Order.items).subqueryload(Item.keywords))

lazily load Order.items, but when Items are loaded,
subquery-load the keywords collection
query(Order).options(lazyload(Order.items).subqueryload(Item.keywords))

See also

Relationship Loading Techniques

orm.joinedload()

orm.lazyload()

relationship.lazy

	
sqlalchemy.orm.subqueryload_all(*keys)

	Produce a standalone “all” option for orm.subqueryload().

Deprecated since version 0.9.0: The “_all()” style is replaced by method chaining, e.g.:

session.query(MyClass).options(
 subqueryload("someattribute").subqueryload("anotherattribute")
)

Constructors and Object Initialization

Mapping imposes no restrictions or requirements on the constructor
(__init__) method for the class. You are free to require any arguments for
the function that you wish, assign attributes to the instance that are unknown
to the ORM, and generally do anything else you would normally do when writing
a constructor for a Python class.

The SQLAlchemy ORM does not call __init__ when recreating objects from
database rows. The ORM’s process is somewhat akin to the Python standard
library’s pickle module, invoking the low level __new__ method and
then quietly restoring attributes directly on the instance rather than calling
__init__.

If you need to do some setup on database-loaded instances before they’re ready
to use, you can use the @reconstructor decorator to tag a method as the
ORM counterpart to __init__. SQLAlchemy will call this method with no
arguments every time it loads or reconstructs one of your instances. This is
useful for recreating transient properties that are normally assigned in your
__init__:

from sqlalchemy import orm

class MyMappedClass(object):
 def __init__(self, data):
 self.data = data
 # we need stuff on all instances, but not in the database.
 self.stuff = []

 @orm.reconstructor
 def init_on_load(self):
 self.stuff = []

When obj = MyMappedClass() is executed, Python calls the __init__
method as normal and the data argument is required. When instances are
loaded during a Query operation as in
query(MyMappedClass).one(), init_on_load is called.

Any method may be tagged as the reconstructor(), even
the __init__ method. SQLAlchemy will call the reconstructor method with no
arguments. Scalar (non-collection) database-mapped attributes of the instance
will be available for use within the function. Eagerly-loaded collections are
generally not yet available and will usually only contain the first element.
ORM state changes made to objects at this stage will not be recorded for the
next flush() operation, so the activity within a reconstructor should be
conservative.

reconstructor() is a shortcut into a larger system
of “instance level” events, which can be subscribed to using the
event API - see InstanceEvents for the full API description
of these events.

	
sqlalchemy.orm.reconstructor(fn)

	Decorate a method as the ‘reconstructor’ hook.

Designates a method as the “reconstructor”, an __init__-like
method that will be called by the ORM after the instance has been
loaded from the database or otherwise reconstituted.

The reconstructor will be invoked with no arguments. Scalar
(non-collection) database-mapped attributes of the instance will
be available for use within the function. Eagerly-loaded
collections are generally not yet available and will usually only
contain the first element. ORM state changes made to objects at
this stage will not be recorded for the next flush() operation, so
the activity within a reconstructor should be conservative.

Query API

The Query Object

Query is produced in terms of a given Session, using the query() method:

q = session.query(SomeMappedClass)

Following is the full interface for the Query object.

	
class sqlalchemy.orm.query.Query(entities, session=None)

	ORM-level SQL construction object.

Query is the source of all SELECT statements generated by the
ORM, both those formulated by end-user query operations as well as by
high level internal operations such as related collection loading. It
features a generative interface whereby successive calls return a new
Query object, a copy of the former with additional
criteria and options associated with it.

Query objects are normally initially generated using the
query() method of Session. For a full
walkthrough of Query usage, see the
Object Relational Tutorial.

	
add_column(column)

	Add a column expression to the list of result columns to be
returned.

Pending deprecation: add_column() will be superseded by
add_columns().

	
add_columns(*column)

	Add one or more column expressions to the list
of result columns to be returned.

	
add_entity(entity, alias=None)

	add a mapped entity to the list of result columns
to be returned.

	
all()

	Return the results represented by this Query as a list.

This results in an execution of the underlying query.

	
as_scalar()

	Return the full SELECT statement represented by this
Query, converted to a scalar subquery.

Analogous to sqlalchemy.sql.expression.SelectBase.as_scalar().

New in version 0.6.5.

	
autoflush(setting)

	Return a Query with a specific ‘autoflush’ setting.

Note that a Session with autoflush=False will
not autoflush, even if this flag is set to True at the
Query level. Therefore this flag is usually used only
to disable autoflush for a specific Query.

	
column_descriptions

	Return metadata about the columns which would be
returned by this Query.

Format is a list of dictionaries:

user_alias = aliased(User, name='user2')
q = sess.query(User, User.id, user_alias)

this expression:
q.column_descriptions

would return:
[
 {
 'name':'User',
 'type':User,
 'aliased':False,
 'expr':User,
 'entity': User
 },
 {
 'name':'id',
 'type':Integer(),
 'aliased':False,
 'expr':User.id,
 'entity': User
 },
 {
 'name':'user2',
 'type':User,
 'aliased':True,
 'expr':user_alias,
 'entity': user_alias
 }
]

	
correlate(*args)

	Return a Query construct which will correlate the given
FROM clauses to that of an enclosing Query or
select().

The method here accepts mapped classes, aliased() constructs,
and mapper() constructs as arguments, which are resolved into
expression constructs, in addition to appropriate expression
constructs.

The correlation arguments are ultimately passed to
Select.correlate() after coercion to expression constructs.

The correlation arguments take effect in such cases
as when Query.from_self() is used, or when
a subquery as returned by Query.subquery() is
embedded in another select() construct.

	
count()

	Return a count of rows this Query would return.

This generates the SQL for this Query as follows:

SELECT count(1) AS count_1 FROM (
 SELECT <rest of query follows...>
) AS anon_1

Changed in version 0.7: The above scheme is newly refined as of 0.7b3.

For fine grained control over specific columns
to count, to skip the usage of a subquery or
otherwise control of the FROM clause,
or to use other aggregate functions,
use func
expressions in conjunction
with query(), i.e.:

from sqlalchemy import func

count User records, without
using a subquery.
session.query(func.count(User.id))

return count of user "id" grouped
by "name"
session.query(func.count(User.id)).\
 group_by(User.name)

from sqlalchemy import distinct

count distinct "name" values
session.query(func.count(distinct(User.name)))

	
cte(name=None, recursive=False)

	Return the full SELECT statement represented by this
Query represented as a common table expression (CTE).

Parameters and usage are the same as those of the
SelectBase.cte() method; see that method for
further details.

Here is the Postgresql WITH
RECURSIVE example.
Note that, in this example, the included_parts cte and the
incl_alias alias of it are Core selectables, which
means the columns are accessed via the .c. attribute. The
parts_alias object is an orm.aliased() instance of the
Part entity, so column-mapped attributes are available
directly:

from sqlalchemy.orm import aliased

class Part(Base):
 __tablename__ = 'part'
 part = Column(String, primary_key=True)
 sub_part = Column(String, primary_key=True)
 quantity = Column(Integer)

included_parts = session.query(
 Part.sub_part,
 Part.part,
 Part.quantity).\
 filter(Part.part=="our part").\
 cte(name="included_parts", recursive=True)

incl_alias = aliased(included_parts, name="pr")
parts_alias = aliased(Part, name="p")
included_parts = included_parts.union_all(
 session.query(
 parts_alias.sub_part,
 parts_alias.part,
 parts_alias.quantity).\
 filter(parts_alias.part==incl_alias.c.sub_part)
)

q = session.query(
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
).\
 group_by(included_parts.c.sub_part)

See also

HasCTE.cte()

	
delete(synchronize_session='evaluate')

	Perform a bulk delete query.

Deletes rows matched by this query from the database.

E.g.:

sess.query(User).filter(User.age == 25).\
 delete(synchronize_session=False)

sess.query(User).filter(User.age == 25).\
 delete(synchronize_session='evaluate')

Warning

The Query.delete() method is a “bulk” operation,
which bypasses ORM unit-of-work automation in favor of greater
performance. Please read all caveats and warnings below.

	Parameters:
	synchronize_session¶ – chooses the strategy for the removal of
matched objects from the session. Valid values are:

False - don’t synchronize the session. This option is the most
efficient and is reliable once the session is expired, which
typically occurs after a commit(), or explicitly using
expire_all(). Before the expiration, objects may still remain in
the session which were in fact deleted which can lead to confusing
results if they are accessed via get() or already loaded
collections.

'fetch' - performs a select query before the delete to find
objects that are matched by the delete query and need to be
removed from the session. Matched objects are removed from the
session.

'evaluate' - Evaluate the query’s criteria in Python straight
on the objects in the session. If evaluation of the criteria isn’t
implemented, an error is raised.

The expression evaluator currently doesn’t account for differing
string collations between the database and Python.

	Returns:
	the count of rows matched as returned by the database’s
“row count” feature.

Warning

Additional Caveats for bulk query deletes

	The method does not offer in-Python cascading of
relationships - it is assumed that ON DELETE CASCADE/SET
NULL/etc. is configured for any foreign key references
which require it, otherwise the database may emit an
integrity violation if foreign key references are being
enforced.

After the DELETE, dependent objects in the
Session which were impacted by an ON DELETE
may not contain the current state, or may have been
deleted. This issue is resolved once the
Session is expired, which normally occurs upon
Session.commit() or can be forced by using
Session.expire_all(). Accessing an expired
object whose row has been deleted will invoke a SELECT
to locate the row; when the row is not found, an
ObjectDeletedError is
raised.

	The 'fetch' strategy results in an additional
SELECT statement emitted and will significantly reduce
performance.

	The 'evaluate' strategy performs a scan of
all matching objects within the Session; if the
contents of the Session are expired, such as
via a proceeding Session.commit() call, this will
result in SELECT queries emitted for every matching object.

	The MapperEvents.before_delete() and
MapperEvents.after_delete()
events are not invoked from this method. Instead, the
SessionEvents.after_bulk_delete() method is provided to
act upon a mass DELETE of entity rows.

See also

Query.update()

Inserts, Updates and Deletes - Core SQL tutorial

	
distinct(*criterion)

	Apply a DISTINCT to the query and return the newly resulting
Query.

Note

The distinct() call includes logic that will automatically
add columns from the ORDER BY of the query to the columns
clause of the SELECT statement, to satisfy the common need
of the database backend that ORDER BY columns be part of the
SELECT list when DISTINCT is used. These columns are not
added to the list of columns actually fetched by the
Query, however, so would not affect results.
The columns are passed through when using the
Query.statement accessor, however.

	Parameters:
	*expr¶ – optional column expressions. When present,
the Postgresql dialect will render a DISTINCT ON (<expressions>>)
construct.

	
enable_assertions(value)

	Control whether assertions are generated.

When set to False, the returned Query will
not assert its state before certain operations,
including that LIMIT/OFFSET has not been applied
when filter() is called, no criterion exists
when get() is called, and no “from_statement()”
exists when filter()/order_by()/group_by() etc.
is called. This more permissive mode is used by
custom Query subclasses to specify criterion or
other modifiers outside of the usual usage patterns.

Care should be taken to ensure that the usage
pattern is even possible. A statement applied
by from_statement() will override any criterion
set by filter() or order_by(), for example.

	
enable_eagerloads(value)

	Control whether or not eager joins and subqueries are
rendered.

When set to False, the returned Query will not render
eager joins regardless of joinedload(),
subqueryload() options
or mapper-level lazy='joined'/lazy='subquery'
configurations.

This is used primarily when nesting the Query’s
statement into a subquery or other
selectable, or when using Query.yield_per().

	
except_(*q)

	Produce an EXCEPT of this Query against one or more queries.

Works the same way as union(). See
that method for usage examples.

	
except_all(*q)

	Produce an EXCEPT ALL of this Query against one or more queries.

Works the same way as union(). See
that method for usage examples.

	
execution_options(**kwargs)

	Set non-SQL options which take effect during execution.

The options are the same as those accepted by
Connection.execution_options().

Note that the stream_results execution option is enabled
automatically if the yield_per()
method is used.

	
exists()

	A convenience method that turns a query into an EXISTS subquery
of the form EXISTS (SELECT 1 FROM ... WHERE ...).

e.g.:

q = session.query(User).filter(User.name == 'fred')
session.query(q.exists())

Producing SQL similar to:

SELECT EXISTS (
 SELECT 1 FROM users WHERE users.name = :name_1
) AS anon_1

The EXISTS construct is usually used in the WHERE clause:

session.query(User.id).filter(q.exists()).scalar()

Note that some databases such as SQL Server don’t allow an
EXISTS expression to be present in the columns clause of a
SELECT. To select a simple boolean value based on the exists
as a WHERE, use literal():

from sqlalchemy import literal

session.query(literal(True)).filter(q.exists()).scalar()

New in version 0.8.1.

	
filter(*criterion)

	apply the given filtering criterion to a copy
of this Query, using SQL expressions.

e.g.:

session.query(MyClass).filter(MyClass.name == 'some name')

Multiple criteria may be specified as comma separated; the effect
is that they will be joined together using the and_()
function:

session.query(MyClass).\
 filter(MyClass.name == 'some name', MyClass.id > 5)

The criterion is any SQL expression object applicable to the
WHERE clause of a select. String expressions are coerced
into SQL expression constructs via the text() construct.

See also

Query.filter_by() - filter on keyword expressions.

	
filter_by(**kwargs)

	apply the given filtering criterion to a copy
of this Query, using keyword expressions.

e.g.:

session.query(MyClass).filter_by(name = 'some name')

Multiple criteria may be specified as comma separated; the effect
is that they will be joined together using the and_()
function:

session.query(MyClass).\
 filter_by(name = 'some name', id = 5)

The keyword expressions are extracted from the primary
entity of the query, or the last entity that was the
target of a call to Query.join().

See also

Query.filter() - filter on SQL expressions.

	
first()

	Return the first result of this Query or
None if the result doesn’t contain any row.

first() applies a limit of one within the generated SQL, so that
only one primary entity row is generated on the server side
(note this may consist of multiple result rows if join-loaded
collections are present).

Calling Query.first() results in an execution of the underlying query.

See also

Query.one()

Query.one_or_none()

	
from_self(*entities)

	return a Query that selects from this Query’s
SELECT statement.

Query.from_self() essentially turns the SELECT statement
into a SELECT of itself. Given a query such as:

q = session.query(User).filter(User.name.like('e%'))

Given the Query.from_self() version:

q = session.query(User).filter(User.name.like('e%')).from_self()

This query renders as:

SELECT anon_1.user_id AS anon_1_user_id,
 anon_1.user_name AS anon_1_user_name
FROM (SELECT "user".id AS user_id, "user".name AS user_name
FROM "user"
WHERE "user".name LIKE :name_1) AS anon_1

There are lots of cases where Query.from_self() may be useful.
A simple one is where above, we may want to apply a row LIMIT to
the set of user objects we query against, and then apply additional
joins against that row-limited set:

q = session.query(User).filter(User.name.like('e%')).\
 limit(5).from_self().\
 join(User.addresses).filter(Address.email.like('q%'))

The above query joins to the Address entity but only against the
first five results of the User query:

SELECT anon_1.user_id AS anon_1_user_id,
 anon_1.user_name AS anon_1_user_name
FROM (SELECT "user".id AS user_id, "user".name AS user_name
FROM "user"
WHERE "user".name LIKE :name_1
 LIMIT :param_1) AS anon_1
JOIN address ON anon_1.user_id = address.user_id
WHERE address.email LIKE :email_1

Automatic Aliasing

Another key behavior of Query.from_self() is that it applies
automatic aliasing to the entities inside the subquery, when
they are referenced on the outside. Above, if we continue to
refer to the User entity without any additional aliasing applied
to it, those references wil be in terms of the subquery:

q = session.query(User).filter(User.name.like('e%')).\
 limit(5).from_self().\
 join(User.addresses).filter(Address.email.like('q%')).\
 order_by(User.name)

The ORDER BY against User.name is aliased to be in terms of the
inner subquery:

SELECT anon_1.user_id AS anon_1_user_id,
 anon_1.user_name AS anon_1_user_name
FROM (SELECT "user".id AS user_id, "user".name AS user_name
FROM "user"
WHERE "user".name LIKE :name_1
 LIMIT :param_1) AS anon_1
JOIN address ON anon_1.user_id = address.user_id
WHERE address.email LIKE :email_1 ORDER BY anon_1.user_name

The automatic aliasing feature only works in a limited way,
for simple filters and orderings. More ambitious constructions
such as referring to the entity in joins should prefer to use
explicit subquery objects, typically making use of the
Query.subquery() method to produce an explicit subquery object.
Always test the structure of queries by viewing the SQL to ensure
a particular structure does what’s expected!

Changing the Entities

Query.from_self() also includes the ability to modify what
columns are being queried. In our example, we want User.id
to be queried by the inner query, so that we can join to the
Address entity on the outside, but we only wanted the outer
query to return the Address.email column:

q = session.query(User).filter(User.name.like('e%')).\
 limit(5).from_self(Address.email).\
 join(User.addresses).filter(Address.email.like('q%'))

yielding:

SELECT address.email AS address_email
FROM (SELECT "user".id AS user_id, "user".name AS user_name
FROM "user"
WHERE "user".name LIKE :name_1
 LIMIT :param_1) AS anon_1
JOIN address ON anon_1.user_id = address.user_id
WHERE address.email LIKE :email_1

Looking out for Inner / Outer Columns

Keep in mind that when referring to columns that originate from
inside the subquery, we need to ensure they are present in the
columns clause of the subquery itself; this is an ordinary aspect of
SQL. For example, if we wanted to load from a joined entity inside
the subquery using contains_eager(), we need to add those
columns. Below illustrates a join of Address to User,
then a subquery, and then we’d like contains_eager() to access
the User columns:

q = session.query(Address).join(Address.user).\
 filter(User.name.like('e%'))

q = q.add_entity(User).from_self().\
 options(contains_eager(Address.user))

We use Query.add_entity() above before we call
Query.from_self() so that the User columns are present
in the inner subquery, so that they are available to the
contains_eager() modifier we are using on the outside,
producing:

SELECT anon_1.address_id AS anon_1_address_id,
 anon_1.address_email AS anon_1_address_email,
 anon_1.address_user_id AS anon_1_address_user_id,
 anon_1.user_id AS anon_1_user_id,
 anon_1.user_name AS anon_1_user_name
FROM (
 SELECT address.id AS address_id,
 address.email AS address_email,
 address.user_id AS address_user_id,
 "user".id AS user_id,
 "user".name AS user_name
FROM address JOIN "user" ON "user".id = address.user_id
WHERE "user".name LIKE :name_1) AS anon_1

If we didn’t call add_entity(User), but still asked
contains_eager() to load the User entity, it would be
forced to add the table on the outside without the correct
join criteria - note the anon1, "user" phrase at
the end:

-- incorrect query
SELECT anon_1.address_id AS anon_1_address_id,
 anon_1.address_email AS anon_1_address_email,
 anon_1.address_user_id AS anon_1_address_user_id,
 "user".id AS user_id,
 "user".name AS user_name
FROM (
 SELECT address.id AS address_id,
 address.email AS address_email,
 address.user_id AS address_user_id
FROM address JOIN "user" ON "user".id = address.user_id
WHERE "user".name LIKE :name_1) AS anon_1, "user"

	Parameters:
	*entities¶ – optional list of entities which will replace
those being selected.

	
from_statement(statement)

	Execute the given SELECT statement and return results.

This method bypasses all internal statement compilation, and the
statement is executed without modification.

The statement is typically either a text()
or select() construct, and should return the set
of columns
appropriate to the entity class represented by this Query.

See also

Using Textual SQL - usage examples in the
ORM tutorial

	
get(ident)

	Return an instance based on the given primary key identifier,
or None if not found.

E.g.:

my_user = session.query(User).get(5)

some_object = session.query(VersionedFoo).get((5, 10))

get() is special in that it provides direct
access to the identity map of the owning Session.
If the given primary key identifier is present
in the local identity map, the object is returned
directly from this collection and no SQL is emitted,
unless the object has been marked fully expired.
If not present,
a SELECT is performed in order to locate the object.

get() also will perform a check if
the object is present in the identity map and
marked as expired - a SELECT
is emitted to refresh the object as well as to
ensure that the row is still present.
If not, ObjectDeletedError is raised.

get() is only used to return a single
mapped instance, not multiple instances or
individual column constructs, and strictly
on a single primary key value. The originating
Query must be constructed in this way,
i.e. against a single mapped entity,
with no additional filtering criterion. Loading
options via options() may be applied
however, and will be used if the object is not
yet locally present.

A lazy-loading, many-to-one attribute configured
by relationship(), using a simple
foreign-key-to-primary-key criterion, will also use an
operation equivalent to get() in order to retrieve
the target value from the local identity map
before querying the database. See Relationship Loading Techniques
for further details on relationship loading.

	Parameters:
	ident¶ – A scalar or tuple value representing
the primary key. For a composite primary key,
the order of identifiers corresponds in most cases
to that of the mapped Table object’s
primary key columns. For a mapper() that
was given the primary key argument during
construction, the order of identifiers corresponds
to the elements present in this collection.

	Returns:
	The object instance, or None.

	
group_by(*criterion)

	apply one or more GROUP BY criterion to the query and return
the newly resulting Query

	
having(criterion)

	apply a HAVING criterion to the query and return the
newly resulting Query.

having() is used in conjunction with
group_by().

HAVING criterion makes it possible to use filters on aggregate
functions like COUNT, SUM, AVG, MAX, and MIN, eg.:

q = session.query(User.id).\
 join(User.addresses).\
 group_by(User.id).\
 having(func.count(Address.id) > 2)

	
instances(cursor, _Query__context=None)

	Given a ResultProxy cursor as returned by connection.execute(),
return an ORM result as an iterator.

e.g.:

result = engine.execute("select * from users")
for u in session.query(User).instances(result):
 print u

	
intersect(*q)

	Produce an INTERSECT of this Query against one or more queries.

Works the same way as union(). See
that method for usage examples.

	
intersect_all(*q)

	Produce an INTERSECT ALL of this Query against one or more queries.

Works the same way as union(). See
that method for usage examples.

	
join(*props, **kwargs)

	Create a SQL JOIN against this Query object’s criterion
and apply generatively, returning the newly resulting Query.

Simple Relationship Joins

Consider a mapping between two classes User and Address,
with a relationship User.addresses representing a collection
of Address objects associated with each User. The most
common usage of join() is to create a JOIN along this
relationship, using the User.addresses attribute as an indicator
for how this should occur:

q = session.query(User).join(User.addresses)

Where above, the call to join() along User.addresses
will result in SQL equivalent to:

SELECT user.* FROM user JOIN address ON user.id = address.user_id

In the above example we refer to User.addresses as passed to
join() as the on clause, that is, it indicates
how the “ON” portion of the JOIN should be constructed. For a
single-entity query such as the one above (i.e. we start by selecting
only from User and nothing else), the relationship can also be
specified by its string name:

q = session.query(User).join("addresses")

join() can also accommodate multiple
“on clause” arguments to produce a chain of joins, such as below
where a join across four related entities is constructed:

q = session.query(User).join("orders", "items", "keywords")

The above would be shorthand for three separate calls to
join(), each using an explicit attribute to indicate
the source entity:

q = session.query(User).\
 join(User.orders).\
 join(Order.items).\
 join(Item.keywords)

Joins to a Target Entity or Selectable

A second form of join() allows any mapped entity
or core selectable construct as a target. In this usage,
join() will attempt
to create a JOIN along the natural foreign key relationship between
two entities:

q = session.query(User).join(Address)

The above calling form of join() will raise an error if
either there are no foreign keys between the two entities, or if
there are multiple foreign key linkages between them. In the
above calling form, join() is called upon to
create the “on clause” automatically for us. The target can
be any mapped entity or selectable, such as a Table:

q = session.query(User).join(addresses_table)

Joins to a Target with an ON Clause

The third calling form allows both the target entity as well
as the ON clause to be passed explicitly. Suppose for
example we wanted to join to Address twice, using
an alias the second time. We use aliased()
to create a distinct alias of Address, and join
to it using the target, onclause form, so that the
alias can be specified explicitly as the target along with
the relationship to instruct how the ON clause should proceed:

a_alias = aliased(Address)

q = session.query(User).\
 join(User.addresses).\
 join(a_alias, User.addresses).\
 filter(Address.email_address=='ed@foo.com').\
 filter(a_alias.email_address=='ed@bar.com')

Where above, the generated SQL would be similar to:

SELECT user.* FROM user
 JOIN address ON user.id = address.user_id
 JOIN address AS address_1 ON user.id=address_1.user_id
 WHERE address.email_address = :email_address_1
 AND address_1.email_address = :email_address_2

The two-argument calling form of join()
also allows us to construct arbitrary joins with SQL-oriented
“on clause” expressions, not relying upon configured relationships
at all. Any SQL expression can be passed as the ON clause
when using the two-argument form, which should refer to the target
entity in some way as well as an applicable source entity:

q = session.query(User).join(Address, User.id==Address.user_id)

Changed in version 0.7: In SQLAlchemy 0.6 and earlier, the two argument form of
join() requires the usage of a tuple:
query(User).join((Address, User.id==Address.user_id)).
This calling form is accepted in 0.7 and further, though
is not necessary unless multiple join conditions are passed to
a single join() call, which itself is also not
generally necessary as it is now equivalent to multiple
calls (this wasn’t always the case).

Advanced Join Targeting and Adaption

There is a lot of flexibility in what the “target” can be when using
join(). As noted previously, it also accepts
Table constructs and other selectables such as
alias() and select() constructs, with either the one
or two-argument forms:

addresses_q = select([Address.user_id]).\
 where(Address.email_address.endswith("@bar.com")).\
 alias()

q = session.query(User).\
 join(addresses_q, addresses_q.c.user_id==User.id)

join() also features the ability to adapt a
relationship() -driven ON clause to the target
selectable. Below we construct a JOIN from User to a subquery
against Address, allowing the relationship denoted by
User.addresses to adapt itself to the altered target:

address_subq = session.query(Address).\
 filter(Address.email_address == 'ed@foo.com').\
 subquery()

q = session.query(User).join(address_subq, User.addresses)

Producing SQL similar to:

SELECT user.* FROM user
 JOIN (
 SELECT address.id AS id,
 address.user_id AS user_id,
 address.email_address AS email_address
 FROM address
 WHERE address.email_address = :email_address_1
) AS anon_1 ON user.id = anon_1.user_id

The above form allows one to fall back onto an explicit ON
clause at any time:

q = session.query(User).\
 join(address_subq, User.id==address_subq.c.user_id)

Controlling what to Join From

While join() exclusively deals with the “right”
side of the JOIN, we can also control the “left” side, in those
cases where it’s needed, using select_from().
Below we construct a query against Address but can still
make usage of User.addresses as our ON clause by instructing
the Query to select first from the User
entity:

q = session.query(Address).select_from(User).\
 join(User.addresses).\
 filter(User.name == 'ed')

Which will produce SQL similar to:

SELECT address.* FROM user
 JOIN address ON user.id=address.user_id
 WHERE user.name = :name_1

Constructing Aliases Anonymously

join() can construct anonymous aliases
using the aliased=True flag. This feature is useful
when a query is being joined algorithmically, such as
when querying self-referentially to an arbitrary depth:

q = session.query(Node).\
 join("children", "children", aliased=True)

When aliased=True is used, the actual “alias” construct
is not explicitly available. To work with it, methods such as
Query.filter() will adapt the incoming entity to
the last join point:

q = session.query(Node).\
 join("children", "children", aliased=True).\
 filter(Node.name == 'grandchild 1')

When using automatic aliasing, the from_joinpoint=True
argument can allow a multi-node join to be broken into
multiple calls to join(), so that
each path along the way can be further filtered:

q = session.query(Node).\
 join("children", aliased=True).\
 filter(Node.name='child 1').\
 join("children", aliased=True, from_joinpoint=True).\
 filter(Node.name == 'grandchild 1')

The filtering aliases above can then be reset back to the
original Node entity using reset_joinpoint():

q = session.query(Node).\
 join("children", "children", aliased=True).\
 filter(Node.name == 'grandchild 1').\
 reset_joinpoint().\
 filter(Node.name == 'parent 1)

For an example of aliased=True, see the distribution
example XML Persistence which illustrates
an XPath-like query system using algorithmic joins.

	Parameters:
	
	*props¶ – A collection of one or more join conditions,
each consisting of a relationship-bound attribute or string
relationship name representing an “on clause”, or a single
target entity, or a tuple in the form of (target, onclause).
A special two-argument calling form of the form target, onclause
is also accepted.

	aliased=False¶ – If True, indicate that the JOIN target should be
anonymously aliased. Subsequent calls to filter()
and similar will adapt the incoming criterion to the target
alias, until reset_joinpoint() is called.

	isouter=False¶ – If True, the join used will be a left outer join,
just as if the Query.outerjoin() method were called. This
flag is here to maintain consistency with the same flag as accepted
by FromClause.join() and other Core constructs.

New in version 1.0.0.

	full=False¶ – render FULL OUTER JOIN; implies isouter.

New in version 1.1.

	from_joinpoint=False¶ – When using aliased=True, a setting
of True here will cause the join to be from the most recent
joined target, rather than starting back from the original
FROM clauses of the query.

See also

Querying with Joins in the ORM tutorial.

Mapping Class Inheritance Hierarchies for details on how
join() is used for inheritance relationships.

orm.join() - a standalone ORM-level join function,
used internally by Query.join(), which in previous
SQLAlchemy versions was the primary ORM-level joining interface.

	
label(name)

	Return the full SELECT statement represented by this
Query, converted
to a scalar subquery with a label of the given name.

Analogous to sqlalchemy.sql.expression.SelectBase.label().

New in version 0.6.5.

	
limit(limit)

	Apply a LIMIT to the query and return the newly resulting
Query.

	
merge_result(iterator, load=True)

	Merge a result into this Query object’s Session.

Given an iterator returned by a Query of the same structure
as this one, return an identical iterator of results, with all mapped
instances merged into the session using Session.merge(). This
is an optimized method which will merge all mapped instances,
preserving the structure of the result rows and unmapped columns with
less method overhead than that of calling Session.merge()
explicitly for each value.

The structure of the results is determined based on the column list of
this Query - if these do not correspond, unchecked errors
will occur.

The ‘load’ argument is the same as that of Session.merge().

For an example of how merge_result() is used, see
the source code for the example Dogpile Caching, where
merge_result() is used to efficiently restore state
from a cache back into a target Session.

	
offset(offset)

	Apply an OFFSET to the query and return the newly resulting
Query.

	
one()

	Return exactly one result or raise an exception.

Raises sqlalchemy.orm.exc.NoResultFound if the query selects
no rows. Raises sqlalchemy.orm.exc.MultipleResultsFound
if multiple object identities are returned, or if multiple
rows are returned for a query that returns only scalar values
as opposed to full identity-mapped entities.

Calling one() results in an execution of the underlying query.

See also

Query.first()

Query.one_or_none()

	
one_or_none()

	Return at most one result or raise an exception.

Returns None if the query selects
no rows. Raises sqlalchemy.orm.exc.MultipleResultsFound
if multiple object identities are returned, or if multiple
rows are returned for a query that returns only scalar values
as opposed to full identity-mapped entities.

Calling Query.one_or_none() results in an execution of the
underlying query.

New in version 1.0.9: Added Query.one_or_none()

See also

Query.first()

Query.one()

	
options(*args)

	Return a new Query object, applying the given list of
mapper options.

Most supplied options regard changing how column- and
relationship-mapped attributes are loaded. See the sections
Deferred Column Loading and Relationship Loading Techniques for reference
documentation.

	
order_by(*criterion)

	apply one or more ORDER BY criterion to the query and return
the newly resulting Query

All existing ORDER BY settings can be suppressed by
passing None - this will suppress any ORDER BY configured
on mappers as well.

Alternatively, an existing ORDER BY setting on the Query
object can be entirely cancelled by passing False
as the value - use this before calling methods where
an ORDER BY is invalid.

	
outerjoin(*props, **kwargs)

	Create a left outer join against this Query object’s criterion
and apply generatively, returning the newly resulting Query.

Usage is the same as the join() method.

	
params(*args, **kwargs)

	add values for bind parameters which may have been
specified in filter().

parameters may be specified using **kwargs, or optionally a single
dictionary as the first positional argument. The reason for both is
that **kwargs is convenient, however some parameter dictionaries
contain unicode keys in which case **kwargs cannot be used.

	
populate_existing()

	Return a Query that will expire and refresh all instances
as they are loaded, or reused from the current Session.

populate_existing() does not improve behavior when
the ORM is used normally - the Session object’s usual
behavior of maintaining a transaction and expiring all attributes
after rollback or commit handles object state automatically.
This method is not intended for general use.

	
prefix_with(*prefixes)

	Apply the prefixes to the query and return the newly resulting
Query.

	Parameters:
	*prefixes¶ – optional prefixes, typically strings,
not using any commas. In particular is useful for MySQL keywords.

e.g.:

query = sess.query(User.name).\
 prefix_with('HIGH_PRIORITY').\
 prefix_with('SQL_SMALL_RESULT', 'ALL')

Would render:

SELECT HIGH_PRIORITY SQL_SMALL_RESULT ALL users.name AS users_name
FROM users

New in version 0.7.7.

See also

HasPrefixes.prefix_with()

	
reset_joinpoint()

	Return a new Query, where the “join point” has
been reset back to the base FROM entities of the query.

This method is usually used in conjunction with the
aliased=True feature of the join()
method. See the example in join() for how
this is used.

	
scalar()

	Return the first element of the first result or None
if no rows present. If multiple rows are returned,
raises MultipleResultsFound.

>>> session.query(Item).scalar()
<Item>
>>> session.query(Item.id).scalar()
1
>>> session.query(Item.id).filter(Item.id < 0).scalar()
None
>>> session.query(Item.id, Item.name).scalar()
1
>>> session.query(func.count(Parent.id)).scalar()
20

This results in an execution of the underlying query.

	
select_entity_from(from_obj)

	Set the FROM clause of this Query to a
core selectable, applying it as a replacement FROM clause
for corresponding mapped entities.

This method is similar to the Query.select_from()
method, in that it sets the FROM clause of the query. However,
where Query.select_from() only affects what is placed
in the FROM, this method also applies the given selectable
to replace the FROM which the selected entities would normally
select from.

The given from_obj must be an instance of a FromClause,
e.g. a select() or Alias construct.

An example would be a Query that selects User entities,
but uses Query.select_entity_from() to have the entities
selected from a select() construct instead of the
base user table:

select_stmt = select([User]).where(User.id == 7)

q = session.query(User).\
 select_entity_from(select_stmt).\
 filter(User.name == 'ed')

The query generated will select User entities directly
from the given select() construct, and will be:

SELECT anon_1.id AS anon_1_id, anon_1.name AS anon_1_name
FROM (SELECT "user".id AS id, "user".name AS name
FROM "user"
WHERE "user".id = :id_1) AS anon_1
WHERE anon_1.name = :name_1

Notice above that even the WHERE criterion was “adapted” such that
the anon_1 subquery effectively replaces all references to the
user table, except for the one that it refers to internally.

Compare this to Query.select_from(), which as of
version 0.9, does not affect existing entities. The
statement below:

q = session.query(User).\
 select_from(select_stmt).\
 filter(User.name == 'ed')

Produces SQL where both the user table as well as the
select_stmt construct are present as separate elements
in the FROM clause. No “adaptation” of the user table
is applied:

SELECT "user".id AS user_id, "user".name AS user_name
FROM "user", (SELECT "user".id AS id, "user".name AS name
FROM "user"
WHERE "user".id = :id_1) AS anon_1
WHERE "user".name = :name_1

Query.select_entity_from() maintains an older
behavior of Query.select_from(). In modern usage,
similar results can also be achieved using aliased():

select_stmt = select([User]).where(User.id == 7)
user_from_select = aliased(User, select_stmt.alias())

q = session.query(user_from_select)

	Parameters:
	from_obj¶ – a FromClause object that will replace
the FROM clause of this Query.

See also

Query.select_from()

New in version 0.8: Query.select_entity_from() was added to specify
the specific behavior of entity replacement, however
the Query.select_from() maintains this behavior
as well until 0.9.

	
select_from(*from_obj)

	Set the FROM clause of this Query explicitly.

Query.select_from() is often used in conjunction with
Query.join() in order to control which entity is selected
from on the “left” side of the join.

The entity or selectable object here effectively replaces the
“left edge” of any calls to join(), when no
joinpoint is otherwise established - usually, the default “join
point” is the leftmost entity in the Query object’s
list of entities to be selected.

A typical example:

q = session.query(Address).select_from(User).\
 join(User.addresses).\
 filter(User.name == 'ed')

Which produces SQL equivalent to:

SELECT address.* FROM user
JOIN address ON user.id=address.user_id
WHERE user.name = :name_1

	Parameters:
	*from_obj¶ – collection of one or more entities to apply
to the FROM clause. Entities can be mapped classes,
AliasedClass objects, Mapper objects
as well as core FromClause elements like subqueries.

Changed in version 0.9: This method no longer applies the given FROM object
to be the selectable from which matching entities
select from; the select_entity_from() method
now accomplishes this. See that method for a description
of this behavior.

See also

join()

Query.select_entity_from()

	
selectable

	Return the Select object emitted by this Query.

Used for inspect() compatibility, this is equivalent to:

query.enable_eagerloads(False).with_labels().statement

	
slice(start, stop)

	Computes the “slice” of the Query represented by
the given indices and returns the resulting Query.

The start and stop indices behave like the argument to Python’s
built-in range() function. This method provides an
alternative to using LIMIT/OFFSET to get a slice of the
query.

For example,

session.query(User).order_by(User.id).slice(1, 3)

renders as

SELECT users.id AS users_id,
 users.name AS users_name
FROM users ORDER BY users.id
LIMIT ? OFFSET ?
(2, 1)

See also

Query.limit()

Query.offset()

	
statement

	The full SELECT statement represented by this Query.

The statement by default will not have disambiguating labels
applied to the construct unless with_labels(True) is called
first.

	
subquery(name=None, with_labels=False, reduce_columns=False)

	return the full SELECT statement represented by
this Query, embedded within an Alias.

Eager JOIN generation within the query is disabled.

	Parameters:
	
	name¶ – string name to be assigned as the alias;
this is passed through to FromClause.alias().
If None, a name will be deterministically generated
at compile time.

	with_labels¶ – if True, with_labels() will be called
on the Query first to apply table-qualified labels
to all columns.

	reduce_columns¶ – if True, Select.reduce_columns() will
be called on the resulting select() construct,
to remove same-named columns where one also refers to the other
via foreign key or WHERE clause equivalence.

Changed in version 0.8: the with_labels and reduce_columns
keyword arguments were added.

	
suffix_with(*suffixes)

	Apply the suffix to the query and return the newly resulting
Query.

	Parameters:
	*suffixes¶ – optional suffixes, typically strings,
not using any commas.

New in version 1.0.0.

See also

Query.prefix_with()

HasSuffixes.suffix_with()

	
union(*q)

	Produce a UNION of this Query against one or more queries.

e.g.:

q1 = sess.query(SomeClass).filter(SomeClass.foo=='bar')
q2 = sess.query(SomeClass).filter(SomeClass.bar=='foo')

q3 = q1.union(q2)

The method accepts multiple Query objects so as to control
the level of nesting. A series of union() calls such as:

x.union(y).union(z).all()

will nest on each union(), and produces:

SELECT * FROM (SELECT * FROM (SELECT * FROM X UNION
 SELECT * FROM y) UNION SELECT * FROM Z)

Whereas:

x.union(y, z).all()

produces:

SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y UNION
 SELECT * FROM Z)

Note that many database backends do not allow ORDER BY to
be rendered on a query called within UNION, EXCEPT, etc.
To disable all ORDER BY clauses including those configured
on mappers, issue query.order_by(None) - the resulting
Query object will not render ORDER BY within
its SELECT statement.

	
union_all(*q)

	Produce a UNION ALL of this Query against one or more queries.

Works the same way as union(). See
that method for usage examples.

	
update(values, synchronize_session='evaluate', update_args=None)

	Perform a bulk update query.

Updates rows matched by this query in the database.

E.g.:

sess.query(User).filter(User.age == 25).\
 update({User.age: User.age - 10}, synchronize_session=False)

sess.query(User).filter(User.age == 25).\
 update({"age": User.age - 10}, synchronize_session='evaluate')

Warning

The Query.update() method is a “bulk” operation,
which bypasses ORM unit-of-work automation in favor of greater
performance. Please read all caveats and warnings below.

	Parameters:
	
	values¶ – a dictionary with attributes names, or alternatively
mapped attributes or SQL expressions, as keys, and literal
values or sql expressions as values. If parameter-ordered
mode is desired, the values can be
passed as a list of 2-tuples;
this requires that the preserve_parameter_order
flag is passed to the Query.update.update_args dictionary
as well.

Changed in version 1.0.0: - string names in the values dictionary
are now resolved against the mapped entity; previously, these
strings were passed as literal column names with no mapper-level
translation.

	synchronize_session¶ – chooses the strategy to update the
attributes on objects in the session. Valid values are:

False - don’t synchronize the session. This option is the most
efficient and is reliable once the session is expired, which
typically occurs after a commit(), or explicitly using
expire_all(). Before the expiration, updated objects may still
remain in the session with stale values on their attributes, which
can lead to confusing results.'fetch' - performs a select query before the update to find
objects that are matched by the update query. The updated
attributes are expired on matched objects.

'evaluate' - Evaluate the Query’s criteria in Python straight
on the objects in the session. If evaluation of the criteria isn’t
implemented, an exception is raised.

The expression evaluator currently doesn’t account for differing
string collations between the database and Python.

	update_args¶ – Optional dictionary, if present will be passed
to the underlying update() construct as the **kw for
the object. May be used to pass dialect-specific arguments such
as mysql_limit, as well as other special arguments such as
preserve_parameter_order.

New in version 1.0.0.

	Returns:
	the count of rows matched as returned by the database’s
“row count” feature.

Warning

Additional Caveats for bulk query updates

	The method does not offer in-Python cascading of
relationships - it is assumed that ON UPDATE CASCADE is
configured for any foreign key references which require
it, otherwise the database may emit an integrity
violation if foreign key references are being enforced.

After the UPDATE, dependent objects in the
Session which were impacted by an ON UPDATE
CASCADE may not contain the current state; this issue is
resolved once the Session is expired, which
normally occurs upon Session.commit() or can be
forced by using Session.expire_all().

	The 'fetch' strategy results in an additional
SELECT statement emitted and will significantly reduce
performance.

	The 'evaluate' strategy performs a scan of
all matching objects within the Session; if the
contents of the Session are expired, such as
via a proceeding Session.commit() call, this will
result in SELECT queries emitted for every matching object.

	The method supports multiple table updates, as detailed
in Multiple Table Updates, and this behavior does
extend to support updates of joined-inheritance and
other multiple table mappings. However, the join
condition of an inheritance mapper is not
automatically rendered. Care must be taken in any
multiple-table update to explicitly include the joining
condition between those tables, even in mappings where
this is normally automatic. E.g. if a class Engineer
subclasses Employee, an UPDATE of the Engineer
local table using criteria against the Employee
local table might look like:

session.query(Engineer).\
 filter(Engineer.id == Employee.id).\
 filter(Employee.name == 'dilbert').\
 update({"engineer_type": "programmer"})

	The MapperEvents.before_update() and
MapperEvents.after_update()
events are not invoked from this method. Instead, the
SessionEvents.after_bulk_update() method is provided to
act upon a mass UPDATE of entity rows.

See also

Query.delete()

Inserts, Updates and Deletes - Core SQL tutorial

	
value(column)

	Return a scalar result corresponding to the given
column expression.

	
values(*columns)

	Return an iterator yielding result tuples corresponding
to the given list of columns

	
whereclause

	A readonly attribute which returns the current WHERE criterion for
this Query.

This returned value is a SQL expression construct, or None if no
criterion has been established.

	
with_entities(*entities)

	Return a new Query replacing the SELECT list with the
given entities.

e.g.:

Users, filtered on some arbitrary criterion
and then ordered by related email address
q = session.query(User).\
 join(User.address).\
 filter(User.name.like('%ed%')).\
 order_by(Address.email)

given *only* User.id==5, Address.email, and 'q', what
would the *next* User in the result be ?
subq = q.with_entities(Address.email).\
 order_by(None).\
 filter(User.id==5).\
 subquery()
q = q.join((subq, subq.c.email < Address.email)).\
 limit(1)

New in version 0.6.5.

	
with_for_update(read=False, nowait=False, of=None, skip_locked=False, key_share=False)

	return a new Query with the specified options for the
FOR UPDATE clause.

The behavior of this method is identical to that of
SelectBase.with_for_update(). When called with no arguments,
the resulting SELECT statement will have a FOR UPDATE clause
appended. When additional arguments are specified, backend-specific
options such as FOR UPDATE NOWAIT or LOCK IN SHARE MODE
can take effect.

E.g.:

q = sess.query(User).with_for_update(nowait=True, of=User)

The above query on a Postgresql backend will render like:

SELECT users.id AS users_id FROM users FOR UPDATE OF users NOWAIT

New in version 0.9.0: Query.with_for_update() supersedes
the Query.with_lockmode() method.

See also

GenerativeSelect.with_for_update() - Core level method with
full argument and behavioral description.

	
with_hint(selectable, text, dialect_name='*')

	Add an indexing or other executional context
hint for the given entity or selectable to
this Query.

Functionality is passed straight through to
with_hint(),
with the addition that selectable can be a
Table, Alias, or ORM entity / mapped class
/etc.

See also

Query.with_statement_hint()

	
with_labels()

	Apply column labels to the return value of Query.statement.

Indicates that this Query’s statement accessor should return
a SELECT statement that applies labels to all columns in the
form <tablename>_<columnname>; this is commonly used to
disambiguate columns from multiple tables which have the same
name.

When the Query actually issues SQL to load rows, it always
uses column labeling.

Note

The Query.with_labels() method only applies
the output of Query.statement, and not to any of
the result-row invoking systems of Query itself, e.g.
Query.first(), Query.all(), etc. To execute
a query using Query.with_labels(), invoke the
Query.statement using Session.execute():

result = session.execute(query.with_labels().statement)

	
with_lockmode(mode)

	Return a new Query object with the specified “locking mode”,
which essentially refers to the FOR UPDATE clause.

Deprecated since version 0.9.0: superseded by Query.with_for_update().

	Parameters:
	mode¶ – a string representing the desired locking mode.
Valid values are:

	None - translates to no lockmode

	'update' - translates to FOR UPDATE
(standard SQL, supported by most dialects)

	'update_nowait' - translates to FOR UPDATE NOWAIT
(supported by Oracle, PostgreSQL 8.1 upwards)

	'read' - translates to LOCK IN SHARE MODE (for MySQL),
and FOR SHARE (for PostgreSQL)

See also

Query.with_for_update() - improved API for
specifying the FOR UPDATE clause.

	
with_parent(instance, property=None)

	Add filtering criterion that relates the given instance
to a child object or collection, using its attribute state
as well as an established relationship()
configuration.

The method uses the with_parent() function to generate
the clause, the result of which is passed to Query.filter().

Parameters are the same as with_parent(), with the exception
that the given property can be None, in which case a search is
performed against this Query object’s target mapper.

	
with_polymorphic(cls_or_mappers, selectable=None, polymorphic_on=None)

	Load columns for inheriting classes.

Query.with_polymorphic() applies transformations
to the “main” mapped class represented by this Query.
The “main” mapped class here means the Query
object’s first argument is a full class, i.e.
session.query(SomeClass). These transformations allow additional
tables to be present in the FROM clause so that columns for a
joined-inheritance subclass are available in the query, both for the
purposes of load-time efficiency as well as the ability to use
these columns at query time.

See the documentation section Basic Control of Which Tables are Queried for
details on how this method is used.

Changed in version 0.8: A new and more flexible function
orm.with_polymorphic() supersedes
Query.with_polymorphic(), as it can apply the equivalent
functionality to any set of columns or classes in the
Query, not just the “zero mapper”. See that
function for a description of arguments.

	
with_session(session)

	Return a Query that will use the given Session.

	
with_statement_hint(text, dialect_name='*')

	add a statement hint to this Select.

This method is similar to Select.with_hint() except that
it does not require an individual table, and instead applies to the
statement as a whole.

This feature calls down into Select.with_statement_hint().

New in version 1.0.0.

See also

Query.with_hint()

	
with_transformation(fn)

	Return a new Query object transformed by
the given function.

E.g.:

def filter_something(criterion):
 def transform(q):
 return q.filter(criterion)
 return transform

q = q.with_transformation(filter_something(x==5))

This allows ad-hoc recipes to be created for Query
objects. See the example at Building Transformers.

New in version 0.7.4.

	
yield_per(count)

	Yield only count rows at a time.

The purpose of this method is when fetching very large result sets
(> 10K rows), to batch results in sub-collections and yield them
out partially, so that the Python interpreter doesn’t need to declare
very large areas of memory which is both time consuming and leads
to excessive memory use. The performance from fetching hundreds of
thousands of rows can often double when a suitable yield-per setting
(e.g. approximately 1000) is used, even with DBAPIs that buffer
rows (which are most).

The Query.yield_per() method is not compatible with most
eager loading schemes, including subqueryload and joinedload with
collections. For this reason, it may be helpful to disable
eager loads, either unconditionally with
Query.enable_eagerloads():

q = sess.query(Object).yield_per(100).enable_eagerloads(False)

Or more selectively using lazyload(); such as with
an asterisk to specify the default loader scheme:

q = sess.query(Object).yield_per(100).\
 options(lazyload('*'), joinedload(Object.some_related))

Warning

Use this method with caution; if the same instance is
present in more than one batch of rows, end-user changes
to attributes will be overwritten.

In particular, it’s usually impossible to use this setting
with eagerly loaded collections (i.e. any lazy=’joined’ or
‘subquery’) since those collections will be cleared for a
new load when encountered in a subsequent result batch.
In the case of ‘subquery’ loading, the full result for all
rows is fetched which generally defeats the purpose of
yield_per().

Also note that while
yield_per() will set the
stream_results execution option to True, currently
this is only understood by
psycopg2 dialect
which will stream results using server side cursors
instead of pre-buffer all rows for this query. Other
DBAPIs pre-buffer all rows before making them
available. The memory use of raw database rows is much less
than that of an ORM-mapped object, but should still be taken into
consideration when benchmarking.

See also

Query.enable_eagerloads()

ORM-Specific Query Constructs

	
sqlalchemy.orm.aliased(element, alias=None, name=None, flat=False, adapt_on_names=False)

	Produce an alias of the given element, usually an AliasedClass
instance.

E.g.:

my_alias = aliased(MyClass)

session.query(MyClass, my_alias).filter(MyClass.id > my_alias.id)

The aliased() function is used to create an ad-hoc mapping
of a mapped class to a new selectable. By default, a selectable
is generated from the normally mapped selectable (typically a
Table) using the FromClause.alias() method.
However, aliased() can also be used to link the class to
a new select() statement. Also, the with_polymorphic()
function is a variant of aliased() that is intended to specify
a so-called “polymorphic selectable”, that corresponds to the union
of several joined-inheritance subclasses at once.

For convenience, the aliased() function also accepts plain
FromClause constructs, such as a Table or
select() construct. In those cases, the FromClause.alias()
method is called on the object and the new Alias object
returned. The returned Alias is not ORM-mapped in this case.

	Parameters:
	
	element¶ – element to be aliased. Is normally a mapped class,
but for convenience can also be a FromClause element.

	alias¶ – Optional selectable unit to map the element to. This should
normally be a Alias object corresponding to the Table
to which the class is mapped, or to a select() construct that
is compatible with the mapping. By default, a simple anonymous
alias of the mapped table is generated.

	name¶ – optional string name to use for the alias, if not specified
by the alias parameter. The name, among other things, forms the
attribute name that will be accessible via tuples returned by a
Query object.

	flat¶ – Boolean, will be passed through to the
FromClause.alias() call so that aliases of Join objects
don’t include an enclosing SELECT. This can lead to more efficient
queries in many circumstances. A JOIN against a nested JOIN will be
rewritten as a JOIN against an aliased SELECT subquery on backends that
don’t support this syntax.

New in version 0.9.0.

See also

Join.alias()

	adapt_on_names¶ – if True, more liberal “matching” will be used when
mapping the mapped columns of the ORM entity to those of the
given selectable - a name-based match will be performed if the
given selectable doesn’t otherwise have a column that corresponds
to one on the entity. The use case for this is when associating
an entity with some derived selectable such as one that uses
aggregate functions:

class UnitPrice(Base):
 __tablename__ = 'unit_price'
 ...
 unit_id = Column(Integer)
 price = Column(Numeric)

aggregated_unit_price = Session.query(
 func.sum(UnitPrice.price).label('price')
).group_by(UnitPrice.unit_id).subquery()

aggregated_unit_price = aliased(UnitPrice,
 alias=aggregated_unit_price, adapt_on_names=True)

Above, functions on aggregated_unit_price which refer to
.price will return the
fund.sum(UnitPrice.price).label('price') column, as it is
matched on the name “price”. Ordinarily, the “price” function
wouldn’t have any “column correspondence” to the actual
UnitPrice.price column as it is not a proxy of the original.

New in version 0.7.3.

	
class sqlalchemy.orm.util.AliasedClass(cls, alias=None, name=None, flat=False, adapt_on_names=False, with_polymorphic_mappers=(), with_polymorphic_discriminator=None, base_alias=None, use_mapper_path=False)

	Represents an “aliased” form of a mapped class for usage with Query.

The ORM equivalent of a sqlalchemy.sql.expression.alias()
construct, this object mimics the mapped class using a
__getattr__ scheme and maintains a reference to a
real Alias object.

Usage is via the orm.aliased() function, or alternatively
via the orm.with_polymorphic() function.

Usage example:

find all pairs of users with the same name
user_alias = aliased(User)
session.query(User, user_alias).\
 join((user_alias, User.id > user_alias.id)).\
 filter(User.name==user_alias.name)

The resulting object is an instance of AliasedClass.
This object implements an attribute scheme which produces the
same attribute and method interface as the original mapped
class, allowing AliasedClass to be compatible
with any attribute technique which works on the original class,
including hybrid attributes (see Hybrid Attributes).

The AliasedClass can be inspected for its underlying
Mapper, aliased selectable, and other information
using inspect():

from sqlalchemy import inspect
my_alias = aliased(MyClass)
insp = inspect(my_alias)

The resulting inspection object is an instance of AliasedInsp.

See aliased() and with_polymorphic() for construction
argument descriptions.

	
class sqlalchemy.orm.util.AliasedInsp(entity, mapper, selectable, name, with_polymorphic_mappers, polymorphic_on, _base_alias, _use_mapper_path, adapt_on_names)

	Bases: sqlalchemy.orm.base.InspectionAttr

Provide an inspection interface for an
AliasedClass object.

The AliasedInsp object is returned
given an AliasedClass using the
inspect() function:

from sqlalchemy import inspect
from sqlalchemy.orm import aliased

my_alias = aliased(MyMappedClass)
insp = inspect(my_alias)

Attributes on AliasedInsp
include:

	entity - the AliasedClass represented.

	mapper - the Mapper mapping the underlying class.

	selectable - the Alias construct which ultimately
represents an aliased Table or Select
construct.

	name - the name of the alias. Also is used as the attribute
name when returned in a result tuple from Query.

	with_polymorphic_mappers - collection of Mapper objects
indicating all those mappers expressed in the select construct
for the AliasedClass.

	polymorphic_on - an alternate column or SQL expression which
will be used as the “discriminator” for a polymorphic load.

See also

Runtime Inspection API

	
class sqlalchemy.orm.query.Bundle(name, *exprs, **kw)

	Bases: sqlalchemy.orm.base.InspectionAttr

A grouping of SQL expressions that are returned by a Query
under one namespace.

The Bundle essentially allows nesting of the tuple-based
results returned by a column-oriented Query object. It also
is extensible via simple subclassing, where the primary capability
to override is that of how the set of expressions should be returned,
allowing post-processing as well as custom return types, without
involving ORM identity-mapped classes.

New in version 0.9.0.

See also

Column Bundles

	
__init__(name, *exprs, **kw)

	Construct a new Bundle.

e.g.:

bn = Bundle("mybundle", MyClass.x, MyClass.y)

for row in session.query(bn).filter(
 bn.c.x == 5).filter(bn.c.y == 4):
 print(row.mybundle.x, row.mybundle.y)

	Parameters:
	
	name¶ – name of the bundle.

	*exprs¶ – columns or SQL expressions comprising the bundle.

	single_entity=False¶ – if True, rows for this Bundle
can be returned as a “single entity” outside of any enclosing tuple
in the same manner as a mapped entity.

	
c = None

	An alias for Bundle.columns.

	
columns = None

	A namespace of SQL expressions referred to by this Bundle.

e.g.:

bn = Bundle("mybundle", MyClass.x, MyClass.y)

q = sess.query(bn).filter(bn.c.x == 5)

Nesting of bundles is also supported:

b1 = Bundle("b1",
 Bundle('b2', MyClass.a, MyClass.b),
 Bundle('b3', MyClass.x, MyClass.y)
)

q = sess.query(b1).filter(
 b1.c.b2.c.a == 5).filter(b1.c.b3.c.y == 9)

See also

Bundle.c

	
create_row_processor(query, procs, labels)

	Produce the “row processing” function for this Bundle.

May be overridden by subclasses.

See also

Column Bundles - includes an example of subclassing.

	
label(name)

	Provide a copy of this Bundle passing a new label.

	
single_entity = False

	If True, queries for a single Bundle will be returned as a single
entity, rather than an element within a keyed tuple.

	
class sqlalchemy.util.KeyedTuple

	Bases: sqlalchemy.util._collections.AbstractKeyedTuple

tuple subclass that adds labeled names.

E.g.:

>>> k = KeyedTuple([1, 2, 3], labels=["one", "two", "three"])
>>> k.one
1
>>> k.two
2

Result rows returned by Query that contain multiple
ORM entities and/or column expressions make use of this
class to return rows.

The KeyedTuple exhibits similar behavior to the
collections.namedtuple() construct provided in the Python
standard library, however is architected very differently.
Unlike collections.namedtuple(), KeyedTuple is
does not rely on creation of custom subtypes in order to represent
a new series of keys, instead each KeyedTuple instance
receives its list of keys in place. The subtype approach
of collections.namedtuple() introduces significant complexity
and performance overhead, which is not necessary for the
Query object’s use case.

Changed in version 0.8: Compatibility methods with collections.namedtuple() have been
added including KeyedTuple._fields and
KeyedTuple._asdict().

See also

Querying

	
_asdict()

	Return the contents of this KeyedTuple as a dictionary.

This method provides compatibility with collections.namedtuple(),
with the exception that the dictionary returned is not ordered.

New in version 0.8.

	
_fields

	Return a tuple of string key names for this KeyedTuple.

This method provides compatibility with collections.namedtuple().

New in version 0.8.

See also

KeyedTuple.keys()

	
keys()

	
inherited from the keys() method of AbstractKeyedTuple

Return a list of string key names for this KeyedTuple.

See also

KeyedTuple._fields

	
class sqlalchemy.orm.strategy_options.Load(entity)

	Bases: sqlalchemy.sql.expression.Generative, sqlalchemy.orm.interfaces.MapperOption

Represents loader options which modify the state of a
Query in order to affect how various mapped attributes are
loaded.

New in version 0.9.0: The Load() system is a new foundation for
the existing system of loader options, including options such as
orm.joinedload(), orm.defer(), and others. In
particular, it introduces a new method-chained system that replaces the
need for dot-separated paths as well as “_all()” options such as
orm.joinedload_all().

A Load object can be used directly or indirectly. To use one
directly, instantiate given the parent class. This style of usage is
useful when dealing with a Query that has multiple entities,
or when producing a loader option that can be applied generically to
any style of query:

myopt = Load(MyClass).joinedload("widgets")

The above myopt can now be used with Query.options():

session.query(MyClass).options(myopt)

The Load construct is invoked indirectly whenever one makes use
of the various loader options that are present in sqlalchemy.orm,
including options such as orm.joinedload(), orm.defer(),
orm.subqueryload(), and all the rest. These constructs produce an
“anonymous” form of the Load object which tracks attributes and
options, but is not linked to a parent class until it is associated with a
parent Query:

produce "unbound" Load object
myopt = joinedload("widgets")

when applied using options(), the option is "bound" to the
class observed in the given query, e.g. MyClass
session.query(MyClass).options(myopt)

Whether the direct or indirect style is used, the Load object
returned now represents a specific “path” along the entities of a
Query. This path can be traversed using a standard
method-chaining approach. Supposing a class hierarchy such as User,
User.addresses -> Address, User.orders -> Order and
Order.items -> Item, we can specify a variety of loader options along
each element in the “path”:

session.query(User).options(
 joinedload("addresses"),
 subqueryload("orders").joinedload("items")
)

Where above, the addresses collection will be joined-loaded, the
orders collection will be subquery-loaded, and within that subquery
load the items collection will be joined-loaded.

	
baked_lazyload(loadopt, attr)

	Produce a new Load object with the
orm.baked_lazyload() option applied.

See orm.baked_lazyload() for usage examples.

	
contains_eager(loadopt, attr, alias=None)

	Produce a new Load object with the
orm.contains_eager() option applied.

See orm.contains_eager() for usage examples.

	
defaultload(loadopt, attr)

	Produce a new Load object with the
orm.defaultload() option applied.

See orm.defaultload() for usage examples.

	
defer(loadopt, key)

	Produce a new Load object with the
orm.defer() option applied.

See orm.defer() for usage examples.

	
immediateload(loadopt, attr)

	Produce a new Load object with the
orm.immediateload() option applied.

See orm.immediateload() for usage examples.

	
joinedload(loadopt, attr, innerjoin=None)

	Produce a new Load object with the
orm.joinedload() option applied.

See orm.joinedload() for usage examples.

	
lazyload(loadopt, attr)

	Produce a new Load object with the
orm.lazyload() option applied.

See orm.lazyload() for usage examples.

	
load_only(loadopt, *attrs)

	Produce a new Load object with the
orm.load_only() option applied.

See orm.load_only() for usage examples.

	
noload(loadopt, attr)

	Produce a new Load object with the
orm.noload() option applied.

See orm.noload() for usage examples.

	
raiseload(loadopt, attr)

	Produce a new Load object with the
orm.raiseload() option applied.

See orm.raiseload() for usage examples.

	
subqueryload(loadopt, attr)

	Produce a new Load object with the
orm.subqueryload() option applied.

See orm.subqueryload() for usage examples.

	
undefer(loadopt, key)

	Produce a new Load object with the
orm.undefer() option applied.

See orm.undefer() for usage examples.

	
undefer_group(loadopt, name)

	Produce a new Load object with the
orm.undefer_group() option applied.

See orm.undefer_group() for usage examples.

	
sqlalchemy.orm.join(left, right, onclause=None, isouter=False, full=False, join_to_left=None)

	Produce an inner join between left and right clauses.

orm.join() is an extension to the core join interface
provided by sql.expression.join(), where the
left and right selectables may be not only core selectable
objects such as Table, but also mapped classes or
AliasedClass instances. The “on” clause can
be a SQL expression, or an attribute or string name
referencing a configured relationship().

orm.join() is not commonly needed in modern usage,
as its functionality is encapsulated within that of the
Query.join() method, which features a
significant amount of automation beyond orm.join()
by itself. Explicit usage of orm.join()
with Query involves usage of the
Query.select_from() method, as in:

from sqlalchemy.orm import join
session.query(User).\
 select_from(join(User, Address, User.addresses)).\
 filter(Address.email_address=='foo@bar.com')

In modern SQLAlchemy the above join can be written more
succinctly as:

session.query(User).\
 join(User.addresses).\
 filter(Address.email_address=='foo@bar.com')

See Query.join() for information on modern usage
of ORM level joins.

Changed in version 0.8.1: - the join_to_left parameter
is no longer used, and is deprecated.

	
sqlalchemy.orm.outerjoin(left, right, onclause=None, full=False, join_to_left=None)

	Produce a left outer join between left and right clauses.

This is the “outer join” version of the orm.join() function,
featuring the same behavior except that an OUTER JOIN is generated.
See that function’s documentation for other usage details.

	
sqlalchemy.orm.with_parent(instance, prop)

	Create filtering criterion that relates this query’s primary entity
to the given related instance, using established relationship()
configuration.

The SQL rendered is the same as that rendered when a lazy loader
would fire off from the given parent on that attribute, meaning
that the appropriate state is taken from the parent object in
Python without the need to render joins to the parent table
in the rendered statement.

Changed in version 0.6.4: This method accepts parent instances in all
persistence states, including transient, persistent, and detached.
Only the requisite primary key/foreign key attributes need to
be populated. Previous versions didn’t work with transient
instances.

	Parameters:
	
	instance¶ – An instance which has some relationship().

	property¶ – String property name, or class-bound attribute, which indicates
what relationship from the instance should be used to reconcile the
parent/child relationship.

Using the Session

The orm.mapper() function and declarative extensions
are the primary configurational interface for the ORM. Once mappings are
configured, the primary usage interface for persistence operations is the
Session.

	Session Basics
	What does the Session do ?

	Getting a Session

	Session Frequently Asked Questions

	Basics of Using a Session

	State Management
	Quickie Intro to Object States

	Session Attributes

	Session Referencing Behavior

	Merging

	Expunging

	Refreshing / Expiring

	Cascades
	save-update

	delete

	delete-orphan

	merge

	refresh-expire

	expunge

	Controlling Cascade on Backrefs

	Transactions and Connection Management
	Managing Transactions

	Joining a Session into an External Transaction (such as for test suites)

	Additional Persistence Techniques
	Embedding SQL Insert/Update Expressions into a Flush

	Using SQL Expressions with Sessions

	Forcing NULL on a column with a default

	Partitioning Strategies

	Bulk Operations

	Contextual/Thread-local Sessions
	Implicit Method Access

	Thread-Local Scope

	Using Thread-Local Scope with Web Applications

	Using Custom Created Scopes

	Contextual Session API

	Tracking Object and Session Changes with Events
	Persistence Events

	Object Lifecycle Events

	Transaction Events

	Attribute Change Events

	Session API
	Session and sessionmaker()

	Session Utilites

	Attribute and State Management Utilities

Session Basics

What does the Session do ?

In the most general sense, the Session establishes all
conversations with the database and represents a “holding zone” for all the
objects which you’ve loaded or associated with it during its lifespan. It
provides the entrypoint to acquire a Query object, which sends
queries to the database using the Session object’s current database
connection, populating result rows into objects that are then stored in the
Session, inside a structure called the Identity Map - a data structure
that maintains unique copies of each object, where “unique” means “only one
object with a particular primary key”.

The Session begins in an essentially stateless form. Once queries
are issued or other objects are persisted with it, it requests a connection
resource from an Engine that is associated either with the
Session itself or with the mapped Table objects being
operated upon. This connection represents an ongoing transaction, which
remains in effect until the Session is instructed to commit or roll
back its pending state.

All changes to objects maintained by a Session are tracked - before
the database is queried again or before the current transaction is committed,
it flushes all pending changes to the database. This is known as the Unit
of Work pattern.

When using a Session, it’s important to note that the objects
which are associated with it are proxy objects to the transaction being
held by the Session - there are a variety of events that will cause
objects to re-access the database in order to keep synchronized. It is
possible to “detach” objects from a Session, and to continue using
them, though this practice has its caveats. It’s intended that
usually, you’d re-associate detached objects with another Session when you
want to work with them again, so that they can resume their normal task of
representing database state.

Getting a Session

Session is a regular Python class which can
be directly instantiated. However, to standardize how sessions are configured
and acquired, the sessionmaker class is normally
used to create a top level Session
configuration which can then be used throughout an application without the
need to repeat the configurational arguments.

The usage of sessionmaker is illustrated below:

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

an Engine, which the Session will use for connection
resources
some_engine = create_engine('postgresql://scott:tiger@localhost/')

create a configured "Session" class
Session = sessionmaker(bind=some_engine)

create a Session
session = Session()

work with sess
myobject = MyObject('foo', 'bar')
session.add(myobject)
session.commit()

Above, the sessionmaker call creates a factory for us,
which we assign to the name Session. This factory, when
called, will create a new Session object using the configurational
arguments we’ve given the factory. In this case, as is typical,
we’ve configured the factory to specify a particular Engine for
connection resources.

A typical setup will associate the sessionmaker with an Engine,
so that each Session generated will use this Engine
to acquire connection resources. This association can
be set up as in the example above, using the bind argument.

When you write your application, place the
sessionmaker factory at the global level. This
factory can then
be used by the rest of the applcation as the source of new Session
instances, keeping the configuration for how Session objects
are constructed in one place.

The sessionmaker factory can also be used in conjunction with
other helpers, which are passed a user-defined sessionmaker that
is then maintained by the helper. Some of these helpers are discussed in the
section When do I construct a Session, when do I commit it, and when do I close it?.

Adding Additional Configuration to an Existing sessionmaker()

A common scenario is where the sessionmaker is invoked
at module import time, however the generation of one or more Engine
instances to be associated with the sessionmaker has not yet proceeded.
For this use case, the sessionmaker construct offers the
sessionmaker.configure() method, which will place additional configuration
directives into an existing sessionmaker that will take place
when the construct is invoked:

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine

configure Session class with desired options
Session = sessionmaker()

later, we create the engine
engine = create_engine('postgresql://...')

associate it with our custom Session class
Session.configure(bind=engine)

work with the session
session = Session()

Creating Ad-Hoc Session Objects with Alternate Arguments

For the use case where an application needs to create a new Session with
special arguments that deviate from what is normally used throughout the application,
such as a Session that binds to an alternate
source of connectivity, or a Session that should
have other arguments such as expire_on_commit established differently from
what most of the application wants, specific arguments can be passed to the
sessionmaker factory’s sessionmaker.__call__() method.
These arguments will override whatever
configurations have already been placed, such as below, where a new Session
is constructed against a specific Connection:

at the module level, the global sessionmaker,
bound to a specific Engine
Session = sessionmaker(bind=engine)

later, some unit of code wants to create a
Session that is bound to a specific Connection
conn = engine.connect()
session = Session(bind=conn)

The typical rationale for the association of a Session with a specific
Connection is that of a test fixture that maintains an external
transaction - see Joining a Session into an External Transaction (such as for test suites) for an example of this.

Session Frequently Asked Questions

By this point, many users already have questions about sessions.
This section presents a mini-FAQ (note that we have also a real FAQ)
of the most basic issues one is presented with when using a Session.

When do I make a sessionmaker?

Just one time, somewhere in your application’s global scope. It should be
looked upon as part of your application’s configuration. If your
application has three .py files in a package, you could, for example,
place the sessionmaker line in your __init__.py file; from
that point on your other modules say “from mypackage import Session”. That
way, everyone else just uses Session(),
and the configuration of that session is controlled by that central point.

If your application starts up, does imports, but does not know what
database it’s going to be connecting to, you can bind the
Session at the “class” level to the
engine later on, using sessionmaker.configure().

In the examples in this section, we will frequently show the
sessionmaker being created right above the line where we actually
invoke Session. But that’s just for
example’s sake! In reality, the sessionmaker would be somewhere
at the module level. The calls to instantiate Session
would then be placed at the point in the application where database
conversations begin.

When do I construct a Session, when do I commit it, and when do I close it?

tl;dr;

	As a general rule, keep the lifecycle of the session separate and
external from functions and objects that access and/or manipulate
database data. This will greatly help with achieving a predictable
and consistent transactional scope.

	Make sure you have a clear notion of where transactions
begin and end, and keep transactions short, meaning, they end
at the series of a sequence of operations, instead of being held
open indefinitely.

A Session is typically constructed at the beginning of a logical
operation where database access is potentially anticipated.

The Session, whenever it is used to talk to the database,
begins a database transaction as soon as it starts communicating.
Assuming the autocommit flag is left at its recommended default
of False, this transaction remains in progress until the Session
is rolled back, committed, or closed. The Session will
begin a new transaction if it is used again, subsequent to the previous
transaction ending; from this it follows that the Session
is capable of having a lifespan across many transactions, though only
one at a time. We refer to these two concepts as transaction scope
and session scope.

The implication here is that the SQLAlchemy ORM is encouraging the
developer to establish these two scopes in their application,
including not only when the scopes begin and end, but also the
expanse of those scopes, for example should a single
Session instance be local to the execution flow within a
function or method, should it be a global object used by the
entire application, or somewhere in between these two.

The burden placed on the developer to determine this scope is one
area where the SQLAlchemy ORM necessarily has a strong opinion
about how the database should be used. The unit of work pattern
is specifically one of accumulating changes over time and flushing
them periodically, keeping in-memory state in sync with what’s
known to be present in a local transaction. This pattern is only
effective when meaningful transaction scopes are in place.

It’s usually not very hard to determine the best points at which
to begin and end the scope of a Session, though the wide
variety of application architectures possible can introduce
challenging situations.

A common choice is to tear down the Session at the same
time the transaction ends, meaning the transaction and session scopes
are the same. This is a great choice to start out with as it
removes the need to consider session scope as separate from transaction
scope.

While there’s no one-size-fits-all recommendation for how transaction
scope should be determined, there are common patterns. Especially
if one is writing a web application, the choice is pretty much established.

A web application is the easiest case because such an application is already
constructed around a single, consistent scope - this is the request,
which represents an incoming request from a browser, the processing
of that request to formulate a response, and finally the delivery of that
response back to the client. Integrating web applications with the
Session is then the straightforward task of linking the
scope of the Session to that of the request. The Session
can be established as the request begins, or using a lazy initialization
pattern which establishes one as soon as it is needed. The request
then proceeds, with some system in place where application logic can access
the current Session in a manner associated with how the actual
request object is accessed. As the request ends, the Session
is torn down as well, usually through the usage of event hooks provided
by the web framework. The transaction used by the Session
may also be committed at this point, or alternatively the application may
opt for an explicit commit pattern, only committing for those requests
where one is warranted, but still always tearing down the Session
unconditionally at the end.

Some web frameworks include infrastructure to assist in the task
of aligning the lifespan of a Session with that of a web request.
This includes products such as Flask-SQLAlchemy,
for usage in conjunction with the Flask web framework,
and Zope-SQLAlchemy,
typically used with the Pyramid framework.
SQLAlchemy recommends that these products be used as available.

In those situations where the integration libraries are not
provided or are insufficient, SQLAlchemy includes its own “helper” class known as
scoped_session. A tutorial on the usage of this object
is at Contextual/Thread-local Sessions. It provides both a quick way
to associate a Session with the current thread, as well as
patterns to associate Session objects with other kinds of
scopes.

As mentioned before, for non-web applications there is no one clear
pattern, as applications themselves don’t have just one pattern
of architecture. The best strategy is to attempt to demarcate
“operations”, points at which a particular thread begins to perform
a series of operations for some period of time, which can be committed
at the end. Some examples:

	A background daemon which spawns off child forks
would want to create a Session local to each child
process, work with that Session through the life of the “job”
that the fork is handling, then tear it down when the job is completed.

	For a command-line script, the application would create a single, global
Session that is established when the program begins to do its
work, and commits it right as the program is completing its task.

	For a GUI interface-driven application, the scope of the Session
may best be within the scope of a user-generated event, such as a button
push. Or, the scope may correspond to explicit user interaction, such as
the user “opening” a series of records, then “saving” them.

As a general rule, the application should manage the lifecycle of the
session externally to functions that deal with specific data. This is a
fundamental separation of concerns which keeps data-specific operations
agnostic of the context in which they access and manipulate that data.

E.g. don’t do this:

this is the **wrong way to do it**

class ThingOne(object):
 def go(self):
 session = Session()
 try:
 session.query(FooBar).update({"x": 5})
 session.commit()
 except:
 session.rollback()
 raise

class ThingTwo(object):
 def go(self):
 session = Session()
 try:
 session.query(Widget).update({"q": 18})
 session.commit()
 except:
 session.rollback()
 raise

def run_my_program():
 ThingOne().go()
 ThingTwo().go()

Keep the lifecycle of the session (and usually the transaction)
separate and external:

this is a **better** (but not the only) way to do it

class ThingOne(object):
 def go(self, session):
 session.query(FooBar).update({"x": 5})

class ThingTwo(object):
 def go(self, session):
 session.query(Widget).update({"q": 18})

def run_my_program():
 session = Session()
 try:
 ThingOne().go(session)
 ThingTwo().go(session)

 session.commit()
 except:
 session.rollback()
 raise
 finally:
 session.close()

The advanced developer will try to keep the details of session, transaction
and exception management as far as possible from the details of the program
doing its work. For example, we can further separate concerns using a context manager:

another way (but again *not the only way*) to do it

from contextlib import contextmanager

@contextmanager
def session_scope():
 """Provide a transactional scope around a series of operations."""
 session = Session()
 try:
 yield session
 session.commit()
 except:
 session.rollback()
 raise
 finally:
 session.close()

def run_my_program():
 with session_scope() as session:
 ThingOne().go(session)
 ThingTwo().go(session)

Is the Session a cache?

Yeee...no. It’s somewhat used as a cache, in that it implements the
identity map pattern, and stores objects keyed to their primary key.
However, it doesn’t do any kind of query caching. This means, if you say
session.query(Foo).filter_by(name='bar'), even if Foo(name='bar')
is right there, in the identity map, the session has no idea about that.
It has to issue SQL to the database, get the rows back, and then when it
sees the primary key in the row, then it can look in the local identity
map and see that the object is already there. It’s only when you say
query.get({some primary key}) that the
Session doesn’t have to issue a query.

Additionally, the Session stores object instances using a weak reference
by default. This also defeats the purpose of using the Session as a cache.

The Session is not designed to be a
global object from which everyone consults as a “registry” of objects.
That’s more the job of a second level cache. SQLAlchemy provides
a pattern for implementing second level caching using dogpile.cache,
via the Dogpile Caching example.

How can I get the Session for a certain object?

Use the object_session() classmethod
available on Session:

session = Session.object_session(someobject)

The newer Runtime Inspection API system can also be used:

from sqlalchemy import inspect
session = inspect(someobject).session

Is the session thread-safe?

The Session is very much intended to be used in a
non-concurrent fashion, which usually means in only one thread at a
time.

The Session should be used in such a way that one
instance exists for a single series of operations within a single
transaction. One expedient way to get this effect is by associating
a Session with the current thread (see Contextual/Thread-local Sessions
for background). Another is to use a pattern
where the Session is passed between functions and is otherwise
not shared with other threads.

The bigger point is that you should not want to use the session
with multiple concurrent threads. That would be like having everyone at a
restaurant all eat from the same plate. The session is a local “workspace”
that you use for a specific set of tasks; you don’t want to, or need to,
share that session with other threads who are doing some other task.

Making sure the Session is only used in a single concurrent thread at a time
is called a “share nothing” approach to concurrency. But actually, not
sharing the Session implies a more significant pattern; it
means not just the Session object itself, but
also all objects that are associated with that Session, must be kept within
the scope of a single concurrent thread. The set of mapped
objects associated with a Session are essentially proxies for data
within database rows accessed over a database connection, and so just like
the Session itself, the whole
set of objects is really just a large-scale proxy for a database connection
(or connections). Ultimately, it’s mostly the DBAPI connection itself that
we’re keeping away from concurrent access; but since the Session
and all the objects associated with it are all proxies for that DBAPI connection,
the entire graph is essentially not safe for concurrent access.

If there are in fact multiple threads participating
in the same task, then you may consider sharing the session and its objects between
those threads; however, in this extremely unusual scenario the application would
need to ensure that a proper locking scheme is implemented so that there isn’t
concurrent access to the Session or its state. A more common approach
to this situation is to maintain a single Session per concurrent thread,
but to instead copy objects from one Session to another, often
using the Session.merge() method to copy the state of an object into
a new object local to a different Session.

Basics of Using a Session

The most basic Session use patterns are presented here.

Querying

The query() function takes one or more
entities and returns a new Query object which
will issue mapper queries within the context of this Session. An entity is
defined as a mapped class, a Mapper object, an
orm-enabled descriptor, or an AliasedClass object:

query from a class
session.query(User).filter_by(name='ed').all()

query with multiple classes, returns tuples
session.query(User, Address).join('addresses').filter_by(name='ed').all()

query using orm-enabled descriptors
session.query(User.name, User.fullname).all()

query from a mapper
user_mapper = class_mapper(User)
session.query(user_mapper)

When Query returns results, each object
instantiated is stored within the identity map. When a row matches an object
which is already present, the same object is returned. In the latter case,
whether or not the row is populated onto an existing object depends upon
whether the attributes of the instance have been expired or not. A
default-configured Session automatically
expires all instances along transaction boundaries, so that with a normally
isolated transaction, there shouldn’t be any issue of instances representing
data which is stale with regards to the current transaction.

The Query object is introduced in great detail in
Object Relational Tutorial, and further documented in
query_api_toplevel.

Adding New or Existing Items

add() is used to place instances in the
session. For transient (i.e. brand new) instances, this will have the effect
of an INSERT taking place for those instances upon the next flush. For
instances which are persistent (i.e. were loaded by this session), they are
already present and do not need to be added. Instances which are detached
(i.e. have been removed from a session) may be re-associated with a session
using this method:

user1 = User(name='user1')
user2 = User(name='user2')
session.add(user1)
session.add(user2)

session.commit() # write changes to the database

To add a list of items to the session at once, use
add_all():

session.add_all([item1, item2, item3])

The add() operation cascades along
the save-update cascade. For more details see the section
Cascades.

Deleting

The delete() method places an instance
into the Session’s list of objects to be marked as deleted:

mark two objects to be deleted
session.delete(obj1)
session.delete(obj2)

commit (or flush)
session.commit()

Deleting from Collections

A common confusion that arises regarding delete() is when
objects which are members of a collection are being deleted. While the
collection member is marked for deletion from the database, this does not
impact the collection itself in memory until the collection is expired.
Below, we illustrate that even after an Address object is marked
for deletion, it’s still present in the collection associated with the
parent User, even after a flush:

>>> address = user.addresses[1]
>>> session.delete(address)
>>> session.flush()
>>> address in user.addresses
True

When the above session is committed, all attributes are expired. The next
access of user.addresses will re-load the collection, revealing the
desired state:

>>> session.commit()
>>> address in user.addresses
False

The usual practice of deleting items within collections is to forego the usage
of delete() directly, and instead use cascade behavior to
automatically invoke the deletion as a result of removing the object from
the parent collection. The delete-orphan cascade accomplishes this,
as illustrated in the example below:

mapper(User, users_table, properties={
 'addresses':relationship(Address, cascade="all, delete, delete-orphan")
})
del user.addresses[1]
session.flush()

Where above, upon removing the Address object from the User.addresses
collection, the delete-orphan cascade has the effect of marking the Address
object for deletion in the same way as passing it to delete().

See also Cascades for detail on cascades.

Deleting based on Filter Criterion

The caveat with Session.delete() is that you need to have an object handy
already in order to delete. The Query includes a
delete() method which deletes based on
filtering criteria:

session.query(User).filter(User.id==7).delete()

The Query.delete() method includes functionality to “expire” objects
already in the session which match the criteria. However it does have some
caveats, including that “delete” and “delete-orphan” cascades won’t be fully
expressed for collections which are already loaded. See the API docs for
delete() for more details.

Flushing

When the Session is used with its default
configuration, the flush step is nearly always done transparently.
Specifically, the flush occurs before any individual
Query is issued, as well as within the
commit() call before the transaction is
committed. It also occurs before a SAVEPOINT is issued when
begin_nested() is used.

Regardless of the autoflush setting, a flush can always be forced by issuing
flush():

session.flush()

The “flush-on-Query” aspect of the behavior can be disabled by constructing
sessionmaker with the flag autoflush=False:

Session = sessionmaker(autoflush=False)

Additionally, autoflush can be temporarily disabled by setting the
autoflush flag at any time:

mysession = Session()
mysession.autoflush = False

Some autoflush-disable recipes are available at DisableAutoFlush.

The flush process always occurs within a transaction, even if the
Session has been configured with
autocommit=True, a setting that disables the session’s persistent
transactional state. If no transaction is present,
flush() creates its own transaction and
commits it. Any failures during flush will always result in a rollback of
whatever transaction is present. If the Session is not in autocommit=True
mode, an explicit call to rollback() is
required after a flush fails, even though the underlying transaction will have
been rolled back already - this is so that the overall nesting pattern of
so-called “subtransactions” is consistently maintained.

Committing

commit() is used to commit the current
transaction. It always issues flush()
beforehand to flush any remaining state to the database; this is independent
of the “autoflush” setting. If no transaction is present, it raises an error.
Note that the default behavior of the Session
is that a “transaction” is always present; this behavior can be disabled by
setting autocommit=True. In autocommit mode, a transaction can be
initiated by calling the begin() method.

Note

The term “transaction” here refers to a transactional
construct within the Session itself which may be
maintaining zero or more actual database (DBAPI) transactions. An individual
DBAPI connection begins participation in the “transaction” as it is first
used to execute a SQL statement, then remains present until the session-level
“transaction” is completed. See Managing Transactions for
further detail.

Another behavior of commit() is that by
default it expires the state of all instances present after the commit is
complete. This is so that when the instances are next accessed, either through
attribute access or by them being present in a
Query result set, they receive the most recent
state. To disable this behavior, configure
sessionmaker with expire_on_commit=False.

Normally, instances loaded into the Session
are never changed by subsequent queries; the assumption is that the current
transaction is isolated so the state most recently loaded is correct as long
as the transaction continues. Setting autocommit=True works against this
model to some degree since the Session
behaves in exactly the same way with regard to attribute state, except no
transaction is present.

Rolling Back

rollback() rolls back the current
transaction. With a default configured session, the post-rollback state of the
session is as follows:

	All transactions are rolled back and all connections returned to the
connection pool, unless the Session was bound directly to a Connection, in
which case the connection is still maintained (but still rolled back).

	Objects which were initially in the pending state when they were added
to the Session within the lifespan of the
transaction are expunged, corresponding to their INSERT statement being
rolled back. The state of their attributes remains unchanged.

	Objects which were marked as deleted within the lifespan of the
transaction are promoted back to the persistent state, corresponding to
their DELETE statement being rolled back. Note that if those objects were
first pending within the transaction, that operation takes precedence
instead.

	All objects not expunged are fully expired.

With that state understood, the Session may
safely continue usage after a rollback occurs.

When a flush() fails, typically for
reasons like primary key, foreign key, or “not nullable” constraint
violations, a rollback() is issued
automatically (it’s currently not possible for a flush to continue after a
partial failure). However, the flush process always uses its own transactional
demarcator called a subtransaction, which is described more fully in the
docstrings for Session. What it means here is
that even though the database transaction has been rolled back, the end user
must still issue rollback() to fully
reset the state of the Session.

Closing

The close() method issues a
expunge_all(), and releases any
transactional/connection resources. When connections are returned to the
connection pool, transactional state is rolled back as well.

State Management

Quickie Intro to Object States

It’s helpful to know the states which an instance can have within a session:

	Transient - an instance that’s not in a session, and is not saved to the
database; i.e. it has no database identity. The only relationship such an
object has to the ORM is that its class has a mapper() associated with
it.

	Pending - when you add() a transient
instance, it becomes pending. It still wasn’t actually flushed to the
database yet, but it will be when the next flush occurs.

	Persistent - An instance which is present in the session and has a record
in the database. You get persistent instances by either flushing so that the
pending instances become persistent, or by querying the database for
existing instances (or moving persistent instances from other sessions into
your local session).

	Deleted - An instance which has been deleted within a flush, but
the transaction has not yet completed. Objects in this state are essentially
in the opposite of “pending” state; when the session’s transaction is committed,
the object will move to the detached state. Alternatively, when
the session’s transaction is rolled back, a deleted object moves
back to the persistent state.

Changed in version 1.1: The ‘deleted’ state is a newly added session
object state distinct from the ‘persistent’ state.

	Detached - an instance which corresponds, or previously corresponded,
to a record in the database, but is not currently in any session.
The detached object will contain a database identity marker, however
because it is not associated with a session, it is unknown whether or not
this database identity actually exists in a target database. Detached
objects are safe to use normally, except that they have no ability to
load unloaded attributes or attributes that were previously marked
as “expired”.

For a deeper dive into all possible state transitions, see the
section Object Lifecycle Events which describes each transition
as well as how to programmatically track each one.

Getting the Current State of an Object

The actual state of any mapped object can be viewed at any time using
the inspect() system:

>>> from sqlalchemy import inspect
>>> insp = inspect(my_object)
>>> insp.persistent
True

See also

InstanceState.transient

InstanceState.pending

InstanceState.persistent

InstanceState.deleted

InstanceState.detached

Session Attributes

The Session itself acts somewhat like a
set-like collection. All items present may be accessed using the iterator
interface:

for obj in session:
 print(obj)

And presence may be tested for using regular “contains” semantics:

if obj in session:
 print("Object is present")

The session is also keeping track of all newly created (i.e. pending) objects,
all objects which have had changes since they were last loaded or saved (i.e.
“dirty”), and everything that’s been marked as deleted:

pending objects recently added to the Session
session.new

persistent objects which currently have changes detected
(this collection is now created on the fly each time the property is called)
session.dirty

persistent objects that have been marked as deleted via session.delete(obj)
session.deleted

dictionary of all persistent objects, keyed on their
identity key
session.identity_map

(Documentation: Session.new, Session.dirty,
Session.deleted, Session.identity_map).

Session Referencing Behavior

Objects within the session are weakly referenced. This
means that when they are dereferenced in the outside application, they fall
out of scope from within the Session as well
and are subject to garbage collection by the Python interpreter. The
exceptions to this include objects which are pending, objects which are marked
as deleted, or persistent objects which have pending changes on them. After a
full flush, these collections are all empty, and all objects are again weakly
referenced.

To cause objects in the Session to remain strongly
referenced, usually a simple approach is all that’s needed. Examples
of externally managed strong-referencing behavior include loading
objects into a local dictionary keyed to their primary key, or into
lists or sets for the span of time that they need to remain
referenced. These collections can be associated with a
Session, if desired, by placing them into the
Session.info dictionary.

An event based approach is also feasable. A simple recipe that provides
“strong referencing” behavior for all objects as they remain within
the persistent state is as follows:

from sqlalchemy import event

def strong_reference_session(session):
 @event.listens_for(session, "pending_to_persistent")
 @event.listens_for(session, "deleted_to_persistent")
 @event.listens_for(session, "detached_to_persistent")
 @event.listens_for(session, "loaded_as_persistent")
 def strong_ref_object(sess, instance):
 if 'refs' not in sess.info:
 sess.info['refs'] = refs = set()
 else:
 refs = sess.info['refs']

 refs.add(instance)

 @event.listens_for(session, "persistent_to_detached")
 @event.listens_for(session, "persistent_to_deleted")
 @event.listens_for(session, "persistent_to_transient")
 def deref_object(sess, instance):
 sess.info['refs'].discard(instance)

Above, we intercept the SessionEvents.pending_to_persistent(),
SessionEvents.detached_to_persistent(),
SessionEvents.deleted_to_persistent() and
SessionEvents.loaded_as_persistent() event hooks in order to intercept
objects as they enter the persistent transition, and the
SessionEvents.persistent_to_detached() and
SessionEvents.persistent_to_deleted() hooks to intercept
objects as they leave the persistent state.

The above function may be called for any Session in order to
provide strong-referencing behavior on a per-Session basis:

from sqlalchemy.orm import Session

my_session = Session()
strong_reference_session(my_session)

It may also be called for any sessionmaker:

from sqlalchemy.orm import sessionmaker

maker = sessionmaker()
strong_reference_session(maker)

Merging

merge() transfers state from an
outside object into a new or already existing instance within a session. It
also reconciles the incoming data against the state of the
database, producing a history stream which will be applied towards the next
flush, or alternatively can be made to produce a simple “transfer” of
state without producing change history or accessing the database. Usage is as follows:

merged_object = session.merge(existing_object)

When given an instance, it follows these steps:

	It examines the primary key of the instance. If it’s present, it attempts
to locate that instance in the local identity map. If the load=True
flag is left at its default, it also checks the database for this primary
key if not located locally.

	If the given instance has no primary key, or if no instance can be found
with the primary key given, a new instance is created.

	The state of the given instance is then copied onto the located/newly
created instance. For attributes which are present on the source
instance, the value is transferred to the target instance. For mapped
attributes which aren’t present on the source, the attribute is
expired on the target instance, discarding its existing value.

If the load=True flag is left at its default,
this copy process emits events and will load the target object’s
unloaded collections for each attribute present on the source object,
so that the incoming state can be reconciled against what’s
present in the database. If load
is passed as False, the incoming data is “stamped” directly without
producing any history.

	The operation is cascaded to related objects and collections, as
indicated by the merge cascade (see Cascades).

	The new instance is returned.

With merge(), the given “source”
instance is not modified nor is it associated with the target Session,
and remains available to be merged with any number of other Session
objects. merge() is useful for
taking the state of any kind of object structure without regard for its
origins or current session associations and copying its state into a
new session. Here’s some examples:

	An application which reads an object structure from a file and wishes to
save it to the database might parse the file, build up the
structure, and then use
merge() to save it
to the database, ensuring that the data within the file is
used to formulate the primary key of each element of the
structure. Later, when the file has changed, the same
process can be re-run, producing a slightly different
object structure, which can then be merged in again,
and the Session will
automatically update the database to reflect those
changes, loading each object from the database by primary key and
then updating its state with the new state given.

	An application is storing objects in an in-memory cache, shared by
many Session objects simultaneously. merge()
is used each time an object is retrieved from the cache to create
a local copy of it in each Session which requests it.
The cached object remains detached; only its state is moved into
copies of itself that are local to individual Session
objects.

In the caching use case, it’s common to use the load=False
flag to remove the overhead of reconciling the object’s state
with the database. There’s also a “bulk” version of
merge() called merge_result()
that was designed to work with cache-extended Query
objects - see the section Dogpile Caching.

	An application wants to transfer the state of a series of objects
into a Session maintained by a worker thread or other
concurrent system. merge() makes a copy of each object
to be placed into this new Session. At the end of the operation,
the parent thread/process maintains the objects it started with,
and the thread/worker can proceed with local copies of those objects.

In the “transfer between threads/processes” use case, the application
may want to use the load=False flag as well to avoid overhead and
redundant SQL queries as the data is transferred.

Merge Tips

merge() is an extremely useful method for many purposes. However,
it deals with the intricate border between objects that are transient/detached and
those that are persistent, as well as the automated transference of state.
The wide variety of scenarios that can present themselves here often require a
more careful approach to the state of objects. Common problems with merge usually involve
some unexpected state regarding the object being passed to merge().

Lets use the canonical example of the User and Address objects:

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 name = Column(String(50), nullable=False)
 addresses = relationship("Address", backref="user")

class Address(Base):
 __tablename__ = 'address'

 id = Column(Integer, primary_key=True)
 email_address = Column(String(50), nullable=False)
 user_id = Column(Integer, ForeignKey('user.id'), nullable=False)

Assume a User object with one Address, already persistent:

>>> u1 = User(name='ed', addresses=[Address(email_address='ed@ed.com')])
>>> session.add(u1)
>>> session.commit()

We now create a1, an object outside the session, which we’d like
to merge on top of the existing Address:

>>> existing_a1 = u1.addresses[0]
>>> a1 = Address(id=existing_a1.id)

A surprise would occur if we said this:

>>> a1.user = u1
>>> a1 = session.merge(a1)
>>> session.commit()
sqlalchemy.orm.exc.FlushError: New instance <Address at 0x1298f50>
with identity key (<class '__main__.Address'>, (1,)) conflicts with
persistent instance <Address at 0x12a25d0>

Why is that ? We weren’t careful with our cascades. The assignment
of a1.user to a persistent object cascaded to the backref of User.addresses
and made our a1 object pending, as though we had added it. Now we have
two Address objects in the session:

>>> a1 = Address()
>>> a1.user = u1
>>> a1 in session
True
>>> existing_a1 in session
True
>>> a1 is existing_a1
False

Above, our a1 is already pending in the session. The
subsequent merge() operation essentially
does nothing. Cascade can be configured via the cascade
option on relationship(), although in this case it
would mean removing the save-update cascade from the
User.addresses relationship - and usually, that behavior
is extremely convenient. The solution here would usually be to not assign
a1.user to an object already persistent in the target
session.

The cascade_backrefs=False option of relationship()
will also prevent the Address from
being added to the session via the a1.user = u1 assignment.

Further detail on cascade operation is at Cascades.

Another example of unexpected state:

>>> a1 = Address(id=existing_a1.id, user_id=u1.id)
>>> assert a1.user is None
>>> True
>>> a1 = session.merge(a1)
>>> session.commit()
sqlalchemy.exc.IntegrityError: (IntegrityError) address.user_id
may not be NULL

Here, we accessed a1.user, which returned its default value
of None, which as a result of this access, has been placed in the __dict__ of
our object a1. Normally, this operation creates no change event,
so the user_id attribute takes precedence during a
flush. But when we merge the Address object into the session, the operation
is equivalent to:

>>> existing_a1.id = existing_a1.id
>>> existing_a1.user_id = u1.id
>>> existing_a1.user = None

Where above, both user_id and user are assigned to, and change events
are emitted for both. The user association
takes precedence, and None is applied to user_id, causing a failure.

Most merge() issues can be examined by first checking -
is the object prematurely in the session ?

>>> a1 = Address(id=existing_a1, user_id=user.id)
>>> assert a1 not in session
>>> a1 = session.merge(a1)

Or is there state on the object that we don’t want ? Examining __dict__
is a quick way to check:

>>> a1 = Address(id=existing_a1, user_id=user.id)
>>> a1.user
>>> a1.__dict__
{'_sa_instance_state': <sqlalchemy.orm.state.InstanceState object at 0x1298d10>,
 'user_id': 1,
 'id': 1,
 'user': None}
>>> # we don't want user=None merged, remove it
>>> del a1.user
>>> a1 = session.merge(a1)
>>> # success
>>> session.commit()

Expunging

Expunge removes an object from the Session, sending persistent instances to
the detached state, and pending instances to the transient state:

session.expunge(obj1)

To remove all items, call expunge_all()
(this method was formerly known as clear()).

Refreshing / Expiring

Expiring means that the database-persisted data held inside a series
of object attributes is erased, in such a way that when those attributes
are next accessed, a SQL query is emitted which will refresh that data from
the database.

When we talk about expiration of data we are usually talking about an object
that is in the persistent state. For example, if we load an object
as follows:

user = session.query(User).filter_by(name='user1').first()

The above User object is persistent, and has a series of attributes
present; if we were to look inside its __dict__, we’d see that state
loaded:

>>> user.__dict__
{
 'id': 1, 'name': u'user1',
 '_sa_instance_state': <...>,
}

where id and name refer to those columns in the database.
_sa_instance_state is a non-database-persisted value used by SQLAlchemy
internally (it refers to the InstanceState for the instance.
While not directly relevant to this section, if we want to get at it,
we should use the inspect() function to access it).

At this point, the state in our User object matches that of the loaded
database row. But upon expiring the object using a method such as
Session.expire(), we see that the state is removed:

>>> session.expire(user)
>>> user.__dict__
{'_sa_instance_state': <...>}

We see that while the internal “state” still hangs around, the values which
correspond to the id and name columns are gone. If we were to access
one of these columns and are watching SQL, we’d see this:

>>> print(user.name)
SELECT user.id AS user_id, user.name AS user_name
FROM user
WHERE user.id = ?
(1,)

user1

Above, upon accessing the expired attribute user.name, the ORM initiated
a lazy load to retrieve the most recent state from the database,
by emitting a SELECT for the user row to which this user refers. Afterwards,
the __dict__ is again populated:

>>> user.__dict__
{
 'id': 1, 'name': u'user1',
 '_sa_instance_state': <...>,
}

Note

While we are peeking inside of __dict__ in order to see a bit
of what SQLAlchemy does with object attributes, we should not modify
the contents of __dict__ directly, at least as far as those attributes
which the SQLAlchemy ORM is maintaining (other attributes outside of SQLA’s
realm are fine). This is because SQLAlchemy uses descriptors in
order to track the changes we make to an object, and when we modify __dict__
directly, the ORM won’t be able to track that we changed something.

Another key behavior of both expire() and refresh()
is that all un-flushed changes on an object are discarded. That is,
if we were to modify an attribute on our User:

>>> user.name = 'user2'

but then we call expire() without first calling flush(),
our pending value of 'user2' is discarded:

>>> session.expire(user)
>>> user.name
'user1'

The expire() method can be used to mark as “expired” all ORM-mapped
attributes for an instance:

expire all ORM-mapped attributes on obj1
session.expire(obj1)

it can also be passed a list of string attribute names, referring to specific
attributes to be marked as expired:

expire only attributes obj1.attr1, obj1.attr2
session.expire(obj1, ['attr1', 'attr2'])

The refresh() method has a similar interface, but instead
of expiring, it emits an immediate SELECT for the object’s row immediately:

reload all attributes on obj1
session.refresh(obj1)

refresh() also accepts a list of string attribute names,
but unlike expire(), expects at least one name to
be that of a column-mapped attribute:

reload obj1.attr1, obj1.attr2
session.refresh(obj1, ['attr1', 'attr2'])

The Session.expire_all() method allows us to essentially call
Session.expire() on all objects contained within the Session
at once:

session.expire_all()

What Actually Loads

The SELECT statement that’s emitted when an object marked with expire()
or loaded with refresh() varies based on several factors, including:

	The load of expired attributes is triggered from column-mapped attributes only.
While any kind of attribute can be marked as expired, including a
relationship() - mapped attribute, accessing an expired relationship()
attribute will emit a load only for that attribute, using standard
relationship-oriented lazy loading. Column-oriented attributes, even if
expired, will not load as part of this operation, and instead will load when
any column-oriented attribute is accessed.

	relationship()- mapped attributes will not load in response to
expired column-based attributes being accessed.

	Regarding relationships, refresh() is more restrictive than
expire() with regards to attributes that aren’t column-mapped.
Calling refresh() and passing a list of names that only includes
relationship-mapped attributes will actually raise an error.
In any case, non-eager-loading relationship() attributes will not be
included in any refresh operation.

	relationship() attributes configured as “eager loading” via the
lazy parameter will load in the case of
refresh(), if either no attribute names are specified, or
if their names are inclued in the list of attributes to be
refreshed.

	Attributes that are configured as deferred() will not normally load,
during either the expired-attribute load or during a refresh.
An unloaded attribute that’s deferred() instead loads on its own when directly
accessed, or if part of a “group” of deferred attributes where an unloaded
attribute in that group is accessed.

	For expired attributes that are loaded on access, a joined-inheritance table
mapping will emit a SELECT that typically only includes those tables for which
unloaded attributes are present. The action here is sophisticated enough
to load only the parent or child table, for example, if the subset of columns
that were originally expired encompass only one or the other of those tables.

	When refresh() is used on a joined-inheritance table mapping,
the SELECT emitted will resemble that of when Session.query() is
used on the target object’s class. This is typically all those tables that
are set up as part of the mapping.

When to Expire or Refresh

The Session uses the expiration feature automatically whenever
the transaction referred to by the session ends. Meaning, whenever Session.commit()
or Session.rollback() is called, all objects within the Session
are expired, using a feature equivalent to that of the Session.expire_all()
method. The rationale is that the end of a transaction is a
demarcating point at which there is no more context available in order to know
what the current state of the database is, as any number of other transactions
may be affecting it. Only when a new transaction starts can we again have access
to the current state of the database, at which point any number of changes
may have occurred.

Transaction Isolation

Of course, most databases are capable of handling
multiple transactions at once, even involving the same rows of data. When
a relational database handles multiple transactions involving the same
tables or rows, this is when the isolation aspect of the database comes
into play. The isolation behavior of different databases varies considerably
and even on a single database can be configured to behave in different ways
(via the so-called isolation level setting). In that sense, the Session
can’t fully predict when the same SELECT statement, emitted a second time,
will definitely return the data we already have, or will return new data.
So as a best guess, it assumes that within the scope of a transaction, unless
it is known that a SQL expression has been emitted to modify a particular row,
there’s no need to refresh a row unless explicitly told to do so.

The Session.expire() and Session.refresh() methods are used in
those cases when one wants to force an object to re-load its data from the
database, in those cases when it is known that the current state of data
is possibly stale. Reasons for this might include:

	some SQL has been emitted within the transaction outside of the
scope of the ORM’s object handling, such as if a Table.update() construct
were emitted using the Session.execute() method;

	if the application
is attempting to acquire data that is known to have been modified in a
concurrent transaction, and it is also known that the isolation rules in effect
allow this data to be visible.

The second bullet has the important caveat that “it is also known that the isolation rules in effect
allow this data to be visible.” This means that it cannot be assumed that an
UPDATE that happened on another database connection will yet be visible here
locally; in many cases, it will not. This is why if one wishes to use
expire() or refresh() in order to view data between ongoing
transactions, an understanding of the isolation behavior in effect is essential.

See also

Session.expire()

Session.expire_all()

Session.refresh()

isolation - glossary explanation of isolation which includes links
to Wikipedia.

The SQLAlchemy Session In-Depth - a video + slides with an in-depth discussion of the object
lifecycle including the role of data expiration.

Cascades

Mappers support the concept of configurable cascade behavior on
relationship() constructs. This refers
to how operations performed on a “parent” object relative to a
particular Session should be propagated to items
referred to by that relationship (e.g. “child” objects), and is
affected by the relationship.cascade option.

The default behavior of cascade is limited to cascades of the
so-called save-update and merge settings.
The typical “alternative” setting for cascade is to add
the delete and delete-orphan options;
these settings are appropriate for related objects which only exist as
long as they are attached to their parent, and are otherwise deleted.

Cascade behavior is configured using the
cascade option on
relationship():

class Order(Base):
 __tablename__ = 'order'

 items = relationship("Item", cascade="all, delete-orphan")
 customer = relationship("User", cascade="save-update")

To set cascades on a backref, the same flag can be used with the
backref() function, which ultimately feeds
its arguments back into relationship():

class Item(Base):
 __tablename__ = 'item'

 order = relationship("Order",
 backref=backref("items", cascade="all, delete-orphan")
)

The Origins of Cascade

SQLAlchemy’s notion of cascading behavior on relationships,
as well as the options to configure them, are primarily derived
from the similar feature in the Hibernate ORM; Hibernate refers
to “cascade” in a few places such as in
Example: Parent/Child.
If cascades are confusing, we’ll refer to their conclusion,
stating “The sections we have just covered can be a bit confusing.
However, in practice, it all works out nicely.”

The default value of cascade is save-update, merge.
The typical alternative setting for this parameter is either
all or more commonly all, delete-orphan. The all symbol
is a synonym for save-update, merge, refresh-expire, expunge, delete,
and using it in conjunction with delete-orphan indicates that the child
object should follow along with its parent in all cases, and be deleted once
it is no longer associated with that parent.

The list of available values which can be specified for
the cascade parameter are described in the following subsections.

save-update

save-update cascade indicates that when an object is placed into a
Session via Session.add(), all the objects associated
with it via this relationship() should also be added to that
same Session. Suppose we have an object user1 with two
related objects address1, address2:

>>> user1 = User()
>>> address1, address2 = Address(), Address()
>>> user1.addresses = [address1, address2]

If we add user1 to a Session, it will also add
address1, address2 implicitly:

>>> sess = Session()
>>> sess.add(user1)
>>> address1 in sess
True

save-update cascade also affects attribute operations for objects
that are already present in a Session. If we add a third
object, address3 to the user1.addresses collection, it
becomes part of the state of that Session:

>>> address3 = Address()
>>> user1.append(address3)
>>> address3 in sess
>>> True

save-update has the possibly surprising behavior which is that
persistent objects which were removed from a collection
or in some cases a scalar attribute
may also be pulled into the Session of a parent object; this is
so that the flush process may handle that related object appropriately.
This case can usually only arise if an object is removed from one Session
and added to another:

>>> user1 = sess1.query(User).filter_by(id=1).first()
>>> address1 = user1.addresses[0]
>>> sess1.close() # user1, address1 no longer associated with sess1
>>> user1.addresses.remove(address1) # address1 no longer associated with user1
>>> sess2 = Session()
>>> sess2.add(user1) # ... but it still gets added to the new session,
>>> address1 in sess2 # because it's still "pending" for flush
True

The save-update cascade is on by default, and is typically taken
for granted; it simplifies code by allowing a single call to
Session.add() to register an entire structure of objects within
that Session at once. While it can be disabled, there
is usually not a need to do so.

One case where save-update cascade does sometimes get in the way is in that
it takes place in both directions for bi-directional relationships, e.g.
backrefs, meaning that the association of a child object with a particular parent
can have the effect of the parent object being implicitly associated with that
child object’s Session; this pattern, as well as how to modify its
behavior using the cascade_backrefs flag,
is discussed in the section Controlling Cascade on Backrefs.

delete

The delete cascade indicates that when a “parent” object
is marked for deletion, its related “child” objects should also be marked
for deletion. If for example we we have a relationship User.addresses
with delete cascade configured:

class User(Base):
 # ...

 addresses = relationship("Address", cascade="save-update, merge, delete")

If using the above mapping, we have a User object and two
related Address objects:

>>> user1 = sess.query(User).filter_by(id=1).first()
>>> address1, address2 = user1.addresses

If we mark user1 for deletion, after the flush operation proceeds,
address1 and address2 will also be deleted:

>>> sess.delete(user1)
>>> sess.commit()
DELETE FROM address WHERE address.id = ?
((1,), (2,))
DELETE FROM user WHERE user.id = ?
(1,)
COMMIT

Alternatively, if our User.addresses relationship does not have
delete cascade, SQLAlchemy’s default behavior is to instead de-associate
address1 and address2 from user1 by setting their foreign key
reference to NULL. Using a mapping as follows:

class User(Base):
 # ...

 addresses = relationship("Address")

Upon deletion of a parent User object, the rows in address are not
deleted, but are instead de-associated:

>>> sess.delete(user1)
>>> sess.commit()
UPDATE address SET user_id=? WHERE address.id = ?
(None, 1)
UPDATE address SET user_id=? WHERE address.id = ?
(None, 2)
DELETE FROM user WHERE user.id = ?
(1,)
COMMIT

delete cascade is more often than not used in conjunction with
delete-orphan cascade, which will emit a DELETE for the related
row if the “child” object is deassociated from the parent. The combination
of delete and delete-orphan cascade covers both situations where
SQLAlchemy has to decide between setting a foreign key column to NULL versus
deleting the row entirely.

ORM-level “delete” cascade vs. FOREIGN KEY level “ON DELETE” cascade

The behavior of SQLAlchemy’s “delete” cascade has a lot of overlap with the
ON DELETE CASCADE feature of a database foreign key, as well
as with that of the ON DELETE SET NULL foreign key setting when “delete”
cascade is not specified. Database level “ON DELETE” cascades are specific to the
“FOREIGN KEY” construct of the relational database; SQLAlchemy allows
configuration of these schema-level constructs at the DDL level
using options on ForeignKeyConstraint which are described
at ON UPDATE and ON DELETE.

It is important to note the differences between the ORM and the relational
database’s notion of “cascade” as well as how they integrate:

	A database level ON DELETE cascade is configured effectively
on the many-to-one side of the relationship; that is, we configure
it relative to the FOREIGN KEY constraint that is the “many” side
of a relationship. At the ORM level, this direction is reversed.
SQLAlchemy handles the deletion of “child” objects relative to a
“parent” from the “parent” side, which means that delete and
delete-orphan cascade are configured on the one-to-many
side.

	Database level foreign keys with no ON DELETE setting
are often used to prevent a parent
row from being removed, as it would necessarily leave an unhandled
related row present. If this behavior is desired in a one-to-many
relationship, SQLAlchemy’s default behavior of setting a foreign key
to NULL can be caught in one of two ways:

	The easiest and most common is just to set the
foreign-key-holding column to NOT NULL at the database schema
level. An attempt by SQLAlchemy to set the column to NULL will
fail with a simple NOT NULL constraint exception.

	The other, more special case way is to set the passive_deletes
flag to the string "all". This has the effect of entirely
disabling SQLAlchemy’s behavior of setting the foreign key column
to NULL, and a DELETE will be emitted for the parent row without
any affect on the child row, even if the child row is present
in memory. This may be desirable in the case when
database-level foreign key triggers, either special ON DELETE settings
or otherwise, need to be activated in all cases when a parent row is deleted.

	Database level ON DELETE cascade is vastly more efficient
than that of SQLAlchemy. The database can chain a series of cascade
operations across many relationships at once; e.g. if row A is deleted,
all the related rows in table B can be deleted, and all the C rows related
to each of those B rows, and on and on, all within the scope of a single
DELETE statement. SQLAlchemy on the other hand, in order to support
the cascading delete operation fully, has to individually load each
related collection in order to target all rows that then may have further
related collections. That is, SQLAlchemy isn’t sophisticated enough
to emit a DELETE for all those related rows at once within this context.

	SQLAlchemy doesn’t need to be this sophisticated, as we instead provide
smooth integration with the database’s own ON DELETE functionality,
by using the passive_deletes option in conjunction
with properly configured foreign key constraints. Under this behavior,
SQLAlchemy only emits DELETE for those rows that are already locally
present in the Session; for any collections that are unloaded,
it leaves them to the database to handle, rather than emitting a SELECT
for them. The section Using Passive Deletes provides an example of this use.

	While database-level ON DELETE functionality works only on the “many”
side of a relationship, SQLAlchemy’s “delete” cascade
has limited ability to operate in the reverse direction as well,
meaning it can be configured on the “many” side to delete an object
on the “one” side when the reference on the “many” side is deleted. However
this can easily result in constraint violations if there are other objects
referring to this “one” side from the “many”, so it typically is only
useful when a relationship is in fact a “one to one”. The
single_parent flag should be used to establish
an in-Python assertion for this case.

When using a relationship() that also includes a many-to-many
table using the secondary option, SQLAlchemy’s
delete cascade handles the rows in this many-to-many table automatically.
Just like, as described in Deleting Rows from the Many to Many Table,
the addition or removal of an object from a many-to-many collection
results in the INSERT or DELETE of a row in the many-to-many table,
the delete cascade, when activated as the result of a parent object
delete operation, will DELETE not just the row in the “child” table but also
in the many-to-many table.

delete-orphan

delete-orphan cascade adds behavior to the delete cascade,
such that a child object will be marked for deletion when it is
de-associated from the parent, not just when the parent is marked
for deletion. This is a common feature when dealing with a related
object that is “owned” by its parent, with a NOT NULL foreign key,
so that removal of the item from the parent collection results
in its deletion.

delete-orphan cascade implies that each child object can only
have one parent at a time, so is configured in the vast majority of cases
on a one-to-many relationship. Setting it on a many-to-one or
many-to-many relationship is more awkward; for this use case,
SQLAlchemy requires that the relationship()
be configured with the single_parent argument,
establishes Python-side validation that ensures the object
is associated with only one parent at a time.

merge

merge cascade indicates that the Session.merge()
operation should be propagated from a parent that’s the subject
of the Session.merge() call down to referred objects.
This cascade is also on by default.

refresh-expire

refresh-expire is an uncommon option, indicating that the
Session.expire() operation should be propagated from a parent
down to referred objects. When using Session.refresh(),
the referred objects are expired only, but not actually refreshed.

expunge

expunge cascade indicates that when the parent object is removed
from the Session using Session.expunge(), the
operation should be propagated down to referred objects.

Controlling Cascade on Backrefs

The save-update cascade by default takes place on attribute change events
emitted from backrefs. This is probably a confusing statement more
easily described through demonstration; it means that, given a mapping such as this:

mapper(Order, order_table, properties={
 'items' : relationship(Item, backref='order')
})

If an Order is already in the session, and is assigned to the order
attribute of an Item, the backref appends the Item to the items
collection of that Order, resulting in the save-update cascade taking
place:

>>> o1 = Order()
>>> session.add(o1)
>>> o1 in session
True

>>> i1 = Item()
>>> i1.order = o1
>>> i1 in o1.items
True
>>> i1 in session
True

This behavior can be disabled using the cascade_backrefs flag:

mapper(Order, order_table, properties={
 'items' : relationship(Item, backref='order',
 cascade_backrefs=False)
})

So above, the assignment of i1.order = o1 will append i1 to the items
collection of o1, but will not add i1 to the session. You can, of
course, add() i1 to the session at a later point. This
option may be helpful for situations where an object needs to be kept out of a
session until it’s construction is completed, but still needs to be given
associations to objects which are already persistent in the target session.

Transactions and Connection Management

Managing Transactions

A newly constructed Session may be said to be in the “begin” state.
In this state, the Session has not established any connection or
transactional state with any of the Engine objects that may be associated
with it.

The Session then receives requests to operate upon a database connection.
Typically, this means it is called upon to execute SQL statements using a particular
Engine, which may be via Session.query(), Session.execute(),
or within a flush operation of pending data, which occurs when such state exists
and Session.commit() or Session.flush() is called.

As these requests are received, each new Engine encountered is associated
with an ongoing transactional state maintained by the Session.
When the first Engine is operated upon, the Session can be said
to have left the “begin” state and entered “transactional” state. For each
Engine encountered, a Connection is associated with it,
which is acquired via the Engine.contextual_connect() method. If a
Connection was directly associated with the Session (see Joining a Session into an External Transaction (such as for test suites)
for an example of this), it is
added to the transactional state directly.

For each Connection, the Session also maintains a Transaction object,
which is acquired by calling Connection.begin() on each Connection,
or if the Session
object has been established using the flag twophase=True, a TwoPhaseTransaction
object acquired via Connection.begin_twophase(). These transactions are all committed or
rolled back corresponding to the invocation of the
Session.commit() and Session.rollback() methods. A commit operation will
also call the TwoPhaseTransaction.prepare() method on all transactions if applicable.

When the transactional state is completed after a rollback or commit, the Session
releases all Transaction and Connection resources,
and goes back to the “begin” state, which
will again invoke new Connection and Transaction objects as new
requests to emit SQL statements are received.

The example below illustrates this lifecycle:

engine = create_engine("...")
Session = sessionmaker(bind=engine)

new session. no connections are in use.
session = Session()
try:
 # first query. a Connection is acquired
 # from the Engine, and a Transaction
 # started.
 item1 = session.query(Item).get(1)

 # second query. the same Connection/Transaction
 # are used.
 item2 = session.query(Item).get(2)

 # pending changes are created.
 item1.foo = 'bar'
 item2.bar = 'foo'

 # commit. The pending changes above
 # are flushed via flush(), the Transaction
 # is committed, the Connection object closed
 # and discarded, the underlying DBAPI connection
 # returned to the connection pool.
 session.commit()
except:
 # on rollback, the same closure of state
 # as that of commit proceeds.
 session.rollback()
 raise

Using SAVEPOINT

SAVEPOINT transactions, if supported by the underlying engine, may be
delineated using the begin_nested()
method:

Session = sessionmaker()
session = Session()
session.add(u1)
session.add(u2)

session.begin_nested() # establish a savepoint
session.add(u3)
session.rollback() # rolls back u3, keeps u1 and u2

session.commit() # commits u1 and u2

begin_nested() may be called any number
of times, which will issue a new SAVEPOINT with a unique identifier for each
call. For each begin_nested() call, a
corresponding rollback() or
commit() must be issued. (But note that if the return value is
used as a context manager, i.e. in a with-statement, then this rollback/commit
is issued by the context manager upon exiting the context, and so should not be
added explicitly.)

When begin_nested() is called, a
flush() is unconditionally issued
(regardless of the autoflush setting). This is so that when a
rollback() occurs, the full state of the
session is expired, thus causing all subsequent attribute/instance access to
reference the full state of the Session right
before begin_nested() was called.

begin_nested(), in the same manner as the less often
used begin() method, returns a transactional object
which also works as a context manager.
It can be succinctly used around individual record inserts in order to catch
things like unique constraint exceptions:

for record in records:
 try:
 with session.begin_nested():
 session.merge(record)
 except:
 print("Skipped record %s" % record)
session.commit()

Autocommit Mode

The example of Session transaction lifecycle illustrated at
the start of Managing Transactions applies to a Session configured in the
default mode of autocommit=False. Constructing a Session
with autocommit=True produces a Session placed into “autocommit” mode, where each SQL statement
invoked by a Session.query() or Session.execute() occurs
using a new connection from the connection pool, discarding it after
results have been iterated. The Session.flush() operation
still occurs within the scope of a single transaction, though this transaction
is closed out after the Session.flush() operation completes.

Warning

“autocommit” mode should not be considered for general use.
If used, it should always be combined with the usage of
Session.begin() and Session.commit(), to ensure
a transaction demarcation.

Executing queries outside of a demarcated transaction is a legacy mode
of usage, and can in some cases lead to concurrent connection
checkouts.

In the absence of a demarcated transaction, the Session
cannot make appropriate decisions as to when autoflush should
occur nor when auto-expiration should occur, so these features
should be disabled with autoflush=False, expire_on_commit=False.

Modern usage of “autocommit” is for framework integrations that need to control
specifically when the “begin” state occurs. A session which is configured with
autocommit=True may be placed into the “begin” state using the
Session.begin() method.
After the cycle completes upon Session.commit() or Session.rollback(),
connection and transaction resources are released and the Session
goes back into “autocommit” mode, until Session.begin() is called again:

Session = sessionmaker(bind=engine, autocommit=True)
session = Session()
session.begin()
try:
 item1 = session.query(Item).get(1)
 item2 = session.query(Item).get(2)
 item1.foo = 'bar'
 item2.bar = 'foo'
 session.commit()
except:
 session.rollback()
 raise

The Session.begin() method also returns a transactional token which is
compatible with the Python 2.6 with statement:

Session = sessionmaker(bind=engine, autocommit=True)
session = Session()
with session.begin():
 item1 = session.query(Item).get(1)
 item2 = session.query(Item).get(2)
 item1.foo = 'bar'
 item2.bar = 'foo'

Using Subtransactions with Autocommit

A subtransaction indicates usage of the Session.begin() method in conjunction with
the subtransactions=True flag. This produces a non-transactional, delimiting construct that
allows nesting of calls to begin() and commit().
Its purpose is to allow the construction of code that can function within a transaction
both independently of any external code that starts a transaction,
as well as within a block that has already demarcated a transaction.

subtransactions=True is generally only useful in conjunction with
autocommit, and is equivalent to the pattern described at Nesting of Transaction Blocks,
where any number of functions can call Connection.begin() and Transaction.commit()
as though they are the initiator of the transaction, but in fact may be participating
in an already ongoing transaction:

method_a starts a transaction and calls method_b
def method_a(session):
 session.begin(subtransactions=True)
 try:
 method_b(session)
 session.commit() # transaction is committed here
 except:
 session.rollback() # rolls back the transaction
 raise

method_b also starts a transaction, but when
called from method_a participates in the ongoing
transaction.
def method_b(session):
 session.begin(subtransactions=True)
 try:
 session.add(SomeObject('bat', 'lala'))
 session.commit() # transaction is not committed yet
 except:
 session.rollback() # rolls back the transaction, in this case
 # the one that was initiated in method_a().
 raise

create a Session and call method_a
session = Session(autocommit=True)
method_a(session)
session.close()

Subtransactions are used by the Session.flush() process to ensure that the
flush operation takes place within a transaction, regardless of autocommit. When
autocommit is disabled, it is still useful in that it forces the Session
into a “pending rollback” state, as a failed flush cannot be resumed in mid-operation,
where the end user still maintains the “scope” of the transaction overall.

Enabling Two-Phase Commit

For backends which support two-phase operaration (currently MySQL and
PostgreSQL), the session can be instructed to use two-phase commit semantics.
This will coordinate the committing of transactions across databases so that
the transaction is either committed or rolled back in all databases. You can
also prepare() the session for
interacting with transactions not managed by SQLAlchemy. To use two phase
transactions set the flag twophase=True on the session:

engine1 = create_engine('postgresql://db1')
engine2 = create_engine('postgresql://db2')

Session = sessionmaker(twophase=True)

bind User operations to engine 1, Account operations to engine 2
Session.configure(binds={User:engine1, Account:engine2})

session = Session()

.... work with accounts and users

commit. session will issue a flush to all DBs, and a prepare step to all DBs,
before committing both transactions
session.commit()

Setting Transaction Isolation Levels

Isolation refers to the behavior of the transaction at the database
level in relation to other transactions occurring concurrently. There
are four well-known modes of isolation, and typically the Python DBAPI
allows these to be set on a per-connection basis, either through explicit
APIs or via database-specific calls.

SQLAlchemy’s dialects support settable isolation modes on a per-Engine
or per-Connection basis, using flags at both the
create_engine() level as well as at the Connection.execution_options()
level.

When using the ORM Session, it acts as a facade for engines and
connections, but does not expose transaction isolation directly. So in
order to affect transaction isolation level, we need to act upon the
Engine or Connection as appropriate.

See also

create_engine.isolation_level

SQLite Transaction Isolation

Postgresql Isolation Level

MySQL Isolation Level

Setting Isolation Engine-Wide

To set up a Session or sessionmaker with a specific
isolation level globally, use the create_engine.isolation_level
parameter:

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

eng = create_engine(
 "postgresql://scott:tiger@localhost/test",
 isolation_level='REPEATABLE_READ')

maker = sessionmaker(bind=eng)

session = maker()

Setting Isolation for Individual Sessions

When we make a new Session, either using the constructor directly
or when we call upon the callable produced by a sessionmaker,
we can pass the bind argument directly, overriding the pre-existing bind.
We can combine this with the Engine.execution_options() method
in order to produce a copy of the original Engine that will
add this option:

session = maker(
 bind=engine.execution_options(isolation_level='SERIALIZABLE'))

For the case where the Session or sessionmaker is
configured with multiple “binds”, we can either re-specify the binds
argument fully, or if we want to only replace specific binds, we
can use the Session.bind_mapper() or Session.bind_table()
methods:

session = maker()
session.bind_mapper(
 User, user_engine.execution_options(isolation_level='SERIALIZABLE'))

We can also use the individual transaction method that follows.

Setting Isolation for Individual Transactions

A key caveat regarding isolation level is that the setting cannot be
safely modified on a Connection where a transaction has already
started. Databases cannot change the isolation level of a transaction
in progress, and some DBAPIs and SQLAlchemy dialects
have inconsistent behaviors in this area. Some may implicitly emit a
ROLLBACK and some may implicitly emit a COMMIT, others may ignore the setting
until the next transaction. Therefore SQLAlchemy emits a warning if this
option is set when a transaction is already in play. The Session
object does not provide for us a Connection for use in a transaction
where the transaction is not already begun. So here, we need to pass
execution options to the Session at the start of a transaction
by passing Session.connection.execution_options
provided by the Session.connection() method:

from sqlalchemy.orm import Session

sess = Session(bind=engine)
sess.connection(execution_options={'isolation_level': 'SERIALIZABLE'})

work with session

commit transaction. the connection is released
and reverted to its previous isolation level.
sess.commit()

Above, we first produce a Session using either the constructor
or a sessionmaker. Then we explicitly set up the start of
a transaction by calling upon Session.connection(), which provides
for execution options that will be passed to the connection before the
transaction is begun. If we are working with a Session that
has multiple binds or some other custom scheme for Session.get_bind(),
we can pass additional arguments to Session.connection() in order to
affect how the bind is procured:

sess = my_sesssionmaker()

set up a transaction for the bind associated with
the User mapper
sess.connection(
 mapper=User,
 execution_options={'isolation_level': 'SERIALIZABLE'})

work with session

commit transaction. the connection is released
and reverted to its previous isolation level.
sess.commit()

The Session.connection.execution_options argument is only
accepted on the first call to Session.connection() for a
particular bind within a transaction. If a transaction is already begun
on the target connection, a warning is emitted:

>>> session = Session(eng)
>>> session.execute("select 1")
<sqlalchemy.engine.result.ResultProxy object at 0x1017a6c50>
>>> session.connection(execution_options={'isolation_level': 'SERIALIZABLE'})
sqlalchemy/orm/session.py:310: SAWarning: Connection is already established
for the given bind; execution_options ignored

New in version 0.9.9: Added the
Session.connection.execution_options
parameter to Session.connection().

Tracking Transaction State with Events

See the section Transaction Events for an overview
of the available event hooks for session transaction state changes.

Joining a Session into an External Transaction (such as for test suites)

If a Connection is being used which is already in a transactional
state (i.e. has a Transaction established), a Session can
be made to participate within that transaction by just binding the
Session to that Connection. The usual rationale for this
is a test suite that allows ORM code to work freely with a Session,
including the ability to call Session.commit(), where afterwards the
entire database interaction is rolled back:

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from unittest import TestCase

global application scope. create Session class, engine
Session = sessionmaker()

engine = create_engine('postgresql://...')

class SomeTest(TestCase):
 def setUp(self):
 # connect to the database
 self.connection = engine.connect()

 # begin a non-ORM transaction
 self.trans = self.connection.begin()

 # bind an individual Session to the connection
 self.session = Session(bind=self.connection)

 def test_something(self):
 # use the session in tests.

 self.session.add(Foo())
 self.session.commit()

 def tearDown(self):
 self.session.close()

 # rollback - everything that happened with the
 # Session above (including calls to commit())
 # is rolled back.
 self.trans.rollback()

 # return connection to the Engine
 self.connection.close()

Above, we issue Session.commit() as well as
Transaction.rollback(). This is an example of where we take advantage
of the Connection object’s ability to maintain subtransactions, or
nested begin/commit-or-rollback pairs where only the outermost begin/commit
pair actually commits the transaction, or if the outermost block rolls back,
everything is rolled back.

Supporting Tests with Rollbacks

The above recipe works well for any kind of database enabled test, except
for a test that needs to actually invoke Session.rollback() within
the scope of the test itself. The above recipe can be expanded, such
that the Session always runs all operations within the scope
of a SAVEPOINT, which is established at the start of each transaction,
so that tests can also rollback the “transaction” as well while still
remaining in the scope of a larger “transaction” that’s never committed,
using two extra events:

from sqlalchemy import event

class SomeTest(TestCase):

 def setUp(self):
 # connect to the database
 self.connection = engine.connect()

 # begin a non-ORM transaction
 self.trans = connection.begin()

 # bind an individual Session to the connection
 self.session = Session(bind=self.connection)

 # start the session in a SAVEPOINT...
 self.session.begin_nested()

 # then each time that SAVEPOINT ends, reopen it
 @event.listens_for(self.session, "after_transaction_end")
 def restart_savepoint(session, transaction):
 if transaction.nested and not transaction._parent.nested:

 # ensure that state is expired the way
 # session.commit() at the top level normally does
 # (optional step)
 session.expire_all()

 session.begin_nested()

 # ... the tearDown() method stays the same

Additional Persistence Techniques

Embedding SQL Insert/Update Expressions into a Flush

This feature allows the value of a database column to be set to a SQL
expression instead of a literal value. It’s especially useful for atomic
updates, calling stored procedures, etc. All you do is assign an expression to
an attribute:

class SomeClass(object):
 pass
mapper(SomeClass, some_table)

someobject = session.query(SomeClass).get(5)

set 'value' attribute to a SQL expression adding one
someobject.value = some_table.c.value + 1

issues "UPDATE some_table SET value=value+1"
session.commit()

This technique works both for INSERT and UPDATE statements. After the
flush/commit operation, the value attribute on someobject above is
expired, so that when next accessed the newly generated value will be loaded
from the database.

Using SQL Expressions with Sessions

SQL expressions and strings can be executed via the
Session within its transactional context.
This is most easily accomplished using the
execute() method, which returns a
ResultProxy in the same manner as an
Engine or
Connection:

Session = sessionmaker(bind=engine)
session = Session()

execute a string statement
result = session.execute("select * from table where id=:id", {'id':7})

execute a SQL expression construct
result = session.execute(select([mytable]).where(mytable.c.id==7))

The current Connection held by the
Session is accessible using the
connection() method:

connection = session.connection()

The examples above deal with a Session that’s
bound to a single Engine or
Connection. To execute statements using a
Session which is bound either to multiple
engines, or none at all (i.e. relies upon bound metadata), both
execute() and
connection() accept a mapper keyword
argument, which is passed a mapped class or
Mapper instance, which is used to locate the
proper context for the desired engine:

Session = sessionmaker()
session = Session()

need to specify mapper or class when executing
result = session.execute("select * from table where id=:id", {'id':7}, mapper=MyMappedClass)

result = session.execute(select([mytable], mytable.c.id==7), mapper=MyMappedClass)

connection = session.connection(MyMappedClass)

Forcing NULL on a column with a default

The ORM considers any attribute that was never set on an object as a
“default” case; the attribute will be omitted from the INSERT statement:

class MyObject(Base):
 __tablename__ = 'my_table'
 id = Column(Integer, primary_key=True)
 data = Column(String(50), nullable=True)

obj = MyObject(id=1)
session.add(obj)
session.commit() # INSERT with the 'data' column omitted; the database
 # itself will persist this as the NULL value

Omitting a column from the INSERT means that the column will
have the NULL value set, unless the column has a default set up,
in which case the default value will be persisted. This holds true
both from a pure SQL perspective with server-side defaults, as well as the
behavior of SQLAlchemy’s insert behavior with both client-side and server-side
defaults:

class MyObject(Base):
 __tablename__ = 'my_table'
 id = Column(Integer, primary_key=True)
 data = Column(String(50), nullable=True, server_default="default")

obj = MyObject(id=1)
session.add(obj)
session.commit() # INSERT with the 'data' column omitted; the database
 # itself will persist this as the value 'default'

However, in the ORM, even if one assigns the Python value None explicitly
to the object, this is treated the same as though the value were never
assigned:

class MyObject(Base):
 __tablename__ = 'my_table'
 id = Column(Integer, primary_key=True)
 data = Column(String(50), nullable=True, server_default="default")

obj = MyObject(id=1, data=None)
session.add(obj)
session.commit() # INSERT with the 'data' column explicitly set to None;
 # the ORM still omits it from the statement and the
 # database will still persist this as the value 'default'

The above operation will persist into the data column the
server default value of "default" and not SQL NULL, even though None
was passed; this is a long-standing behavior of the ORM that many applications
hold as an assumption.

So what if we want to actually put NULL into this column, even though the
column has a default value? There are two approaches. One is that
on a per-instance level, we assign the attribute using the
null SQL construct:

from sqlalchemy import null

obj = MyObject(id=1, data=null())
session.add(obj)
session.commit() # INSERT with the 'data' column explicitly set as null();
 # the ORM uses this directly, bypassing all client-
 # and server-side defaults, and the database will
 # persist this as the NULL value

The null SQL construct always translates into the SQL
NULL value being directly present in the target INSERT statement.

If we’d like to be able to use the Python value None and have this
also be persisted as NULL despite the presence of column defaults,
we can configure this for the ORM using a Core-level modifier
TypeEngine.evaluates_none(), which indicates
a type where the ORM should treat the value None the same as any other
value and pass it through, rather than omitting it as a “missing” value:

class MyObject(Base):
 __tablename__ = 'my_table'
 id = Column(Integer, primary_key=True)
 data = Column(
 String(50).evaluates_none(), # indicate that None should always be passed
 nullable=True, server_default="default")

obj = MyObject(id=1, data=None)
session.add(obj)
session.commit() # INSERT with the 'data' column explicitly set to None;
 # the ORM uses this directly, bypassing all client-
 # and server-side defaults, and the database will
 # persist this as the NULL value

Evaluating None

The TypeEngine.evaluates_none() modifier is primarily intended to
signal a type where the Python value “None” is significant, the primary
example being a JSON type which may want to persist the JSON null value
rather than SQL NULL. We are slightly repurposing it here in order to
signal to the ORM that we’d like None to be passed into the type whenever
present, even though no special type-level behaviors are assigned to it.

New in version 1.1: added the TypeEngine.evaluates_none() method
in order to indicate that a “None” value should be treated as significant.

Partitioning Strategies

Simple Vertical Partitioning

Vertical partitioning places different kinds of objects, or different tables,
across multiple databases:

engine1 = create_engine('postgresql://db1')
engine2 = create_engine('postgresql://db2')

Session = sessionmaker(twophase=True)

bind User operations to engine 1, Account operations to engine 2
Session.configure(binds={User:engine1, Account:engine2})

session = Session()

Above, operations against either class will make usage of the Engine
linked to that class. Upon a flush operation, similar rules take place
to ensure each class is written to the right database.

The transactions among the multiple databases can optionally be coordinated
via two phase commit, if the underlying backend supports it. See
Enabling Two-Phase Commit for an example.

Custom Vertical Partitioning

More comprehensive rule-based class-level partitioning can be built by
overriding the Session.get_bind() method. Below we illustrate
a custom Session which delivers the following rules:

	Flush operations are delivered to the engine named master.

	Operations on objects that subclass MyOtherClass all
occur on the other engine.

	Read operations for all other classes occur on a random
choice of the slave1 or slave2 database.

engines = {
 'master':create_engine("sqlite:///master.db"),
 'other':create_engine("sqlite:///other.db"),
 'slave1':create_engine("sqlite:///slave1.db"),
 'slave2':create_engine("sqlite:///slave2.db"),
}

from sqlalchemy.orm import Session, sessionmaker
import random

class RoutingSession(Session):
 def get_bind(self, mapper=None, clause=None):
 if mapper and issubclass(mapper.class_, MyOtherClass):
 return engines['other']
 elif self._flushing:
 return engines['master']
 else:
 return engines[
 random.choice(['slave1','slave2'])
]

The above Session class is plugged in using the class_
argument to sessionmaker:

Session = sessionmaker(class_=RoutingSession)

This approach can be combined with multiple MetaData objects,
using an approach such as that of using the declarative __abstract__
keyword, described at __abstract__.

Horizontal Partitioning

Horizontal partitioning partitions the rows of a single table (or a set of
tables) across multiple databases.

See the “sharding” example: Horizontal Sharding.

Bulk Operations

Note

Bulk Operations mode is a new series of operations made available
on the Session object for the purpose of invoking INSERT and
UPDATE statements with greatly reduced Python overhead, at the expense
of much less functionality, automation, and error checking.
As of SQLAlchemy 1.0, these features should be considered as “beta”, and
additionally are intended for advanced users.

New in version 1.0.0.

Bulk operations on the Session include Session.bulk_save_objects(),
Session.bulk_insert_mappings(), and Session.bulk_update_mappings().
The purpose of these methods is to directly expose internal elements of the unit of work system,
such that facilities for emitting INSERT and UPDATE statements given dictionaries
or object states can be utilized alone, bypassing the normal unit of work
mechanics of state, relationship and attribute management. The advantages
to this approach is strictly one of reduced Python overhead:

	The flush() process, including the survey of all objects, their state,
their cascade status, the status of all objects associated with them
via relationship(), and the topological sort of all operations to
be performed is completely bypassed. This reduces a great amount of
Python overhead.

	The objects as given have no defined relationship to the target
Session, even when the operation is complete, meaning there’s no
overhead in attaching them or managing their state in terms of the identity
map or session.

	The Session.bulk_insert_mappings() and Session.bulk_update_mappings()
methods accept lists of plain Python dictionaries, not objects; this further
reduces a large amount of overhead associated with instantiating mapped
objects and assigning state to them, which normally is also subject to
expensive tracking of history on a per-attribute basis.

	The process of fetching primary keys after an INSERT also is disabled by
default. When performed correctly, INSERT statements can now more readily
be batched by the unit of work process into executemany() blocks, which
perform vastly better than individual statement invocations.

	UPDATE statements can similarly be tailored such that all attributes
are subject to the SET clase unconditionally, again making it much more
likely that executemany() blocks can be used.

The performance behavior of the bulk routines should be studied using the
Performance example suite. This is a series of example
scripts which illustrate Python call-counts across a variety of scenarios,
including bulk insert and update scenarios.

See also

Performance - includes detailed examples of bulk operations
contrasted against traditional Core and ORM methods, including performance
metrics.

Usage

The methods each work in the context of the Session object’s
transaction, like any other:

s = Session()
objects = [
 User(name="u1"),
 User(name="u2"),
 User(name="u3")
]
s.bulk_save_objects(objects)

For Session.bulk_insert_mappings(), and Session.bulk_update_mappings(),
dictionaries are passed:

s.bulk_insert_mappings(User,
 [dict(name="u1"), dict(name="u2"), dict(name="u3")]
)

See also

Session.bulk_save_objects()

Session.bulk_insert_mappings()

Session.bulk_update_mappings()

Comparison to Core Insert / Update Constructs

The bulk methods offer performance that under particular circumstances
can be close to that of using the core Insert and
Update constructs in an “executemany” context (for a description
of “executemany”, see Executing Multiple Statements in the Core tutorial).
In order to achieve this, the
Session.bulk_insert_mappings.return_defaults
flag should be disabled so that rows can be batched together. The example
suite in Performance should be carefully studied in order
to gain familiarity with how fast bulk performance can be achieved.

ORM Compatibility

The bulk insert / update methods lose a significant amount of functionality
versus traditional ORM use. The following is a listing of features that
are not available when using these methods:

	persistence along relationship() linkages

	sorting of rows within order of dependency; rows are inserted or updated
directly in the order in which they are passed to the methods

	Session-management on the given objects, including attachment to the
session, identity map management.

	Functionality related to primary key mutation, ON UPDATE cascade

	SQL expression inserts / updates (e.g. Embedding SQL Insert/Update Expressions into a Flush)

	ORM events such as MapperEvents.before_insert(), etc. The bulk
session methods have no event support.

Features that are available include:

	INSERTs and UPDATEs of mapped objects

	Version identifier support

	Multi-table mappings, such as joined-inheritance - however, an object
to be inserted across multiple tables either needs to have primary key
identifiers fully populated ahead of time, else the
Session.bulk_save_objects.return_defaults flag must be used,
which will greatly reduce the performance benefits

Contextual/Thread-local Sessions

Recall from the section When do I construct a Session, when do I commit it, and when do I close it?, the concept of
“session scopes” was introduced, with an emphasis on web applications
and the practice of linking the scope of a Session with that
of a web request. Most modern web frameworks include integration tools
so that the scope of the Session can be managed automatically,
and these tools should be used as they are available.

SQLAlchemy includes its own helper object, which helps with the establishment
of user-defined Session scopes. It is also used by third-party
integration systems to help construct their integration schemes.

The object is the scoped_session object, and it represents a
registry of Session objects. If you’re not familiar with the
registry pattern, a good introduction can be found in Patterns of Enterprise
Architecture.

Note

The scoped_session object is a very popular and useful object
used by many SQLAlchemy applications. However, it is important to note
that it presents only one approach to the issue of Session
management. If you’re new to SQLAlchemy, and especially if the
term “thread-local variable” seems strange to you, we recommend that
if possible you familiarize first with an off-the-shelf integration
system such as Flask-SQLAlchemy
or zope.sqlalchemy.

A scoped_session is constructed by calling it, passing it a
factory which can create new Session objects. A factory
is just something that produces a new object when called, and in the
case of Session, the most common factory is the sessionmaker,
introduced earlier in this section. Below we illustrate this usage:

>>> from sqlalchemy.orm import scoped_session
>>> from sqlalchemy.orm import sessionmaker

>>> session_factory = sessionmaker(bind=some_engine)
>>> Session = scoped_session(session_factory)

The scoped_session object we’ve created will now call upon the
sessionmaker when we “call” the registry:

>>> some_session = Session()

Above, some_session is an instance of Session, which we
can now use to talk to the database. This same Session is also
present within the scoped_session registry we’ve created. If
we call upon the registry a second time, we get back the same Session:

>>> some_other_session = Session()
>>> some_session is some_other_session
True

This pattern allows disparate sections of the application to call upon a global
scoped_session, so that all those areas may share the same session
without the need to pass it explicitly. The Session we’ve established
in our registry will remain, until we explicitly tell our registry to dispose of it,
by calling scoped_session.remove():

>>> Session.remove()

The scoped_session.remove() method first calls Session.close() on
the current Session, which has the effect of releasing any connection/transactional
resources owned by the Session first, then discarding the Session
itself. “Releasing” here means that connections are returned to their connection pool and any transactional state is rolled back, ultimately using the rollback() method of the underlying DBAPI connection.

At this point, the scoped_session object is “empty”, and will create
a new Session when called again. As illustrated below, this
is not the same Session we had before:

>>> new_session = Session()
>>> new_session is some_session
False

The above series of steps illustrates the idea of the “registry” pattern in a
nutshell. With that basic idea in hand, we can discuss some of the details
of how this pattern proceeds.

Implicit Method Access

The job of the scoped_session is simple; hold onto a Session
for all who ask for it. As a means of producing more transparent access to this
Session, the scoped_session also includes proxy behavior,
meaning that the registry itself can be treated just like a Session
directly; when methods are called on this object, they are proxied to the
underlying Session being maintained by the registry:

Session = scoped_session(some_factory)

equivalent to:
#
session = Session()
print(session.query(MyClass).all())
#
print(Session.query(MyClass).all())

The above code accomplishes the same task as that of acquiring the current
Session by calling upon the registry, then using that Session.

Thread-Local Scope

Users who are familiar with multithreaded programming will note that representing
anything as a global variable is usually a bad idea, as it implies that the
global object will be accessed by many threads concurrently. The Session
object is entirely designed to be used in a non-concurrent fashion, which
in terms of multithreading means “only in one thread at a time”. So our
above example of scoped_session usage, where the same Session
object is maintained across multiple calls, suggests that some process needs
to be in place such that mutltiple calls across many threads don’t actually get
a handle to the same session. We call this notion thread local storage,
which means, a special object is used that will maintain a distinct object
per each application thread. Python provides this via the
threading.local()
construct. The scoped_session object by default uses this object
as storage, so that a single Session is maintained for all who call
upon the scoped_session registry, but only within the scope of a single
thread. Callers who call upon the registry in a different thread get a
Session instance that is local to that other thread.

Using this technique, the scoped_session provides a quick and relatively
simple (if one is familiar with thread-local storage) way of providing
a single, global object in an application that is safe to be called upon
from multiple threads.

The scoped_session.remove() method, as always, removes the current
Session associated with the thread, if any. However, one advantage of the
threading.local() object is that if the application thread itself ends, the
“storage” for that thread is also garbage collected. So it is in fact “safe” to
use thread local scope with an application that spawns and tears down threads,
without the need to call scoped_session.remove(). However, the scope
of transactions themselves, i.e. ending them via Session.commit() or
Session.rollback(), will usually still be something that must be explicitly
arranged for at the appropriate time, unless the application actually ties the
lifespan of a thread to the lifespan of a transaction.

Using Thread-Local Scope with Web Applications

As discussed in the section When do I construct a Session, when do I commit it, and when do I close it?, a web application
is architected around the concept of a web request, and integrating
such an application with the Session usually implies that the Session
will be associated with that request. As it turns out, most Python web frameworks,
with notable exceptions such as the asynchronous frameworks Twisted and
Tornado, use threads in a simple way, such that a particular web request is received,
processed, and completed within the scope of a single worker thread. When
the request ends, the worker thread is released to a pool of workers where it
is available to handle another request.

This simple correspondence of web request and thread means that to associate a
Session with a thread implies it is also associated with the web request
running within that thread, and vice versa, provided that the Session is
created only after the web request begins and torn down just before the web request ends.
So it is a common practice to use scoped_session as a quick way
to integrate the Session with a web application. The sequence
diagram below illustrates this flow:

Web Server Web Framework SQLAlchemy ORM Code
-------------- -------------- ------------------------------
startup -> Web framework # Session registry is established
 initializes Session = scoped_session(sessionmaker())

incoming
web request -> web request -> # The registry is *optionally*
 starts # called upon explicitly to create
 # a Session local to the thread and/or request
 Session()

 # the Session registry can otherwise
 # be used at any time, creating the
 # request-local Session() if not present,
 # or returning the existing one
 Session.query(MyClass) # ...

 Session.add(some_object) # ...

 # if data was modified, commit the
 # transaction
 Session.commit()

 web request ends -> # the registry is instructed to
 # remove the Session
 Session.remove()

 sends output <-
outgoing web <-
response

Using the above flow, the process of integrating the Session with the
web application has exactly two requirements:

	Create a single scoped_session registry when the web application
first starts, ensuring that this object is accessible by the rest of the
application.

	Ensure that scoped_session.remove() is called when the web request ends,
usually by integrating with the web framework’s event system to establish
an “on request end” event.

As noted earlier, the above pattern is just one potential way to integrate a Session
with a web framework, one which in particular makes the significant assumption
that the web framework associates web requests with application threads. It is
however strongly recommended that the integration tools provided with the web framework
itself be used, if available, instead of scoped_session.

In particular, while using a thread local can be convenient, it is preferable that the Session be
associated directly with the request, rather than with
the current thread. The next section on custom scopes details a more advanced configuration
which can combine the usage of scoped_session with direct request based scope, or
any kind of scope.

Using Custom Created Scopes

The scoped_session object’s default behavior of “thread local” scope is only
one of many options on how to “scope” a Session. A custom scope can be defined
based on any existing system of getting at “the current thing we are working with”.

Suppose a web framework defines a library function get_current_request(). An application
built using this framework can call this function at any time, and the result will be
some kind of Request object that represents the current request being processed.
If the Request object is hashable, then this function can be easily integrated with
scoped_session to associate the Session with the request. Below we illustrate
this in conjunction with a hypothetical event marker provided by the web framework
on_request_end, which allows code to be invoked whenever a request ends:

from my_web_framework import get_current_request, on_request_end
from sqlalchemy.orm import scoped_session, sessionmaker

Session = scoped_session(sessionmaker(bind=some_engine), scopefunc=get_current_request)

@on_request_end
def remove_session(req):
 Session.remove()

Above, we instantiate scoped_session in the usual way, except that we pass
our request-returning function as the “scopefunc”. This instructs scoped_session
to use this function to generate a dictionary key whenever the registry is called upon
to return the current Session. In this case it is particularly important
that we ensure a reliable “remove” system is implemented, as this dictionary is not
otherwise self-managed.

Contextual Session API

	
class sqlalchemy.orm.scoping.scoped_session(session_factory, scopefunc=None)

	Provides scoped management of Session objects.

See Contextual/Thread-local Sessions for a tutorial.

	
__call__(**kw)

	Return the current Session, creating it
using the scoped_session.session_factory if not present.

	Parameters:
	**kw¶ – Keyword arguments will be passed to the
scoped_session.session_factory callable, if an existing
Session is not present. If the Session is present
and keyword arguments have been passed,
InvalidRequestError is raised.

	
__init__(session_factory, scopefunc=None)

	Construct a new scoped_session.

	Parameters:
	
	session_factory¶ – a factory to create new Session
instances. This is usually, but not necessarily, an instance
of sessionmaker.

	scopefunc¶ – optional function which defines
the current scope. If not passed, the scoped_session
object assumes “thread-local” scope, and will use
a Python threading.local() in order to maintain the current
Session. If passed, the function should return
a hashable token; this token will be used as the key in a
dictionary in order to store and retrieve the current
Session.

	
configure(**kwargs)

	reconfigure the sessionmaker used by this
scoped_session.

See sessionmaker.configure().

	
query_property(query_cls=None)

	return a class property which produces a Query object
against the class and the current Session when called.

e.g.:

Session = scoped_session(sessionmaker())

class MyClass(object):
 query = Session.query_property()

after mappers are defined
result = MyClass.query.filter(MyClass.name=='foo').all()

Produces instances of the session’s configured query class by
default. To override and use a custom implementation, provide
a query_cls callable. The callable will be invoked with
the class’s mapper as a positional argument and a session
keyword argument.

There is no limit to the number of query properties placed on
a class.

	
remove()

	Dispose of the current Session, if present.

This will first call Session.close() method
on the current Session, which releases any existing
transactional/connection resources still being held; transactions
specifically are rolled back. The Session is then
discarded. Upon next usage within the same scope,
the scoped_session will produce a new
Session object.

	
session_factory = None

	The session_factory provided to __init__ is stored in this
attribute and may be accessed at a later time. This can be useful when
a new non-scoped Session or Connection to the
database is needed.

	
class sqlalchemy.util.ScopedRegistry(createfunc, scopefunc)

	A Registry that can store one or multiple instances of a single
class on the basis of a “scope” function.

The object implements __call__ as the “getter”, so by
calling myregistry() the contained object is returned
for the current scope.

	Parameters:
	
	createfunc¶ – a callable that returns a new object to be placed in the registry

	scopefunc¶ – a callable that will return a key to store/retrieve an object.

	
__init__(createfunc, scopefunc)

	Construct a new ScopedRegistry.

	Parameters:
	
	createfunc¶ – A creation function that will generate
a new value for the current scope, if none is present.

	scopefunc¶ – A function that returns a hashable
token representing the current scope (such as, current
thread identifier).

	
clear()

	Clear the current scope, if any.

	
has()

	Return True if an object is present in the current scope.

	
set(obj)

	Set the value for the current scope.

	
class sqlalchemy.util.ThreadLocalRegistry(createfunc)

	Bases: sqlalchemy.util._collections.ScopedRegistry

A ScopedRegistry that uses a threading.local()
variable for storage.

Tracking Object and Session Changes with Events

SQLAlchemy features an extensive Event Listening
system used throughout the Core and ORM. Within the ORM, there are a
wide variety of event listener hooks, which are documented at an API
level at ORM Events. This collection of events has
grown over the years to include lots of very useful new events as well
as some older events that aren’t as relevant as they once were. This
section will attempt to introduce the major event hooks and when they
might be used.

Persistence Events

Probably the most widely used series of events are the “persistence” events,
which correspond to the flush process.
The flush is where all the decisions are made about pending changes to
objects and are then emitted out to the database in the form of INSERT,
UPDATE, and DELETE staetments.

before_flush()

The SessionEvents.before_flush() hook is by far the most generally
useful event to use when an application wants to ensure that
additional persistence changes to the database are made when a flush proceeds.
Use SessionEvents.before_flush() in order to operate
upon objects to validate their state as well as to compose additional objects
and references before they are persisted. Within this event,
it is safe to manipulate the Session’s state, that is, new objects
can be attached to it, objects can be deleted, and indivual attributes
on objects can be changed freely, and these changes will be pulled into
the flush process when the event hook completes.

The typical SessionEvents.before_flush() hook will be tasked with
scanning the collections Session.new, Session.dirty and
Session.deleted in order to look for objects
where something will be happening.

For illustrations of SessionEvents.before_flush(), see
examples such as Versioning with a History Table and
Versioning using Temporal Rows.

after_flush()

The SessionEvents.after_flush() hook is called after the SQL has been
emitted for a flush process, but before the state of the objects that
were flushed has been altered. That is, you can still inspect
the Session.new, Session.dirty and
Session.deleted collections to see what was just flushed, and
you can also use history tracking features like the ones provided
by AttributeState to see what changes were just persisted.
In the SessionEvents.after_flush() event, additional SQL can be emitted
to the database based on what’s observed to have changed.

after_flush_postexec()

SessionEvents.after_flush_postexec() is called soon after
SessionEvents.after_flush(), but is invoked after the state of
the objects has been modified to account for the flush that just took place.
The Session.new, Session.dirty and
Session.deleted collections are normally completely empty here.
Use SessionEvents.after_flush_postexec() to inspect the identity map
for finalized objects and possibly emit additional SQL. In this hook,
there is the ability to make new changes on objects, which means the
Session will again go into a “dirty” state; the mechanics of the
Session here will cause it to flush again if new changes
are detected in this hook if the flush were invoked in the context of
Session.commit(); otherwise, the pending changes will be bundled
as part of the next normal flush. When the hook detects new changes within
a Session.commit(), a counter ensures that an endless loop in this
regard is stopped after 100 iterations, in the case that an
SessionEvents.after_flush_postexec()
hook continually adds new state to be flushed each time it is called.

Mapper-level Events

In addition to the flush-level hooks, there is also a suite of hooks
that are more fine-grained, in that they are called on a per-object
basis and are broken out based on INSERT, UPDATE or DELETE. These
are the mapper persistence hooks, and they too are very popular,
however these events need to be approached more cautiously, as they
proceed within the context of the flush process that is already
ongoing; many operations are not safe to proceed here.

The events are:

	MapperEvents.before_insert()

	MapperEvents.after_insert()

	MapperEvents.before_update()

	MapperEvents.after_update()

	MapperEvents.before_delete()

	MapperEvents.after_delete()

Each event is passed the Mapper,
the mapped object itself, and the Connection which is being
used to emit an INSERT, UPDATE or DELETE statement. The appeal of these
events is clear, in that if an application wants to tie some activity to
when a specific type of object is persisted with an INSERT, the hook is
very specific; unlike the SessionEvents.before_flush() event,
there’s no need to search through collections like Session.new
in order to find targets. However, the flush plan which
represents the full list of every single INSERT, UPDATE, DELETE statement
to be emitted has already been decided when these events are called,
and no changes may be made at this stage. Therefore the only changes that are
even possible to the given objects are upon attributes local to the
object’s row. Any other change to the object or other objects will
impact the state of the Session, which will fail to function
properly.

Operations that are not supported within these mapper-level persistence
events include:

	Session.add()

	Session.delete()

	Mapped collection append, add, remove, delete, discard, etc.

	Mapped relationship attribute set/del events,
i.e. someobject.related = someotherobject

The reason the Connection is passed is that it is encouraged that
simple SQL operations take place here, directly on the Connection,
such as incrementing counters or inserting extra rows within log tables.
When dealing with the Connection, it is expected that Core-level
SQL operations will be used; e.g. those described in SQL Expression Language Tutorial.

There are also many per-object operations that don’t need to be handled
within a flush event at all. The most common alternative is to simply
establish additional state along with an object inside its __init__()
method, such as creating additional objects that are to be associated with
the new object. Using validators as described in Simple Validators is
another approach; these functions can intercept changes to attributes and
establish additional state changes on the target object in response to the
attribute change. With both of these approaches, the object is in
the correct state before it ever gets to the flush step.

Object Lifecycle Events

Another use case for events is to track the lifecycle of objects. This
refers to the states first introduced at Quickie Intro to Object States.

New in version 1.1: added a system of events that intercept all possible
state transitions of an object within the Session.

All the states above can be tracked fully with events. Each event
represents a distinct state transition, meaning, the starting state
and the destination state are both part of what are tracked. With the
exception of the initial transient event, all the events are in terms of
the Session object or class, meaning they can be associated either
with a specific Session object:

from sqlalchemy import event
from sqlalchemy.orm import Session

session = Session()

@event.listens_for(session, 'transient_to_pending')
def object_is_pending(session, obj):
 print("new pending: %s" % obj)

Or with the Session class itself, as well as with a specific
sessionmaker, which is likely the most useful form:

from sqlalchemy import event
from sqlalchemy.orm import sessionmaker

maker = sessionmaker()

@event.listens_for(maker, 'transient_to_pending')
def object_is_pending(session, obj):
 print("new pending: %s" % obj)

The listeners can of course be stacked on top of one function, as is
likely to be common. For example, to track all objects that are
entering the persistent state:

@event.listens_for(maker, "pending_to_persistent")
@event.listens_for(maker, "deleted_to_persistent")
@event.listens_for(maker, "detached_to_persistent")
@event.listens_for(maker, "loaded_as_persistent")
def detect_all_persistent(session, instance):
 print("object is now persistent: %s" % instance)

Transient

All mapped objects when first constructed start out as transient.
In this state, the object exists alone and doesn’t have an association with
any Session. For this initial state, there’s no specific
“transition” event since there is no Session, however if one
wanted to intercept when any transient object is created, the
InstanceEvents.init() method is probably the best event. This
event is applied to a specific class or superclass. For example, to
intercept all new objects for a particular declarative base:

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import event

Base = declarative_base()

@event.listens_for(Base, "init", propagate=True)
def intercept_init(instance, args, kwargs):
 print("new transient: %s" % instance)

Transient to Pending

The transient object becomes pending when it is first associated
with a Session via the Session.add() or Session.add_all()
method. An object may also become part of a Session as a result
of a “cascade” from a referencing object that was
explicitly added. The transient to pending transition is detectable using
the SessionEvents.transient_to_pending() event:

@event.listens_for(sessionmaker, "transient_to_pending")
def intercept_transient_to_pending(session, object_):
 print("transient to pending: %s" % object_)

Pending to Persistent

The pending object becomes persistent when a flush
proceeds and an INSERT statement takes place for the instance. The object
now has an identity key. Track pending to persistent with the
SessionEvents.pending_to_persistent() event:

@event.listens_for(sessionmaker, "pending_to_persistent")
def intercept_pending_to_persistent(session, object_):
 print("pending to persistent: %s" % object_)

Pending to Transient

The pending object can revert back to transient if the
Session.rollback() method is called before the pending object
has been flushed, or if the Session.expunge() method is called
for the object before it is flushed. Track pending to transient with the
SessionEvents.pending_to_transient() event:

@event.listens_for(sessionmaker, "pending_to_transient")
def intercept_pending_to_transient(session, object_):
 print("transient to pending: %s" % object_)

Loaded as Persistent

Objects can appear in the Session directly in the persistent
state when they are loaded from the database. Tracking this state transition
is synonymous with tracking objects as they are loaded, and is synonomous
with using the InstanceEvents.load() instance-level event. However, the
SessionEvents.loaded_as_persistent() event is provided as a
session-centric hook for intercepting objects as they enter the persistent
state via this particular avenue:

@event.listens_for(sessionmaker, "loaded_as_persistent")
def intercept_loaded_as_persistent(session, object_):
 print("object loaded into persistent state: %s" % object_)

Persistent to Transient

The persistent object can revert to the transient state if the
Session.rollback() method is called for a transaction where the
object was first added as pending. In the case of the ROLLBACK, the
INSERT statement that made this object persistent is rolled back, and
the object is evicted from the Session to again become transient.
Track objects that were reverted to transient from
persistent using the SessionEvents.persistent_to_transient()
event hook:

@event.listens_for(sessionmaker, "persistent_to_transient")
def intercept_persistent_to_transient(session, object_):
 print("persistent to transient: %s" % object_)

Persistent to Deleted

The persistent object enters the deleted state when an object
marked for deletion is deleted from the database within the flush
process. Note that this is not the same as when the Session.delete()
method is called for a target object. The Session.delete()
method only marks the object for deletion; the actual DELETE statement
is not emitted until the flush proceeds. It is subsequent to the flush
that the “deleted” state is present for the target object.

Within the “deleted” state, the object is only marginally associated
with the Session. It is not present in the identity map
nor is it present in the Session.deleted collection that refers
to when it was pending for deletion.

From the “deleted” state, the object can go either to the detached state
when the transaction is committed, or back to the persistent state
if the transaction is instead rolled back.

Track the persistent to deleted transition with
SessionEvents.persistent_to_deleted():

@event.listens_for(sessionmaker, "persistent_to_deleted")
def intercept_persistent_to_deleted(session, object_):
 print("object was DELETEd, is now in deleted state: %s" % object_)

Deleted to Detached

The deleted object becomes detached when the session’s transaction
is committed. After the Session.commit() method is called, the
database transaction is final and the Session now fully discards
the deleted object and removes all associations to it. Track
the deleted to detached transition using SessionEvents.deleted_to_detached():

@event.listens_for(sessionmaker, "deleted_to_detached")
def intercept_deleted_to_detached(session, object_):
 print("deleted to detached: %s" % object_)

Note

While the object is in the deleted state, the InstanceState.deleted
attribute, accessible using inspect(object).deleted, returns True. However
when the object is detached, InstanceState.deleted will again
return False. To detect that an object was deleted, regardless of whether
or not it is detached, use the InstanceState.was_deleted
accessor.

Persistent to Detached

The persistent object becomes detached when the object is de-associated
with the Session, via the Session.expunge(),
Session.expunge_all(), or Session.close() methods.

Note

An object may also become implicitly detached if its owning
Session is dereferenced by the application and discarded due to
garbage collection. In this case, no event is emitted.

Track objects as they move from persistent to detached using the
SessionEvents.persistent_to_detached() event:

@event.listens_for(sessionmaker, "persistent_to_detached")
def intecept_persistent_to_detached(session, object_):
 print("object became detached: %s" % object_)

Detached to Persistent

The detached object becomes persistent when it is re-associated with a
session using the Session.add() or equivalent method. Track
objects moving back to persistent from detached using the
SessionEvents.detached_to_persistent() event:

@event.listens_for(sessionmaker, "detached_to_persistent")
def intecept_detached_to_persistent(session, object_):
 print("object became persistent again: %s" % object_)

Deleted to Persistent

The deleted object can be reverted to the persistent
state when the transaction in which it was DELETEd was rolled back
using the Session.rollback() method. Track deleted objects
moving back to the persistent state using the
SessionEvents.deleted_to_persistent() event:

@event.listens_for(sessionmaker, "transient_to_pending")
def intercept_transient_to_pending(session, object_):
 print("transient to pending: %s" % object_)

Transaction Events

Transaction events allow an application to be notifed when transaction
boundaries occur at the Session level as well as when the
Session changes the transactional state on Connection
objects.

	SessionEvents.after_transaction_create(),
SessionEvents.after_transaction_end() - these events track the
logical transaction scopes of the Session in a way that is
not specific to individual database connections. These events are
intended to help with integration of transaction-tracking systems such as
zope.sqlalchemy. Use these
events when the application needs to align some external scope with the
transactional scope of the Session. These hooks mirror
the “nested” transactional behavior of the Session, in that they
track logical “subtransactions” as well as “nested” (e.g. SAVEPOINT)
transactions.

	SessionEvents.before_commit(), SessionEvents.after_commit(),
SessionEvents.after_begin(),
SessionEvents.after_rollback(), SessionEvents.after_soft_rollback() -
These events allow tracking of transaction events from the perspective
of database connections. SessionEvents.after_begin() in particular
is a per-connection event; a Session that maintains more than
one connection will emit this event for each connection individually
as those connections become used within the current transaction.
The rollback and commit events then refer to when the DBAPI connections
themselves have received rollback or commit instructions directly.

Attribute Change Events

The attribute change events allow interception of when specific attributes
on an object are modified. These events include AttributeEvents.set(),
AttributeEvents.append(), and AttributeEvents.remove(). These
events are extremely useful, particularly for per-object validation operations;
however, it is often much more convenient to use a “validator” hook, which
uses these hooks behind the scenes; see Simple Validators for
background on this. The attribute events are also behind the mechanics
of backreferences. An example illustrating use of attribute events
is in Attribute Instrumentation.

Session API

Session and sessionmaker()

	
class sqlalchemy.orm.session.sessionmaker(bind=None, class_=<class 'sqlalchemy.orm.session.Session'>, autoflush=True, autocommit=False, expire_on_commit=True, info=None, **kw)

	Bases: sqlalchemy.orm.session._SessionClassMethods

A configurable Session factory.

The sessionmaker factory generates new
Session objects when called, creating them given
the configurational arguments established here.

e.g.:

global scope
Session = sessionmaker(autoflush=False)

later, in a local scope, create and use a session:
sess = Session()

Any keyword arguments sent to the constructor itself will override the
“configured” keywords:

Session = sessionmaker()

bind an individual session to a connection
sess = Session(bind=connection)

The class also includes a method configure(), which can
be used to specify additional keyword arguments to the factory, which
will take effect for subsequent Session objects generated.
This is usually used to associate one or more Engine objects
with an existing sessionmaker factory before it is first
used:

application starts
Session = sessionmaker()

... later
engine = create_engine('sqlite:///foo.db')
Session.configure(bind=engine)

sess = Session()

	
__call__(**local_kw)

	Produce a new Session object using the configuration
established in this sessionmaker.

In Python, the __call__ method is invoked on an object when
it is “called” in the same way as a function:

Session = sessionmaker()
session = Session() # invokes sessionmaker.__call__()

	
__init__(bind=None, class_=<class 'sqlalchemy.orm.session.Session'>, autoflush=True, autocommit=False, expire_on_commit=True, info=None, **kw)

	Construct a new sessionmaker.

All arguments here except for class_ correspond to arguments
accepted by Session directly. See the
Session.__init__() docstring for more details on parameters.

	Parameters:
	
	bind¶ – a Engine or other Connectable with
which newly created Session objects will be associated.

	class_¶ – class to use in order to create new Session
objects. Defaults to Session.

	autoflush¶ – The autoflush setting to use with newly created
Session objects.

	autocommit¶ – The autocommit setting to use with newly created
Session objects.

	expire_on_commit=True¶ – the expire_on_commit setting to use
with newly created Session objects.

	info¶ – optional dictionary of information that will be available
via Session.info. Note this dictionary is updated, not
replaced, when the info parameter is specified to the specific
Session construction operation.

New in version 0.9.0.

	**kw¶ – all other keyword arguments are passed to the
constructor of newly created Session objects.

	
close_all()

	
inherited from the close_all() method of _SessionClassMethods

Close all sessions in memory.

	
configure(**new_kw)

	(Re)configure the arguments for this sessionmaker.

e.g.:

Session = sessionmaker()

Session.configure(bind=create_engine('sqlite://'))

	
identity_key(*args, **kwargs)

	
inherited from the identity_key() method of _SessionClassMethods

Return an identity key.

This is an alias of util.identity_key().

	
object_session(instance)

	
inherited from the object_session() method of _SessionClassMethods

Return the Session to which an object belongs.

This is an alias of object_session().

	
class sqlalchemy.orm.session.Session(bind=None, autoflush=True, expire_on_commit=True, _enable_transaction_accounting=True, autocommit=False, twophase=False, weak_identity_map=True, binds=None, extension=None, info=None, query_cls=<class 'sqlalchemy.orm.query.Query'>)

	Bases: sqlalchemy.orm.session._SessionClassMethods

Manages persistence operations for ORM-mapped objects.

The Session’s usage paradigm is described at Using the Session.

	
__init__(bind=None, autoflush=True, expire_on_commit=True, _enable_transaction_accounting=True, autocommit=False, twophase=False, weak_identity_map=True, binds=None, extension=None, info=None, query_cls=<class 'sqlalchemy.orm.query.Query'>)

	Construct a new Session.

See also the sessionmaker function which is used to
generate a Session-producing callable with a given
set of arguments.

	Parameters:
	
	autocommit¶ –
Warning

The autocommit flag is not for general use, and if it is
used, queries should only be invoked within the span of a
Session.begin() / Session.commit() pair. Executing
queries outside of a demarcated transaction is a legacy mode
of usage, and can in some cases lead to concurrent connection
checkouts.

Defaults to False. When True, the
Session does not keep a persistent transaction running,
and will acquire connections from the engine on an as-needed basis,
returning them immediately after their use. Flushes will begin and
commit (or possibly rollback) their own transaction if no
transaction is present. When using this mode, the
Session.begin() method is used to explicitly start
transactions.

See also

Autocommit Mode

	autoflush¶ – When True, all query operations will issue a
flush() call to this Session before proceeding.
This is a convenience feature so that flush() need
not be called repeatedly in order for database queries to retrieve
results. It’s typical that autoflush is used in conjunction
with autocommit=False. In this scenario, explicit calls to
flush() are rarely needed; you usually only need to
call commit() (which flushes) to finalize changes.

	bind¶ – An optional Engine or Connection to
which this Session should be bound. When specified, all SQL
operations performed by this session will execute via this
connectable.

	binds¶ –
	An optional dictionary which contains more granular

	“bind” information than the bind parameter provides. This
dictionary can map individual :class`.Table`
instances as well as Mapper instances to individual
Engine or Connection objects. Operations which
proceed relative to a particular Mapper will consult this
dictionary for the direct Mapper instance as
well as the mapper’s mapped_table attribute in order to locate
a connectable to use. The full resolution is described in the
Session.get_bind().
Usage looks like:Session = sessionmaker(binds={
 SomeMappedClass: create_engine('postgresql://engine1'),
 somemapper: create_engine('postgresql://engine2'),
 some_table: create_engine('postgresql://engine3'),
 })

Also see the Session.bind_mapper()
and Session.bind_table() methods.

	class_¶ – Specify an alternate class other than
sqlalchemy.orm.session.Session which should be used by the
returned class. This is the only argument that is local to the
sessionmaker function, and is not sent directly to the
constructor for Session.

	_enable_transaction_accounting¶ – Defaults to True. A
legacy-only flag which when False disables all 0.5-style
object accounting on transaction boundaries, including auto-expiry
of instances on rollback and commit, maintenance of the “new” and
“deleted” lists upon rollback, and autoflush of pending changes
upon begin(), all of which are interdependent.

	expire_on_commit¶ – Defaults to True. When True, all
instances will be fully expired after each commit(),
so that all attribute/object access subsequent to a completed
transaction will load from the most recent database state.

	extension¶ – An optional
SessionExtension instance, or a list
of such instances, which will receive pre- and post- commit and
flush events, as well as a post-rollback event. Deprecated.
Please see SessionEvents.

	info¶ – optional dictionary of arbitrary data to be associated
with this Session. Is available via the
Session.info attribute. Note the dictionary is copied at
construction time so that modifications to the per-
Session dictionary will be local to that
Session.

New in version 0.9.0.

	query_cls¶ – Class which should be used to create new Query
objects, as returned by the query() method.
Defaults to Query.

	twophase¶ – When True, all transactions will be started as
a “two phase” transaction, i.e. using the “two phase” semantics
of the database in use along with an XID. During a
commit(), after flush() has been issued for all
attached databases, the prepare()
method on each database’s TwoPhaseTransaction will be
called. This allows each database to roll back the entire
transaction, before each transaction is committed.

	weak_identity_map¶ – Defaults to True - when set to
False, objects placed in the Session will be
strongly referenced until explicitly removed or the
Session is closed. Deprecated - The strong
reference identity map is legacy. See the
recipe at Session Referencing Behavior for
an event-based approach to maintaining strong identity
references.

	
add(instance, _warn=True)

	Place an object in the Session.

Its state will be persisted to the database on the next flush
operation.

Repeated calls to add() will be ignored. The opposite of add()
is expunge().

	
add_all(instances)

	Add the given collection of instances to this Session.

	
begin(subtransactions=False, nested=False)

	Begin a transaction on this Session.

If this Session is already within a transaction, either a plain
transaction or nested transaction, an error is raised, unless
subtransactions=True or nested=True is specified.

The subtransactions=True flag indicates that this
begin() can create a subtransaction if a transaction
is already in progress. For documentation on subtransactions, please
see Using Subtransactions with Autocommit.

The nested flag begins a SAVEPOINT transaction and is equivalent
to calling begin_nested(). For documentation on
SAVEPOINT transactions, please see Using SAVEPOINT.

	
begin_nested()

	Begin a nested transaction on this Session.

The target database(s) must support SQL SAVEPOINTs or a
SQLAlchemy-supported vendor implementation of the idea.

For documentation on SAVEPOINT
transactions, please see Using SAVEPOINT.

	
bind_mapper(mapper, bind)

	Associate a Mapper with a “bind”, e.g. a Engine
or Connection.

The given mapper is added to a lookup used by the
Session.get_bind() method.

	
bind_table(table, bind)

	Associate a Table with a “bind”, e.g. a Engine
or Connection.

The given mapper is added to a lookup used by the
Session.get_bind() method.

	
bulk_insert_mappings(mapper, mappings, return_defaults=False, render_nulls=False)

	Perform a bulk insert of the given list of mapping dictionaries.

The bulk insert feature allows plain Python dictionaries to be used as
the source of simple INSERT operations which can be more easily
grouped together into higher performing “executemany”
operations. Using dictionaries, there is no “history” or session
state management features in use, reducing latency when inserting
large numbers of simple rows.

The values within the dictionaries as given are typically passed
without modification into Core Insert() constructs, after
organizing the values within them across the tables to which
the given mapper is mapped.

New in version 1.0.0.

Warning

The bulk insert feature allows for a lower-latency INSERT
of rows at the expense of most other unit-of-work features.
Features such as object management, relationship handling,
and SQL clause support are silently omitted in favor of raw
INSERT of records.

Please read the list of caveats at Bulk Operations
before using this method, and fully test and confirm the
functionality of all code developed using these systems.

	Parameters:
	
	mapper¶ – a mapped class, or the actual Mapper object,
representing the single kind of object represented within the mapping
list.

	mappings¶ – a list of dictionaries, each one containing the state
of the mapped row to be inserted, in terms of the attribute names
on the mapped class. If the mapping refers to multiple tables,
such as a joined-inheritance mapping, each dictionary must contain
all keys to be populated into all tables.

	return_defaults¶ – when True, rows that are missing values which
generate defaults, namely integer primary key defaults and sequences,
will be inserted one at a time, so that the primary key value
is available. In particular this will allow joined-inheritance
and other multi-table mappings to insert correctly without the need
to provide primary
key values ahead of time; however,
Session.bulk_insert_mappings.return_defaults
greatly reduces the performance gains of the method overall.
If the rows
to be inserted only refer to a single table, then there is no
reason this flag should be set as the returned default information
is not used.

	render_nulls¶ – When True, a value of None will result
in a NULL value being included in the INSERT statement, rather
than the column being omitted from the INSERT. This allows all
the rows being INSERTed to have the identical set of columns which
allows the full set of rows to be batched to the DBAPI. Normally,
each column-set that contains a different combination of NULL values
than the previous row must omit a different series of columns from
the rendered INSERT statement, which means it must be emitted as a
separate statement. By passing this flag, the full set of rows
are guaranteed to be batchable into one batch; the cost however is
that server-side defaults which are invoked by an omitted column will
be skipped, so care must be taken to ensure that these are not
necessary.

Warning

When this flag is set, server side default SQL values will
not be invoked for those columns that are inserted as NULL;
the NULL value will be sent explicitly. Care must be taken
to ensure that no server-side default functions need to be
invoked for the operation as a whole.

New in version 1.1.

See also

Bulk Operations

Session.bulk_save_objects()

Session.bulk_update_mappings()

	
bulk_save_objects(objects, return_defaults=False, update_changed_only=True)

	Perform a bulk save of the given list of objects.

The bulk save feature allows mapped objects to be used as the
source of simple INSERT and UPDATE operations which can be more easily
grouped together into higher performing “executemany”
operations; the extraction of data from the objects is also performed
using a lower-latency process that ignores whether or not attributes
have actually been modified in the case of UPDATEs, and also ignores
SQL expressions.

The objects as given are not added to the session and no additional
state is established on them, unless the return_defaults flag
is also set, in which case primary key attributes and server-side
default values will be populated.

New in version 1.0.0.

Warning

The bulk save feature allows for a lower-latency INSERT/UPDATE
of rows at the expense of most other unit-of-work features.
Features such as object management, relationship handling,
and SQL clause support are silently omitted in favor of raw
INSERT/UPDATES of records.

Please read the list of caveats at Bulk Operations
before using this method, and fully test and confirm the
functionality of all code developed using these systems.

	Parameters:
	
	objects¶ – a list of mapped object instances. The mapped
objects are persisted as is, and are not associated with the
Session afterwards.

For each object, whether the object is sent as an INSERT or an
UPDATE is dependent on the same rules used by the Session
in traditional operation; if the object has the
InstanceState.key
attribute set, then the object is assumed to be “detached” and
will result in an UPDATE. Otherwise, an INSERT is used.

In the case of an UPDATE, statements are grouped based on which
attributes have changed, and are thus to be the subject of each
SET clause. If update_changed_only is False, then all
attributes present within each object are applied to the UPDATE
statement, which may help in allowing the statements to be grouped
together into a larger executemany(), and will also reduce the
overhead of checking history on attributes.

	return_defaults¶ – when True, rows that are missing values which
generate defaults, namely integer primary key defaults and sequences,
will be inserted one at a time, so that the primary key value
is available. In particular this will allow joined-inheritance
and other multi-table mappings to insert correctly without the need
to provide primary key values ahead of time; however,
Session.bulk_save_objects.return_defaults greatly
reduces the performance gains of the method overall.

	update_changed_only¶ – when True, UPDATE statements are rendered
based on those attributes in each state that have logged changes.
When False, all attributes present are rendered into the SET clause
with the exception of primary key attributes.

See also

Bulk Operations

Session.bulk_insert_mappings()

Session.bulk_update_mappings()

	
bulk_update_mappings(mapper, mappings)

	Perform a bulk update of the given list of mapping dictionaries.

The bulk update feature allows plain Python dictionaries to be used as
the source of simple UPDATE operations which can be more easily
grouped together into higher performing “executemany”
operations. Using dictionaries, there is no “history” or session
state management features in use, reducing latency when updating
large numbers of simple rows.

New in version 1.0.0.

Warning

The bulk update feature allows for a lower-latency UPDATE
of rows at the expense of most other unit-of-work features.
Features such as object management, relationship handling,
and SQL clause support are silently omitted in favor of raw
UPDATES of records.

Please read the list of caveats at Bulk Operations
before using this method, and fully test and confirm the
functionality of all code developed using these systems.

	Parameters:
	
	mapper¶ – a mapped class, or the actual Mapper object,
representing the single kind of object represented within the mapping
list.

	mappings¶ – a list of dictionaries, each one containing the state
of the mapped row to be updated, in terms of the attribute names
on the mapped class. If the mapping refers to multiple tables,
such as a joined-inheritance mapping, each dictionary may contain
keys corresponding to all tables. All those keys which are present
and are not part of the primary key are applied to the SET clause
of the UPDATE statement; the primary key values, which are required,
are applied to the WHERE clause.

See also

Bulk Operations

Session.bulk_insert_mappings()

Session.bulk_save_objects()

	
close()

	Close this Session.

This clears all items and ends any transaction in progress.

If this session were created with autocommit=False, a new
transaction is immediately begun. Note that this new transaction does
not use any connection resources until they are first needed.

	
close_all()

	
inherited from the close_all() method of _SessionClassMethods

Close all sessions in memory.

	
commit()

	Flush pending changes and commit the current transaction.

If no transaction is in progress, this method raises an
InvalidRequestError.

By default, the Session also expires all database
loaded state on all ORM-managed attributes after transaction commit.
This so that subsequent operations load the most recent
data from the database. This behavior can be disabled using
the expire_on_commit=False option to sessionmaker or
the Session constructor.

If a subtransaction is in effect (which occurs when begin() is called
multiple times), the subtransaction will be closed, and the next call
to commit() will operate on the enclosing transaction.

When using the Session in its default mode of
autocommit=False, a new transaction will
be begun immediately after the commit, but note that the newly begun
transaction does not use any connection resources until the first
SQL is actually emitted.

See also

Committing

	
connection(mapper=None, clause=None, bind=None, close_with_result=False, execution_options=None, **kw)

	Return a Connection object corresponding to this
Session object’s transactional state.

If this Session is configured with autocommit=False,
either the Connection corresponding to the current
transaction is returned, or if no transaction is in progress, a new
one is begun and the Connection returned (note that no
transactional state is established with the DBAPI until the first
SQL statement is emitted).

Alternatively, if this Session is configured with
autocommit=True, an ad-hoc Connection is returned
using Engine.contextual_connect() on the underlying
Engine.

Ambiguity in multi-bind or unbound Session objects can be
resolved through any of the optional keyword arguments. This
ultimately makes usage of the get_bind() method for resolution.

	Parameters:
	
	bind¶ – Optional Engine to be used as the bind. If
this engine is already involved in an ongoing transaction,
that connection will be used. This argument takes precedence
over mapper, clause.

	mapper¶ – Optional mapper() mapped class, used to identify
the appropriate bind. This argument takes precedence over
clause.

	clause¶ – A ClauseElement (i.e. select(),
text(),
etc.) which will be used to locate a bind, if a bind
cannot otherwise be identified.

	close_with_result¶ – Passed to Engine.connect(),
indicating the Connection should be considered
“single use”, automatically closing when the first result set is
closed. This flag only has an effect if this Session is
configured with autocommit=True and does not already have a
transaction in progress.

	execution_options¶ – a dictionary of execution options that will
be passed to Connection.execution_options(), when the
connection is first procured only. If the connection is already
present within the Session, a warning is emitted and
the arguments are ignored.

New in version 0.9.9.

See also

Setting Transaction Isolation Levels

	**kw¶ – Additional keyword arguments are sent to get_bind(),
allowing additional arguments to be passed to custom
implementations of get_bind().

	
delete(instance)

	Mark an instance as deleted.

The database delete operation occurs upon flush().

	
deleted

	The set of all instances marked as ‘deleted’ within this Session

	
dirty

	The set of all persistent instances considered dirty.

E.g.:

some_mapped_object in session.dirty

Instances are considered dirty when they were modified but not
deleted.

Note that this ‘dirty’ calculation is ‘optimistic’; most
attribute-setting or collection modification operations will
mark an instance as ‘dirty’ and place it in this set, even if
there is no net change to the attribute’s value. At flush
time, the value of each attribute is compared to its
previously saved value, and if there’s no net change, no SQL
operation will occur (this is a more expensive operation so
it’s only done at flush time).

To check if an instance has actionable net changes to its
attributes, use the Session.is_modified() method.

	
enable_relationship_loading(obj)

	Associate an object with this Session for related
object loading.

Warning

enable_relationship_loading() exists to serve special
use cases and is not recommended for general use.

Accesses of attributes mapped with relationship()
will attempt to load a value from the database using this
Session as the source of connectivity. The values
will be loaded based on foreign key values present on this
object - it follows that this functionality
generally only works for many-to-one-relationships.

The object will be attached to this session, but will
not participate in any persistence operations; its state
for almost all purposes will remain either “transient” or
“detached”, except for the case of relationship loading.

Also note that backrefs will often not work as expected.
Altering a relationship-bound attribute on the target object
may not fire off a backref event, if the effective value
is what was already loaded from a foreign-key-holding value.

The Session.enable_relationship_loading() method is
similar to the load_on_pending flag on relationship().
Unlike that flag, Session.enable_relationship_loading() allows
an object to remain transient while still being able to load
related items.

To make a transient object associated with a Session
via Session.enable_relationship_loading() pending, add
it to the Session using Session.add() normally.

Session.enable_relationship_loading() does not improve
behavior when the ORM is used normally - object references should be
constructed at the object level, not at the foreign key level, so
that they are present in an ordinary way before flush()
proceeds. This method is not intended for general use.

New in version 0.8.

See also

load_on_pending at relationship() - this flag
allows per-relationship loading of many-to-ones on items that
are pending.

	
execute(clause, params=None, mapper=None, bind=None, **kw)

	Execute a SQL expression construct or string statement within
the current transaction.

Returns a ResultProxy representing
results of the statement execution, in the same manner as that of an
Engine or
Connection.

E.g.:

result = session.execute(
 user_table.select().where(user_table.c.id == 5)
)

execute() accepts any executable clause construct,
such as select(),
insert(),
update(),
delete(), and
text(). Plain SQL strings can be passed
as well, which in the case of Session.execute() only
will be interpreted the same as if it were passed via a
text() construct. That is, the following usage:

result = session.execute(
 "SELECT * FROM user WHERE id=:param",
 {"param":5}
)

is equivalent to:

from sqlalchemy import text
result = session.execute(
 text("SELECT * FROM user WHERE id=:param"),
 {"param":5}
)

The second positional argument to Session.execute() is an
optional parameter set. Similar to that of
Connection.execute(), whether this is passed as a single
dictionary, or a list of dictionaries, determines whether the DBAPI
cursor’s execute() or executemany() is used to execute the
statement. An INSERT construct may be invoked for a single row:

result = session.execute(
 users.insert(), {"id": 7, "name": "somename"})

or for multiple rows:

result = session.execute(users.insert(), [
 {"id": 7, "name": "somename7"},
 {"id": 8, "name": "somename8"},
 {"id": 9, "name": "somename9"}
])

The statement is executed within the current transactional context of
this Session. The Connection which is used
to execute the statement can also be acquired directly by
calling the Session.connection() method. Both methods use
a rule-based resolution scheme in order to determine the
Connection, which in the average case is derived directly
from the “bind” of the Session itself, and in other cases
can be based on the mapper()
and Table objects passed to the method; see the
documentation for Session.get_bind() for a full description of
this scheme.

The Session.execute() method does not invoke autoflush.

The ResultProxy returned by the Session.execute()
method is returned with the “close_with_result” flag set to true;
the significance of this flag is that if this Session is
autocommitting and does not have a transaction-dedicated
Connection available, a temporary Connection is
established for the statement execution, which is closed (meaning,
returned to the connection pool) when the ResultProxy has
consumed all available data. This applies only when the
Session is configured with autocommit=True and no
transaction has been started.

	Parameters:
	
	clause¶ – An executable statement (i.e. an Executable expression
such as expression.select()) or string SQL statement
to be executed.

	params¶ – Optional dictionary, or list of dictionaries, containing
bound parameter values. If a single dictionary, single-row
execution occurs; if a list of dictionaries, an
“executemany” will be invoked. The keys in each dictionary
must correspond to parameter names present in the statement.

	mapper¶ – Optional mapper() or mapped class, used to identify
the appropriate bind. This argument takes precedence over
clause when locating a bind. See Session.get_bind()
for more details.

	bind¶ – Optional Engine to be used as the bind. If
this engine is already involved in an ongoing transaction,
that connection will be used. This argument takes
precedence over mapper and clause when locating
a bind.

	**kw¶ – Additional keyword arguments are sent to Session.get_bind()
to allow extensibility of “bind” schemes.

See also

SQL Expression Language Tutorial - Tutorial on using Core SQL
constructs.

Working with Engines and Connections - Further information on direct
statement execution.

Connection.execute() - core level statement execution
method, which is Session.execute() ultimately uses
in order to execute the statement.

	
expire(instance, attribute_names=None)

	Expire the attributes on an instance.

Marks the attributes of an instance as out of date. When an expired
attribute is next accessed, a query will be issued to the
Session object’s current transactional context in order to
load all expired attributes for the given instance. Note that
a highly isolated transaction will return the same values as were
previously read in that same transaction, regardless of changes
in database state outside of that transaction.

To expire all objects in the Session simultaneously,
use Session.expire_all().

The Session object’s default behavior is to
expire all state whenever the Session.rollback()
or Session.commit() methods are called, so that new
state can be loaded for the new transaction. For this reason,
calling Session.expire() only makes sense for the specific
case that a non-ORM SQL statement was emitted in the current
transaction.

	Parameters:
	
	instance¶ – The instance to be refreshed.

	attribute_names¶ – optional list of string attribute names
indicating a subset of attributes to be expired.

See also

Refreshing / Expiring - introductory material

Session.expire()

Session.refresh()

	
expire_all()

	Expires all persistent instances within this Session.

When any attributes on a persistent instance is next accessed,
a query will be issued using the
Session object’s current transactional context in order to
load all expired attributes for the given instance. Note that
a highly isolated transaction will return the same values as were
previously read in that same transaction, regardless of changes
in database state outside of that transaction.

To expire individual objects and individual attributes
on those objects, use Session.expire().

The Session object’s default behavior is to
expire all state whenever the Session.rollback()
or Session.commit() methods are called, so that new
state can be loaded for the new transaction. For this reason,
calling Session.expire_all() should not be needed when
autocommit is False, assuming the transaction is isolated.

See also

Refreshing / Expiring - introductory material

Session.expire()

Session.refresh()

	
expunge(instance)

	Remove the instance from this Session.

This will free all internal references to the instance. Cascading
will be applied according to the expunge cascade rule.

	
expunge_all()

	Remove all object instances from this Session.

This is equivalent to calling expunge(obj) on all objects in this
Session.

	
flush(objects=None)

	Flush all the object changes to the database.

Writes out all pending object creations, deletions and modifications
to the database as INSERTs, DELETEs, UPDATEs, etc. Operations are
automatically ordered by the Session’s unit of work dependency
solver.

Database operations will be issued in the current transactional
context and do not affect the state of the transaction, unless an
error occurs, in which case the entire transaction is rolled back.
You may flush() as often as you like within a transaction to move
changes from Python to the database’s transaction buffer.

For autocommit Sessions with no active manual transaction, flush()
will create a transaction on the fly that surrounds the entire set of
operations into the flush.

	Parameters:
	objects¶ – Optional; restricts the flush operation to operate
only on elements that are in the given collection.

This feature is for an extremely narrow set of use cases where
particular objects may need to be operated upon before the
full flush() occurs. It is not intended for general use.

	
get_bind(mapper=None, clause=None)

	Return a “bind” to which this Session is bound.

The “bind” is usually an instance of Engine,
except in the case where the Session has been
explicitly bound directly to a Connection.

For a multiply-bound or unbound Session, the
mapper or clause arguments are used to determine the
appropriate bind to return.

Note that the “mapper” argument is usually present
when Session.get_bind() is called via an ORM
operation such as a Session.query(), each
individual INSERT/UPDATE/DELETE operation within a
Session.flush(), call, etc.

The order of resolution is:

	if mapper given and session.binds is present,
locate a bind based on mapper.

	if clause given and session.binds is present,
locate a bind based on Table objects
found in the given clause present in session.binds.

	if session.bind is present, return that.

	if clause given, attempt to return a bind
linked to the MetaData ultimately
associated with the clause.

	if mapper given, attempt to return a bind
linked to the MetaData ultimately
associated with the Table or other
selectable to which the mapper is mapped.

	No bind can be found, UnboundExecutionError
is raised.

	Parameters:
	
	mapper¶ – Optional mapper() mapped class or instance of
Mapper. The bind can be derived from a Mapper
first by consulting the “binds” map associated with this
Session, and secondly by consulting the MetaData
associated with the Table to which the Mapper
is mapped for a bind.

	clause¶ – A ClauseElement (i.e. select(),
text(),
etc.). If the mapper argument is not present or could not
produce a bind, the given expression construct will be searched
for a bound element, typically a Table associated with
bound MetaData.

	
identity_key(*args, **kwargs)

	
inherited from the identity_key() method of _SessionClassMethods

Return an identity key.

This is an alias of util.identity_key().

	
identity_map = None

	A mapping of object identities to objects themselves.

Iterating through Session.identity_map.values() provides
access to the full set of persistent objects (i.e., those
that have row identity) currently in the session.

See also

identity_key() - helper function to produce the keys used
in this dictionary.

	
info

	A user-modifiable dictionary.

The initial value of this dictionary can be populated using the
info argument to the Session constructor or
sessionmaker constructor or factory methods. The dictionary
here is always local to this Session and can be modified
independently of all other Session objects.

New in version 0.9.0.

	
invalidate()

	Close this Session, using connection invalidation.

This is a variant of Session.close() that will additionally
ensure that the Connection.invalidate() method will be called
on all Connection objects. This can be called when
the database is known to be in a state where the connections are
no longer safe to be used.

E.g.:

try:
 sess = Session()
 sess.add(User())
 sess.commit()
except gevent.Timeout:
 sess.invalidate()
 raise
except:
 sess.rollback()
 raise

This clears all items and ends any transaction in progress.

If this session were created with autocommit=False, a new
transaction is immediately begun. Note that this new transaction does
not use any connection resources until they are first needed.

New in version 0.9.9.

	
is_active

	True if this Session is in “transaction mode” and
is not in “partial rollback” state.

The Session in its default mode of autocommit=False
is essentially always in “transaction mode”, in that a
SessionTransaction is associated with it as soon as
it is instantiated. This SessionTransaction is immediately
replaced with a new one as soon as it is ended, due to a rollback,
commit, or close operation.

“Transaction mode” does not indicate whether
or not actual database connection resources are in use; the
SessionTransaction object coordinates among zero or more
actual database transactions, and starts out with none, accumulating
individual DBAPI connections as different data sources are used
within its scope. The best way to track when a particular
Session has actually begun to use DBAPI resources is to
implement a listener using the SessionEvents.after_begin()
method, which will deliver both the Session as well as the
target Connection to a user-defined event listener.

The “partial rollback” state refers to when an “inner” transaction,
typically used during a flush, encounters an error and emits a
rollback of the DBAPI connection. At this point, the
Session is in “partial rollback” and awaits for the user to
call Session.rollback(), in order to close out the
transaction stack. It is in this “partial rollback” period that the
is_active flag returns False. After the call to
Session.rollback(), the SessionTransaction is
replaced with a new one and is_active returns True again.

When a Session is used in autocommit=True mode, the
SessionTransaction is only instantiated within the scope
of a flush call, or when Session.begin() is called. So
is_active will always be False outside of a flush or
Session.begin() block in this mode, and will be True
within the Session.begin() block as long as it doesn’t enter
“partial rollback” state.

From all the above, it follows that the only purpose to this flag is
for application frameworks that wish to detect is a “rollback” is
necessary within a generic error handling routine, for
Session objects that would otherwise be in
“partial rollback” mode. In a typical integration case, this is also
not necessary as it is standard practice to emit
Session.rollback() unconditionally within the outermost
exception catch.

To track the transactional state of a Session fully,
use event listeners, primarily the SessionEvents.after_begin(),
SessionEvents.after_commit(),
SessionEvents.after_rollback() and related events.

	
is_modified(instance, include_collections=True, passive=True)

	Return True if the given instance has locally
modified attributes.

This method retrieves the history for each instrumented
attribute on the instance and performs a comparison of the current
value to its previously committed value, if any.

It is in effect a more expensive and accurate
version of checking for the given instance in the
Session.dirty collection; a full test for
each attribute’s net “dirty” status is performed.

E.g.:

return session.is_modified(someobject)

Changed in version 0.8: When using SQLAlchemy 0.7 and earlier, the passive
flag should always be explicitly set to True,
else SQL loads/autoflushes may proceed which can affect
the modified state itself:
session.is_modified(someobject, passive=True).
In 0.8 and above, the behavior is corrected and
this flag is ignored.

A few caveats to this method apply:

	Instances present in the Session.dirty collection may
report False when tested with this method. This is because
the object may have received change events via attribute mutation,
thus placing it in Session.dirty, but ultimately the state
is the same as that loaded from the database, resulting in no net
change here.

	Scalar attributes may not have recorded the previously set
value when a new value was applied, if the attribute was not loaded,
or was expired, at the time the new value was received - in these
cases, the attribute is assumed to have a change, even if there is
ultimately no net change against its database value. SQLAlchemy in
most cases does not need the “old” value when a set event occurs, so
it skips the expense of a SQL call if the old value isn’t present,
based on the assumption that an UPDATE of the scalar value is
usually needed, and in those few cases where it isn’t, is less
expensive on average than issuing a defensive SELECT.

The “old” value is fetched unconditionally upon set only if the
attribute container has the active_history flag set to True.
This flag is set typically for primary key attributes and scalar
object references that are not a simple many-to-one. To set this
flag for any arbitrary mapped column, use the active_history
argument with column_property().

	Parameters:
	
	instance¶ – mapped instance to be tested for pending changes.

	include_collections¶ – Indicates if multivalued collections
should be included in the operation. Setting this to False is a
way to detect only local-column based properties (i.e. scalar columns
or many-to-one foreign keys) that would result in an UPDATE for this
instance upon flush.

	passive¶ –
Changed in version 0.8: Ignored for backwards compatibility.
When using SQLAlchemy 0.7 and earlier, this flag should always
be set to True.

	
merge(instance, load=True)

	Copy the state of a given instance into a corresponding instance
within this Session.

Session.merge() examines the primary key attributes of the
source instance, and attempts to reconcile it with an instance of the
same primary key in the session. If not found locally, it attempts
to load the object from the database based on primary key, and if
none can be located, creates a new instance. The state of each
attribute on the source instance is then copied to the target
instance. The resulting target instance is then returned by the
method; the original source instance is left unmodified, and
un-associated with the Session if not already.

This operation cascades to associated instances if the association is
mapped with cascade="merge".

See Merging for a detailed discussion of merging.

Changed in version 1.1: - Session.merge() will now reconcile
pending objects with overlapping primary keys in the same way
as persistent. See Session.merge resolves pending conflicts the same as persistent for discussion.

	Parameters:
	
	instance¶ – Instance to be merged.

	load¶ – Boolean, when False, merge() switches into
a “high performance” mode which causes it to forego emitting history
events as well as all database access. This flag is used for
cases such as transferring graphs of objects into a Session
from a second level cache, or to transfer just-loaded objects
into the Session owned by a worker thread or process
without re-querying the database.

The load=False use case adds the caveat that the given
object has to be in a “clean” state, that is, has no pending changes
to be flushed - even if the incoming object is detached from any
Session. This is so that when
the merge operation populates local attributes and
cascades to related objects and
collections, the values can be “stamped” onto the
target object as is, without generating any history or attribute
events, and without the need to reconcile the incoming data with
any existing related objects or collections that might not
be loaded. The resulting objects from load=False are always
produced as “clean”, so it is only appropriate that the given objects
should be “clean” as well, else this suggests a mis-use of the
method.

	
new

	The set of all instances marked as ‘new’ within this Session.

	
no_autoflush

	Return a context manager that disables autoflush.

e.g.:

with session.no_autoflush:

 some_object = SomeClass()
 session.add(some_object)
 # won't autoflush
 some_object.related_thing = session.query(SomeRelated).first()

Operations that proceed within the with: block
will not be subject to flushes occurring upon query
access. This is useful when initializing a series
of objects which involve existing database queries,
where the uncompleted object should not yet be flushed.

New in version 0.7.6.

	
object_session(instance)

	
inherited from the object_session() method of _SessionClassMethods

Return the Session to which an object belongs.

This is an alias of object_session().

	
prepare()

	Prepare the current transaction in progress for two phase commit.

If no transaction is in progress, this method raises an
InvalidRequestError.

Only root transactions of two phase sessions can be prepared. If the
current transaction is not such, an
InvalidRequestError is raised.

	
prune()

	Remove unreferenced instances cached in the identity map.

Deprecated since version 0.7: The non-weak-referencing identity map feature is no longer needed.

Note that this method is only meaningful if “weak_identity_map” is set
to False. The default weak identity map is self-pruning.

Removes any object in this Session’s identity map that is not
referenced in user code, modified, new or scheduled for deletion.
Returns the number of objects pruned.

	
query(*entities, **kwargs)

	Return a new Query object corresponding to this
Session.

	
refresh(instance, attribute_names=None, lockmode=None)

	Expire and refresh the attributes on the given instance.

A query will be issued to the database and all attributes will be
refreshed with their current database value.

Lazy-loaded relational attributes will remain lazily loaded, so that
the instance-wide refresh operation will be followed immediately by
the lazy load of that attribute.

Eagerly-loaded relational attributes will eagerly load within the
single refresh operation.

Note that a highly isolated transaction will return the same values as
were previously read in that same transaction, regardless of changes
in database state outside of that transaction - usage of
refresh() usually only makes sense if non-ORM SQL
statement were emitted in the ongoing transaction, or if autocommit
mode is turned on.

	Parameters:
	
	attribute_names¶ – optional. An iterable collection of
string attribute names indicating a subset of attributes to
be refreshed.

	lockmode¶ – Passed to the Query
as used by with_lockmode().

See also

Refreshing / Expiring - introductory material

Session.expire()

Session.expire_all()

	
rollback()

	Rollback the current transaction in progress.

If no transaction is in progress, this method is a pass-through.

This method rolls back the current transaction or nested transaction
regardless of subtransactions being in effect. All subtransactions up
to the first real transaction are closed. Subtransactions occur when
begin() is called multiple times.

See also

Rolling Back

	
scalar(clause, params=None, mapper=None, bind=None, **kw)

	Like execute() but return a scalar result.

	
transaction = None

	The current active or inactive SessionTransaction.

	
class sqlalchemy.orm.session.SessionTransaction(session, parent=None, nested=False)

	A Session-level transaction.

SessionTransaction is a mostly behind-the-scenes object
not normally referenced directly by application code. It coordinates
among multiple Connection objects, maintaining a database
transaction for each one individually, committing or rolling them
back all at once. It also provides optional two-phase commit behavior
which can augment this coordination operation.

The Session.transaction attribute of Session
refers to the current SessionTransaction object in use, if any.

A SessionTransaction is associated with a Session
in its default mode of autocommit=False immediately, associated
with no database connections. As the Session is called upon
to emit SQL on behalf of various Engine or Connection
objects, a corresponding Connection and associated
Transaction is added to a collection within the
SessionTransaction object, becoming one of the
connection/transaction pairs maintained by the
SessionTransaction.

The lifespan of the SessionTransaction ends when the
Session.commit(), Session.rollback() or
Session.close() methods are called. At this point, the
SessionTransaction removes its association with its parent
Session. A Session that is in autocommit=False
mode will create a new SessionTransaction to replace it
immediately, whereas a Session that’s in autocommit=True
mode will remain without a SessionTransaction until the
Session.begin() method is called.

Another detail of SessionTransaction behavior is that it is
capable of “nesting”. This means that the Session.begin() method
can be called while an existing SessionTransaction is already
present, producing a new SessionTransaction that temporarily
replaces the parent SessionTransaction. When a
SessionTransaction is produced as nested, it assigns itself to
the Session.transaction attribute. When it is ended via
Session.commit() or Session.rollback(), it restores its
parent SessionTransaction back onto the
Session.transaction attribute. The behavior is effectively a
stack, where Session.transaction refers to the current head of
the stack.

The purpose of this stack is to allow nesting of
Session.rollback() or Session.commit() calls in context
with various flavors of Session.begin(). This nesting behavior
applies to when Session.begin_nested() is used to emit a
SAVEPOINT transaction, and is also used to produce a so-called
“subtransaction” which allows a block of code to use a
begin/rollback/commit sequence regardless of whether or not its enclosing
code block has begun a transaction. The flush() method, whether
called explicitly or via autoflush, is the primary consumer of the
“subtransaction” feature, in that it wishes to guarantee that it works
within in a transaction block regardless of whether or not the
Session is in transactional mode when the method is called.

See also:

Session.rollback()

Session.commit()

Session.begin()

Session.begin_nested()

Session.is_active

SessionEvents.after_commit()

SessionEvents.after_rollback()

SessionEvents.after_soft_rollback()

Session Utilites

	
sqlalchemy.orm.session.make_transient(instance)

	Alter the state of the given instance so that it is transient.

Note

make_transient() is a special-case function for
advanced use cases only.

The given mapped instance is assumed to be in the persistent or
detached state. The function will remove its association with any
Session as well as its InstanceState.identity. The
effect is that the object will behave as though it were newly constructed,
except retaining any attribute / collection values that were loaded at the
time of the call. The InstanceState.deleted flag is also reset
if this object had been deleted as a result of using
Session.delete().

Warning

make_transient() does not “unexpire” or otherwise eagerly
load ORM-mapped attributes that are not currently loaded at the time
the function is called. This includes attributes which:

	were expired via Session.expire()

	were expired as the natural effect of committing a session
transaction, e.g. Session.commit()

	are normally lazy loaded but are not currently loaded

	are “deferred” via Deferred Column Loading and are not yet loaded

	were not present in the query which loaded this object, such as that
which is common in joined table inheritance and other scenarios.

After make_transient() is called, unloaded attributes such
as those above will normally resolve to the value None when
accessed, or an empty collection for a collection-oriented attribute.
As the object is transient and un-associated with any database
identity, it will no longer retrieve these values.

See also

make_transient_to_detached()

	
sqlalchemy.orm.session.make_transient_to_detached(instance)

	Make the given transient instance detached.

Note

make_transient_to_detached() is a special-case function for
advanced use cases only.

All attribute history on the given instance
will be reset as though the instance were freshly loaded
from a query. Missing attributes will be marked as expired.
The primary key attributes of the object, which are required, will be made
into the “key” of the instance.

The object can then be added to a session, or merged
possibly with the load=False flag, at which point it will look
as if it were loaded that way, without emitting SQL.

This is a special use case function that differs from a normal
call to Session.merge() in that a given persistent state
can be manufactured without any SQL calls.

New in version 0.9.5.

See also

make_transient()

	
sqlalchemy.orm.session.object_session(instance)

	Return the Session to which the given instance belongs.

This is essentially the same as the InstanceState.session
accessor. See that attribute for details.

	
sqlalchemy.orm.util.was_deleted(object)

	Return True if the given object was deleted
within a session flush.

This is regardless of whether or not the object is
persistent or detached.

New in version 0.8.0.

See also

InstanceState.was_deleted

Attribute and State Management Utilities

These functions are provided by the SQLAlchemy attribute
instrumentation API to provide a detailed interface for dealing
with instances, attribute values, and history. Some of them
are useful when constructing event listener functions, such as
those described in ORM Events.

	
sqlalchemy.orm.util.object_state(instance)

	Given an object, return the InstanceState
associated with the object.

Raises sqlalchemy.orm.exc.UnmappedInstanceError
if no mapping is configured.

Equivalent functionality is available via the inspect()
function as:

inspect(instance)

Using the inspection system will raise
sqlalchemy.exc.NoInspectionAvailable if the instance is
not part of a mapping.

	
sqlalchemy.orm.attributes.del_attribute(instance, key)

	Delete the value of an attribute, firing history events.

This function may be used regardless of instrumentation
applied directly to the class, i.e. no descriptors are required.
Custom attribute management schemes will need to make usage
of this method to establish attribute state as understood
by SQLAlchemy.

	
sqlalchemy.orm.attributes.get_attribute(instance, key)

	Get the value of an attribute, firing any callables required.

This function may be used regardless of instrumentation
applied directly to the class, i.e. no descriptors are required.
Custom attribute management schemes will need to make usage
of this method to make usage of attribute state as understood
by SQLAlchemy.

	
sqlalchemy.orm.attributes.get_history(obj, key, passive=symbol('PASSIVE_OFF'))

	Return a History record for the given object
and attribute key.

	Parameters:
	
	obj¶ – an object whose class is instrumented by the
attributes package.

	key¶ – string attribute name.

	passive¶ – indicates loading behavior for the attribute
if the value is not already present. This is a
bitflag attribute, which defaults to the symbol
PASSIVE_OFF indicating all necessary SQL
should be emitted.

	
sqlalchemy.orm.attributes.init_collection(obj, key)

	Initialize a collection attribute and return the collection adapter.

This function is used to provide direct access to collection internals
for a previously unloaded attribute. e.g.:

collection_adapter = init_collection(someobject, 'elements')
for elem in values:
 collection_adapter.append_without_event(elem)

For an easier way to do the above, see
set_committed_value().

obj is an instrumented object instance. An InstanceState
is accepted directly for backwards compatibility but
this usage is deprecated.

	
sqlalchemy.orm.attributes.flag_modified(instance, key)

	Mark an attribute on an instance as ‘modified’.

This sets the ‘modified’ flag on the instance and
establishes an unconditional change event for the given attribute.

	
sqlalchemy.orm.attributes.instance_state()

	Return the InstanceState for a given
mapped object.

This function is the internal version
of object_state(). The
object_state() and/or the
inspect() function is preferred here
as they each emit an informative exception
if the given object is not mapped.

	
sqlalchemy.orm.instrumentation.is_instrumented(instance, key)

	Return True if the given attribute on the given instance is
instrumented by the attributes package.

This function may be used regardless of instrumentation
applied directly to the class, i.e. no descriptors are required.

	
sqlalchemy.orm.attributes.set_attribute(instance, key, value)

	Set the value of an attribute, firing history events.

This function may be used regardless of instrumentation
applied directly to the class, i.e. no descriptors are required.
Custom attribute management schemes will need to make usage
of this method to establish attribute state as understood
by SQLAlchemy.

	
sqlalchemy.orm.attributes.set_committed_value(instance, key, value)

	Set the value of an attribute with no history events.

Cancels any previous history present. The value should be
a scalar value for scalar-holding attributes, or
an iterable for any collection-holding attribute.

This is the same underlying method used when a lazy loader
fires off and loads additional data from the database.
In particular, this method can be used by application code
which has loaded additional attributes or collections through
separate queries, which can then be attached to an instance
as though it were part of its original loaded state.

	
class sqlalchemy.orm.attributes.History

	Bases: sqlalchemy.orm.attributes.History

A 3-tuple of added, unchanged and deleted values,
representing the changes which have occurred on an instrumented
attribute.

The easiest way to get a History object for a particular
attribute on an object is to use the inspect() function:

from sqlalchemy import inspect

hist = inspect(myobject).attrs.myattribute.history

Each tuple member is an iterable sequence:

	added - the collection of items added to the attribute (the first
tuple element).

	unchanged - the collection of items that have not changed on the
attribute (the second tuple element).

	deleted - the collection of items that have been removed from the
attribute (the third tuple element).

	
empty()

	Return True if this History has no changes
and no existing, unchanged state.

	
has_changes()

	Return True if this History has changes.

	
non_added()

	Return a collection of unchanged + deleted.

	
non_deleted()

	Return a collection of added + unchanged.

	
sum()

	Return a collection of added + unchanged + deleted.

Events and Internals

	ORM Events
	Attribute Events

	Mapper Events

	Instance Events

	Session Events

	Query Events

	Instrumentation Events

	ORM Internals

	ORM Exceptions

	Deprecated ORM Event Interfaces
	Mapper Events

	Session Events

	Attribute Events

ORM Events

The ORM includes a wide variety of hooks available for subscription.

For an introduction to the most commonly used ORM events, see the section
Tracking Object and Session Changes with Events. The event system in general is discussed
at Events. Non-ORM events such as those regarding connections
and low-level statement execution are described in Core Events.

Attribute Events

	
class sqlalchemy.orm.events.AttributeEvents

	Bases: sqlalchemy.event.base.Events

Define events for object attributes.

These are typically defined on the class-bound descriptor for the
target class.

e.g.:

from sqlalchemy import event

def my_append_listener(target, value, initiator):
 print "received append event for target: %s" % target

event.listen(MyClass.collection, 'append', my_append_listener)

Listeners have the option to return a possibly modified version
of the value, when the retval=True flag is passed
to listen():

def validate_phone(target, value, oldvalue, initiator):
 "Strip non-numeric characters from a phone number"

 return re.sub(r'(?![0-9])', '', value)

setup listener on UserContact.phone attribute, instructing
it to use the return value
listen(UserContact.phone, 'set', validate_phone, retval=True)

A validation function like the above can also raise an exception
such as ValueError to halt the operation.

Several modifiers are available to the listen() function.

	Parameters:
	
	active_history=False¶ – When True, indicates that the
“set” event would like to receive the “old” value being
replaced unconditionally, even if this requires firing off
database loads. Note that active_history can also be
set directly via column_property() and
relationship().

	propagate=False¶ – When True, the listener function will
be established not just for the class attribute given, but
for attributes of the same name on all current subclasses
of that class, as well as all future subclasses of that
class, using an additional listener that listens for
instrumentation events.

	raw=False¶ – When True, the “target” argument to the
event will be the InstanceState management
object, rather than the mapped instance itself.

	retval=False¶ – when True, the user-defined event
listening must return the “value” argument from the
function. This gives the listening function the opportunity
to change the value that is ultimately used for a “set”
or “append” event.

	
append(target, value, initiator)

	Receive a collection append event.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass.some_attribute, 'append')
def receive_append(target, value, initiator):
 "listen for the 'append' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the object instance receiving the event.
If the listener is registered with raw=True, this will
be the InstanceState object.

	value¶ – the value being appended. If this listener
is registered with retval=True, the listener
function must return this value, or a new value which
replaces it.

	initiator¶ – An instance of attributes.Event
representing the initiation of the event. May be modified
from its original value by backref handlers in order to control
chained event propagation.

Changed in version 0.9.0: the initiator argument is now
passed as a attributes.Event object, and may be
modified by backref handlers within a chain of backref-linked
events.

	Returns:
	if the event was registered with retval=True,
the given value, or a new effective value, should be returned.

	
dispose_collection(target, collection, collection_adpater)

	Receive a ‘collection dispose’ event.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass.some_attribute, 'dispose_collection')
def receive_dispose_collection(target, collection, collection_adpater):
 "listen for the 'dispose_collection' event"

 # ... (event handling logic) ...

This event is triggered for a collection-based attribute when
a collection is replaced, that is:

u1.addresses.append(a1)

u1.addresses = [a2, a3] # <- old collection is disposed

The mechanics of the event will typically include that the given
collection is empty, even if it stored objects while being replaced.

New in version 1.0.0: the AttributeEvents.init_collection()
and AttributeEvents.dispose_collection() events supersede
the collection.linker hook.

	
init_collection(target, collection, collection_adapter)

	Receive a ‘collection init’ event.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass.some_attribute, 'init_collection')
def receive_init_collection(target, collection, collection_adapter):
 "listen for the 'init_collection' event"

 # ... (event handling logic) ...

This event is triggered for a collection-based attribute, when
the initial “empty collection” is first generated for a blank
attribute, as well as for when the collection is replaced with
a new one, such as via a set event.

E.g., given that User.addresses is a relationship-based
collection, the event is triggered here:

u1 = User()
u1.addresses.append(a1) # <- new collection

and also during replace operations:

u1.addresses = [a2, a3] # <- new collection

	Parameters:
	
	target¶ – the object instance receiving the event.
If the listener is registered with raw=True, this will
be the InstanceState object.

	collection¶ – the new collection. This will always be generated
from what was specified as
RelationshipProperty.collection_class, and will always
be empty.

	collection_adpater¶ – the CollectionAdapter that will
mediate internal access to the collection.

New in version 1.0.0: the AttributeEvents.init_collection()
and AttributeEvents.dispose_collection() events supersede
the collection.linker hook.

	
init_scalar(target, value, dict_)

	Receive a scalar “init” event.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass.some_attribute, 'init_scalar')
def receive_init_scalar(target, value, dict_):
 "listen for the 'init_scalar' event"

 # ... (event handling logic) ...

This event is invoked when an uninitialized, unpersisted scalar
attribute is accessed. A value of None is typically returned
in this case; no changes are made to the object’s state.

The event handler can alter this behavior in two ways.
One is that a value other than None may be returned. The other
is that the value may be established as part of the object’s state,
which will also have the effect that it is persisted.

Typical use is to establish a specific default value of an attribute
upon access:

SOME_CONSTANT = 3.1415926

@event.listens_for(
 MyClass.some_attribute, "init_scalar",
 retval=True, propagate=True)
def _init_some_attribute(target, dict_, value):
 dict_['some_attribute'] = SOME_CONSTANT
 return SOME_CONSTANT

Above, we initialize the attribute MyClass.some_attribute to the
value of SOME_CONSTANT. The above code includes the following
features:

	By setting the value SOME_CONSTANT in the given dict_,
we indicate that the value is to be persisted to the database.
The given value is only persisted to the database if we
explicitly associate it with the object. The dict_ given
is the __dict__ element of the mapped object, assuming the
default attribute instrumentation system is in place.

	By establishing the retval=True flag, the value we return
from the function will be returned by the attribute getter.
Without this flag, the event is assumed to be a passive observer
and the return value of our function is ignored.

	The propagate=True flag is significant if the mapped class
includes inheriting subclasses, which would also make use of this
event listener. Without this flag, an inheriting subclass will
not use our event handler.

When we establish the value in the given dictionary, the value will
be used in the INSERT statement established by the unit of work.
Normally, the default returned value of None is not established as
part of the object, to avoid the issue of mutations occurring to the
object in response to a normally passive “get” operation, and also
sidesteps the issue of whether or not the AttributeEvents.set()
event should be awkwardly fired off during an attribute access
operation. This does not impact the INSERT operation since the
None value matches the value of NULL that goes into the
database in any case; note that None is skipped during the INSERT
to ensure that column and SQL-level default functions can fire off.

The attribute set event AttributeEvents.set() as well as the
related validation feature provided by orm.validates is
not invoked when we apply our value to the given dict_. To
have these events to invoke in response to our newly generated
value, apply the value to the given object as a normal attribute
set operation:

SOME_CONSTANT = 3.1415926

@event.listens_for(
 MyClass.some_attribute, "init_scalar",
 retval=True, propagate=True)
def _init_some_attribute(target, dict_, value):
 # will also fire off attribute set events
 target.some_attribute = SOME_CONSTANT
 return SOME_CONSTANT

When multiple listeners are set up, the generation of the value
is “chained” from one listener to the next by passing the value
returned by the previous listener that specifies retval=True
as the value argument of the next listener.

The AttributeEvents.init_scalar() event may be used to
extract values from the default values and/or callables established on
mapped Column objects. See the “active column defaults”
example in Attribute Instrumentation for an example of this.

New in version 1.1.

	Parameters:
	
	target¶ – the object instance receiving the event.
If the listener is registered with raw=True, this will
be the InstanceState object.

	value¶ – the value that is to be returned before this event
listener were invoked. This value begins as the value None,
however will be the return value of the previous event handler
function if multiple listeners are present.

	dict_¶ – the attribute dictionary of this mapped object.
This is normally the __dict__ of the object, but in all cases
represents the destination that the attribute system uses to get
at the actual value of this attribute. Placing the value in this
dictionary has the effect that the value will be used in the
INSERT statement generated by the unit of work.

See also

Attribute Instrumentation - see the
active_column_defaults.py example.

	
remove(target, value, initiator)

	Receive a collection remove event.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass.some_attribute, 'remove')
def receive_remove(target, value, initiator):
 "listen for the 'remove' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the object instance receiving the event.
If the listener is registered with raw=True, this will
be the InstanceState object.

	value¶ – the value being removed.

	initiator¶ – An instance of attributes.Event
representing the initiation of the event. May be modified
from its original value by backref handlers in order to control
chained event propagation.

Changed in version 0.9.0: the initiator argument is now
passed as a attributes.Event object, and may be
modified by backref handlers within a chain of backref-linked
events.

	Returns:
	No return value is defined for this event.

	
set(target, value, oldvalue, initiator)

	Receive a scalar set event.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass.some_attribute, 'set')
def receive_set(target, value, oldvalue, initiator):
 "listen for the 'set' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeClass.some_attribute, 'set', named=True)
def receive_set(**kw):
 "listen for the 'set' event"
 target = kw['target']
 value = kw['value']

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the object instance receiving the event.
If the listener is registered with raw=True, this will
be the InstanceState object.

	value¶ – the value being set. If this listener
is registered with retval=True, the listener
function must return this value, or a new value which
replaces it.

	oldvalue¶ – the previous value being replaced. This
may also be the symbol NEVER_SET or NO_VALUE.
If the listener is registered with active_history=True,
the previous value of the attribute will be loaded from
the database if the existing value is currently unloaded
or expired.

	initiator¶ – An instance of attributes.Event
representing the initiation of the event. May be modified
from its original value by backref handlers in order to control
chained event propagation.

Changed in version 0.9.0: the initiator argument is now
passed as a attributes.Event object, and may be
modified by backref handlers within a chain of backref-linked
events.

	Returns:
	if the event was registered with retval=True,
the given value, or a new effective value, should be returned.

Mapper Events

	
class sqlalchemy.orm.events.MapperEvents

	Bases: sqlalchemy.event.base.Events

Define events specific to mappings.

e.g.:

from sqlalchemy import event

def my_before_insert_listener(mapper, connection, target):
 # execute a stored procedure upon INSERT,
 # apply the value to the row to be inserted
 target.calculated_value = connection.scalar(
 "select my_special_function(%d)"
 % target.special_number)

associate the listener function with SomeClass,
to execute during the "before_insert" hook
event.listen(
 SomeClass, 'before_insert', my_before_insert_listener)

Available targets include:

	mapped classes

	unmapped superclasses of mapped or to-be-mapped classes
(using the propagate=True flag)

	Mapper objects

	the Mapper class itself and the mapper()
function indicate listening for all mappers.

Changed in version 0.8.0: mapper events can be associated with
unmapped superclasses of mapped classes.

Mapper events provide hooks into critical sections of the
mapper, including those related to object instrumentation,
object loading, and object persistence. In particular, the
persistence methods before_insert(),
and before_update() are popular
places to augment the state being persisted - however, these
methods operate with several significant restrictions. The
user is encouraged to evaluate the
SessionEvents.before_flush() and
SessionEvents.after_flush() methods as more
flexible and user-friendly hooks in which to apply
additional database state during a flush.

When using MapperEvents, several modifiers are
available to the event.listen() function.

	Parameters:
	
	propagate=False¶ – When True, the event listener should
be applied to all inheriting mappers and/or the mappers of
inheriting classes, as well as any
mapper which is the target of this listener.

	raw=False¶ – When True, the “target” argument passed
to applicable event listener functions will be the
instance’s InstanceState management
object, rather than the mapped instance itself.

	retval=False¶ – when True, the user-defined event function
must have a return value, the purpose of which is either to
control subsequent event propagation, or to otherwise alter
the operation in progress by the mapper. Possible return
values are:

	sqlalchemy.orm.interfaces.EXT_CONTINUE - continue event
processing normally.

	sqlalchemy.orm.interfaces.EXT_STOP - cancel all subsequent
event handlers in the chain.

	other values - the return value specified by specific listeners.

	
after_configured()

	Called after a series of mappers have been configured.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'after_configured')
def receive_after_configured():
 "listen for the 'after_configured' event"

 # ... (event handling logic) ...

The MapperEvents.after_configured() event is invoked
each time the orm.configure_mappers() function is
invoked, after the function has completed its work.
orm.configure_mappers() is typically invoked
automatically as mappings are first used, as well as each time
new mappers have been made available and new mapper use is
detected.

Contrast this event to the MapperEvents.mapper_configured()
event, which is called on a per-mapper basis while the configuration
operation proceeds; unlike that event, when this event is invoked,
all cross-configurations (e.g. backrefs) will also have been made
available for any mappers that were pending.
Also constrast to MapperEvents.before_configured(),
which is invoked before the series of mappers has been configured.

This event can only be applied to the Mapper class
or mapper() function, and not to individual mappings or
mapped classes. It is only invoked for all mappings as a whole:

from sqlalchemy.orm import mapper

@event.listens_for(mapper, "after_configured")
def go():
 # ...

Theoretically this event is called once per
application, but is actually called any time new mappers
have been affected by a orm.configure_mappers()
call. If new mappings are constructed after existing ones have
already been used, this event will likely be called again. To ensure
that a particular event is only called once and no further, the
once=True argument (new in 0.9.4) can be applied:

from sqlalchemy.orm import mapper

@event.listens_for(mapper, "after_configured", once=True)
def go():
 # ...

See also

MapperEvents.mapper_configured()

MapperEvents.before_configured()

	
after_delete(mapper, connection, target)

	Receive an object instance after a DELETE statement
has been emitted corresponding to that instance.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'after_delete')
def receive_after_delete(mapper, connection, target):
 "listen for the 'after_delete' event"

 # ... (event handling logic) ...

This event is used to emit additional SQL statements on
the given connection as well as to perform application
specific bookkeeping related to a deletion event.

The event is often called for a batch of objects of the
same class after their DELETE statements have been emitted at
once in a previous step.

Warning

Mapper-level flush events only allow very limited operations,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
Connection. Please read fully the notes
at Mapper-level Events for guidelines on using
these methods; generally, the SessionEvents.before_flush()
method should be preferred for general on-flush changes.

	Parameters:
	
	mapper¶ – the Mapper which is the target
of this event.

	connection¶ – the Connection being used to
emit DELETE statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.

	target¶ – the mapped instance being deleted. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	Returns:
	No return value is supported by this event.

See also

Persistence Events

	
after_insert(mapper, connection, target)

	Receive an object instance after an INSERT statement
is emitted corresponding to that instance.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'after_insert')
def receive_after_insert(mapper, connection, target):
 "listen for the 'after_insert' event"

 # ... (event handling logic) ...

This event is used to modify in-Python-only
state on the instance after an INSERT occurs, as well
as to emit additional SQL statements on the given
connection.

The event is often called for a batch of objects of the
same class after their INSERT statements have been
emitted at once in a previous step. In the extremely
rare case that this is not desirable, the
mapper() can be configured with batch=False,
which will cause batches of instances to be broken up
into individual (and more poorly performing)
event->persist->event steps.

Warning

Mapper-level flush events only allow very limited operations,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
Connection. Please read fully the notes
at Mapper-level Events for guidelines on using
these methods; generally, the SessionEvents.before_flush()
method should be preferred for general on-flush changes.

	Parameters:
	
	mapper¶ – the Mapper which is the target
of this event.

	connection¶ – the Connection being used to
emit INSERT statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.

	target¶ – the mapped instance being persisted. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	Returns:
	No return value is supported by this event.

See also

Persistence Events

	
after_update(mapper, connection, target)

	Receive an object instance after an UPDATE statement
is emitted corresponding to that instance.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'after_update')
def receive_after_update(mapper, connection, target):
 "listen for the 'after_update' event"

 # ... (event handling logic) ...

This event is used to modify in-Python-only
state on the instance after an UPDATE occurs, as well
as to emit additional SQL statements on the given
connection.

This method is called for all instances that are
marked as “dirty”, even those which have no net changes
to their column-based attributes, and for which
no UPDATE statement has proceeded. An object is marked
as dirty when any of its column-based attributes have a
“set attribute” operation called or when any of its
collections are modified. If, at update time, no
column-based attributes have any net changes, no UPDATE
statement will be issued. This means that an instance
being sent to after_update() is
not a guarantee that an UPDATE statement has been
issued.

To detect if the column-based attributes on the object have net
changes, and therefore resulted in an UPDATE statement, use
object_session(instance).is_modified(instance,
include_collections=False).

The event is often called for a batch of objects of the
same class after their UPDATE statements have been emitted at
once in a previous step. In the extremely rare case that
this is not desirable, the mapper() can be
configured with batch=False, which will cause
batches of instances to be broken up into individual
(and more poorly performing) event->persist->event
steps.

Warning

Mapper-level flush events only allow very limited operations,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
Connection. Please read fully the notes
at Mapper-level Events for guidelines on using
these methods; generally, the SessionEvents.before_flush()
method should be preferred for general on-flush changes.

	Parameters:
	
	mapper¶ – the Mapper which is the target
of this event.

	connection¶ – the Connection being used to
emit UPDATE statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.

	target¶ – the mapped instance being persisted. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	Returns:
	No return value is supported by this event.

See also

Persistence Events

	
before_configured()

	Called before a series of mappers have been configured.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'before_configured')
def receive_before_configured():
 "listen for the 'before_configured' event"

 # ... (event handling logic) ...

The MapperEvents.before_configured() event is invoked
each time the orm.configure_mappers() function is
invoked, before the function has done any of its work.
orm.configure_mappers() is typically invoked
automatically as mappings are first used, as well as each time
new mappers have been made available and new mapper use is
detected.

This event can only be applied to the Mapper class
or mapper() function, and not to individual mappings or
mapped classes. It is only invoked for all mappings as a whole:

from sqlalchemy.orm import mapper

@event.listens_for(mapper, "before_configured")
def go():
 # ...

Constrast this event to MapperEvents.after_configured(),
which is invoked after the series of mappers has been configured,
as well as MapperEvents.mapper_configured(), which is invoked
on a per-mapper basis as each one is configured to the extent possible.

Theoretically this event is called once per
application, but is actually called any time new mappers
are to be affected by a orm.configure_mappers()
call. If new mappings are constructed after existing ones have
already been used, this event will likely be called again. To ensure
that a particular event is only called once and no further, the
once=True argument (new in 0.9.4) can be applied:

from sqlalchemy.orm import mapper

@event.listens_for(mapper, "before_configured", once=True)
def go():
 # ...

New in version 0.9.3.

See also

MapperEvents.mapper_configured()

MapperEvents.after_configured()

	
before_delete(mapper, connection, target)

	Receive an object instance before a DELETE statement
is emitted corresponding to that instance.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'before_delete')
def receive_before_delete(mapper, connection, target):
 "listen for the 'before_delete' event"

 # ... (event handling logic) ...

This event is used to emit additional SQL statements on
the given connection as well as to perform application
specific bookkeeping related to a deletion event.

The event is often called for a batch of objects of the
same class before their DELETE statements are emitted at
once in a later step.

Warning

Mapper-level flush events only allow very limited operations,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
Connection. Please read fully the notes
at Mapper-level Events for guidelines on using
these methods; generally, the SessionEvents.before_flush()
method should be preferred for general on-flush changes.

	Parameters:
	
	mapper¶ – the Mapper which is the target
of this event.

	connection¶ – the Connection being used to
emit DELETE statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.

	target¶ – the mapped instance being deleted. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	Returns:
	No return value is supported by this event.

See also

Persistence Events

	
before_insert(mapper, connection, target)

	Receive an object instance before an INSERT statement
is emitted corresponding to that instance.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'before_insert')
def receive_before_insert(mapper, connection, target):
 "listen for the 'before_insert' event"

 # ... (event handling logic) ...

This event is used to modify local, non-object related
attributes on the instance before an INSERT occurs, as well
as to emit additional SQL statements on the given
connection.

The event is often called for a batch of objects of the
same class before their INSERT statements are emitted at
once in a later step. In the extremely rare case that
this is not desirable, the mapper() can be
configured with batch=False, which will cause
batches of instances to be broken up into individual
(and more poorly performing) event->persist->event
steps.

Warning

Mapper-level flush events only allow very limited operations,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
Connection. Please read fully the notes
at Mapper-level Events for guidelines on using
these methods; generally, the SessionEvents.before_flush()
method should be preferred for general on-flush changes.

	Parameters:
	
	mapper¶ – the Mapper which is the target
of this event.

	connection¶ – the Connection being used to
emit INSERT statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.

	target¶ – the mapped instance being persisted. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	Returns:
	No return value is supported by this event.

See also

Persistence Events

	
before_update(mapper, connection, target)

	Receive an object instance before an UPDATE statement
is emitted corresponding to that instance.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'before_update')
def receive_before_update(mapper, connection, target):
 "listen for the 'before_update' event"

 # ... (event handling logic) ...

This event is used to modify local, non-object related
attributes on the instance before an UPDATE occurs, as well
as to emit additional SQL statements on the given
connection.

This method is called for all instances that are
marked as “dirty”, even those which have no net changes
to their column-based attributes. An object is marked
as dirty when any of its column-based attributes have a
“set attribute” operation called or when any of its
collections are modified. If, at update time, no
column-based attributes have any net changes, no UPDATE
statement will be issued. This means that an instance
being sent to before_update() is
not a guarantee that an UPDATE statement will be
issued, although you can affect the outcome here by
modifying attributes so that a net change in value does
exist.

To detect if the column-based attributes on the object have net
changes, and will therefore generate an UPDATE statement, use
object_session(instance).is_modified(instance,
include_collections=False).

The event is often called for a batch of objects of the
same class before their UPDATE statements are emitted at
once in a later step. In the extremely rare case that
this is not desirable, the mapper() can be
configured with batch=False, which will cause
batches of instances to be broken up into individual
(and more poorly performing) event->persist->event
steps.

Warning

Mapper-level flush events only allow very limited operations,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
Connection. Please read fully the notes
at Mapper-level Events for guidelines on using
these methods; generally, the SessionEvents.before_flush()
method should be preferred for general on-flush changes.

	Parameters:
	
	mapper¶ – the Mapper which is the target
of this event.

	connection¶ – the Connection being used to
emit UPDATE statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.

	target¶ – the mapped instance being persisted. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	Returns:
	No return value is supported by this event.

See also

Persistence Events

	
instrument_class(mapper, class_)

	Receive a class when the mapper is first constructed,
before instrumentation is applied to the mapped class.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'instrument_class')
def receive_instrument_class(mapper, class_):
 "listen for the 'instrument_class' event"

 # ... (event handling logic) ...

This event is the earliest phase of mapper construction.
Most attributes of the mapper are not yet initialized.

This listener can either be applied to the Mapper
class overall, or to any un-mapped class which serves as a base
for classes that will be mapped (using the propagate=True flag):

Base = declarative_base()

@event.listens_for(Base, "instrument_class", propagate=True)
def on_new_class(mapper, cls_):
 " ... "

	Parameters:
	
	mapper¶ – the Mapper which is the target
of this event.

	class_¶ – the mapped class.

	
mapper_configured(mapper, class_)

	Called when a specific mapper has completed its own configuration
within the scope of the configure_mappers() call.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'mapper_configured')
def receive_mapper_configured(mapper, class_):
 "listen for the 'mapper_configured' event"

 # ... (event handling logic) ...

The MapperEvents.mapper_configured() event is invoked
for each mapper that is encountered when the
orm.configure_mappers() function proceeds through the current
list of not-yet-configured mappers.
orm.configure_mappers() is typically invoked
automatically as mappings are first used, as well as each time
new mappers have been made available and new mapper use is
detected.

When the event is called, the mapper should be in its final
state, but not including backrefs that may be invoked from
other mappers; they might still be pending within the
configuration operation. Bidirectional relationships that
are instead configured via the
orm.relationship.back_populates argument
will be fully available, since this style of relationship does not
rely upon other possibly-not-configured mappers to know that they
exist.

For an event that is guaranteed to have all mappers ready
to go including backrefs that are defined only on other
mappings, use the MapperEvents.after_configured()
event; this event invokes only after all known mappings have been
fully configured.

The MapperEvents.mapper_configured() event, unlike
MapperEvents.before_configured() or
MapperEvents.after_configured(),
is called for each mapper/class individually, and the mapper is
passed to the event itself. It also is called exactly once for
a particular mapper. The event is therefore useful for
configurational steps that benefit from being invoked just once
on a specific mapper basis, which don’t require that “backref”
configurations are necessarily ready yet.

	Parameters:
	
	mapper¶ – the Mapper which is the target
of this event.

	class_¶ – the mapped class.

See also

MapperEvents.before_configured()

MapperEvents.after_configured()

Instance Events

	
class sqlalchemy.orm.events.InstanceEvents

	Bases: sqlalchemy.event.base.Events

Define events specific to object lifecycle.

e.g.:

from sqlalchemy import event

def my_load_listener(target, context):
 print "on load!"

event.listen(SomeClass, 'load', my_load_listener)

Available targets include:

	mapped classes

	unmapped superclasses of mapped or to-be-mapped classes
(using the propagate=True flag)

	Mapper objects

	the Mapper class itself and the mapper()
function indicate listening for all mappers.

Changed in version 0.8.0: instance events can be associated with
unmapped superclasses of mapped classes.

Instance events are closely related to mapper events, but
are more specific to the instance and its instrumentation,
rather than its system of persistence.

When using InstanceEvents, several modifiers are
available to the event.listen() function.

	Parameters:
	
	propagate=False¶ – When True, the event listener should
be applied to all inheriting classes as well as the
class which is the target of this listener.

	raw=False¶ – When True, the “target” argument passed
to applicable event listener functions will be the
instance’s InstanceState management
object, rather than the mapped instance itself.

	
expire(target, attrs)

	Receive an object instance after its attributes or some subset
have been expired.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'expire')
def receive_expire(target, attrs):
 "listen for the 'expire' event"

 # ... (event handling logic) ...

‘keys’ is a list of attribute names. If None, the entire
state was expired.

	Parameters:
	
	target¶ – the mapped instance. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	attrs¶ – sequence of attribute
names which were expired, or None if all attributes were
expired.

	
first_init(manager, cls)

	Called when the first instance of a particular mapping is called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'first_init')
def receive_first_init(manager, cls):
 "listen for the 'first_init' event"

 # ... (event handling logic) ...

This event is called when the __init__ method of a class
is called the first time for that particular class. The event
invokes before __init__ actually proceeds as well as before
the InstanceEvents.init() event is invoked.

	
init(target, args, kwargs)

	Receive an instance when its constructor is called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'init')
def receive_init(target, args, kwargs):
 "listen for the 'init' event"

 # ... (event handling logic) ...

This method is only called during a userland construction of
an object, in conjunction with the object’s constructor, e.g.
its __init__ method. It is not called when an object is
loaded from the database; see the InstanceEvents.load()
event in order to intercept a database load.

The event is called before the actual __init__ constructor
of the object is called. The kwargs dictionary may be
modified in-place in order to affect what is passed to
__init__.

	Parameters:
	
	target¶ – the mapped instance. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	args¶ – positional arguments passed to the __init__ method.
This is passed as a tuple and is currently immutable.

	kwargs¶ – keyword arguments passed to the __init__ method.
This structure can be altered in place.

See also

InstanceEvents.init_failure()

InstanceEvents.load()

	
init_failure(target, args, kwargs)

	Receive an instance when its constructor has been called,
and raised an exception.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'init_failure')
def receive_init_failure(target, args, kwargs):
 "listen for the 'init_failure' event"

 # ... (event handling logic) ...

This method is only called during a userland construction of
an object, in conjunction with the object’s constructor, e.g.
its __init__ method. It is not called when an object is loaded
from the database.

The event is invoked after an exception raised by the __init__
method is caught. After the event
is invoked, the original exception is re-raised outwards, so that
the construction of the object still raises an exception. The
actual exception and stack trace raised should be present in
sys.exc_info().

	Parameters:
	
	target¶ – the mapped instance. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	args¶ – positional arguments that were passed to the __init__
method.

	kwargs¶ – keyword arguments that were passed to the __init__
method.

See also

InstanceEvents.init()

InstanceEvents.load()

	
load(target, context)

	Receive an object instance after it has been created via
__new__, and after initial attribute population has
occurred.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'load')
def receive_load(target, context):
 "listen for the 'load' event"

 # ... (event handling logic) ...

This typically occurs when the instance is created based on
incoming result rows, and is only called once for that
instance’s lifetime.

Note that during a result-row load, this method is called upon
the first row received for this instance. Note that some
attributes and collections may or may not be loaded or even
initialized, depending on what’s present in the result rows.

	Parameters:
	
	target¶ – the mapped instance. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	context¶ – the QueryContext corresponding to the
current Query in progress. This argument may be
None if the load does not correspond to a Query,
such as during Session.merge().

See also

InstanceEvents.init()

InstanceEvents.refresh()

SessionEvents.loaded_as_persistent()

	
pickle(target, state_dict)

	Receive an object instance when its associated state is
being pickled.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'pickle')
def receive_pickle(target, state_dict):
 "listen for the 'pickle' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the mapped instance. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	state_dict¶ – the dictionary returned by
InstanceState.__getstate__, containing the state
to be pickled.

	
refresh(target, context, attrs)

	Receive an object instance after one or more attributes have
been refreshed from a query.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'refresh')
def receive_refresh(target, context, attrs):
 "listen for the 'refresh' event"

 # ... (event handling logic) ...

Contrast this to the InstanceEvents.load() method, which
is invoked when the object is first loaded from a query.

	Parameters:
	
	target¶ – the mapped instance. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	context¶ – the QueryContext corresponding to the
current Query in progress.

	attrs¶ – sequence of attribute names which
were populated, or None if all column-mapped, non-deferred
attributes were populated.

See also

InstanceEvents.load()

	
refresh_flush(target, flush_context, attrs)

	Receive an object instance after one or more attributes have
been refreshed within the persistence of the object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'refresh_flush')
def receive_refresh_flush(target, flush_context, attrs):
 "listen for the 'refresh_flush' event"

 # ... (event handling logic) ...

This event is the same as InstanceEvents.refresh() except
it is invoked within the unit of work flush process, and the values
here typically come from the process of handling an INSERT or
UPDATE, such as via the RETURNING clause or from Python-side default
values.

New in version 1.0.5.

	Parameters:
	
	target¶ – the mapped instance. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	flush_context¶ – Internal UOWTransaction object
which handles the details of the flush.

	attrs¶ – sequence of attribute names which
were populated.

	
unpickle(target, state_dict)

	Receive an object instance after its associated state has
been unpickled.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeClass, 'unpickle')
def receive_unpickle(target, state_dict):
 "listen for the 'unpickle' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the mapped instance. If
the event is configured with raw=True, this will
instead be the InstanceState state-management
object associated with the instance.

	state_dict¶ – the dictionary sent to
InstanceState.__setstate__, containing the state
dictionary which was pickled.

Session Events

	
class sqlalchemy.orm.events.SessionEvents

	Bases: sqlalchemy.event.base.Events

Define events specific to Session lifecycle.

e.g.:

from sqlalchemy import event
from sqlalchemy.orm import sessionmaker

def my_before_commit(session):
 print "before commit!"

Session = sessionmaker()

event.listen(Session, "before_commit", my_before_commit)

The listen() function will accept
Session objects as well as the return result
of sessionmaker() and scoped_session().

Additionally, it accepts the Session class which
will apply listeners to all Session instances
globally.

	
after_attach(session, instance)

	Execute after an instance is attached to a session.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_attach')
def receive_after_attach(session, instance):
 "listen for the 'after_attach' event"

 # ... (event handling logic) ...

This is called after an add, delete or merge.

Note

As of 0.8, this event fires off after the item
has been fully associated with the session, which is
different than previous releases. For event
handlers that require the object not yet
be part of session state (such as handlers which
may autoflush while the target object is not
yet complete) consider the
new before_attach() event.

See also

before_attach()

Object Lifecycle Events

	
after_begin(session, transaction, connection)

	Execute after a transaction is begun on a connection

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_begin')
def receive_after_begin(session, transaction, connection):
 "listen for the 'after_begin' event"

 # ... (event handling logic) ...

	Parameters:
	
	session¶ – The target Session.

	transaction¶ – The SessionTransaction.

	connection¶ – The Connection object
which will be used for SQL statements.

See also

before_commit()

after_commit()

after_transaction_create()

after_transaction_end()

	
after_bulk_delete(delete_context)

	Execute after a bulk delete operation to the session.

Example argument forms:

from sqlalchemy import event

standard decorator style (arguments as of 0.9)
@event.listens_for(SomeSessionOrFactory, 'after_bulk_delete')
def receive_after_bulk_delete(delete_context):
 "listen for the 'after_bulk_delete' event"

 # ... (event handling logic) ...

legacy calling style (pre-0.9)
@event.listens_for(SomeSessionOrFactory, 'after_bulk_delete')
def receive_after_bulk_delete(session, query, query_context, result):
 "listen for the 'after_bulk_delete' event"

 # ... (event handling logic) ...

Changed in version 0.9: The after_bulk_delete event now accepts the
arguments delete_context.
Listener functions which accept the previous argument
signature(s) listed above will be automatically
adapted to the new signature.

This is called as a result of the Query.delete() method.

	Parameters:
	delete_context¶ – a “delete context” object which contains
details about the update, including these attributes:

	session - the Session involved

	query -the Query object that this update operation
was called upon.

	context The QueryContext object, corresponding
to the invocation of an ORM query.

	result the ResultProxy returned as a result of the
bulk DELETE operation.

	
after_bulk_update(update_context)

	Execute after a bulk update operation to the session.

Example argument forms:

from sqlalchemy import event

standard decorator style (arguments as of 0.9)
@event.listens_for(SomeSessionOrFactory, 'after_bulk_update')
def receive_after_bulk_update(update_context):
 "listen for the 'after_bulk_update' event"

 # ... (event handling logic) ...

legacy calling style (pre-0.9)
@event.listens_for(SomeSessionOrFactory, 'after_bulk_update')
def receive_after_bulk_update(session, query, query_context, result):
 "listen for the 'after_bulk_update' event"

 # ... (event handling logic) ...

Changed in version 0.9: The after_bulk_update event now accepts the
arguments update_context.
Listener functions which accept the previous argument
signature(s) listed above will be automatically
adapted to the new signature.

This is called as a result of the Query.update() method.

	Parameters:
	update_context¶ – an “update context” object which contains
details about the update, including these attributes:

	session - the Session involved

	query -the Query object that this update operation
was called upon.

	context The QueryContext object, corresponding
to the invocation of an ORM query.

	result the ResultProxy returned as a result of the
bulk UPDATE operation.

	
after_commit(session)

	Execute after a commit has occurred.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_commit')
def receive_after_commit(session):
 "listen for the 'after_commit' event"

 # ... (event handling logic) ...

Note

The after_commit() hook is not per-flush,
that is, the Session can emit SQL to the database
many times within the scope of a transaction.
For interception of these events, use the
before_flush(),
after_flush(), or
after_flush_postexec()
events.

Note

The Session is not in an active transaction
when the after_commit() event is invoked,
and therefore can not emit SQL. To emit SQL corresponding to
every transaction, use the before_commit()
event.

	Parameters:
	session¶ – The target Session.

See also

before_commit()

after_begin()

after_transaction_create()

after_transaction_end()

	
after_flush(session, flush_context)

	Execute after flush has completed, but before commit has been
called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_flush')
def receive_after_flush(session, flush_context):
 "listen for the 'after_flush' event"

 # ... (event handling logic) ...

Note that the session’s state is still in pre-flush, i.e. ‘new’,
‘dirty’, and ‘deleted’ lists still show pre-flush state as well
as the history settings on instance attributes.

	Parameters:
	
	session¶ – The target Session.

	flush_context¶ – Internal UOWTransaction object
which handles the details of the flush.

See also

before_flush()

after_flush_postexec()

Persistence Events

	
after_flush_postexec(session, flush_context)

	Execute after flush has completed, and after the post-exec
state occurs.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_flush_postexec')
def receive_after_flush_postexec(session, flush_context):
 "listen for the 'after_flush_postexec' event"

 # ... (event handling logic) ...

This will be when the ‘new’, ‘dirty’, and ‘deleted’ lists are in
their final state. An actual commit() may or may not have
occurred, depending on whether or not the flush started its own
transaction or participated in a larger transaction.

	Parameters:
	
	session¶ – The target Session.

	flush_context¶ – Internal UOWTransaction object
which handles the details of the flush.

See also

before_flush()

after_flush()

Persistence Events

	
after_rollback(session)

	Execute after a real DBAPI rollback has occurred.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_rollback')
def receive_after_rollback(session):
 "listen for the 'after_rollback' event"

 # ... (event handling logic) ...

Note that this event only fires when the actual rollback against
the database occurs - it does not fire each time the
Session.rollback() method is called, if the underlying
DBAPI transaction has already been rolled back. In many
cases, the Session will not be in
an “active” state during this event, as the current
transaction is not valid. To acquire a Session
which is active after the outermost rollback has proceeded,
use the SessionEvents.after_soft_rollback() event, checking the
Session.is_active flag.

	Parameters:
	session¶ – The target Session.

	
after_soft_rollback(session, previous_transaction)

	Execute after any rollback has occurred, including “soft”
rollbacks that don’t actually emit at the DBAPI level.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_soft_rollback')
def receive_after_soft_rollback(session, previous_transaction):
 "listen for the 'after_soft_rollback' event"

 # ... (event handling logic) ...

This corresponds to both nested and outer rollbacks, i.e.
the innermost rollback that calls the DBAPI’s
rollback() method, as well as the enclosing rollback
calls that only pop themselves from the transaction stack.

The given Session can be used to invoke SQL and
Session.query() operations after an outermost rollback
by first checking the Session.is_active flag:

@event.listens_for(Session, "after_soft_rollback")
def do_something(session, previous_transaction):
 if session.is_active:
 session.execute("select * from some_table")

	Parameters:
	
	session¶ – The target Session.

	previous_transaction¶ – The SessionTransaction
transactional marker object which was just closed. The current
SessionTransaction for the given Session is
available via the Session.transaction attribute.

New in version 0.7.3.

	
after_transaction_create(session, transaction)

	Execute when a new SessionTransaction is created.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_transaction_create')
def receive_after_transaction_create(session, transaction):
 "listen for the 'after_transaction_create' event"

 # ... (event handling logic) ...

This event differs from after_begin()
in that it occurs for each SessionTransaction
overall, as opposed to when transactions are begun
on individual database connections. It is also invoked
for nested transactions and subtransactions, and is always
matched by a corresponding
after_transaction_end() event
(assuming normal operation of the Session).

	Parameters:
	
	session¶ – the target Session.

	transaction¶ – the target SessionTransaction.

New in version 0.8.

See also

after_transaction_end()

	
after_transaction_end(session, transaction)

	Execute when the span of a SessionTransaction ends.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'after_transaction_end')
def receive_after_transaction_end(session, transaction):
 "listen for the 'after_transaction_end' event"

 # ... (event handling logic) ...

This event differs from after_commit()
in that it corresponds to all SessionTransaction
objects in use, including those for nested transactions
and subtransactions, and is always matched by a corresponding
after_transaction_create() event.

	Parameters:
	
	session¶ – the target Session.

	transaction¶ – the target SessionTransaction.

New in version 0.8.

See also

after_transaction_create()

	
before_attach(session, instance)

	Execute before an instance is attached to a session.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'before_attach')
def receive_before_attach(session, instance):
 "listen for the 'before_attach' event"

 # ... (event handling logic) ...

This is called before an add, delete or merge causes
the object to be part of the session.

New in version 0.8.: Note that after_attach()
now fires off after the item is part of the session.
before_attach() is provided for those cases where
the item should not yet be part of the session state.

See also

after_attach()

Object Lifecycle Events

	
before_commit(session)

	Execute before commit is called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'before_commit')
def receive_before_commit(session):
 "listen for the 'before_commit' event"

 # ... (event handling logic) ...

Note

The before_commit() hook is not per-flush,
that is, the Session can emit SQL to the database
many times within the scope of a transaction.
For interception of these events, use the
before_flush(),
after_flush(), or
after_flush_postexec()
events.

	Parameters:
	session¶ – The target Session.

See also

after_commit()

after_begin()

after_transaction_create()

after_transaction_end()

	
before_flush(session, flush_context, instances)

	Execute before flush process has started.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'before_flush')
def receive_before_flush(session, flush_context, instances):
 "listen for the 'before_flush' event"

 # ... (event handling logic) ...

	Parameters:
	
	session¶ – The target Session.

	flush_context¶ – Internal UOWTransaction object
which handles the details of the flush.

	instances¶ – Usually None, this is the collection of
objects which can be passed to the Session.flush() method
(note this usage is deprecated).

See also

after_flush()

after_flush_postexec()

Persistence Events

	
deleted_to_detached(session, instance)

	Intercept the “deleted to detached” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'deleted_to_detached')
def receive_deleted_to_detached(session, instance):
 "listen for the 'deleted_to_detached' event"

 # ... (event handling logic) ...

This event is invoked when a deleted object is evicted
from the session. The typical case when this occurs is when
the transaction for a Session in which the object
was deleted is committed; the object moves from the deleted
state to the detached state.

It is also invoked for objects that were deleted in a flush
when the Session.expunge_all() or Session.close()
events are called, as well as if the object is individually
expunged from its deleted state via Session.expunge().

New in version 1.1.

See also

Object Lifecycle Events

	
deleted_to_persistent(session, instance)

	Intercept the “deleted to persistent” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'deleted_to_persistent')
def receive_deleted_to_persistent(session, instance):
 "listen for the 'deleted_to_persistent' event"

 # ... (event handling logic) ...

This transition occurs only when an object that’s been deleted
successfully in a flush is restored due to a call to
Session.rollback(). The event is not called under
any other circumstances.

New in version 1.1.

See also

Object Lifecycle Events

	
detached_to_persistent(session, instance)

	Intercept the “detached to persistent” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'detached_to_persistent')
def receive_detached_to_persistent(session, instance):
 "listen for the 'detached_to_persistent' event"

 # ... (event handling logic) ...

This event is a specialization of the
SessionEvents.after_attach() event which is only invoked
for this specific transition. It is invoked typically during the
Session.add() call, as well as during the
Session.delete() call if the object was not previously
associated with the
Session (note that an object marked as “deleted” remains
in the “persistent” state until the flush proceeds).

Note

If the object becomes persistent as part of a call to
Session.delete(), the object is not yet marked as
deleted when this event is called. To detect deleted objects,
check the deleted flag sent to the
SessionEvents.persistent_to_detached() to event after the
flush proceeds, or check the Session.deleted collection
within the SessionEvents.before_flush() event if deleted
objects need to be intercepted before the flush.

	Parameters:
	
	session¶ – target Session

	instance¶ – the ORM-mapped instance being operated upon.

New in version 1.1.

See also

Object Lifecycle Events

	
loaded_as_persistent(session, instance)

	Intercept the “loaded as peristent” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'loaded_as_persistent')
def receive_loaded_as_persistent(session, instance):
 "listen for the 'loaded_as_persistent' event"

 # ... (event handling logic) ...

This event is invoked within the ORM loading process, and is invoked
very similarly to the InstanceEvents.load() event. However,
the event here is linkable to a Session class or instance,
rather than to a mapper or class hierarchy, and integrates
with the other session lifecycle events smoothly. The object
is guaranteed to be present in the session’s identity map when
this event is called.

	Parameters:
	
	session¶ – target Session

	instance¶ – the ORM-mapped instance being operated upon.

New in version 1.1.

See also

Object Lifecycle Events

	
pending_to_persistent(session, instance)

	Intercept the “pending to persistent”” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'pending_to_persistent')
def receive_pending_to_persistent(session, instance):
 "listen for the 'pending_to_persistent' event"

 # ... (event handling logic) ...

This event is invoked within the flush process, and is
similar to scanning the Session.new collection within
the SessionEvents.after_flush() event. However, in this
case the object has already been moved to the persistent state
when the event is called.

	Parameters:
	
	session¶ – target Session

	instance¶ – the ORM-mapped instance being operated upon.

New in version 1.1.

See also

Object Lifecycle Events

	
pending_to_transient(session, instance)

	Intercept the “pending to transient” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'pending_to_transient')
def receive_pending_to_transient(session, instance):
 "listen for the 'pending_to_transient' event"

 # ... (event handling logic) ...

This less common transition occurs when an pending object that has
not been flushed is evicted from the session; this can occur
when the Session.rollback() method rolls back the transaction,
or when the Session.expunge() method is used.

	Parameters:
	
	session¶ – target Session

	instance¶ – the ORM-mapped instance being operated upon.

New in version 1.1.

See also

Object Lifecycle Events

	
persistent_to_deleted(session, instance)

	Intercept the “persistent to deleted” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'persistent_to_deleted')
def receive_persistent_to_deleted(session, instance):
 "listen for the 'persistent_to_deleted' event"

 # ... (event handling logic) ...

This event is invoked when a persistent object’s identity
is deleted from the database within a flush, however the object
still remains associated with the Session until the
transaction completes.

If the transaction is rolled back, the object moves again
to the persistent state, and the
SessionEvents.deleted_to_persistent() event is called.
If the transaction is committed, the object becomes detached,
which will emit the SessionEvents.deleted_to_detached()
event.

Note that while the Session.delete() method is the primary
public interface to mark an object as deleted, many objects
get deleted due to cascade rules, which are not always determined
until flush time. Therefore, there’s no way to catch
every object that will be deleted until the flush has proceeded.
the SessionEvents.persistent_to_deleted() event is therefore
invoked at the end of a flush.

New in version 1.1.

See also

Object Lifecycle Events

	
persistent_to_detached(session, instance)

	Intercept the “persistent to detached” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'persistent_to_detached')
def receive_persistent_to_detached(session, instance):
 "listen for the 'persistent_to_detached' event"

 # ... (event handling logic) ...

This event is invoked when a persistent object is evicted
from the session. There are many conditions that cause this
to happen, including:

	using a method such as Session.expunge()
or Session.close()

	Calling the Session.rollback() method, when the object
was part of an INSERT statement for that session’s transaction

	Parameters:
	
	session¶ – target Session

	instance¶ – the ORM-mapped instance being operated upon.

	deleted¶ – boolean. If True, indicates this object moved
to the detached state because it was marked as deleted and flushed.

New in version 1.1.

See also

Object Lifecycle Events

	
persistent_to_transient(session, instance)

	Intercept the “persistent to transient” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'persistent_to_transient')
def receive_persistent_to_transient(session, instance):
 "listen for the 'persistent_to_transient' event"

 # ... (event handling logic) ...

This less common transition occurs when an pending object that has
has been flushed is evicted from the session; this can occur
when the Session.rollback() method rolls back the transaction.

	Parameters:
	
	session¶ – target Session

	instance¶ – the ORM-mapped instance being operated upon.

New in version 1.1.

See also

Object Lifecycle Events

	
transient_to_pending(session, instance)

	Intercept the “transient to pending” transition for a specific object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSessionOrFactory, 'transient_to_pending')
def receive_transient_to_pending(session, instance):
 "listen for the 'transient_to_pending' event"

 # ... (event handling logic) ...

This event is a specialization of the
SessionEvents.after_attach() event which is only invoked
for this specific transition. It is invoked typically during the
Session.add() call.

	Parameters:
	
	session¶ – target Session

	instance¶ – the ORM-mapped instance being operated upon.

New in version 1.1.

See also

Object Lifecycle Events

Query Events

	
class sqlalchemy.orm.events.QueryEvents

	Bases: sqlalchemy.event.base.Events

Represent events within the construction of a Query object.

The events here are intended to be used with an as-yet-unreleased
inspection system for Query. Some very basic operations
are possible now, however the inspection system is intended to allow
complex query manipulations to be automated.

New in version 1.0.0.

	
before_compile(query)

	Receive the Query object before it is composed into a
core Select object.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeQuery, 'before_compile')
def receive_before_compile(query):
 "listen for the 'before_compile' event"

 # ... (event handling logic) ...

This event is intended to allow changes to the query given:

@event.listens_for(Query, "before_compile", retval=True)
def no_deleted(query):
 for desc in query.column_descriptions:
 if desc['type'] is User:
 entity = desc['entity']
 query = query.filter(entity.deleted == False)
 return query

The event should normally be listened with the retval=True
parameter set, so that the modified query may be returned.

Instrumentation Events

Defines SQLAlchemy’s system of class instrumentation.

This module is usually not directly visible to user applications, but
defines a large part of the ORM’s interactivity.

instrumentation.py deals with registration of end-user classes
for state tracking. It interacts closely with state.py
and attributes.py which establish per-instance and per-class-attribute
instrumentation, respectively.

The class instrumentation system can be customized on a per-class
or global basis using the sqlalchemy.ext.instrumentation
module, which provides the means to build and specify
alternate instrumentation forms.

	
class sqlalchemy.orm.events.InstrumentationEvents

	Bases: sqlalchemy.event.base.Events

Events related to class instrumentation events.

The listeners here support being established against
any new style class, that is any object that is a subclass
of ‘type’. Events will then be fired off for events
against that class. If the “propagate=True” flag is passed
to event.listen(), the event will fire off for subclasses
of that class as well.

The Python type builtin is also accepted as a target,
which when used has the effect of events being emitted
for all classes.

Note the “propagate” flag here is defaulted to True,
unlike the other class level events where it defaults
to False. This means that new subclasses will also
be the subject of these events, when a listener
is established on a superclass.

Changed in version 0.8: - events here will emit based
on comparing the incoming class to the type of class
passed to event.listen(). Previously, the
event would fire for any class unconditionally regardless
of what class was sent for listening, despite
documentation which stated the contrary.

	
attribute_instrument(cls, key, inst)

	
Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeBaseClass, 'attribute_instrument')
def receive_attribute_instrument(cls, key, inst):
 "listen for the 'attribute_instrument' event"

 # ... (event handling logic) ...

Called when an attribute is instrumented.

	
class_instrument(cls)

	Called after the given class is instrumented.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeBaseClass, 'class_instrument')
def receive_class_instrument(cls):
 "listen for the 'class_instrument' event"

 # ... (event handling logic) ...

To get at the ClassManager, use
manager_of_class().

	
class_uninstrument(cls)

	Called before the given class is uninstrumented.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeBaseClass, 'class_uninstrument')
def receive_class_uninstrument(cls):
 "listen for the 'class_uninstrument' event"

 # ... (event handling logic) ...

To get at the ClassManager, use
manager_of_class().

ORM Internals

Key ORM constructs, not otherwise covered in other
sections, are listed here.

	
class sqlalchemy.orm.state.AttributeState(state, key)

	Provide an inspection interface corresponding
to a particular attribute on a particular mapped object.

The AttributeState object is accessed
via the InstanceState.attrs collection
of a particular InstanceState:

from sqlalchemy import inspect

insp = inspect(some_mapped_object)
attr_state = insp.attrs.some_attribute

	
history

	Return the current pre-flush change history for
this attribute, via the History interface.

This method will not emit loader callables if the value of the
attribute is unloaded.

See also

AttributeState.load_history() - retrieve history
using loader callables if the value is not locally present.

attributes.get_history() - underlying function

	
load_history()

	Return the current pre-flush change history for
this attribute, via the History interface.

This method will emit loader callables if the value of the
attribute is unloaded.

See also

AttributeState.history

attributes.get_history() - underlying function

New in version 0.9.0.

	
loaded_value

	The current value of this attribute as loaded from the database.

If the value has not been loaded, or is otherwise not present
in the object’s dictionary, returns NO_VALUE.

	
value

	Return the value of this attribute.

This operation is equivalent to accessing the object’s
attribute directly or via getattr(), and will fire
off any pending loader callables if needed.

	
class sqlalchemy.orm.util.CascadeOptions

	Bases: __builtin__.frozenset

Keeps track of the options sent to relationship().cascade

	
class sqlalchemy.orm.instrumentation.ClassManager(class_)

	Bases: __builtin__.dict

tracks state information at the class level.

	
__le__

	
inherited from the __le__ attribute of dict

x.__le__(y) <==> x<=y

	
__lt__

	
inherited from the __lt__ attribute of dict

x.__lt__(y) <==> x<y

	
__ne__

	
inherited from the __ne__ attribute of dict

x.__ne__(y) <==> x!=y

	
clear() → None. Remove all items from D.

	
inherited from the clear() method of dict

	
copy() → a shallow copy of D

	
inherited from the copy() method of dict

	
dispose()

	Dissasociate this manager from its class.

	
fromkeys(S[, v]) → New dict with keys from S and values equal to v.

	
inherited from the fromkeys() method of dict

v defaults to None.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	
inherited from the get() method of dict

	
has_key(k) → True if D has a key k, else False

	
inherited from the has_key() method of dict

	
has_parent(state, key, optimistic=False)

	TODO

	
items() → list of D's (key, value) pairs, as 2-tuples

	
inherited from the items() method of dict

	
iteritems() → an iterator over the (key, value) items of D

	
inherited from the iteritems() method of dict

	
iterkeys() → an iterator over the keys of D

	
inherited from the iterkeys() method of dict

	
itervalues() → an iterator over the values of D

	
inherited from the itervalues() method of dict

	
keys() → list of D's keys

	
inherited from the keys() method of dict

	
manage()

	Mark this instance as the manager for its class.

	
original_init

	x.__init__(...) initializes x; see help(type(x)) for signature

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	
inherited from the pop() method of dict

If key is not found, d is returned if given, otherwise KeyError is raised

	
popitem() → (k, v), remove and return some (key, value) pair as a

	
inherited from the popitem() method of dict

2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	
inherited from the setdefault() method of dict

	
state_getter()

	Return a (instance) -> InstanceState callable.

“state getter” callables should raise either KeyError or
AttributeError if no InstanceState could be found for the
instance.

	
unregister()

	remove all instrumentation established by this ClassManager.

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	
inherited from the update() method of dict

If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
values() → list of D's values

	
inherited from the values() method of dict

	
viewitems() → a set-like object providing a view on D's items

	
inherited from the viewitems() method of dict

	
viewkeys() → a set-like object providing a view on D's keys

	
inherited from the viewkeys() method of dict

	
viewvalues() → an object providing a view on D's values

	
inherited from the viewvalues() method of dict

	
class sqlalchemy.orm.properties.ColumnProperty(*columns, **kwargs)

	Bases: sqlalchemy.orm.interfaces.StrategizedProperty

Describes an object attribute that corresponds to a table column.

Public constructor is the orm.column_property() function.

	
class Comparator(prop, parentmapper, adapt_to_entity=None)

	Bases: sqlalchemy.util.langhelpers.MemoizedSlots, sqlalchemy.orm.interfaces.PropComparator

Produce boolean, comparison, and other operators for
ColumnProperty attributes.

See the documentation for PropComparator for a brief
overview.

See also:

PropComparator

ColumnOperators

Redefining and Creating New Operators

TypeEngine.comparator_factory

	
__eq__(other)

	
inherited from the __eq__() method of ColumnOperators

Implement the == operator.

In a column context, produces the clause a = b.
If the target is None, produces a IS NULL.

	
__le__(other)

	
inherited from the __le__() method of ColumnOperators

Implement the <= operator.

In a column context, produces the clause a <= b.

	
__lt__(other)

	
inherited from the __lt__() method of ColumnOperators

Implement the < operator.

In a column context, produces the clause a < b.

	
__ne__(other)

	
inherited from the __ne__() method of ColumnOperators

Implement the != operator.

In a column context, produces the clause a != b.
If the target is None, produces a IS NOT NULL.

	
adapt_to_entity(adapt_to_entity)

	
inherited from the adapt_to_entity() method of PropComparator

Return a copy of this PropComparator which will use the given
AliasedInsp to produce corresponding expressions.

	
adapter

	
inherited from the adapter attribute of PropComparator

Produce a callable that adapts column expressions
to suit an aliased version of this comparator.

	
all_()

	
inherited from the all_() method of ColumnOperators

Produce a all_() clause against the
parent object.

New in version 1.1.

	
any(criterion=None, **kwargs)

	
inherited from the any() method of PropComparator

Return true if this collection contains any member that meets the
given criterion.

The usual implementation of any() is
RelationshipProperty.Comparator.any().

	Parameters:
	
	criterion¶ – an optional ClauseElement formulated against the
member class’ table or attributes.

	**kwargs¶ – key/value pairs corresponding to member class
attribute names which will be compared via equality to the
corresponding values.

	
any_()

	
inherited from the any_() method of ColumnOperators

Produce a any_() clause against the
parent object.

New in version 1.1.

	
asc()

	
inherited from the asc() method of ColumnOperators

Produce a asc() clause against the
parent object.

	
between(cleft, cright, symmetric=False)

	
inherited from the between() method of ColumnOperators

Produce a between() clause against
the parent object, given the lower and upper range.

	
collate(collation)

	
inherited from the collate() method of ColumnOperators

Produce a collate() clause against
the parent object, given the collation string.

	
concat(other)

	
inherited from the concat() method of ColumnOperators

Implement the ‘concat’ operator.

In a column context, produces the clause a || b,
or uses the concat() operator on MySQL.

	
contains(other, **kwargs)

	
inherited from the contains() method of ColumnOperators

Implement the ‘contains’ operator.

In a column context, produces the clause LIKE '%<other>%'

	
desc()

	
inherited from the desc() method of ColumnOperators

Produce a desc() clause against the
parent object.

	
distinct()

	
inherited from the distinct() method of ColumnOperators

Produce a distinct() clause against the
parent object.

	
endswith(other, **kwargs)

	
inherited from the endswith() method of ColumnOperators

Implement the ‘endswith’ operator.

In a column context, produces the clause LIKE '%<other>'

	
has(criterion=None, **kwargs)

	
inherited from the has() method of PropComparator

Return true if this element references a member which meets the
given criterion.

The usual implementation of has() is
RelationshipProperty.Comparator.has().

	Parameters:
	
	criterion¶ – an optional ClauseElement formulated against the
member class’ table or attributes.

	**kwargs¶ – key/value pairs corresponding to member class
attribute names which will be compared via equality to the
corresponding values.

	
ilike(other, escape=None)

	
inherited from the ilike() method of ColumnOperators

Implement the ilike operator.

In a column context, produces the clause a ILIKE other.

E.g.:

select([sometable]).where(sometable.c.column.ilike("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.ilike("foo/%bar", escape="/")

See also

ColumnOperators.like()

	
in_(other)

	
inherited from the in_() method of ColumnOperators

Implement the in operator.

In a column context, produces the clause a IN other.
“other” may be a tuple/list of column expressions,
or a select() construct.

	
is_(other)

	
inherited from the is_() method of ColumnOperators

Implement the IS operator.

Normally, IS is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.isnot()

	
is_distinct_from(other)

	
inherited from the is_distinct_from() method of ColumnOperators

Implement the IS DISTINCT FROM operator.

Renders “a IS DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS NOT b”.

New in version 1.1.

	
isnot(other)

	
inherited from the isnot() method of ColumnOperators

Implement the IS NOT operator.

Normally, IS NOT is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS NOT may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.is_()

	
isnot_distinct_from(other)

	
inherited from the isnot_distinct_from() method of ColumnOperators

Implement the IS NOT DISTINCT FROM operator.

Renders “a IS NOT DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS b”.

New in version 1.1.

	
like(other, escape=None)

	
inherited from the like() method of ColumnOperators

Implement the like operator.

In a column context, produces the clause a LIKE other.

E.g.:

select([sometable]).where(sometable.c.column.like("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.like("foo/%bar", escape="/")

See also

ColumnOperators.ilike()

	
match(other, **kwargs)

	
inherited from the match() method of ColumnOperators

Implements a database-specific ‘match’ operator.

match() attempts to resolve to
a MATCH-like function or operator provided by the backend.
Examples include:

	Postgresql - renders x @@ to_tsquery(y)

	MySQL - renders MATCH (x) AGAINST (y IN BOOLEAN MODE)

	Oracle - renders CONTAINS(x, y)

	other backends may provide special implementations.

	Backends without any special implementation will emit
the operator as “MATCH”. This is compatible with SQlite, for
example.

	
notilike(other, escape=None)

	
inherited from the notilike() method of ColumnOperators

implement the NOT ILIKE operator.

This is equivalent to using negation with
ColumnOperators.ilike(), i.e. ~x.ilike(y).

New in version 0.8.

See also

ColumnOperators.ilike()

	
notin_(other)

	
inherited from the notin_() method of ColumnOperators

implement the NOT IN operator.

This is equivalent to using negation with
ColumnOperators.in_(), i.e. ~x.in_(y).

New in version 0.8.

See also

ColumnOperators.in_()

	
notlike(other, escape=None)

	
inherited from the notlike() method of ColumnOperators

implement the NOT LIKE operator.

This is equivalent to using negation with
ColumnOperators.like(), i.e. ~x.like(y).

New in version 0.8.

See also

ColumnOperators.like()

	
nullsfirst()

	
inherited from the nullsfirst() method of ColumnOperators

Produce a nullsfirst() clause against the
parent object.

	
nullslast()

	
inherited from the nullslast() method of ColumnOperators

Produce a nullslast() clause against the
parent object.

	
of_type(class_)

	
inherited from the of_type() method of PropComparator

Redefine this object in terms of a polymorphic subclass.

Returns a new PropComparator from which further criterion can be
evaluated.

e.g.:

query.join(Company.employees.of_type(Engineer)).\
 filter(Engineer.name=='foo')

	Parameters:
	class_¶ – a class or mapper indicating that criterion will be
against this specific subclass.

	
op(opstring, precedence=0, is_comparison=False)

	
inherited from the op() method of Operators

produce a generic operator function.

e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

This function can also be used to make bitwise operators explicit. For
example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

	Parameters:
	
	operator¶ – a string which will be output as the infix operator
between this element and the expression passed to the
generated function.

	precedence¶ – precedence to apply to the operator, when
parenthesizing expressions. A lower number will cause the expression
to be parenthesized when applied against another operator with
higher precedence. The default value of 0 is lower than all
operators except for the comma (,) and AS operators.
A value of 100 will be higher or equal to all operators, and -100
will be lower than or equal to all operators.

New in version 0.8: - added the ‘precedence’ argument.

	is_comparison¶ – if True, the operator will be considered as a
“comparison” operator, that is which evaluates to a boolean
true/false value, like ==, >, etc. This flag should be set
so that ORM relationships can establish that the operator is a
comparison operator when used in a custom join condition.

New in version 0.9.2: - added the
Operators.op.is_comparison flag.

See also

Redefining and Creating New Operators

Using custom operators in join conditions

	
startswith(other, **kwargs)

	
inherited from the startswith() method of ColumnOperators

Implement the startwith operator.

In a column context, produces the clause LIKE '<other>%'

	
ColumnProperty.__init__(*columns, **kwargs)

	Construct a new ColumnProperty object.

This constructor is mirrored as a public API function; see column_property() for a full usage and argument description.

	
ColumnProperty.cascade_iterator(type_, state, visited_instances=None, halt_on=None)

	
inherited from the cascade_iterator() method of MapperProperty

Iterate through instances related to the given instance for
a particular ‘cascade’, starting with this MapperProperty.

Return an iterator3-tuples (instance, mapper, state).

Note that the ‘cascade’ collection on this MapperProperty is
checked first for the given type before cascade_iterator is called.

This method typically only applies to RelationshipProperty.

	
ColumnProperty.class_attribute

	
inherited from the class_attribute attribute of MapperProperty

Return the class-bound descriptor corresponding to this
MapperProperty.

This is basically a getattr() call:

return getattr(self.parent.class_, self.key)

I.e. if this MapperProperty were named addresses,
and the class to which it is mapped is User, this sequence
is possible:

>>> from sqlalchemy import inspect
>>> mapper = inspect(User)
>>> addresses_property = mapper.attrs.addresses
>>> addresses_property.class_attribute is User.addresses
True
>>> User.addresses.property is addresses_property
True

	
ColumnProperty.expression

	Return the primary column or expression for this ColumnProperty.

	
ColumnProperty.extension_type = symbol('NOT_EXTENSION')

	

	
ColumnProperty.init()

	
inherited from the init() method of MapperProperty

Called after all mappers are created to assemble
relationships between mappers and perform other post-mapper-creation
initialization steps.

	
ColumnProperty.set_parent(parent, init)

	
inherited from the set_parent() method of MapperProperty

Set the parent mapper that references this MapperProperty.

This method is overridden by some subclasses to perform extra
setup when the mapper is first known.

	
class sqlalchemy.orm.properties.ComparableProperty(comparator_factory, descriptor=None, doc=None, info=None)

	Bases: sqlalchemy.orm.descriptor_props.DescriptorProperty

Instruments a Python property for use in query expressions.

	
__init__(comparator_factory, descriptor=None, doc=None, info=None)

	Construct a new ComparableProperty object.

This constructor is mirrored as a public API function; see comparable_property() for a full usage and argument description.

	
class sqlalchemy.orm.descriptor_props.CompositeProperty(class_, *attrs, **kwargs)

	Bases: sqlalchemy.orm.descriptor_props.DescriptorProperty

Defines a “composite” mapped attribute, representing a collection
of columns as one attribute.

CompositeProperty is constructed using the composite()
function.

See also

Composite Column Types

	
class Comparator(prop, parentmapper, adapt_to_entity=None)

	Bases: sqlalchemy.orm.interfaces.PropComparator

Produce boolean, comparison, and other operators for
CompositeProperty attributes.

See the example in Redefining Comparison Operations for Composites for an overview
of usage , as well as the documentation for PropComparator.

See also:

PropComparator

ColumnOperators

Redefining and Creating New Operators

TypeEngine.comparator_factory

	
CompositeProperty.__init__(class_, *attrs, **kwargs)

	Construct a new CompositeProperty object.

This constructor is mirrored as a public API function; see composite() for a full usage and argument description.

	
CompositeProperty.do_init()

	Initialization which occurs after the CompositeProperty
has been associated with its parent mapper.

	
CompositeProperty.get_history(state, dict_, passive=symbol('PASSIVE_OFF'))

	Provided for userland code that uses attributes.get_history().

	
class sqlalchemy.orm.attributes.Event(attribute_impl, op)

	A token propagated throughout the course of a chain of attribute
events.

Serves as an indicator of the source of the event and also provides
a means of controlling propagation across a chain of attribute
operations.

The Event object is sent as the initiator argument
when dealing with the AttributeEvents.append(),
AttributeEvents.set(),
and AttributeEvents.remove() events.

The Event object is currently interpreted by the backref
event handlers, and is used to control the propagation of operations
across two mutually-dependent attributes.

New in version 0.9.0.

	Variables:
	
	impl – The AttributeImpl which is the current event
initiator.

	op – The symbol OP_APPEND, OP_REMOVE or
OP_REPLACE, indicating the source operation.

	
class sqlalchemy.orm.identity.IdentityMap

	
	
check_modified()

	return True if any InstanceStates present have been marked
as ‘modified’.

	
class sqlalchemy.orm.base.InspectionAttr

	A base class applied to all ORM objects that can be returned
by the inspect() function.

The attributes defined here allow the usage of simple boolean
checks to test basic facts about the object returned.

While the boolean checks here are basically the same as using
the Python isinstance() function, the flags here can be used without
the need to import all of these classes, and also such that
the SQLAlchemy class system can change while leaving the flags
here intact for forwards-compatibility.

	
extension_type = symbol('NOT_EXTENSION')

	The extension type, if any.
Defaults to interfaces.NOT_EXTENSION

New in version 0.8.0.

See also

HYBRID_METHOD

HYBRID_PROPERTY

ASSOCIATION_PROXY

	
is_aliased_class = False

	True if this object is an instance of AliasedClass.

	
is_attribute = False

	True if this object is a Python descriptor.

This can refer to one of many types. Usually a
QueryableAttribute which handles attributes events on behalf
of a MapperProperty. But can also be an extension type
such as AssociationProxy or hybrid_property.
The InspectionAttr.extension_type will refer to a constant
identifying the specific subtype.

See also

Mapper.all_orm_descriptors

	
is_clause_element = False

	True if this object is an instance of ClauseElement.

	
is_instance = False

	True if this object is an instance of InstanceState.

	
is_mapper = False

	True if this object is an instance of Mapper.

	
is_property = False

	True if this object is an instance of MapperProperty.

	
is_selectable = False

	Return True if this object is an instance of Selectable.

	
class sqlalchemy.orm.base.InspectionAttrInfo

	Bases: sqlalchemy.orm.base.InspectionAttr

Adds the .info attribute to InspectionAttr.

The rationale for InspectionAttr vs. InspectionAttrInfo
is that the former is compatible as a mixin for classes that specify
__slots__; this is essentially an implementation artifact.

	
info

	Info dictionary associated with the object, allowing user-defined
data to be associated with this InspectionAttr.

The dictionary is generated when first accessed. Alternatively,
it can be specified as a constructor argument to the
column_property(), relationship(), or composite()
functions.

New in version 0.8: Added support for .info to all
MapperProperty subclasses.

Changed in version 1.0.0: MapperProperty.info is also
available on extension types via the
InspectionAttrInfo.info attribute, so that it can apply
to a wider variety of ORM and extension constructs.

See also

QueryableAttribute.info

SchemaItem.info

	
class sqlalchemy.orm.state.InstanceState(obj, manager)

	Bases: sqlalchemy.orm.base.InspectionAttr

tracks state information at the instance level.

The InstanceState is a key object used by the
SQLAlchemy ORM in order to track the state of an object;
it is created the moment an object is instantiated, typically
as a result of instrumentation which SQLAlchemy applies
to the __init__() method of the class.

InstanceState is also a semi-public object,
available for runtime inspection as to the state of a
mapped instance, including information such as its current
status within a particular Session and details
about data on individual attributes. The public API
in order to acquire a InstanceState object
is to use the inspect() system:

>>> from sqlalchemy import inspect
>>> insp = inspect(some_mapped_object)

See also

Runtime Inspection API

	
attrs

	Return a namespace representing each attribute on
the mapped object, including its current value
and history.

The returned object is an instance of AttributeState.
This object allows inspection of the current data
within an attribute as well as attribute history
since the last flush.

	
callables = ()

	A namespace where a per-state loader callable can be associated.

In SQLAlchemy 1.0, this is only used for lazy loaders / deferred
loaders that were set up via query option.

Previously, callables was used also to indicate expired attributes
by storing a link to the InstanceState itself in this dictionary.
This role is now handled by the expired_attributes set.

	
deleted

	Return true if the object is deleted.

An object that is in the deleted state is guaranteed to
not be within the Session.identity_map of its parent
Session; however if the session’s transaction is rolled
back, the object will be restored to the persistent state and
the identity map.

Note

The InstanceState.deleted attribute refers to a specific
state of the object that occurs between the “persistent” and
“detached” states; once the object is detached, the
InstanceState.deleted attribute no longer returns
True; in order to detect that a state was deleted, regardless
of whether or not the object is associated with a Session,
use the InstanceState.was_deleted accessor.

See also

Quickie Intro to Object States

	
detached

	Return true if the object is detached.

See also

Quickie Intro to Object States

	
dict

	Return the instance dict used by the object.

Under normal circumstances, this is always synonymous
with the __dict__ attribute of the mapped object,
unless an alternative instrumentation system has been
configured.

In the case that the actual object has been garbage
collected, this accessor returns a blank dictionary.

	
expired_attributes = None

	The set of keys which are ‘expired’ to be loaded by
the manager’s deferred scalar loader, assuming no pending
changes.

see also the unmodified collection which is intersected
against this set when a refresh operation occurs.

	
has_identity

	Return True if this object has an identity key.

This should always have the same value as the
expression state.persistent or state.detached.

	
identity

	Return the mapped identity of the mapped object.
This is the primary key identity as persisted by the ORM
which can always be passed directly to
Query.get().

Returns None if the object has no primary key identity.

Note

An object which is transient or pending
does not have a mapped identity until it is flushed,
even if its attributes include primary key values.

	
identity_key

	Return the identity key for the mapped object.

This is the key used to locate the object within
the Session.identity_map mapping. It contains
the identity as returned by identity within it.

	
mapper

	Return the Mapper used for this mapepd object.

	
object

	Return the mapped object represented by this
InstanceState.

	
pending

	Return true if the object is pending.

See also

Quickie Intro to Object States

	
persistent

	Return true if the object is persistent.

An object that is in the persistent state is guaranteed to
be within the Session.identity_map of its parent
Session.

Changed in version 1.1: The InstanceState.persistent
accessor no longer returns True for an object that was
“deleted” within a flush; use the InstanceState.deleted
accessor to detect this state. This allows the “persistent”
state to guarantee membership in the identity map.

See also

Quickie Intro to Object States

	
session

	Return the owning Session for this instance,
or None if none available.

Note that the result here can in some cases be different
from that of obj in session; an object that’s been deleted
will report as not in session, however if the transaction is
still in progress, this attribute will still refer to that session.
Only when the transaction is completed does the object become
fully detached under normal circumstances.

	
transient

	Return true if the object is transient.

See also

Quickie Intro to Object States

	
unloaded

	Return the set of keys which do not have a loaded value.

This includes expired attributes and any other attribute that
was never populated or modified.

	
unmodified

	Return the set of keys which have no uncommitted changes

	
unmodified_intersection(keys)

	Return self.unmodified.intersection(keys).

	
was_deleted

	Return True if this object is or was previously in the
“deleted” state and has not been reverted to persistent.

This flag returns True once the object was deleted in flush.
When the object is expunged from the session either explicitly
or via transaction commit and enters the “detached” state,
this flag will continue to report True.

New in version 1.1: - added a local method form of
orm.util.was_deleted().

See also

InstanceState.deleted - refers to the “deleted” state

orm.util.was_deleted() - standalone function

Quickie Intro to Object States

	
class sqlalchemy.orm.attributes.InstrumentedAttribute(class_, key, impl=None, comparator=None, parententity=None, of_type=None)

	Bases: sqlalchemy.orm.attributes.QueryableAttribute

Class bound instrumented attribute which adds basic
descriptor methods.

See QueryableAttribute for a description of most features.

	
__delete__(instance)

	

	
__get__(instance, owner)

	

	
__set__(instance, value)

	

	
sqlalchemy.orm.interfaces.MANYTOONE = symbol('MANYTOONE')

	Indicates the many-to-one direction for a relationship().

This symbol is typically used by the internals but may be exposed within
certain API features.

	
sqlalchemy.orm.interfaces.MANYTOMANY = symbol('MANYTOMANY')

	Indicates the many-to-many direction for a relationship().

This symbol is typically used by the internals but may be exposed within
certain API features.

	
class sqlalchemy.orm.interfaces.MapperProperty

	Bases: sqlalchemy.orm.base._MappedAttribute, sqlalchemy.orm.base.InspectionAttr, sqlalchemy.util.langhelpers.MemoizedSlots

Represent a particular class attribute mapped by Mapper.

The most common occurrences of MapperProperty are the
mapped Column, which is represented in a mapping as
an instance of ColumnProperty,
and a reference to another class produced by relationship(),
represented in the mapping as an instance of
RelationshipProperty.

	
info

	Info dictionary associated with the object, allowing user-defined
data to be associated with this InspectionAttr.

The dictionary is generated when first accessed. Alternatively,
it can be specified as a constructor argument to the
column_property(), relationship(), or composite()
functions.

New in version 0.8: Added support for .info to all
MapperProperty subclasses.

Changed in version 1.0.0: InspectionAttr.info moved
from MapperProperty so that it can apply to a wider
variety of ORM and extension constructs.

See also

QueryableAttribute.info

SchemaItem.info

	
cascade = frozenset([])

	The set of ‘cascade’ attribute names.

This collection is checked before the ‘cascade_iterator’ method is called.

The collection typically only applies to a RelationshipProperty.

	
cascade_iterator(type_, state, visited_instances=None, halt_on=None)

	Iterate through instances related to the given instance for
a particular ‘cascade’, starting with this MapperProperty.

Return an iterator3-tuples (instance, mapper, state).

Note that the ‘cascade’ collection on this MapperProperty is
checked first for the given type before cascade_iterator is called.

This method typically only applies to RelationshipProperty.

	
class_attribute

	Return the class-bound descriptor corresponding to this
MapperProperty.

This is basically a getattr() call:

return getattr(self.parent.class_, self.key)

I.e. if this MapperProperty were named addresses,
and the class to which it is mapped is User, this sequence
is possible:

>>> from sqlalchemy import inspect
>>> mapper = inspect(User)
>>> addresses_property = mapper.attrs.addresses
>>> addresses_property.class_attribute is User.addresses
True
>>> User.addresses.property is addresses_property
True

	
create_row_processor(context, path, mapper, result, adapter, populators)

	Produce row processing functions and append to the given
set of populators lists.

	
do_init()

	Perform subclass-specific initialization post-mapper-creation
steps.

This is a template method called by the MapperProperty
object’s init() method.

	
init()

	Called after all mappers are created to assemble
relationships between mappers and perform other post-mapper-creation
initialization steps.

	
instrument_class(mapper)

	Hook called by the Mapper to the property to initiate
instrumentation of the class attribute managed by this
MapperProperty.

The MapperProperty here will typically call out to the
attributes module to set up an InstrumentedAttribute.

This step is the first of two steps to set up an InstrumentedAttribute,
and is called early in the mapper setup process.

The second step is typically the init_class_attribute step,
called from StrategizedProperty via the post_instrument_class()
hook. This step assigns additional state to the InstrumentedAttribute
(specifically the “impl”) which has been determined after the
MapperProperty has determined what kind of persistence
management it needs to do (e.g. scalar, object, collection, etc).

	
is_property = True

	Part of the InspectionAttr interface; states this object is a
mapper property.

	
merge(session, source_state, source_dict, dest_state, dest_dict, load, _recursive, _resolve_conflict_map)

	Merge the attribute represented by this MapperProperty
from source to destination object.

	
post_instrument_class(mapper)

	Perform instrumentation adjustments that need to occur
after init() has completed.

The given Mapper is the Mapper invoking the operation, which
may not be the same Mapper as self.parent in an inheritance
scenario; however, Mapper will always at least be a sub-mapper of
self.parent.

This method is typically used by StrategizedProperty, which delegates
it to LoaderStrategy.init_class_attribute() to perform final setup
on the class-bound InstrumentedAttribute.

	
set_parent(parent, init)

	Set the parent mapper that references this MapperProperty.

This method is overridden by some subclasses to perform extra
setup when the mapper is first known.

	
setup(context, entity, path, adapter, **kwargs)

	Called by Query for the purposes of constructing a SQL statement.

Each MapperProperty associated with the target mapper processes the
statement referenced by the query context, adding columns and/or
criterion as appropriate.

	
sqlalchemy.orm.interfaces.NOT_EXTENSION = symbol('NOT_EXTENSION')

	Symbol indicating an InspectionAttr that’s
not part of sqlalchemy.ext.

Is assigned to the InspectionAttr.extension_type
attibute.

	
sqlalchemy.orm.interfaces.ONETOMANY = symbol('ONETOMANY')

	Indicates the one-to-many direction for a relationship().

This symbol is typically used by the internals but may be exposed within
certain API features.

	
class sqlalchemy.orm.interfaces.PropComparator(prop, parentmapper, adapt_to_entity=None)

	Bases: sqlalchemy.sql.operators.ColumnOperators

Defines SQL operators for MapperProperty objects.

SQLAlchemy allows for operators to
be redefined at both the Core and ORM level. PropComparator
is the base class of operator redefinition for ORM-level operations,
including those of ColumnProperty,
RelationshipProperty, and CompositeProperty.

Note

With the advent of Hybrid properties introduced in SQLAlchemy
0.7, as well as Core-level operator redefinition in
SQLAlchemy 0.8, the use case for user-defined PropComparator
instances is extremely rare. See Hybrid Attributes as well
as Redefining and Creating New Operators.

User-defined subclasses of PropComparator may be created. The
built-in Python comparison and math operator methods, such as
operators.ColumnOperators.__eq__(),
operators.ColumnOperators.__lt__(), and
operators.ColumnOperators.__add__(), can be overridden to provide
new operator behavior. The custom PropComparator is passed to
the MapperProperty instance via the comparator_factory
argument. In each case,
the appropriate subclass of PropComparator should be used:

definition of custom PropComparator subclasses

from sqlalchemy.orm.properties import \
 ColumnProperty,\
 CompositeProperty,\
 RelationshipProperty

class MyColumnComparator(ColumnProperty.Comparator):
 def __eq__(self, other):
 return self.__clause_element__() == other

class MyRelationshipComparator(RelationshipProperty.Comparator):
 def any(self, expression):
 "define the 'any' operation"
 # ...

class MyCompositeComparator(CompositeProperty.Comparator):
 def __gt__(self, other):
 "redefine the 'greater than' operation"

 return sql.and_(*[a>b for a, b in
 zip(self.__clause_element__().clauses,
 other.__composite_values__())])

application of custom PropComparator subclasses

from sqlalchemy.orm import column_property, relationship, composite
from sqlalchemy import Column, String

class SomeMappedClass(Base):
 some_column = column_property(Column("some_column", String),
 comparator_factory=MyColumnComparator)

 some_relationship = relationship(SomeOtherClass,
 comparator_factory=MyRelationshipComparator)

 some_composite = composite(
 Column("a", String), Column("b", String),
 comparator_factory=MyCompositeComparator
)

Note that for column-level operator redefinition, it’s usually
simpler to define the operators at the Core level, using the
TypeEngine.comparator_factory attribute. See
Redefining and Creating New Operators for more detail.

See also:

ColumnProperty.Comparator

RelationshipProperty.Comparator

CompositeProperty.Comparator

ColumnOperators

Redefining and Creating New Operators

TypeEngine.comparator_factory

	
__eq__(other)

	
inherited from the __eq__() method of ColumnOperators

Implement the == operator.

In a column context, produces the clause a = b.
If the target is None, produces a IS NULL.

	
__le__(other)

	
inherited from the __le__() method of ColumnOperators

Implement the <= operator.

In a column context, produces the clause a <= b.

	
__lt__(other)

	
inherited from the __lt__() method of ColumnOperators

Implement the < operator.

In a column context, produces the clause a < b.

	
__ne__(other)

	
inherited from the __ne__() method of ColumnOperators

Implement the != operator.

In a column context, produces the clause a != b.
If the target is None, produces a IS NOT NULL.

	
adapt_to_entity(adapt_to_entity)

	Return a copy of this PropComparator which will use the given
AliasedInsp to produce corresponding expressions.

	
adapter

	Produce a callable that adapts column expressions
to suit an aliased version of this comparator.

	
all_()

	
inherited from the all_() method of ColumnOperators

Produce a all_() clause against the
parent object.

New in version 1.1.

	
any(criterion=None, **kwargs)

	Return true if this collection contains any member that meets the
given criterion.

The usual implementation of any() is
RelationshipProperty.Comparator.any().

	Parameters:
	
	criterion¶ – an optional ClauseElement formulated against the
member class’ table or attributes.

	**kwargs¶ – key/value pairs corresponding to member class
attribute names which will be compared via equality to the
corresponding values.

	
any_()

	
inherited from the any_() method of ColumnOperators

Produce a any_() clause against the
parent object.

New in version 1.1.

	
asc()

	
inherited from the asc() method of ColumnOperators

Produce a asc() clause against the
parent object.

	
between(cleft, cright, symmetric=False)

	
inherited from the between() method of ColumnOperators

Produce a between() clause against
the parent object, given the lower and upper range.

	
collate(collation)

	
inherited from the collate() method of ColumnOperators

Produce a collate() clause against
the parent object, given the collation string.

	
concat(other)

	
inherited from the concat() method of ColumnOperators

Implement the ‘concat’ operator.

In a column context, produces the clause a || b,
or uses the concat() operator on MySQL.

	
contains(other, **kwargs)

	
inherited from the contains() method of ColumnOperators

Implement the ‘contains’ operator.

In a column context, produces the clause LIKE '%<other>%'

	
desc()

	
inherited from the desc() method of ColumnOperators

Produce a desc() clause against the
parent object.

	
distinct()

	
inherited from the distinct() method of ColumnOperators

Produce a distinct() clause against the
parent object.

	
endswith(other, **kwargs)

	
inherited from the endswith() method of ColumnOperators

Implement the ‘endswith’ operator.

In a column context, produces the clause LIKE '%<other>'

	
has(criterion=None, **kwargs)

	Return true if this element references a member which meets the
given criterion.

The usual implementation of has() is
RelationshipProperty.Comparator.has().

	Parameters:
	
	criterion¶ – an optional ClauseElement formulated against the
member class’ table or attributes.

	**kwargs¶ – key/value pairs corresponding to member class
attribute names which will be compared via equality to the
corresponding values.

	
ilike(other, escape=None)

	
inherited from the ilike() method of ColumnOperators

Implement the ilike operator.

In a column context, produces the clause a ILIKE other.

E.g.:

select([sometable]).where(sometable.c.column.ilike("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.ilike("foo/%bar", escape="/")

See also

ColumnOperators.like()

	
in_(other)

	
inherited from the in_() method of ColumnOperators

Implement the in operator.

In a column context, produces the clause a IN other.
“other” may be a tuple/list of column expressions,
or a select() construct.

	
is_(other)

	
inherited from the is_() method of ColumnOperators

Implement the IS operator.

Normally, IS is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.isnot()

	
is_distinct_from(other)

	
inherited from the is_distinct_from() method of ColumnOperators

Implement the IS DISTINCT FROM operator.

Renders “a IS DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS NOT b”.

New in version 1.1.

	
isnot(other)

	
inherited from the isnot() method of ColumnOperators

Implement the IS NOT operator.

Normally, IS NOT is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS NOT may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.is_()

	
isnot_distinct_from(other)

	
inherited from the isnot_distinct_from() method of ColumnOperators

Implement the IS NOT DISTINCT FROM operator.

Renders “a IS NOT DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS b”.

New in version 1.1.

	
like(other, escape=None)

	
inherited from the like() method of ColumnOperators

Implement the like operator.

In a column context, produces the clause a LIKE other.

E.g.:

select([sometable]).where(sometable.c.column.like("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.like("foo/%bar", escape="/")

See also

ColumnOperators.ilike()

	
match(other, **kwargs)

	
inherited from the match() method of ColumnOperators

Implements a database-specific ‘match’ operator.

match() attempts to resolve to
a MATCH-like function or operator provided by the backend.
Examples include:

	Postgresql - renders x @@ to_tsquery(y)

	MySQL - renders MATCH (x) AGAINST (y IN BOOLEAN MODE)

	Oracle - renders CONTAINS(x, y)

	other backends may provide special implementations.

	Backends without any special implementation will emit
the operator as “MATCH”. This is compatible with SQlite, for
example.

	
notilike(other, escape=None)

	
inherited from the notilike() method of ColumnOperators

implement the NOT ILIKE operator.

This is equivalent to using negation with
ColumnOperators.ilike(), i.e. ~x.ilike(y).

New in version 0.8.

See also

ColumnOperators.ilike()

	
notin_(other)

	
inherited from the notin_() method of ColumnOperators

implement the NOT IN operator.

This is equivalent to using negation with
ColumnOperators.in_(), i.e. ~x.in_(y).

New in version 0.8.

See also

ColumnOperators.in_()

	
notlike(other, escape=None)

	
inherited from the notlike() method of ColumnOperators

implement the NOT LIKE operator.

This is equivalent to using negation with
ColumnOperators.like(), i.e. ~x.like(y).

New in version 0.8.

See also

ColumnOperators.like()

	
nullsfirst()

	
inherited from the nullsfirst() method of ColumnOperators

Produce a nullsfirst() clause against the
parent object.

	
nullslast()

	
inherited from the nullslast() method of ColumnOperators

Produce a nullslast() clause against the
parent object.

	
of_type(class_)

	Redefine this object in terms of a polymorphic subclass.

Returns a new PropComparator from which further criterion can be
evaluated.

e.g.:

query.join(Company.employees.of_type(Engineer)).\
 filter(Engineer.name=='foo')

	Parameters:
	class_¶ – a class or mapper indicating that criterion will be
against this specific subclass.

	
op(opstring, precedence=0, is_comparison=False)

	
inherited from the op() method of Operators

produce a generic operator function.

e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

This function can also be used to make bitwise operators explicit. For
example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

	Parameters:
	
	operator¶ – a string which will be output as the infix operator
between this element and the expression passed to the
generated function.

	precedence¶ – precedence to apply to the operator, when
parenthesizing expressions. A lower number will cause the expression
to be parenthesized when applied against another operator with
higher precedence. The default value of 0 is lower than all
operators except for the comma (,) and AS operators.
A value of 100 will be higher or equal to all operators, and -100
will be lower than or equal to all operators.

New in version 0.8: - added the ‘precedence’ argument.

	is_comparison¶ – if True, the operator will be considered as a
“comparison” operator, that is which evaluates to a boolean
true/false value, like ==, >, etc. This flag should be set
so that ORM relationships can establish that the operator is a
comparison operator when used in a custom join condition.

New in version 0.9.2: - added the
Operators.op.is_comparison flag.

See also

Redefining and Creating New Operators

Using custom operators in join conditions

	
operate(op, *other, **kwargs)

	
inherited from the operate() method of Operators

Operate on an argument.

This is the lowest level of operation, raises
NotImplementedError by default.

Overriding this on a subclass can allow common
behavior to be applied to all operations.
For example, overriding ColumnOperators
to apply func.lower() to the left and right
side:

class MyComparator(ColumnOperators):
 def operate(self, op, other):
 return op(func.lower(self), func.lower(other))

	Parameters:
	
	op¶ – Operator callable.

	*other¶ – the ‘other’ side of the operation. Will
be a single scalar for most operations.

	**kwargs¶ – modifiers. These may be passed by special
operators such as ColumnOperators.contains().

	
reverse_operate(op, other, **kwargs)

	
inherited from the reverse_operate() method of Operators

Reverse operate on an argument.

Usage is the same as operate().

	
startswith(other, **kwargs)

	
inherited from the startswith() method of ColumnOperators

Implement the startwith operator.

In a column context, produces the clause LIKE '<other>%'

	
class sqlalchemy.orm.properties.RelationshipProperty(argument, secondary=None, primaryjoin=None, secondaryjoin=None, foreign_keys=None, uselist=None, order_by=False, backref=None, back_populates=None, post_update=False, cascade=False, extension=None, viewonly=False, lazy=True, collection_class=None, passive_deletes=False, passive_updates=True, remote_side=None, enable_typechecks=True, join_depth=None, comparator_factory=None, single_parent=False, innerjoin=False, distinct_target_key=None, doc=None, active_history=False, cascade_backrefs=True, load_on_pending=False, bake_queries=True, strategy_class=None, _local_remote_pairs=None, query_class=None, info=None)

	Bases: sqlalchemy.orm.interfaces.StrategizedProperty

Describes an object property that holds a single item or list
of items that correspond to a related database table.

Public constructor is the orm.relationship() function.

See also:

Relationship Configuration

	
class Comparator(prop, parentmapper, adapt_to_entity=None, of_type=None)

	Bases: sqlalchemy.orm.interfaces.PropComparator

Produce boolean, comparison, and other operators for
RelationshipProperty attributes.

See the documentation for PropComparator for a brief
overview of ORM level operator definition.

See also:

PropComparator

ColumnProperty.Comparator

ColumnOperators

Redefining and Creating New Operators

TypeEngine.comparator_factory

	
__eq__(other)

	Implement the == operator.

In a many-to-one context, such as:

MyClass.some_prop == <some object>

this will typically produce a
clause such as:

mytable.related_id == <some id>

Where <some id> is the primary key of the given
object.

The == operator provides partial functionality for non-
many-to-one comparisons:

	Comparisons against collections are not supported.
Use contains().

	Compared to a scalar one-to-many, will produce a
clause that compares the target columns in the parent to
the given target.

	Compared to a scalar many-to-many, an alias
of the association table will be rendered as
well, forming a natural join that is part of the
main body of the query. This will not work for
queries that go beyond simple AND conjunctions of
comparisons, such as those which use OR. Use
explicit joins, outerjoins, or
has() for
more comprehensive non-many-to-one scalar
membership tests.

	Comparisons against None given in a one-to-many
or many-to-many context produce a NOT EXISTS clause.

	
__init__(prop, parentmapper, adapt_to_entity=None, of_type=None)

	Construction of RelationshipProperty.Comparator
is internal to the ORM’s attribute mechanics.

	
__le__(other)

	
inherited from the __le__() method of ColumnOperators

Implement the <= operator.

In a column context, produces the clause a <= b.

	
__lt__(other)

	
inherited from the __lt__() method of ColumnOperators

Implement the < operator.

In a column context, produces the clause a < b.

	
__ne__(other)

	Implement the != operator.

In a many-to-one context, such as:

MyClass.some_prop != <some object>

This will typically produce a clause such as:

mytable.related_id != <some id>

Where <some id> is the primary key of the
given object.

The != operator provides partial functionality for non-
many-to-one comparisons:

	Comparisons against collections are not supported.
Use
contains()
in conjunction with not_().

	Compared to a scalar one-to-many, will produce a
clause that compares the target columns in the parent to
the given target.

	Compared to a scalar many-to-many, an alias
of the association table will be rendered as
well, forming a natural join that is part of the
main body of the query. This will not work for
queries that go beyond simple AND conjunctions of
comparisons, such as those which use OR. Use
explicit joins, outerjoins, or
has() in
conjunction with not_() for
more comprehensive non-many-to-one scalar
membership tests.

	Comparisons against None given in a one-to-many
or many-to-many context produce an EXISTS clause.

	
adapter

	
inherited from the adapter attribute of PropComparator

Produce a callable that adapts column expressions
to suit an aliased version of this comparator.

	
all_()

	
inherited from the all_() method of ColumnOperators

Produce a all_() clause against the
parent object.

New in version 1.1.

	
any(criterion=None, **kwargs)

	Produce an expression that tests a collection against
particular criterion, using EXISTS.

An expression like:

session.query(MyClass).filter(
 MyClass.somereference.any(SomeRelated.x==2)
)

Will produce a query like:

SELECT * FROM my_table WHERE
EXISTS (SELECT 1 FROM related WHERE related.my_id=my_table.id
AND related.x=2)

Because any() uses
a correlated subquery, its performance is not nearly as
good when compared against large target tables as that of
using a join.

any() is particularly
useful for testing for empty collections:

session.query(MyClass).filter(
 ~MyClass.somereference.any()
)

will produce:

SELECT * FROM my_table WHERE
NOT EXISTS (SELECT 1 FROM related WHERE
related.my_id=my_table.id)

any() is only
valid for collections, i.e. a relationship()
that has uselist=True. For scalar references,
use has().

	
any_()

	
inherited from the any_() method of ColumnOperators

Produce a any_() clause against the
parent object.

New in version 1.1.

	
asc()

	
inherited from the asc() method of ColumnOperators

Produce a asc() clause against the
parent object.

	
between(cleft, cright, symmetric=False)

	
inherited from the between() method of ColumnOperators

Produce a between() clause against
the parent object, given the lower and upper range.

	
collate(collation)

	
inherited from the collate() method of ColumnOperators

Produce a collate() clause against
the parent object, given the collation string.

	
concat(other)

	
inherited from the concat() method of ColumnOperators

Implement the ‘concat’ operator.

In a column context, produces the clause a || b,
or uses the concat() operator on MySQL.

	
contains(other, **kwargs)

	Return a simple expression that tests a collection for
containment of a particular item.

contains() is
only valid for a collection, i.e. a
relationship() that implements
one-to-many or many-to-many with uselist=True.

When used in a simple one-to-many context, an
expression like:

MyClass.contains(other)

Produces a clause like:

mytable.id == <some id>

Where <some id> is the value of the foreign key
attribute on other which refers to the primary
key of its parent object. From this it follows that
contains() is
very useful when used with simple one-to-many
operations.

For many-to-many operations, the behavior of
contains()
has more caveats. The association table will be
rendered in the statement, producing an “implicit”
join, that is, includes multiple tables in the FROM
clause which are equated in the WHERE clause:

query(MyClass).filter(MyClass.contains(other))

Produces a query like:

SELECT * FROM my_table, my_association_table AS
my_association_table_1 WHERE
my_table.id = my_association_table_1.parent_id
AND my_association_table_1.child_id = <some id>

Where <some id> would be the primary key of
other. From the above, it is clear that
contains()
will not work with many-to-many collections when
used in queries that move beyond simple AND
conjunctions, such as multiple
contains()
expressions joined by OR. In such cases subqueries or
explicit “outer joins” will need to be used instead.
See any() for
a less-performant alternative using EXISTS, or refer
to Query.outerjoin() as well as Querying with Joins
for more details on constructing outer joins.

	
desc()

	
inherited from the desc() method of ColumnOperators

Produce a desc() clause against the
parent object.

	
distinct()

	
inherited from the distinct() method of ColumnOperators

Produce a distinct() clause against the
parent object.

	
endswith(other, **kwargs)

	
inherited from the endswith() method of ColumnOperators

Implement the ‘endswith’ operator.

In a column context, produces the clause LIKE '%<other>'

	
has(criterion=None, **kwargs)

	Produce an expression that tests a scalar reference against
particular criterion, using EXISTS.

An expression like:

session.query(MyClass).filter(
 MyClass.somereference.has(SomeRelated.x==2)
)

Will produce a query like:

SELECT * FROM my_table WHERE
EXISTS (SELECT 1 FROM related WHERE
related.id==my_table.related_id AND related.x=2)

Because has() uses
a correlated subquery, its performance is not nearly as
good when compared against large target tables as that of
using a join.

has() is only
valid for scalar references, i.e. a relationship()
that has uselist=False. For collection references,
use any().

	
ilike(other, escape=None)

	
inherited from the ilike() method of ColumnOperators

Implement the ilike operator.

In a column context, produces the clause a ILIKE other.

E.g.:

select([sometable]).where(sometable.c.column.ilike("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.ilike("foo/%bar", escape="/")

See also

ColumnOperators.like()

	
in_(other)

	Produce an IN clause - this is not implemented
for relationship()-based attributes at this time.

	
is_(other)

	
inherited from the is_() method of ColumnOperators

Implement the IS operator.

Normally, IS is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.isnot()

	
is_distinct_from(other)

	
inherited from the is_distinct_from() method of ColumnOperators

Implement the IS DISTINCT FROM operator.

Renders “a IS DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS NOT b”.

New in version 1.1.

	
isnot(other)

	
inherited from the isnot() method of ColumnOperators

Implement the IS NOT operator.

Normally, IS NOT is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS NOT may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.is_()

	
isnot_distinct_from(other)

	
inherited from the isnot_distinct_from() method of ColumnOperators

Implement the IS NOT DISTINCT FROM operator.

Renders “a IS NOT DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS b”.

New in version 1.1.

	
like(other, escape=None)

	
inherited from the like() method of ColumnOperators

Implement the like operator.

In a column context, produces the clause a LIKE other.

E.g.:

select([sometable]).where(sometable.c.column.like("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.like("foo/%bar", escape="/")

See also

ColumnOperators.ilike()

	
mapper

	The target Mapper referred to by this
RelationshipProperty.Comparator.

This is the “target” or “remote” side of the
relationship().

	
match(other, **kwargs)

	
inherited from the match() method of ColumnOperators

Implements a database-specific ‘match’ operator.

match() attempts to resolve to
a MATCH-like function or operator provided by the backend.
Examples include:

	Postgresql - renders x @@ to_tsquery(y)

	MySQL - renders MATCH (x) AGAINST (y IN BOOLEAN MODE)

	Oracle - renders CONTAINS(x, y)

	other backends may provide special implementations.

	Backends without any special implementation will emit
the operator as “MATCH”. This is compatible with SQlite, for
example.

	
notilike(other, escape=None)

	
inherited from the notilike() method of ColumnOperators

implement the NOT ILIKE operator.

This is equivalent to using negation with
ColumnOperators.ilike(), i.e. ~x.ilike(y).

New in version 0.8.

See also

ColumnOperators.ilike()

	
notin_(other)

	
inherited from the notin_() method of ColumnOperators

implement the NOT IN operator.

This is equivalent to using negation with
ColumnOperators.in_(), i.e. ~x.in_(y).

New in version 0.8.

See also

ColumnOperators.in_()

	
notlike(other, escape=None)

	
inherited from the notlike() method of ColumnOperators

implement the NOT LIKE operator.

This is equivalent to using negation with
ColumnOperators.like(), i.e. ~x.like(y).

New in version 0.8.

See also

ColumnOperators.like()

	
nullsfirst()

	
inherited from the nullsfirst() method of ColumnOperators

Produce a nullsfirst() clause against the
parent object.

	
nullslast()

	
inherited from the nullslast() method of ColumnOperators

Produce a nullslast() clause against the
parent object.

	
of_type(cls)

	Produce a construct that represents a particular ‘subtype’ of
attribute for the parent class.

Currently this is usable in conjunction with Query.join()
and Query.outerjoin().

	
op(opstring, precedence=0, is_comparison=False)

	
inherited from the op() method of Operators

produce a generic operator function.

e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

This function can also be used to make bitwise operators explicit. For
example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

	Parameters:
	
	operator¶ – a string which will be output as the infix operator
between this element and the expression passed to the
generated function.

	precedence¶ – precedence to apply to the operator, when
parenthesizing expressions. A lower number will cause the expression
to be parenthesized when applied against another operator with
higher precedence. The default value of 0 is lower than all
operators except for the comma (,) and AS operators.
A value of 100 will be higher or equal to all operators, and -100
will be lower than or equal to all operators.

New in version 0.8: - added the ‘precedence’ argument.

	is_comparison¶ – if True, the operator will be considered as a
“comparison” operator, that is which evaluates to a boolean
true/false value, like ==, >, etc. This flag should be set
so that ORM relationships can establish that the operator is a
comparison operator when used in a custom join condition.

New in version 0.9.2: - added the
Operators.op.is_comparison flag.

See also

Redefining and Creating New Operators

Using custom operators in join conditions

	
operate(op, *other, **kwargs)

	
inherited from the operate() method of Operators

Operate on an argument.

This is the lowest level of operation, raises
NotImplementedError by default.

Overriding this on a subclass can allow common
behavior to be applied to all operations.
For example, overriding ColumnOperators
to apply func.lower() to the left and right
side:

class MyComparator(ColumnOperators):
 def operate(self, op, other):
 return op(func.lower(self), func.lower(other))

	Parameters:
	
	op¶ – Operator callable.

	*other¶ – the ‘other’ side of the operation. Will
be a single scalar for most operations.

	**kwargs¶ – modifiers. These may be passed by special
operators such as ColumnOperators.contains().

	
reverse_operate(op, other, **kwargs)

	
inherited from the reverse_operate() method of Operators

Reverse operate on an argument.

Usage is the same as operate().

	
startswith(other, **kwargs)

	
inherited from the startswith() method of ColumnOperators

Implement the startwith operator.

In a column context, produces the clause LIKE '<other>%'

	
RelationshipProperty.__init__(argument, secondary=None, primaryjoin=None, secondaryjoin=None, foreign_keys=None, uselist=None, order_by=False, backref=None, back_populates=None, post_update=False, cascade=False, extension=None, viewonly=False, lazy=True, collection_class=None, passive_deletes=False, passive_updates=True, remote_side=None, enable_typechecks=True, join_depth=None, comparator_factory=None, single_parent=False, innerjoin=False, distinct_target_key=None, doc=None, active_history=False, cascade_backrefs=True, load_on_pending=False, bake_queries=True, strategy_class=None, _local_remote_pairs=None, query_class=None, info=None)

	Construct a new RelationshipProperty object.

This constructor is mirrored as a public API function; see relationship() for a full usage and argument description.

	
RelationshipProperty.cascade

	Return the current cascade setting for this
RelationshipProperty.

	
RelationshipProperty.class_attribute

	
inherited from the class_attribute attribute of MapperProperty

Return the class-bound descriptor corresponding to this
MapperProperty.

This is basically a getattr() call:

return getattr(self.parent.class_, self.key)

I.e. if this MapperProperty were named addresses,
and the class to which it is mapped is User, this sequence
is possible:

>>> from sqlalchemy import inspect
>>> mapper = inspect(User)
>>> addresses_property = mapper.attrs.addresses
>>> addresses_property.class_attribute is User.addresses
True
>>> User.addresses.property is addresses_property
True

	
RelationshipProperty.extension_type = symbol('NOT_EXTENSION')

	

	
RelationshipProperty.init()

	
inherited from the init() method of MapperProperty

Called after all mappers are created to assemble
relationships between mappers and perform other post-mapper-creation
initialization steps.

	
RelationshipProperty.mapper

	Return the targeted Mapper for this
RelationshipProperty.

This is a lazy-initializing static attribute.

	
RelationshipProperty.set_parent(parent, init)

	
inherited from the set_parent() method of MapperProperty

Set the parent mapper that references this MapperProperty.

This method is overridden by some subclasses to perform extra
setup when the mapper is first known.

	
RelationshipProperty.table

	Return the selectable linked to this
RelationshipProperty object’s target
Mapper.

Deprecated since version 0.7: Use .target

	
class sqlalchemy.orm.descriptor_props.SynonymProperty(name, map_column=None, descriptor=None, comparator_factory=None, doc=None, info=None)

	Bases: sqlalchemy.orm.descriptor_props.DescriptorProperty

	
__init__(name, map_column=None, descriptor=None, comparator_factory=None, doc=None, info=None)

	Construct a new SynonymProperty object.

This constructor is mirrored as a public API function; see synonym() for a full usage and argument description.

	
cascade_iterator(type_, state, visited_instances=None, halt_on=None)

	
inherited from the cascade_iterator() method of MapperProperty

Iterate through instances related to the given instance for
a particular ‘cascade’, starting with this MapperProperty.

Return an iterator3-tuples (instance, mapper, state).

Note that the ‘cascade’ collection on this MapperProperty is
checked first for the given type before cascade_iterator is called.

This method typically only applies to RelationshipProperty.

	
class_attribute

	
inherited from the class_attribute attribute of MapperProperty

Return the class-bound descriptor corresponding to this
MapperProperty.

This is basically a getattr() call:

return getattr(self.parent.class_, self.key)

I.e. if this MapperProperty were named addresses,
and the class to which it is mapped is User, this sequence
is possible:

>>> from sqlalchemy import inspect
>>> mapper = inspect(User)
>>> addresses_property = mapper.attrs.addresses
>>> addresses_property.class_attribute is User.addresses
True
>>> User.addresses.property is addresses_property
True

	
create_row_processor(context, path, mapper, result, adapter, populators)

	
inherited from the create_row_processor() method of MapperProperty

Produce row processing functions and append to the given
set of populators lists.

	
do_init()

	
inherited from the do_init() method of MapperProperty

Perform subclass-specific initialization post-mapper-creation
steps.

This is a template method called by the MapperProperty
object’s init() method.

	
extension_type = symbol('NOT_EXTENSION')

	

	
init()

	
inherited from the init() method of MapperProperty

Called after all mappers are created to assemble
relationships between mappers and perform other post-mapper-creation
initialization steps.

	
merge(session, source_state, source_dict, dest_state, dest_dict, load, _recursive, _resolve_conflict_map)

	
inherited from the merge() method of MapperProperty

Merge the attribute represented by this MapperProperty
from source to destination object.

	
post_instrument_class(mapper)

	
inherited from the post_instrument_class() method of MapperProperty

Perform instrumentation adjustments that need to occur
after init() has completed.

The given Mapper is the Mapper invoking the operation, which
may not be the same Mapper as self.parent in an inheritance
scenario; however, Mapper will always at least be a sub-mapper of
self.parent.

This method is typically used by StrategizedProperty, which delegates
it to LoaderStrategy.init_class_attribute() to perform final setup
on the class-bound InstrumentedAttribute.

	
setup(context, entity, path, adapter, **kwargs)

	
inherited from the setup() method of MapperProperty

Called by Query for the purposes of constructing a SQL statement.

Each MapperProperty associated with the target mapper processes the
statement referenced by the query context, adding columns and/or
criterion as appropriate.

	
class sqlalchemy.orm.query.QueryContext(query)

	

	
class sqlalchemy.orm.attributes.QueryableAttribute(class_, key, impl=None, comparator=None, parententity=None, of_type=None)

	Bases: sqlalchemy.orm.base._MappedAttribute, sqlalchemy.orm.base.InspectionAttr, sqlalchemy.orm.interfaces.PropComparator

Base class for descriptor objects that intercept
attribute events on behalf of a MapperProperty
object. The actual MapperProperty is accessible
via the QueryableAttribute.property
attribute.

See also

InstrumentedAttribute

MapperProperty

Mapper.all_orm_descriptors

Mapper.attrs

	
__eq__(other)

	
inherited from the __eq__() method of ColumnOperators

Implement the == operator.

In a column context, produces the clause a = b.
If the target is None, produces a IS NULL.

	
__le__(other)

	
inherited from the __le__() method of ColumnOperators

Implement the <= operator.

In a column context, produces the clause a <= b.

	
__lt__(other)

	
inherited from the __lt__() method of ColumnOperators

Implement the < operator.

In a column context, produces the clause a < b.

	
__ne__(other)

	
inherited from the __ne__() method of ColumnOperators

Implement the != operator.

In a column context, produces the clause a != b.
If the target is None, produces a IS NOT NULL.

	
adapter

	
inherited from the adapter attribute of PropComparator

Produce a callable that adapts column expressions
to suit an aliased version of this comparator.

	
all_()

	
inherited from the all_() method of ColumnOperators

Produce a all_() clause against the
parent object.

New in version 1.1.

	
any(criterion=None, **kwargs)

	
inherited from the any() method of PropComparator

Return true if this collection contains any member that meets the
given criterion.

The usual implementation of any() is
RelationshipProperty.Comparator.any().

	Parameters:
	
	criterion¶ – an optional ClauseElement formulated against the
member class’ table or attributes.

	**kwargs¶ – key/value pairs corresponding to member class
attribute names which will be compared via equality to the
corresponding values.

	
any_()

	
inherited from the any_() method of ColumnOperators

Produce a any_() clause against the
parent object.

New in version 1.1.

	
asc()

	
inherited from the asc() method of ColumnOperators

Produce a asc() clause against the
parent object.

	
between(cleft, cright, symmetric=False)

	
inherited from the between() method of ColumnOperators

Produce a between() clause against
the parent object, given the lower and upper range.

	
collate(collation)

	
inherited from the collate() method of ColumnOperators

Produce a collate() clause against
the parent object, given the collation string.

	
concat(other)

	
inherited from the concat() method of ColumnOperators

Implement the ‘concat’ operator.

In a column context, produces the clause a || b,
or uses the concat() operator on MySQL.

	
contains(other, **kwargs)

	
inherited from the contains() method of ColumnOperators

Implement the ‘contains’ operator.

In a column context, produces the clause LIKE '%<other>%'

	
desc()

	
inherited from the desc() method of ColumnOperators

Produce a desc() clause against the
parent object.

	
distinct()

	
inherited from the distinct() method of ColumnOperators

Produce a distinct() clause against the
parent object.

	
endswith(other, **kwargs)

	
inherited from the endswith() method of ColumnOperators

Implement the ‘endswith’ operator.

In a column context, produces the clause LIKE '%<other>'

	
extension_type = symbol('NOT_EXTENSION')

	

	
has(criterion=None, **kwargs)

	
inherited from the has() method of PropComparator

Return true if this element references a member which meets the
given criterion.

The usual implementation of has() is
RelationshipProperty.Comparator.has().

	Parameters:
	
	criterion¶ – an optional ClauseElement formulated against the
member class’ table or attributes.

	**kwargs¶ – key/value pairs corresponding to member class
attribute names which will be compared via equality to the
corresponding values.

	
ilike(other, escape=None)

	
inherited from the ilike() method of ColumnOperators

Implement the ilike operator.

In a column context, produces the clause a ILIKE other.

E.g.:

select([sometable]).where(sometable.c.column.ilike("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.ilike("foo/%bar", escape="/")

See also

ColumnOperators.like()

	
in_(other)

	
inherited from the in_() method of ColumnOperators

Implement the in operator.

In a column context, produces the clause a IN other.
“other” may be a tuple/list of column expressions,
or a select() construct.

	
info

	Return the ‘info’ dictionary for the underlying SQL element.

The behavior here is as follows:

	If the attribute is a column-mapped property, i.e.
ColumnProperty, which is mapped directly
to a schema-level Column object, this attribute
will return the SchemaItem.info dictionary associated
with the core-level Column object.

	If the attribute is a ColumnProperty but is mapped to
any other kind of SQL expression other than a Column,
the attribute will refer to the MapperProperty.info
dictionary associated directly with the ColumnProperty,
assuming the SQL expression itself does not have its own .info
attribute (which should be the case, unless a user-defined SQL
construct has defined one).

	If the attribute refers to any other kind of
MapperProperty, including RelationshipProperty,
the attribute will refer to the MapperProperty.info
dictionary associated with that MapperProperty.

	To access the MapperProperty.info dictionary of the
MapperProperty unconditionally, including for a
ColumnProperty that’s associated directly with a
schema.Column, the attribute can be referred to using
QueryableAttribute.property attribute, as
MyClass.someattribute.property.info.

New in version 0.8.0.

See also

SchemaItem.info

MapperProperty.info

	
is_(other)

	
inherited from the is_() method of ColumnOperators

Implement the IS operator.

Normally, IS is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.isnot()

	
is_distinct_from(other)

	
inherited from the is_distinct_from() method of ColumnOperators

Implement the IS DISTINCT FROM operator.

Renders “a IS DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS NOT b”.

New in version 1.1.

	
isnot(other)

	
inherited from the isnot() method of ColumnOperators

Implement the IS NOT operator.

Normally, IS NOT is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS NOT may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.is_()

	
isnot_distinct_from(other)

	
inherited from the isnot_distinct_from() method of ColumnOperators

Implement the IS NOT DISTINCT FROM operator.

Renders “a IS NOT DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS b”.

New in version 1.1.

	
like(other, escape=None)

	
inherited from the like() method of ColumnOperators

Implement the like operator.

In a column context, produces the clause a LIKE other.

E.g.:

select([sometable]).where(sometable.c.column.like("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.like("foo/%bar", escape="/")

See also

ColumnOperators.ilike()

	
match(other, **kwargs)

	
inherited from the match() method of ColumnOperators

Implements a database-specific ‘match’ operator.

match() attempts to resolve to
a MATCH-like function or operator provided by the backend.
Examples include:

	Postgresql - renders x @@ to_tsquery(y)

	MySQL - renders MATCH (x) AGAINST (y IN BOOLEAN MODE)

	Oracle - renders CONTAINS(x, y)

	other backends may provide special implementations.

	Backends without any special implementation will emit
the operator as “MATCH”. This is compatible with SQlite, for
example.

	
notilike(other, escape=None)

	
inherited from the notilike() method of ColumnOperators

implement the NOT ILIKE operator.

This is equivalent to using negation with
ColumnOperators.ilike(), i.e. ~x.ilike(y).

New in version 0.8.

See also

ColumnOperators.ilike()

	
notin_(other)

	
inherited from the notin_() method of ColumnOperators

implement the NOT IN operator.

This is equivalent to using negation with
ColumnOperators.in_(), i.e. ~x.in_(y).

New in version 0.8.

See also

ColumnOperators.in_()

	
notlike(other, escape=None)

	
inherited from the notlike() method of ColumnOperators

implement the NOT LIKE operator.

This is equivalent to using negation with
ColumnOperators.like(), i.e. ~x.like(y).

New in version 0.8.

See also

ColumnOperators.like()

	
nullsfirst()

	
inherited from the nullsfirst() method of ColumnOperators

Produce a nullsfirst() clause against the
parent object.

	
nullslast()

	
inherited from the nullslast() method of ColumnOperators

Produce a nullslast() clause against the
parent object.

	
op(opstring, precedence=0, is_comparison=False)

	
inherited from the op() method of Operators

produce a generic operator function.

e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

This function can also be used to make bitwise operators explicit. For
example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

	Parameters:
	
	operator¶ – a string which will be output as the infix operator
between this element and the expression passed to the
generated function.

	precedence¶ – precedence to apply to the operator, when
parenthesizing expressions. A lower number will cause the expression
to be parenthesized when applied against another operator with
higher precedence. The default value of 0 is lower than all
operators except for the comma (,) and AS operators.
A value of 100 will be higher or equal to all operators, and -100
will be lower than or equal to all operators.

New in version 0.8: - added the ‘precedence’ argument.

	is_comparison¶ – if True, the operator will be considered as a
“comparison” operator, that is which evaluates to a boolean
true/false value, like ==, >, etc. This flag should be set
so that ORM relationships can establish that the operator is a
comparison operator when used in a custom join condition.

New in version 0.9.2: - added the
Operators.op.is_comparison flag.

See also

Redefining and Creating New Operators

Using custom operators in join conditions

	
parent

	Return an inspection instance representing the parent.

This will be either an instance of Mapper
or AliasedInsp, depending upon the nature
of the parent entity which this attribute is associated
with.

	
property

	Return the MapperProperty associated with this
QueryableAttribute.

Return values here will commonly be instances of
ColumnProperty or RelationshipProperty.

	
startswith(other, **kwargs)

	
inherited from the startswith() method of ColumnOperators

Implement the startwith operator.

In a column context, produces the clause LIKE '<other>%'

	
class sqlalchemy.orm.session.UOWTransaction(session)

	
	
filter_states_for_dep(dep, states)

	Filter the given list of InstanceStates to those relevant to the
given DependencyProcessor.

	
finalize_flush_changes()

	mark processed objects as clean / deleted after a successful
flush().

this method is called within the flush() method after the
execute() method has succeeded and the transaction has been committed.

	
get_attribute_history(state, key, passive=symbol('PASSIVE_NO_INITIALIZE'))

	facade to attributes.get_state_history(), including
caching of results.

	
is_deleted(state)

	return true if the given state is marked as deleted
within this uowtransaction.

	
remove_state_actions(state)

	remove pending actions for a state from the uowtransaction.

	
was_already_deleted(state)

	return true if the given state is expired and was deleted
previously.

ORM Exceptions

SQLAlchemy ORM exceptions.

	
sqlalchemy.orm.exc.ConcurrentModificationError

	alias of StaleDataError

	
exception sqlalchemy.orm.exc.DetachedInstanceError

	An attempt to access unloaded attributes on a
mapped instance that is detached.

	
exception sqlalchemy.orm.exc.FlushError

	A invalid condition was detected during flush().

	
exception sqlalchemy.orm.exc.MultipleResultsFound

	A single database result was required but more than one were found.

	
sqlalchemy.orm.exc.NO_STATE = (<type 'exceptions.AttributeError'>, <type 'exceptions.KeyError'>)

	Exception types that may be raised by instrumentation implementations.

	
exception sqlalchemy.orm.exc.NoResultFound

	A database result was required but none was found.

	
exception sqlalchemy.orm.exc.ObjectDeletedError(state, msg=None)

	A refresh operation failed to retrieve the database
row corresponding to an object’s known primary key identity.

A refresh operation proceeds when an expired attribute is
accessed on an object, or when Query.get() is
used to retrieve an object which is, upon retrieval, detected
as expired. A SELECT is emitted for the target row
based on primary key; if no row is returned, this
exception is raised.

The true meaning of this exception is simply that
no row exists for the primary key identifier associated
with a persistent object. The row may have been
deleted, or in some cases the primary key updated
to a new value, outside of the ORM’s management of the target
object.

	
exception sqlalchemy.orm.exc.ObjectDereferencedError

	An operation cannot complete due to an object being garbage
collected.

	
exception sqlalchemy.orm.exc.StaleDataError

	An operation encountered database state that is unaccounted for.

Conditions which cause this to happen include:

	A flush may have attempted to update or delete rows
and an unexpected number of rows were matched during
the UPDATE or DELETE statement. Note that when
version_id_col is used, rows in UPDATE or DELETE statements
are also matched against the current known version
identifier.

	A mapped object with version_id_col was refreshed,
and the version number coming back from the database does
not match that of the object itself.

	A object is detached from its parent object, however
the object was previously attached to a different parent
identity which was garbage collected, and a decision
cannot be made if the new parent was really the most
recent “parent”.

New in version 0.7.4.

	
exception sqlalchemy.orm.exc.UnmappedClassError(cls, msg=None)

	An mapping operation was requested for an unknown class.

	
exception sqlalchemy.orm.exc.UnmappedColumnError

	Mapping operation was requested on an unknown column.

	
exception sqlalchemy.orm.exc.UnmappedError

	Base for exceptions that involve expected mappings not present.

	
exception sqlalchemy.orm.exc.UnmappedInstanceError(obj, msg=None)

	An mapping operation was requested for an unknown instance.

Deprecated ORM Event Interfaces

This section describes the class-based ORM event interface which first
existed in SQLAlchemy 0.1, which progressed with more kinds of events up
until SQLAlchemy 0.5. The non-ORM analogue is described at Deprecated Event Interfaces.

Deprecated since version 0.7: As of SQLAlchemy 0.7, the new event system described in
Events replaces the extension/proxy/listener system, providing
a consistent interface to all events without the need for subclassing.

Mapper Events

	
class sqlalchemy.orm.interfaces.MapperExtension

	Base implementation for Mapper event hooks.

Note

MapperExtension is deprecated. Please
refer to event.listen() as well as
MapperEvents.

New extension classes subclass MapperExtension and are specified
using the extension mapper() argument, which is a single
MapperExtension or a list of such:

from sqlalchemy.orm.interfaces import MapperExtension

class MyExtension(MapperExtension):
 def before_insert(self, mapper, connection, instance):
 print "instance %s before insert !" % instance

m = mapper(User, users_table, extension=MyExtension())

A single mapper can maintain a chain of MapperExtension
objects. When a particular mapping event occurs, the
corresponding method on each MapperExtension is invoked
serially, and each method has the ability to halt the chain
from proceeding further:

m = mapper(User, users_table, extension=[ext1, ext2, ext3])

Each MapperExtension method returns the symbol
EXT_CONTINUE by default. This symbol generally means “move
to the next MapperExtension for processing”. For methods
that return objects like translated rows or new object
instances, EXT_CONTINUE means the result of the method
should be ignored. In some cases it’s required for a
default mapper activity to be performed, such as adding a
new instance to a result list.

The symbol EXT_STOP has significance within a chain
of MapperExtension objects that the chain will be stopped
when this symbol is returned. Like EXT_CONTINUE, it also
has additional significance in some cases that a default
mapper activity will not be performed.

	
after_delete(mapper, connection, instance)

	Receive an object instance after that instance is deleted.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
after_insert(mapper, connection, instance)

	Receive an object instance after that instance is inserted.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
after_update(mapper, connection, instance)

	Receive an object instance after that instance is updated.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
before_delete(mapper, connection, instance)

	Receive an object instance before that instance is deleted.

Note that no changes to the overall flush plan can be made
here; and manipulation of the Session will not have the
desired effect. To manipulate the Session within an
extension, use SessionExtension.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
before_insert(mapper, connection, instance)

	Receive an object instance before that instance is inserted
into its table.

This is a good place to set up primary key values and such
that aren’t handled otherwise.

Column-based attributes can be modified within this method
which will result in the new value being inserted. However
no changes to the overall flush plan can be made, and
manipulation of the Session will not have the desired effect.
To manipulate the Session within an extension, use
SessionExtension.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
before_update(mapper, connection, instance)

	Receive an object instance before that instance is updated.

Note that this method is called for all instances that are marked as
“dirty”, even those which have no net changes to their column-based
attributes. An object is marked as dirty when any of its column-based
attributes have a “set attribute” operation called or when any of its
collections are modified. If, at update time, no column-based
attributes have any net changes, no UPDATE statement will be issued.
This means that an instance being sent to before_update is not a
guarantee that an UPDATE statement will be issued (although you can
affect the outcome here).

To detect if the column-based attributes on the object have net
changes, and will therefore generate an UPDATE statement, use
object_session(instance).is_modified(instance,
include_collections=False).

Column-based attributes can be modified within this method
which will result in the new value being updated. However
no changes to the overall flush plan can be made, and
manipulation of the Session will not have the desired effect.
To manipulate the Session within an extension, use
SessionExtension.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
init_failed(mapper, class_, oldinit, instance, args, kwargs)

	Receive an instance when its constructor has been called,
and raised an exception.

This method is only called during a userland construction of
an object. It is not called when an object is loaded from the
database.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
init_instance(mapper, class_, oldinit, instance, args, kwargs)

	Receive an instance when its constructor is called.

This method is only called during a userland construction of
an object. It is not called when an object is loaded from the
database.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
instrument_class(mapper, class_)

	Receive a class when the mapper is first constructed, and has
applied instrumentation to the mapped class.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

	
reconstruct_instance(mapper, instance)

	Receive an object instance after it has been created via
__new__, and after initial attribute population has
occurred.

This typically occurs when the instance is created based on
incoming result rows, and is only called once for that
instance’s lifetime.

Note that during a result-row load, this method is called upon
the first row received for this instance. Note that some
attributes and collections may or may not be loaded or even
initialized, depending on what’s present in the result rows.

The return value is only significant within the MapperExtension
chain; the parent mapper’s behavior isn’t modified by this method.

Session Events

	
class sqlalchemy.orm.interfaces.SessionExtension

	Base implementation for Session event hooks.

Note

SessionExtension is deprecated. Please
refer to event.listen() as well as
SessionEvents.

Subclasses may be installed into a Session (or
sessionmaker) using the extension keyword
argument:

from sqlalchemy.orm.interfaces import SessionExtension

class MySessionExtension(SessionExtension):
 def before_commit(self, session):
 print "before commit!"

Session = sessionmaker(extension=MySessionExtension())

The same SessionExtension instance can be used
with any number of sessions.

	
after_attach(session, instance)

	Execute after an instance is attached to a session.

This is called after an add, delete or merge.

	
after_begin(session, transaction, connection)

	Execute after a transaction is begun on a connection

transaction is the SessionTransaction. This method is called
after an engine level transaction is begun on a connection.

	
after_bulk_delete(session, query, query_context, result)

	Execute after a bulk delete operation to the session.

This is called after a session.query(...).delete()

query is the query object that this delete operation was
called on. query_context was the query context object.
result is the result object returned from the bulk operation.

	
after_bulk_update(session, query, query_context, result)

	Execute after a bulk update operation to the session.

This is called after a session.query(...).update()

query is the query object that this update operation was
called on. query_context was the query context object.
result is the result object returned from the bulk operation.

	
after_commit(session)

	Execute after a commit has occurred.

Note that this may not be per-flush if a longer running
transaction is ongoing.

	
after_flush(session, flush_context)

	Execute after flush has completed, but before commit has been
called.

Note that the session’s state is still in pre-flush, i.e. ‘new’,
‘dirty’, and ‘deleted’ lists still show pre-flush state as well
as the history settings on instance attributes.

	
after_flush_postexec(session, flush_context)

	Execute after flush has completed, and after the post-exec
state occurs.

This will be when the ‘new’, ‘dirty’, and ‘deleted’ lists are in
their final state. An actual commit() may or may not have
occurred, depending on whether or not the flush started its own
transaction or participated in a larger transaction.

	
after_rollback(session)

	Execute after a rollback has occurred.

Note that this may not be per-flush if a longer running
transaction is ongoing.

	
before_commit(session)

	Execute right before commit is called.

Note that this may not be per-flush if a longer running
transaction is ongoing.

	
before_flush(session, flush_context, instances)

	Execute before flush process has started.

instances is an optional list of objects which were passed to
the flush() method.

Attribute Events

	
class sqlalchemy.orm.interfaces.AttributeExtension

	Base implementation for AttributeImpl event hooks, events
that fire upon attribute mutations in user code.

Note

AttributeExtension is deprecated. Please
refer to event.listen() as well as
AttributeEvents.

AttributeExtension is used to listen for set,
remove, and append events on individual mapped attributes.
It is established on an individual mapped attribute using
the extension argument, available on
column_property(), relationship(), and
others:

from sqlalchemy.orm.interfaces import AttributeExtension
from sqlalchemy.orm import mapper, relationship, column_property

class MyAttrExt(AttributeExtension):
 def append(self, state, value, initiator):
 print "append event !"
 return value

 def set(self, state, value, oldvalue, initiator):
 print "set event !"
 return value

mapper(SomeClass, sometable, properties={
 'foo':column_property(sometable.c.foo, extension=MyAttrExt()),
 'bar':relationship(Bar, extension=MyAttrExt())
})

Note that the AttributeExtension methods
append() and
set() need to return the
value parameter. The returned value is used as the
effective value, and allows the extension to change what is
ultimately persisted.

AttributeExtension is assembled within the descriptors associated
with a mapped class.

	
active_history = True

	indicates that the set() method would like to receive the ‘old’ value,
even if it means firing lazy callables.

Note that active_history can also be set directly via
column_property() and relationship().

	
append(state, value, initiator)

	Receive a collection append event.

The returned value will be used as the actual value to be
appended.

	
remove(state, value, initiator)

	Receive a remove event.

No return value is defined.

	
set(state, value, oldvalue, initiator)

	Receive a set event.

The returned value will be used as the actual value to be
set.

ORM Extensions

SQLAlchemy has a variety of ORM extensions available, which add additional
functionality to the core behavior.

The extensions build almost entirely on public core and ORM APIs and users should
be encouraged to read their source code to further their understanding of their
behavior. In particular the “Horizontal Sharding”, “Hybrid Attributes”, and
“Mutation Tracking” extensions are very succinct.

	Association Proxy

	Automap

	Baked Queries

	Declarative

	Mutation Tracking

	Ordering List

	Horizontal Sharding

	Hybrid Attributes

	Indexable

	Alternate Class Instrumentation

Association Proxy

associationproxy is used to create a read/write view of a
target attribute across a relationship. It essentially conceals
the usage of a “middle” attribute between two endpoints, and
can be used to cherry-pick fields from a collection of
related objects or to reduce the verbosity of using the association
object pattern. Applied creatively, the association proxy allows
the construction of sophisticated collections and dictionary
views of virtually any geometry, persisted to the database using
standard, transparently configured relational patterns.

Simplifying Scalar Collections

Consider a many-to-many mapping between two classes, User and Keyword.
Each User can have any number of Keyword objects, and vice-versa
(the many-to-many pattern is described at Many To Many):

from sqlalchemy import Column, Integer, String, ForeignKey, Table
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(64))
 kw = relationship("Keyword", secondary=lambda: userkeywords_table)

 def __init__(self, name):
 self.name = name

class Keyword(Base):
 __tablename__ = 'keyword'
 id = Column(Integer, primary_key=True)
 keyword = Column('keyword', String(64))

 def __init__(self, keyword):
 self.keyword = keyword

userkeywords_table = Table('userkeywords', Base.metadata,
 Column('user_id', Integer, ForeignKey("user.id"),
 primary_key=True),
 Column('keyword_id', Integer, ForeignKey("keyword.id"),
 primary_key=True)
)

Reading and manipulating the collection of “keyword” strings associated
with User requires traversal from each collection element to the .keyword
attribute, which can be awkward:

>>> user = User('jek')
>>> user.kw.append(Keyword('cheese inspector'))
>>> print(user.kw)
[<__main__.Keyword object at 0x12bf830>]
>>> print(user.kw[0].keyword)
cheese inspector
>>> print([keyword.keyword for keyword in user.kw])
['cheese inspector']

The association_proxy is applied to the User class to produce
a “view” of the kw relationship, which only exposes the string
value of .keyword associated with each Keyword object:

from sqlalchemy.ext.associationproxy import association_proxy

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(64))
 kw = relationship("Keyword", secondary=lambda: userkeywords_table)

 def __init__(self, name):
 self.name = name

 # proxy the 'keyword' attribute from the 'kw' relationship
 keywords = association_proxy('kw', 'keyword')

We can now reference the .keywords collection as a listing of strings,
which is both readable and writable. New Keyword objects are created
for us transparently:

>>> user = User('jek')
>>> user.keywords.append('cheese inspector')
>>> user.keywords
['cheese inspector']
>>> user.keywords.append('snack ninja')
>>> user.kw
[<__main__.Keyword object at 0x12cdd30>, <__main__.Keyword object at 0x12cde30>]

The AssociationProxy object produced by the association_proxy() function
is an instance of a Python descriptor.
It is always declared with the user-defined class being mapped, regardless of
whether Declarative or classical mappings via the mapper() function are used.

The proxy functions by operating upon the underlying mapped attribute
or collection in response to operations, and changes made via the proxy are immediately
apparent in the mapped attribute, as well as vice versa. The underlying
attribute remains fully accessible.

When first accessed, the association proxy performs introspection
operations on the target collection so that its behavior corresponds correctly.
Details such as if the locally proxied attribute is a collection (as is typical)
or a scalar reference, as well as if the collection acts like a set, list,
or dictionary is taken into account, so that the proxy should act just like
the underlying collection or attribute does.

Creation of New Values

When a list append() event (or set add(), dictionary __setitem__(), or scalar
assignment event) is intercepted by the association proxy, it instantiates a
new instance of the “intermediary” object using its constructor, passing as a
single argument the given value. In our example above, an operation like:

user.keywords.append('cheese inspector')

Is translated by the association proxy into the operation:

user.kw.append(Keyword('cheese inspector'))

The example works here because we have designed the constructor for Keyword
to accept a single positional argument, keyword. For those cases where a
single-argument constructor isn’t feasible, the association proxy’s creational
behavior can be customized using the creator argument, which references a
callable (i.e. Python function) that will produce a new object instance given the
singular argument. Below we illustrate this using a lambda as is typical:

class User(Base):
 # ...

 # use Keyword(keyword=kw) on append() events
 keywords = association_proxy('kw', 'keyword',
 creator=lambda kw: Keyword(keyword=kw))

The creator function accepts a single argument in the case of a list-
or set- based collection, or a scalar attribute. In the case of a dictionary-based
collection, it accepts two arguments, “key” and “value”. An example
of this is below in Proxying to Dictionary Based Collections.

Simplifying Association Objects

The “association object” pattern is an extended form of a many-to-many
relationship, and is described at Association Object. Association
proxies are useful for keeping “association objects” out the way during
regular use.

Suppose our userkeywords table above had additional columns
which we’d like to map explicitly, but in most cases we don’t
require direct access to these attributes. Below, we illustrate
a new mapping which introduces the UserKeyword class, which
is mapped to the userkeywords table illustrated earlier.
This class adds an additional column special_key, a value which
we occasionally want to access, but not in the usual case. We
create an association proxy on the User class called
keywords, which will bridge the gap from the user_keywords
collection of User to the .keyword attribute present on each
UserKeyword:

from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship, backref

from sqlalchemy.ext.associationproxy import association_proxy
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(64))

 # association proxy of "user_keywords" collection
 # to "keyword" attribute
 keywords = association_proxy('user_keywords', 'keyword')

 def __init__(self, name):
 self.name = name

class UserKeyword(Base):
 __tablename__ = 'user_keyword'
 user_id = Column(Integer, ForeignKey('user.id'), primary_key=True)
 keyword_id = Column(Integer, ForeignKey('keyword.id'), primary_key=True)
 special_key = Column(String(50))

 # bidirectional attribute/collection of "user"/"user_keywords"
 user = relationship(User,
 backref=backref("user_keywords",
 cascade="all, delete-orphan")
)

 # reference to the "Keyword" object
 keyword = relationship("Keyword")

 def __init__(self, keyword=None, user=None, special_key=None):
 self.user = user
 self.keyword = keyword
 self.special_key = special_key

class Keyword(Base):
 __tablename__ = 'keyword'
 id = Column(Integer, primary_key=True)
 keyword = Column('keyword', String(64))

 def __init__(self, keyword):
 self.keyword = keyword

 def __repr__(self):
 return 'Keyword(%s)' % repr(self.keyword)

With the above configuration, we can operate upon the .keywords
collection of each User object, and the usage of UserKeyword
is concealed:

>>> user = User('log')
>>> for kw in (Keyword('new_from_blammo'), Keyword('its_big')):
... user.keywords.append(kw)
...
>>> print(user.keywords)
[Keyword('new_from_blammo'), Keyword('its_big')]

Where above, each .keywords.append() operation is equivalent to:

>>> user.user_keywords.append(UserKeyword(Keyword('its_heavy')))

The UserKeyword association object has two attributes here which are populated;
the .keyword attribute is populated directly as a result of passing
the Keyword object as the first argument. The .user argument is then
assigned as the UserKeyword object is appended to the User.user_keywords
collection, where the bidirectional relationship configured between User.user_keywords
and UserKeyword.user results in a population of the UserKeyword.user attribute.
The special_key argument above is left at its default value of None.

For those cases where we do want special_key to have a value, we
create the UserKeyword object explicitly. Below we assign all three
attributes, where the assignment of .user has the effect of the UserKeyword
being appended to the User.user_keywords collection:

>>> UserKeyword(Keyword('its_wood'), user, special_key='my special key')

The association proxy returns to us a collection of Keyword objects represented
by all these operations:

>>> user.keywords
[Keyword('new_from_blammo'), Keyword('its_big'), Keyword('its_heavy'), Keyword('its_wood')]

Proxying to Dictionary Based Collections

The association proxy can proxy to dictionary based collections as well. SQLAlchemy
mappings usually use the attribute_mapped_collection() collection type to
create dictionary collections, as well as the extended techniques described in
Custom Dictionary-Based Collections.

The association proxy adjusts its behavior when it detects the usage of a
dictionary-based collection. When new values are added to the dictionary, the
association proxy instantiates the intermediary object by passing two
arguments to the creation function instead of one, the key and the value. As
always, this creation function defaults to the constructor of the intermediary
class, and can be customized using the creator argument.

Below, we modify our UserKeyword example such that the User.user_keywords
collection will now be mapped using a dictionary, where the UserKeyword.special_key
argument will be used as the key for the dictionary. We then apply a creator
argument to the User.keywords proxy so that these values are assigned appropriately
when new elements are added to the dictionary:

from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship, backref
from sqlalchemy.ext.associationproxy import association_proxy
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.collections import attribute_mapped_collection

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(64))

 # proxy to 'user_keywords', instantiating UserKeyword
 # assigning the new key to 'special_key', values to
 # 'keyword'.
 keywords = association_proxy('user_keywords', 'keyword',
 creator=lambda k, v:
 UserKeyword(special_key=k, keyword=v)
)

 def __init__(self, name):
 self.name = name

class UserKeyword(Base):
 __tablename__ = 'user_keyword'
 user_id = Column(Integer, ForeignKey('user.id'), primary_key=True)
 keyword_id = Column(Integer, ForeignKey('keyword.id'), primary_key=True)
 special_key = Column(String)

 # bidirectional user/user_keywords relationships, mapping
 # user_keywords with a dictionary against "special_key" as key.
 user = relationship(User, backref=backref(
 "user_keywords",
 collection_class=attribute_mapped_collection("special_key"),
 cascade="all, delete-orphan"
)
)
 keyword = relationship("Keyword")

class Keyword(Base):
 __tablename__ = 'keyword'
 id = Column(Integer, primary_key=True)
 keyword = Column('keyword', String(64))

 def __init__(self, keyword):
 self.keyword = keyword

 def __repr__(self):
 return 'Keyword(%s)' % repr(self.keyword)

We illustrate the .keywords collection as a dictionary, mapping the
UserKeyword.string_key value to Keyword objects:

>>> user = User('log')

>>> user.keywords['sk1'] = Keyword('kw1')
>>> user.keywords['sk2'] = Keyword('kw2')

>>> print(user.keywords)
{'sk1': Keyword('kw1'), 'sk2': Keyword('kw2')}

Composite Association Proxies

Given our previous examples of proxying from relationship to scalar
attribute, proxying across an association object, and proxying dictionaries,
we can combine all three techniques together to give User
a keywords dictionary that deals strictly with the string value
of special_key mapped to the string keyword. Both the UserKeyword
and Keyword classes are entirely concealed. This is achieved by building
an association proxy on User that refers to an association proxy
present on UserKeyword:

from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship, backref

from sqlalchemy.ext.associationproxy import association_proxy
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.collections import attribute_mapped_collection

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(64))

 # the same 'user_keywords'->'keyword' proxy as in
 # the basic dictionary example
 keywords = association_proxy(
 'user_keywords',
 'keyword',
 creator=lambda k, v:
 UserKeyword(special_key=k, keyword=v)
)

 def __init__(self, name):
 self.name = name

class UserKeyword(Base):
 __tablename__ = 'user_keyword'
 user_id = Column(Integer, ForeignKey('user.id'), primary_key=True)
 keyword_id = Column(Integer, ForeignKey('keyword.id'),
 primary_key=True)
 special_key = Column(String)
 user = relationship(User, backref=backref(
 "user_keywords",
 collection_class=attribute_mapped_collection("special_key"),
 cascade="all, delete-orphan"
)
)

 # the relationship to Keyword is now called
 # 'kw'
 kw = relationship("Keyword")

 # 'keyword' is changed to be a proxy to the
 # 'keyword' attribute of 'Keyword'
 keyword = association_proxy('kw', 'keyword')

class Keyword(Base):
 __tablename__ = 'keyword'
 id = Column(Integer, primary_key=True)
 keyword = Column('keyword', String(64))

 def __init__(self, keyword):
 self.keyword = keyword

User.keywords is now a dictionary of string to string, where
UserKeyword and Keyword objects are created and removed for us
transparently using the association proxy. In the example below, we illustrate
usage of the assignment operator, also appropriately handled by the
association proxy, to apply a dictionary value to the collection at once:

>>> user = User('log')
>>> user.keywords = {
... 'sk1':'kw1',
... 'sk2':'kw2'
... }
>>> print(user.keywords)
{'sk1': 'kw1', 'sk2': 'kw2'}

>>> user.keywords['sk3'] = 'kw3'
>>> del user.keywords['sk2']
>>> print(user.keywords)
{'sk1': 'kw1', 'sk3': 'kw3'}

>>> # illustrate un-proxied usage
... print(user.user_keywords['sk3'].kw)
<__main__.Keyword object at 0x12ceb90>

One caveat with our example above is that because Keyword objects are created
for each dictionary set operation, the example fails to maintain uniqueness for
the Keyword objects on their string name, which is a typical requirement for
a tagging scenario such as this one. For this use case the recipe
UniqueObject, or
a comparable creational strategy, is
recommended, which will apply a “lookup first, then create” strategy to the constructor
of the Keyword class, so that an already existing Keyword is returned if the
given name is already present.

Querying with Association Proxies

The AssociationProxy features simple SQL construction capabilities
which relate down to the underlying relationship() in use as well
as the target attribute. For example, the RelationshipProperty.Comparator.any()
and RelationshipProperty.Comparator.has() operations are available, and will produce
a “nested” EXISTS clause, such as in our basic association object example:

>>> print(session.query(User).filter(User.keywords.any(keyword='jek')))
SELECT user.id AS user_id, user.name AS user_name
FROM user
WHERE EXISTS (SELECT 1
FROM user_keyword
WHERE user.id = user_keyword.user_id AND (EXISTS (SELECT 1
FROM keyword
WHERE keyword.id = user_keyword.keyword_id AND keyword.keyword = :keyword_1)))

For a proxy to a scalar attribute, __eq__() is supported:

>>> print(session.query(UserKeyword).filter(UserKeyword.keyword == 'jek'))
SELECT user_keyword.*
FROM user_keyword
WHERE EXISTS (SELECT 1
 FROM keyword
 WHERE keyword.id = user_keyword.keyword_id AND keyword.keyword = :keyword_1)

and .contains() is available for a proxy to a scalar collection:

>>> print(session.query(User).filter(User.keywords.contains('jek')))
SELECT user.*
FROM user
WHERE EXISTS (SELECT 1
FROM userkeywords, keyword
WHERE user.id = userkeywords.user_id
 AND keyword.id = userkeywords.keyword_id
 AND keyword.keyword = :keyword_1)

AssociationProxy can be used with Query.join() somewhat manually
using the attr attribute in a star-args context:

q = session.query(User).join(*User.keywords.attr)

New in version 0.7.3: attr attribute in a star-args context.

attr is composed of AssociationProxy.local_attr and AssociationProxy.remote_attr,
which are just synonyms for the actual proxied attributes, and can also
be used for querying:

uka = aliased(UserKeyword)
ka = aliased(Keyword)
q = session.query(User).\
 join(uka, User.keywords.local_attr).\
 join(ka, User.keywords.remote_attr)

New in version 0.7.3: AssociationProxy.local_attr and AssociationProxy.remote_attr,
synonyms for the actual proxied attributes, and usable for querying.

API Documentation

	
sqlalchemy.ext.associationproxy.association_proxy(target_collection, attr, **kw)

	Return a Python property implementing a view of a target
attribute which references an attribute on members of the
target.

The returned value is an instance of AssociationProxy.

Implements a Python property representing a relationship as a collection
of simpler values, or a scalar value. The proxied property will mimic
the collection type of the target (list, dict or set), or, in the case of
a one to one relationship, a simple scalar value.

	Parameters:
	
	target_collection¶ – Name of the attribute we’ll proxy to.
This attribute is typically mapped by
relationship() to link to a target collection, but
can also be a many-to-one or non-scalar relationship.

	attr¶ – Attribute on the associated instance or instances we’ll
proxy for.

For example, given a target collection of [obj1, obj2], a list created
by this proxy property would look like [getattr(obj1, attr),
getattr(obj2, attr)]

If the relationship is one-to-one or otherwise uselist=False, then
simply: getattr(obj, attr)

	creator¶ – optional.

When new items are added to this proxied collection, new instances of
the class collected by the target collection will be created. For list
and set collections, the target class constructor will be called with
the ‘value’ for the new instance. For dict types, two arguments are
passed: key and value.

If you want to construct instances differently, supply a creator
function that takes arguments as above and returns instances.

For scalar relationships, creator() will be called if the target is None.
If the target is present, set operations are proxied to setattr() on the
associated object.

If you have an associated object with multiple attributes, you may set
up multiple association proxies mapping to different attributes. See
the unit tests for examples, and for examples of how creator() functions
can be used to construct the scalar relationship on-demand in this
situation.

	**kw¶ – Passes along any other keyword arguments to
AssociationProxy.

	
class sqlalchemy.ext.associationproxy.AssociationProxy(target_collection, attr, creator=None, getset_factory=None, proxy_factory=None, proxy_bulk_set=None, info=None)

	Bases: sqlalchemy.orm.base.InspectionAttrInfo

A descriptor that presents a read/write view of an object attribute.

	
__init__(target_collection, attr, creator=None, getset_factory=None, proxy_factory=None, proxy_bulk_set=None, info=None)

	Construct a new AssociationProxy.

The association_proxy() function is provided as the usual
entrypoint here, though AssociationProxy can be instantiated
and/or subclassed directly.

	Parameters:
	
	target_collection¶ – Name of the collection we’ll proxy to,
usually created with relationship().

	attr¶ – Attribute on the collected instances we’ll proxy
for. For example, given a target collection of [obj1, obj2], a
list created by this proxy property would look like
[getattr(obj1, attr), getattr(obj2, attr)]

	creator¶ – Optional. When new items are added to this proxied
collection, new instances of the class collected by the target
collection will be created. For list and set collections, the
target class constructor will be called with the ‘value’ for the
new instance. For dict types, two arguments are passed:
key and value.

If you want to construct instances differently, supply a ‘creator’
function that takes arguments as above and returns instances.

	getset_factory¶ – Optional. Proxied attribute access is
automatically handled by routines that get and set values based on
the attr argument for this proxy.

If you would like to customize this behavior, you may supply a
getset_factory callable that produces a tuple of getter and
setter functions. The factory is called with two arguments, the
abstract type of the underlying collection and this proxy instance.

	proxy_factory¶ – Optional. The type of collection to emulate is
determined by sniffing the target collection. If your collection
type can’t be determined by duck typing or you’d like to use a
different collection implementation, you may supply a factory
function to produce those collections. Only applicable to
non-scalar relationships.

	proxy_bulk_set¶ – Optional, use with proxy_factory. See
the _set() method for details.

	info¶ – optional, will be assigned to
AssociationProxy.info if present.

New in version 1.0.9.

	
any(criterion=None, **kwargs)

	Produce a proxied ‘any’ expression using EXISTS.

This expression will be a composed product
using the RelationshipProperty.Comparator.any()
and/or RelationshipProperty.Comparator.has()
operators of the underlying proxied attributes.

	
attr

	Return a tuple of (local_attr, remote_attr).

This attribute is convenient when specifying a join
using Query.join() across two relationships:

sess.query(Parent).join(*Parent.proxied.attr)

New in version 0.7.3.

See also:

AssociationProxy.local_attr

AssociationProxy.remote_attr

	
contains(obj)

	Produce a proxied ‘contains’ expression using EXISTS.

This expression will be a composed product
using the RelationshipProperty.Comparator.any()
, RelationshipProperty.Comparator.has(),
and/or RelationshipProperty.Comparator.contains()
operators of the underlying proxied attributes.

	
extension_type = symbol('ASSOCIATION_PROXY')

	

	
has(criterion=None, **kwargs)

	Produce a proxied ‘has’ expression using EXISTS.

This expression will be a composed product
using the RelationshipProperty.Comparator.any()
and/or RelationshipProperty.Comparator.has()
operators of the underlying proxied attributes.

	
info

	
inherited from the info attribute of InspectionAttrInfo

Info dictionary associated with the object, allowing user-defined
data to be associated with this InspectionAttr.

The dictionary is generated when first accessed. Alternatively,
it can be specified as a constructor argument to the
column_property(), relationship(), or composite()
functions.

New in version 0.8: Added support for .info to all
MapperProperty subclasses.

Changed in version 1.0.0: MapperProperty.info is also
available on extension types via the
InspectionAttrInfo.info attribute, so that it can apply
to a wider variety of ORM and extension constructs.

See also

QueryableAttribute.info

SchemaItem.info

	
is_aliased_class = False

	

	
is_attribute = False

	

	
is_clause_element = False

	

	
is_instance = False

	

	
is_mapper = False

	

	
is_property = False

	

	
is_selectable = False

	

	
local_attr

	The ‘local’ MapperProperty referenced by this
AssociationProxy.

New in version 0.7.3.

See also:

AssociationProxy.attr

AssociationProxy.remote_attr

	
remote_attr

	The ‘remote’ MapperProperty referenced by this
AssociationProxy.

New in version 0.7.3.

See also:

AssociationProxy.attr

AssociationProxy.local_attr

	
scalar

	Return True if this AssociationProxy proxies a scalar
relationship on the local side.

	
target_class

	The intermediary class handled by this AssociationProxy.

Intercepted append/set/assignment events will result
in the generation of new instances of this class.

	
sqlalchemy.ext.associationproxy.ASSOCIATION_PROXY = symbol('ASSOCIATION_PROXY')

	

Automap

Define an extension to the sqlalchemy.ext.declarative system
which automatically generates mapped classes and relationships from a database
schema, typically though not necessarily one which is reflected.

New in version 0.9.1: Added sqlalchemy.ext.automap.

It is hoped that the AutomapBase system provides a quick
and modernized solution to the problem that the very famous
SQLSoup
also tries to solve, that of generating a quick and rudimentary object
model from an existing database on the fly. By addressing the issue strictly
at the mapper configuration level, and integrating fully with existing
Declarative class techniques, AutomapBase seeks to provide
a well-integrated approach to the issue of expediently auto-generating ad-hoc
mappings.

Basic Use

The simplest usage is to reflect an existing database into a new model.
We create a new AutomapBase class in a similar manner as to how
we create a declarative base class, using automap_base().
We then call AutomapBase.prepare() on the resulting base class,
asking it to reflect the schema and produce mappings:

from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine

Base = automap_base()

engine, suppose it has two tables 'user' and 'address' set up
engine = create_engine("sqlite:///mydatabase.db")

reflect the tables
Base.prepare(engine, reflect=True)

mapped classes are now created with names by default
matching that of the table name.
User = Base.classes.user
Address = Base.classes.address

session = Session(engine)

rudimentary relationships are produced
session.add(Address(email_address="foo@bar.com", user=User(name="foo")))
session.commit()

collection-based relationships are by default named
"<classname>_collection"
print (u1.address_collection)

Above, calling AutomapBase.prepare() while passing along the
AutomapBase.prepare.reflect parameter indicates that the
MetaData.reflect() method will be called on this declarative base
classes’ MetaData collection; then, each viable
Table within the MetaData will get a new mapped class
generated automatically. The ForeignKeyConstraint objects which
link the various tables together will be used to produce new, bidirectional
relationship() objects between classes. The classes and relationships
follow along a default naming scheme that we can customize. At this point,
our basic mapping consisting of related User and Address classes is
ready to use in the traditional way.

Note

By viable, we mean that for a table to be mapped, it must
specify a primary key. Additionally, if the table is detected as being
a pure association table between two other tables, it will not be directly
mapped and will instead be configured as a many-to-many table between
the mappings for the two referring tables.

Generating Mappings from an Existing MetaData

We can pass a pre-declared MetaData object to automap_base().
This object can be constructed in any way, including programmatically, from
a serialized file, or from itself being reflected using
MetaData.reflect(). Below we illustrate a combination of reflection and
explicit table declaration:

from sqlalchemy import create_engine, MetaData, Table, Column, ForeignKey
engine = create_engine("sqlite:///mydatabase.db")

produce our own MetaData object
metadata = MetaData()

we can reflect it ourselves from a database, using options
such as 'only' to limit what tables we look at...
metadata.reflect(engine, only=['user', 'address'])

... or just define our own Table objects with it (or combine both)
Table('user_order', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_id', ForeignKey('user.id'))
)

we can then produce a set of mappings from this MetaData.
Base = automap_base(metadata=metadata)

calling prepare() just sets up mapped classes and relationships.
Base.prepare()

mapped classes are ready
User, Address, Order = Base.classes.user, Base.classes.address, Base.classes.user_order

Specifying Classes Explicitly

The sqlalchemy.ext.automap extension allows classes to be defined
explicitly, in a way similar to that of the DeferredReflection class.
Classes that extend from AutomapBase act like regular declarative
classes, but are not immediately mapped after their construction, and are
instead mapped when we call AutomapBase.prepare(). The
AutomapBase.prepare() method will make use of the classes we’ve
established based on the table name we use. If our schema contains tables
user and address, we can define one or both of the classes to be used:

from sqlalchemy.ext.automap import automap_base
from sqlalchemy import create_engine

automap base
Base = automap_base()

pre-declare User for the 'user' table
class User(Base):
 __tablename__ = 'user'

 # override schema elements like Columns
 user_name = Column('name', String)

 # override relationships too, if desired.
 # we must use the same name that automap would use for the
 # relationship, and also must refer to the class name that automap will
 # generate for "address"
 address_collection = relationship("address", collection_class=set)

reflect
engine = create_engine("sqlite:///mydatabase.db")
Base.prepare(engine, reflect=True)

we still have Address generated from the tablename "address",
but User is the same as Base.classes.User now

Address = Base.classes.address

u1 = session.query(User).first()
print (u1.address_collection)

the backref is still there:
a1 = session.query(Address).first()
print (a1.user)

Above, one of the more intricate details is that we illustrated overriding
one of the relationship() objects that automap would have created.
To do this, we needed to make sure the names match up with what automap
would normally generate, in that the relationship name would be
User.address_collection and the name of the class referred to, from
automap’s perspective, is called address, even though we are referring to
it as Address within our usage of this class.

Overriding Naming Schemes

sqlalchemy.ext.automap is tasked with producing mapped classes and
relationship names based on a schema, which means it has decision points in how
these names are determined. These three decision points are provided using
functions which can be passed to the AutomapBase.prepare() method, and
are known as classname_for_table(),
name_for_scalar_relationship(),
and name_for_collection_relationship(). Any or all of these
functions are provided as in the example below, where we use a “camel case”
scheme for class names and a “pluralizer” for collection names using the
Inflect package:

import re
import inflect

def camelize_classname(base, tablename, table):
 "Produce a 'camelized' class name, e.g. "
 "'words_and_underscores' -> 'WordsAndUnderscores'"

 return str(tablename[0].upper() + \
 re.sub(r'_([a-z])', lambda m: m.group(1).upper(), tablename[1:]))

_pluralizer = inflect.engine()
def pluralize_collection(base, local_cls, referred_cls, constraint):
 "Produce an 'uncamelized', 'pluralized' class name, e.g. "
 "'SomeTerm' -> 'some_terms'"

 referred_name = referred_cls.__name__
 uncamelized = re.sub(r'[A-Z]',
 lambda m: "_%s" % m.group(0).lower(),
 referred_name)[1:]
 pluralized = _pluralizer.plural(uncamelized)
 return pluralized

from sqlalchemy.ext.automap import automap_base

Base = automap_base()

engine = create_engine("sqlite:///mydatabase.db")

Base.prepare(engine, reflect=True,
 classname_for_table=camelize_classname,
 name_for_collection_relationship=pluralize_collection
)

From the above mapping, we would now have classes User and Address,
where the collection from User to Address is called
User.addresses:

User, Address = Base.classes.User, Base.classes.Address

u1 = User(addresses=[Address(email="foo@bar.com")])

Relationship Detection

The vast majority of what automap accomplishes is the generation of
relationship() structures based on foreign keys. The mechanism
by which this works for many-to-one and one-to-many relationships is as
follows:

	A given Table, known to be mapped to a particular class,
is examined for ForeignKeyConstraint objects.

	From each ForeignKeyConstraint, the remote Table
object present is matched up to the class to which it is to be mapped,
if any, else it is skipped.

	As the ForeignKeyConstraint we are examining corresponds to a
reference from the immediate mapped class, the relationship will be set up
as a many-to-one referring to the referred class; a corresponding
one-to-many backref will be created on the referred class referring
to this class.

	If any of the columns that are part of the ForeignKeyConstraint
are not nullable (e.g. nullable=False), a
cascade keyword argument
of all, delete-orphan will be added to the keyword arguments to
be passed to the relationship or backref. If the
ForeignKeyConstraint reports that
ForeignKeyConstraint.ondelete
is set to CASCADE for a not null or SET NULL for a nullable
set of columns, the option passive_deletes
flag is set to True in the set of relationship keyword arguments.
Note that not all backends support reflection of ON DELETE.

New in version 1.0.0: - automap will detect non-nullable foreign key
constraints when producing a one-to-many relationship and establish
a default cascade of all, delete-orphan if so; additionally,
if the constraint specifies ForeignKeyConstraint.ondelete
of CASCADE for non-nullable or SET NULL for nullable columns,
the passive_deletes=True option is also added.

	The names of the relationships are determined using the
AutomapBase.prepare.name_for_scalar_relationship and
AutomapBase.prepare.name_for_collection_relationship
callable functions. It is important to note that the default relationship
naming derives the name from the the actual class name. If you’ve
given a particular class an explicit name by declaring it, or specified an
alternate class naming scheme, that’s the name from which the relationship
name will be derived.

	The classes are inspected for an existing mapped property matching these
names. If one is detected on one side, but none on the other side,
AutomapBase attempts to create a relationship on the missing side,
then uses the relationship.back_populates parameter in order to
point the new relationship to the other side.

	In the usual case where no relationship is on either side,
AutomapBase.prepare() produces a relationship() on the
“many-to-one” side and matches it to the other using the
relationship.backref parameter.

	Production of the relationship() and optionally the backref()
is handed off to the AutomapBase.prepare.generate_relationship
function, which can be supplied by the end-user in order to augment
the arguments passed to relationship() or backref() or to
make use of custom implementations of these functions.

Custom Relationship Arguments

The AutomapBase.prepare.generate_relationship hook can be used
to add parameters to relationships. For most cases, we can make use of the
existing automap.generate_relationship() function to return
the object, after augmenting the given keyword dictionary with our own
arguments.

Below is an illustration of how to send
relationship.cascade and
relationship.passive_deletes
options along to all one-to-many relationships:

from sqlalchemy.ext.automap import generate_relationship

def _gen_relationship(base, direction, return_fn,
 attrname, local_cls, referred_cls, **kw):
 if direction is interfaces.ONETOMANY:
 kw['cascade'] = 'all, delete-orphan'
 kw['passive_deletes'] = True
 # make use of the built-in function to actually return
 # the result.
 return generate_relationship(base, direction, return_fn,
 attrname, local_cls, referred_cls, **kw)

from sqlalchemy.ext.automap import automap_base
from sqlalchemy import create_engine

automap base
Base = automap_base()

engine = create_engine("sqlite:///mydatabase.db")
Base.prepare(engine, reflect=True,
 generate_relationship=_gen_relationship)

Many-to-Many relationships

sqlalchemy.ext.automap will generate many-to-many relationships, e.g.
those which contain a secondary argument. The process for producing these
is as follows:

	A given Table is examined for ForeignKeyConstraint
objects, before any mapped class has been assigned to it.

	If the table contains two and exactly two ForeignKeyConstraint
objects, and all columns within this table are members of these two
ForeignKeyConstraint objects, the table is assumed to be a
“secondary” table, and will not be mapped directly.

	The two (or one, for self-referential) external tables to which the
Table refers to are matched to the classes to which they will be
mapped, if any.

	If mapped classes for both sides are located, a many-to-many bi-directional
relationship() / backref() pair is created between the two
classes.

	The override logic for many-to-many works the same as that of one-to-many/
many-to-one; the generate_relationship() function is called upon
to generate the strucures and existing attributes will be maintained.

Relationships with Inheritance

sqlalchemy.ext.automap will not generate any relationships between
two classes that are in an inheritance relationship. That is, with two
classes given as follows:

class Employee(Base):
 __tablename__ = 'employee'
 id = Column(Integer, primary_key=True)
 type = Column(String(50))
 __mapper_args__ = {
 'polymorphic_identity':'employee', 'polymorphic_on': type
 }

class Engineer(Employee):
 __tablename__ = 'engineer'
 id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
 __mapper_args__ = {
 'polymorphic_identity':'engineer',
 }

The foreign key from Engineer to Employee is used not for a
relationship, but to establish joined inheritance between the two classes.

Note that this means automap will not generate any relationships
for foreign keys that link from a subclass to a superclass. If a mapping
has actual relationships from subclass to superclass as well, those
need to be explicit. Below, as we have two separate foreign keys
from Engineer to Employee, we need to set up both the relationship
we want as well as the inherit_condition, as these are not things
SQLAlchemy can guess:

class Employee(Base):
 __tablename__ = 'employee'
 id = Column(Integer, primary_key=True)
 type = Column(String(50))

 __mapper_args__ = {
 'polymorphic_identity':'employee', 'polymorphic_on':type
 }

class Engineer(Employee):
 __tablename__ = 'engineer'
 id = Column(Integer, ForeignKey('employee.id'), primary_key=True)
 favorite_employee_id = Column(Integer, ForeignKey('employee.id'))

 favorite_employee = relationship(Employee,
 foreign_keys=favorite_employee_id)

 __mapper_args__ = {
 'polymorphic_identity':'engineer',
 'inherit_condition': id == Employee.id
 }

Handling Simple Naming Conflicts

In the case of naming conflicts during mapping, override any of
classname_for_table(), name_for_scalar_relationship(),
and name_for_collection_relationship() as needed. For example, if
automap is attempting to name a many-to-one relationship the same as an
existing column, an alternate convention can be conditionally selected. Given
a schema:

CREATE TABLE table_a (
 id INTEGER PRIMARY KEY
);

CREATE TABLE table_b (
 id INTEGER PRIMARY KEY,
 table_a INTEGER,
 FOREIGN KEY(table_a) REFERENCES table_a(id)
);

The above schema will first automap the table_a table as a class named
table_a; it will then automap a relationship onto the class for table_b
with the same name as this related class, e.g. table_a. This
relationship name conflicts with the mapping column table_b.table_a,
and will emit an error on mapping.

We can resolve this conflict by using an underscore as follows:

def name_for_scalar_relationship(base, local_cls, referred_cls, constraint):
 name = referred_cls.__name__.lower()
 local_table = local_cls.__table__
 if name in local_table.columns:
 newname = name + "_"
 warnings.warn(
 "Already detected name %s present. using %s" %
 (name, newname))
 return newname
 return name

Base.prepare(engine, reflect=True,
 name_for_scalar_relationship=name_for_scalar_relationship)

Alternatively, we can change the name on the column side. The columns
that are mapped can be modified using the technique described at
Naming Columns Distinctly from Attribute Names, by assigning the column explicitly
to a new name:

Base = automap_base()

class TableB(Base):
 __tablename__ = 'table_b'
 _table_a = Column('table_a', ForeignKey('table_a.id'))

Base.prepare(engine, reflect=True)

Using Automap with Explicit Declarations

As noted previously, automap has no dependency on reflection, and can make
use of any collection of Table objects within a MetaData
collection. From this, it follows that automap can also be used
generate missing relationships given an otherwise complete model that fully
defines table metadata:

from sqlalchemy.ext.automap import automap_base
from sqlalchemy import Column, Integer, String, ForeignKey

Base = automap_base()

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 name = Column(String)

class Address(Base):
 __tablename__ = 'address'

 id = Column(Integer, primary_key=True)
 email = Column(String)
 user_id = Column(ForeignKey('user.id'))

produce relationships
Base.prepare()

mapping is complete, with "address_collection" and
"user" relationships
a1 = Address(email='u1')
a2 = Address(email='u2')
u1 = User(address_collection=[a1, a2])
assert a1.user is u1

Above, given mostly complete User and Address mappings, the
ForeignKey which we defined on Address.user_id allowed a
bidirectional relationship pair Address.user and
User.address_collection to be generated on the mapped classes.

Note that when subclassing AutomapBase,
the AutomapBase.prepare() method is required; if not called, the classes
we’ve declared are in an un-mapped state.

API Reference

	
sqlalchemy.ext.automap.automap_base(declarative_base=None, **kw)

	Produce a declarative automap base.

This function produces a new base class that is a product of the
AutomapBase class as well a declarative base produced by
declarative.declarative_base().

All parameters other than declarative_base are keyword arguments
that are passed directly to the declarative.declarative_base()
function.

	Parameters:
	
	declarative_base¶ – an existing class produced by
declarative.declarative_base(). When this is passed, the function
no longer invokes declarative.declarative_base() itself, and all
other keyword arguments are ignored.

	**kw¶ – keyword arguments are passed along to
declarative.declarative_base().

	
class sqlalchemy.ext.automap.AutomapBase

	Base class for an “automap” schema.

The AutomapBase class can be compared to the “declarative base”
class that is produced by the declarative.declarative_base()
function. In practice, the AutomapBase class is always used
as a mixin along with an actual declarative base.

A new subclassable AutomapBase is typically instantated
using the automap_base() function.

See also

Automap

	
classes = None

	An instance of util.Properties containing classes.

This object behaves much like the .c collection on a table. Classes
are present under the name they were given, e.g.:

Base = automap_base()
Base.prepare(engine=some_engine, reflect=True)

User, Address = Base.classes.User, Base.classes.Address

	
classmethod prepare(engine=None, reflect=False, schema=None, classname_for_table=<function classname_for_table>, collection_class=<type 'list'>, name_for_scalar_relationship=<function name_for_scalar_relationship>, name_for_collection_relationship=<function name_for_collection_relationship>, generate_relationship=<function generate_relationship>)

	Extract mapped classes and relationships from the MetaData and
perform mappings.

	Parameters:
	
	engine¶ – an Engine or Connection with which
to perform schema reflection, if specified.
If the AutomapBase.prepare.reflect argument is False,
this object is not used.

	reflect¶ – if True, the MetaData.reflect() method is called
on the MetaData associated with this AutomapBase.
The Engine passed via
AutomapBase.prepare.engine will be used to perform the
reflection if present; else, the MetaData should already be
bound to some engine else the operation will fail.

	classname_for_table¶ – callable function which will be used to
produce new class names, given a table name. Defaults to
classname_for_table().

	name_for_scalar_relationship¶ – callable function which will be
used to produce relationship names for scalar relationships. Defaults
to name_for_scalar_relationship().

	name_for_collection_relationship¶ – callable function which will
be used to produce relationship names for collection-oriented
relationships. Defaults to name_for_collection_relationship().

	generate_relationship¶ – callable function which will be used to
actually generate relationship() and backref()
constructs. Defaults to generate_relationship().

	collection_class¶ – the Python collection class that will be used
when a new relationship() object is created that represents a
collection. Defaults to list.

	schema¶ – When present in conjunction with the
AutomapBase.prepare.reflect flag, is passed to
MetaData.reflect() to indicate the primary schema where tables
should be reflected from. When omitted, the default schema in use
by the database connection is used.

New in version 1.1.

	
sqlalchemy.ext.automap.classname_for_table(base, tablename, table)

	Return the class name that should be used, given the name
of a table.

The default implementation is:

return str(tablename)

Alternate implementations can be specified using the
AutomapBase.prepare.classname_for_table
parameter.

	Parameters:
	
	base¶ – the AutomapBase class doing the prepare.

	tablename¶ – string name of the Table.

	table¶ – the Table object itself.

	Returns:
	

a string class name.

Note

In Python 2, the string used for the class name must be a
non-Unicode object, e.g. a str() object. The .name attribute
of Table is typically a Python unicode subclass, so the
str() function should be applied to this name, after accounting for
any non-ASCII characters.

	
sqlalchemy.ext.automap.name_for_scalar_relationship(base, local_cls, referred_cls, constraint)

	Return the attribute name that should be used to refer from one
class to another, for a scalar object reference.

The default implementation is:

return referred_cls.__name__.lower()

Alternate implementations can be specified using the
AutomapBase.prepare.name_for_scalar_relationship
parameter.

	Parameters:
	
	base¶ – the AutomapBase class doing the prepare.

	local_cls¶ – the class to be mapped on the local side.

	referred_cls¶ – the class to be mapped on the referring side.

	constraint¶ – the ForeignKeyConstraint that is being
inspected to produce this relationship.

	
sqlalchemy.ext.automap.name_for_collection_relationship(base, local_cls, referred_cls, constraint)

	Return the attribute name that should be used to refer from one
class to another, for a collection reference.

The default implementation is:

return referred_cls.__name__.lower() + "_collection"

Alternate implementations
can be specified using the
AutomapBase.prepare.name_for_collection_relationship
parameter.

	Parameters:
	
	base¶ – the AutomapBase class doing the prepare.

	local_cls¶ – the class to be mapped on the local side.

	referred_cls¶ – the class to be mapped on the referring side.

	constraint¶ – the ForeignKeyConstraint that is being
inspected to produce this relationship.

	
sqlalchemy.ext.automap.generate_relationship(base, direction, return_fn, attrname, local_cls, referred_cls, **kw)

	Generate a relationship() or backref() on behalf of two
mapped classes.

An alternate implementation of this function can be specified using the
AutomapBase.prepare.generate_relationship parameter.

The default implementation of this function is as follows:

if return_fn is backref:
 return return_fn(attrname, **kw)
elif return_fn is relationship:
 return return_fn(referred_cls, **kw)
else:
 raise TypeError("Unknown relationship function: %s" % return_fn)

	Parameters:
	
	base¶ – the AutomapBase class doing the prepare.

	direction¶ – indicate the “direction” of the relationship; this will
be one of ONETOMANY, MANYTOONE, MANYTOMANY.

	return_fn¶ – the function that is used by default to create the
relationship. This will be either relationship() or
backref(). The backref() function’s result will be used to
produce a new relationship() in a second step, so it is critical
that user-defined implementations correctly differentiate between the two
functions, if a custom relationship function is being used.

	local_cls¶ – the “local” class to which this relationship or backref
will be locally present.

	referred_cls¶ – the “referred” class to which the relationship or
backref refers to.

	**kw¶ – all additional keyword arguments are passed along to the
function.

	Attrname:
	the attribute name to which this relationship is being assigned.
If the value of generate_relationship.return_fn is the
backref() function, then this name is the name that is being
assigned to the backref.

	Returns:
	a relationship() or backref() construct, as dictated
by the generate_relationship.return_fn parameter.

Baked Queries

baked provides an alternative creational pattern for
Query objects, which allows for caching of the object’s
construction and string-compilation steps. This means that for a
particular Query building scenario that is used more than
once, all of the Python function invocation involved in building the query
from its initial construction up through generating a SQL string will only
occur once, rather than for each time that query is built up and executed.

The rationale for this system is to greatly reduce Python interpreter
overhead for everything that occurs before the SQL is emitted.
The caching of the “baked” system does not in any way reduce SQL calls or
cache the return results from the database. A technique that demonstates
the caching of the SQL calls and result sets themselves is available in
Dogpile Caching.

New in version 1.0.0.

Note

The sqlalchemy.ext.baked extension should be considered
experimental as of 1.0.0. It provides a dramatically different system
of producing queries which has yet to be proven at scale.

Synopsis

Usage of the baked system starts by producing a so-called “bakery”, which
represents storage for a particular series of query objects:

from sqlalchemy.ext import baked

bakery = baked.bakery()

The above “bakery” will store cached data in an LRU cache that defaults
to 200 elements, noting that an ORM query will typically contain one entry
for the ORM query as invoked, as well as one entry per database dialect for
the SQL string.

The bakery allows us to build up a Query object by specifying
its construction as a series of Python callables, which are typically lambdas.
For succinct usage, it overrides the += operator so that a typical
query build-up looks like the following:

from sqlalchemy import bindparam

def search_for_user(session, username, email=None):

 baked_query = bakery(lambda session: session.query(User))
 baked_query += lambda q: q.filter(User.name == bindparam('username'))

 baked_query += lambda q: q.order_by(User.id)

 if email:
 baked_query += lambda q: q.filter(User.email == bindparam('email'))

 result = baked_query(session).params(username=username, email=email).all()

 return result

Following are some observations about the above code:

	The baked_query object is an instance of BakedQuery. This
object is essentially the “builder” for a real orm Query
object, but it is not itself the actual Query
object.

	The actual Query object is not built at all, until the
very end of the function when Result.all() is called.

	The steps that are added to the baked_query object are all expressed
as Python functions, typically lambdas. The first lambda given
to the bakery() function receives a Session as its
argument. The remaining lambdas each receive a Query
as their argument.

	In the above code, even though our application may call upon
search_for_user() many times, and even though within each invocation
we build up an entirely new BakedQuery object,
all of the lambdas are only called once. Each lambda is never called
a second time for as long as this query is cached in the bakery.

	The caching is achieved by storing references to the lambda objects
themselves in order to formulate a cache key; that is, the fact that the
Python interpreter assigns an in-Python identity to these functions is
what determines how to identify the query on successive runs. For
those invocations of search_for_user() where the email parameter
is specified, the callable lambda q: q.filter(User.email == bindparam('email'))
will be part of the cache key that’s retrieved; when email is
None, this callable is not part of the cache key.

	Because the lambdas are all called only once, it is essential that no
variables which may change across calls are referenced within the
lambdas; instead, assuming these are values to be bound into the
SQL string, we use bindparam() to construct named parameters,
where we apply their actual values later using Result.params().

Performance

The baked query probably looks a little odd, a little bit awkward and
a little bit verbose. However, the savings in
Python performance for a query which is invoked lots of times in an
application are very dramatic. The example suite short_selects
demonstrated in Performance illustrates a comparison
of queries which each return only one row, such as the following regular
query:

session = Session(bind=engine)
for id_ in random.sample(ids, n):
 session.query(Customer).filter(Customer.id == id_).one()

compared to the equivalent “baked” query:

bakery = baked.bakery()
s = Session(bind=engine)
for id_ in random.sample(ids, n):
 q = bakery(lambda s: s.query(Customer))
 q += lambda q: q.filter(Customer.id == bindparam('id'))
 q(s).params(id=id_).one()

The difference in Python function call count for an iteration of 10000
calls to each block are:

test_baked_query : test a baked query of the full entity.
 (10000 iterations); total fn calls 1951294

test_orm_query : test a straight ORM query of the full entity.
 (10000 iterations); total fn calls 7900535

In terms of number of seconds on a powerful laptop, this comes out as:

test_baked_query : test a baked query of the full entity.
 (10000 iterations); total time 2.174126 sec

test_orm_query : test a straight ORM query of the full entity.
 (10000 iterations); total time 7.958516 sec

Note that this test very intentionally features queries that only return one row.
For queries that return many rows, the performance advantage of the baked query will have
less and less of an impact, proportional to the time spent fetching rows.
It is critical to keep in mind that the baked query feature only applies to
building the query itself, not the fetching of results. Using the
baked feature is by no means a guarantee to a much faster application; it is
only a potentially useful feature for those applications that have been measured
as being impacted by this particular form of overhead.

Measure twice, cut once

For background on how to profile a SQLAlchemy application, please see
the section Performance. It is essential that performance
measurement techniques are used when attempting to improve the performance
of an application.

Rationale

The “lambda” approach above is a superset of what would be a more
traditional “parameterized” approach. Suppose we wished to build
a simple system where we build a Query just once, then
store it in a dictionary for re-use. This is possible right now by
just building up the query, and removing its Session by calling
my_cached_query = query.with_session(None):

my_simple_cache = {}

def lookup(session, id_argument):
 if "my_key" not in my_simple_cache:
 query = session.query(Model).filter(Model.id == bindparam('id'))
 my_simple_cache["my_key"] = query.with_session(None)
 else:
 query = my_simple_cache["my_key"].with_session(session)

 return query.params(id=id_argument).all()

The above approach gets us a very minimal performance benefit.
By re-using a Query, we save on the Python work within
the session.query(Model) constructor as well as calling upon
filter(Model.id == bindparam('id')), which will skip for us the building
up of the Core expression as well as sending it to Query.filter().
However, the approach still regenerates the full Select
object every time when Query.all() is called and additionally this
brand new Select is sent off to the string compilation step every
time, which for a simple case like the above is probably about 70% of the
overhead.

To reduce the additional overhead, we need some more specialized logic,
some way to memoize the construction of the select object and the
construction of the SQL. There is an example of this on the wiki
in the section BakedQuery,
a precursor to this feature, however in that system, we aren’t caching
the construction of the query. In order to remove all the overhead,
we need to cache both the construction of the query as well as the SQL
compilation. Let’s assume we adapted the recipe in this way
and made ourselves a method .bake() that pre-compiles the SQL for the
query, producing a new object that can be invoked with minimal overhead.
Our example becomes:

my_simple_cache = {}

def lookup(session, id_argument):

 if "my_key" not in my_simple_cache:
 query = session.query(Model).filter(Model.id == bindparam('id'))
 my_simple_cache["my_key"] = query.with_session(None).bake()
 else:
 query = my_simple_cache["my_key"].with_session(session)

 return query.params(id=id_argument).all()

Above, we’ve fixed the performance situation, but we still have this
string cache key to deal with.

We can use the “bakery” approach to re-frame the above in a way that
looks less unusual than the “building up lambdas” approach, and more like
a simple improvement upon the simple “reuse a query” approach:

bakery = baked.bakery()

def lookup(session, id_argument):
 def create_model_query(session):
 return session.query(Model).filter(Model.id == bindparam('id'))

 parameterized_query = bakery.bake(create_model_query)
 return parameterized_query(session).params(id=id_argument).all()

Above, we use the “baked” system in a manner that is
very similar to the simplistic “cache a query” system. However, it
uses two fewer lines of code, does not need to manufacture a cache key of
“my_key”, and also includes the same feature as our custom “bake” function
that caches 100% of the Python invocation work from the
constructor of the query, to the filter call, to the production
of the Select object, to the string compilation step.

From the above, if we ask ourselves, “what if lookup needs to make conditional decisions
as to the structure of the query?”, this is where hopefully it becomes apparent
why “baked” is the way it is. Instead of a parameterized query building
off from exactly one function (which is how we thought baked might work
originally), we can build it from any number of functions. Consider
our naive example, if we needed to have an additional clause in our
query on a conditional basis:

my_simple_cache = {}

def lookup(session, id_argument, include_frobnizzle=False):
 if include_frobnizzle:
 cache_key = "my_key_with_frobnizzle"
 else:
 cache_key = "my_key_without_frobnizzle"

 if cache_key not in my_simple_cache:
 query = session.query(Model).filter(Model.id == bindparam('id'))
 if include_frobnizzle:
 query = query.filter(Model.frobnizzle == True)

 my_simple_cache[cache_key] = query.with_session(None).bake()
 else:
 query = my_simple_cache[cache_key].with_session(session)

 return query.params(id=id_argument).all()

Our “simple” parameterized system must now be tasked with generating
cache keys which take into account whether or not the “include_frobnizzle”
flag was passed, as the presence of this flag means that the generated
SQL would be entirely different. It should be apparent that as the
complexity of query building goes up, the task of caching these queries
becomes burdensome very quickly. We can convert the above example
into a direct use of “bakery” as follows:

bakery = baked.bakery()

def lookup(session, id_argument, include_frobnizzle=False):
 def create_model_query(session):
 return session.query(Model).filter(Model.id == bindparam('id'))

 parameterized_query = bakery.bake(create_model_query)

 if include_frobnizzle:
 def include_frobnizzle_in_query(query):
 return query.filter(Model.frobnizzle == True)

 parameterized_query = parameterized_query.with_criteria(
 include_frobnizzle_in_query)

 return parameterized_query(session).params(id=id_argument).all()

Above, we again cache not just the query object but all the work it needs
to do in order to generate SQL. We also no longer need to deal with
making sure we generate a cache key that accurately takes into account
all of the structural modifications we’ve made; this is now handled
automatically and without the chance of mistakes.

This code sample is a few lines shorter than the naive example, removes
the need to deal with cache keys, and has the vast performance benefits
of the full so-called “baked” feature. But
still a little verbose! Hence we take methods like BakedQuery.add_criteria()
and BakedQuery.with_criteria() and shorten them into operators, and
encourage (though certainly not require!) using simple lambdas, only as a
means to reduce verbosity:

bakery = baked.bakery()

def lookup(session, id_argument, include_frobnizzle=False):
 parameterized_query = bakery.bake(
 lambda s: s.query(Model).filter(Model.id == bindparam('id'))
)

 if include_frobnizzle:
 parameterized_query += lambda q: q.filter(Model.frobnizzle == True)

 return parameterized_query(session).params(id=id_argument).all()

Where above, the approach is simpler to implement and much more similar
in code flow to what a non-cached querying function would look like,
hence making code easier to port.

The above description is essentially a summary of the design process used
to arrive at the current “baked” approach. Starting from the
“normal” approaches, the additional issues of cache key construction and
management, removal of all redundant Python execution, and queries built up
with conditionals needed to be addressed, leading to the final approach.

Lazy Loading Integration

The baked query can be integrated with SQLAlchemy’s lazy loader feature
transparently. A future release of SQLAlchemy may enable this by default,
as its use within lazy loading is completely transparent. For now,
to enable baked lazyloading for all lazyloaders systemwide, call upon
the bake_lazy_loaders() function. This will impact all relationships
that use the lazy='select' strategy as well as all use of the lazyload()
per-query strategy.

“Baked” lazy loading may be enabled on a per-relationship() basis
using the baked_select loader strategy:

class MyClass(Base):
 # ...

 widgets = relationship("Widget", lazy="baked_select")

The baked_select strategy is available once any part of the application
has imported the sqlalchemy.ext.baked module. The “bakery” used by
this feature is local to the mapper for MyClass.

For per-query use, the baked_lazyload() strategy may be used,
which works like any other loader option.

Opting out with the bake_queries flag

The relationship() construct includes a flag
relationship.bake_queries which when set to False will cause
that relationship to opt out of the baked query system, when the
application-wide bake_lazy_loaders() function has been called to enable
baked query loaders by default.

API Documentation

	
sqlalchemy.ext.baked.bakery(cls, size=200)

	Construct a new bakery.

	
class sqlalchemy.ext.baked.BakedQuery(bakery, initial_fn, args=())

	A builder object for query.Query objects.

	
add_criteria(fn, *args)

	Add a criteria function to this BakedQuery.

This is equivalent to using the += operator to
modify a BakedQuery in-place.

	
classmethod bakery(size=200)

	Construct a new bakery.

	
for_session(session)

	Return a Result object for this BakedQuery.

This is equivalent to calling the BakedQuery as a
Python callable, e.g. result = my_baked_query(session).

	
spoil(full=False)

	Cancel any query caching that will occur on this BakedQuery object.

The BakedQuery can continue to be used normally, however additional
creational functions will not be cached; they will be called
on every invocation.

This is to support the case where a particular step in constructing
a baked query disqualifies the query from being cacheable, such
as a variant that relies upon some uncacheable value.

	Parameters:
	full¶ – if False, only functions added to this
BakedQuery object subsequent to the spoil step will be
non-cached; the state of the BakedQuery up until
this point will be pulled from the cache. If True, then the
entire Query object is built from scratch each
time, with all creational functions being called on each
invocation.

	
with_criteria(fn, *args)

	Add a criteria function to a BakedQuery cloned from this one.

This is equivalent to using the + operator to
produce a new BakedQuery with modifications.

	
class sqlalchemy.ext.baked.Result(bq, session)

	Invokes a BakedQuery against a Session.

The Result object is where the actual query.Query
object gets created, or retrieved from the cache,
against a target Session, and is then invoked for results.

	
all()

	Return all rows.

Equivalent to Query.all().

	
first()

	Return the first row.

Equivalent to Query.first().

	
get(ident)

	Retrieve an object based on identity.

Equivalent to Query.get().

	
one()

	Return exactly one result or raise an exception.

Equivalent to Query.one().

	
one_or_none()

	Return one or zero results, or raise an exception for multiple
rows.

Equivalent to Query.one_or_none().

New in version 1.0.9.

	
params(*args, **kw)

	Specify parameters to be replaced into the string SQL statement.

	
sqlalchemy.ext.baked.bake_lazy_loaders()

	Enable the use of baked queries for all lazyloaders systemwide.

This operation should be safe for all lazy loaders, and will reduce
Python overhead for these operations.

	
sqlalchemy.ext.baked.unbake_lazy_loaders()

	Disable the use of baked queries for all lazyloaders systemwide.

This operation reverts the changes produced by bake_lazy_loaders().

	
sqlalchemy.ext.baked.baked_lazyload(*keys)

	Indicate that the given attribute should be loaded using “lazy”
loading with a “baked” query used in the load.

	
sqlalchemy.ext.baked.baked_lazyload_all(*keys)

	Produce a standalone “all” option for orm.baked_lazyload().

Deprecated since version 0.9.0: The “_all()” style is replaced by method chaining, e.g.:

session.query(MyClass).options(
 baked_lazyload("someattribute").baked_lazyload("anotherattribute")
)

Declarative

The Declarative system is the typically used system provided by the SQLAlchemy
ORM in order to define classes mapped to relational database tables. However,
as noted in Classical Mappings, Declarative is in fact a series of
extensions that ride on top of the SQLAlchemy mapper() construct.

While the documentation typically refers to Declarative for most examples,
the following sections will provide detailed information on how the
Declarative API interacts with the basic mapper() and Core Table
systems, as well as how sophisticated patterns can be built using systems
such as mixins.

	Basic Use
	Defining Attributes

	Accessing the MetaData

	Class Constructor

	Mapper Configuration

	Defining SQL Expressions

	Configuring Relationships
	Configuring Many-to-Many Relationships

	Table Configuration
	Using a Hybrid Approach with __table__

	Using Reflection with Declarative

	Inheritance Configuration
	Joined Table Inheritance

	Single Table Inheritance

	Concrete Table Inheritance

	Mixin and Custom Base Classes
	Augmenting the Base

	Mixing in Columns

	Mixing in Relationships

	Mixing in deferred(), column_property(), and other MapperProperty classes

	Mixing in Association Proxy and Other Attributes

	Controlling table inheritance with mixins

	Mixing in Columns in Inheritance Scenarios

	Combining Table/Mapper Arguments from Multiple Mixins

	Creating Indexes with Mixins

	Declarative API
	API Reference

Basic Use

SQLAlchemy object-relational configuration involves the
combination of Table, mapper(), and class
objects to define a mapped class.
declarative allows all three to be
expressed at once within the class declaration. As much as
possible, regular SQLAlchemy schema and ORM constructs are
used directly, so that configuration between “classical” ORM
usage and declarative remain highly similar.

As a simple example:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class SomeClass(Base):
 __tablename__ = 'some_table'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))

Above, the declarative_base() callable returns a new base class from
which all mapped classes should inherit. When the class definition is
completed, a new Table and mapper() will have been generated.

The resulting table and mapper are accessible via
__table__ and __mapper__ attributes on the
SomeClass class:

access the mapped Table
SomeClass.__table__

access the Mapper
SomeClass.__mapper__

Defining Attributes

In the previous example, the Column objects are
automatically named with the name of the attribute to which they are
assigned.

To name columns explicitly with a name distinct from their mapped attribute,
just give the column a name. Below, column “some_table_id” is mapped to the
“id” attribute of SomeClass, but in SQL will be represented as
“some_table_id”:

class SomeClass(Base):
 __tablename__ = 'some_table'
 id = Column("some_table_id", Integer, primary_key=True)

Attributes may be added to the class after its construction, and they will be
added to the underlying Table and
mapper() definitions as appropriate:

SomeClass.data = Column('data', Unicode)
SomeClass.related = relationship(RelatedInfo)

Classes which are constructed using declarative can interact freely
with classes that are mapped explicitly with mapper().

It is recommended, though not required, that all tables
share the same underlying MetaData object,
so that string-configured ForeignKey
references can be resolved without issue.

Accessing the MetaData

The declarative_base() base class contains a
MetaData object where newly defined
Table objects are collected. This object is
intended to be accessed directly for
MetaData-specific operations. Such as, to issue
CREATE statements for all tables:

engine = create_engine('sqlite://')
Base.metadata.create_all(engine)

declarative_base() can also receive a pre-existing
MetaData object, which allows a
declarative setup to be associated with an already
existing traditional collection of Table
objects:

mymetadata = MetaData()
Base = declarative_base(metadata=mymetadata)

Class Constructor

As a convenience feature, the declarative_base() sets a default
constructor on classes which takes keyword arguments, and assigns them
to the named attributes:

e = Engineer(primary_language='python')

Mapper Configuration

Declarative makes use of the mapper() function internally
when it creates the mapping to the declared table. The options
for mapper() are passed directly through via the
__mapper_args__ class attribute. As always, arguments which reference
locally mapped columns can reference them directly from within the
class declaration:

from datetime import datetime

class Widget(Base):
 __tablename__ = 'widgets'

 id = Column(Integer, primary_key=True)
 timestamp = Column(DateTime, nullable=False)

 __mapper_args__ = {
 'version_id_col': timestamp,
 'version_id_generator': lambda v:datetime.now()
 }

Defining SQL Expressions

See SQL Expressions as Mapped Attributes for examples on declaratively
mapping attributes to SQL expressions.

Configuring Relationships

Relationships to other classes are done in the usual way, with the added
feature that the class specified to relationship()
may be a string name. The “class registry” associated with Base
is used at mapper compilation time to resolve the name into the actual
class object, which is expected to have been defined once the mapper
configuration is used:

class User(Base):
 __tablename__ = 'users'

 id = Column(Integer, primary_key=True)
 name = Column(String(50))
 addresses = relationship("Address", backref="user")

class Address(Base):
 __tablename__ = 'addresses'

 id = Column(Integer, primary_key=True)
 email = Column(String(50))
 user_id = Column(Integer, ForeignKey('users.id'))

Column constructs, since they are just that, are immediately usable,
as below where we define a primary join condition on the Address
class using them:

class Address(Base):
 __tablename__ = 'addresses'

 id = Column(Integer, primary_key=True)
 email = Column(String(50))
 user_id = Column(Integer, ForeignKey('users.id'))
 user = relationship(User, primaryjoin=user_id == User.id)

In addition to the main argument for relationship(),
other arguments which depend upon the columns present on an as-yet
undefined class may also be specified as strings. These strings are
evaluated as Python expressions. The full namespace available within
this evaluation includes all classes mapped for this declarative base,
as well as the contents of the sqlalchemy package, including
expression functions like desc() and
func:

class User(Base):
 #
 addresses = relationship("Address",
 order_by="desc(Address.email)",
 primaryjoin="Address.user_id==User.id")

For the case where more than one module contains a class of the same name,
string class names can also be specified as module-qualified paths
within any of these string expressions:

class User(Base):
 #
 addresses = relationship("myapp.model.address.Address",
 order_by="desc(myapp.model.address.Address.email)",
 primaryjoin="myapp.model.address.Address.user_id=="
 "myapp.model.user.User.id")

The qualified path can be any partial path that removes ambiguity between
the names. For example, to disambiguate between
myapp.model.address.Address and myapp.model.lookup.Address,
we can specify address.Address or lookup.Address:

class User(Base):
 #
 addresses = relationship("address.Address",
 order_by="desc(address.Address.email)",
 primaryjoin="address.Address.user_id=="
 "User.id")

New in version 0.8: module-qualified paths can be used when specifying string arguments
with Declarative, in order to specify specific modules.

Two alternatives also exist to using string-based attributes. A lambda
can also be used, which will be evaluated after all mappers have been
configured:

class User(Base):
 # ...
 addresses = relationship(lambda: Address,
 order_by=lambda: desc(Address.email),
 primaryjoin=lambda: Address.user_id==User.id)

Or, the relationship can be added to the class explicitly after the classes
are available:

User.addresses = relationship(Address,
 primaryjoin=Address.user_id==User.id)

Configuring Many-to-Many Relationships

Many-to-many relationships are also declared in the same way
with declarative as with traditional mappings. The
secondary argument to
relationship() is as usual passed a
Table object, which is typically declared in the
traditional way. The Table usually shares
the MetaData object used by the declarative base:

keywords = Table(
 'keywords', Base.metadata,
 Column('author_id', Integer, ForeignKey('authors.id')),
 Column('keyword_id', Integer, ForeignKey('keywords.id'))
)

class Author(Base):
 __tablename__ = 'authors'
 id = Column(Integer, primary_key=True)
 keywords = relationship("Keyword", secondary=keywords)

Like other relationship() arguments, a string is accepted
as well, passing the string name of the table as defined in the
Base.metadata.tables collection:

class Author(Base):
 __tablename__ = 'authors'
 id = Column(Integer, primary_key=True)
 keywords = relationship("Keyword", secondary="keywords")

As with traditional mapping, its generally not a good idea to use
a Table as the “secondary” argument which is also mapped to
a class, unless the relationship() is declared with viewonly=True.
Otherwise, the unit-of-work system may attempt duplicate INSERT and
DELETE statements against the underlying table.

Table Configuration

Table arguments other than the name, metadata, and mapped Column
arguments are specified using the __table_args__ class attribute.
This attribute accommodates both positional as well as keyword
arguments that are normally sent to the
Table constructor.
The attribute can be specified in one of two forms. One is as a
dictionary:

class MyClass(Base):
 __tablename__ = 'sometable'
 __table_args__ = {'mysql_engine':'InnoDB'}

The other, a tuple, where each argument is positional
(usually constraints):

class MyClass(Base):
 __tablename__ = 'sometable'
 __table_args__ = (
 ForeignKeyConstraint(['id'], ['remote_table.id']),
 UniqueConstraint('foo'),
)

Keyword arguments can be specified with the above form by
specifying the last argument as a dictionary:

class MyClass(Base):
 __tablename__ = 'sometable'
 __table_args__ = (
 ForeignKeyConstraint(['id'], ['remote_table.id']),
 UniqueConstraint('foo'),
 {'autoload':True}
)

Using a Hybrid Approach with __table__

As an alternative to __tablename__, a direct
Table construct may be used. The
Column objects, which in this case require
their names, will be added to the mapping just like a regular mapping
to a table:

class MyClass(Base):
 __table__ = Table('my_table', Base.metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50))
)

__table__ provides a more focused point of control for establishing
table metadata, while still getting most of the benefits of using declarative.
An application that uses reflection might want to load table metadata elsewhere
and pass it to declarative classes:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
Base.metadata.reflect(some_engine)

class User(Base):
 __table__ = metadata.tables['user']

class Address(Base):
 __table__ = metadata.tables['address']

Some configuration schemes may find it more appropriate to use __table__,
such as those which already take advantage of the data-driven nature of
Table to customize and/or automate schema definition.

Note that when the __table__ approach is used, the object is immediately
usable as a plain Table within the class declaration body itself,
as a Python class is only another syntactical block. Below this is illustrated
by using the id column in the primaryjoin condition of a
relationship():

class MyClass(Base):
 __table__ = Table('my_table', Base.metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50))
)

 widgets = relationship(Widget,
 primaryjoin=Widget.myclass_id==__table__.c.id)

Similarly, mapped attributes which refer to __table__ can be placed inline,
as below where we assign the name column to the attribute _name,
generating a synonym for name:

from sqlalchemy.ext.declarative import synonym_for

class MyClass(Base):
 __table__ = Table('my_table', Base.metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50))
)

 _name = __table__.c.name

 @synonym_for("_name")
 def name(self):
 return "Name: %s" % _name

Using Reflection with Declarative

It’s easy to set up a Table that uses autoload=True
in conjunction with a mapped class:

class MyClass(Base):
 __table__ = Table('mytable', Base.metadata,
 autoload=True, autoload_with=some_engine)

However, one improvement that can be made here is to not
require the Engine to be available when classes are
being first declared. To achieve this, use the
DeferredReflection mixin, which sets up mappings
only after a special prepare(engine) step is called:

from sqlalchemy.ext.declarative import declarative_base, DeferredReflection

Base = declarative_base(cls=DeferredReflection)

class Foo(Base):
 __tablename__ = 'foo'
 bars = relationship("Bar")

class Bar(Base):
 __tablename__ = 'bar'

 # illustrate overriding of "bar.foo_id" to have
 # a foreign key constraint otherwise not
 # reflected, such as when using MySQL
 foo_id = Column(Integer, ForeignKey('foo.id'))

Base.prepare(e)

New in version 0.8: Added DeferredReflection.

Inheritance Configuration

Declarative supports all three forms of inheritance as intuitively
as possible. The inherits mapper keyword argument is not needed
as declarative will determine this from the class itself. The various
“polymorphic” keyword arguments are specified using __mapper_args__.

See also

Mapping Class Inheritance Hierarchies - general introduction to inheritance
mapping with Declarative.

Joined Table Inheritance

Joined table inheritance is defined as a subclass that defines its own
table:

class Person(Base):
 __tablename__ = 'people'
 id = Column(Integer, primary_key=True)
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class Engineer(Person):
 __tablename__ = 'engineers'
 __mapper_args__ = {'polymorphic_identity': 'engineer'}
 id = Column(Integer, ForeignKey('people.id'), primary_key=True)
 primary_language = Column(String(50))

Note that above, the Engineer.id attribute, since it shares the
same attribute name as the Person.id attribute, will in fact
represent the people.id and engineers.id columns together,
with the “Engineer.id” column taking precedence if queried directly.
To provide the Engineer class with an attribute that represents
only the engineers.id column, give it a different attribute name:

class Engineer(Person):
 __tablename__ = 'engineers'
 __mapper_args__ = {'polymorphic_identity': 'engineer'}
 engineer_id = Column('id', Integer, ForeignKey('people.id'),
 primary_key=True)
 primary_language = Column(String(50))

Single Table Inheritance

Single table inheritance is defined as a subclass that does not have
its own table; you just leave out the __table__ and __tablename__
attributes:

class Person(Base):
 __tablename__ = 'people'
 id = Column(Integer, primary_key=True)
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class Engineer(Person):
 __mapper_args__ = {'polymorphic_identity': 'engineer'}
 primary_language = Column(String(50))

When the above mappers are configured, the Person class is mapped
to the people table before the primary_language column is
defined, and this column will not be included in its own mapping.
When Engineer then defines the primary_language column, the
column is added to the people table so that it is included in the
mapping for Engineer and is also part of the table’s full set of
columns. Columns which are not mapped to Person are also excluded
from any other single or joined inheriting classes using the
exclude_properties mapper argument. Below, Manager will have
all the attributes of Person and Manager but not the
primary_language attribute of Engineer:

class Manager(Person):
 __mapper_args__ = {'polymorphic_identity': 'manager'}
 golf_swing = Column(String(50))

The attribute exclusion logic is provided by the
exclude_properties mapper argument, and declarative’s default
behavior can be disabled by passing an explicit exclude_properties
collection (empty or otherwise) to the __mapper_args__.

Resolving Column Conflicts

Note above that the primary_language and golf_swing columns
are “moved up” to be applied to Person.__table__, as a result of their
declaration on a subclass that has no table of its own. A tricky case
comes up when two subclasses want to specify the same column, as below:

class Person(Base):
 __tablename__ = 'people'
 id = Column(Integer, primary_key=True)
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class Engineer(Person):
 __mapper_args__ = {'polymorphic_identity': 'engineer'}
 start_date = Column(DateTime)

class Manager(Person):
 __mapper_args__ = {'polymorphic_identity': 'manager'}
 start_date = Column(DateTime)

Above, the start_date column declared on both Engineer and Manager
will result in an error:

sqlalchemy.exc.ArgumentError: Column 'start_date' on class
<class '__main__.Manager'> conflicts with existing
column 'people.start_date'

In a situation like this, Declarative can’t be sure
of the intent, especially if the start_date columns had, for example,
different types. A situation like this can be resolved by using
declared_attr to define the Column conditionally, taking
care to return the existing column via the parent __table__ if it
already exists:

from sqlalchemy.ext.declarative import declared_attr

class Person(Base):
 __tablename__ = 'people'
 id = Column(Integer, primary_key=True)
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class Engineer(Person):
 __mapper_args__ = {'polymorphic_identity': 'engineer'}

 @declared_attr
 def start_date(cls):
 "Start date column, if not present already."
 return Person.__table__.c.get('start_date', Column(DateTime))

class Manager(Person):
 __mapper_args__ = {'polymorphic_identity': 'manager'}

 @declared_attr
 def start_date(cls):
 "Start date column, if not present already."
 return Person.__table__.c.get('start_date', Column(DateTime))

Above, when Manager is mapped, the start_date column is
already present on the Person class. Declarative lets us return
that Column as a result in this case, where it knows to skip
re-assigning the same column. If the mapping is mis-configured such
that the start_date column is accidentally re-assigned to a
different table (such as, if we changed Manager to be joined
inheritance without fixing start_date), an error is raised which
indicates an existing Column is trying to be re-assigned to
a different owning Table.

New in version 0.8: declared_attr can be used on a non-mixin
class, and the returned Column or other mapped attribute
will be applied to the mapping as any other attribute. Previously,
the resulting attribute would be ignored, and also result in a warning
being emitted when a subclass was created.

New in version 0.8: declared_attr, when used either with a
mixin or non-mixin declarative class, can return an existing
Column already assigned to the parent Table,
to indicate that the re-assignment of the Column should be
skipped, however should still be mapped on the target class,
in order to resolve duplicate column conflicts.

The same concept can be used with mixin classes (see
Mixin and Custom Base Classes):

class Person(Base):
 __tablename__ = 'people'
 id = Column(Integer, primary_key=True)
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class HasStartDate(object):
 @declared_attr
 def start_date(cls):
 return cls.__table__.c.get('start_date', Column(DateTime))

class Engineer(HasStartDate, Person):
 __mapper_args__ = {'polymorphic_identity': 'engineer'}

class Manager(HasStartDate, Person):
 __mapper_args__ = {'polymorphic_identity': 'manager'}

The above mixin checks the local __table__ attribute for the column.
Because we’re using single table inheritance, we’re sure that in this case,
cls.__table__ refers to Person.__table__. If we were mixing joined-
and single-table inheritance, we might want our mixin to check more carefully
if cls.__table__ is really the Table we’re looking for.

Concrete Table Inheritance

Concrete is defined as a subclass which has its own table and sets the
concrete keyword argument to True:

class Person(Base):
 __tablename__ = 'people'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))

class Engineer(Person):
 __tablename__ = 'engineers'
 __mapper_args__ = {'concrete':True}
 id = Column(Integer, primary_key=True)
 primary_language = Column(String(50))
 name = Column(String(50))

Usage of an abstract base class is a little less straightforward as it
requires usage of polymorphic_union(),
which needs to be created with the Table objects
before the class is built:

engineers = Table('engineers', Base.metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('primary_language', String(50))
)
managers = Table('managers', Base.metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50)),
 Column('golf_swing', String(50))
)

punion = polymorphic_union({
 'engineer':engineers,
 'manager':managers
}, 'type', 'punion')

class Person(Base):
 __table__ = punion
 __mapper_args__ = {'polymorphic_on':punion.c.type}

class Engineer(Person):
 __table__ = engineers
 __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True}

class Manager(Person):
 __table__ = managers
 __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True}

The helper classes AbstractConcreteBase and ConcreteBase
provide automation for the above system of creating a polymorphic union.
See the documentation for these helpers as well as the main ORM documentation
on concrete inheritance for details.

See also

Concrete Table Inheritance

Using the Declarative Helper Classes

Mixin and Custom Base Classes

A common need when using declarative is to
share some functionality, such as a set of common columns, some common
table options, or other mapped properties, across many
classes. The standard Python idioms for this is to have the classes
inherit from a base which includes these common features.

When using declarative, this idiom is allowed
via the usage of a custom declarative base class, as well as a “mixin” class
which is inherited from in addition to the primary base. Declarative
includes several helper features to make this work in terms of how
mappings are declared. An example of some commonly mixed-in
idioms is below:

from sqlalchemy.ext.declarative import declared_attr

class MyMixin(object):

 @declared_attr
 def __tablename__(cls):
 return cls.__name__.lower()

 __table_args__ = {'mysql_engine': 'InnoDB'}
 __mapper_args__= {'always_refresh': True}

 id = Column(Integer, primary_key=True)

class MyModel(MyMixin, Base):
 name = Column(String(1000))

Where above, the class MyModel will contain an “id” column
as the primary key, a __tablename__ attribute that derives
from the name of the class itself, as well as __table_args__
and __mapper_args__ defined by the MyMixin mixin class.

There’s no fixed convention over whether MyMixin precedes
Base or not. Normal Python method resolution rules apply, and
the above example would work just as well with:

class MyModel(Base, MyMixin):
 name = Column(String(1000))

This works because Base here doesn’t define any of the
variables that MyMixin defines, i.e. __tablename__,
__table_args__, id, etc. If the Base did define
an attribute of the same name, the class placed first in the
inherits list would determine which attribute is used on the
newly defined class.

Augmenting the Base

In addition to using a pure mixin, most of the techniques in this
section can also be applied to the base class itself, for patterns that
should apply to all classes derived from a particular base. This is achieved
using the cls argument of the declarative_base() function:

from sqlalchemy.ext.declarative import declared_attr

class Base(object):
 @declared_attr
 def __tablename__(cls):
 return cls.__name__.lower()

 __table_args__ = {'mysql_engine': 'InnoDB'}

 id = Column(Integer, primary_key=True)

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base(cls=Base)

class MyModel(Base):
 name = Column(String(1000))

Where above, MyModel and all other classes that derive from Base will
have a table name derived from the class name, an id primary key column,
as well as the “InnoDB” engine for MySQL.

Mixing in Columns

The most basic way to specify a column on a mixin is by simple
declaration:

class TimestampMixin(object):
 created_at = Column(DateTime, default=func.now())

class MyModel(TimestampMixin, Base):
 __tablename__ = 'test'

 id = Column(Integer, primary_key=True)
 name = Column(String(1000))

Where above, all declarative classes that include TimestampMixin
will also have a column created_at that applies a timestamp to
all row insertions.

Those familiar with the SQLAlchemy expression language know that
the object identity of clause elements defines their role in a schema.
Two Table objects a and b may both have a column called
id, but the way these are differentiated is that a.c.id
and b.c.id are two distinct Python objects, referencing their
parent tables a and b respectively.

In the case of the mixin column, it seems that only one
Column object is explicitly created, yet the ultimate
created_at column above must exist as a distinct Python object
for each separate destination class. To accomplish this, the declarative
extension creates a copy of each Column object encountered on
a class that is detected as a mixin.

This copy mechanism is limited to simple columns that have no foreign
keys, as a ForeignKey itself contains references to columns
which can’t be properly recreated at this level. For columns that
have foreign keys, as well as for the variety of mapper-level constructs
that require destination-explicit context, the
declared_attr decorator is provided so that
patterns common to many classes can be defined as callables:

from sqlalchemy.ext.declarative import declared_attr

class ReferenceAddressMixin(object):
 @declared_attr
 def address_id(cls):
 return Column(Integer, ForeignKey('address.id'))

class User(ReferenceAddressMixin, Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)

Where above, the address_id class-level callable is executed at the
point at which the User class is constructed, and the declarative
extension can use the resulting Column object as returned by
the method without the need to copy it.

Changed in version 0.6.5: Rename sqlalchemy.util.classproperty
into declared_attr.

Columns generated by declared_attr can also be
referenced by __mapper_args__ to a limited degree, currently
by polymorphic_on and version_id_col; the declarative extension
will resolve them at class construction time:

class MyMixin:
 @declared_attr
 def type_(cls):
 return Column(String(50))

 __mapper_args__= {'polymorphic_on':type_}

class MyModel(MyMixin, Base):
 __tablename__='test'
 id = Column(Integer, primary_key=True)

Mixing in Relationships

Relationships created by relationship() are provided
with declarative mixin classes exclusively using the
declared_attr approach, eliminating any ambiguity
which could arise when copying a relationship and its possibly column-bound
contents. Below is an example which combines a foreign key column and a
relationship so that two classes Foo and Bar can both be configured to
reference a common target class via many-to-one:

class RefTargetMixin(object):
 @declared_attr
 def target_id(cls):
 return Column('target_id', ForeignKey('target.id'))

 @declared_attr
 def target(cls):
 return relationship("Target")

class Foo(RefTargetMixin, Base):
 __tablename__ = 'foo'
 id = Column(Integer, primary_key=True)

class Bar(RefTargetMixin, Base):
 __tablename__ = 'bar'
 id = Column(Integer, primary_key=True)

class Target(Base):
 __tablename__ = 'target'
 id = Column(Integer, primary_key=True)

Using Advanced Relationship Arguments (e.g. primaryjoin, etc.)

relationship() definitions which require explicit
primaryjoin, order_by etc. expressions should in all but the most
simplistic cases use late bound forms
for these arguments, meaning, using either the string form or a lambda.
The reason for this is that the related Column objects which are to
be configured using @declared_attr are not available to another
@declared_attr attribute; while the methods will work and return new
Column objects, those are not the Column objects that
Declarative will be using as it calls the methods on its own, thus using
different Column objects.

The canonical example is the primaryjoin condition that depends upon
another mixed-in column:

class RefTargetMixin(object):
 @declared_attr
 def target_id(cls):
 return Column('target_id', ForeignKey('target.id'))

 @declared_attr
 def target(cls):
 return relationship(Target,
 primaryjoin=Target.id==cls.target_id # this is *incorrect*
)

Mapping a class using the above mixin, we will get an error like:

sqlalchemy.exc.InvalidRequestError: this ForeignKey's parent column is not
yet associated with a Table.

This is because the target_id Column we’ve called upon in our
target() method is not the same Column that declarative is
actually going to map to our table.

The condition above is resolved using a lambda:

class RefTargetMixin(object):
 @declared_attr
 def target_id(cls):
 return Column('target_id', ForeignKey('target.id'))

 @declared_attr
 def target(cls):
 return relationship(Target,
 primaryjoin=lambda: Target.id==cls.target_id
)

or alternatively, the string form (which ultimately generates a lambda):

class RefTargetMixin(object):
 @declared_attr
 def target_id(cls):
 return Column('target_id', ForeignKey('target.id'))

 @declared_attr
 def target(cls):
 return relationship("Target",
 primaryjoin="Target.id==%s.target_id" % cls.__name__
)

Mixing in deferred(), column_property(), and other MapperProperty classes

Like relationship(), all
MapperProperty subclasses such as
deferred(), column_property(),
etc. ultimately involve references to columns, and therefore, when
used with declarative mixins, have the declared_attr
requirement so that no reliance on copying is needed:

class SomethingMixin(object):

 @declared_attr
 def dprop(cls):
 return deferred(Column(Integer))

class Something(SomethingMixin, Base):
 __tablename__ = "something"

The column_property() or other construct may refer
to other columns from the mixin. These are copied ahead of time before
the declared_attr is invoked:

class SomethingMixin(object):
 x = Column(Integer)

 y = Column(Integer)

 @declared_attr
 def x_plus_y(cls):
 return column_property(cls.x + cls.y)

Changed in version 1.0.0: mixin columns are copied to the final mapped class
so that declared_attr methods can access the actual column
that will be mapped.

Mixing in Association Proxy and Other Attributes

Mixins can specify user-defined attributes as well as other extension
units such as association_proxy(). The usage of
declared_attr is required in those cases where the attribute must
be tailored specifically to the target subclass. An example is when
constructing multiple association_proxy() attributes which each
target a different type of child object. Below is an
association_proxy() / mixin example which provides a scalar list of
string values to an implementing class:

from sqlalchemy import Column, Integer, ForeignKey, String
from sqlalchemy.orm import relationship
from sqlalchemy.ext.associationproxy import association_proxy
from sqlalchemy.ext.declarative import declarative_base, declared_attr

Base = declarative_base()

class HasStringCollection(object):
 @declared_attr
 def _strings(cls):
 class StringAttribute(Base):
 __tablename__ = cls.string_table_name
 id = Column(Integer, primary_key=True)
 value = Column(String(50), nullable=False)
 parent_id = Column(Integer,
 ForeignKey('%s.id' % cls.__tablename__),
 nullable=False)
 def __init__(self, value):
 self.value = value

 return relationship(StringAttribute)

 @declared_attr
 def strings(cls):
 return association_proxy('_strings', 'value')

class TypeA(HasStringCollection, Base):
 __tablename__ = 'type_a'
 string_table_name = 'type_a_strings'
 id = Column(Integer(), primary_key=True)

class TypeB(HasStringCollection, Base):
 __tablename__ = 'type_b'
 string_table_name = 'type_b_strings'
 id = Column(Integer(), primary_key=True)

Above, the HasStringCollection mixin produces a relationship()
which refers to a newly generated class called StringAttribute. The
StringAttribute class is generated with its own Table
definition which is local to the parent class making usage of the
HasStringCollection mixin. It also produces an association_proxy()
object which proxies references to the strings attribute onto the value
attribute of each StringAttribute instance.

TypeA or TypeB can be instantiated given the constructor
argument strings, a list of strings:

ta = TypeA(strings=['foo', 'bar'])
tb = TypeA(strings=['bat', 'bar'])

This list will generate a collection
of StringAttribute objects, which are persisted into a table that’s
local to either the type_a_strings or type_b_strings table:

>>> print(ta._strings)
[<__main__.StringAttribute object at 0x10151cd90>,
 <__main__.StringAttribute object at 0x10151ce10>]

When constructing the association_proxy(), the
declared_attr decorator must be used so that a distinct
association_proxy() object is created for each of the TypeA
and TypeB classes.

New in version 0.8: declared_attr is usable with non-mapped
attributes, including user-defined attributes as well as
association_proxy().

Controlling table inheritance with mixins

The __tablename__ attribute may be used to provide a function that
will determine the name of the table used for each class in an inheritance
hierarchy, as well as whether a class has its own distinct table.

This is achieved using the declared_attr indicator in conjunction
with a method named __tablename__(). Declarative will always
invoke declared_attr for the special names
__tablename__, __mapper_args__ and __table_args__
function for each mapped class in the hierarchy. The function therefore
needs to expect to receive each class individually and to provide the
correct answer for each.

For example, to create a mixin that gives every class a simple table
name based on class name:

from sqlalchemy.ext.declarative import declared_attr

class Tablename:
 @declared_attr
 def __tablename__(cls):
 return cls.__name__.lower()

class Person(Tablename, Base):
 id = Column(Integer, primary_key=True)
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class Engineer(Person):
 __tablename__ = None
 __mapper_args__ = {'polymorphic_identity': 'engineer'}
 primary_language = Column(String(50))

Alternatively, we can modify our __tablename__ function to return
None for subclasses, using has_inherited_table(). This has
the effect of those subclasses being mapped with single table inheritance
against the parent:

from sqlalchemy.ext.declarative import declared_attr
from sqlalchemy.ext.declarative import has_inherited_table

class Tablename(object):
 @declared_attr
 def __tablename__(cls):
 if has_inherited_table(cls):
 return None
 return cls.__name__.lower()

class Person(Tablename, Base):
 id = Column(Integer, primary_key=True)
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class Engineer(Person):
 primary_language = Column(String(50))
 __mapper_args__ = {'polymorphic_identity': 'engineer'}

Mixing in Columns in Inheritance Scenarios

In constrast to how __tablename__ and other special names are handled when
used with declared_attr, when we mix in columns and properties (e.g.
relationships, column properties, etc.), the function is
invoked for the base class only in the hierarchy. Below, only the
Person class will receive a column
called id; the mapping will fail on Engineer, which is not given
a primary key:

class HasId(object):
 @declared_attr
 def id(cls):
 return Column('id', Integer, primary_key=True)

class Person(HasId, Base):
 __tablename__ = 'person'
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class Engineer(Person):
 __tablename__ = 'engineer'
 primary_language = Column(String(50))
 __mapper_args__ = {'polymorphic_identity': 'engineer'}

It is usually the case in joined-table inheritance that we want distinctly
named columns on each subclass. However in this case, we may want to have
an id column on every table, and have them refer to each other via
foreign key. We can achieve this as a mixin by using the
declared_attr.cascading modifier, which indicates that the
function should be invoked for each class in the hierarchy, just like
it does for __tablename__:

class HasId(object):
 @declared_attr.cascading
 def id(cls):
 if has_inherited_table(cls):
 return Column('id',
 Integer,
 ForeignKey('person.id'), primary_key=True)
 else:
 return Column('id', Integer, primary_key=True)

class Person(HasId, Base):
 __tablename__ = 'person'
 discriminator = Column('type', String(50))
 __mapper_args__ = {'polymorphic_on': discriminator}

class Engineer(Person):
 __tablename__ = 'engineer'
 primary_language = Column(String(50))
 __mapper_args__ = {'polymorphic_identity': 'engineer'}

New in version 1.0.0: added declared_attr.cascading.

Combining Table/Mapper Arguments from Multiple Mixins

In the case of __table_args__ or __mapper_args__
specified with declarative mixins, you may want to combine
some parameters from several mixins with those you wish to
define on the class iteself. The
declared_attr decorator can be used
here to create user-defined collation routines that pull
from multiple collections:

from sqlalchemy.ext.declarative import declared_attr

class MySQLSettings(object):
 __table_args__ = {'mysql_engine':'InnoDB'}

class MyOtherMixin(object):
 __table_args__ = {'info':'foo'}

class MyModel(MySQLSettings, MyOtherMixin, Base):
 __tablename__='my_model'

 @declared_attr
 def __table_args__(cls):
 args = dict()
 args.update(MySQLSettings.__table_args__)
 args.update(MyOtherMixin.__table_args__)
 return args

 id = Column(Integer, primary_key=True)

Creating Indexes with Mixins

To define a named, potentially multicolumn Index that applies to all
tables derived from a mixin, use the “inline” form of Index and
establish it as part of __table_args__:

class MyMixin(object):
 a = Column(Integer)
 b = Column(Integer)

 @declared_attr
 def __table_args__(cls):
 return (Index('test_idx_%s' % cls.__tablename__, 'a', 'b'),)

class MyModel(MyMixin, Base):
 __tablename__ = 'atable'
 c = Column(Integer,primary_key=True)

Declarative API

API Reference

	
sqlalchemy.ext.declarative.declarative_base(bind=None, metadata=None, mapper=None, cls=<type 'object'>, name='Base', constructor=<function __init__>, class_registry=None, metaclass=<class 'sqlalchemy.ext.declarative.api.DeclarativeMeta'>)

	Construct a base class for declarative class definitions.

The new base class will be given a metaclass that produces
appropriate Table objects and makes
the appropriate mapper() calls based on the
information provided declaratively in the class and any subclasses
of the class.

	Parameters:
	
	bind¶ – An optional
Connectable, will be assigned
the bind attribute on the MetaData
instance.

	metadata¶ – An optional MetaData instance. All
Table objects implicitly declared by
subclasses of the base will share this MetaData. A MetaData instance
will be created if none is provided. The
MetaData instance will be available via the
metadata attribute of the generated declarative base class.

	mapper¶ – An optional callable, defaults to mapper(). Will
be used to map subclasses to their Tables.

	cls¶ – Defaults to object. A type to use as the base for the generated
declarative base class. May be a class or tuple of classes.

	name¶ – Defaults to Base. The display name for the generated
class. Customizing this is not required, but can improve clarity in
tracebacks and debugging.

	constructor¶ – Defaults to
_declarative_constructor(), an
__init__ implementation that assigns **kwargs for declared
fields and relationships to an instance. If None is supplied,
no __init__ will be provided and construction will fall back to
cls.__init__ by way of the normal Python semantics.

	class_registry¶ – optional dictionary that will serve as the
registry of class names-> mapped classes when string names
are used to identify classes inside of relationship()
and others. Allows two or more declarative base classes
to share the same registry of class names for simplified
inter-base relationships.

	metaclass¶ – Defaults to DeclarativeMeta. A metaclass or __metaclass__
compatible callable to use as the meta type of the generated
declarative base class.

See also

as_declarative()

	
sqlalchemy.ext.declarative.as_declarative(**kw)

	Class decorator for declarative_base().

Provides a syntactical shortcut to the cls argument
sent to declarative_base(), allowing the base class
to be converted in-place to a “declarative” base:

from sqlalchemy.ext.declarative import as_declarative

@as_declarative()
class Base(object):
 @declared_attr
 def __tablename__(cls):
 return cls.__name__.lower()
 id = Column(Integer, primary_key=True)

class MyMappedClass(Base):
 # ...

All keyword arguments passed to as_declarative() are passed
along to declarative_base().

New in version 0.8.3.

See also

declarative_base()

	
class sqlalchemy.ext.declarative.declared_attr(fget, cascading=False)

	Bases: sqlalchemy.orm.base._MappedAttribute, __builtin__.property

Mark a class-level method as representing the definition of
a mapped property or special declarative member name.

@declared_attr turns the attribute into a scalar-like
property that can be invoked from the uninstantiated class.
Declarative treats attributes specifically marked with
@declared_attr as returning a construct that is specific
to mapping or declarative table configuration. The name
of the attribute is that of what the non-dynamic version
of the attribute would be.

@declared_attr is more often than not applicable to mixins,
to define relationships that are to be applied to different
implementors of the class:

class ProvidesUser(object):
 "A mixin that adds a 'user' relationship to classes."

 @declared_attr
 def user(self):
 return relationship("User")

It also can be applied to mapped classes, such as to provide
a “polymorphic” scheme for inheritance:

class Employee(Base):
 id = Column(Integer, primary_key=True)
 type = Column(String(50), nullable=False)

 @declared_attr
 def __tablename__(cls):
 return cls.__name__.lower()

 @declared_attr
 def __mapper_args__(cls):
 if cls.__name__ == 'Employee':
 return {
 "polymorphic_on":cls.type,
 "polymorphic_identity":"Employee"
 }
 else:
 return {"polymorphic_identity":cls.__name__}

Changed in version 0.8: declared_attr can be used with
non-ORM or extension attributes, such as user-defined attributes
or association_proxy() objects, which will be assigned
to the class at class construction time.

	
cascading

	Mark a declared_attr as cascading.

This is a special-use modifier which indicates that a column
or MapperProperty-based declared attribute should be configured
distinctly per mapped subclass, within a mapped-inheritance scenario.

Below, both MyClass as well as MySubClass will have a distinct
id Column object established:

class HasSomeAttribute(object):
 @declared_attr.cascading
 def some_id(cls):
 if has_inherited_table(cls):
 return Column(
 ForeignKey('myclass.id'), primary_key=True)
 else:
 return Column(Integer, primary_key=True)

 return Column('id', Integer, primary_key=True)

class MyClass(HasSomeAttribute, Base):
 ""
 # ...

class MySubClass(MyClass):
 ""
 # ...

The behavior of the above configuration is that MySubClass
will refer to both its own id column as well as that of
MyClass underneath the attribute named some_id.

See also

Inheritance Configuration

Mixing in Columns in Inheritance Scenarios

	
sqlalchemy.ext.declarative.api._declarative_constructor(self, **kwargs)

	A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
sqlalchemy.ext.declarative.has_inherited_table(cls)

	Given a class, return True if any of the classes it inherits from has a
mapped table, otherwise return False.

	
sqlalchemy.ext.declarative.synonym_for(name, map_column=False)

	Decorator, make a Python @property a query synonym for a column.

A decorator version of synonym(). The function being
decorated is the ‘descriptor’, otherwise passes its arguments through to
synonym():

@synonym_for('col')
@property
def prop(self):
 return 'special sauce'

The regular synonym() is also usable directly in a declarative setting
and may be convenient for read/write properties:

prop = synonym('col', descriptor=property(_read_prop, _write_prop))

	
sqlalchemy.ext.declarative.comparable_using(comparator_factory)

	Decorator, allow a Python @property to be used in query criteria.

This is a decorator front end to
comparable_property() that passes
through the comparator_factory and the function being decorated:

@comparable_using(MyComparatorType)
@property
def prop(self):
 return 'special sauce'

The regular comparable_property() is also usable directly in a
declarative setting and may be convenient for read/write properties:

prop = comparable_property(MyComparatorType)

	
sqlalchemy.ext.declarative.instrument_declarative(cls, registry, metadata)

	Given a class, configure the class declaratively,
using the given registry, which can be any dictionary, and
MetaData object.

	
class sqlalchemy.ext.declarative.AbstractConcreteBase

	Bases: sqlalchemy.ext.declarative.api.ConcreteBase

A helper class for ‘concrete’ declarative mappings.

AbstractConcreteBase will use the polymorphic_union()
function automatically, against all tables mapped as a subclass
to this class. The function is called via the
__declare_last__() function, which is essentially
a hook for the after_configured() event.

AbstractConcreteBase does produce a mapped class
for the base class, however it is not persisted to any table; it
is instead mapped directly to the “polymorphic” selectable directly
and is only used for selecting. Compare to ConcreteBase,
which does create a persisted table for the base class.

Example:

from sqlalchemy.ext.declarative import AbstractConcreteBase

class Employee(AbstractConcreteBase, Base):
 pass

class Manager(Employee):
 __tablename__ = 'manager'
 employee_id = Column(Integer, primary_key=True)
 name = Column(String(50))
 manager_data = Column(String(40))

 __mapper_args__ = {
 'polymorphic_identity':'manager',
 'concrete':True}

The abstract base class is handled by declarative in a special way;
at class configuration time, it behaves like a declarative mixin
or an __abstract__ base class. Once classes are configured
and mappings are produced, it then gets mapped itself, but
after all of its decscendants. This is a very unique system of mapping
not found in any other SQLAlchemy system.

Using this approach, we can specify columns and properties
that will take place on mapped subclasses, in the way that
we normally do as in Mixin and Custom Base Classes:

class Company(Base):
 __tablename__ = 'company'
 id = Column(Integer, primary_key=True)

class Employee(AbstractConcreteBase, Base):
 employee_id = Column(Integer, primary_key=True)

 @declared_attr
 def company_id(cls):
 return Column(ForeignKey('company.id'))

 @declared_attr
 def company(cls):
 return relationship("Company")

class Manager(Employee):
 __tablename__ = 'manager'

 name = Column(String(50))
 manager_data = Column(String(40))

 __mapper_args__ = {
 'polymorphic_identity':'manager',
 'concrete':True}

When we make use of our mappings however, both Manager and
Employee will have an independently usable .company attribute:

session.query(Employee).filter(Employee.company.has(id=5))

Changed in version 1.0.0: - The mechanics of AbstractConcreteBase
have been reworked to support relationships established directly
on the abstract base, without any special configurational steps.

See also

ConcreteBase

Concrete Table Inheritance

Using the Declarative Helper Classes

	
class sqlalchemy.ext.declarative.ConcreteBase

	A helper class for ‘concrete’ declarative mappings.

ConcreteBase will use the polymorphic_union()
function automatically, against all tables mapped as a subclass
to this class. The function is called via the
__declare_last__() function, which is essentially
a hook for the after_configured() event.

ConcreteBase produces a mapped
table for the class itself. Compare to AbstractConcreteBase,
which does not.

Example:

from sqlalchemy.ext.declarative import ConcreteBase

class Employee(ConcreteBase, Base):
 __tablename__ = 'employee'
 employee_id = Column(Integer, primary_key=True)
 name = Column(String(50))
 __mapper_args__ = {
 'polymorphic_identity':'employee',
 'concrete':True}

class Manager(Employee):
 __tablename__ = 'manager'
 employee_id = Column(Integer, primary_key=True)
 name = Column(String(50))
 manager_data = Column(String(40))
 __mapper_args__ = {
 'polymorphic_identity':'manager',
 'concrete':True}

See also

AbstractConcreteBase

Concrete Table Inheritance

Using the Declarative Helper Classes

	
class sqlalchemy.ext.declarative.DeferredReflection

	A helper class for construction of mappings based on
a deferred reflection step.

Normally, declarative can be used with reflection by
setting a Table object using autoload=True
as the __table__ attribute on a declarative class.
The caveat is that the Table must be fully
reflected, or at the very least have a primary key column,
at the point at which a normal declarative mapping is
constructed, meaning the Engine must be available
at class declaration time.

The DeferredReflection mixin moves the construction
of mappers to be at a later point, after a specific
method is called which first reflects all Table
objects created so far. Classes can define it as such:

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.declarative import DeferredReflection
Base = declarative_base()

class MyClass(DeferredReflection, Base):
 __tablename__ = 'mytable'

Above, MyClass is not yet mapped. After a series of
classes have been defined in the above fashion, all tables
can be reflected and mappings created using
prepare():

engine = create_engine("someengine://...")
DeferredReflection.prepare(engine)

The DeferredReflection mixin can be applied to individual
classes, used as the base for the declarative base itself,
or used in a custom abstract class. Using an abstract base
allows that only a subset of classes to be prepared for a
particular prepare step, which is necessary for applications
that use more than one engine. For example, if an application
has two engines, you might use two bases, and prepare each
separately, e.g.:

class ReflectedOne(DeferredReflection, Base):
 __abstract__ = True

class ReflectedTwo(DeferredReflection, Base):
 __abstract__ = True

class MyClass(ReflectedOne):
 __tablename__ = 'mytable'

class MyOtherClass(ReflectedOne):
 __tablename__ = 'myothertable'

class YetAnotherClass(ReflectedTwo):
 __tablename__ = 'yetanothertable'

... etc.

Above, the class hierarchies for ReflectedOne and
ReflectedTwo can be configured separately:

ReflectedOne.prepare(engine_one)
ReflectedTwo.prepare(engine_two)

New in version 0.8.

	
classmethod prepare(engine)

	Reflect all Table objects for all current
DeferredReflection subclasses

Special Directives

__declare_last__()

The __declare_last__() hook allows definition of
a class level function that is automatically called by the
MapperEvents.after_configured() event, which occurs after mappings are
assumed to be completed and the ‘configure’ step has finished:

class MyClass(Base):
 @classmethod
 def __declare_last__(cls):
 ""
 # do something with mappings

New in version 0.7.3.

__declare_first__()

Like __declare_last__(), but is called at the beginning of mapper
configuration via the MapperEvents.before_configured() event:

class MyClass(Base):
 @classmethod
 def __declare_first__(cls):
 ""
 # do something before mappings are configured

New in version 0.9.3.

__abstract__

__abstract__ causes declarative to skip the production
of a table or mapper for the class entirely. A class can be added within a
hierarchy in the same way as mixin (see Mixin and Custom Base Classes), allowing
subclasses to extend just from the special class:

class SomeAbstractBase(Base):
 __abstract__ = True

 def some_helpful_method(self):
 ""

 @declared_attr
 def __mapper_args__(cls):
 return {"helpful mapper arguments":True}

class MyMappedClass(SomeAbstractBase):
 ""

One possible use of __abstract__ is to use a distinct
MetaData for different bases:

Base = declarative_base()

class DefaultBase(Base):
 __abstract__ = True
 metadata = MetaData()

class OtherBase(Base):
 __abstract__ = True
 metadata = MetaData()

Above, classes which inherit from DefaultBase will use one
MetaData as the registry of tables, and those which inherit from
OtherBase will use a different one. The tables themselves can then be
created perhaps within distinct databases:

DefaultBase.metadata.create_all(some_engine)
OtherBase.metadata_create_all(some_other_engine)

New in version 0.7.3.

Mutation Tracking

Provide support for tracking of in-place changes to scalar values,
which are propagated into ORM change events on owning parent objects.

New in version 0.7: sqlalchemy.ext.mutable replaces SQLAlchemy’s
legacy approach to in-place mutations of scalar values; see
Mutation event extension, supersedes “mutable=True”.

Establishing Mutability on Scalar Column Values

A typical example of a “mutable” structure is a Python dictionary.
Following the example introduced in Column and Data Types, we
begin with a custom type that marshals Python dictionaries into
JSON strings before being persisted:

from sqlalchemy.types import TypeDecorator, VARCHAR
import json

class JSONEncodedDict(TypeDecorator):
 "Represents an immutable structure as a json-encoded string."

 impl = VARCHAR

 def process_bind_param(self, value, dialect):
 if value is not None:
 value = json.dumps(value)
 return value

 def process_result_value(self, value, dialect):
 if value is not None:
 value = json.loads(value)
 return value

The usage of json is only for the purposes of example. The
sqlalchemy.ext.mutable extension can be used
with any type whose target Python type may be mutable, including
PickleType, postgresql.ARRAY, etc.

When using the sqlalchemy.ext.mutable extension, the value itself
tracks all parents which reference it. Below, we illustrate a simple
version of the MutableDict dictionary object, which applies
the Mutable mixin to a plain Python dictionary:

from sqlalchemy.ext.mutable import Mutable

class MutableDict(Mutable, dict):
 @classmethod
 def coerce(cls, key, value):
 "Convert plain dictionaries to MutableDict."

 if not isinstance(value, MutableDict):
 if isinstance(value, dict):
 return MutableDict(value)

 # this call will raise ValueError
 return Mutable.coerce(key, value)
 else:
 return value

 def __setitem__(self, key, value):
 "Detect dictionary set events and emit change events."

 dict.__setitem__(self, key, value)
 self.changed()

 def __delitem__(self, key):
 "Detect dictionary del events and emit change events."

 dict.__delitem__(self, key)
 self.changed()

The above dictionary class takes the approach of subclassing the Python
built-in dict to produce a dict
subclass which routes all mutation events through __setitem__. There are
variants on this approach, such as subclassing UserDict.UserDict or
collections.MutableMapping; the part that’s important to this example is
that the Mutable.changed() method is called whenever an in-place
change to the datastructure takes place.

We also redefine the Mutable.coerce() method which will be used to
convert any values that are not instances of MutableDict, such
as the plain dictionaries returned by the json module, into the
appropriate type. Defining this method is optional; we could just as well
created our JSONEncodedDict such that it always returns an instance
of MutableDict, and additionally ensured that all calling code
uses MutableDict explicitly. When Mutable.coerce() is not
overridden, any values applied to a parent object which are not instances
of the mutable type will raise a ValueError.

Our new MutableDict type offers a class method
as_mutable() which we can use within column metadata
to associate with types. This method grabs the given type object or
class and associates a listener that will detect all future mappings
of this type, applying event listening instrumentation to the mapped
attribute. Such as, with classical table metadata:

from sqlalchemy import Table, Column, Integer

my_data = Table('my_data', metadata,
 Column('id', Integer, primary_key=True),
 Column('data', MutableDict.as_mutable(JSONEncodedDict))
)

Above, as_mutable() returns an instance of JSONEncodedDict
(if the type object was not an instance already), which will intercept any
attributes which are mapped against this type. Below we establish a simple
mapping against the my_data table:

from sqlalchemy import mapper

class MyDataClass(object):
 pass

associates mutation listeners with MyDataClass.data
mapper(MyDataClass, my_data)

The MyDataClass.data member will now be notified of in place changes
to its value.

There’s no difference in usage when using declarative:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class MyDataClass(Base):
 __tablename__ = 'my_data'
 id = Column(Integer, primary_key=True)
 data = Column(MutableDict.as_mutable(JSONEncodedDict))

Any in-place changes to the MyDataClass.data member
will flag the attribute as “dirty” on the parent object:

>>> from sqlalchemy.orm import Session

>>> sess = Session()
>>> m1 = MyDataClass(data={'value1':'foo'})
>>> sess.add(m1)
>>> sess.commit()

>>> m1.data['value1'] = 'bar'
>>> assert m1 in sess.dirty
True

The MutableDict can be associated with all future instances
of JSONEncodedDict in one step, using
associate_with(). This is similar to
as_mutable() except it will intercept all occurrences
of MutableDict in all mappings unconditionally, without
the need to declare it individually:

MutableDict.associate_with(JSONEncodedDict)

class MyDataClass(Base):
 __tablename__ = 'my_data'
 id = Column(Integer, primary_key=True)
 data = Column(JSONEncodedDict)

Supporting Pickling

The key to the sqlalchemy.ext.mutable extension relies upon the
placement of a weakref.WeakKeyDictionary upon the value object, which
stores a mapping of parent mapped objects keyed to the attribute name under
which they are associated with this value. WeakKeyDictionary objects are
not picklable, due to the fact that they contain weakrefs and function
callbacks. In our case, this is a good thing, since if this dictionary were
picklable, it could lead to an excessively large pickle size for our value
objects that are pickled by themselves outside of the context of the parent.
The developer responsibility here is only to provide a __getstate__ method
that excludes the _parents() collection from the pickle
stream:

class MyMutableType(Mutable):
 def __getstate__(self):
 d = self.__dict__.copy()
 d.pop('_parents', None)
 return d

With our dictionary example, we need to return the contents of the dict itself
(and also restore them on __setstate__):

class MutableDict(Mutable, dict):
 #

 def __getstate__(self):
 return dict(self)

 def __setstate__(self, state):
 self.update(state)

In the case that our mutable value object is pickled as it is attached to one
or more parent objects that are also part of the pickle, the Mutable
mixin will re-establish the Mutable._parents collection on each value
object as the owning parents themselves are unpickled.

Establishing Mutability on Composites

Composites are a special ORM feature which allow a single scalar attribute to
be assigned an object value which represents information “composed” from one
or more columns from the underlying mapped table. The usual example is that of
a geometric “point”, and is introduced in Composite Column Types.

Changed in version 0.7: The internals of orm.composite() have been
greatly simplified and in-place mutation detection is no longer enabled by
default; instead, the user-defined value must detect changes on its own and
propagate them to all owning parents. The sqlalchemy.ext.mutable
extension provides the helper class MutableComposite, which is a
slight variant on the Mutable class.

As is the case with Mutable, the user-defined composite class
subclasses MutableComposite as a mixin, and detects and delivers
change events to its parents via the MutableComposite.changed() method.
In the case of a composite class, the detection is usually via the usage of
Python descriptors (i.e. @property), or alternatively via the special
Python method __setattr__(). Below we expand upon the Point class
introduced in Composite Column Types to subclass MutableComposite
and to also route attribute set events via __setattr__ to the
MutableComposite.changed() method:

from sqlalchemy.ext.mutable import MutableComposite

class Point(MutableComposite):
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __setattr__(self, key, value):
 "Intercept set events"

 # set the attribute
 object.__setattr__(self, key, value)

 # alert all parents to the change
 self.changed()

 def __composite_values__(self):
 return self.x, self.y

 def __eq__(self, other):
 return isinstance(other, Point) and \
 other.x == self.x and \
 other.y == self.y

 def __ne__(self, other):
 return not self.__eq__(other)

The MutableComposite class uses a Python metaclass to automatically
establish listeners for any usage of orm.composite() that specifies our
Point type. Below, when Point is mapped to the Vertex class,
listeners are established which will route change events from Point
objects to each of the Vertex.start and Vertex.end attributes:

from sqlalchemy.orm import composite, mapper
from sqlalchemy import Table, Column

vertices = Table('vertices', metadata,
 Column('id', Integer, primary_key=True),
 Column('x1', Integer),
 Column('y1', Integer),
 Column('x2', Integer),
 Column('y2', Integer),
)

class Vertex(object):
 pass

mapper(Vertex, vertices, properties={
 'start': composite(Point, vertices.c.x1, vertices.c.y1),
 'end': composite(Point, vertices.c.x2, vertices.c.y2)
})

Any in-place changes to the Vertex.start or Vertex.end members
will flag the attribute as “dirty” on the parent object:

>>> from sqlalchemy.orm import Session

>>> sess = Session()
>>> v1 = Vertex(start=Point(3, 4), end=Point(12, 15))
>>> sess.add(v1)
>>> sess.commit()

>>> v1.end.x = 8
>>> assert v1 in sess.dirty
True

Coercing Mutable Composites

The MutableBase.coerce() method is also supported on composite types.
In the case of MutableComposite, the MutableBase.coerce()
method is only called for attribute set operations, not load operations.
Overriding the MutableBase.coerce() method is essentially equivalent
to using a validates() validation routine for all attributes which
make use of the custom composite type:

class Point(MutableComposite):
 # other Point methods
 # ...

 def coerce(cls, key, value):
 if isinstance(value, tuple):
 value = Point(*value)
 elif not isinstance(value, Point):
 raise ValueError("tuple or Point expected")
 return value

New in version 0.7.10,0.8.0b2: Support for the MutableBase.coerce() method in conjunction with
objects of type MutableComposite.

Supporting Pickling

As is the case with Mutable, the MutableComposite helper
class uses a weakref.WeakKeyDictionary available via the
MutableBase._parents() attribute which isn’t picklable. If we need to
pickle instances of Point or its owning class Vertex, we at least need
to define a __getstate__ that doesn’t include the _parents dictionary.
Below we define both a __getstate__ and a __setstate__ that package up
the minimal form of our Point class:

class Point(MutableComposite):
 # ...

 def __getstate__(self):
 return self.x, self.y

 def __setstate__(self, state):
 self.x, self.y = state

As with Mutable, the MutableComposite augments the
pickling process of the parent’s object-relational state so that the
MutableBase._parents() collection is restored to all Point objects.

API Reference

	
class sqlalchemy.ext.mutable.MutableBase

	Common base class to Mutable
and MutableComposite.

	
_parents

	Dictionary of parent object->attribute name on the parent.

This attribute is a so-called “memoized” property. It initializes
itself with a new weakref.WeakKeyDictionary the first time
it is accessed, returning the same object upon subsequent access.

	
classmethod coerce(key, value)

	Given a value, coerce it into the target type.

Can be overridden by custom subclasses to coerce incoming
data into a particular type.

By default, raises ValueError.

This method is called in different scenarios depending on if
the parent class is of type Mutable or of type
MutableComposite. In the case of the former, it is called
for both attribute-set operations as well as during ORM loading
operations. For the latter, it is only called during attribute-set
operations; the mechanics of the composite() construct
handle coercion during load operations.

	Parameters:
	
	key¶ – string name of the ORM-mapped attribute being set.

	value¶ – the incoming value.

	Returns:
	the method should return the coerced value, or raise
ValueError if the coercion cannot be completed.

	
class sqlalchemy.ext.mutable.Mutable

	Bases: sqlalchemy.ext.mutable.MutableBase

Mixin that defines transparent propagation of change
events to a parent object.

See the example in Establishing Mutability on Scalar Column Values for usage information.

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
_get_listen_keys(attribute)

	
inherited from the _get_listen_keys() method of MutableBase

Given a descriptor attribute, return a set() of the attribute
keys which indicate a change in the state of this attribute.

This is normally just set([attribute.key]), but can be overridden
to provide for additional keys. E.g. a MutableComposite
augments this set with the attribute keys associated with the columns
that comprise the composite value.

This collection is consulted in the case of intercepting the
InstanceEvents.refresh() and
InstanceEvents.refresh_flush() events, which pass along a list
of attribute names that have been refreshed; the list is compared
against this set to determine if action needs to be taken.

New in version 1.0.5.

	
_listen_on_attribute(attribute, coerce, parent_cls)

	
inherited from the _listen_on_attribute() method of MutableBase

Establish this type as a mutation listener for the given
mapped descriptor.

	
_parents

	
inherited from the _parents attribute of MutableBase

Dictionary of parent object->attribute name on the parent.

This attribute is a so-called “memoized” property. It initializes
itself with a new weakref.WeakKeyDictionary the first time
it is accessed, returning the same object upon subsequent access.

	
classmethod as_mutable(sqltype)

	Associate a SQL type with this mutable Python type.

This establishes listeners that will detect ORM mappings against
the given type, adding mutation event trackers to those mappings.

The type is returned, unconditionally as an instance, so that
as_mutable() can be used inline:

Table('mytable', metadata,
 Column('id', Integer, primary_key=True),
 Column('data', MyMutableType.as_mutable(PickleType))
)

Note that the returned type is always an instance, even if a class
is given, and that only columns which are declared specifically with
that type instance receive additional instrumentation.

To associate a particular mutable type with all occurrences of a
particular type, use the Mutable.associate_with() classmethod
of the particular Mutable subclass to establish a global
association.

Warning

The listeners established by this method are global
to all mappers, and are not garbage collected. Only use
as_mutable() for types that are permanent to an application,
not with ad-hoc types else this will cause unbounded growth
in memory usage.

	
classmethod associate_with(sqltype)

	Associate this wrapper with all future mapped columns
of the given type.

This is a convenience method that calls
associate_with_attribute automatically.

Warning

The listeners established by this method are global
to all mappers, and are not garbage collected. Only use
associate_with() for types that are permanent to an
application, not with ad-hoc types else this will cause unbounded
growth in memory usage.

	
classmethod associate_with_attribute(attribute)

	Establish this type as a mutation listener for the given
mapped descriptor.

	
changed()

	Subclasses should call this method whenever change events occur.

	
coerce(key, value)

	
inherited from the coerce() method of MutableBase

Given a value, coerce it into the target type.

Can be overridden by custom subclasses to coerce incoming
data into a particular type.

By default, raises ValueError.

This method is called in different scenarios depending on if
the parent class is of type Mutable or of type
MutableComposite. In the case of the former, it is called
for both attribute-set operations as well as during ORM loading
operations. For the latter, it is only called during attribute-set
operations; the mechanics of the composite() construct
handle coercion during load operations.

	Parameters:
	
	key¶ – string name of the ORM-mapped attribute being set.

	value¶ – the incoming value.

	Returns:
	the method should return the coerced value, or raise
ValueError if the coercion cannot be completed.

	
class sqlalchemy.ext.mutable.MutableComposite

	Bases: sqlalchemy.ext.mutable.MutableBase

Mixin that defines transparent propagation of change
events on a SQLAlchemy “composite” object to its
owning parent or parents.

See the example in Establishing Mutability on Composites for usage information.

	
changed()

	Subclasses should call this method whenever change events occur.

	
class sqlalchemy.ext.mutable.MutableDict

	Bases: sqlalchemy.ext.mutable.Mutable, __builtin__.dict

A dictionary type that implements Mutable.

The MutableDict object implements a dictionary that will
emit change events to the underlying mapping when the contents of
the dictionary are altered, including when values are added or removed.

Note that MutableDict does not apply mutable tracking to the
values themselves inside the dictionary. Therefore it is not a sufficient
solution for the use case of tracking deep changes to a recursive
dictionary structure, such as a JSON structure. To support this use case,
build a subclass of MutableDict that provides appropriate
coersion to the values placed in the dictionary so that they too are
“mutable”, and emit events up to their parent structure.

New in version 0.8.

See also

MutableList

MutableSet

	
clear()

	

	
classmethod coerce(key, value)

	Convert plain dictionary to instance of this class.

	
pop(*arg)

	

	
popitem()

	

	
setdefault(key, value)

	

	
update(*a, **kw)

	

	
class sqlalchemy.ext.mutable.MutableList

	Bases: sqlalchemy.ext.mutable.Mutable, __builtin__.list

A list type that implements Mutable.

The MutableList object implements a list that will
emit change events to the underlying mapping when the contents of
the list are altered, including when values are added or removed.

Note that MutableList does not apply mutable tracking to the
values themselves inside the list. Therefore it is not a sufficient
solution for the use case of tracking deep changes to a recursive
mutable structure, such as a JSON structure. To support this use case,
build a subclass of MutableList that provides appropriate
coersion to the values placed in the dictionary so that they too are
“mutable”, and emit events up to their parent structure.

New in version 1.1.

See also

MutableDict

MutableSet

	
append(x)

	

	
clear()

	

	
classmethod coerce(index, value)

	Convert plain list to instance of this class.

	
extend(x)

	

	
insert(i, x)

	

	
pop(*arg)

	

	
remove(i)

	

	
reverse()

	

	
sort()

	

	
class sqlalchemy.ext.mutable.MutableSet

	Bases: sqlalchemy.ext.mutable.Mutable, __builtin__.set

A set type that implements Mutable.

The MutableSet object implements a set that will
emit change events to the underlying mapping when the contents of
the set are altered, including when values are added or removed.

Note that MutableSet does not apply mutable tracking to the
values themselves inside the set. Therefore it is not a sufficient
solution for the use case of tracking deep changes to a recursive
mutable structure. To support this use case,
build a subclass of MutableSet that provides appropriate
coersion to the values placed in the dictionary so that they too are
“mutable”, and emit events up to their parent structure.

New in version 1.1.

See also

MutableDict

MutableList

	
add(elem)

	

	
clear()

	

	
classmethod coerce(index, value)

	Convert plain set to instance of this class.

	
difference_update(*arg)

	

	
discard(elem)

	

	
intersection_update(*arg)

	

	
pop(*arg)

	

	
remove(elem)

	

	
symmetric_difference_update(*arg)

	

	
update(*arg)

	

Ordering List

A custom list that manages index/position information for contained
elements.

	author:
	Jason Kirtland

orderinglist is a helper for mutable ordered relationships. It will
intercept list operations performed on a relationship()-managed
collection and
automatically synchronize changes in list position onto a target scalar
attribute.

Example: A slide table, where each row refers to zero or more entries
in a related bullet table. The bullets within a slide are
displayed in order based on the value of the position column in the
bullet table. As entries are reordered in memory, the value of the
position attribute should be updated to reflect the new sort order:

Base = declarative_base()

class Slide(Base):
 __tablename__ = 'slide'

 id = Column(Integer, primary_key=True)
 name = Column(String)

 bullets = relationship("Bullet", order_by="Bullet.position")

class Bullet(Base):
 __tablename__ = 'bullet'
 id = Column(Integer, primary_key=True)
 slide_id = Column(Integer, ForeignKey('slide.id'))
 position = Column(Integer)
 text = Column(String)

The standard relationship mapping will produce a list-like attribute on each
Slide containing all related Bullet objects,
but coping with changes in ordering is not handled automatically.
When appending a Bullet into Slide.bullets, the Bullet.position
attribute will remain unset until manually assigned. When the Bullet
is inserted into the middle of the list, the following Bullet objects
will also need to be renumbered.

The OrderingList object automates this task, managing the
position attribute on all Bullet objects in the collection. It is
constructed using the ordering_list() factory:

from sqlalchemy.ext.orderinglist import ordering_list

Base = declarative_base()

class Slide(Base):
 __tablename__ = 'slide'

 id = Column(Integer, primary_key=True)
 name = Column(String)

 bullets = relationship("Bullet", order_by="Bullet.position",
 collection_class=ordering_list('position'))

class Bullet(Base):
 __tablename__ = 'bullet'
 id = Column(Integer, primary_key=True)
 slide_id = Column(Integer, ForeignKey('slide.id'))
 position = Column(Integer)
 text = Column(String)

With the above mapping the Bullet.position attribute is managed:

s = Slide()
s.bullets.append(Bullet())
s.bullets.append(Bullet())
s.bullets[1].position
>>> 1
s.bullets.insert(1, Bullet())
s.bullets[2].position
>>> 2

The OrderingList construct only works with changes to a
collection, and not the initial load from the database, and requires that the
list be sorted when loaded. Therefore, be sure to specify order_by on the
relationship() against the target ordering attribute, so that the
ordering is correct when first loaded.

Warning

OrderingList only provides limited functionality when a primary
key column or unique column is the target of the sort. Operations
that are unsupported or are problematic include:

	two entries must trade values. This is not supported directly in the
case of a primary key or unique constraint because it means at least
one row would need to be temporarily removed first, or changed to
a third, neutral value while the switch occurs.

	an entry must be deleted in order to make room for a new entry.
SQLAlchemy’s unit of work performs all INSERTs before DELETEs within a
single flush. In the case of a primary key, it will trade
an INSERT/DELETE of the same primary key for an UPDATE statement in order
to lessen the impact of this limitation, however this does not take place
for a UNIQUE column.
A future feature will allow the “DELETE before INSERT” behavior to be
possible, allevating this limitation, though this feature will require
explicit configuration at the mapper level for sets of columns that
are to be handled in this way.

ordering_list() takes the name of the related object’s ordering
attribute as an argument. By default, the zero-based integer index of the
object’s position in the ordering_list() is synchronized with the
ordering attribute: index 0 will get position 0, index 1 position 1, etc. To
start numbering at 1 or some other integer, provide count_from=1.

API Reference

	
sqlalchemy.ext.orderinglist.ordering_list(attr, count_from=None, **kw)

	Prepares an OrderingList factory for use in mapper definitions.

Returns an object suitable for use as an argument to a Mapper
relationship’s collection_class option. e.g.:

from sqlalchemy.ext.orderinglist import ordering_list

class Slide(Base):
 __tablename__ = 'slide'

 id = Column(Integer, primary_key=True)
 name = Column(String)

 bullets = relationship("Bullet", order_by="Bullet.position",
 collection_class=ordering_list('position'))

	Parameters:
	
	attr¶ – Name of the mapped attribute to use for storage and retrieval of
ordering information

	count_from¶ – Set up an integer-based ordering, starting at count_from. For
example, ordering_list('pos', count_from=1) would create a 1-based
list in SQL, storing the value in the ‘pos’ column. Ignored if
ordering_func is supplied.

Additional arguments are passed to the OrderingList constructor.

	
sqlalchemy.ext.orderinglist.count_from_0(index, collection)

	Numbering function: consecutive integers starting at 0.

	
sqlalchemy.ext.orderinglist.count_from_1(index, collection)

	Numbering function: consecutive integers starting at 1.

	
sqlalchemy.ext.orderinglist.count_from_n_factory(start)

	Numbering function: consecutive integers starting at arbitrary start.

	
class sqlalchemy.ext.orderinglist.OrderingList(ordering_attr=None, ordering_func=None, reorder_on_append=False)

	Bases: __builtin__.list

A custom list that manages position information for its children.

The OrderingList object is normally set up using the
ordering_list() factory function, used in conjunction with
the relationship() function.

	
__init__(ordering_attr=None, ordering_func=None, reorder_on_append=False)

	A custom list that manages position information for its children.

OrderingList is a collection_class list implementation that
syncs position in a Python list with a position attribute on the
mapped objects.

This implementation relies on the list starting in the proper order,
so be sure to put an order_by on your relationship.

	Parameters:
	
	ordering_attr¶ – Name of the attribute that stores the object’s order in the
relationship.

	ordering_func¶ – Optional. A function that maps the position in
the Python list to a value to store in the
ordering_attr. Values returned are usually (but need not be!)
integers.

An ordering_func is called with two positional parameters: the
index of the element in the list, and the list itself.

If omitted, Python list indexes are used for the attribute values.
Two basic pre-built numbering functions are provided in this module:
count_from_0 and count_from_1. For more exotic examples
like stepped numbering, alphabetical and Fibonacci numbering, see
the unit tests.

	reorder_on_append¶ – Default False. When appending an object with an existing (non-None)
ordering value, that value will be left untouched unless
reorder_on_append is true. This is an optimization to avoid a
variety of dangerous unexpected database writes.

SQLAlchemy will add instances to the list via append() when your
object loads. If for some reason the result set from the database
skips a step in the ordering (say, row ‘1’ is missing but you get
‘2’, ‘3’, and ‘4’), reorder_on_append=True would immediately
renumber the items to ‘1’, ‘2’, ‘3’. If you have multiple sessions
making changes, any of whom happen to load this collection even in
passing, all of the sessions would try to “clean up” the numbering
in their commits, possibly causing all but one to fail with a
concurrent modification error.

Recommend leaving this with the default of False, and just call
reorder() if you’re doing append() operations with
previously ordered instances or when doing some housekeeping after
manual sql operations.

	
append(entity)

	L.append(object) – append object to end

	
insert(index, entity)

	L.insert(index, object) – insert object before index

	
pop([index]) → item -- remove and return item at index (default last).

	Raises IndexError if list is empty or index is out of range.

	
remove(entity)

	L.remove(value) – remove first occurrence of value.
Raises ValueError if the value is not present.

	
reorder()

	Synchronize ordering for the entire collection.

Sweeps through the list and ensures that each object has accurate
ordering information set.

Horizontal Sharding

Horizontal sharding support.

Defines a rudimental ‘horizontal sharding’ system which allows a Session to
distribute queries and persistence operations across multiple databases.

For a usage example, see the Horizontal Sharding example included in
the source distribution.

API Documentation

	
class sqlalchemy.ext.horizontal_shard.ShardedSession(shard_chooser, id_chooser, query_chooser, shards=None, query_cls=<class 'sqlalchemy.ext.horizontal_shard.ShardedQuery'>, **kwargs)

	Bases: sqlalchemy.orm.session.Session

	
__init__(shard_chooser, id_chooser, query_chooser, shards=None, query_cls=<class 'sqlalchemy.ext.horizontal_shard.ShardedQuery'>, **kwargs)

	Construct a ShardedSession.

	Parameters:
	
	shard_chooser¶ – A callable which, passed a Mapper, a mapped
instance, and possibly a SQL clause, returns a shard ID. This id
may be based off of the attributes present within the object, or on
some round-robin scheme. If the scheme is based on a selection, it
should set whatever state on the instance to mark it in the future as
participating in that shard.

	id_chooser¶ – A callable, passed a query and a tuple of identity
values, which should return a list of shard ids where the ID might
reside. The databases will be queried in the order of this listing.

	query_chooser¶ – For a given Query, returns the list of shard_ids
where the query should be issued. Results from all shards returned
will be combined together into a single listing.

	shards¶ – A dictionary of string shard names
to Engine objects.

	
class sqlalchemy.ext.horizontal_shard.ShardedQuery(*args, **kwargs)

	Bases: sqlalchemy.orm.query.Query

	
set_shard(shard_id)

	return a new query, limited to a single shard ID.

all subsequent operations with the returned query will
be against the single shard regardless of other state.

Hybrid Attributes

Define attributes on ORM-mapped classes that have “hybrid” behavior.

“hybrid” means the attribute has distinct behaviors defined at the
class level and at the instance level.

The hybrid extension provides a special form of
method decorator, is around 50 lines of code and has almost no
dependencies on the rest of SQLAlchemy. It can, in theory, work with
any descriptor-based expression system.

Consider a mapping Interval, representing integer start and end
values. We can define higher level functions on mapped classes that produce
SQL expressions at the class level, and Python expression evaluation at the
instance level. Below, each function decorated with hybrid_method or
hybrid_property may receive self as an instance of the class, or
as the class itself:

from sqlalchemy import Column, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Session, aliased
from sqlalchemy.ext.hybrid import hybrid_property, hybrid_method

Base = declarative_base()

class Interval(Base):
 __tablename__ = 'interval'

 id = Column(Integer, primary_key=True)
 start = Column(Integer, nullable=False)
 end = Column(Integer, nullable=False)

 def __init__(self, start, end):
 self.start = start
 self.end = end

 @hybrid_property
 def length(self):
 return self.end - self.start

 @hybrid_method
 def contains(self, point):
 return (self.start <= point) & (point <= self.end)

 @hybrid_method
 def intersects(self, other):
 return self.contains(other.start) | self.contains(other.end)

Above, the length property returns the difference between the
end and start attributes. With an instance of Interval,
this subtraction occurs in Python, using normal Python descriptor
mechanics:

>>> i1 = Interval(5, 10)
>>> i1.length
5

When dealing with the Interval class itself, the hybrid_property
descriptor evaluates the function body given the Interval class as
the argument, which when evaluated with SQLAlchemy expression mechanics
returns a new SQL expression:

>>> print Interval.length
interval."end" - interval.start

>>> print Session().query(Interval).filter(Interval.length > 10)
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end
FROM interval
WHERE interval."end" - interval.start > :param_1

ORM methods such as filter_by() generally use getattr() to
locate attributes, so can also be used with hybrid attributes:

>>> print Session().query(Interval).filter_by(length=5)
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end
FROM interval
WHERE interval."end" - interval.start = :param_1

The Interval class example also illustrates two methods,
contains() and intersects(), decorated with
hybrid_method. This decorator applies the same idea to
methods that hybrid_property applies to attributes. The
methods return boolean values, and take advantage of the Python |
and & bitwise operators to produce equivalent instance-level and
SQL expression-level boolean behavior:

>>> i1.contains(6)
True
>>> i1.contains(15)
False
>>> i1.intersects(Interval(7, 18))
True
>>> i1.intersects(Interval(25, 29))
False

>>> print Session().query(Interval).filter(Interval.contains(15))
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end
FROM interval
WHERE interval.start <= :start_1 AND interval."end" > :end_1

>>> ia = aliased(Interval)
>>> print Session().query(Interval, ia).filter(Interval.intersects(ia))
SELECT interval.id AS interval_id, interval.start AS interval_start,
interval."end" AS interval_end, interval_1.id AS interval_1_id,
interval_1.start AS interval_1_start, interval_1."end" AS interval_1_end
FROM interval, interval AS interval_1
WHERE interval.start <= interval_1.start
 AND interval."end" > interval_1.start
 OR interval.start <= interval_1."end"
 AND interval."end" > interval_1."end"

Defining Expression Behavior Distinct from Attribute Behavior

Our usage of the & and | bitwise operators above was
fortunate, considering our functions operated on two boolean values to
return a new one. In many cases, the construction of an in-Python
function and a SQLAlchemy SQL expression have enough differences that
two separate Python expressions should be defined. The
hybrid decorators define the
hybrid_property.expression() modifier for this purpose. As an
example we’ll define the radius of the interval, which requires the
usage of the absolute value function:

from sqlalchemy import func

class Interval(object):
 # ...

 @hybrid_property
 def radius(self):
 return abs(self.length) / 2

 @radius.expression
 def radius(cls):
 return func.abs(cls.length) / 2

Above the Python function abs() is used for instance-level
operations, the SQL function ABS() is used via the func
object for class-level expressions:

>>> i1.radius
2

>>> print Session().query(Interval).filter(Interval.radius > 5)
SELECT interval.id AS interval_id, interval.start AS interval_start,
 interval."end" AS interval_end
FROM interval
WHERE abs(interval."end" - interval.start) / :abs_1 > :param_1

Defining Setters

Hybrid properties can also define setter methods. If we wanted
length above, when set, to modify the endpoint value:

class Interval(object):
 # ...

 @hybrid_property
 def length(self):
 return self.end - self.start

 @length.setter
 def length(self, value):
 self.end = self.start + value

The length(self, value) method is now called upon set:

>>> i1 = Interval(5, 10)
>>> i1.length
5
>>> i1.length = 12
>>> i1.end
17

Working with Relationships

There’s no essential difference when creating hybrids that work with
related objects as opposed to column-based data. The need for distinct
expressions tends to be greater. Two variants of we’ll illustrate
are the “join-dependent” hybrid, and the “correlated subquery” hybrid.

Join-Dependent Relationship Hybrid

Consider the following declarative
mapping which relates a User to a SavingsAccount:

from sqlalchemy import Column, Integer, ForeignKey, Numeric, String
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.hybrid import hybrid_property

Base = declarative_base()

class SavingsAccount(Base):
 __tablename__ = 'account'
 id = Column(Integer, primary_key=True)
 user_id = Column(Integer, ForeignKey('user.id'), nullable=False)
 balance = Column(Numeric(15, 5))

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(100), nullable=False)

 accounts = relationship("SavingsAccount", backref="owner")

 @hybrid_property
 def balance(self):
 if self.accounts:
 return self.accounts[0].balance
 else:
 return None

 @balance.setter
 def balance(self, value):
 if not self.accounts:
 account = Account(owner=self)
 else:
 account = self.accounts[0]
 account.balance = value

 @balance.expression
 def balance(cls):
 return SavingsAccount.balance

The above hybrid property balance works with the first
SavingsAccount entry in the list of accounts for this user. The
in-Python getter/setter methods can treat accounts as a Python
list available on self.

However, at the expression level, it’s expected that the User class will
be used in an appropriate context such that an appropriate join to
SavingsAccount will be present:

>>> print Session().query(User, User.balance).\
... join(User.accounts).filter(User.balance > 5000)
SELECT "user".id AS user_id, "user".name AS user_name,
account.balance AS account_balance
FROM "user" JOIN account ON "user".id = account.user_id
WHERE account.balance > :balance_1

Note however, that while the instance level accessors need to worry
about whether self.accounts is even present, this issue expresses
itself differently at the SQL expression level, where we basically
would use an outer join:

>>> from sqlalchemy import or_
>>> print (Session().query(User, User.balance).outerjoin(User.accounts).
... filter(or_(User.balance < 5000, User.balance == None)))
SELECT "user".id AS user_id, "user".name AS user_name,
account.balance AS account_balance
FROM "user" LEFT OUTER JOIN account ON "user".id = account.user_id
WHERE account.balance < :balance_1 OR account.balance IS NULL

Correlated Subquery Relationship Hybrid

We can, of course, forego being dependent on the enclosing query’s usage
of joins in favor of the correlated subquery, which can portably be packed
into a single column expression. A correlated subquery is more portable, but
often performs more poorly at the SQL level. Using the same technique
illustrated at Using column_property,
we can adjust our SavingsAccount example to aggregate the balances for
all accounts, and use a correlated subquery for the column expression:

from sqlalchemy import Column, Integer, ForeignKey, Numeric, String
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.hybrid import hybrid_property
from sqlalchemy import select, func

Base = declarative_base()

class SavingsAccount(Base):
 __tablename__ = 'account'
 id = Column(Integer, primary_key=True)
 user_id = Column(Integer, ForeignKey('user.id'), nullable=False)
 balance = Column(Numeric(15, 5))

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(100), nullable=False)

 accounts = relationship("SavingsAccount", backref="owner")

 @hybrid_property
 def balance(self):
 return sum(acc.balance for acc in self.accounts)

 @balance.expression
 def balance(cls):
 return select([func.sum(SavingsAccount.balance)]).\
 where(SavingsAccount.user_id==cls.id).\
 label('total_balance')

The above recipe will give us the balance column which renders
a correlated SELECT:

>>> print s.query(User).filter(User.balance > 400)
SELECT "user".id AS user_id, "user".name AS user_name
FROM "user"
WHERE (SELECT sum(account.balance) AS sum_1
FROM account
WHERE account.user_id = "user".id) > :param_1

Building Custom Comparators

The hybrid property also includes a helper that allows construction of
custom comparators. A comparator object allows one to customize the
behavior of each SQLAlchemy expression operator individually. They
are useful when creating custom types that have some highly
idiosyncratic behavior on the SQL side.

The example class below allows case-insensitive comparisons on the attribute
named word_insensitive:

from sqlalchemy.ext.hybrid import Comparator, hybrid_property
from sqlalchemy import func, Column, Integer, String
from sqlalchemy.orm import Session
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class CaseInsensitiveComparator(Comparator):
 def __eq__(self, other):
 return func.lower(self.__clause_element__()) == func.lower(other)

class SearchWord(Base):
 __tablename__ = 'searchword'
 id = Column(Integer, primary_key=True)
 word = Column(String(255), nullable=False)

 @hybrid_property
 def word_insensitive(self):
 return self.word.lower()

 @word_insensitive.comparator
 def word_insensitive(cls):
 return CaseInsensitiveComparator(cls.word)

Above, SQL expressions against word_insensitive will apply the LOWER()
SQL function to both sides:

>>> print Session().query(SearchWord).filter_by(word_insensitive="Trucks")
SELECT searchword.id AS searchword_id, searchword.word AS searchword_word
FROM searchword
WHERE lower(searchword.word) = lower(:lower_1)

The CaseInsensitiveComparator above implements part of the
ColumnOperators interface. A “coercion” operation like
lowercasing can be applied to all comparison operations (i.e. eq,
lt, gt, etc.) using Operators.operate():

class CaseInsensitiveComparator(Comparator):
 def operate(self, op, other):
 return op(func.lower(self.__clause_element__()), func.lower(other))

Hybrid Value Objects

Note in our previous example, if we were to compare the
word_insensitive attribute of a SearchWord instance to a plain
Python string, the plain Python string would not be coerced to lower
case - the CaseInsensitiveComparator we built, being returned by
@word_insensitive.comparator, only applies to the SQL side.

A more comprehensive form of the custom comparator is to construct a
Hybrid Value Object. This technique applies the target value or
expression to a value object which is then returned by the accessor in
all cases. The value object allows control of all operations upon
the value as well as how compared values are treated, both on the SQL
expression side as well as the Python value side. Replacing the
previous CaseInsensitiveComparator class with a new
CaseInsensitiveWord class:

class CaseInsensitiveWord(Comparator):
 "Hybrid value representing a lower case representation of a word."

 def __init__(self, word):
 if isinstance(word, basestring):
 self.word = word.lower()
 elif isinstance(word, CaseInsensitiveWord):
 self.word = word.word
 else:
 self.word = func.lower(word)

 def operate(self, op, other):
 if not isinstance(other, CaseInsensitiveWord):
 other = CaseInsensitiveWord(other)
 return op(self.word, other.word)

 def __clause_element__(self):
 return self.word

 def __str__(self):
 return self.word

 key = 'word'
 "Label to apply to Query tuple results"

Above, the CaseInsensitiveWord object represents self.word,
which may be a SQL function, or may be a Python native. By
overriding operate() and __clause_element__() to work in terms
of self.word, all comparison operations will work against the
“converted” form of word, whether it be SQL side or Python side.
Our SearchWord class can now deliver the CaseInsensitiveWord
object unconditionally from a single hybrid call:

class SearchWord(Base):
 __tablename__ = 'searchword'
 id = Column(Integer, primary_key=True)
 word = Column(String(255), nullable=False)

 @hybrid_property
 def word_insensitive(self):
 return CaseInsensitiveWord(self.word)

The word_insensitive attribute now has case-insensitive comparison
behavior universally, including SQL expression vs. Python expression
(note the Python value is converted to lower case on the Python side
here):

>>> print Session().query(SearchWord).filter_by(word_insensitive="Trucks")
SELECT searchword.id AS searchword_id, searchword.word AS searchword_word
FROM searchword
WHERE lower(searchword.word) = :lower_1

SQL expression versus SQL expression:

>>> sw1 = aliased(SearchWord)
>>> sw2 = aliased(SearchWord)
>>> print Session().query(
... sw1.word_insensitive,
... sw2.word_insensitive).\
... filter(
... sw1.word_insensitive > sw2.word_insensitive
...)
SELECT lower(searchword_1.word) AS lower_1,
lower(searchword_2.word) AS lower_2
FROM searchword AS searchword_1, searchword AS searchword_2
WHERE lower(searchword_1.word) > lower(searchword_2.word)

Python only expression:

>>> ws1 = SearchWord(word="SomeWord")
>>> ws1.word_insensitive == "sOmEwOrD"
True
>>> ws1.word_insensitive == "XOmEwOrX"
False
>>> print ws1.word_insensitive
someword

The Hybrid Value pattern is very useful for any kind of value that may
have multiple representations, such as timestamps, time deltas, units
of measurement, currencies and encrypted passwords.

See also

Hybrids and Value Agnostic Types
- on the techspot.zzzeek.org blog

Value Agnostic Types, Part II -
on the techspot.zzzeek.org blog

Building Transformers

A transformer is an object which can receive a Query
object and return a new one. The Query object includes a
method with_transformation() that returns a new Query
transformed by the given function.

We can combine this with the Comparator class to produce one type
of recipe which can both set up the FROM clause of a query as well as assign
filtering criterion.

Consider a mapped class Node, which assembles using adjacency list
into a hierarchical tree pattern:

from sqlalchemy import Column, Integer, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()

class Node(Base):
 __tablename__ = 'node'
 id =Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('node.id'))
 parent = relationship("Node", remote_side=id)

Suppose we wanted to add an accessor grandparent. This would
return the parent of Node.parent. When we have an instance of
Node, this is simple:

from sqlalchemy.ext.hybrid import hybrid_property

class Node(Base):
 # ...

 @hybrid_property
 def grandparent(self):
 return self.parent.parent

For the expression, things are not so clear. We’d need to construct
a Query where we join() twice along
Node.parent to get to the grandparent. We can instead return
a transforming callable that we’ll combine with the
Comparator class to receive any Query object, and
return a new one that’s joined to the Node.parent attribute and
filtered based on the given criterion:

from sqlalchemy.ext.hybrid import Comparator

class GrandparentTransformer(Comparator):
 def operate(self, op, other):
 def transform(q):
 cls = self.__clause_element__()
 parent_alias = aliased(cls)
 return q.join(parent_alias, cls.parent).\
 filter(op(parent_alias.parent, other))
 return transform

Base = declarative_base()

class Node(Base):
 __tablename__ = 'node'
 id =Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('node.id'))
 parent = relationship("Node", remote_side=id)

 @hybrid_property
 def grandparent(self):
 return self.parent.parent

 @grandparent.comparator
 def grandparent(cls):
 return GrandparentTransformer(cls)

The GrandparentTransformer overrides the core
Operators.operate() method at the base of the
Comparator hierarchy to return a query-transforming
callable, which then runs the given comparison operation in a
particular context. Such as, in the example above, the operate
method is called, given the Operators.eq callable as well as
the right side of the comparison Node(id=5). A function
transform is then returned which will transform a Query
first to join to Node.parent, then to compare parent_alias
using Operators.eq against the left and right sides, passing
into Query.filter:

>>> from sqlalchemy.orm import Session
>>> session = Session()
sql>>> session.query(Node).\
... with_transformation(Node.grandparent==Node(id=5)).\
... all()
SELECT node.id AS node_id, node.parent_id AS node_parent_id
FROM node JOIN node AS node_1 ON node_1.id = node.parent_id
WHERE :param_1 = node_1.parent_id

We can modify the pattern to be more verbose but flexible by separating
the “join” step from the “filter” step. The tricky part here is ensuring
that successive instances of GrandparentTransformer use the same
AliasedClass object against Node. Below we use a simple
memoizing approach that associates a GrandparentTransformer
with each class:

class Node(Base):

 # ...

 @grandparent.comparator
 def grandparent(cls):
 # memoize a GrandparentTransformer
 # per class
 if '_gp' not in cls.__dict__:
 cls._gp = GrandparentTransformer(cls)
 return cls._gp

class GrandparentTransformer(Comparator):

 def __init__(self, cls):
 self.parent_alias = aliased(cls)

 @property
 def join(self):
 def go(q):
 return q.join(self.parent_alias, Node.parent)
 return go

 def operate(self, op, other):
 return op(self.parent_alias.parent, other)

sql>>> session.query(Node).\
... with_transformation(Node.grandparent.join).\
... filter(Node.grandparent==Node(id=5))
SELECT node.id AS node_id, node.parent_id AS node_parent_id
FROM node JOIN node AS node_1 ON node_1.id = node.parent_id
WHERE :param_1 = node_1.parent_id

The “transformer” pattern is an experimental pattern that starts
to make usage of some functional programming paradigms.
While it’s only recommended for advanced and/or patient developers,
there’s probably a whole lot of amazing things it can be used for.

API Reference

	
class sqlalchemy.ext.hybrid.hybrid_method(func, expr=None)

	Bases: sqlalchemy.orm.base.InspectionAttrInfo

A decorator which allows definition of a Python object method with both
instance-level and class-level behavior.

	
__init__(func, expr=None)

	Create a new hybrid_method.

Usage is typically via decorator:

from sqlalchemy.ext.hybrid import hybrid_method

class SomeClass(object):
 @hybrid_method
 def value(self, x, y):
 return self._value + x + y

 @value.expression
 def value(self, x, y):
 return func.some_function(self._value, x, y)

	
expression(expr)

	Provide a modifying decorator that defines a
SQL-expression producing method.

	
class sqlalchemy.ext.hybrid.hybrid_property(fget, fset=None, fdel=None, expr=None)

	Bases: sqlalchemy.orm.base.InspectionAttrInfo

A decorator which allows definition of a Python descriptor with both
instance-level and class-level behavior.

	
__init__(fget, fset=None, fdel=None, expr=None)

	Create a new hybrid_property.

Usage is typically via decorator:

from sqlalchemy.ext.hybrid import hybrid_property

class SomeClass(object):
 @hybrid_property
 def value(self):
 return self._value

 @value.setter
 def value(self, value):
 self._value = value

	
comparator(comparator)

	Provide a modifying decorator that defines a custom
comparator producing method.

The return value of the decorated method should be an instance of
Comparator.

	
deleter(fdel)

	Provide a modifying decorator that defines a
value-deletion method.

	
expression(expr)

	Provide a modifying decorator that defines a SQL-expression
producing method.

	
setter(fset)

	Provide a modifying decorator that defines a value-setter method.

	
class sqlalchemy.ext.hybrid.Comparator(expression)

	Bases: sqlalchemy.orm.interfaces.PropComparator

A helper class that allows easy construction of custom
PropComparator
classes for usage with hybrids.

	
sqlalchemy.ext.hybrid.HYBRID_METHOD = symbol('HYBRID_METHOD')

	

	
sqlalchemy.ext.hybrid.HYBRID_PROPERTY = symbol('HYBRID_PROPERTY')

	

Indexable

Define attributes on ORM-mapped classes that have “index” attributes for
columns with Indexable types.

“index” means the attribute is associated with an element of an
Indexable column with the predefined index to access it.
The Indexable types include types such as
ARRAY, JSON and
HSTORE.

The indexable extension provides
Column-like interface for any element of an
Indexable typed column. In simple cases, it can be
treated as a Column - mapped attribute.

New in version 1.1.

Synopsis

Given Person as a model with a primary key and JSON data field.
While this field may have any number of elements encoded within it,
we would like to refer to the element called name individually
as a dedicated attribute which behaves like a standalone column:

from sqlalchemy import Column, JSON, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.indexable import index_property

Base = declarative_base()

class Person(Base):
 __tablename__ = 'person'

 id = Column(Integer, primary_key=True)
 data = Column(JSON)

 name = index_property('data', 'name')

Above, the name attribute now behaves like a mapped column. We
can compose a new Person and set the value of name:

>>> person = Person(name='Alchemist')

The value is now accessible:

>>> person.name
'Alchemist'

Behind the scenes, the JSON field was initialized to a new blank dictionary
and the field was set:

>>> person.data
{"name": "Alchemist'}

The field is mutable in place:

>>> person.name = 'Renamed'
>>> person.name
'Renamed'
>>> person.data
{'name': 'Renamed'}

When using index_property, the change that we make to the indexable
structure is also automatically tracked as history; we no longer need
to use MutableDict in order to track this change
for the unit of work.

Deletions work normally as well:

>>> del person.name
>>> person.data
{}

Above, deletion of person.name deletes the value from the dictionary,
but not the dictionary itself.

A missing key will produce AttributeError:

>>> person = Person()
>>> person.name
...
AttributeError: 'name'

The attributes are also accessible at the class level.
Below, we illustrate Person.name used to generate
an indexed SQL criteria:

>>> from sqlalchemy.orm import Session
>>> session = Session()
>>> query = session.query(Person).filter(Person.name == 'Alchemist')

The above query is equivalent to:

>>> query = session.query(Person).filter(Person.data['name'] == 'Alchemist')

Multiple index_property objects can be chained to produce
multiple levels of indexing:

from sqlalchemy import Column, JSON, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.indexable import index_property

Base = declarative_base()

class Person(Base):
 __tablename__ = 'person'

 id = Column(Integer, primary_key=True)
 data = Column(JSON)

 birthday = index_property('data', 'birthday')
 year = index_property('birthday', 'year')
 month = index_property('birthday', 'month')
 day = index_property('birthday', 'day')

Above, a query such as:

q = session.query(Person).filter(Person.year == '1980')

On a Postgresql backend, the above query will render as:

SELECT person.id, person.data
FROM person
WHERE person.data -> %(data_1)s -> %(param_1)s = %(param_2)s

Default Values

index_property includes special behaviors for when the indexed
data structure does not exist, and a set operation is called:

	For an index_property that is given an integer index value,
the default data structure will be a Python list of None values,
at least as long as the index value; the value is then set at its
place in the list. This means for an index value of zero, the list
will be initalized to [None] before setting the given value,
and for an index value of five, the list will be initialized to
[None, None, None, None, None] before setting the fifth element
to the given value. Note that an existing list is not extended
in place to receive a value.

	for an index_property that is given any other kind of index
value (e.g. strings usually), a Python dictionary is used as the
default data structure.

	The default data structure can be set to any Python callable using the
index_property.datatype parameter, overriding the previous
rules.

Subclassing

index_property can be subclassed, in particular for the common
use case of providing coercion of values or SQL expressions as they are
accessed. Below is a common recipe for use with a Postgresql JSON type,
where we want to also include automatic casting plus astext():

class pg_json_property(index_property):
 def __init__(self, attr_name, index, cast_type):
 super(pg_json_property, self).__init__(attr_name, index)
 self.cast_type = cast_type

 def expr(self, model):
 expr = super(pg_json_property, self).expr(model)
 return expr.astext.cast(self.cast_type)

The above subclass can be used with the Postgresql-specific
version of postgresql.JSON:

from sqlalchemy import Column, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.dialects.postgresql import JSON

Base = declarative_base()

class Person(Base):
 __tablename__ = 'person'

 id = Column(Integer, primary_key=True)
 data = Column(JSON)

 age = pg_json_property('data', 'age', Integer)

The age attribute at the instance level works as before; however
when rendering SQL, Postgresql’s ->> operator will be used
for indexed access, instead of the usual index opearator of ->:

>>> query = session.query(Person).filter(Person.age < 20)

The above query will render:

SELECT person.id, person.data
FROM person
WHERE CAST(person.data ->> %(data_1)s AS INTEGER) < %(param_1)s

API Reference

	
class sqlalchemy.ext.indexable.index_property(attr_name, index, datatype=None, mutable=True, onebased=True)

	Bases: sqlalchemy.ext.hybrid.hybrid_property

A property generator. The generated property describes an object
attribute that corresponds to an Indexable
column.

New in version 1.1.

See also

sqlalchemy.ext.indexable

	
__init__(attr_name, index, datatype=None, mutable=True, onebased=True)

	Create a new index_property.

	Parameters:
	
	attr_name¶ – An attribute name of an Indexable typed column, or other
attribute that returns an indexable structure.

	index¶ – The index to be used for getting and setting this value. This
should be the Python-side index value for integers.

	datatype¶ – default datatype to use when the field is empty.
By default, this is derived from the type of index used; a
Python list for an integer index, or a Python dictionary for
any other style of index. For a list, the list will be
initialized to a list of None values that is at least
index elements long.

	mutable¶ – if False, writes and deletes to the attribute will
be disallowed.

	onebased¶ – assume the SQL representation of this value is
one-based; that is, the first index in SQL is 1, not zero.

Alternate Class Instrumentation

Extensible class instrumentation.

The sqlalchemy.ext.instrumentation package provides for alternate
systems of class instrumentation within the ORM. Class instrumentation
refers to how the ORM places attributes on the class which maintain
data and track changes to that data, as well as event hooks installed
on the class.

Note

The extension package is provided for the benefit of integration
with other object management packages, which already perform
their own instrumentation. It is not intended for general use.

For examples of how the instrumentation extension is used,
see the example Attribute Instrumentation.

Changed in version 0.8: The sqlalchemy.orm.instrumentation was split out so
that all functionality having to do with non-standard
instrumentation was moved out to sqlalchemy.ext.instrumentation.
When imported, the module installs itself within
sqlalchemy.orm.instrumentation so that it
takes effect, including recognition of
__sa_instrumentation_manager__ on mapped classes, as
well instrumentation_finders
being used to determine class instrumentation resolution.

API Reference

	
sqlalchemy.ext.instrumentation.INSTRUMENTATION_MANAGER = '__sa_instrumentation_manager__'

	Attribute, elects custom instrumentation when present on a mapped class.

Allows a class to specify a slightly or wildly different technique for
tracking changes made to mapped attributes and collections.

Only one instrumentation implementation is allowed in a given object
inheritance hierarchy.

The value of this attribute must be a callable and will be passed a class
object. The callable must return one of:

	An instance of an InstrumentationManager or subclass

	An object implementing all or some of InstrumentationManager (TODO)

	A dictionary of callables, implementing all or some of the above (TODO)

	An instance of a ClassManager or subclass

This attribute is consulted by SQLAlchemy instrumentation
resolution, once the sqlalchemy.ext.instrumentation module
has been imported. If custom finders are installed in the global
instrumentation_finders list, they may or may not choose to honor this
attribute.

	
class sqlalchemy.orm.instrumentation.InstrumentationFactory

	Factory for new ClassManager instances.

	
class sqlalchemy.ext.instrumentation.InstrumentationManager(class_)

	User-defined class instrumentation extension.

InstrumentationManager can be subclassed in order
to change
how class instrumentation proceeds. This class exists for
the purposes of integration with other object management
frameworks which would like to entirely modify the
instrumentation methodology of the ORM, and is not intended
for regular usage. For interception of class instrumentation
events, see InstrumentationEvents.

The API for this class should be considered as semi-stable,
and may change slightly with new releases.

Changed in version 0.8: InstrumentationManager was moved from
sqlalchemy.orm.instrumentation to
sqlalchemy.ext.instrumentation.

	
dict_getter(class_)

	

	
dispose(class_, manager)

	

	
get_instance_dict(class_, instance)

	

	
initialize_instance_dict(class_, instance)

	

	
install_descriptor(class_, key, inst)

	

	
install_member(class_, key, implementation)

	

	
install_state(class_, instance, state)

	

	
instrument_attribute(class_, key, inst)

	

	
instrument_collection_class(class_, key, collection_class)

	

	
manage(class_, manager)

	

	
manager_getter(class_)

	

	
post_configure_attribute(class_, key, inst)

	

	
remove_state(class_, instance)

	

	
state_getter(class_)

	

	
uninstall_descriptor(class_, key)

	

	
uninstall_member(class_, key)

	

	
sqlalchemy.ext.instrumentation.instrumentation_finders = [<function find_native_user_instrumentation_hook at 0x7f430c541230>]

	An extensible sequence of callables which return instrumentation
implementations

When a class is registered, each callable will be passed a class object.
If None is returned, the
next finder in the sequence is consulted. Otherwise the return must be an
instrumentation factory that follows the same guidelines as
sqlalchemy.ext.instrumentation.INSTRUMENTATION_MANAGER.

By default, the only finder is find_native_user_instrumentation_hook, which
searches for INSTRUMENTATION_MANAGER. If all finders return None, standard
ClassManager instrumentation is used.

	
class sqlalchemy.ext.instrumentation.ExtendedInstrumentationRegistry

	Bases: sqlalchemy.orm.instrumentation.InstrumentationFactory

Extends InstrumentationFactory with additional
bookkeeping, to accommodate multiple types of
class managers.

ORM Examples

The SQLAlchemy distribution includes a variety of code examples illustrating
a select set of patterns, some typical and some not so typical. All are
runnable and can be found in the /examples directory of the
distribution. Descriptions and source code for all can be found here.

Additional SQLAlchemy examples, some user contributed, are available on the
wiki at http://www.sqlalchemy.org/trac/wiki/UsageRecipes.

Mapping Recipes

Adjacency List

An example of a dictionary-of-dictionaries structure mapped using
an adjacency list model.

E.g.:

node = TreeNode('rootnode')
node.append('node1')
node.append('node3')
session.add(node)
session.commit()

dump_tree(node)

Listing of files:

	adjacency_list.py

Associations

Examples illustrating the usage of the “association object” pattern,
where an intermediary class mediates the relationship between two
classes that are associated in a many-to-many pattern.

Listing of files:

	proxied_association.py - same example as basic_association, adding in
usage of sqlalchemy.ext.associationproxy to make explicit references
to OrderItem optional.

	basic_association.py - illustrate a many-to-many relationship between an
“Order” and a collection of “Item” objects, associating a purchase price
with each via an association object called “OrderItem”

	dict_of_sets_with_default.py - an advanced association proxy example which
illustrates nesting of association proxies to produce multi-level Python
collections, in this case a dictionary with string keys and sets of integers
as values, which conceal the underlying mapped classes.

Directed Graphs

An example of persistence for a directed graph structure. The
graph is stored as a collection of edges, each referencing both a
“lower” and an “upper” node in a table of nodes. Basic persistence
and querying for lower- and upper- neighbors are illustrated:

n2 = Node(2)
n5 = Node(5)
n2.add_neighbor(n5)
print n2.higher_neighbors()

Listing of files:

	directed_graph.py - a directed graph example.

Dynamic Relations as Dictionaries

Illustrates how to place a dictionary-like facade on top of a
“dynamic” relation, so that dictionary operations (assuming simple
string keys) can operate upon a large collection without loading the
full collection at once.

Listing of files:

	dynamic_dict.py

Generic Associations

Illustrates various methods of associating multiple types of
parents with a particular child object.

The examples all use the declarative extension along with
declarative mixins. Each one presents the identical use
case at the end - two classes, Customer and Supplier, both
subclassing the HasAddresses mixin, which ensures that the
parent class is provided with an addresses collection
which contains Address objects.

The discriminator_on_association.py and generic_fk.py scripts
are modernized versions of recipes presented in the 2007 blog post
Polymorphic Associations with SQLAlchemy.

Listing of files:

	generic_fk.py - Illustrates a so-called “generic foreign key”, in a similar fashion
to that of popular frameworks such as Django, ROR, etc. This
approach bypasses standard referential integrity
practices, in that the “foreign key” column is not actually
constrained to refer to any particular table; instead,
in-application logic is used to determine which table is referenced.

	table_per_association.py - Illustrates a mixin which provides a generic association
via a individually generated association tables for each parent class.
The associated objects themselves are persisted in a single table
shared among all parents.

	discriminator_on_association.py - Illustrates a mixin which provides a generic association
using a single target table and a single association table,
referred to by all parent tables. The association table
contains a “discriminator” column which determines what type of
parent object associates to each particular row in the association
table.

	table_per_related.py - Illustrates a generic association which persists association
objects within individual tables, each one generated to persist
those objects on behalf of a particular parent class.

Large Collections

Large collection example.

Illustrates the options to use with
relationship() when the list of related
objects is very large, including:

	“dynamic” relationships which query slices of data as accessed

	how to use ON DELETE CASCADE in conjunction with
passive_deletes=True to greatly improve the performance of
related collection deletion.

Listing of files:

	large_collection.py

Materialized Paths

Illustrates the “materialized paths” pattern for hierarchical data using the
SQLAlchemy ORM.

Listing of files:

	materialized_paths.py - Illustrates the “materialized paths” pattern.

Nested Sets

Illustrates a rudimentary way to implement the “nested sets”
pattern for hierarchical data using the SQLAlchemy ORM.

Listing of files:

	nested_sets.py - Celko’s “Nested Sets” Tree Structure.

Performance

A performance profiling suite for a variety of SQLAlchemy use cases.

Each suite focuses on a specific use case with a particular performance
profile and associated implications:

	bulk inserts

	individual inserts, with or without transactions

	fetching large numbers of rows

	running lots of short queries

All suites include a variety of use patterns illustrating both Core
and ORM use, and are generally sorted in order of performance from worst
to greatest, inversely based on amount of functionality provided by SQLAlchemy,
greatest to least (these two things generally correspond perfectly).

A command line tool is presented at the package level which allows
individual suites to be run:

$ python -m examples.performance --help
usage: python -m examples.performance [-h] [--test TEST] [--dburl DBURL]
 [--num NUM] [--profile] [--dump]
 [--runsnake] [--echo]

 {bulk_inserts,large_resultsets,single_inserts}

positional arguments:
 {bulk_inserts,large_resultsets,single_inserts}
 suite to run

optional arguments:
 -h, --help show this help message and exit
 --test TEST run specific test name
 --dburl DBURL database URL, default sqlite:///profile.db
 --num NUM Number of iterations/items/etc for tests; default is 0
 module-specific
 --profile run profiling and dump call counts
 --dump dump full call profile (implies --profile)
 --runsnake invoke runsnakerun (implies --profile)
 --echo Echo SQL output

An example run looks like:

$ python -m examples.performance bulk_inserts

Or with options:

$ python -m examples.performance bulk_inserts \
 --dburl mysql+mysqldb://scott:tiger@localhost/test \
 --profile --num 1000

See also

How can I profile a SQLAlchemy powered application?

File Listing

Listing of files:

	single_inserts.py - In this series of tests, we’re looking at a method that inserts a row
within a distinct transaction, and afterwards returns to essentially a
“closed” state. This would be analogous to an API call that starts up
a database connection, inserts the row, commits and closes.

	short_selects.py - This series of tests illustrates different ways to SELECT a single
record by primary key

	bulk_updates.py - This series of tests illustrates different ways to UPDATE a large number
of rows in bulk.

	bulk_inserts.py - This series of tests illustrates different ways to INSERT a large number
of rows in bulk.

	large_resultsets.py - In this series of tests, we are looking at time to load a large number
of very small and simple rows.

	__main__.py - Allows the examples/performance package to be run as a script.

Running all tests with time

This is the default form of run:

$ python -m examples.performance single_inserts
Tests to run: test_orm_commit, test_bulk_save,
 test_bulk_insert_dictionaries, test_core,
 test_core_query_caching, test_dbapi_raw_w_connect,
 test_dbapi_raw_w_pool

test_orm_commit : Individual INSERT/COMMIT pairs via the
 ORM (10000 iterations); total time 13.690218 sec
test_bulk_save : Individual INSERT/COMMIT pairs using
 the "bulk" API (10000 iterations); total time 11.290371 sec
test_bulk_insert_dictionaries : Individual INSERT/COMMIT pairs using
 the "bulk" API with dictionaries (10000 iterations);
 total time 10.814626 sec
test_core : Individual INSERT/COMMIT pairs using Core.
 (10000 iterations); total time 9.665620 sec
test_core_query_caching : Individual INSERT/COMMIT pairs using Core
 with query caching (10000 iterations); total time 9.209010 sec
test_dbapi_raw_w_connect : Individual INSERT/COMMIT pairs w/ DBAPI +
 connection each time (10000 iterations); total time 9.551103 sec
test_dbapi_raw_w_pool : Individual INSERT/COMMIT pairs w/ DBAPI +
 connection pool (10000 iterations); total time 8.001813 sec

Dumping Profiles for Individual Tests

A Python profile output can be dumped for all tests, or more commonly
individual tests:

$ python -m examples.performance single_inserts --test test_core --num 1000 --dump
Tests to run: test_core
test_core : Individual INSERT/COMMIT pairs using Core. (1000 iterations); total fn calls 186109
 186109 function calls (186102 primitive calls) in 1.089 seconds

 Ordered by: internal time, call count

 ncalls tottime percall cumtime percall filename:lineno(function)
 1000 0.634 0.001 0.634 0.001 {method 'commit' of 'sqlite3.Connection' objects}
 1000 0.154 0.000 0.154 0.000 {method 'execute' of 'sqlite3.Cursor' objects}
 1000 0.021 0.000 0.074 0.000 /Users/classic/dev/sqlalchemy/lib/sqlalchemy/sql/compiler.py:1950(_get_colparams)
 1000 0.015 0.000 0.034 0.000 /Users/classic/dev/sqlalchemy/lib/sqlalchemy/engine/default.py:503(_init_compiled)
 1 0.012 0.012 1.091 1.091 examples/performance/single_inserts.py:79(test_core)

 ...

Using RunSnake

This option requires the RunSnake
command line tool be installed:

$ python -m examples.performance single_inserts --test test_core --num 1000 --runsnake

A graphical RunSnake output will be displayed.

Writing your Own Suites

The profiler suite system is extensible, and can be applied to your own set
of tests. This is a valuable technique to use in deciding upon the proper
approach for some performance-critical set of routines. For example,
if we wanted to profile the difference between several kinds of loading,
we can create a file test_loads.py, with the following content:

from examples.performance import Profiler
from sqlalchemy import Integer, Column, create_engine, ForeignKey
from sqlalchemy.orm import relationship, joinedload, subqueryload, Session
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
engine = None
session = None

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 children = relationship("Child")

class Child(Base):
 __tablename__ = 'child'
 id = Column(Integer, primary_key=True)
 parent_id = Column(Integer, ForeignKey('parent.id'))

Init with name of file, default number of items
Profiler.init("test_loads", 1000)

@Profiler.setup_once
def setup_once(dburl, echo, num):
 "setup once. create an engine, insert fixture data"
 global engine
 engine = create_engine(dburl, echo=echo)
 Base.metadata.drop_all(engine)
 Base.metadata.create_all(engine)
 sess = Session(engine)
 sess.add_all([
 Parent(children=[Child() for j in range(100)])
 for i in range(num)
])
 sess.commit()

@Profiler.setup
def setup(dburl, echo, num):
 "setup per test. create a new Session."
 global session
 session = Session(engine)
 # pre-connect so this part isn't profiled (if we choose)
 session.connection()

@Profiler.profile
def test_lazyload(n):
 "load everything, no eager loading."

 for parent in session.query(Parent):
 parent.children

@Profiler.profile
def test_joinedload(n):
 "load everything, joined eager loading."

 for parent in session.query(Parent).options(joinedload("children")):
 parent.children

@Profiler.profile
def test_subqueryload(n):
 "load everything, subquery eager loading."

 for parent in session.query(Parent).options(subqueryload("children")):
 parent.children

if __name__ == '__main__':
 Profiler.main()

We can run our new script directly:

$ python test_loads.py --dburl postgresql+psycopg2://scott:tiger@localhost/test
Running setup once...
Tests to run: test_lazyload, test_joinedload, test_subqueryload
test_lazyload : load everything, no eager loading. (1000 iterations); total time 11.971159 sec
test_joinedload : load everything, joined eager loading. (1000 iterations); total time 2.754592 sec
test_subqueryload : load everything, subquery eager loading. (1000 iterations); total time 2.977696 sec

As well as see RunSnake output for an individual test:

$ python test_loads.py --num 100 --runsnake --test test_joinedload

Relationship Join Conditions

Examples of various orm.relationship() configurations,
which make use of the primaryjoin argument to compose special types
of join conditions.

Listing of files:

	cast.py - Illustrate a relationship() that joins two columns where those
columns are not of the same type, and a CAST must be used on the SQL
side in order to match them.

	threeway.py - Illustrate a “three way join” - where a primary table joins to a remote
table via an association table, but then the primary table also needs
to refer to some columns in the remote table directly.

XML Persistence

Illustrates three strategies for persisting and querying XML
documents as represented by ElementTree in a relational
database. The techniques do not apply any mappings to the
ElementTree objects directly, so are compatible with the
native cElementTree as well as lxml, and can be adapted to
suit any kind of DOM representation system. Querying along
xpath-like strings is illustrated as well.

E.g.:

parse an XML file and persist in the database
doc = ElementTree.parse("test.xml")
session.add(Document(file, doc))
session.commit()

locate documents with a certain path/attribute structure
for document in find_document('/somefile/header/field2[@attr=foo]'):
 # dump the XML
 print document

Listing of files:

	pickle.py - illustrates a quick and dirty way to persist an XML document expressed using ElementTree and pickle.

	adjacency_list.py - Illustrates an explicit way to persist an XML document expressed using ElementTree.

	optimized_al.py - Uses the same strategy as
 adjacency_list.py, but associates each DOM row with its owning
 document row, so that a full document of DOM nodes can be loaded
 using O(1) queries - the construction of the “hierarchy” is performed
 after the load in a non-recursive fashion and is more
 efficient.

Versioning Objects

Versioning with a History Table

Illustrates an extension which creates version tables for entities and stores
records for each change. The given extensions generate an anonymous “history” class which
represents historical versions of the target object.

Usage is illustrated via a unit test module test_versioning.py, which can
be run via nose:

cd examples/versioning
nosetests -v

A fragment of example usage, using declarative:

from history_meta import Versioned, versioned_session

Base = declarative_base()

class SomeClass(Versioned, Base):
 __tablename__ = 'sometable'

 id = Column(Integer, primary_key=True)
 name = Column(String(50))

 def __eq__(self, other):
 assert type(other) is SomeClass and other.id == self.id

Session = sessionmaker(bind=engine)
versioned_session(Session)

sess = Session()
sc = SomeClass(name='sc1')
sess.add(sc)
sess.commit()

sc.name = 'sc1modified'
sess.commit()

assert sc.version == 2

SomeClassHistory = SomeClass.__history_mapper__.class_

assert sess.query(SomeClassHistory).\
 filter(SomeClassHistory.version == 1).\
 all() \
 == [SomeClassHistory(version=1, name='sc1')]

The Versioned mixin is designed to work with declarative. To use
the extension with classical mappers, the _history_mapper function
can be applied:

from history_meta import _history_mapper

m = mapper(SomeClass, sometable)
_history_mapper(m)

SomeHistoryClass = SomeClass.__history_mapper__.class_

Listing of files:

	history_meta.py - Versioned mixin class and other utilities.

	test_versioning.py - Unit tests illustrating usage of the history_meta.py
module functions.

Versioning using Temporal Rows

Illustrates an extension which versions data by storing new rows for each change;
that is, what would normally be an UPDATE becomes an INSERT.

Listing of files:

	versioned_rows.py - Illustrates a method to intercept changes on objects, turning
an UPDATE statement on a single row into an INSERT statement, so that a new
row is inserted with the new data, keeping the old row intact.

	versioned_map.py - A variant of the versioned_rows example. Here
we store a dictionary of key/value pairs, storing the k/v’s in a
“vertical” fashion where each key gets a row. The value is split out
into two separate datatypes, string and int - the range of datatype
storage can be adjusted for individual needs.

Vertical Attribute Mapping

Illustrates “vertical table” mappings.

A “vertical table” refers to a technique where individual attributes
of an object are stored as distinct rows in a table. The “vertical
table” technique is used to persist objects which can have a varied
set of attributes, at the expense of simple query control and brevity.
It is commonly found in content/document management systems in order
to represent user-created structures flexibly.

Two variants on the approach are given. In the second, each row
references a “datatype” which contains information about the type of
information stored in the attribute, such as integer, string, or date.

Example:

shrew = Animal(u'shrew')
shrew[u'cuteness'] = 5
shrew[u'weasel-like'] = False
shrew[u'poisonous'] = True

session.add(shrew)
session.flush()

q = (session.query(Animal).
 filter(Animal.facts.any(
 and_(AnimalFact.key == u'weasel-like',
 AnimalFact.value == True))))
print 'weasel-like animals', q.all()

Listing of files:

	dictlike.py - Mapping a vertical table as a dictionary.

	dictlike-polymorphic.py - Mapping a polymorphic-valued vertical table as a dictionary.

Inheritance Mapping Recipes

Basic Inheritance Mappings

Working examples of single-table, joined-table, and concrete-table
inheritance as described in datamapping_inheritance.

Listing of files:

	concrete.py - Concrete (table-per-class) inheritance example.

	single.py - Single-table inheritance example.

	joined.py - Joined-table (table-per-subclass) inheritance example.

Special APIs

Attribute Instrumentation

Examples illustrating modifications to SQLAlchemy’s attribute management
system.

Listing of files:

	custom_management.py - Illustrates customized class instrumentation, using
the sqlalchemy.ext.instrumentation extension package.

	listen_for_events.py - Illustrates how to attach events to all instrumented attributes
and listen for change events.

	active_column_defaults.py - Illustrates use of the AttributeEvents.init_scalar()
event, in conjunction with Core column defaults to provide
ORM objects that automatically produce the default value
when an un-set attribute is accessed.

Horizontal Sharding

A basic example of using the SQLAlchemy Sharding API.
Sharding refers to horizontally scaling data across multiple
databases.

The basic components of a “sharded” mapping are:

	multiple databases, each assigned a ‘shard id’

	a function which can return a single shard id, given an instance
to be saved; this is called “shard_chooser”

	a function which can return a list of shard ids which apply to a particular
instance identifier; this is called “id_chooser”. If it returns all shard ids,
all shards will be searched.

	a function which can return a list of shard ids to try, given a particular
Query (“query_chooser”). If it returns all shard ids, all shards will be
queried and the results joined together.

In this example, four sqlite databases will store information about weather
data on a database-per-continent basis. We provide example shard_chooser,
id_chooser and query_chooser functions. The query_chooser illustrates
inspection of the SQL expression element in order to attempt to determine a
single shard being requested.

The construction of generic sharding routines is an ambitious approach
to the issue of organizing instances among multiple databases. For a
more plain-spoken alternative, the “distinct entity” approach
is a simple method of assigning objects to different tables (and potentially
database nodes) in an explicit way - described on the wiki at
EntityName.

Listing of files:

	attribute_shard.py

Extending the ORM

Dogpile Caching

Illustrates how to embed dogpile.cache
functionality within
the Query object, allowing full cache control as well as the
ability to pull “lazy loaded” attributes from long term cache
as well.

Changed in version 0.8: The example was modernized to use
dogpile.cache, replacing Beaker as the caching library in
use.

In this demo, the following techniques are illustrated:

	Using custom subclasses of Query

	Basic technique of circumventing Query to pull from a
custom cache source instead of the database.

	Rudimental caching with dogpile.cache, using “regions” which allow
global control over a fixed set of configurations.

	Using custom MapperOption objects to configure options on
a Query, including the ability to invoke the options
deep within an object graph when lazy loads occur.

E.g.:

query for Person objects, specifying cache
q = Session.query(Person).options(FromCache("default"))

specify that each Person's "addresses" collection comes from
cache too
q = q.options(RelationshipCache(Person.addresses, "default"))

query
print q.all()

To run, both SQLAlchemy and dogpile.cache must be
installed or on the current PYTHONPATH. The demo will create a local
directory for datafiles, insert initial data, and run. Running the
demo a second time will utilize the cache files already present, and
exactly one SQL statement against two tables will be emitted - the
displayed result however will utilize dozens of lazyloads that all
pull from cache.

The demo scripts themselves, in order of complexity, are run as Python
modules so that relative imports work:

python -m examples.dogpile_caching.helloworld

python -m examples.dogpile_caching.relationship_caching

python -m examples.dogpile_caching.advanced

python -m examples.dogpile_caching.local_session_caching

Listing of files:

	environment.py - Establish data / cache file paths, and configurations,
bootstrap fixture data if necessary.

	caching_query.py - Represent functions and classes
which allow the usage of Dogpile caching with SQLAlchemy.
Introduces a query option called FromCache.

	model.py - The datamodel, which represents Person that has multiple
Address objects, each with PostalCode, City, Country.

	fixture_data.py - Installs some sample data. Here we have a handful of postal codes for a few US/
Canadian cities. Then, 100 Person records are installed, each with a
randomly selected postal code.

	helloworld.py - Illustrate how to load some data, and cache the results.

	relationship_caching.py - Illustrates how to add cache options on
relationship endpoints, so that lazyloads load from cache.

	advanced.py - Illustrate usage of Query combined with the FromCache option,
including front-end loading, cache invalidation and collection caching.

	local_session_caching.py - Grok everything so far ? This example
creates a new dogpile.cache backend that will persist data in a dictionary
which is local to the current session. remove() the session
and the cache is gone.

PostGIS Integration

A naive example illustrating techniques to help
embed PostGIS functionality.

This example was originally developed in the hopes that it would be
extrapolated into a comprehensive PostGIS integration layer. We are
pleased to announce that this has come to fruition as GeoAlchemy.

The example illustrates:

	a DDL extension which allows CREATE/DROP to work in
conjunction with AddGeometryColumn/DropGeometryColumn

	a Geometry type, as well as a few subtypes, which
convert result row values to a GIS-aware object,
and also integrates with the DDL extension.

	a GIS-aware object which stores a raw geometry value
and provides a factory for functions such as AsText().

	an ORM comparator which can override standard column
methods on mapped objects to produce GIS operators.

	an attribute event listener that intercepts strings
and converts to GeomFromText().

	a standalone operator example.

The implementation is limited to only public, well known
and simple to use extension points.

E.g.:

print session.query(Road).filter(Road.road_geom.intersects(r1.road_geom)).all()

Listing of files:

	postgis.py

SQLAlchemy Core

The breadth of SQLAlchemy’s SQL rendering engine, DBAPI integration,
transaction integration, and schema description services are documented here.
In contrast to the ORM’s domain-centric mode of usage, the SQL Expression
Language provides a schema-centric usage paradigm.

	SQL Expression Language Tutorial
	Version Check

	Connecting

	Define and Create Tables

	Insert Expressions

	Executing

	Executing Multiple Statements

	Selecting

	Operators

	Conjunctions

	Using Textual SQL

	Using Aliases

	Using Joins

	Everything Else

	Inserts, Updates and Deletes

	Further Reference

	SQL Statements and Expressions API
	Column Elements and Expressions

	Selectables, Tables, FROM objects

	Insert, Updates, Deletes

	SQL and Generic Functions

	Custom SQL Constructs and Compilation Extension

	Expression Serializer Extension

	Schema Definition Language
	Describing Databases with MetaData

	Reflecting Database Objects

	Column Insert/Update Defaults

	Defining Constraints and Indexes

	Customizing DDL

	Column and Data Types
	Column and Data Types

	Custom Types

	Base Type API

	Engine and Connection Use
	Engine Configuration

	Working with Engines and Connections

	Connection Pooling

	Core Events

	Core API Basics
	Events

	Runtime Inspection API

	Deprecated Event Interfaces

	Core Exceptions

	Core Internals

SQL Expression Language Tutorial

The SQLAlchemy Expression Language presents a system of representing
relational database structures and expressions using Python constructs. These
constructs are modeled to resemble those of the underlying database as closely
as possible, while providing a modicum of abstraction of the various
implementation differences between database backends. While the constructs
attempt to represent equivalent concepts between backends with consistent
structures, they do not conceal useful concepts that are unique to particular
subsets of backends. The Expression Language therefore presents a method of
writing backend-neutral SQL expressions, but does not attempt to enforce that
expressions are backend-neutral.

The Expression Language is in contrast to the Object Relational Mapper, which
is a distinct API that builds on top of the Expression Language. Whereas the
ORM, introduced in Object Relational Tutorial, presents a high level and
abstracted pattern of usage, which itself is an example of applied usage of
the Expression Language, the Expression Language presents a system of
representing the primitive constructs of the relational database directly
without opinion.

While there is overlap among the usage patterns of the ORM and the Expression
Language, the similarities are more superficial than they may at first appear.
One approaches the structure and content of data from the perspective of a
user-defined domain model which is transparently
persisted and refreshed from its underlying storage model. The other
approaches it from the perspective of literal schema and SQL expression
representations which are explicitly composed into messages consumed
individually by the database.

A successful application may be constructed using the Expression Language
exclusively, though the application will need to define its own system of
translating application concepts into individual database messages and from
individual database result sets. Alternatively, an application constructed
with the ORM may, in advanced scenarios, make occasional usage of the
Expression Language directly in certain areas where specific database
interactions are required.

The following tutorial is in doctest format, meaning each >>> line
represents something you can type at a Python command prompt, and the
following text represents the expected return value. The tutorial has no
prerequisites.

Version Check

A quick check to verify that we are on at least version 1.1 of SQLAlchemy:

>>> import sqlalchemy
>>> sqlalchemy.__version__ # doctest: +SKIP
1.1.0

Connecting

For this tutorial we will use an in-memory-only SQLite database. This is an
easy way to test things without needing to have an actual database defined
anywhere. To connect we use create_engine():

>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite:///:memory:', echo=True)

The echo flag is a shortcut to setting up SQLAlchemy logging, which is
accomplished via Python’s standard logging module. With it enabled, we’ll
see all the generated SQL produced. If you are working through this tutorial
and want less output generated, set it to False. This tutorial will format
the SQL behind a popup window so it doesn’t get in our way; just click the
“SQL” links to see what’s being generated.

The return value of create_engine() is an instance of
Engine, and it represents the core interface to the
database, adapted through a dialect that handles the details
of the database and DBAPI in use. In this case the SQLite
dialect will interpret instructions to the Python built-in sqlite3
module.

Lazy Connecting

The Engine, when first returned by create_engine(),
has not actually tried to connect to the database yet; that happens
only the first time it is asked to perform a task against the database.

The first time a method like Engine.execute() or Engine.connect()
is called, the Engine establishes a real DBAPI connection to the
database, which is then used to emit the SQL.

See also

Database Urls - includes examples of create_engine()
connecting to several kinds of databases with links to more information.

Define and Create Tables

The SQL Expression Language constructs its expressions in most cases against
table columns. In SQLAlchemy, a column is most often represented by an object
called Column, and in all cases a
Column is associated with a
Table. A collection of
Table objects and their associated child objects
is referred to as database metadata. In this tutorial we will explicitly
lay out several Table objects, but note that SA
can also “import” whole sets of Table objects
automatically from an existing database (this process is called table
reflection).

We define our tables all within a catalog called
MetaData, using the
Table construct, which resembles regular SQL
CREATE TABLE statements. We’ll make two tables, one of which represents
“users” in an application, and another which represents zero or more “email
addresses” for each row in the “users” table:

>>> from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey
>>> metadata = MetaData()
>>> users = Table('users', metadata,
... Column('id', Integer, primary_key=True),
... Column('name', String),
... Column('fullname', String),
...)

>>> addresses = Table('addresses', metadata,
... Column('id', Integer, primary_key=True),
... Column('user_id', None, ForeignKey('users.id')),
... Column('email_address', String, nullable=False)
...)

All about how to define Table objects, as well as
how to create them from an existing database automatically, is described in
Describing Databases with MetaData.

Next, to tell the MetaData we’d actually like to
create our selection of tables for real inside the SQLite database, we use
create_all(), passing it the engine
instance which points to our database. This will check for the presence of
each table first before creating, so it’s safe to call multiple times:

sql>>> metadata.create_all(engine)
SE...
CREATE TABLE users (
 id INTEGER NOT NULL,
 name VARCHAR,
 fullname VARCHAR,
 PRIMARY KEY (id)
)
()
COMMIT
CREATE TABLE addresses (
 id INTEGER NOT NULL,
 user_id INTEGER,
 email_address VARCHAR NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY(user_id) REFERENCES users (id)
)
()
COMMIT

Note

Users familiar with the syntax of CREATE TABLE may notice that the
VARCHAR columns were generated without a length; on SQLite and Postgresql,
this is a valid datatype, but on others, it’s not allowed. So if running
this tutorial on one of those databases, and you wish to use SQLAlchemy to
issue CREATE TABLE, a “length” may be provided to the String type as
below:

Column('name', String(50))

The length field on String, as well as similar precision/scale fields
available on Integer, Numeric, etc. are not referenced by
SQLAlchemy other than when creating tables.

Additionally, Firebird and Oracle require sequences to generate new
primary key identifiers, and SQLAlchemy doesn’t generate or assume these
without being instructed. For that, you use the Sequence construct:

from sqlalchemy import Sequence
Column('id', Integer, Sequence('user_id_seq'), primary_key=True)

A full, foolproof Table is therefore:

users = Table('users', metadata,
 Column('id', Integer, Sequence('user_id_seq'), primary_key=True),
 Column('name', String(50)),
 Column('fullname', String(50)),
 Column('password', String(12))
)

We include this more verbose Table construct separately
to highlight the difference between a minimal construct geared primarily
towards in-Python usage only, versus one that will be used to emit CREATE
TABLE statements on a particular set of backends with more stringent
requirements.

Insert Expressions

The first SQL expression we’ll create is the
Insert construct, which represents an
INSERT statement. This is typically created relative to its target table:

>>> ins = users.insert()

To see a sample of the SQL this construct produces, use the str()
function:

>>> str(ins)
'INSERT INTO users (id, name, fullname) VALUES (:id, :name, :fullname)'

Notice above that the INSERT statement names every column in the users
table. This can be limited by using the values() method, which establishes
the VALUES clause of the INSERT explicitly:

>>> ins = users.insert().values(name='jack', fullname='Jack Jones')
>>> str(ins)
'INSERT INTO users (name, fullname) VALUES (:name, :fullname)'

Above, while the values method limited the VALUES clause to just two
columns, the actual data we placed in values didn’t get rendered into the
string; instead we got named bind parameters. As it turns out, our data is
stored within our Insert construct, but it
typically only comes out when the statement is actually executed; since the
data consists of literal values, SQLAlchemy automatically generates bind
parameters for them. We can peek at this data for now by looking at the
compiled form of the statement:

>>> ins.compile().params
{'fullname': 'Jack Jones', 'name': 'jack'}

Executing

The interesting part of an Insert is
executing it. In this tutorial, we will generally focus on the most explicit
method of executing a SQL construct, and later touch upon some “shortcut” ways
to do it. The engine object we created is a repository for database
connections capable of issuing SQL to the database. To acquire a connection,
we use the connect() method:

>>> conn = engine.connect()
>>> conn
<sqlalchemy.engine.base.Connection object at 0x...>

The Connection object represents an actively
checked out DBAPI connection resource. Lets feed it our
Insert object and see what happens:

>>> result = conn.execute(ins)
INSERT INTO users (name, fullname) VALUES (?, ?)
('jack', 'Jack Jones')
COMMIT

So the INSERT statement was now issued to the database. Although we got
positional “qmark” bind parameters instead of “named” bind parameters in the
output. How come ? Because when executed, the
Connection used the SQLite dialect to
help generate the statement; when we use the str() function, the statement
isn’t aware of this dialect, and falls back onto a default which uses named
parameters. We can view this manually as follows:

>>> ins.bind = engine
>>> str(ins)
'INSERT INTO users (name, fullname) VALUES (?, ?)'

What about the result variable we got when we called execute() ? As
the SQLAlchemy Connection object references a
DBAPI connection, the result, known as a
ResultProxy object, is analogous to the DBAPI
cursor object. In the case of an INSERT, we can get important information from
it, such as the primary key values which were generated from our statement
using ResultProxy.inserted_primary_key:

>>> result.inserted_primary_key
[1]

The value of 1 was automatically generated by SQLite, but only because we
did not specify the id column in our
Insert statement; otherwise, our explicit
value would have been used. In either case, SQLAlchemy always knows how to get
at a newly generated primary key value, even though the method of generating
them is different across different databases; each database’s
Dialect knows the specific steps needed to
determine the correct value (or values; note that
ResultProxy.inserted_primary_key
returns a list so that it supports composite primary keys). Methods here
range from using cursor.lastrowid, to selecting from a database-specific
function, to using INSERT..RETURNING syntax; this all occurs transparently.

Executing Multiple Statements

Our insert example above was intentionally a little drawn out to show some
various behaviors of expression language constructs. In the usual case, an
Insert statement is usually compiled
against the parameters sent to the execute() method on
Connection, so that there’s no need to use
the values keyword with Insert. Lets
create a generic Insert statement again
and use it in the “normal” way:

>>> ins = users.insert()
>>> conn.execute(ins, id=2, name='wendy', fullname='Wendy Williams')
INSERT INTO users (id, name, fullname) VALUES (?, ?, ?)
(2, 'wendy', 'Wendy Williams')
COMMIT

<sqlalchemy.engine.result.ResultProxy object at 0x...>

Above, because we specified all three columns in the execute() method,
the compiled Insert included all three
columns. The Insert statement is compiled
at execution time based on the parameters we specified; if we specified fewer
parameters, the Insert would have fewer
entries in its VALUES clause.

To issue many inserts using DBAPI’s executemany() method, we can send in a
list of dictionaries each containing a distinct set of parameters to be
inserted, as we do here to add some email addresses:

>>> conn.execute(addresses.insert(), [
... {'user_id': 1, 'email_address' : 'jack@yahoo.com'},
... {'user_id': 1, 'email_address' : 'jack@msn.com'},
... {'user_id': 2, 'email_address' : 'www@www.org'},
... {'user_id': 2, 'email_address' : 'wendy@aol.com'},
...])
INSERT INTO addresses (user_id, email_address) VALUES (?, ?)
((1, 'jack@yahoo.com'), (1, 'jack@msn.com'), (2, 'www@www.org'), (2, 'wendy@aol.com'))
COMMIT

<sqlalchemy.engine.result.ResultProxy object at 0x...>

Above, we again relied upon SQLite’s automatic generation of primary key
identifiers for each addresses row.

When executing multiple sets of parameters, each dictionary must have the
same set of keys; i.e. you cant have fewer keys in some dictionaries than
others. This is because the Insert
statement is compiled against the first dictionary in the list, and it’s
assumed that all subsequent argument dictionaries are compatible with that
statement.

The “executemany” style of invocation is available for each of the
insert(), update() and delete() constructs.

Selecting

We began with inserts just so that our test database had some data in it. The
more interesting part of the data is selecting it! We’ll cover UPDATE and
DELETE statements later. The primary construct used to generate SELECT
statements is the select() function:

>>> from sqlalchemy.sql import select
>>> s = select([users])
>>> result = conn.execute(s)
SELECT users.id, users.name, users.fullname
FROM users
()

Above, we issued a basic select() call, placing the users table
within the COLUMNS clause of the select, and then executing. SQLAlchemy
expanded the users table into the set of each of its columns, and also
generated a FROM clause for us. The result returned is again a
ResultProxy object, which acts much like a
DBAPI cursor, including methods such as
fetchone() and
fetchall(). The easiest way to get
rows from it is to just iterate:

>>> for row in result:
... print(row)
(1, u'jack', u'Jack Jones')
(2, u'wendy', u'Wendy Williams')

Above, we see that printing each row produces a simple tuple-like result. We
have more options at accessing the data in each row. One very common way is
through dictionary access, using the string names of columns:

sql>>> result = conn.execute(s)
SELECT users.id, users.name, users.fullname
FROM users
()

>>> row = result.fetchone()
>>> print("name:", row['name'], "; fullname:", row['fullname'])
name: jack ; fullname: Jack Jones

Integer indexes work as well:

>>> row = result.fetchone()
>>> print("name:", row[1], "; fullname:", row[2])
name: wendy ; fullname: Wendy Williams

But another way, whose usefulness will become apparent later on, is to use the
Column objects directly as keys:

sql>>> for row in conn.execute(s):
... print("name:", row[users.c.name], "; fullname:", row[users.c.fullname])
SELECT users.id, users.name, users.fullname
FROM users
()

name: jack ; fullname: Jack Jones
name: wendy ; fullname: Wendy Williams

Result sets which have pending rows remaining should be explicitly closed
before discarding. While the cursor and connection resources referenced by the
ResultProxy will be respectively closed and
returned to the connection pool when the object is garbage collected, it’s
better to make it explicit as some database APIs are very picky about such
things:

>>> result.close()

If we’d like to more carefully control the columns which are placed in the
COLUMNS clause of the select, we reference individual
Column objects from our
Table. These are available as named attributes off
the c attribute of the Table object:

>>> s = select([users.c.name, users.c.fullname])
sql>>> result = conn.execute(s)
SELECT users.name, users.fullname
FROM users
()

>>> for row in result:
... print(row)
(u'jack', u'Jack Jones')
(u'wendy', u'Wendy Williams')

Lets observe something interesting about the FROM clause. Whereas the
generated statement contains two distinct sections, a “SELECT columns” part
and a “FROM table” part, our select() construct only has a list
containing columns. How does this work ? Let’s try putting two tables into
our select() statement:

sql>>> for row in conn.execute(select([users, addresses])):
... print(row)
SELECT users.id, users.name, users.fullname, addresses.id, addresses.user_id, addresses.email_address
FROM users, addresses
()

(1, u'jack', u'Jack Jones', 1, 1, u'jack@yahoo.com')
(1, u'jack', u'Jack Jones', 2, 1, u'jack@msn.com')
(1, u'jack', u'Jack Jones', 3, 2, u'www@www.org')
(1, u'jack', u'Jack Jones', 4, 2, u'wendy@aol.com')
(2, u'wendy', u'Wendy Williams', 1, 1, u'jack@yahoo.com')
(2, u'wendy', u'Wendy Williams', 2, 1, u'jack@msn.com')
(2, u'wendy', u'Wendy Williams', 3, 2, u'www@www.org')
(2, u'wendy', u'Wendy Williams', 4, 2, u'wendy@aol.com')

It placed both tables into the FROM clause. But also, it made a real mess.
Those who are familiar with SQL joins know that this is a Cartesian
product; each row from the users table is produced against each row from
the addresses table. So to put some sanity into this statement, we need a
WHERE clause. We do that using Select.where():

>>> s = select([users, addresses]).where(users.c.id == addresses.c.user_id)
sql>>> for row in conn.execute(s):
... print(row)
SELECT users.id, users.name, users.fullname, addresses.id,
 addresses.user_id, addresses.email_address
FROM users, addresses
WHERE users.id = addresses.user_id
()

(1, u'jack', u'Jack Jones', 1, 1, u'jack@yahoo.com')
(1, u'jack', u'Jack Jones', 2, 1, u'jack@msn.com')
(2, u'wendy', u'Wendy Williams', 3, 2, u'www@www.org')
(2, u'wendy', u'Wendy Williams', 4, 2, u'wendy@aol.com')

So that looks a lot better, we added an expression to our select()
which had the effect of adding WHERE users.id = addresses.user_id to our
statement, and our results were managed down so that the join of users and
addresses rows made sense. But let’s look at that expression? It’s using
just a Python equality operator between two different
Column objects. It should be clear that something
is up. Saying 1 == 1 produces True, and 1 == 2 produces False, not
a WHERE clause. So lets see exactly what that expression is doing:

>>> users.c.id == addresses.c.user_id
<sqlalchemy.sql.elements.BinaryExpression object at 0x...>

Wow, surprise ! This is neither a True nor a False. Well what is it ?

>>> str(users.c.id == addresses.c.user_id)
'users.id = addresses.user_id'

As you can see, the == operator is producing an object that is very much
like the Insert and select()
objects we’ve made so far, thanks to Python’s __eq__() builtin; you call
str() on it and it produces SQL. By now, one can see that everything we
are working with is ultimately the same type of object. SQLAlchemy terms the
base class of all of these expressions as ColumnElement.

Operators

Since we’ve stumbled upon SQLAlchemy’s operator paradigm, let’s go through
some of its capabilities. We’ve seen how to equate two columns to each other:

>>> print(users.c.id == addresses.c.user_id)
users.id = addresses.user_id

If we use a literal value (a literal meaning, not a SQLAlchemy clause object),
we get a bind parameter:

>>> print(users.c.id == 7)
users.id = :id_1

The 7 literal is embedded the resulting
ColumnElement; we can use the same trick
we did with the Insert object to see it:

>>> (users.c.id == 7).compile().params
{u'id_1': 7}

Most Python operators, as it turns out, produce a SQL expression here, like
equals, not equals, etc.:

>>> print(users.c.id != 7)
users.id != :id_1

>>> # None converts to IS NULL
>>> print(users.c.name == None)
users.name IS NULL

>>> # reverse works too
>>> print('fred' > users.c.name)
users.name < :name_1

If we add two integer columns together, we get an addition expression:

>>> print(users.c.id + addresses.c.id)
users.id + addresses.id

Interestingly, the type of the Column is important!
If we use + with two string based columns (recall we put types like
Integer and String on
our Column objects at the beginning), we get
something different:

>>> print(users.c.name + users.c.fullname)
users.name || users.fullname

Where || is the string concatenation operator used on most databases. But
not all of them. MySQL users, fear not:

>>> print((users.c.name + users.c.fullname).
... compile(bind=create_engine('mysql://'))) # doctest: +SKIP
concat(users.name, users.fullname)

The above illustrates the SQL that’s generated for an
Engine that’s connected to a MySQL database;
the || operator now compiles as MySQL’s concat() function.

If you have come across an operator which really isn’t available, you can
always use the ColumnOperators.op() method; this generates whatever operator you need:

>>> print(users.c.name.op('tiddlywinks')('foo'))
users.name tiddlywinks :name_1

This function can also be used to make bitwise operators explicit. For example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

Operator Customization

While ColumnOperators.op() is handy to get at a custom operator in a hurry,
the Core supports fundamental customization and extension of the operator system at
the type level. The behavior of existing operators can be modified on a per-type
basis, and new operations can be defined which become available for all column
expressions that are part of that particular type. See the section Redefining and Creating New Operators
for a description.

Conjunctions

We’d like to show off some of our operators inside of select()
constructs. But we need to lump them together a little more, so let’s first
introduce some conjunctions. Conjunctions are those little words like AND and
OR that put things together. We’ll also hit upon NOT. and_(), or_(),
and not_() can work
from the corresponding functions SQLAlchemy provides (notice we also throw in
a like()):

>>> from sqlalchemy.sql import and_, or_, not_
>>> print(and_(
... users.c.name.like('j%'),
... users.c.id == addresses.c.user_id,
... or_(
... addresses.c.email_address == 'wendy@aol.com',
... addresses.c.email_address == 'jack@yahoo.com'
...),
... not_(users.c.id > 5)
...)
...)
users.name LIKE :name_1 AND users.id = addresses.user_id AND
(addresses.email_address = :email_address_1
 OR addresses.email_address = :email_address_2)
AND users.id <= :id_1

And you can also use the re-jiggered bitwise AND, OR and NOT operators,
although because of Python operator precedence you have to watch your
parenthesis:

>>> print(users.c.name.like('j%') & (users.c.id == addresses.c.user_id) &
... (
... (addresses.c.email_address == 'wendy@aol.com') | \
... (addresses.c.email_address == 'jack@yahoo.com')
...) \
... & ~(users.c.id>5)
...)
users.name LIKE :name_1 AND users.id = addresses.user_id AND
(addresses.email_address = :email_address_1
 OR addresses.email_address = :email_address_2)
AND users.id <= :id_1

So with all of this vocabulary, let’s select all users who have an email
address at AOL or MSN, whose name starts with a letter between “m” and “z”,
and we’ll also generate a column containing their full name combined with
their email address. We will add two new constructs to this statement,
between() and label().
between() produces a BETWEEN clause, and
label() is used in a column expression to produce labels using the AS
keyword; it’s recommended when selecting from expressions that otherwise would
not have a name:

>>> s = select([(users.c.fullname +
... ", " + addresses.c.email_address).
... label('title')]).\
... where(
... and_(
... users.c.id == addresses.c.user_id,
... users.c.name.between('m', 'z'),
... or_(
... addresses.c.email_address.like('%@aol.com'),
... addresses.c.email_address.like('%@msn.com')
...)
...)
...)
>>> conn.execute(s).fetchall()
SELECT users.fullname || ? || addresses.email_address AS title
FROM users, addresses
WHERE users.id = addresses.user_id AND users.name BETWEEN ? AND ? AND
(addresses.email_address LIKE ? OR addresses.email_address LIKE ?)
(', ', 'm', 'z', '%@aol.com', '%@msn.com')
[(u'Wendy Williams, wendy@aol.com',)]

Once again, SQLAlchemy figured out the FROM clause for our statement. In fact
it will determine the FROM clause based on all of its other bits; the columns
clause, the where clause, and also some other elements which we haven’t
covered yet, which include ORDER BY, GROUP BY, and HAVING.

A shortcut to using and_() is to chain together multiple
where() clauses. The above can also be written as:

>>> s = select([(users.c.fullname +
... ", " + addresses.c.email_address).
... label('title')]).\
... where(users.c.id == addresses.c.user_id).\
... where(users.c.name.between('m', 'z')).\
... where(
... or_(
... addresses.c.email_address.like('%@aol.com'),
... addresses.c.email_address.like('%@msn.com')
...)
...)
>>> conn.execute(s).fetchall()
SELECT users.fullname || ? || addresses.email_address AS title
FROM users, addresses
WHERE users.id = addresses.user_id AND users.name BETWEEN ? AND ? AND
(addresses.email_address LIKE ? OR addresses.email_address LIKE ?)
(', ', 'm', 'z', '%@aol.com', '%@msn.com')
[(u'Wendy Williams, wendy@aol.com',)]

The way that we can build up a select() construct through successive
method calls is called method chaining.

Using Textual SQL

Our last example really became a handful to type. Going from what one
understands to be a textual SQL expression into a Python construct which
groups components together in a programmatic style can be hard. That’s why
SQLAlchemy lets you just use strings, for those cases when the SQL
is already known and there isn’t a strong need for the statement to support
dynamic features. The text() construct is used
to compose a textual statement that is passed to the database mostly
unchanged. Below, we create a text() object and execute it:

>>> from sqlalchemy.sql import text
>>> s = text(
... "SELECT users.fullname || ', ' || addresses.email_address AS title "
... "FROM users, addresses "
... "WHERE users.id = addresses.user_id "
... "AND users.name BETWEEN :x AND :y "
... "AND (addresses.email_address LIKE :e1 "
... "OR addresses.email_address LIKE :e2)")
sql>>> conn.execute(s, x='m', y='z', e1='%@aol.com', e2='%@msn.com').fetchall()
SELECT users.fullname || ', ' || addresses.email_address AS title
FROM users, addresses
WHERE users.id = addresses.user_id AND users.name BETWEEN ? AND ? AND
(addresses.email_address LIKE ? OR addresses.email_address LIKE ?)
('m', 'z', '%@aol.com', '%@msn.com')

[(u'Wendy Williams, wendy@aol.com',)]

Above, we can see that bound parameters are specified in
text() using the named colon format; this format is
consistent regardless of database backend. To send values in for the
parameters, we passed them into the execute() method
as additional arguments.

Specifying Bound Parameter Behaviors

The text() construct supports pre-established bound values
using the TextClause.bindparams() method:

stmt = text("SELECT * FROM users WHERE users.name BETWEEN :x AND :y")
stmt = stmt.bindparams(x="m", y="z")

The parameters can also be explicitly typed:

stmt = stmt.bindparams(bindparam("x", String), bindparam("y", String))
result = conn.execute(stmt, {"x": "m", "y": "z"})

Typing for bound parameters is necessary when the type requires Python-side
or special SQL-side processing provided by the datatype.

See also

TextClause.bindparams() - full method description

Specifying Result-Column Behaviors

We may also specify information about the result columns using the
TextClause.columns() method; this method can be used to specify
the return types, based on name:

stmt = stmt.columns(id=Integer, name=String)

or it can be passed full column expressions positionally, either typed
or untyped. In this case it’s a good idea to list out the columns
explicitly within our textual SQL, since the correlation of our column
expressions to the SQL will be done positionally:

stmt = text("SELECT id, name FROM users")
stmt = stmt.columns(users.c.id, users.c.name)

When we call the TextClause.columns() method, we get back a
TextAsFrom object that supports the full suite of
TextAsFrom.c and other “selectable” operations:

j = stmt.join(addresses, stmt.c.id == addresses.c.user_id)

new_stmt = select([stmt.c.id, addresses.c.id]).\
 select_from(j).where(stmt.c.name == 'x')

The positional form of TextClause.columns() is particularly useful
when relating textual SQL to existing Core or ORM models, because we can use
column expressions directly without worrying about name conflicts or other issues with the
result column names in the textual SQL:

>>> stmt = text("SELECT users.id, addresses.id, users.id, "
... "users.name, addresses.email_address AS email "
... "FROM users JOIN addresses ON users.id=addresses.user_id "
... "WHERE users.id = 1").columns(
... users.c.id,
... addresses.c.id,
... addresses.c.user_id,
... users.c.name,
... addresses.c.email_address
...)
sql>>> result = conn.execute(stmt)
SELECT users.id, addresses.id, users.id, users.name,
 addresses.email_address AS email
FROM users JOIN addresses ON users.id=addresses.user_id WHERE users.id = 1
()

Above, there’s three columns in the result that are named “id”, but since
we’ve associated these with column expressions positionally, the names aren’t an issue
when the result-columns are fetched using the actual column object as a key.
Fetching the email_address column would be:

>>> row = result.fetchone()
>>> row[addresses.c.email_address]
'jack@yahoo.com'

If on the other hand we used a string column key, the usual rules of name-
based matching still apply, and we’d get an ambiguous column error for
the id value:

>>> row["id"]
Traceback (most recent call last):
...
InvalidRequestError: Ambiguous column name 'id' in result set column descriptions

It’s important to note that while accessing columns from a result set using
Column objects may seem unusual, it is in fact the only system
used by the ORM, which occurs transparently beneath the facade of the
Query object; in this way, the TextClause.columns() method
is typically very applicable to textual statements to be used in an ORM
context. The example at Using Textual SQL illustrates
a simple usage.

New in version 1.1: The TextClause.columns() method now accepts column expressions
which will be matched positionally to a plain text SQL result set,
eliminating the need for column names to match or even be unique in the
SQL statement when matching table metadata or ORM models to textual SQL.

See also

TextClause.columns() - full method description

Using Textual SQL - integrating ORM-level queries with
text()

Using text() fragments inside bigger statements

text() can also be used to produce fragments of SQL
that can be freely within a
select() object, which accepts text()
objects as an argument for most of its builder functions.
Below, we combine the usage of text() within a
select() object. The select() construct provides the “geometry”
of the statement, and the text() construct provides the
textual content within this form. We can build a statement without the
need to refer to any pre-established Table metadata:

>>> s = select([
... text("users.fullname || ', ' || addresses.email_address AS title")
...]).\
... where(
... and_(
... text("users.id = addresses.user_id"),
... text("users.name BETWEEN 'm' AND 'z'"),
... text(
... "(addresses.email_address LIKE :x "
... "OR addresses.email_address LIKE :y)")
...)
...).select_from(text('users, addresses'))
sql>>> conn.execute(s, x='%@aol.com', y='%@msn.com').fetchall()
SELECT users.fullname || ', ' || addresses.email_address AS title
FROM users, addresses
WHERE users.id = addresses.user_id AND users.name BETWEEN 'm' AND 'z'
AND (addresses.email_address LIKE ? OR addresses.email_address LIKE ?)
('%@aol.com', '%@msn.com')

[(u'Wendy Williams, wendy@aol.com',)]

Changed in version 1.0.0: The select() construct emits warnings when string SQL
fragments are coerced to text(), and text() should
be used explicitly. See Warnings emitted when coercing full SQL fragments into text() for background.

Using More Specific Text with table(), literal_column(), and column()

We can move our level of structure back in the other direction too,
by using column(), literal_column(),
and table() for some of the
key elements of our statement. Using these constructs, we can get
some more expression capabilities than if we used text()
directly, as they provide to the Core more information about how the strings
they store are to be used, but still without the need to get into full
Table based metadata. Below, we also specify the String
datatype for two of the key literal_column() objects,
so that the string-specific concatenation operator becomes available.
We also use literal_column() in order to use table-qualified
expressions, e.g. users.fullname, that will be rendered as is;
using column() implies an individual column name that may
be quoted:

>>> from sqlalchemy import select, and_, text, String
>>> from sqlalchemy.sql import table, literal_column
>>> s = select([
... literal_column("users.fullname", String) +
... ', ' +
... literal_column("addresses.email_address").label("title")
...]).\
... where(
... and_(
... literal_column("users.id") == literal_column("addresses.user_id"),
... text("users.name BETWEEN 'm' AND 'z'"),
... text(
... "(addresses.email_address LIKE :x OR "
... "addresses.email_address LIKE :y)")
...)
...).select_from(table('users')).select_from(table('addresses'))

sql>>> conn.execute(s, x='%@aol.com', y='%@msn.com').fetchall()
SELECT users.fullname || ? || addresses.email_address AS anon_1
FROM users, addresses
WHERE users.id = addresses.user_id
AND users.name BETWEEN 'm' AND 'z'
AND (addresses.email_address LIKE ? OR addresses.email_address LIKE ?)
(', ', '%@aol.com', '%@msn.com')

[(u'Wendy Williams, wendy@aol.com',)]

Ordering or Grouping by a Label

One place where we sometimes want to use a string as a shortcut is when
our statement has some labeled column element that we want to refer to in
a place such as the “ORDER BY” or “GROUP BY” clause; other candidates include
fields within an “OVER” or “DISTINCT” clause. If we have such a label
in our select() construct, we can refer to it directly by passing the
string straight into select.order_by() or select.group_by(),
among others. This will refer to the named label and also prevent the
expression from being rendered twice:

>>> from sqlalchemy import func
>>> stmt = select([
... addresses.c.user_id,
... func.count(addresses.c.id).label('num_addresses')]).\
... order_by("num_addresses")

sql>>> conn.execute(stmt).fetchall()
SELECT addresses.user_id, count(addresses.id) AS num_addresses
FROM addresses ORDER BY num_addresses
()

[(2, 4)]

We can use modifiers like asc() or desc() by passing the string
name:

>>> from sqlalchemy import func, desc
>>> stmt = select([
... addresses.c.user_id,
... func.count(addresses.c.id).label('num_addresses')]).\
... order_by(desc("num_addresses"))

sql>>> conn.execute(stmt).fetchall()
SELECT addresses.user_id, count(addresses.id) AS num_addresses
FROM addresses ORDER BY num_addresses DESC
()

[(2, 4)]

Note that the string feature here is very much tailored to when we have
already used the label() method to create a
specifically-named label. In other cases, we always want to refer to the
ColumnElement object directly so that the expression system can
make the most effective choices for rendering. Below, we illustrate how using
the ColumnElement eliminates ambiguity when we want to order
by a column name that appears more than once:

>>> u1a, u1b = users.alias(), users.alias()
>>> stmt = select([u1a, u1b]).\
... where(u1a.c.name > u1b.c.name).\
... order_by(u1a.c.name) # using "name" here would be ambiguous

sql>>> conn.execute(stmt).fetchall()
SELECT users_1.id, users_1.name, users_1.fullname, users_2.id,
users_2.name, users_2.fullname
FROM users AS users_1, users AS users_2
WHERE users_1.name > users_2.name ORDER BY users_1.name
()

[(2, u'wendy', u'Wendy Williams', 1, u'jack', u'Jack Jones')]

Using Aliases

The alias in SQL corresponds to a “renamed” version of a table or SELECT
statement, which occurs anytime you say “SELECT .. FROM sometable AS
someothername”. The AS creates a new name for the table. Aliases are a key
construct as they allow any table or subquery to be referenced by a unique
name. In the case of a table, this allows the same table to be named in the
FROM clause multiple times. In the case of a SELECT statement, it provides a
parent name for the columns represented by the statement, allowing them to be
referenced relative to this name.

In SQLAlchemy, any Table, select() construct, or
other selectable can be turned into an alias using the FromClause.alias()
method, which produces a Alias construct. As an example, suppose we know that our user jack has two
particular email addresses. How can we locate jack based on the combination of those two
addresses? To accomplish this, we’d use a join to the addresses table,
once for each address. We create two Alias constructs against
addresses, and then use them both within a select() construct:

>>> a1 = addresses.alias()
>>> a2 = addresses.alias()
>>> s = select([users]).\
... where(and_(
... users.c.id == a1.c.user_id,
... users.c.id == a2.c.user_id,
... a1.c.email_address == 'jack@msn.com',
... a2.c.email_address == 'jack@yahoo.com'
...))
sql>>> conn.execute(s).fetchall()
SELECT users.id, users.name, users.fullname
FROM users, addresses AS addresses_1, addresses AS addresses_2
WHERE users.id = addresses_1.user_id
 AND users.id = addresses_2.user_id
 AND addresses_1.email_address = ?
 AND addresses_2.email_address = ?
('jack@msn.com', 'jack@yahoo.com')

[(1, u'jack', u'Jack Jones')]

Note that the Alias construct generated the names addresses_1 and
addresses_2 in the final SQL result. The generation of these names is determined
by the position of the construct within the statement. If we created a query using
only the second a2 alias, the name would come out as addresses_1. The
generation of the names is also deterministic, meaning the same SQLAlchemy
statement construct will produce the identical SQL string each time it is
rendered for a particular dialect.

Since on the outside, we refer to the alias using the Alias construct
itself, we don’t need to be concerned about the generated name. However, for
the purposes of debugging, it can be specified by passing a string name
to the FromClause.alias() method:

>>> a1 = addresses.alias('a1')

Aliases can of course be used for anything which you can SELECT from,
including SELECT statements themselves. We can self-join the users table
back to the select() we’ve created by making an alias of the entire
statement. The correlate(None) directive is to avoid SQLAlchemy’s attempt
to “correlate” the inner users table with the outer one:

>>> a1 = s.correlate(None).alias()
>>> s = select([users.c.name]).where(users.c.id == a1.c.id)
sql>>> conn.execute(s).fetchall()
SELECT users.name
FROM users,
 (SELECT users.id AS id, users.name AS name, users.fullname AS fullname
 FROM users, addresses AS addresses_1, addresses AS addresses_2
 WHERE users.id = addresses_1.user_id AND users.id = addresses_2.user_id
 AND addresses_1.email_address = ?
 AND addresses_2.email_address = ?) AS anon_1
WHERE users.id = anon_1.id
('jack@msn.com', 'jack@yahoo.com')

[(u'jack',)]

Using Joins

We’re halfway along to being able to construct any SELECT expression. The next
cornerstone of the SELECT is the JOIN expression. We’ve already been doing
joins in our examples, by just placing two tables in either the columns clause
or the where clause of the select() construct. But if we want to make a
real “JOIN” or “OUTERJOIN” construct, we use the join() and
outerjoin() methods, most commonly accessed from the left table in the
join:

>>> print(users.join(addresses))
users JOIN addresses ON users.id = addresses.user_id

The alert reader will see more surprises; SQLAlchemy figured out how to JOIN
the two tables ! The ON condition of the join, as it’s called, was
automatically generated based on the ForeignKey
object which we placed on the addresses table way at the beginning of this
tutorial. Already the join() construct is looking like a much better way
to join tables.

Of course you can join on whatever expression you want, such as if we want to
join on all users who use the same name in their email address as their
username:

>>> print(users.join(addresses,
... addresses.c.email_address.like(users.c.name + '%')
...)
...)
users JOIN addresses ON addresses.email_address LIKE (users.name || :name_1)

When we create a select() construct, SQLAlchemy looks around at the
tables we’ve mentioned and then places them in the FROM clause of the
statement. When we use JOINs however, we know what FROM clause we want, so
here we make use of the select_from() method:

>>> s = select([users.c.fullname]).select_from(
... users.join(addresses,
... addresses.c.email_address.like(users.c.name + '%'))
...)
sql>>> conn.execute(s).fetchall()
SELECT users.fullname
FROM users JOIN addresses ON addresses.email_address LIKE (users.name || ?)
('%',)

[(u'Jack Jones',), (u'Jack Jones',), (u'Wendy Williams',)]

The outerjoin() method creates LEFT OUTER JOIN constructs,
and is used in the same way as join():

>>> s = select([users.c.fullname]).select_from(users.outerjoin(addresses))
>>> print(s)
SELECT users.fullname
 FROM users
 LEFT OUTER JOIN addresses ON users.id = addresses.user_id

That’s the output outerjoin() produces, unless, of course, you’re stuck in
a gig using Oracle prior to version 9, and you’ve set up your engine (which
would be using OracleDialect) to use Oracle-specific SQL:

>>> from sqlalchemy.dialects.oracle import dialect as OracleDialect
>>> print(s.compile(dialect=OracleDialect(use_ansi=False)))
SELECT users.fullname
FROM users, addresses
WHERE users.id = addresses.user_id(+)

If you don’t know what that SQL means, don’t worry ! The secret tribe of
Oracle DBAs don’t want their black magic being found out ;).

See also

expression.join()

expression.outerjoin()

Join

Everything Else

The concepts of creating SQL expressions have been introduced. What’s left are
more variants of the same themes. So now we’ll catalog the rest of the
important things we’ll need to know.

Bind Parameter Objects

Throughout all these examples, SQLAlchemy is busy creating bind parameters
wherever literal expressions occur. You can also specify your own bind
parameters with your own names, and use the same statement repeatedly.
The bindparam() construct is used to produce a bound parameter
with a given name. While SQLAlchemy always refers to bound parameters by
name on the API side, the
database dialect converts to the appropriate named or positional style
at execution time, as here where it converts to positional for SQLite:

>>> from sqlalchemy.sql import bindparam
>>> s = users.select(users.c.name == bindparam('username'))
sql>>> conn.execute(s, username='wendy').fetchall()
SELECT users.id, users.name, users.fullname
FROM users
WHERE users.name = ?
('wendy',)

[(2, u'wendy', u'Wendy Williams')]

Another important aspect of bindparam() is that it may be assigned a
type. The type of the bind parameter will determine its behavior within
expressions and also how the data bound to it is processed before being sent
off to the database:

>>> s = users.select(users.c.name.like(bindparam('username', type_=String) + text("'%'")))
sql>>> conn.execute(s, username='wendy').fetchall()
SELECT users.id, users.name, users.fullname
FROM users
WHERE users.name LIKE (? || '%')
('wendy',)

[(2, u'wendy', u'Wendy Williams')]

bindparam() constructs of the same name can also be used multiple times, where only a
single named value is needed in the execute parameters:

>>> s = select([users, addresses]).\
... where(
... or_(
... users.c.name.like(
... bindparam('name', type_=String) + text("'%'")),
... addresses.c.email_address.like(
... bindparam('name', type_=String) + text("'@%'"))
...)
...).\
... select_from(users.outerjoin(addresses)).\
... order_by(addresses.c.id)
sql>>> conn.execute(s, name='jack').fetchall()
SELECT users.id, users.name, users.fullname, addresses.id,
 addresses.user_id, addresses.email_address
FROM users LEFT OUTER JOIN addresses ON users.id = addresses.user_id
WHERE users.name LIKE (? || '%') OR addresses.email_address LIKE (? || '@%')
ORDER BY addresses.id
('jack', 'jack')

[(1, u'jack', u'Jack Jones', 1, 1, u'jack@yahoo.com'), (1, u'jack', u'Jack Jones', 2, 1, u'jack@msn.com')]

See also

bindparam()

Functions

SQL functions are created using the func keyword, which
generates functions using attribute access:

>>> from sqlalchemy.sql import func
>>> print(func.now())
now()

>>> print(func.concat('x', 'y'))
concat(:concat_1, :concat_2)

By “generates”, we mean that any SQL function is created based on the word
you choose:

>>> print(func.xyz_my_goofy_function())
xyz_my_goofy_function()

Certain function names are known by SQLAlchemy, allowing special behavioral
rules to be applied. Some for example are “ANSI” functions, which mean they
don’t get the parenthesis added after them, such as CURRENT_TIMESTAMP:

>>> print(func.current_timestamp())
CURRENT_TIMESTAMP

Functions are most typically used in the columns clause of a select statement,
and can also be labeled as well as given a type. Labeling a function is
recommended so that the result can be targeted in a result row based on a
string name, and assigning it a type is required when you need result-set
processing to occur, such as for Unicode conversion and date conversions.
Below, we use the result function scalar() to just read the first column
of the first row and then close the result; the label, even though present, is
not important in this case:

>>> conn.execute(
... select([
... func.max(addresses.c.email_address, type_=String).
... label('maxemail')
...])
...).scalar()
SELECT max(addresses.email_address) AS maxemail
FROM addresses
()

u'www@www.org'

Databases such as PostgreSQL and Oracle which support functions that return
whole result sets can be assembled into selectable units, which can be used in
statements. Such as, a database function calculate() which takes the
parameters x and y, and returns three columns which we’d like to name
q, z and r, we can construct using “lexical” column objects as
well as bind parameters:

>>> from sqlalchemy.sql import column
>>> calculate = select([column('q'), column('z'), column('r')]).\
... select_from(
... func.calculate(
... bindparam('x'),
... bindparam('y')
...)
...)
>>> calc = calculate.alias()
>>> print(select([users]).where(users.c.id > calc.c.z))
SELECT users.id, users.name, users.fullname
FROM users, (SELECT q, z, r
FROM calculate(:x, :y)) AS anon_1
WHERE users.id > anon_1.z

If we wanted to use our calculate statement twice with different bind
parameters, the unique_params()
function will create copies for us, and mark the bind parameters as “unique”
so that conflicting names are isolated. Note we also make two separate aliases
of our selectable:

>>> calc1 = calculate.alias('c1').unique_params(x=17, y=45)
>>> calc2 = calculate.alias('c2').unique_params(x=5, y=12)
>>> s = select([users]).\
... where(users.c.id.between(calc1.c.z, calc2.c.z))
>>> print(s)
SELECT users.id, users.name, users.fullname
FROM users,
 (SELECT q, z, r FROM calculate(:x_1, :y_1)) AS c1,
 (SELECT q, z, r FROM calculate(:x_2, :y_2)) AS c2
WHERE users.id BETWEEN c1.z AND c2.z

>>> s.compile().params # doctest: +SKIP
{u'x_2': 5, u'y_2': 12, u'y_1': 45, u'x_1': 17}

See also

func

Window Functions

Any FunctionElement, including functions generated by
func, can be turned into a “window function”, that is an
OVER clause, using the FunctionElement.over() method:

>>> s = select([
... users.c.id,
... func.row_number().over(order_by=users.c.name)
...])
>>> print(s)
SELECT users.id, row_number() OVER (ORDER BY users.name) AS anon_1
FROM users

FunctionElement.over() also supports range specifciation using
either the expression.over.rows or
expression.over.range parameters:

>>> s = select([
... users.c.id,
... func.row_number().over(
... order_by=users.c.name,
... rows=(-2, None))
...])
>>> print(s)
SELECT users.id, row_number() OVER
(ORDER BY users.name ROWS BETWEEN :param_1 PRECEDING AND UNBOUNDED FOLLOWING) AS anon_1
FROM users

expression.over.rows and expression.over.range each
accept a two-tuple which contains a combination of negative and positive
integers for ranges, zero to indicate “CURRENT ROW” and None to
indicate “UNBOUNDED”. See the examples at over() for more detail.

New in version 1.1: support for “rows” and “range” specification for
window functions

See also

over()

FunctionElement.over()

Unions and Other Set Operations

Unions come in two flavors, UNION and UNION ALL, which are available via
module level functions union() and
union_all():

>>> from sqlalchemy.sql import union
>>> u = union(
... addresses.select().
... where(addresses.c.email_address == 'foo@bar.com'),
... addresses.select().
... where(addresses.c.email_address.like('%@yahoo.com')),
...).order_by(addresses.c.email_address)

sql>>> conn.execute(u).fetchall()
SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address = ?
UNION
SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address LIKE ? ORDER BY addresses.email_address
('foo@bar.com', '%@yahoo.com')

[(1, 1, u'jack@yahoo.com')]

Also available, though not supported on all databases, are
intersect(),
intersect_all(),
except_(), and except_all():

>>> from sqlalchemy.sql import except_
>>> u = except_(
... addresses.select().
... where(addresses.c.email_address.like('%@%.com')),
... addresses.select().
... where(addresses.c.email_address.like('%@msn.com'))
...)

sql>>> conn.execute(u).fetchall()
SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address LIKE ?
EXCEPT
SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address LIKE ?
('%@%.com', '%@msn.com')

[(1, 1, u'jack@yahoo.com'), (4, 2, u'wendy@aol.com')]

A common issue with so-called “compound” selectables arises due to the fact
that they nest with parenthesis. SQLite in particular doesn’t like a statement
that starts with parenthesis. So when nesting a “compound” inside a
“compound”, it’s often necessary to apply .alias().select() to the first
element of the outermost compound, if that element is also a compound. For
example, to nest a “union” and a “select” inside of “except_”, SQLite will
want the “union” to be stated as a subquery:

>>> u = except_(
... union(
... addresses.select().
... where(addresses.c.email_address.like('%@yahoo.com')),
... addresses.select().
... where(addresses.c.email_address.like('%@msn.com'))
...).alias().select(), # apply subquery here
... addresses.select(addresses.c.email_address.like('%@msn.com'))
...)
sql>>> conn.execute(u).fetchall()
SELECT anon_1.id, anon_1.user_id, anon_1.email_address
FROM (SELECT addresses.id AS id, addresses.user_id AS user_id,
 addresses.email_address AS email_address
 FROM addresses
 WHERE addresses.email_address LIKE ?
 UNION
 SELECT addresses.id AS id,
 addresses.user_id AS user_id,
 addresses.email_address AS email_address
 FROM addresses
 WHERE addresses.email_address LIKE ?) AS anon_1
EXCEPT
SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address LIKE ?
('%@yahoo.com', '%@msn.com', '%@msn.com')

[(1, 1, u'jack@yahoo.com')]

See also

union()

union_all()

intersect()

intersect_all()

except_()

except_all()

Scalar Selects

A scalar select is a SELECT that returns exactly one row and one
column. It can then be used as a column expression. A scalar select
is often a correlated subquery, which relies upon the enclosing
SELECT statement in order to acquire at least one of its FROM clauses.

The select() construct can be modified to act as a
column expression by calling either the as_scalar()
or label() method:

>>> stmt = select([func.count(addresses.c.id)]).\
... where(users.c.id == addresses.c.user_id).\
... as_scalar()

The above construct is now a ScalarSelect object,
and is no longer part of the FromClause hierarchy;
it instead is within the ColumnElement family of
expression constructs. We can place this construct the same as any
other column within another select():

>>> conn.execute(select([users.c.name, stmt])).fetchall()
SELECT users.name, (SELECT count(addresses.id) AS count_1
FROM addresses
WHERE users.id = addresses.user_id) AS anon_1
FROM users
()

[(u'jack', 2), (u'wendy', 2)]

To apply a non-anonymous column name to our scalar select, we create
it using SelectBase.label() instead:

>>> stmt = select([func.count(addresses.c.id)]).\
... where(users.c.id == addresses.c.user_id).\
... label("address_count")
>>> conn.execute(select([users.c.name, stmt])).fetchall()
SELECT users.name, (SELECT count(addresses.id) AS count_1
FROM addresses
WHERE users.id = addresses.user_id) AS address_count
FROM users
()

[(u'jack', 2), (u'wendy', 2)]

See also

Select.as_scalar()

Select.label()

Correlated Subqueries

Notice in the examples on Scalar Selects, the FROM clause of each embedded
select did not contain the users table in its FROM clause. This is because
SQLAlchemy automatically correlates embedded FROM objects to that
of an enclosing query, if present, and if the inner SELECT statement would
still have at least one FROM clause of its own. For example:

>>> stmt = select([addresses.c.user_id]).\
... where(addresses.c.user_id == users.c.id).\
... where(addresses.c.email_address == 'jack@yahoo.com')
>>> enclosing_stmt = select([users.c.name]).where(users.c.id == stmt)
>>> conn.execute(enclosing_stmt).fetchall()
SELECT users.name
FROM users
WHERE users.id = (SELECT addresses.user_id
 FROM addresses
 WHERE addresses.user_id = users.id
 AND addresses.email_address = ?)
('jack@yahoo.com',)

[(u'jack',)]

Auto-correlation will usually do what’s expected, however it can also be controlled.
For example, if we wanted a statement to correlate only to the addresses table
but not the users table, even if both were present in the enclosing SELECT,
we use the correlate() method to specify those FROM clauses that
may be correlated:

>>> stmt = select([users.c.id]).\
... where(users.c.id == addresses.c.user_id).\
... where(users.c.name == 'jack').\
... correlate(addresses)
>>> enclosing_stmt = select(
... [users.c.name, addresses.c.email_address]).\
... select_from(users.join(addresses)).\
... where(users.c.id == stmt)
>>> conn.execute(enclosing_stmt).fetchall()
SELECT users.name, addresses.email_address
 FROM users JOIN addresses ON users.id = addresses.user_id
 WHERE users.id = (SELECT users.id
 FROM users
 WHERE users.id = addresses.user_id AND users.name = ?)
 ('jack',)

[(u'jack', u'jack@yahoo.com'), (u'jack', u'jack@msn.com')]

To entirely disable a statement from correlating, we can pass None
as the argument:

>>> stmt = select([users.c.id]).\
... where(users.c.name == 'wendy').\
... correlate(None)
>>> enclosing_stmt = select([users.c.name]).\
... where(users.c.id == stmt)
>>> conn.execute(enclosing_stmt).fetchall()
SELECT users.name
 FROM users
 WHERE users.id = (SELECT users.id
 FROM users
 WHERE users.name = ?)
('wendy',)

[(u'wendy',)]

We can also control correlation via exclusion, using the Select.correlate_except()
method. Such as, we can write our SELECT for the users table
by telling it to correlate all FROM clauses except for users:

>>> stmt = select([users.c.id]).\
... where(users.c.id == addresses.c.user_id).\
... where(users.c.name == 'jack').\
... correlate_except(users)
>>> enclosing_stmt = select(
... [users.c.name, addresses.c.email_address]).\
... select_from(users.join(addresses)).\
... where(users.c.id == stmt)
>>> conn.execute(enclosing_stmt).fetchall()
SELECT users.name, addresses.email_address
 FROM users JOIN addresses ON users.id = addresses.user_id
 WHERE users.id = (SELECT users.id
 FROM users
 WHERE users.id = addresses.user_id AND users.name = ?)
 ('jack',)

[(u'jack', u'jack@yahoo.com'), (u'jack', u'jack@msn.com')]

LATERAL correlation

LATERAL correlation is a special sub-category of SQL correlation which
allows a selectable unit to refer to another selectable unit within a
single FROM clause. This is an extremely special use case which, while
part of the SQL standard, is only known to be supported by recent
versions of Postgresql.

Normally, if a SELECT statement refers to
table1 JOIN (some SELECT) AS subquery in its FROM clause, the subquery
on the right side may not refer to the “table1” expression from the left side;
correlation may only refer to a table that is part of another SELECT that
entirely encloses this SELECT. The LATERAL keyword allows us to turn this
behavior around, allowing an expression such as:

SELECT people.people_id, people.age, people.name
FROM people JOIN LATERAL (SELECT books.book_id AS book_id
FROM books WHERE books.owner_id = people.people_id)
AS book_subq ON true

Where above, the right side of the JOIN contains a subquery that refers not
just to the “books” table but also the “people” table, correlating
to the left side of the JOIN. SQLAlchemy Core supports a statement
like the above using the Select.lateral() method as follows:

>>> from sqlalchemy import table, column, select, true
>>> people = table('people', column('people_id'), column('age'), column('name'))
>>> books = table('books', column('book_id'), column('owner_id'))
>>> subq = select([books.c.book_id]).\
... where(books.c.owner_id == people.c.people_id).lateral("book_subq")
>>> print(select([people]).select_from(people.join(subq, true())))
SELECT people.people_id, people.age, people.name
FROM people JOIN LATERAL (SELECT books.book_id AS book_id
FROM books WHERE books.owner_id = people.people_id)
AS book_subq ON true

Above, we can see that the Select.lateral() method acts a lot like
the Select.alias() method, including that we can specify an optional
name. However the construct is the Lateral construct instead of
an Alias which provides for the LATERAL keyword as well as special
instructions to allow correlation from inside the FROM clause of the
enclosing statement.

The Select.lateral() method interacts normally with the
Select.correlate() and Select.correlate_except() methods, except
that the correlation rules also apply to any other tables present in the
enclosing statement’s FROM clause. Correlation is “automatic” to these
tables by default, is explicit if the table is specified to
Select.correlate(), and is explicit to all tables except those
specified to Select.correlate_except().

New in version 1.1: Support for the LATERAL keyword and lateral correlation.

See also

Lateral

Select.lateral()

Ordering, Grouping, Limiting, Offset...ing...

Ordering is done by passing column expressions to the
order_by() method:

>>> stmt = select([users.c.name]).order_by(users.c.name)
>>> conn.execute(stmt).fetchall()
SELECT users.name
FROM users ORDER BY users.name
()

[(u'jack',), (u'wendy',)]

Ascending or descending can be controlled using the asc()
and desc() modifiers:

>>> stmt = select([users.c.name]).order_by(users.c.name.desc())
>>> conn.execute(stmt).fetchall()
SELECT users.name
FROM users ORDER BY users.name DESC
()

[(u'wendy',), (u'jack',)]

Grouping refers to the GROUP BY clause, and is usually used in conjunction
with aggregate functions to establish groups of rows to be aggregated.
This is provided via the group_by() method:

>>> stmt = select([users.c.name, func.count(addresses.c.id)]).\
... select_from(users.join(addresses)).\
... group_by(users.c.name)
>>> conn.execute(stmt).fetchall()
SELECT users.name, count(addresses.id) AS count_1
FROM users JOIN addresses
 ON users.id = addresses.user_id
GROUP BY users.name
()

[(u'jack', 2), (u'wendy', 2)]

HAVING can be used to filter results on an aggregate value, after GROUP BY has
been applied. It’s available here via the having()
method:

>>> stmt = select([users.c.name, func.count(addresses.c.id)]).\
... select_from(users.join(addresses)).\
... group_by(users.c.name).\
... having(func.length(users.c.name) > 4)
>>> conn.execute(stmt).fetchall()
SELECT users.name, count(addresses.id) AS count_1
FROM users JOIN addresses
 ON users.id = addresses.user_id
GROUP BY users.name
HAVING length(users.name) > ?
(4,)

[(u'wendy', 2)]

A common system of dealing with duplicates in composed SELECT statements
is the DISTINCT modifier. A simple DISTINCT clause can be added using the
Select.distinct() method:

>>> stmt = select([users.c.name]).\
... where(addresses.c.email_address.
... contains(users.c.name)).\
... distinct()
>>> conn.execute(stmt).fetchall()
SELECT DISTINCT users.name
FROM users, addresses
WHERE (addresses.email_address LIKE '%%' || users.name || '%%')
()

[(u'jack',), (u'wendy',)]

Most database backends support a system of limiting how many rows
are returned, and the majority also feature a means of starting to return
rows after a given “offset”. While common backends like Postgresql,
MySQL and SQLite support LIMIT and OFFSET keywords, other backends
need to refer to more esoteric features such as “window functions”
and row ids to achieve the same effect. The limit()
and offset() methods provide an easy abstraction
into the current backend’s methodology:

>>> stmt = select([users.c.name, addresses.c.email_address]).\
... select_from(users.join(addresses)).\
... limit(1).offset(1)
>>> conn.execute(stmt).fetchall()
SELECT users.name, addresses.email_address
FROM users JOIN addresses ON users.id = addresses.user_id
 LIMIT ? OFFSET ?
(1, 1)

[(u'jack', u'jack@msn.com')]

Inserts, Updates and Deletes

We’ve seen insert() demonstrated
earlier in this tutorial. Where insert()
produces INSERT, the update()
method produces UPDATE. Both of these constructs feature
a method called values() which specifies
the VALUES or SET clause of the statement.

The values() method accommodates any column expression
as a value:

>>> stmt = users.update().\
... values(fullname="Fullname: " + users.c.name)
>>> conn.execute(stmt)
UPDATE users SET fullname=(? || users.name)
('Fullname: ',)
COMMIT

<sqlalchemy.engine.result.ResultProxy object at 0x...>

When using insert() or update()
in an “execute many” context, we may also want to specify named
bound parameters which we can refer to in the argument list.
The two constructs will automatically generate bound placeholders
for any column names passed in the dictionaries sent to
execute() at execution time. However, if we
wish to use explicitly targeted named parameters with composed expressions,
we need to use the bindparam() construct.
When using bindparam() with
insert() or update(),
the names of the table’s columns themselves are reserved for the
“automatic” generation of bind names. We can combine the usage
of implicitly available bind names and explicitly named parameters
as in the example below:

>>> stmt = users.insert().\
... values(name=bindparam('_name') + " .. name")
>>> conn.execute(stmt, [
... {'id':4, '_name':'name1'},
... {'id':5, '_name':'name2'},
... {'id':6, '_name':'name3'},
...])
INSERT INTO users (id, name) VALUES (?, (? || ?))
((4, 'name1', ' .. name'), (5, 'name2', ' .. name'), (6, 'name3', ' .. name'))
COMMIT
<sqlalchemy.engine.result.ResultProxy object at 0x...>

An UPDATE statement is emitted using the update() construct. This
works much like an INSERT, except there is an additional WHERE clause
that can be specified:

>>> stmt = users.update().\
... where(users.c.name == 'jack').\
... values(name='ed')

>>> conn.execute(stmt)
UPDATE users SET name=? WHERE users.name = ?
('ed', 'jack')
COMMIT

<sqlalchemy.engine.result.ResultProxy object at 0x...>

When using update() in an “executemany” context,
we may wish to also use explicitly named bound parameters in the
WHERE clause. Again, bindparam() is the construct
used to achieve this:

>>> stmt = users.update().\
... where(users.c.name == bindparam('oldname')).\
... values(name=bindparam('newname'))
>>> conn.execute(stmt, [
... {'oldname':'jack', 'newname':'ed'},
... {'oldname':'wendy', 'newname':'mary'},
... {'oldname':'jim', 'newname':'jake'},
...])
UPDATE users SET name=? WHERE users.name = ?
(('ed', 'jack'), ('mary', 'wendy'), ('jake', 'jim'))
COMMIT

<sqlalchemy.engine.result.ResultProxy object at 0x...>

Correlated Updates

A correlated update lets you update a table using selection from another
table, or the same table:

>>> stmt = select([addresses.c.email_address]).\
... where(addresses.c.user_id == users.c.id).\
... limit(1)
>>> conn.execute(users.update().values(fullname=stmt))
UPDATE users SET fullname=(SELECT addresses.email_address
 FROM addresses
 WHERE addresses.user_id = users.id
 LIMIT ? OFFSET ?)
(1, 0)
COMMIT

<sqlalchemy.engine.result.ResultProxy object at 0x...>

Multiple Table Updates

New in version 0.7.4.

The Postgresql, Microsoft SQL Server, and MySQL backends all support UPDATE statements
that refer to multiple tables. For PG and MSSQL, this is the “UPDATE FROM” syntax,
which updates one table at a time, but can reference additional tables in an additional
“FROM” clause that can then be referenced in the WHERE clause directly. On MySQL,
multiple tables can be embedded into a single UPDATE statement separated by a comma.
The SQLAlchemy update() construct supports both of these modes
implicitly, by specifying multiple tables in the WHERE clause:

stmt = users.update().\
 values(name='ed wood').\
 where(users.c.id == addresses.c.id).\
 where(addresses.c.email_address.startswith('ed%'))
conn.execute(stmt)

The resulting SQL from the above statement would render as:

UPDATE users SET name=:name FROM addresses
WHERE users.id = addresses.id AND
addresses.email_address LIKE :email_address_1 || '%%'

When using MySQL, columns from each table can be assigned to in the
SET clause directly, using the dictionary form passed to Update.values():

stmt = users.update().\
 values({
 users.c.name:'ed wood',
 addresses.c.email_address:'ed.wood@foo.com'
 }).\
 where(users.c.id == addresses.c.id).\
 where(addresses.c.email_address.startswith('ed%'))

The tables are referenced explicitly in the SET clause:

UPDATE users, addresses SET addresses.email_address=%s,
 users.name=%s WHERE users.id = addresses.id
 AND addresses.email_address LIKE concat(%s, '%%')

SQLAlchemy doesn’t do anything special when these constructs are used on
a non-supporting database. The UPDATE FROM syntax generates by default
when multiple tables are present, and the statement will be rejected
by the database if this syntax is not supported.

Parameter-Ordered Updates

The default behavior of the update() construct when rendering the SET
clauses is to render them using the column ordering given in the
originating Table object.
This is an important behavior, since it means that the rendering of a
particular UPDATE statement with particular columns
will be rendered the same each time, which has an impact on query caching systems
that rely on the form of the statement, either client side or server side.
Since the parameters themselves are passed to the Update.values()
method as Python dictionary keys, there is no other fixed ordering
available.

However in some cases, the order of parameters rendered in the SET clause of an
UPDATE statement can be significant. The main example of this is when using
MySQL and providing updates to column values based on that of other
column values. The end result of the following statement:

UPDATE some_table SET x = y + 10, y = 20

Will have a different result than:

UPDATE some_table SET y = 20, x = y + 10

This because on MySQL, the individual SET clauses are fully evaluated on
a per-value basis, as opposed to on a per-row basis, and as each SET clause
is evaluated, the values embedded in the row are changing.

To suit this specific use case, the
preserve_parameter_order
flag may be used. When using this flag, we supply a Python list of 2-tuples
as the argument to the Update.values() method:

stmt = some_table.update(preserve_parameter_order=True).\
 values([(some_table.c.y, 20), (some_table.c.x, some_table.c.y + 10)])

The list of 2-tuples is essentially the same structure as a Python dictionary
except it is ordered. Using the above form, we are assured that the
“y” column’s SET clause will render first, then the “x” column’s SET clause.

New in version 1.0.10: Added support for explicit ordering of UPDATE
parameters using the preserve_parameter_order flag.

Deletes

Finally, a delete. This is accomplished easily enough using the
delete() construct:

>>> conn.execute(addresses.delete())
DELETE FROM addresses
()
COMMIT

<sqlalchemy.engine.result.ResultProxy object at 0x...>

>>> conn.execute(users.delete().where(users.c.name > 'm'))
DELETE FROM users WHERE users.name > ?
('m',)
COMMIT

<sqlalchemy.engine.result.ResultProxy object at 0x...>

Matched Row Counts

Both of update() and
delete() are associated with matched row counts. This is a
number indicating the number of rows that were matched by the WHERE clause.
Note that by “matched”, this includes rows where no UPDATE actually took place.
The value is available as rowcount:

>>> result = conn.execute(users.delete())
DELETE FROM users
()
COMMIT

>>> result.rowcount
1

Further Reference

Expression Language Reference: SQL Statements and Expressions API

Database Metadata Reference: Describing Databases with MetaData

Engine Reference: Engine Configuration

Connection Reference: Working with Engines and Connections

Types Reference: Column and Data Types

SQL Statements and Expressions API

This section presents the API reference for the SQL Expression Language. For a full introduction to its usage,
see SQL Expression Language Tutorial.

	Column Elements and Expressions

	Selectables, Tables, FROM objects

	Insert, Updates, Deletes

	SQL and Generic Functions

	Custom SQL Constructs and Compilation Extension

	Expression Serializer Extension

Column Elements and Expressions

The most fundamental part of the SQL expression API are the “column elements”,
which allow for basic SQL expression support. The core of all SQL expression
constructs is the ClauseElement, which is the base for several
sub-branches. The ColumnElement class is the fundamental unit
used to construct any kind of typed SQL expression.

	
sqlalchemy.sql.expression.all_(expr)

	Produce an ALL expression.

This may apply to an array type for some dialects (e.g. postgresql),
or to a subquery for others (e.g. mysql). e.g.:

postgresql '5 = ALL (somearray)'
expr = 5 == all_(mytable.c.somearray)

mysql '5 = ALL (SELECT value FROM table)'
expr = 5 == all_(select([table.c.value]))

New in version 1.1.

See also

expression.any_()

	
sqlalchemy.sql.expression.and_(*clauses)

	Produce a conjunction of expressions joined by AND.

E.g.:

from sqlalchemy import and_

stmt = select([users_table]).where(
 and_(
 users_table.c.name == 'wendy',
 users_table.c.enrolled == True
)
)

The and_() conjunction is also available using the
Python & operator (though note that compound expressions
need to be parenthesized in order to function with Python
operator precedence behavior):

stmt = select([users_table]).where(
 (users_table.c.name == 'wendy') &
 (users_table.c.enrolled == True)
)

The and_() operation is also implicit in some cases;
the Select.where() method for example can be invoked multiple
times against a statement, which will have the effect of each
clause being combined using and_():

stmt = select([users_table]).\
 where(users_table.c.name == 'wendy').\
 where(users_table.c.enrolled == True)

See also

or_()

	
sqlalchemy.sql.expression.any_(expr)

	Produce an ANY expression.

This may apply to an array type for some dialects (e.g. postgresql),
or to a subquery for others (e.g. mysql). e.g.:

postgresql '5 = ANY (somearray)'
expr = 5 == any_(mytable.c.somearray)

mysql '5 = ANY (SELECT value FROM table)'
expr = 5 == any_(select([table.c.value]))

New in version 1.1.

See also

expression.all_()

	
sqlalchemy.sql.expression.asc(column)

	Produce an ascending ORDER BY clause element.

e.g.:

from sqlalchemy import asc
stmt = select([users_table]).order_by(asc(users_table.c.name))

will produce SQL as:

SELECT id, name FROM user ORDER BY name ASC

The asc() function is a standalone version of the
ColumnElement.asc() method available on all SQL expressions,
e.g.:

stmt = select([users_table]).order_by(users_table.c.name.asc())

	Parameters:
	column¶ – A ColumnElement (e.g. scalar SQL expression)
with which to apply the asc() operation.

See also

desc()

nullsfirst()

nullslast()

Select.order_by()

	
sqlalchemy.sql.expression.between(expr, lower_bound, upper_bound, symmetric=False)

	Produce a BETWEEN predicate clause.

E.g.:

from sqlalchemy import between
stmt = select([users_table]).where(between(users_table.c.id, 5, 7))

Would produce SQL resembling:

SELECT id, name FROM user WHERE id BETWEEN :id_1 AND :id_2

The between() function is a standalone version of the
ColumnElement.between() method available on all
SQL expressions, as in:

stmt = select([users_table]).where(users_table.c.id.between(5, 7))

All arguments passed to between(), including the left side
column expression, are coerced from Python scalar values if a
the value is not a ColumnElement subclass. For example,
three fixed values can be compared as in:

print(between(5, 3, 7))

Which would produce:

:param_1 BETWEEN :param_2 AND :param_3

	Parameters:
	
	expr¶ – a column expression, typically a ColumnElement
instance or alternatively a Python scalar expression to be coerced
into a column expression, serving as the left side of the BETWEEN
expression.

	lower_bound¶ – a column or Python scalar expression serving as the
lower bound of the right side of the BETWEEN expression.

	upper_bound¶ – a column or Python scalar expression serving as the
upper bound of the right side of the BETWEEN expression.

	symmetric¶ – if True, will render ” BETWEEN SYMMETRIC ”. Note
that not all databases support this syntax.

New in version 0.9.5.

See also

ColumnElement.between()

	
sqlalchemy.sql.expression.bindparam(key, value=symbol('NO_ARG'), type_=None, unique=False, required=symbol('NO_ARG'), quote=None, callable_=None, isoutparam=False, _compared_to_operator=None, _compared_to_type=None)

	Produce a “bound expression”.

The return value is an instance of BindParameter; this
is a ColumnElement subclass which represents a so-called
“placeholder” value in a SQL expression, the value of which is
supplied at the point at which the statement in executed against a
database connection.

In SQLAlchemy, the bindparam() construct has
the ability to carry along the actual value that will be ultimately
used at expression time. In this way, it serves not just as
a “placeholder” for eventual population, but also as a means of
representing so-called “unsafe” values which should not be rendered
directly in a SQL statement, but rather should be passed along
to the DBAPI as values which need to be correctly escaped
and potentially handled for type-safety.

When using bindparam() explicitly, the use case is typically
one of traditional deferment of parameters; the bindparam()
construct accepts a name which can then be referred to at execution
time:

from sqlalchemy import bindparam

stmt = select([users_table]).\
 where(users_table.c.name == bindparam('username'))

The above statement, when rendered, will produce SQL similar to:

SELECT id, name FROM user WHERE name = :username

In order to populate the value of :username above, the value
would typically be applied at execution time to a method
like Connection.execute():

result = connection.execute(stmt, username='wendy')

Explicit use of bindparam() is also common when producing
UPDATE or DELETE statements that are to be invoked multiple times,
where the WHERE criterion of the statement is to change on each
invocation, such as:

stmt = (users_table.update().
 where(user_table.c.name == bindparam('username')).
 values(fullname=bindparam('fullname'))
)

connection.execute(
 stmt, [{"username": "wendy", "fullname": "Wendy Smith"},
 {"username": "jack", "fullname": "Jack Jones"},
]
)

SQLAlchemy’s Core expression system makes wide use of
bindparam() in an implicit sense. It is typical that Python
literal values passed to virtually all SQL expression functions are
coerced into fixed bindparam() constructs. For example, given
a comparison operation such as:

expr = users_table.c.name == 'Wendy'

The above expression will produce a BinaryExpression
construct, where the left side is the Column object
representing the name column, and the right side is a
BindParameter representing the literal value:

print(repr(expr.right))
BindParameter('%(4327771088 name)s', 'Wendy', type_=String())

The expression above will render SQL such as:

user.name = :name_1

Where the :name_1 parameter name is an anonymous name. The
actual string Wendy is not in the rendered string, but is carried
along where it is later used within statement execution. If we
invoke a statement like the following:

stmt = select([users_table]).where(users_table.c.name == 'Wendy')
result = connection.execute(stmt)

We would see SQL logging output as:

SELECT "user".id, "user".name
FROM "user"
WHERE "user".name = %(name_1)s
{'name_1': 'Wendy'}

Above, we see that Wendy is passed as a parameter to the database,
while the placeholder :name_1 is rendered in the appropriate form
for the target database, in this case the Postgresql database.

Similarly, bindparam() is invoked automatically
when working with CRUD statements as far as the “VALUES”
portion is concerned. The insert() construct produces an
INSERT expression which will, at statement execution time,
generate bound placeholders based on the arguments passed, as in:

stmt = users_table.insert()
result = connection.execute(stmt, name='Wendy')

The above will produce SQL output as:

INSERT INTO "user" (name) VALUES (%(name)s)
{'name': 'Wendy'}

The Insert construct, at compilation/execution time,
rendered a single bindparam() mirroring the column
name name as a result of the single name parameter
we passed to the Connection.execute() method.

	Parameters:
	
	key¶ – the key (e.g. the name) for this bind param.
Will be used in the generated
SQL statement for dialects that use named parameters. This
value may be modified when part of a compilation operation,
if other BindParameter objects exist with the same
key, or if its length is too long and truncation is
required.

	value¶ – Initial value for this bind param. Will be used at statement
execution time as the value for this parameter passed to the
DBAPI, if no other value is indicated to the statement execution
method for this particular parameter name. Defaults to None.

	callable_¶ – A callable function that takes the place of “value”. The function
will be called at statement execution time to determine the
ultimate value. Used for scenarios where the actual bind
value cannot be determined at the point at which the clause
construct is created, but embedded bind values are still desirable.

	type_¶ – A TypeEngine class or instance representing an optional
datatype for this bindparam(). If not passed, a type
may be determined automatically for the bind, based on the given
value; for example, trivial Python types such as str,
int, bool
may result in the String, Integer or
Boolean types being autoamtically selected.

The type of a bindparam() is significant especially in that
the type will apply pre-processing to the value before it is
passed to the database. For example, a bindparam() which
refers to a datetime value, and is specified as holding the
DateTime type, may apply conversion needed to the
value (such as stringification on SQLite) before passing the value
to the database.

	unique¶ – if True, the key name of this BindParameter will be
modified if another BindParameter of the same name
already has been located within the containing
expression. This flag is used generally by the internals
when producing so-called “anonymous” bound expressions, it
isn’t generally applicable to explicitly-named bindparam()
constructs.

	required¶ – If True, a value is required at execution time. If not passed,
it defaults to True if neither bindparam.value
or bindparam.callable were passed. If either of these
parameters are present, then bindparam.required
defaults to False.

Changed in version 0.8: If the required flag is not specified,
it will be set automatically to True or False depending
on whether or not the value or callable parameters
were specified.

	quote¶ – True if this parameter name requires quoting and is not
currently known as a SQLAlchemy reserved word; this currently
only applies to the Oracle backend, where bound names must
sometimes be quoted.

	isoutparam¶ – if True, the parameter should be treated like a stored procedure
“OUT” parameter. This applies to backends such as Oracle which
support OUT parameters.

See also

Bind Parameter Objects

Insert Expressions

outparam()

	
sqlalchemy.sql.expression.case(whens, value=None, else_=None)

	Produce a CASE expression.

The CASE construct in SQL is a conditional object that
acts somewhat analogously to an “if/then” construct in other
languages. It returns an instance of Case.

case() in its usual form is passed a list of “when”
constructs, that is, a list of conditions and results as tuples:

from sqlalchemy import case

stmt = select([users_table]).\
 where(
 case(
 [
 (users_table.c.name == 'wendy', 'W'),
 (users_table.c.name == 'jack', 'J')
],
 else_='E'
)
)

The above statement will produce SQL resembling:

SELECT id, name FROM user
WHERE CASE
 WHEN (name = :name_1) THEN :param_1
 WHEN (name = :name_2) THEN :param_2
 ELSE :param_3
END

When simple equality expressions of several values against a single
parent column are needed, case() also has a “shorthand” format
used via the
case.value parameter, which is passed a column
expression to be compared. In this form, the case.whens
parameter is passed as a dictionary containing expressions to be
compared against keyed to result expressions. The statement below is
equivalent to the preceding statement:

stmt = select([users_table]).\
 where(
 case(
 {"wendy": "W", "jack": "J"},
 value=users_table.c.name,
 else_='E'
)
)

The values which are accepted as result values in
case.whens as well as with case.else_ are
coerced from Python literals into bindparam() constructs.
SQL expressions, e.g. ColumnElement constructs, are accepted
as well. To coerce a literal string expression into a constant
expression rendered inline, use the literal_column() construct,
as in:

from sqlalchemy import case, literal_column

case(
 [
 (
 orderline.c.qty > 100,
 literal_column("'greaterthan100'")
),
 (
 orderline.c.qty > 10,
 literal_column("'greaterthan10'")
)
],
 else_=literal_column("'lessthan10'")
)

The above will render the given constants without using bound
parameters for the result values (but still for the comparison
values), as in:

CASE
 WHEN (orderline.qty > :qty_1) THEN 'greaterthan100'
 WHEN (orderline.qty > :qty_2) THEN 'greaterthan10'
 ELSE 'lessthan10'
END

	Parameters:
	
	whens¶ – The criteria to be compared against,
case.whens accepts two different forms, based on
whether or not case.value is used.

In the first form, it accepts a list of 2-tuples; each 2-tuple
consists of (<sql expression>, <value>), where the SQL
expression is a boolean expression and “value” is a resulting value,
e.g.:

case([
 (users_table.c.name == 'wendy', 'W'),
 (users_table.c.name == 'jack', 'J')
])

In the second form, it accepts a Python dictionary of comparison
values mapped to a resulting value; this form requires
case.value to be present, and values will be compared
using the == operator, e.g.:

case(
 {"wendy": "W", "jack": "J"},
 value=users_table.c.name
)

	value¶ – An optional SQL expression which will be used as a
fixed “comparison point” for candidate values within a dictionary
passed to case.whens.

	else_¶ – An optional SQL expression which will be the evaluated
result of the CASE construct if all expressions within
case.whens evaluate to false. When omitted, most
databases will produce a result of NULL if none of the “when”
expressions evaluate to true.

	
sqlalchemy.sql.expression.cast(expression, type_)

	Produce a CAST expression.

cast() returns an instance of Cast.

E.g.:

from sqlalchemy import cast, Numeric

stmt = select([
 cast(product_table.c.unit_price, Numeric(10, 4))
])

The above statement will produce SQL resembling:

SELECT CAST(unit_price AS NUMERIC(10, 4)) FROM product

The cast() function performs two distinct functions when
used. The first is that it renders the CAST expression within
the resulting SQL string. The second is that it associates the given
type (e.g. TypeEngine class or instance) with the column
expression on the Python side, which means the expression will take
on the expression operator behavior associated with that type,
as well as the bound-value handling and result-row-handling behavior
of the type.

Changed in version 0.9.0: cast() now applies the given type
to the expression such that it takes effect on the bound-value,
e.g. the Python-to-database direction, in addition to the
result handling, e.g. database-to-Python, direction.

An alternative to cast() is the type_coerce() function.
This function performs the second task of associating an expression
with a specific type, but does not render the CAST expression
in SQL.

	Parameters:
	
	expression¶ – A SQL expression, such as a ColumnElement
expression or a Python string which will be coerced into a bound
literal value.

	type_¶ – A TypeEngine class or instance indicating
the type to which the CAST should apply.

See also

type_coerce() - Python-side type coercion without emitting
CAST.

	
sqlalchemy.sql.expression.column(text, type_=None, is_literal=False, _selectable=None)

	Produce a ColumnClause object.

The ColumnClause is a lightweight analogue to the
Column class. The column() function can
be invoked with just a name alone, as in:

from sqlalchemy import column

id, name = column("id"), column("name")
stmt = select([id, name]).select_from("user")

The above statement would produce SQL like:

SELECT id, name FROM user

Once constructed, column() may be used like any other SQL
expression element such as within select() constructs:

from sqlalchemy.sql import column

id, name = column("id"), column("name")
stmt = select([id, name]).select_from("user")

The text handled by column() is assumed to be handled
like the name of a database column; if the string contains mixed case,
special characters, or matches a known reserved word on the target
backend, the column expression will render using the quoting
behavior determined by the backend. To produce a textual SQL
expression that is rendered exactly without any quoting,
use literal_column() instead, or pass True as the
value of column.is_literal. Additionally, full SQL
statements are best handled using the text() construct.

column() can be used in a table-like
fashion by combining it with the table() function
(which is the lightweight analogue to Table) to produce
a working table construct with minimal boilerplate:

from sqlalchemy import table, column, select

user = table("user",
 column("id"),
 column("name"),
 column("description"),
)

stmt = select([user.c.description]).where(user.c.name == 'wendy')

A column() / table() construct like that illustrated
above can be created in an
ad-hoc fashion and is not associated with any
schema.MetaData, DDL, or events, unlike its
Table counterpart.

Changed in version 1.0.0: expression.column() can now
be imported from the plain sqlalchemy namespace like any
other SQL element.

	Parameters:
	
	text¶ – the text of the element.

	type¶ – types.TypeEngine object which can associate
this ColumnClause with a type.

	is_literal¶ – if True, the ColumnClause is assumed to
be an exact expression that will be delivered to the output with no
quoting rules applied regardless of case sensitive settings. the
literal_column() function essentially invokes
column() while passing is_literal=True.

See also

Column

literal_column()

table()

text()

Using More Specific Text with table(), literal_column(), and column()

	
sqlalchemy.sql.expression.collate(expression, collation)

	Return the clause expression COLLATE collation.

e.g.:

collate(mycolumn, 'utf8_bin')

produces:

mycolumn COLLATE utf8_bin

	
sqlalchemy.sql.expression.desc(column)

	Produce a descending ORDER BY clause element.

e.g.:

from sqlalchemy import desc

stmt = select([users_table]).order_by(desc(users_table.c.name))

will produce SQL as:

SELECT id, name FROM user ORDER BY name DESC

The desc() function is a standalone version of the
ColumnElement.desc() method available on all SQL expressions,
e.g.:

stmt = select([users_table]).order_by(users_table.c.name.desc())

	Parameters:
	column¶ – A ColumnElement (e.g. scalar SQL expression)
with which to apply the desc() operation.

See also

asc()

nullsfirst()

nullslast()

Select.order_by()

	
sqlalchemy.sql.expression.distinct(expr)

	Produce an column-expression-level unary DISTINCT clause.

This applies the DISTINCT keyword to an individual column
expression, and is typically contained within an aggregate function,
as in:

from sqlalchemy import distinct, func
stmt = select([func.count(distinct(users_table.c.name))])

The above would produce an expression resembling:

SELECT COUNT(DISTINCT name) FROM user

The distinct() function is also available as a column-level
method, e.g. ColumnElement.distinct(), as in:

stmt = select([func.count(users_table.c.name.distinct())])

The distinct() operator is different from the
Select.distinct() method of Select,
which produces a SELECT statement
with DISTINCT applied to the result set as a whole,
e.g. a SELECT DISTINCT expression. See that method for further
information.

See also

ColumnElement.distinct()

Select.distinct()

func

	
sqlalchemy.sql.expression.extract(field, expr, **kwargs)

	Return a Extract construct.

This is typically available as extract()
as well as func.extract from the
func namespace.

	
sqlalchemy.sql.expression.false()

	Return a False_ construct.

E.g.:

>>> from sqlalchemy import false
>>> print select([t.c.x]).where(false())
SELECT x FROM t WHERE false

A backend which does not support true/false constants will render as
an expression against 1 or 0:

>>> print select([t.c.x]).where(false())
SELECT x FROM t WHERE 0 = 1

The true() and false() constants also feature
“short circuit” operation within an and_() or or_()
conjunction:

>>> print select([t.c.x]).where(or_(t.c.x > 5, true()))
SELECT x FROM t WHERE true

>>> print select([t.c.x]).where(and_(t.c.x > 5, false()))
SELECT x FROM t WHERE false

Changed in version 0.9: true() and false() feature
better integrated behavior within conjunctions and on dialects
that don’t support true/false constants.

See also

true()

	
sqlalchemy.sql.expression.func = <sqlalchemy.sql.functions._FunctionGenerator object>

	Generate SQL function expressions.

func is a special object instance which generates SQL
functions based on name-based attributes, e.g.:

>>> print(func.count(1))
count(:param_1)

The element is a column-oriented SQL element like any other, and is
used in that way:

>>> print(select([func.count(table.c.id)]))
SELECT count(sometable.id) FROM sometable

Any name can be given to func. If the function name is unknown to
SQLAlchemy, it will be rendered exactly as is. For common SQL functions
which SQLAlchemy is aware of, the name may be interpreted as a generic
function which will be compiled appropriately to the target database:

>>> print(func.current_timestamp())
CURRENT_TIMESTAMP

To call functions which are present in dot-separated packages,
specify them in the same manner:

>>> print(func.stats.yield_curve(5, 10))
stats.yield_curve(:yield_curve_1, :yield_curve_2)

SQLAlchemy can be made aware of the return type of functions to enable
type-specific lexical and result-based behavior. For example, to ensure
that a string-based function returns a Unicode value and is similarly
treated as a string in expressions, specify
Unicode as the type:

>>> print(func.my_string(u'hi', type_=Unicode) + ' ' +
... func.my_string(u'there', type_=Unicode))
my_string(:my_string_1) || :my_string_2 || my_string(:my_string_3)

The object returned by a func call is usually an instance of
Function.
This object meets the “column” interface, including comparison and labeling
functions. The object can also be passed the execute()
method of a Connection or Engine, where it will be
wrapped inside of a SELECT statement first:

print(connection.execute(func.current_timestamp()).scalar())

In a few exception cases, the func accessor
will redirect a name to a built-in expression such as cast()
or extract(), as these names have well-known meaning
but are not exactly the same as “functions” from a SQLAlchemy
perspective.

New in version 0.8: func can return non-function expression
constructs for common quasi-functional names like cast()
and extract().

Functions which are interpreted as “generic” functions know how to
calculate their return type automatically. For a listing of known generic
functions, see SQL and Generic Functions.

Note

The func construct has only limited support for calling
standalone “stored procedures”, especially those with special
parameterization concerns.

See the section Calling Stored Procedures for details on how to use
the DBAPI-level callproc() method for fully traditional stored
procedures.

	
sqlalchemy.sql.expression.funcfilter(func, *criterion)

	Produce a FunctionFilter object against a function.

Used against aggregate and window functions,
for database backends that support the “FILTER” clause.

E.g.:

from sqlalchemy import funcfilter
funcfilter(func.count(1), MyClass.name == 'some name')

Would produce “COUNT(1) FILTER (WHERE myclass.name = ‘some name’)”.

This function is also available from the func
construct itself via the FunctionElement.filter() method.

New in version 1.0.0.

See also

FunctionElement.filter()

	
sqlalchemy.sql.expression.label(name, element, type_=None)

	Return a Label object for the
given ColumnElement.

A label changes the name of an element in the columns clause of a
SELECT statement, typically via the AS SQL keyword.

This functionality is more conveniently available via the
ColumnElement.label() method on ColumnElement.

	Parameters:
	
	name¶ – label name

	obj¶ – a ColumnElement.

	
sqlalchemy.sql.expression.literal(value, type_=None)

	Return a literal clause, bound to a bind parameter.

Literal clauses are created automatically when non-
ClauseElement objects (such as strings, ints, dates, etc.) are
used in a comparison operation with a ColumnElement subclass,
such as a Column object. Use this function
to force the generation of a literal clause, which will be created as a
BindParameter with a bound value.

	Parameters:
	
	value¶ – the value to be bound. Can be any Python object supported by
the underlying DB-API, or is translatable via the given type argument.

	type_¶ – an optional TypeEngine which
will provide bind-parameter translation for this literal.

	
sqlalchemy.sql.expression.literal_column(text, type_=None)

	Produce a ColumnClause object that has the
column.is_literal flag set to True.

literal_column() is similar to column(), except that
it is more often used as a “standalone” column expression that renders
exactly as stated; while column() stores a string name that
will be assumed to be part of a table and may be quoted as such,
literal_column() can be that, or any other arbitrary column-oriented
expression.

	Parameters:
	
	text¶ – the text of the expression; can be any SQL expression.
Quoting rules will not be applied. To specify a column-name expression
which should be subject to quoting rules, use the column()
function.

	type_¶ – an optional TypeEngine
object which will
provide result-set translation and additional expression semantics for
this column. If left as None the type will be NullType.

See also

column()

text()

Using More Specific Text with table(), literal_column(), and column()

	
sqlalchemy.sql.expression.not_(clause)

	Return a negation of the given clause, i.e. NOT(clause).

The ~ operator is also overloaded on all
ColumnElement subclasses to produce the
same result.

	
sqlalchemy.sql.expression.null()

	Return a constant Null construct.

	
sqlalchemy.sql.expression.nullsfirst(column)

	Produce the NULLS FIRST modifier for an ORDER BY expression.

nullsfirst() is intended to modify the expression produced
by asc() or desc(), and indicates how NULL values
should be handled when they are encountered during ordering:

from sqlalchemy import desc, nullsfirst

stmt = select([users_table]).\
 order_by(nullsfirst(desc(users_table.c.name)))

The SQL expression from the above would resemble:

SELECT id, name FROM user ORDER BY name DESC NULLS FIRST

Like asc() and desc(), nullsfirst() is typically
invoked from the column expression itself using
ColumnElement.nullsfirst(), rather than as its standalone
function version, as in:

stmt = (select([users_table]).
 order_by(users_table.c.name.desc().nullsfirst())
)

See also

asc()

desc()

nullslast()

Select.order_by()

	
sqlalchemy.sql.expression.nullslast(column)

	Produce the NULLS LAST modifier for an ORDER BY expression.

nullslast() is intended to modify the expression produced
by asc() or desc(), and indicates how NULL values
should be handled when they are encountered during ordering:

from sqlalchemy import desc, nullslast

stmt = select([users_table]).\
 order_by(nullslast(desc(users_table.c.name)))

The SQL expression from the above would resemble:

SELECT id, name FROM user ORDER BY name DESC NULLS LAST

Like asc() and desc(), nullslast() is typically
invoked from the column expression itself using
ColumnElement.nullslast(), rather than as its standalone
function version, as in:

stmt = select([users_table]).\
 order_by(users_table.c.name.desc().nullslast())

See also

asc()

desc()

nullsfirst()

Select.order_by()

	
sqlalchemy.sql.expression.or_(*clauses)

	Produce a conjunction of expressions joined by OR.

E.g.:

from sqlalchemy import or_

stmt = select([users_table]).where(
 or_(
 users_table.c.name == 'wendy',
 users_table.c.name == 'jack'
)
)

The or_() conjunction is also available using the
Python | operator (though note that compound expressions
need to be parenthesized in order to function with Python
operator precedence behavior):

stmt = select([users_table]).where(
 (users_table.c.name == 'wendy') |
 (users_table.c.name == 'jack')
)

See also

and_()

	
sqlalchemy.sql.expression.outparam(key, type_=None)

	Create an ‘OUT’ parameter for usage in functions (stored procedures),
for databases which support them.

The outparam can be used like a regular function parameter.
The “output” value will be available from the
ResultProxy object via its out_parameters
attribute, which returns a dictionary containing the values.

	
sqlalchemy.sql.expression.over(element, partition_by=None, order_by=None, range_=None, rows=None)

	Produce an Over object against a function.

Used against aggregate or so-called “window” functions,
for database backends that support window functions.

over() is usually called using
the FunctionElement.over() method, e.g.:

func.row_number().over(order_by=mytable.c.some_column)

Would produce:

ROW_NUMBER() OVER(ORDER BY some_column)

Ranges are also possible using the expression.over.range_
and expression.over.rows parameters. These
mutually-exclusive parameters each accept a 2-tuple, which contains
a combination of integers and None:

func.row_number().over(order_by=my_table.c.some_column, range_=(None, 0))

The above would produce:

ROW_NUMBER() OVER(ORDER BY some_column RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

A value of None indicates “unbounded”, a
value of zero indicates “current row”, and negative / positive
integers indicate “preceding” and “following”:

	RANGE BETWEEN 5 PRECEDING AND 10 FOLLOWING:

func.row_number().over(order_by='x', range_=(-5, 10))

	ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW:

func.row_number().over(order_by='x', rows=(None, 0))

	RANGE BETWEEN 2 PRECEDING AND UNBOUNDED FOLLOWING:

func.row_number().over(order_by='x', range_=(-2, None))

New in version 1.1: support for RANGE / ROWS within a window

	Parameters:
	
	element¶ – a FunctionElement, WithinGroup,
or other compatible construct.

	partition_by¶ – a column element or string, or a list
of such, that will be used as the PARTITION BY clause
of the OVER construct.

	order_by¶ – a column element or string, or a list
of such, that will be used as the ORDER BY clause
of the OVER construct.

	range_¶ – optional range clause for the window. This is a
tuple value which can contain integer values or None, and will
render a RANGE BETWEEN PRECEDING / FOLLOWING clause

New in version 1.1.

	rows¶ – optional rows clause for the window. This is a tuple
value which can contain integer values or None, and will render
a ROWS BETWEEN PRECEDING / FOLLOWING clause.

New in version 1.1.

This function is also available from the func
construct itself via the FunctionElement.over() method.

See also

expression.func

expression.within_group()

	
sqlalchemy.sql.expression.text(text, bind=None, bindparams=None, typemap=None, autocommit=None)

	Construct a new TextClause clause, representing
a textual SQL string directly.

E.g.:

from sqlalchemy import text

t = text("SELECT * FROM users")
result = connection.execute(t)

The advantages text() provides over a plain string are
backend-neutral support for bind parameters, per-statement
execution options, as well as
bind parameter and result-column typing behavior, allowing
SQLAlchemy type constructs to play a role when executing
a statement that is specified literally. The construct can also
be provided with a .c collection of column elements, allowing
it to be embedded in other SQL expression constructs as a subquery.

Bind parameters are specified by name, using the format :name.
E.g.:

t = text("SELECT * FROM users WHERE id=:user_id")
result = connection.execute(t, user_id=12)

For SQL statements where a colon is required verbatim, as within
an inline string, use a backslash to escape:

t = text("SELECT * FROM users WHERE name='\:username'")

The TextClause construct includes methods which can
provide information about the bound parameters as well as the column
values which would be returned from the textual statement, assuming
it’s an executable SELECT type of statement. The
TextClause.bindparams() method is used to provide bound
parameter detail, and TextClause.columns() method allows
specification of return columns including names and types:

t = text("SELECT * FROM users WHERE id=:user_id").\
 bindparams(user_id=7).\
 columns(id=Integer, name=String)

for id, name in connection.execute(t):
 print(id, name)

The text() construct is used in cases when
a literal string SQL fragment is specified as part of a larger query,
such as for the WHERE clause of a SELECT statement:

s = select([users.c.id, users.c.name]).where(text("id=:user_id"))
result = connection.execute(s, user_id=12)

text() is also used for the construction
of a full, standalone statement using plain text.
As such, SQLAlchemy refers
to it as an Executable object, and it supports
the Executable.execution_options() method. For example,
a text() construct that should be subject to “autocommit”
can be set explicitly so using the
Connection.execution_options.autocommit option:

t = text("EXEC my_procedural_thing()").\
 execution_options(autocommit=True)

Note that SQLAlchemy’s usual “autocommit” behavior applies to
text() constructs implicitly - that is, statements which begin
with a phrase such as INSERT, UPDATE, DELETE,
or a variety of other phrases specific to certain backends, will
be eligible for autocommit if no transaction is in progress.

	Parameters:
	
	text¶ – the text of the SQL statement to be created. use :<param>
to specify bind parameters; they will be compiled to their
engine-specific format.

	autocommit¶ – Deprecated. Use .execution_options(autocommit=<True|False>)
to set the autocommit option.

	bind¶ – an optional connection or engine to be used for this text query.

	bindparams¶ – Deprecated. A list of bindparam() instances used to
provide information about parameters embedded in the statement.
This argument now invokes the TextClause.bindparams()
method on the construct before returning it. E.g.:

stmt = text("SELECT * FROM table WHERE id=:id",
 bindparams=[bindparam('id', value=5, type_=Integer)])

Is equivalent to:

stmt = text("SELECT * FROM table WHERE id=:id").\
 bindparams(bindparam('id', value=5, type_=Integer))

Deprecated since version 0.9.0: the TextClause.bindparams() method
supersedes the bindparams argument to text().

	typemap¶ – Deprecated. A dictionary mapping the names of columns
represented in the columns clause of a SELECT statement
to type objects,
which will be used to perform post-processing on columns within
the result set. This parameter now invokes the
TextClause.columns() method, which returns a
TextAsFrom construct that gains a .c collection and
can be embedded in other expressions. E.g.:

stmt = text("SELECT * FROM table",
 typemap={'id': Integer, 'name': String},
)

Is equivalent to:

stmt = text("SELECT * FROM table").columns(id=Integer,
 name=String)

Or alternatively:

from sqlalchemy.sql import column
stmt = text("SELECT * FROM table").columns(
 column('id', Integer),
 column('name', String)
)

Deprecated since version 0.9.0: the TextClause.columns() method
supersedes the typemap argument to text().

See also

Using Textual SQL - in the Core tutorial

Using Textual SQL - in the ORM tutorial

	
sqlalchemy.sql.expression.true()

	Return a constant True_ construct.

E.g.:

>>> from sqlalchemy import true
>>> print select([t.c.x]).where(true())
SELECT x FROM t WHERE true

A backend which does not support true/false constants will render as
an expression against 1 or 0:

>>> print select([t.c.x]).where(true())
SELECT x FROM t WHERE 1 = 1

The true() and false() constants also feature
“short circuit” operation within an and_() or or_()
conjunction:

>>> print select([t.c.x]).where(or_(t.c.x > 5, true()))
SELECT x FROM t WHERE true

>>> print select([t.c.x]).where(and_(t.c.x > 5, false()))
SELECT x FROM t WHERE false

Changed in version 0.9: true() and false() feature
better integrated behavior within conjunctions and on dialects
that don’t support true/false constants.

See also

false()

	
sqlalchemy.sql.expression.tuple_(*clauses, **kw)

	Return a Tuple.

Main usage is to produce a composite IN construct:

from sqlalchemy import tuple_

tuple_(table.c.col1, table.c.col2).in_(
 [(1, 2), (5, 12), (10, 19)]
)

Warning

The composite IN construct is not supported by all backends,
and is currently known to work on Postgresql and MySQL,
but not SQLite. Unsupported backends will raise
a subclass of DBAPIError when such
an expression is invoked.

	
sqlalchemy.sql.expression.type_coerce(expression, type_)

	Associate a SQL expression with a particular type, without rendering
CAST.

E.g.:

from sqlalchemy import type_coerce

stmt = select([
 type_coerce(log_table.date_string, StringDateTime())
])

The above construct will produce a TypeCoerce object, which
renders SQL that labels the expression, but otherwise does not
modify its value on the SQL side:

SELECT date_string AS anon_1 FROM log

When result rows are fetched, the StringDateTime type
will be applied to result rows on behalf of the date_string column.
The rationale for the “anon_1” label is so that the type-coerced
column remains separate in the list of result columns vs. other
type-coerced or direct values of the target column. In order to
provide a named label for the expression, use
ColumnElement.label():

stmt = select([
 type_coerce(
 log_table.date_string, StringDateTime()).label('date')
])

A type that features bound-value handling will also have that behavior
take effect when literal values or bindparam() constructs are
passed to type_coerce() as targets.
For example, if a type implements the
TypeEngine.bind_expression()
method or TypeEngine.bind_processor() method or equivalent,
these functions will take effect at statement compilation/execution
time when a literal value is passed, as in:

bound-value handling of MyStringType will be applied to the
literal value "some string"
stmt = select([type_coerce("some string", MyStringType)])

type_coerce() is similar to the cast() function,
except that it does not render the CAST expression in the resulting
statement.

	Parameters:
	
	expression¶ – A SQL expression, such as a ColumnElement
expression or a Python string which will be coerced into a bound
literal value.

	type_¶ – A TypeEngine class or instance indicating
the type to which the expression is coerced.

See also

cast()

	
sqlalchemy.sql.expression.within_group(element, *order_by)

	Produce a WithinGroup object against a function.

Used against so-called “ordered set aggregate” and “hypothetical
set aggregate” functions, including percentile_cont,
rank, dense_rank, etc.

within_group() is usually called using
the FunctionElement.within_group() method, e.g.:

from sqlalchemy import within_group
stmt = select([
 department.c.id,
 func.percentile_cont(0.5).within_group(
 department.c.salary.desc()
)
])

The above statement would produce SQL similar to
SELECT department.id, percentile_cont(0.5)
WITHIN GROUP (ORDER BY department.salary DESC).

	Parameters:
	
	element¶ – a FunctionElement construct, typically
generated by func.

	*order_by¶ – one or more column elements that will be used
as the ORDER BY clause of the WITHIN GROUP construct.

New in version 1.1.

See also

expression.func

expression.over()

	
class sqlalchemy.sql.expression.BinaryExpression(left, right, operator, type_=None, negate=None, modifiers=None)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent an expression that is LEFT <operator> RIGHT.

A BinaryExpression is generated automatically
whenever two column expressions are used in a Python binary expression:

>>> from sqlalchemy.sql import column
>>> column('a') + column('b')
<sqlalchemy.sql.expression.BinaryExpression object at 0x101029dd0>
>>> print column('a') + column('b')
a + b

	
compare(other, **kw)

	Compare this BinaryExpression against the
given BinaryExpression.

	
class sqlalchemy.sql.expression.BindParameter(key, value=symbol('NO_ARG'), type_=None, unique=False, required=symbol('NO_ARG'), quote=None, callable_=None, isoutparam=False, _compared_to_operator=None, _compared_to_type=None)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent a “bound expression”.

BindParameter is invoked explicitly using the
bindparam() function, as in:

from sqlalchemy import bindparam

stmt = select([users_table]).\
 where(users_table.c.name == bindparam('username'))

Detailed discussion of how BindParameter is used is
at bindparam().

See also

bindparam()

	
__init__(key, value=symbol('NO_ARG'), type_=None, unique=False, required=symbol('NO_ARG'), quote=None, callable_=None, isoutparam=False, _compared_to_operator=None, _compared_to_type=None)

	Construct a new BindParameter object.

This constructor is mirrored as a public API function; see bindparam() for a full usage and argument description.

	
compare(other, **kw)

	Compare this BindParameter to the given
clause.

	
effective_value

	Return the value of this bound parameter,
taking into account if the callable parameter
was set.

The callable value will be evaluated
and returned if present, else value.

	
class sqlalchemy.sql.expression.Case(whens, value=None, else_=None)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent a CASE expression.

Case is produced using the case() factory function,
as in:

from sqlalchemy import case

stmt = select([users_table]).\
 where(
 case(
 [
 (users_table.c.name == 'wendy', 'W'),
 (users_table.c.name == 'jack', 'J')
],
 else_='E'
)
)

Details on Case usage is at case().

See also

case()

	
__init__(whens, value=None, else_=None)

	Construct a new Case object.

This constructor is mirrored as a public API function; see case() for a full usage and argument description.

	
class sqlalchemy.sql.expression.Cast(expression, type_)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent a CAST expression.

Cast is produced using the cast() factory function,
as in:

from sqlalchemy import cast, Numeric

stmt = select([
 cast(product_table.c.unit_price, Numeric(10, 4))
])

Details on Cast usage is at cast().

See also

cast()

	
__init__(expression, type_)

	Construct a new Cast object.

This constructor is mirrored as a public API function; see cast() for a full usage and argument description.

	
class sqlalchemy.sql.expression.ClauseElement

	Bases: sqlalchemy.sql.visitors.Visitable

Base class for elements of a programmatically constructed SQL
expression.

	
compare(other, **kw)

	Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
get_children(**kwargs)

	Return immediate child elements of this ClauseElement.

This is used for visit traversal.

**kwargs may contain flags that change the collection that is
returned, for example to return a subset of items in order to
cut down on larger traversals, or to return child items from a
different context (such as schema-level collections instead of
clause-level).

	
params(*optionaldict, **kwargs)

	Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
self_group(against=None)

	Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
unique_params(*optionaldict, **kwargs)

	Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
class sqlalchemy.sql.expression.ClauseList(*clauses, **kwargs)

	Bases: sqlalchemy.sql.expression.ClauseElement

Describe a list of clauses, separated by an operator.

By default, is comma-separated, such as a column listing.

	
compare(other, **kw)

	Compare this ClauseList to the given ClauseList,
including a comparison of all the clause items.

	
class sqlalchemy.sql.expression.ColumnClause(text, type_=None, is_literal=False, _selectable=None)

	Bases: sqlalchemy.sql.expression.Immutable, sqlalchemy.sql.expression.ColumnElement

Represents a column expression from any textual string.

The ColumnClause, a lightweight analogue to the
Column class, is typically invoked using the
column() function, as in:

from sqlalchemy import column

id, name = column("id"), column("name")
stmt = select([id, name]).select_from("user")

The above statement would produce SQL like:

SELECT id, name FROM user

ColumnClause is the immediate superclass of the schema-specific
Column object. While the Column class has all the
same capabilities as ColumnClause, the ColumnClause
class is usable by itself in those cases where behavioral requirements
are limited to simple SQL expression generation. The object has none of
the associations with schema-level metadata or with execution-time
behavior that Column does, so in that sense is a “lightweight”
version of Column.

Full details on ColumnClause usage is at column().

See also

column()

Column

	
__init__(text, type_=None, is_literal=False, _selectable=None)

	Construct a new ColumnClause object.

This constructor is mirrored as a public API function; see column() for a full usage and argument description.

	
class sqlalchemy.sql.expression.ColumnCollection(*columns)

	Bases: sqlalchemy.util._collections.OrderedProperties

An ordered dictionary that stores a list of ColumnElement
instances.

Overrides the __eq__() method to produce SQL clauses between
sets of correlated columns.

	
add(column)

	Add a column to this collection.

The key attribute of the column will be used as the hash key
for this dictionary.

	
replace(column)

	add the given column to this collection, removing unaliased
versions of this column as well as existing columns with the
same key.

e.g.:

t = Table('sometable', metadata, Column('col1', Integer))
t.columns.replace(Column('col1', Integer, key='columnone'))

will remove the original ‘col1’ from the collection, and add
the new column under the name ‘columnname’.

Used by schema.Column to override columns during table reflection.

	
class sqlalchemy.sql.expression.ColumnElement

	Bases: sqlalchemy.sql.operators.ColumnOperators, sqlalchemy.sql.expression.ClauseElement

Represent a column-oriented SQL expression suitable for usage in the
“columns” clause, WHERE clause etc. of a statement.

While the most familiar kind of ColumnElement is the
Column object, ColumnElement serves as the basis
for any unit that may be present in a SQL expression, including
the expressions themselves, SQL functions, bound parameters,
literal expressions, keywords such as NULL, etc.
ColumnElement is the ultimate base class for all such elements.

A wide variety of SQLAlchemy Core functions work at the SQL expression
level, and are intended to accept instances of ColumnElement as
arguments. These functions will typically document that they accept a
“SQL expression” as an argument. What this means in terms of SQLAlchemy
usually refers to an input which is either already in the form of a
ColumnElement object, or a value which can be coerced into
one. The coercion rules followed by most, but not all, SQLAlchemy Core
functions with regards to SQL expressions are as follows:

	a literal Python value, such as a string, integer or floating
point value, boolean, datetime, Decimal object, or virtually
any other Python object, will be coerced into a “literal bound
value”. This generally means that a bindparam() will be
produced featuring the given value embedded into the construct; the
resulting BindParameter object is an instance of
ColumnElement. The Python value will ultimately be sent
to the DBAPI at execution time as a paramterized argument to the
execute() or executemany() methods, after SQLAlchemy
type-specific converters (e.g. those provided by any associated
TypeEngine objects) are applied to the value.

	any special object value, typically ORM-level constructs, which
feature a method called __clause_element__(). The Core
expression system looks for this method when an object of otherwise
unknown type is passed to a function that is looking to coerce the
argument into a ColumnElement expression. The
__clause_element__() method, if present, should return a
ColumnElement instance. The primary use of
__clause_element__() within SQLAlchemy is that of class-bound
attributes on ORM-mapped classes; a User class which contains a
mapped attribute named .name will have a method
User.name.__clause_element__() which when invoked returns the
Column called name associated with the mapped table.

	The Python None value is typically interpreted as NULL,
which in SQLAlchemy Core produces an instance of null().

A ColumnElement provides the ability to generate new
ColumnElement
objects using Python expressions. This means that Python operators
such as ==, != and < are overloaded to mimic SQL operations,
and allow the instantiation of further ColumnElement instances
which are composed from other, more fundamental ColumnElement
objects. For example, two ColumnClause objects can be added
together with the addition operator + to produce
a BinaryExpression.
Both ColumnClause and BinaryExpression are subclasses
of ColumnElement:

>>> from sqlalchemy.sql import column
>>> column('a') + column('b')
<sqlalchemy.sql.expression.BinaryExpression object at 0x101029dd0>
>>> print column('a') + column('b')
a + b

See also

Column

expression.column()

	
__eq__(other)

	
inherited from the __eq__() method of ColumnOperators

Implement the == operator.

In a column context, produces the clause a = b.
If the target is None, produces a IS NULL.

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
__le__(other)

	
inherited from the __le__() method of ColumnOperators

Implement the <= operator.

In a column context, produces the clause a <= b.

	
__lt__(other)

	
inherited from the __lt__() method of ColumnOperators

Implement the < operator.

In a column context, produces the clause a < b.

	
__ne__(other)

	
inherited from the __ne__() method of ColumnOperators

Implement the != operator.

In a column context, produces the clause a != b.
If the target is None, produces a IS NOT NULL.

	
all_()

	
inherited from the all_() method of ColumnOperators

Produce a all_() clause against the
parent object.

New in version 1.1.

	
anon_label

	provides a constant ‘anonymous label’ for this ColumnElement.

This is a label() expression which will be named at compile time.
The same label() is returned each time anon_label is called so
that expressions can reference anon_label multiple times, producing
the same label name at compile time.

the compiler uses this function automatically at compile time
for expressions that are known to be ‘unnamed’ like binary
expressions and function calls.

	
any_()

	
inherited from the any_() method of ColumnOperators

Produce a any_() clause against the
parent object.

New in version 1.1.

	
asc()

	
inherited from the asc() method of ColumnOperators

Produce a asc() clause against the
parent object.

	
base_columns

	

	
between(cleft, cright, symmetric=False)

	
inherited from the between() method of ColumnOperators

Produce a between() clause against
the parent object, given the lower and upper range.

	
bind = None

	

	
cast(type_)

	Produce a type cast, i.e. CAST(<expression> AS <type>).

This is a shortcut to the cast() function.

New in version 1.0.7.

	
collate(collation)

	
inherited from the collate() method of ColumnOperators

Produce a collate() clause against
the parent object, given the collation string.

	
comparator

	

	
compare(other, use_proxies=False, equivalents=None, **kw)

	Compare this ColumnElement to another.

Special arguments understood:

	Parameters:
	
	use_proxies¶ – when True, consider two columns that
share a common base column as equivalent (i.e. shares_lineage())

	equivalents¶ – a dictionary of columns as keys mapped to sets
of columns. If the given “other” column is present in this
dictionary, if any of the columns in the corresponding set() pass
the comparison test, the result is True. This is used to expand the
comparison to other columns that may be known to be equivalent to
this one via foreign key or other criterion.

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
concat(other)

	
inherited from the concat() method of ColumnOperators

Implement the ‘concat’ operator.

In a column context, produces the clause a || b,
or uses the concat() operator on MySQL.

	
contains(other, **kwargs)

	
inherited from the contains() method of ColumnOperators

Implement the ‘contains’ operator.

In a column context, produces the clause LIKE '%<other>%'

	
desc()

	
inherited from the desc() method of ColumnOperators

Produce a desc() clause against the
parent object.

	
description = None

	

	
distinct()

	
inherited from the distinct() method of ColumnOperators

Produce a distinct() clause against the
parent object.

	
endswith(other, **kwargs)

	
inherited from the endswith() method of ColumnOperators

Implement the ‘endswith’ operator.

In a column context, produces the clause LIKE '%<other>'

	
expression

	Return a column expression.

Part of the inspection interface; returns self.

	
foreign_keys = []

	

	
get_children(**kwargs)

	
inherited from the get_children() method of ClauseElement

Return immediate child elements of this ClauseElement.

This is used for visit traversal.

**kwargs may contain flags that change the collection that is
returned, for example to return a subset of items in order to
cut down on larger traversals, or to return child items from a
different context (such as schema-level collections instead of
clause-level).

	
ilike(other, escape=None)

	
inherited from the ilike() method of ColumnOperators

Implement the ilike operator.

In a column context, produces the clause a ILIKE other.

E.g.:

select([sometable]).where(sometable.c.column.ilike("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.ilike("foo/%bar", escape="/")

See also

ColumnOperators.like()

	
in_(other)

	
inherited from the in_() method of ColumnOperators

Implement the in operator.

In a column context, produces the clause a IN other.
“other” may be a tuple/list of column expressions,
or a select() construct.

	
is_(other)

	
inherited from the is_() method of ColumnOperators

Implement the IS operator.

Normally, IS is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.isnot()

	
is_clause_element = True

	

	
is_distinct_from(other)

	
inherited from the is_distinct_from() method of ColumnOperators

Implement the IS DISTINCT FROM operator.

Renders “a IS DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS NOT b”.

New in version 1.1.

	
is_selectable = False

	

	
isnot(other)

	
inherited from the isnot() method of ColumnOperators

Implement the IS NOT operator.

Normally, IS NOT is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS NOT may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.is_()

	
isnot_distinct_from(other)

	
inherited from the isnot_distinct_from() method of ColumnOperators

Implement the IS NOT DISTINCT FROM operator.

Renders “a IS NOT DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS b”.

New in version 1.1.

	
key = None

	the ‘key’ that in some circumstances refers to this object in a
Python namespace.

This typically refers to the “key” of the column as present in the
.c collection of a selectable, e.g. sometable.c[“somekey”] would
return a Column with a .key of “somekey”.

	
label(name)

	Produce a column label, i.e. <columnname> AS <name>.

This is a shortcut to the label() function.

if ‘name’ is None, an anonymous label name will be generated.

	
like(other, escape=None)

	
inherited from the like() method of ColumnOperators

Implement the like operator.

In a column context, produces the clause a LIKE other.

E.g.:

select([sometable]).where(sometable.c.column.like("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.like("foo/%bar", escape="/")

See also

ColumnOperators.ilike()

	
match(other, **kwargs)

	
inherited from the match() method of ColumnOperators

Implements a database-specific ‘match’ operator.

match() attempts to resolve to
a MATCH-like function or operator provided by the backend.
Examples include:

	Postgresql - renders x @@ to_tsquery(y)

	MySQL - renders MATCH (x) AGAINST (y IN BOOLEAN MODE)

	Oracle - renders CONTAINS(x, y)

	other backends may provide special implementations.

	Backends without any special implementation will emit
the operator as “MATCH”. This is compatible with SQlite, for
example.

	
notilike(other, escape=None)

	
inherited from the notilike() method of ColumnOperators

implement the NOT ILIKE operator.

This is equivalent to using negation with
ColumnOperators.ilike(), i.e. ~x.ilike(y).

New in version 0.8.

See also

ColumnOperators.ilike()

	
notin_(other)

	
inherited from the notin_() method of ColumnOperators

implement the NOT IN operator.

This is equivalent to using negation with
ColumnOperators.in_(), i.e. ~x.in_(y).

New in version 0.8.

See also

ColumnOperators.in_()

	
notlike(other, escape=None)

	
inherited from the notlike() method of ColumnOperators

implement the NOT LIKE operator.

This is equivalent to using negation with
ColumnOperators.like(), i.e. ~x.like(y).

New in version 0.8.

See also

ColumnOperators.like()

	
nullsfirst()

	
inherited from the nullsfirst() method of ColumnOperators

Produce a nullsfirst() clause against the
parent object.

	
nullslast()

	
inherited from the nullslast() method of ColumnOperators

Produce a nullslast() clause against the
parent object.

	
op(opstring, precedence=0, is_comparison=False)

	
inherited from the op() method of Operators

produce a generic operator function.

e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

This function can also be used to make bitwise operators explicit. For
example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

	Parameters:
	
	operator¶ – a string which will be output as the infix operator
between this element and the expression passed to the
generated function.

	precedence¶ – precedence to apply to the operator, when
parenthesizing expressions. A lower number will cause the expression
to be parenthesized when applied against another operator with
higher precedence. The default value of 0 is lower than all
operators except for the comma (,) and AS operators.
A value of 100 will be higher or equal to all operators, and -100
will be lower than or equal to all operators.

New in version 0.8: - added the ‘precedence’ argument.

	is_comparison¶ – if True, the operator will be considered as a
“comparison” operator, that is which evaluates to a boolean
true/false value, like ==, >, etc. This flag should be set
so that ORM relationships can establish that the operator is a
comparison operator when used in a custom join condition.

New in version 0.9.2: - added the
Operators.op.is_comparison flag.

See also

Redefining and Creating New Operators

Using custom operators in join conditions

	
operate(op, *other, **kwargs)

	

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key = False

	

	
proxy_set

	

	
reverse_operate(op, other, **kwargs)

	

	
self_group(against=None)

	

	
shares_lineage(othercolumn)

	Return True if the given ColumnElement
has a common ancestor to this ColumnElement.

	
startswith(other, **kwargs)

	
inherited from the startswith() method of ColumnOperators

Implement the startwith operator.

In a column context, produces the clause LIKE '<other>%'

	
supports_execution = False

	

	
timetuple = None

	

	
type

	

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
class sqlalchemy.sql.operators.ColumnOperators

	Bases: sqlalchemy.sql.operators.Operators

Defines boolean, comparison, and other operators for
ColumnElement expressions.

By default, all methods call down to
operate() or reverse_operate(),
passing in the appropriate operator function from the
Python builtin operator module or
a SQLAlchemy-specific operator function from
sqlalchemy.expression.operators. For example
the __eq__ function:

def __eq__(self, other):
 return self.operate(operators.eq, other)

Where operators.eq is essentially:

def eq(a, b):
 return a == b

The core column expression unit ColumnElement
overrides Operators.operate() and others
to return further ColumnElement constructs,
so that the == operation above is replaced by a clause
construct.

See also:

Redefining and Creating New Operators

TypeEngine.comparator_factory

ColumnOperators

PropComparator

	
__add__(other)

	Implement the + operator.

In a column context, produces the clause a + b
if the parent object has non-string affinity.
If the parent object has a string affinity,
produces the concatenation operator, a || b -
see ColumnOperators.concat().

	
__and__(other)

	
inherited from the __and__() method of Operators

Implement the & operator.

When used with SQL expressions, results in an
AND operation, equivalent to
and_(), that is:

a & b

is equivalent to:

from sqlalchemy import and_
and_(a, b)

Care should be taken when using & regarding
operator precedence; the & operator has the highest precedence.
The operands should be enclosed in parenthesis if they contain
further sub expressions:

(a == 2) & (b == 4)

	
__delattr__

	
inherited from the __delattr__ attribute of object

x.__delattr__(‘name’) <==> del x.name

	
__div__(other)

	Implement the / operator.

In a column context, produces the clause a / b.

	
__eq__(other)

	Implement the == operator.

In a column context, produces the clause a = b.
If the target is None, produces a IS NULL.

	
__format__()

	
inherited from the __format__() method of object

default object formatter

	
__ge__(other)

	Implement the >= operator.

In a column context, produces the clause a >= b.

	
__getattribute__

	
inherited from the __getattribute__ attribute of object

x.__getattribute__(‘name’) <==> x.name

	
__getitem__(index)

	Implement the [] operator.

This can be used by some database-specific types
such as Postgresql ARRAY and HSTORE.

	
__gt__(other)

	Implement the > operator.

In a column context, produces the clause a > b.

	
__hash__

	

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
__invert__()

	
inherited from the __invert__() method of Operators

Implement the ~ operator.

When used with SQL expressions, results in a
NOT operation, equivalent to
not_(), that is:

~a

is equivalent to:

from sqlalchemy import not_
not_(a)

	
__le__(other)

	Implement the <= operator.

In a column context, produces the clause a <= b.

	
__lshift__(other)

	implement the << operator.

Not used by SQLAlchemy core, this is provided
for custom operator systems which want to use
<< as an extension point.

	
__lt__(other)

	Implement the < operator.

In a column context, produces the clause a < b.

	
__mod__(other)

	Implement the % operator.

In a column context, produces the clause a % b.

	
__mul__(other)

	Implement the * operator.

In a column context, produces the clause a * b.

	
__ne__(other)

	Implement the != operator.

In a column context, produces the clause a != b.
If the target is None, produces a IS NOT NULL.

	
__neg__()

	Implement the - operator.

In a column context, produces the clause -a.

	
__new__(S, ...) → a new object with type S, a subtype of T

	
inherited from the __new__() method of object

	
__or__(other)

	
inherited from the __or__() method of Operators

Implement the | operator.

When used with SQL expressions, results in an
OR operation, equivalent to
or_(), that is:

a | b

is equivalent to:

from sqlalchemy import or_
or_(a, b)

Care should be taken when using | regarding
operator precedence; the | operator has the highest precedence.
The operands should be enclosed in parenthesis if they contain
further sub expressions:

(a == 2) | (b == 4)

	
__radd__(other)

	Implement the + operator in reverse.

See ColumnOperators.__add__().

	
__rdiv__(other)

	Implement the / operator in reverse.

See ColumnOperators.__div__().

	
__reduce__()

	
inherited from the __reduce__() method of object

helper for pickle

	
__reduce_ex__()

	
inherited from the __reduce_ex__() method of object

helper for pickle

	
__repr__

	
inherited from the __repr__ attribute of object

	
__rmod__(other)

	Implement the % operator in reverse.

See ColumnOperators.__mod__().

	
__rmul__(other)

	Implement the * operator in reverse.

See ColumnOperators.__mul__().

	
__rshift__(other)

	implement the >> operator.

Not used by SQLAlchemy core, this is provided
for custom operator systems which want to use
>> as an extension point.

	
__rsub__(other)

	Implement the - operator in reverse.

See ColumnOperators.__sub__().

	
__rtruediv__(other)

	Implement the // operator in reverse.

See ColumnOperators.__truediv__().

	
__setattr__

	
inherited from the __setattr__ attribute of object

x.__setattr__(‘name’, value) <==> x.name = value

	
__sizeof__() → int

	
inherited from the __sizeof__() method of object

size of object in memory, in bytes

	
__str__

	
inherited from the __str__ attribute of object

	
__sub__(other)

	Implement the - operator.

In a column context, produces the clause a - b.

	
__subclasshook__()

	
inherited from the __subclasshook__() method of object

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__().
It should return True, False or NotImplemented. If it returns
NotImplemented, the normal algorithm is used. Otherwise, it
overrides the normal algorithm (and the outcome is cached).

	
__truediv__(other)

	Implement the // operator.

In a column context, produces the clause a / b.

	
all_()

	Produce a all_() clause against the
parent object.

New in version 1.1.

	
any_()

	Produce a any_() clause against the
parent object.

New in version 1.1.

	
asc()

	Produce a asc() clause against the
parent object.

	
between(cleft, cright, symmetric=False)

	Produce a between() clause against
the parent object, given the lower and upper range.

	
collate(collation)

	Produce a collate() clause against
the parent object, given the collation string.

	
concat(other)

	Implement the ‘concat’ operator.

In a column context, produces the clause a || b,
or uses the concat() operator on MySQL.

	
contains(other, **kwargs)

	Implement the ‘contains’ operator.

In a column context, produces the clause LIKE '%<other>%'

	
desc()

	Produce a desc() clause against the
parent object.

	
distinct()

	Produce a distinct() clause against the
parent object.

	
endswith(other, **kwargs)

	Implement the ‘endswith’ operator.

In a column context, produces the clause LIKE '%<other>'

	
ilike(other, escape=None)

	Implement the ilike operator.

In a column context, produces the clause a ILIKE other.

E.g.:

select([sometable]).where(sometable.c.column.ilike("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.ilike("foo/%bar", escape="/")

See also

ColumnOperators.like()

	
in_(other)

	Implement the in operator.

In a column context, produces the clause a IN other.
“other” may be a tuple/list of column expressions,
or a select() construct.

	
is_(other)

	Implement the IS operator.

Normally, IS is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.isnot()

	
is_distinct_from(other)

	Implement the IS DISTINCT FROM operator.

Renders “a IS DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS NOT b”.

New in version 1.1.

	
isnot(other)

	Implement the IS NOT operator.

Normally, IS NOT is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS NOT may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.is_()

	
isnot_distinct_from(other)

	Implement the IS NOT DISTINCT FROM operator.

Renders “a IS NOT DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS b”.

New in version 1.1.

	
like(other, escape=None)

	Implement the like operator.

In a column context, produces the clause a LIKE other.

E.g.:

select([sometable]).where(sometable.c.column.like("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.like("foo/%bar", escape="/")

See also

ColumnOperators.ilike()

	
match(other, **kwargs)

	Implements a database-specific ‘match’ operator.

match() attempts to resolve to
a MATCH-like function or operator provided by the backend.
Examples include:

	Postgresql - renders x @@ to_tsquery(y)

	MySQL - renders MATCH (x) AGAINST (y IN BOOLEAN MODE)

	Oracle - renders CONTAINS(x, y)

	other backends may provide special implementations.

	Backends without any special implementation will emit
the operator as “MATCH”. This is compatible with SQlite, for
example.

	
notilike(other, escape=None)

	implement the NOT ILIKE operator.

This is equivalent to using negation with
ColumnOperators.ilike(), i.e. ~x.ilike(y).

New in version 0.8.

See also

ColumnOperators.ilike()

	
notin_(other)

	implement the NOT IN operator.

This is equivalent to using negation with
ColumnOperators.in_(), i.e. ~x.in_(y).

New in version 0.8.

See also

ColumnOperators.in_()

	
notlike(other, escape=None)

	implement the NOT LIKE operator.

This is equivalent to using negation with
ColumnOperators.like(), i.e. ~x.like(y).

New in version 0.8.

See also

ColumnOperators.like()

	
nullsfirst()

	Produce a nullsfirst() clause against the
parent object.

	
nullslast()

	Produce a nullslast() clause against the
parent object.

	
op(opstring, precedence=0, is_comparison=False)

	
inherited from the op() method of Operators

produce a generic operator function.

e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

This function can also be used to make bitwise operators explicit. For
example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

	Parameters:
	
	operator¶ – a string which will be output as the infix operator
between this element and the expression passed to the
generated function.

	precedence¶ – precedence to apply to the operator, when
parenthesizing expressions. A lower number will cause the expression
to be parenthesized when applied against another operator with
higher precedence. The default value of 0 is lower than all
operators except for the comma (,) and AS operators.
A value of 100 will be higher or equal to all operators, and -100
will be lower than or equal to all operators.

New in version 0.8: - added the ‘precedence’ argument.

	is_comparison¶ – if True, the operator will be considered as a
“comparison” operator, that is which evaluates to a boolean
true/false value, like ==, >, etc. This flag should be set
so that ORM relationships can establish that the operator is a
comparison operator when used in a custom join condition.

New in version 0.9.2: - added the
Operators.op.is_comparison flag.

See also

Redefining and Creating New Operators

Using custom operators in join conditions

	
operate(op, *other, **kwargs)

	
inherited from the operate() method of Operators

Operate on an argument.

This is the lowest level of operation, raises
NotImplementedError by default.

Overriding this on a subclass can allow common
behavior to be applied to all operations.
For example, overriding ColumnOperators
to apply func.lower() to the left and right
side:

class MyComparator(ColumnOperators):
 def operate(self, op, other):
 return op(func.lower(self), func.lower(other))

	Parameters:
	
	op¶ – Operator callable.

	*other¶ – the ‘other’ side of the operation. Will
be a single scalar for most operations.

	**kwargs¶ – modifiers. These may be passed by special
operators such as ColumnOperators.contains().

	
reverse_operate(op, other, **kwargs)

	
inherited from the reverse_operate() method of Operators

Reverse operate on an argument.

Usage is the same as operate().

	
startswith(other, **kwargs)

	Implement the startwith operator.

In a column context, produces the clause LIKE '<other>%'

	
timetuple = None

	Hack, allows datetime objects to be compared on the LHS.

	
class sqlalchemy.sql.base.DialectKWArgs

	Establish the ability for a class to have dialect-specific arguments
with defaults and constructor validation.

The DialectKWArgs interacts with the
DefaultDialect.construct_arguments present on a dialect.

See also

DefaultDialect.construct_arguments

	
classmethod argument_for(dialect_name, argument_name, default)

	Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
dialect_kwargs

	A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
kwargs

	A synonym for DialectKWArgs.dialect_kwargs.

	
class sqlalchemy.sql.expression.Extract(field, expr, **kwargs)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent a SQL EXTRACT clause, extract(field FROM expr).

	
__init__(field, expr, **kwargs)

	Construct a new Extract object.

This constructor is mirrored as a public API function; see extract() for a full usage and argument description.

	
class sqlalchemy.sql.elements.False_

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent the false keyword, or equivalent, in a SQL statement.

False_ is accessed as a constant via the
false() function.

	
class sqlalchemy.sql.expression.FunctionFilter(func, *criterion)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent a function FILTER clause.

This is a special operator against aggregate and window functions,
which controls which rows are passed to it.
It’s supported only by certain database backends.

Invocation of FunctionFilter is via
FunctionElement.filter():

func.count(1).filter(True)

New in version 1.0.0.

See also

FunctionElement.filter()

	
__init__(func, *criterion)

	Construct a new FunctionFilter object.

This constructor is mirrored as a public API function; see funcfilter() for a full usage and argument description.

	
filter(*criterion)

	Produce an additional FILTER against the function.

This method adds additional criteria to the initial criteria
set up by FunctionElement.filter().

Multiple criteria are joined together at SQL render time
via AND.

	
over(partition_by=None, order_by=None)

	Produce an OVER clause against this filtered function.

Used against aggregate or so-called “window” functions,
for database backends that support window functions.

The expression:

func.rank().filter(MyClass.y > 5).over(order_by='x')

is shorthand for:

from sqlalchemy import over, funcfilter
over(funcfilter(func.rank(), MyClass.y > 5), order_by='x')

See over() for a full description.

	
class sqlalchemy.sql.expression.Label(name, element, type_=None)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represents a column label (AS).

Represent a label, as typically applied to any column-level
element using the AS sql keyword.

	
__init__(name, element, type_=None)

	Construct a new Label object.

This constructor is mirrored as a public API function; see label() for a full usage and argument description.

	
class sqlalchemy.sql.elements.Null

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent the NULL keyword in a SQL statement.

Null is accessed as a constant via the
null() function.

	
class sqlalchemy.sql.expression.Over(element, partition_by=None, order_by=None, range_=None, rows=None)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent an OVER clause.

This is a special operator against a so-called
“window” function, as well as any aggregate function,
which produces results relative to the result set
itself. It’s supported only by certain database
backends.

	
__init__(element, partition_by=None, order_by=None, range_=None, rows=None)

	Construct a new Over object.

This constructor is mirrored as a public API function; see over() for a full usage and argument description.

	
func

	the element referred to by this Over
clause.

Deprecated since version 1.1: the func element has been renamed to
.element. The two attributes are synonymous though
.func is read-only.

	
class sqlalchemy.sql.expression.TextClause(text, bind=None)

	Bases: sqlalchemy.sql.expression.Executable, sqlalchemy.sql.expression.ClauseElement

Represent a literal SQL text fragment.

E.g.:

from sqlalchemy import text

t = text("SELECT * FROM users")
result = connection.execute(t)

The Text construct is produced using the text()
function; see that function for full documentation.

See also

text()

	
bindparams(*binds, **names_to_values)

	Establish the values and/or types of bound parameters within
this TextClause construct.

Given a text construct such as:

from sqlalchemy import text
stmt = text("SELECT id, name FROM user WHERE name=:name "
 "AND timestamp=:timestamp")

the TextClause.bindparams() method can be used to establish
the initial value of :name and :timestamp,
using simple keyword arguments:

stmt = stmt.bindparams(name='jack',
 timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5))

Where above, new BindParameter objects
will be generated with the names name and timestamp, and
values of jack and datetime.datetime(2012, 10, 8, 15, 12, 5),
respectively. The types will be
inferred from the values given, in this case String and
DateTime.

When specific typing behavior is needed, the positional *binds
argument can be used in which to specify bindparam() constructs
directly. These constructs must include at least the key
argument, then an optional value and type:

from sqlalchemy import bindparam
stmt = stmt.bindparams(
 bindparam('name', value='jack', type_=String),
 bindparam('timestamp', type_=DateTime)
)

Above, we specified the type of DateTime for the
timestamp bind, and the type of String for the name
bind. In the case of name we also set the default value of
"jack".

Additional bound parameters can be supplied at statement execution
time, e.g.:

result = connection.execute(stmt,
 timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5))

The TextClause.bindparams() method can be called repeatedly,
where it will re-use existing BindParameter objects to add
new information. For example, we can call
TextClause.bindparams() first with typing information, and a
second time with value information, and it will be combined:

stmt = text("SELECT id, name FROM user WHERE name=:name "
 "AND timestamp=:timestamp")
stmt = stmt.bindparams(
 bindparam('name', type_=String),
 bindparam('timestamp', type_=DateTime)
)
stmt = stmt.bindparams(
 name='jack',
 timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5)
)

New in version 0.9.0: The TextClause.bindparams() method
supersedes the argument bindparams passed to
text().

	
columns(*cols, **types)

	Turn this TextClause object into a TextAsFrom
object that can be embedded into another statement.

This function essentially bridges the gap between an entirely
textual SELECT statement and the SQL expression language concept
of a “selectable”:

from sqlalchemy.sql import column, text

stmt = text("SELECT id, name FROM some_table")
stmt = stmt.columns(column('id'), column('name')).alias('st')

stmt = select([mytable]).\
 select_from(
 mytable.join(stmt, mytable.c.name == stmt.c.name)
).where(stmt.c.id > 5)

Above, we pass a series of column() elements to the
TextClause.columns() method positionally. These column()
elements now become first class elements upon the TextAsFrom.c
column collection, just like any other selectable.

The column expressions we pass to TextClause.columns() may
also be typed; when we do so, these TypeEngine objects become
the effective return type of the column, so that SQLAlchemy’s
result-set-processing systems may be used on the return values.
This is often needed for types such as date or boolean types, as well
as for unicode processing on some dialect configurations:

stmt = text("SELECT id, name, timestamp FROM some_table")
stmt = stmt.columns(
 column('id', Integer),
 column('name', Unicode),
 column('timestamp', DateTime)
)

for id, name, timestamp in connection.execute(stmt):
 print(id, name, timestamp)

As a shortcut to the above syntax, keyword arguments referring to
types alone may be used, if only type conversion is needed:

stmt = text("SELECT id, name, timestamp FROM some_table")
stmt = stmt.columns(
 id=Integer,
 name=Unicode,
 timestamp=DateTime
)

for id, name, timestamp in connection.execute(stmt):
 print(id, name, timestamp)

The positional form of TextClause.columns() also provides
the unique feature of positional column targeting, which is
particularly useful when using the ORM with complex textual queries.
If we specify the columns from our model to TextClause.columns(),
the result set will match to those columns positionally, meaning the
name or origin of the column in the textual SQL doesn’t matter:

stmt = text("SELECT users.id, addresses.id, users.id, "
 "users.name, addresses.email_address AS email "
 "FROM users JOIN addresses ON users.id=addresses.user_id "
 "WHERE users.id = 1").columns(
 User.id,
 Address.id,
 Address.user_id,
 User.name,
 Address.email_address
)

query = session.query(User).from_statement(stmt).options(
 contains_eager(User.addresses))

New in version 1.1: the TextClause.columns() method now
offers positional column targeting in the result set when
the column expressions are passed purely positionally.

The TextClause.columns() method provides a direct
route to calling FromClause.alias() as well as
SelectBase.cte() against a textual SELECT statement:

stmt = stmt.columns(id=Integer, name=String).cte('st')

stmt = select([sometable]).where(sometable.c.id == stmt.c.id)

New in version 0.9.0: text() can now be converted into a
fully featured “selectable” construct using the
TextClause.columns() method. This method supersedes the
typemap argument to text().

	
class sqlalchemy.sql.expression.Tuple(*clauses, **kw)

	Bases: sqlalchemy.sql.expression.ClauseList, sqlalchemy.sql.expression.ColumnElement

Represent a SQL tuple.

	
__init__(*clauses, **kw)

	Construct a new Tuple object.

This constructor is mirrored as a public API function; see tuple_() for a full usage and argument description.

	
class sqlalchemy.sql.expression.WithinGroup(element, *order_by)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent a WITHIN GROUP (ORDER BY) clause.

This is a special operator against so-called
so-called “ordered set aggregate” and “hypothetical
set aggregate” functions, including percentile_cont(),
rank(), dense_rank(), etc.

It’s supported only by certain database backends, such as PostgreSQL,
Oracle and MS SQL Server.

The WithinGroup consturct extracts its type from the
method FunctionElement.within_group_type(). If this returns
None, the function’s .type is used.

	
__init__(element, *order_by)

	Construct a new WithinGroup object.

This constructor is mirrored as a public API function; see within_group() for a full usage and argument description.

	
over(partition_by=None, order_by=None)

	Produce an OVER clause against this WithinGroup
construct.

This function has the same signature as that of
FunctionElement.over().

	
class sqlalchemy.sql.elements.True_

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent the true keyword, or equivalent, in a SQL statement.

True_ is accessed as a constant via the
true() function.

	
class sqlalchemy.sql.expression.TypeCoerce(expression, type_)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent a Python-side type-coercion wrapper.

TypeCoerce supplies the expression.type_coerce()
function; see that function for usage details.

Changed in version 1.1: The type_coerce() function now produces
a persistent TypeCoerce wrapper object rather than
translating the given object in place.

See also

expression.type_coerce()

	
__init__(expression, type_)

	Construct a new TypeCoerce object.

This constructor is mirrored as a public API function; see type_coerce() for a full usage and argument description.

	
class sqlalchemy.sql.operators.custom_op(opstring, precedence=0, is_comparison=False, natural_self_precedent=False)

	Represent a ‘custom’ operator.

custom_op is normally instantitated when the
ColumnOperators.op() method is used to create a
custom operator callable. The class can also be used directly
when programmatically constructing expressions. E.g.
to represent the “factorial” operation:

from sqlalchemy.sql import UnaryExpression
from sqlalchemy.sql import operators
from sqlalchemy import Numeric

unary = UnaryExpression(table.c.somecolumn,
 modifier=operators.custom_op("!"),
 type_=Numeric)

	
class sqlalchemy.sql.operators.Operators

	Base of comparison and logical operators.

Implements base methods
operate() and
reverse_operate(), as well as
__and__(),
__or__(),
__invert__().

Usually is used via its most common subclass
ColumnOperators.

	
__and__(other)

	Implement the & operator.

When used with SQL expressions, results in an
AND operation, equivalent to
and_(), that is:

a & b

is equivalent to:

from sqlalchemy import and_
and_(a, b)

Care should be taken when using & regarding
operator precedence; the & operator has the highest precedence.
The operands should be enclosed in parenthesis if they contain
further sub expressions:

(a == 2) & (b == 4)

	
__invert__()

	Implement the ~ operator.

When used with SQL expressions, results in a
NOT operation, equivalent to
not_(), that is:

~a

is equivalent to:

from sqlalchemy import not_
not_(a)

	
__or__(other)

	Implement the | operator.

When used with SQL expressions, results in an
OR operation, equivalent to
or_(), that is:

a | b

is equivalent to:

from sqlalchemy import or_
or_(a, b)

Care should be taken when using | regarding
operator precedence; the | operator has the highest precedence.
The operands should be enclosed in parenthesis if they contain
further sub expressions:

(a == 2) | (b == 4)

	
op(opstring, precedence=0, is_comparison=False)

	produce a generic operator function.

e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

This function can also be used to make bitwise operators explicit. For
example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

	Parameters:
	
	operator¶ – a string which will be output as the infix operator
between this element and the expression passed to the
generated function.

	precedence¶ – precedence to apply to the operator, when
parenthesizing expressions. A lower number will cause the expression
to be parenthesized when applied against another operator with
higher precedence. The default value of 0 is lower than all
operators except for the comma (,) and AS operators.
A value of 100 will be higher or equal to all operators, and -100
will be lower than or equal to all operators.

New in version 0.8: - added the ‘precedence’ argument.

	is_comparison¶ – if True, the operator will be considered as a
“comparison” operator, that is which evaluates to a boolean
true/false value, like ==, >, etc. This flag should be set
so that ORM relationships can establish that the operator is a
comparison operator when used in a custom join condition.

New in version 0.9.2: - added the
Operators.op.is_comparison flag.

See also

Redefining and Creating New Operators

Using custom operators in join conditions

	
operate(op, *other, **kwargs)

	Operate on an argument.

This is the lowest level of operation, raises
NotImplementedError by default.

Overriding this on a subclass can allow common
behavior to be applied to all operations.
For example, overriding ColumnOperators
to apply func.lower() to the left and right
side:

class MyComparator(ColumnOperators):
 def operate(self, op, other):
 return op(func.lower(self), func.lower(other))

	Parameters:
	
	op¶ – Operator callable.

	*other¶ – the ‘other’ side of the operation. Will
be a single scalar for most operations.

	**kwargs¶ – modifiers. These may be passed by special
operators such as ColumnOperators.contains().

	
reverse_operate(op, other, **kwargs)

	Reverse operate on an argument.

Usage is the same as operate().

	
class sqlalchemy.sql.elements.quoted_name

	Bases: sqlalchemy.util.langhelpers.MemoizedSlots, __builtin__.unicode

Represent a SQL identifier combined with quoting preferences.

quoted_name is a Python unicode/str subclass which
represents a particular identifier name along with a
quote flag. This quote flag, when set to
True or False, overrides automatic quoting behavior
for this identifier in order to either unconditionally quote
or to not quote the name. If left at its default of None,
quoting behavior is applied to the identifier on a per-backend basis
based on an examination of the token itself.

A quoted_name object with quote=True is also
prevented from being modified in the case of a so-called
“name normalize” option. Certain database backends, such as
Oracle, Firebird, and DB2 “normalize” case-insensitive names
as uppercase. The SQLAlchemy dialects for these backends
convert from SQLAlchemy’s lower-case-means-insensitive convention
to the upper-case-means-insensitive conventions of those backends.
The quote=True flag here will prevent this conversion from occurring
to support an identifier that’s quoted as all lower case against
such a backend.

The quoted_name object is normally created automatically
when specifying the name for key schema constructs such as
Table, Column, and others. The class can also be
passed explicitly as the name to any function that receives a name which
can be quoted. Such as to use the Engine.has_table() method with
an unconditionally quoted name:

from sqlaclchemy import create_engine
from sqlalchemy.sql.elements import quoted_name

engine = create_engine("oracle+cx_oracle://some_dsn")
engine.has_table(quoted_name("some_table", True))

The above logic will run the “has table” logic against the Oracle backend,
passing the name exactly as "some_table" without converting to
upper case.

New in version 0.9.0.

	
class sqlalchemy.sql.expression.UnaryExpression(element, operator=None, modifier=None, type_=None, negate=None, wraps_column_expression=False)

	Bases: sqlalchemy.sql.expression.ColumnElement

Define a ‘unary’ expression.

A unary expression has a single column expression
and an operator. The operator can be placed on the left
(where it is called the ‘operator’) or right (where it is called the
‘modifier’) of the column expression.

UnaryExpression is the basis for several unary operators
including those used by desc(), asc(), distinct(),
nullsfirst() and nullslast().

	
compare(other, **kw)

	Compare this UnaryExpression against the given
ClauseElement.

Selectables, Tables, FROM objects

The term “selectable” refers to any object that rows can be selected from;
in SQLAlchemy, these objects descend from FromClause and their
distinguishing feature is their FromClause.c attribute, which is
a namespace of all the columns contained within the FROM clause (these
elements are themselves ColumnElement subclasses).

	
sqlalchemy.sql.expression.alias(selectable, name=None, flat=False)

	Return an Alias object.

An Alias represents any FromClause
with an alternate name assigned within SQL, typically using the AS
clause when generated, e.g. SELECT * FROM table AS aliasname.

Similar functionality is available via the
alias() method
available on all FromClause subclasses.

When an Alias is created from a Table object,
this has the effect of the table being rendered
as tablename AS aliasname in a SELECT statement.

For select() objects, the effect is that of creating a named
subquery, i.e. (select ...) AS aliasname.

The name parameter is optional, and provides the name
to use in the rendered SQL. If blank, an “anonymous” name
will be deterministically generated at compile time.
Deterministic means the name is guaranteed to be unique against
other constructs used in the same statement, and will also be the
same name for each successive compilation of the same statement
object.

	Parameters:
	
	selectable¶ – any FromClause subclass,
such as a table, select statement, etc.

	name¶ – string name to be assigned as the alias.
If None, a name will be deterministically generated
at compile time.

	flat¶ – Will be passed through to if the given selectable
is an instance of Join - see Join.alias()
for details.

New in version 0.9.0.

	
sqlalchemy.sql.expression.except_(*selects, **kwargs)

	Return an EXCEPT of multiple selectables.

The returned object is an instance of
CompoundSelect.

	*selects

	a list of Select instances.

	**kwargs

	available keyword arguments are the same as those of
select().

	
sqlalchemy.sql.expression.except_all(*selects, **kwargs)

	Return an EXCEPT ALL of multiple selectables.

The returned object is an instance of
CompoundSelect.

	*selects

	a list of Select instances.

	**kwargs

	available keyword arguments are the same as those of
select().

	
sqlalchemy.sql.expression.exists(*args, **kwargs)

	Construct a new Exists against an existing
Select object.

Calling styles are of the following forms:

use on an existing select()
s = select([table.c.col1]).where(table.c.col2==5)
s = exists(s)

construct a select() at once
exists(['*'], **select_arguments).where(criterion)

columns argument is optional, generates "EXISTS (SELECT *)"
by default.
exists().where(table.c.col2==5)

	
sqlalchemy.sql.expression.intersect(*selects, **kwargs)

	Return an INTERSECT of multiple selectables.

The returned object is an instance of
CompoundSelect.

	*selects

	a list of Select instances.

	**kwargs

	available keyword arguments are the same as those of
select().

	
sqlalchemy.sql.expression.intersect_all(*selects, **kwargs)

	Return an INTERSECT ALL of multiple selectables.

The returned object is an instance of
CompoundSelect.

	*selects

	a list of Select instances.

	**kwargs

	available keyword arguments are the same as those of
select().

	
sqlalchemy.sql.expression.join(left, right, onclause=None, isouter=False, full=False)

	Produce a Join object, given two FromClause
expressions.

E.g.:

j = join(user_table, address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

Similar functionality is available given any
FromClause object (e.g. such as a Table) using
the FromClause.join() method.

	Parameters:
	
	left¶ – The left side of the join.

	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of JOIN.

New in version 1.1.

See also

FromClause.join() - method form, based on a given left side

Join - the type of object produced

	
sqlalchemy.sql.expression.lateral(selectable, name=None)

	Return a Lateral object.

Lateral is an Alias subclass that represents
a subquery with the LATERAL keyword applied to it.

The special behavior of a LATERAL subquery is that it appears in the
FROM clause of an enclosing SELECT, but may correlate to other
FROM clauses of that SELECT. It is a special case of subquery
only supported by a small number of backends, currently more recent
Postgresql versions.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
sqlalchemy.sql.expression.outerjoin(left, right, onclause=None, full=False)

	Return an OUTER JOIN clause element.

The returned object is an instance of Join.

Similar functionality is also available via the
outerjoin() method on any
FromClause.

	Parameters:
	
	left¶ – The left side of the join.

	right¶ – The right side of the join.

	onclause¶ – Optional criterion for the ON clause, is
derived from foreign key relationships established between
left and right otherwise.

To chain joins together, use the FromClause.join() or
FromClause.outerjoin() methods on the resulting
Join object.

	
sqlalchemy.sql.expression.select(columns=None, whereclause=None, from_obj=None, distinct=False, having=None, correlate=True, prefixes=None, suffixes=None, **kwargs)

	Construct a new Select.

Similar functionality is also available via the
FromClause.select() method on any FromClause.

All arguments which accept ClauseElement arguments also
accept string arguments, which will be converted as appropriate into
either text() or literal_column() constructs.

See also

Selecting - Core Tutorial description of
select().

	Parameters:
	
	columns¶ – A list of ColumnElement or FromClause
objects which will form the columns clause of the resulting
statement. For those objects that are instances of
FromClause (typically Table or Alias
objects), the FromClause.c collection is extracted
to form a collection of ColumnElement objects.

This parameter will also accept Text constructs as
given, as well as ORM-mapped classes.

Note

The select.columns parameter is not available
in the method form of select(), e.g.
FromClause.select().

See also

Select.column()

Select.with_only_columns()

	whereclause¶ – A ClauseElement expression which will be used to form the
WHERE clause. It is typically preferable to add WHERE
criterion to an existing Select using method chaining
with Select.where().

See also

Select.where()

	from_obj¶ – A list of ClauseElement objects which will be added to the
FROM clause of the resulting statement. This is equivalent
to calling Select.select_from() using method chaining on
an existing Select object.

See also

Select.select_from() - full description of explicit
FROM clause specification.

	autocommit¶ – Deprecated. Use .execution_options(autocommit=<True|False>)
to set the autocommit option.

See also

Executable.execution_options()

	bind=None¶ – an Engine or Connection instance
to which the
resulting Select object will be bound. The
Select object will otherwise automatically bind to
whatever Connectable instances can be located within
its contained ClauseElement members.

	correlate=True¶ – indicates that this Select object should have its
contained FromClause elements “correlated” to an enclosing
Select object. It is typically preferable to specify
correlations on an existing Select construct using
Select.correlate().

See also

Select.correlate() - full description of correlation.

	distinct=False¶ – when True, applies a DISTINCT qualifier to the columns
clause of the resulting statement.

The boolean argument may also be a column expression or list
of column expressions - this is a special calling form which
is understood by the Postgresql dialect to render the
DISTINCT ON (<columns>) syntax.

distinct is also available on an existing Select
object via the distinct() method.

See also

Select.distinct()

	for_update=False¶ –
when True, applies FOR UPDATE to the end of the
resulting statement.
Deprecated since version 0.9.0: - use
Select.with_for_update() to specify the
structure of the FOR UPDATE clause.

for_update accepts various string values interpreted by
specific backends, including:

	"read" - on MySQL, translates to LOCK IN SHARE MODE;
on Postgresql, translates to FOR SHARE.

	"nowait" - on Postgresql and Oracle, translates to
FOR UPDATE NOWAIT.

	"read_nowait" - on Postgresql, translates to
FOR SHARE NOWAIT.

See also

Select.with_for_update() - improved API for
specifying the FOR UPDATE clause.

	group_by¶ – a list of ClauseElement objects which will comprise the
GROUP BY clause of the resulting select. This parameter
is typically specified more naturally using the
Select.group_by() method on an existing Select.

See also

Select.group_by()

	having¶ – a ClauseElement that will comprise the HAVING clause
of the resulting select when GROUP BY is used. This parameter
is typically specified more naturally using the
Select.having() method on an existing Select.

See also

Select.having()

	limit=None¶ – a numerical value which usually renders as a LIMIT
expression in the resulting select. Backends that don’t
support LIMIT will attempt to provide similar
functionality. This parameter is typically specified more naturally
using the Select.limit() method on an existing
Select.

See also

Select.limit()

	offset=None¶ – a numeric value which usually renders as an OFFSET
expression in the resulting select. Backends that don’t
support OFFSET will attempt to provide similar
functionality. This parameter is typically specified more naturally
using the Select.offset() method on an existing
Select.

See also

Select.offset()

	order_by¶ – a scalar or list of ClauseElement objects which will
comprise the ORDER BY clause of the resulting select.
This parameter is typically specified more naturally using the
Select.order_by() method on an existing Select.

See also

Select.order_by()

	use_labels=False¶ – when True, the statement will be generated using labels
for each column in the columns clause, which qualify each
column with its parent table’s (or aliases) name so that name
conflicts between columns in different tables don’t occur.
The format of the label is <tablename>_<column>. The “c”
collection of the resulting Select object will use these
names as well for targeting column members.

This parameter can also be specified on an existing
Select object using the Select.apply_labels()
method.

See also

Select.apply_labels()

	
sqlalchemy.sql.expression.subquery(alias, *args, **kwargs)

	Return an Alias object derived
from a Select.

	name

	alias name

*args, **kwargs

all other arguments are delivered to the
select() function.

	
sqlalchemy.sql.expression.table(name, *columns)

	Produce a new TableClause.

The object returned is an instance of TableClause, which
represents the “syntactical” portion of the schema-level
Table object.
It may be used to construct lightweight table constructs.

Changed in version 1.0.0: expression.table() can now
be imported from the plain sqlalchemy namespace like any
other SQL element.

	Parameters:
	
	name¶ – Name of the table.

	columns¶ – A collection of expression.column() constructs.

	
sqlalchemy.sql.expression.tablesample(selectable, sampling, name=None, seed=None)

	Return a TableSample object.

TableSample is an Alias subclass that represents
a table with the TABLESAMPLE clause applied to it.
tablesample()
is also available from the FromClause class via the
FromClause.tablesample() method.

The TABLESAMPLE clause allows selecting a randomly selected approximate
percentage of rows from a table. It supports multiple sampling methods,
most commonly BERNOULLI and SYSTEM.

e.g.:

from sqlalchemy import func

selectable = people.tablesample(
 func.bernoulli(1),
 name='alias',
 seed=func.random())
stmt = select([selectable.c.people_id])

Assuming people with a column people_id, the above
statement would render as:

SELECT alias.people_id FROM
people AS alias TABLESAMPLE bernoulli(:bernoulli_1)
REPEATABLE (random())

New in version 1.1.

	Parameters:
	
	sampling¶ – a float percentage between 0 and 100 or
functions.Function.

	name¶ – optional alias name

	seed¶ – any real-valued SQL expression. When specified, the
REPEATABLE sub-clause is also rendered.

	
sqlalchemy.sql.expression.union(*selects, **kwargs)

	Return a UNION of multiple selectables.

The returned object is an instance of
CompoundSelect.

A similar union() method is available on all
FromClause subclasses.

	*selects

	a list of Select instances.

	**kwargs

	available keyword arguments are the same as those of
select().

	
sqlalchemy.sql.expression.union_all(*selects, **kwargs)

	Return a UNION ALL of multiple selectables.

The returned object is an instance of
CompoundSelect.

A similar union_all() method is available on all
FromClause subclasses.

	*selects

	a list of Select instances.

	**kwargs

	available keyword arguments are the same as those of
select().

	
class sqlalchemy.sql.expression.Alias(selectable, name=None)

	Bases: sqlalchemy.sql.expression.FromClause

Represents an table or selectable alias (AS).

Represents an alias, as typically applied to any table or
sub-select within a SQL statement using the AS keyword (or
without the keyword on certain databases such as Oracle).

This object is constructed from the alias() module
level function as well as the FromClause.alias() method available
on all FromClause subclasses.

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
class sqlalchemy.sql.expression.CompoundSelect(keyword, *selects, **kwargs)

	Bases: sqlalchemy.sql.expression.GenerativeSelect

	Forms the basis of UNION, UNION ALL, and other

	SELECT-based set operations.

See also

union()

union_all()

intersect()

intersect_all()

except()

except_all()

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
append_group_by(*clauses)

	
inherited from the append_group_by() method of GenerativeSelect

Append the given GROUP BY criterion applied to this selectable.

The criterion will be appended to any pre-existing GROUP BY criterion.

This is an in-place mutation method; the
group_by() method is preferred, as it
provides standard method chaining.

	
append_order_by(*clauses)

	
inherited from the append_order_by() method of GenerativeSelect

Append the given ORDER BY criterion applied to this selectable.

The criterion will be appended to any pre-existing ORDER BY criterion.

This is an in-place mutation method; the
order_by() method is preferred, as it
provides standard method chaining.

	
apply_labels()

	
inherited from the apply_labels() method of GenerativeSelect

return a new selectable with the ‘use_labels’ flag set to True.

This will result in column expressions being generated using labels
against their table name, such as “SELECT somecolumn AS
tablename_somecolumn”. This allows selectables which contain multiple
FROM clauses to produce a unique set of column names regardless of
name conflicts among the individual FROM clauses.

	
as_scalar()

	
inherited from the as_scalar() method of SelectBase

return a ‘scalar’ representation of this selectable, which can be
used as a column expression.

Typically, a select statement which has only one column in its columns
clause is eligible to be used as a scalar expression.

The returned object is an instance of
ScalarSelect.

	
autocommit()

	
inherited from the autocommit() method of SelectBase

return a new selectable with the ‘autocommit’ flag set to
True.

Deprecated since version 0.6: autocommit() is deprecated. Use Executable.execution_options() with the ‘autocommit’ flag.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
cte(name=None, recursive=False)

	
inherited from the cte() method of HasCTE

Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
description

	
inherited from the description attribute of FromClause

a brief description of this FromClause.

Used primarily for error message formatting.

	
execute(*multiparams, **params)

	
inherited from the execute() method of Executable

Compile and execute this Executable.

	
execution_options(**kw)

	
inherited from the execution_options() method of Executable

Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
for_update

	
inherited from the for_update attribute of GenerativeSelect

Provide legacy dialect support for the for_update attribute.

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
group_by(*clauses)

	
inherited from the group_by() method of GenerativeSelect

return a new selectable with the given list of GROUP BY
criterion applied.

The criterion will be appended to any pre-existing GROUP BY
criterion.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
label(name)

	
inherited from the label() method of SelectBase

return a ‘scalar’ representation of this selectable, embedded as a
subquery with a label.

See also

as_scalar().

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
limit(limit)

	
inherited from the limit() method of GenerativeSelect

return a new selectable with the given LIMIT criterion
applied.

This is a numerical value which usually renders as a LIMIT
expression in the resulting select. Backends that don’t
support LIMIT will attempt to provide similar
functionality.

Changed in version 1.0.0: - Select.limit() can now
accept arbitrary SQL expressions as well as integer values.

	Parameters:
	limit¶ – an integer LIMIT parameter, or a SQL expression
that provides an integer result.

	
offset(offset)

	
inherited from the offset() method of GenerativeSelect

return a new selectable with the given OFFSET criterion
applied.

This is a numeric value which usually renders as an OFFSET
expression in the resulting select. Backends that don’t
support OFFSET will attempt to provide similar
functionality.

Changed in version 1.0.0: - Select.offset() can now
accept arbitrary SQL expressions as well as integer values.

	Parameters:
	offset¶ – an integer OFFSET parameter, or a SQL expression
that provides an integer result.

	
order_by(*clauses)

	
inherited from the order_by() method of GenerativeSelect

return a new selectable with the given list of ORDER BY
criterion applied.

The criterion will be appended to any pre-existing ORDER BY
criterion.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Executable

Compile and execute this Executable, returning the
result’s scalar representation.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
with_for_update(nowait=False, read=False, of=None, skip_locked=False, key_share=False)

	
inherited from the with_for_update() method of GenerativeSelect

Specify a FOR UPDATE clause for this GenerativeSelect.

E.g.:

stmt = select([table]).with_for_update(nowait=True)

On a database like Postgresql or Oracle, the above would render a
statement like:

SELECT table.a, table.b FROM table FOR UPDATE NOWAIT

on other backends, the nowait option is ignored and instead
would produce:

SELECT table.a, table.b FROM table FOR UPDATE

When called with no arguments, the statement will render with
the suffix FOR UPDATE. Additional arguments can then be
provided which allow for common database-specific
variants.

	Parameters:
	
	nowait¶ – boolean; will render FOR UPDATE NOWAIT on Oracle
and Postgresql dialects.

	read¶ – boolean; will render LOCK IN SHARE MODE on MySQL,
FOR SHARE on Postgresql. On Postgresql, when combined with
nowait, will render FOR SHARE NOWAIT.

	of¶ – SQL expression or list of SQL expression elements
(typically Column objects or a compatible expression) which
will render into a FOR UPDATE OF clause; supported by PostgreSQL
and Oracle. May render as a table or as a column depending on
backend.

	skip_locked¶ – boolean, will render FOR UPDATE SKIP LOCKED
on Oracle and Postgresql dialects or FOR SHARE SKIP LOCKED if
read=True is also specified.

New in version 1.1.0.

	key_share¶ – boolean, will render FOR NO KEY UPDATE,
or if combined with read=True will render FOR KEY SHARE,
on the Postgresql dialect.

New in version 1.1.0.

	
class sqlalchemy.sql.expression.CTE(selectable, name=None, recursive=False, _cte_alias=None, _restates=frozenset([]), _suffixes=None)

	Bases: sqlalchemy.sql.expression.Generative, sqlalchemy.sql.expression.HasSuffixes, sqlalchemy.sql.expression.Alias

Represent a Common Table Expression.

The CTE object is obtained using the
SelectBase.cte() method from any selectable.
See that method for complete examples.

New in version 0.7.6.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
suffix_with(*expr, **kw)

	
inherited from the suffix_with() method of HasSuffixes

Add one or more expressions following the statement as a whole.

This is used to support backend-specific suffix keywords on
certain constructs.

E.g.:

stmt = select([col1, col2]).cte().suffix_with(
 "cycle empno set y_cycle to 1 default 0", dialect="oracle")

Multiple suffixes can be specified by multiple calls
to suffix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the target clause.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this suffix to only that dialect.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
class sqlalchemy.sql.expression.Executable

	Bases: sqlalchemy.sql.expression.Generative

Mark a ClauseElement as supporting execution.

Executable is a superclass for all “statement” types
of objects, including select(), delete(), update(),
insert(), text().

	
bind

	Returns the Engine or Connection to
which this Executable is bound, or None if none found.

This is a traversal which checks locally, then
checks among the “from” clauses of associated objects
until a bound engine or connection is found.

	
execute(*multiparams, **params)

	Compile and execute this Executable.

	
execution_options(**kw)

	Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
scalar(*multiparams, **params)

	Compile and execute this Executable, returning the
result’s scalar representation.

	
class sqlalchemy.sql.expression.FromClause

	Bases: sqlalchemy.sql.expression.Selectable

Represent an element that can be used within the FROM
clause of a SELECT statement.

The most common forms of FromClause are the
Table and the select() constructs. Key
features common to all FromClause objects include:

	a c collection, which provides per-name access to a collection
of ColumnElement objects.

	a primary_key attribute, which is a collection of all those
ColumnElement objects that indicate the primary_key flag.

	Methods to generate various derivations of a “from” clause, including
FromClause.alias(), FromClause.join(),
FromClause.select().

	
alias(name=None, flat=False)

	return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
c

	An alias for the columns attribute.

	
columns

	A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
correspond_on_equivalents(column, equivalents)

	Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
description

	a brief description of this FromClause.

Used primarily for error message formatting.

	
foreign_keys

	Return the collection of ForeignKey objects which this
FromClause references.

	
is_derived_from(fromclause)

	Return True if this FromClause is ‘derived’ from the given
FromClause.

An example would be an Alias of a Table is derived from that Table.

	
join(right, onclause=None, isouter=False, full=False)

	Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
lateral(name=None)

	Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
primary_key

	Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
schema = None

	Define the ‘schema’ attribute for this FromClause.

This is typically None for most objects except that of
Table, where it is taken as the value of the
Table.schema argument.

	
select(whereclause=None, **params)

	return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
tablesample(sampling, name=None, seed=None)

	Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
class sqlalchemy.sql.expression.GenerativeSelect(use_labels=False, for_update=False, limit=None, offset=None, order_by=None, group_by=None, bind=None, autocommit=None)

	Bases: sqlalchemy.sql.expression.SelectBase

Base class for SELECT statements where additional elements can be
added.

This serves as the base for Select and CompoundSelect
where elements such as ORDER BY, GROUP BY can be added and column
rendering can be controlled. Compare to TextAsFrom, which,
while it subclasses SelectBase and is also a SELECT construct,
represents a fixed textual string which cannot be altered at this level,
only wrapped as a subquery.

New in version 0.9.0: GenerativeSelect was added to
provide functionality specific to Select and
CompoundSelect while allowing SelectBase to be
used for other SELECT-like objects, e.g. TextAsFrom.

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
append_group_by(*clauses)

	Append the given GROUP BY criterion applied to this selectable.

The criterion will be appended to any pre-existing GROUP BY criterion.

This is an in-place mutation method; the
group_by() method is preferred, as it
provides standard method chaining.

	
append_order_by(*clauses)

	Append the given ORDER BY criterion applied to this selectable.

The criterion will be appended to any pre-existing ORDER BY criterion.

This is an in-place mutation method; the
order_by() method is preferred, as it
provides standard method chaining.

	
apply_labels()

	return a new selectable with the ‘use_labels’ flag set to True.

This will result in column expressions being generated using labels
against their table name, such as “SELECT somecolumn AS
tablename_somecolumn”. This allows selectables which contain multiple
FROM clauses to produce a unique set of column names regardless of
name conflicts among the individual FROM clauses.

	
as_scalar()

	
inherited from the as_scalar() method of SelectBase

return a ‘scalar’ representation of this selectable, which can be
used as a column expression.

Typically, a select statement which has only one column in its columns
clause is eligible to be used as a scalar expression.

The returned object is an instance of
ScalarSelect.

	
autocommit()

	
inherited from the autocommit() method of SelectBase

return a new selectable with the ‘autocommit’ flag set to
True.

Deprecated since version 0.6: autocommit() is deprecated. Use Executable.execution_options() with the ‘autocommit’ flag.

	
bind

	
inherited from the bind attribute of Executable

Returns the Engine or Connection to
which this Executable is bound, or None if none found.

This is a traversal which checks locally, then
checks among the “from” clauses of associated objects
until a bound engine or connection is found.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
cte(name=None, recursive=False)

	
inherited from the cte() method of HasCTE

Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
description

	
inherited from the description attribute of FromClause

a brief description of this FromClause.

Used primarily for error message formatting.

	
execute(*multiparams, **params)

	
inherited from the execute() method of Executable

Compile and execute this Executable.

	
execution_options(**kw)

	
inherited from the execution_options() method of Executable

Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
for_update

	Provide legacy dialect support for the for_update attribute.

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
get_children(**kwargs)

	
inherited from the get_children() method of ClauseElement

Return immediate child elements of this ClauseElement.

This is used for visit traversal.

**kwargs may contain flags that change the collection that is
returned, for example to return a subset of items in order to
cut down on larger traversals, or to return child items from a
different context (such as schema-level collections instead of
clause-level).

	
group_by(*clauses)

	return a new selectable with the given list of GROUP BY
criterion applied.

The criterion will be appended to any pre-existing GROUP BY
criterion.

	
is_derived_from(fromclause)

	
inherited from the is_derived_from() method of FromClause

Return True if this FromClause is ‘derived’ from the given
FromClause.

An example would be an Alias of a Table is derived from that Table.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
label(name)

	
inherited from the label() method of SelectBase

return a ‘scalar’ representation of this selectable, embedded as a
subquery with a label.

See also

as_scalar().

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
limit(limit)

	return a new selectable with the given LIMIT criterion
applied.

This is a numerical value which usually renders as a LIMIT
expression in the resulting select. Backends that don’t
support LIMIT will attempt to provide similar
functionality.

Changed in version 1.0.0: - Select.limit() can now
accept arbitrary SQL expressions as well as integer values.

	Parameters:
	limit¶ – an integer LIMIT parameter, or a SQL expression
that provides an integer result.

	
offset(offset)

	return a new selectable with the given OFFSET criterion
applied.

This is a numeric value which usually renders as an OFFSET
expression in the resulting select. Backends that don’t
support OFFSET will attempt to provide similar
functionality.

Changed in version 1.0.0: - Select.offset() can now
accept arbitrary SQL expressions as well as integer values.

	Parameters:
	offset¶ – an integer OFFSET parameter, or a SQL expression
that provides an integer result.

	
order_by(*clauses)

	return a new selectable with the given list of ORDER BY
criterion applied.

The criterion will be appended to any pre-existing ORDER BY
criterion.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Executable

Compile and execute this Executable, returning the
result’s scalar representation.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
self_group(against=None)

	
inherited from the self_group() method of ClauseElement

Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
with_for_update(nowait=False, read=False, of=None, skip_locked=False, key_share=False)

	Specify a FOR UPDATE clause for this GenerativeSelect.

E.g.:

stmt = select([table]).with_for_update(nowait=True)

On a database like Postgresql or Oracle, the above would render a
statement like:

SELECT table.a, table.b FROM table FOR UPDATE NOWAIT

on other backends, the nowait option is ignored and instead
would produce:

SELECT table.a, table.b FROM table FOR UPDATE

When called with no arguments, the statement will render with
the suffix FOR UPDATE. Additional arguments can then be
provided which allow for common database-specific
variants.

	Parameters:
	
	nowait¶ – boolean; will render FOR UPDATE NOWAIT on Oracle
and Postgresql dialects.

	read¶ – boolean; will render LOCK IN SHARE MODE on MySQL,
FOR SHARE on Postgresql. On Postgresql, when combined with
nowait, will render FOR SHARE NOWAIT.

	of¶ – SQL expression or list of SQL expression elements
(typically Column objects or a compatible expression) which
will render into a FOR UPDATE OF clause; supported by PostgreSQL
and Oracle. May render as a table or as a column depending on
backend.

	skip_locked¶ – boolean, will render FOR UPDATE SKIP LOCKED
on Oracle and Postgresql dialects or FOR SHARE SKIP LOCKED if
read=True is also specified.

New in version 1.1.0.

	key_share¶ – boolean, will render FOR NO KEY UPDATE,
or if combined with read=True will render FOR KEY SHARE,
on the Postgresql dialect.

New in version 1.1.0.

	
class sqlalchemy.sql.expression.HasCTE

	Mixin that declares a class to include CTE support.

New in version 1.1.

	
cte(name=None, recursive=False)

	Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
class sqlalchemy.sql.expression.HasPrefixes

	
	
prefix_with(*expr, **kw)

	Add one or more expressions following the statement keyword, i.e.
SELECT, INSERT, UPDATE, or DELETE. Generative.

This is used to support backend-specific prefix keywords such as those
provided by MySQL.

E.g.:

stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql")

Multiple prefixes can be specified by multiple calls
to prefix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the INSERT, UPDATE, or DELETE
keyword.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this prefix to only that dialect.

	
class sqlalchemy.sql.expression.HasSuffixes

	
	
suffix_with(*expr, **kw)

	Add one or more expressions following the statement as a whole.

This is used to support backend-specific suffix keywords on
certain constructs.

E.g.:

stmt = select([col1, col2]).cte().suffix_with(
 "cycle empno set y_cycle to 1 default 0", dialect="oracle")

Multiple suffixes can be specified by multiple calls
to suffix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the target clause.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this suffix to only that dialect.

	
class sqlalchemy.sql.expression.Join(left, right, onclause=None, isouter=False, full=False)

	Bases: sqlalchemy.sql.expression.FromClause

represent a JOIN construct between two FromClause
elements.

The public constructor function for Join is the module-level
join() function, as well as the FromClause.join() method
of any FromClause (e.g. such as Table).

See also

join()

FromClause.join()

	
__init__(left, right, onclause=None, isouter=False, full=False)

	Construct a new Join.

The usual entrypoint here is the join()
function or the FromClause.join() method of any
FromClause object.

	
alias(name=None, flat=False)

	return an alias of this Join.

The default behavior here is to first produce a SELECT
construct from this Join, then to produce an
Alias from that. So given a join of the form:

j = table_a.join(table_b, table_a.c.id == table_b.c.a_id)

The JOIN by itself would look like:

table_a JOIN table_b ON table_a.id = table_b.a_id

Whereas the alias of the above, j.alias(), would in a
SELECT context look like:

(SELECT table_a.id AS table_a_id, table_b.id AS table_b_id,
 table_b.a_id AS table_b_a_id
 FROM table_a
 JOIN table_b ON table_a.id = table_b.a_id) AS anon_1

The equivalent long-hand form, given a Join object
j, is:

from sqlalchemy import select, alias
j = alias(
 select([j.left, j.right]).\
 select_from(j).\
 with_labels(True).\
 correlate(False),
 name=name
)

The selectable produced by Join.alias() features the same
columns as that of the two individual selectables presented under
a single name - the individual columns are “auto-labeled”, meaning
the .c. collection of the resulting Alias represents
the names of the individual columns using a
<tablename>_<columname> scheme:

j.c.table_a_id
j.c.table_b_a_id

Join.alias() also features an alternate
option for aliasing joins which produces no enclosing SELECT and
does not normally apply labels to the column names. The
flat=True option will call FromClause.alias()
against the left and right sides individually.
Using this option, no new SELECT is produced;
we instead, from a construct as below:

j = table_a.join(table_b, table_a.c.id == table_b.c.a_id)
j = j.alias(flat=True)

we get a result like this:

table_a AS table_a_1 JOIN table_b AS table_b_1 ON
table_a_1.id = table_b_1.a_id

The flat=True argument is also propagated to the contained
selectables, so that a composite join such as:

j = table_a.join(
 table_b.join(table_c,
 table_b.c.id == table_c.c.b_id),
 table_b.c.a_id == table_a.c.id
).alias(flat=True)

Will produce an expression like:

table_a AS table_a_1 JOIN (
 table_b AS table_b_1 JOIN table_c AS table_c_1
 ON table_b_1.id = table_c_1.b_id
) ON table_a_1.id = table_b_1.a_id

The standalone alias() function as well as the
base FromClause.alias() method also support the flat=True
argument as a no-op, so that the argument can be passed to the
alias() method of any selectable.

New in version 0.9.0: Added the flat=True option to create
“aliases” of joins without enclosing inside of a SELECT
subquery.

	Parameters:
	
	name¶ – name given to the alias.

	flat¶ – if True, produce an alias of the left and right
sides of this Join and return the join of those
two selectables. This produces join expression that does not
include an enclosing SELECT.

New in version 0.9.0.

See also

alias()

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
select(whereclause=None, **kwargs)

	Create a Select from this Join.

The equivalent long-hand form, given a Join object
j, is:

from sqlalchemy import select
j = select([j.left, j.right], **kw).\
 where(whereclause).\
 select_from(j)

	Parameters:
	
	whereclause¶ – the WHERE criterion that will be sent to
the select() function

	**kwargs¶ – all other kwargs are sent to the
underlying select() function.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
class sqlalchemy.sql.expression.Lateral(selectable, name=None)

	Bases: sqlalchemy.sql.expression.Alias

Represent a LATERAL subquery.

This object is constructed from the lateral() module
level function as well as the FromClause.lateral() method available
on all FromClause subclasses.

While LATERAL is part of the SQL standard, curently only more recent
Postgresql versions provide support for this keyword.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
class sqlalchemy.sql.expression.ScalarSelect(element)

	Bases: sqlalchemy.sql.expression.Generative, sqlalchemy.sql.expression.Grouping

	
where(crit)

	Apply a WHERE clause to the SELECT statement referred to
by this ScalarSelect.

	
class sqlalchemy.sql.expression.Select(columns=None, whereclause=None, from_obj=None, distinct=False, having=None, correlate=True, prefixes=None, suffixes=None, **kwargs)

	Bases: sqlalchemy.sql.expression.HasPrefixes, sqlalchemy.sql.expression.HasSuffixes, sqlalchemy.sql.expression.GenerativeSelect

Represents a SELECT statement.

	
__init__(columns=None, whereclause=None, from_obj=None, distinct=False, having=None, correlate=True, prefixes=None, suffixes=None, **kwargs)

	Construct a new Select object.

This constructor is mirrored as a public API function; see select() for a full usage and argument description.

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
append_column(column)

	append the given column expression to the columns clause of this
select() construct.

This is an in-place mutation method; the
column() method is preferred, as it provides standard
method chaining.

	
append_correlation(fromclause)

	append the given correlation expression to this select()
construct.

This is an in-place mutation method; the
correlate() method is preferred, as it provides
standard method chaining.

	
append_from(fromclause)

	append the given FromClause expression to this select() construct’s
FROM clause.

This is an in-place mutation method; the
select_from() method is preferred, as it provides
standard method chaining.

	
append_group_by(*clauses)

	
inherited from the append_group_by() method of GenerativeSelect

Append the given GROUP BY criterion applied to this selectable.

The criterion will be appended to any pre-existing GROUP BY criterion.

This is an in-place mutation method; the
group_by() method is preferred, as it
provides standard method chaining.

	
append_having(having)

	append the given expression to this select() construct’s HAVING
criterion.

The expression will be joined to existing HAVING criterion via AND.

This is an in-place mutation method; the
having() method is preferred, as it provides standard
method chaining.

	
append_order_by(*clauses)

	
inherited from the append_order_by() method of GenerativeSelect

Append the given ORDER BY criterion applied to this selectable.

The criterion will be appended to any pre-existing ORDER BY criterion.

This is an in-place mutation method; the
order_by() method is preferred, as it
provides standard method chaining.

	
append_prefix(clause)

	append the given columns clause prefix expression to this select()
construct.

This is an in-place mutation method; the
prefix_with() method is preferred, as it provides
standard method chaining.

	
append_whereclause(whereclause)

	append the given expression to this select() construct’s WHERE
criterion.

The expression will be joined to existing WHERE criterion via AND.

This is an in-place mutation method; the
where() method is preferred, as it provides standard
method chaining.

	
apply_labels()

	
inherited from the apply_labels() method of GenerativeSelect

return a new selectable with the ‘use_labels’ flag set to True.

This will result in column expressions being generated using labels
against their table name, such as “SELECT somecolumn AS
tablename_somecolumn”. This allows selectables which contain multiple
FROM clauses to produce a unique set of column names regardless of
name conflicts among the individual FROM clauses.

	
as_scalar()

	
inherited from the as_scalar() method of SelectBase

return a ‘scalar’ representation of this selectable, which can be
used as a column expression.

Typically, a select statement which has only one column in its columns
clause is eligible to be used as a scalar expression.

The returned object is an instance of
ScalarSelect.

	
autocommit()

	
inherited from the autocommit() method of SelectBase

return a new selectable with the ‘autocommit’ flag set to
True.

Deprecated since version 0.6: autocommit() is deprecated. Use Executable.execution_options() with the ‘autocommit’ flag.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
column(column)

	return a new select() construct with the given column expression
added to its columns clause.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correlate(*fromclauses)

	return a new Select which will correlate the given FROM
clauses to that of an enclosing Select.

Calling this method turns off the Select object’s
default behavior of “auto-correlation”. Normally, FROM elements
which appear in a Select that encloses this one via
its WHERE clause, ORDER BY, HAVING or
columns clause will be omitted from this Select
object’s FROM clause.
Setting an explicit correlation collection using the
Select.correlate() method provides a fixed list of FROM objects
that can potentially take place in this process.

When Select.correlate() is used to apply specific FROM clauses
for correlation, the FROM elements become candidates for
correlation regardless of how deeply nested this Select
object is, relative to an enclosing Select which refers to
the same FROM object. This is in contrast to the behavior of
“auto-correlation” which only correlates to an immediate enclosing
Select. Multi-level correlation ensures that the link
between enclosed and enclosing Select is always via
at least one WHERE/ORDER BY/HAVING/columns clause in order for
correlation to take place.

If None is passed, the Select object will correlate
none of its FROM entries, and all will render unconditionally
in the local FROM clause.

	Parameters:
	*fromclauses¶ – a list of one or more FromClause
constructs, or other compatible constructs (i.e. ORM-mapped
classes) to become part of the correlate collection.

Changed in version 0.8.0: ORM-mapped classes are accepted by
Select.correlate().

Changed in version 0.8.0: The Select.correlate() method no
longer unconditionally removes entries from the FROM clause;
instead, the candidate FROM entries must also be matched by a FROM
entry located in an enclosing Select, which ultimately
encloses this one as present in the WHERE clause, ORDER BY clause,
HAVING clause, or columns clause of an enclosing Select().

Changed in version 0.8.2: explicit correlation takes place
via any level of nesting of Select objects; in previous
0.8 versions, correlation would only occur relative to the
immediate enclosing Select construct.

See also

Select.correlate_except()

Correlated Subqueries

	
correlate_except(*fromclauses)

	return a new Select which will omit the given FROM
clauses from the auto-correlation process.

Calling Select.correlate_except() turns off the
Select object’s default behavior of
“auto-correlation” for the given FROM elements. An element
specified here will unconditionally appear in the FROM list, while
all other FROM elements remain subject to normal auto-correlation
behaviors.

Changed in version 0.8.2: The Select.correlate_except()
method was improved to fully prevent FROM clauses specified here
from being omitted from the immediate FROM clause of this
Select.

If None is passed, the Select object will correlate
all of its FROM entries.

Changed in version 0.8.2: calling correlate_except(None) will
correctly auto-correlate all FROM clauses.

	Parameters:
	*fromclauses¶ – a list of one or more FromClause
constructs, or other compatible constructs (i.e. ORM-mapped
classes) to become part of the correlate-exception collection.

See also

Select.correlate()

Correlated Subqueries

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
cte(name=None, recursive=False)

	
inherited from the cte() method of HasCTE

Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
description

	
inherited from the description attribute of FromClause

a brief description of this FromClause.

Used primarily for error message formatting.

	
distinct(*expr)

	Return a new select() construct which will apply DISTINCT to its
columns clause.

	Parameters:
	*expr¶ – optional column expressions. When present,
the Postgresql dialect will render a DISTINCT ON (<expressions>>)
construct.

	
except_(other, **kwargs)

	return a SQL EXCEPT of this select() construct against the given
selectable.

	
except_all(other, **kwargs)

	return a SQL EXCEPT ALL of this select() construct against the
given selectable.

	
execute(*multiparams, **params)

	
inherited from the execute() method of Executable

Compile and execute this Executable.

	
execution_options(**kw)

	
inherited from the execution_options() method of Executable

Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
for_update

	
inherited from the for_update attribute of GenerativeSelect

Provide legacy dialect support for the for_update attribute.

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
froms

	Return the displayed list of FromClause elements.

	
get_children(column_collections=True, **kwargs)

	return child elements as per the ClauseElement specification.

	
group_by(*clauses)

	
inherited from the group_by() method of GenerativeSelect

return a new selectable with the given list of GROUP BY
criterion applied.

The criterion will be appended to any pre-existing GROUP BY
criterion.

	
having(having)

	return a new select() construct with the given expression added to
its HAVING clause, joined to the existing clause via AND, if any.

	
inner_columns

	an iterator of all ColumnElement expressions which would
be rendered into the columns clause of the resulting SELECT statement.

	
intersect(other, **kwargs)

	return a SQL INTERSECT of this select() construct against the given
selectable.

	
intersect_all(other, **kwargs)

	return a SQL INTERSECT ALL of this select() construct against the
given selectable.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
label(name)

	
inherited from the label() method of SelectBase

return a ‘scalar’ representation of this selectable, embedded as a
subquery with a label.

See also

as_scalar().

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
limit(limit)

	
inherited from the limit() method of GenerativeSelect

return a new selectable with the given LIMIT criterion
applied.

This is a numerical value which usually renders as a LIMIT
expression in the resulting select. Backends that don’t
support LIMIT will attempt to provide similar
functionality.

Changed in version 1.0.0: - Select.limit() can now
accept arbitrary SQL expressions as well as integer values.

	Parameters:
	limit¶ – an integer LIMIT parameter, or a SQL expression
that provides an integer result.

	
locate_all_froms(*args, **kw)

	return a Set of all FromClause elements referenced by this Select.

This set is a superset of that returned by the froms property,
which is specifically for those FromClause elements that would
actually be rendered.

	
offset(offset)

	
inherited from the offset() method of GenerativeSelect

return a new selectable with the given OFFSET criterion
applied.

This is a numeric value which usually renders as an OFFSET
expression in the resulting select. Backends that don’t
support OFFSET will attempt to provide similar
functionality.

Changed in version 1.0.0: - Select.offset() can now
accept arbitrary SQL expressions as well as integer values.

	Parameters:
	offset¶ – an integer OFFSET parameter, or a SQL expression
that provides an integer result.

	
order_by(*clauses)

	
inherited from the order_by() method of GenerativeSelect

return a new selectable with the given list of ORDER BY
criterion applied.

The criterion will be appended to any pre-existing ORDER BY
criterion.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
prefix_with(*expr, **kw)

	
inherited from the prefix_with() method of HasPrefixes

Add one or more expressions following the statement keyword, i.e.
SELECT, INSERT, UPDATE, or DELETE. Generative.

This is used to support backend-specific prefix keywords such as those
provided by MySQL.

E.g.:

stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql")

Multiple prefixes can be specified by multiple calls
to prefix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the INSERT, UPDATE, or DELETE
keyword.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this prefix to only that dialect.

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
reduce_columns(only_synonyms=True)

	Return a new :func`.select` construct with redundantly
named, equivalently-valued columns removed from the columns clause.

“Redundant” here means two columns where one refers to the
other either based on foreign key, or via a simple equality
comparison in the WHERE clause of the statement. The primary purpose
of this method is to automatically construct a select statement
with all uniquely-named columns, without the need to use
table-qualified labels as apply_labels() does.

When columns are omitted based on foreign key, the referred-to
column is the one that’s kept. When columns are omitted based on
WHERE eqivalence, the first column in the columns clause is the
one that’s kept.

	Parameters:
	only_synonyms¶ – when True, limit the removal of columns
to those which have the same name as the equivalent. Otherwise,
all columns that are equivalent to another are removed.

New in version 0.8.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Executable

Compile and execute this Executable, returning the
result’s scalar representation.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
select_from(fromclause)

	return a new select() construct with the
given FROM expression
merged into its list of FROM objects.

E.g.:

table1 = table('t1', column('a'))
table2 = table('t2', column('b'))
s = select([table1.c.a]).\
 select_from(
 table1.join(table2, table1.c.a==table2.c.b)
)

The “from” list is a unique set on the identity of each element,
so adding an already present Table or other selectable
will have no effect. Passing a Join that refers
to an already present Table or other selectable will have
the effect of concealing the presence of that selectable as
an individual element in the rendered FROM list, instead
rendering it into a JOIN clause.

While the typical purpose of Select.select_from() is to
replace the default, derived FROM clause with a join, it can
also be called with individual table elements, multiple times
if desired, in the case that the FROM clause cannot be fully
derived from the columns clause:

select([func.count('*')]).select_from(table1)

	
self_group(against=None)

	return a ‘grouping’ construct as per the ClauseElement
specification.

This produces an element that can be embedded in an expression. Note
that this method is called automatically as needed when constructing
expressions and should not require explicit use.

	
suffix_with(*expr, **kw)

	
inherited from the suffix_with() method of HasSuffixes

Add one or more expressions following the statement as a whole.

This is used to support backend-specific suffix keywords on
certain constructs.

E.g.:

stmt = select([col1, col2]).cte().suffix_with(
 "cycle empno set y_cycle to 1 default 0", dialect="oracle")

Multiple suffixes can be specified by multiple calls
to suffix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the target clause.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this suffix to only that dialect.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
union(other, **kwargs)

	return a SQL UNION of this select() construct against the given
selectable.

	
union_all(other, **kwargs)

	return a SQL UNION ALL of this select() construct against the given
selectable.

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
where(whereclause)

	return a new select() construct with the given expression added to
its WHERE clause, joined to the existing clause via AND, if any.

	
with_for_update(nowait=False, read=False, of=None, skip_locked=False, key_share=False)

	
inherited from the with_for_update() method of GenerativeSelect

Specify a FOR UPDATE clause for this GenerativeSelect.

E.g.:

stmt = select([table]).with_for_update(nowait=True)

On a database like Postgresql or Oracle, the above would render a
statement like:

SELECT table.a, table.b FROM table FOR UPDATE NOWAIT

on other backends, the nowait option is ignored and instead
would produce:

SELECT table.a, table.b FROM table FOR UPDATE

When called with no arguments, the statement will render with
the suffix FOR UPDATE. Additional arguments can then be
provided which allow for common database-specific
variants.

	Parameters:
	
	nowait¶ – boolean; will render FOR UPDATE NOWAIT on Oracle
and Postgresql dialects.

	read¶ – boolean; will render LOCK IN SHARE MODE on MySQL,
FOR SHARE on Postgresql. On Postgresql, when combined with
nowait, will render FOR SHARE NOWAIT.

	of¶ – SQL expression or list of SQL expression elements
(typically Column objects or a compatible expression) which
will render into a FOR UPDATE OF clause; supported by PostgreSQL
and Oracle. May render as a table or as a column depending on
backend.

	skip_locked¶ – boolean, will render FOR UPDATE SKIP LOCKED
on Oracle and Postgresql dialects or FOR SHARE SKIP LOCKED if
read=True is also specified.

New in version 1.1.0.

	key_share¶ – boolean, will render FOR NO KEY UPDATE,
or if combined with read=True will render FOR KEY SHARE,
on the Postgresql dialect.

New in version 1.1.0.

	
with_hint(selectable, text, dialect_name='*')

	Add an indexing or other executional context hint for the given
selectable to this Select.

The text of the hint is rendered in the appropriate
location for the database backend in use, relative
to the given Table or Alias passed as the
selectable argument. The dialect implementation
typically uses Python string substitution syntax
with the token %(name)s to render the name of
the table or alias. E.g. when using Oracle, the
following:

select([mytable]).\
 with_hint(mytable, "index(%(name)s ix_mytable)")

Would render SQL as:

select /*+ index(mytable ix_mytable) */ ... from mytable

The dialect_name option will limit the rendering of a particular
hint to a particular backend. Such as, to add hints for both Oracle
and Sybase simultaneously:

select([mytable]).\
 with_hint(mytable, "index(%(name)s ix_mytable)", 'oracle').\
 with_hint(mytable, "WITH INDEX ix_mytable", 'sybase')

See also

Select.with_statement_hint()

	
with_only_columns(columns)

	Return a new select() construct with its columns
clause replaced with the given columns.

Changed in version 0.7.3: Due to a bug fix, this method has a slight
behavioral change as of version 0.7.3.
Prior to version 0.7.3, the FROM clause of
a select() was calculated upfront and as new columns
were added; in 0.7.3 and later it’s calculated
at compile time, fixing an issue regarding late binding
of columns to parent tables. This changes the behavior of
Select.with_only_columns() in that FROM clauses no
longer represented in the new list are dropped,
but this behavior is more consistent in
that the FROM clauses are consistently derived from the
current columns clause. The original intent of this method
is to allow trimming of the existing columns list to be fewer
columns than originally present; the use case of replacing
the columns list with an entirely different one hadn’t
been anticipated until 0.7.3 was released; the usage
guidelines below illustrate how this should be done.

This method is exactly equivalent to as if the original
select() had been called with the given columns
clause. I.e. a statement:

s = select([table1.c.a, table1.c.b])
s = s.with_only_columns([table1.c.b])

should be exactly equivalent to:

s = select([table1.c.b])

This means that FROM clauses which are only derived
from the column list will be discarded if the new column
list no longer contains that FROM:

>>> table1 = table('t1', column('a'), column('b'))
>>> table2 = table('t2', column('a'), column('b'))
>>> s1 = select([table1.c.a, table2.c.b])
>>> print s1
SELECT t1.a, t2.b FROM t1, t2
>>> s2 = s1.with_only_columns([table2.c.b])
>>> print s2
SELECT t2.b FROM t1

The preferred way to maintain a specific FROM clause
in the construct, assuming it won’t be represented anywhere
else (i.e. not in the WHERE clause, etc.) is to set it using
Select.select_from():

>>> s1 = select([table1.c.a, table2.c.b]).\
... select_from(table1.join(table2,
... table1.c.a==table2.c.a))
>>> s2 = s1.with_only_columns([table2.c.b])
>>> print s2
SELECT t2.b FROM t1 JOIN t2 ON t1.a=t2.a

Care should also be taken to use the correct
set of column objects passed to Select.with_only_columns().
Since the method is essentially equivalent to calling the
select() construct in the first place with the given
columns, the columns passed to Select.with_only_columns()
should usually be a subset of those which were passed
to the select() construct, not those which are available
from the .c collection of that select(). That
is:

s = select([table1.c.a, table1.c.b]).select_from(table1)
s = s.with_only_columns([table1.c.b])

and not:

usually incorrect
s = s.with_only_columns([s.c.b])

The latter would produce the SQL:

SELECT b
FROM (SELECT t1.a AS a, t1.b AS b
FROM t1), t1

Since the select() construct is essentially being
asked to select both from table1 as well as itself.

	
with_statement_hint(text, dialect_name='*')

	add a statement hint to this Select.

This method is similar to Select.with_hint() except that
it does not require an individual table, and instead applies to the
statement as a whole.

Hints here are specific to the backend database and may include
directives such as isolation levels, file directives, fetch directives,
etc.

New in version 1.0.0.

See also

Select.with_hint()

	
class sqlalchemy.sql.expression.Selectable

	Bases: sqlalchemy.sql.expression.ClauseElement

mark a class as being selectable

	
class sqlalchemy.sql.expression.SelectBase

	Bases: sqlalchemy.sql.expression.HasCTE, sqlalchemy.sql.expression.Executable, sqlalchemy.sql.expression.FromClause

Base class for SELECT statements.

This includes Select, CompoundSelect and
TextAsFrom.

	
as_scalar()

	return a ‘scalar’ representation of this selectable, which can be
used as a column expression.

Typically, a select statement which has only one column in its columns
clause is eligible to be used as a scalar expression.

The returned object is an instance of
ScalarSelect.

	
autocommit()

	return a new selectable with the ‘autocommit’ flag set to
True.

Deprecated since version 0.6: autocommit() is deprecated. Use Executable.execution_options() with the ‘autocommit’ flag.

	
label(name)

	return a ‘scalar’ representation of this selectable, embedded as a
subquery with a label.

See also

as_scalar().

	
class sqlalchemy.sql.expression.TableClause(name, *columns)

	Bases: sqlalchemy.sql.expression.Immutable, sqlalchemy.sql.expression.FromClause

Represents a minimal “table” construct.

This is a lightweight table object that has only a name and a
collection of columns, which are typically produced
by the expression.column() function:

from sqlalchemy import table, column

user = table("user",
 column("id"),
 column("name"),
 column("description"),
)

The TableClause construct serves as the base for
the more commonly used Table object, providing
the usual set of FromClause services including
the .c. collection and statement generation methods.

It does not provide all the additional schema-level services
of Table, including constraints, references to other
tables, or support for MetaData-level services. It’s useful
on its own as an ad-hoc construct used to generate quick SQL
statements when a more fully fledged Table
is not on hand.

	
__init__(name, *columns)

	Construct a new TableClause object.

This constructor is mirrored as a public API function; see table() for a full usage and argument description.

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
delete(whereclause=None, **kwargs)

	Generate a delete() construct against this
TableClause.

E.g.:

table.delete().where(table.c.id==7)

See delete() for argument and usage information.

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
implicit_returning = False

	TableClause doesn’t support having a primary key or column
-level defaults, so implicit returning doesn’t apply.

	
insert(values=None, inline=False, **kwargs)

	Generate an insert() construct against this
TableClause.

E.g.:

table.insert().values(name='foo')

See insert() for argument and usage information.

	
is_derived_from(fromclause)

	
inherited from the is_derived_from() method of FromClause

Return True if this FromClause is ‘derived’ from the given
FromClause.

An example would be an Alias of a Table is derived from that Table.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
self_group(against=None)

	
inherited from the self_group() method of ClauseElement

Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
update(whereclause=None, values=None, inline=False, **kwargs)

	Generate an update() construct against this
TableClause.

E.g.:

table.update().where(table.c.id==7).values(name='foo')

See update() for argument and usage information.

	
class sqlalchemy.sql.expression.TableSample(selectable, sampling, name=None, seed=None)

	Bases: sqlalchemy.sql.expression.Alias

Represent a TABLESAMPLE clause.

This object is constructed from the tablesample() module
level function as well as the FromClause.tablesample() method available
on all FromClause subclasses.

New in version 1.1.

See also

tablesample()

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
class sqlalchemy.sql.expression.TextAsFrom(text, columns, positional=False)

	Bases: sqlalchemy.sql.expression.SelectBase

Wrap a TextClause construct within a SelectBase
interface.

This allows the TextClause object to gain a .c collection
and other FROM-like capabilities such as FromClause.alias(),
SelectBase.cte(), etc.

The TextAsFrom construct is produced via the
TextClause.columns() method - see that method for details.

New in version 0.9.0.

See also

text()

TextClause.columns()

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
as_scalar()

	
inherited from the as_scalar() method of SelectBase

return a ‘scalar’ representation of this selectable, which can be
used as a column expression.

Typically, a select statement which has only one column in its columns
clause is eligible to be used as a scalar expression.

The returned object is an instance of
ScalarSelect.

	
autocommit()

	
inherited from the autocommit() method of SelectBase

return a new selectable with the ‘autocommit’ flag set to
True.

Deprecated since version 0.6: autocommit() is deprecated. Use Executable.execution_options() with the ‘autocommit’ flag.

	
bind

	
inherited from the bind attribute of Executable

Returns the Engine or Connection to
which this Executable is bound, or None if none found.

This is a traversal which checks locally, then
checks among the “from” clauses of associated objects
until a bound engine or connection is found.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
cte(name=None, recursive=False)

	
inherited from the cte() method of HasCTE

Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
description

	
inherited from the description attribute of FromClause

a brief description of this FromClause.

Used primarily for error message formatting.

	
execute(*multiparams, **params)

	
inherited from the execute() method of Executable

Compile and execute this Executable.

	
execution_options(**kw)

	
inherited from the execution_options() method of Executable

Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
get_children(**kwargs)

	
inherited from the get_children() method of ClauseElement

Return immediate child elements of this ClauseElement.

This is used for visit traversal.

**kwargs may contain flags that change the collection that is
returned, for example to return a subset of items in order to
cut down on larger traversals, or to return child items from a
different context (such as schema-level collections instead of
clause-level).

	
is_derived_from(fromclause)

	
inherited from the is_derived_from() method of FromClause

Return True if this FromClause is ‘derived’ from the given
FromClause.

An example would be an Alias of a Table is derived from that Table.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
label(name)

	
inherited from the label() method of SelectBase

return a ‘scalar’ representation of this selectable, embedded as a
subquery with a label.

See also

as_scalar().

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
params(*optionaldict, **kwargs)

	
inherited from the params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Returns a copy of this ClauseElement with bindparam()
elements replaced with values taken from the given dictionary:

>>> clause = column('x') + bindparam('foo')
>>> print clause.compile().params
{'foo':None}
>>> print clause.params({'foo':7}).compile().params
{'foo':7}

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Executable

Compile and execute this Executable, returning the
result’s scalar representation.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
self_group(against=None)

	
inherited from the self_group() method of ClauseElement

Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

Insert, Updates, Deletes

INSERT, UPDATE and DELETE statements build on a hierarchy starting
with UpdateBase. The Insert and Update
constructs build on the intermediary ValuesBase.

	
sqlalchemy.sql.expression.delete(table, whereclause=None, bind=None, returning=None, prefixes=None, **dialect_kw)

	Construct Delete object.

Similar functionality is available via the
delete() method on
Table.

	Parameters:
	
	table¶ – The table to delete rows from.

	whereclause¶ – A ClauseElement describing the WHERE
condition of the DELETE statement. Note that the
where() generative method may be used instead.

See also

Deletes - SQL Expression Tutorial

	
sqlalchemy.sql.expression.insert(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)

	Construct an Insert object.

Similar functionality is available via the
insert() method on
Table.

	Parameters:
	
	table¶ – TableClause which is the subject of the
insert.

	values¶ – collection of values to be inserted; see
Insert.values() for a description of allowed formats here.
Can be omitted entirely; a Insert construct will also
dynamically render the VALUES clause at execution time based on
the parameters passed to Connection.execute().

	inline¶ – if True, no attempt will be made to retrieve the
SQL-generated default values to be provided within the statement;
in particular,
this allows SQL expressions to be rendered ‘inline’ within the
statement without the need to pre-execute them beforehand; for
backends that support “returning”, this turns off the “implicit
returning” feature for the statement.

If both values and compile-time bind parameters are present, the
compile-time bind parameters override the information specified
within values on a per-key basis.

The keys within values can be either
Column objects or their string
identifiers. Each key may reference one of:

	a literal data value (i.e. string, number, etc.);

	a Column object;

	a SELECT statement.

If a SELECT statement is specified which references this
INSERT statement’s table, the statement will be correlated
against the INSERT statement.

See also

Insert Expressions - SQL Expression Tutorial

Inserts, Updates and Deletes - SQL Expression Tutorial

	
sqlalchemy.sql.expression.update(table, whereclause=None, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, preserve_parameter_order=False, **dialect_kw)

	Construct an Update object.

E.g.:

from sqlalchemy import update

stmt = update(users).where(users.c.id==5).\
 values(name='user #5')

Similar functionality is available via the
update() method on
Table:

stmt = users.update().\
 where(users.c.id==5).\
 values(name='user #5')

	Parameters:
	
	table¶ – A Table object representing the database
table to be updated.

	whereclause¶ – Optional SQL expression describing the WHERE
condition of the UPDATE statement. Modern applications
may prefer to use the generative where()
method to specify the WHERE clause.

The WHERE clause can refer to multiple tables.
For databases which support this, an UPDATE FROM clause will
be generated, or on MySQL, a multi-table update. The statement
will fail on databases that don’t have support for multi-table
update statements. A SQL-standard method of referring to
additional tables in the WHERE clause is to use a correlated
subquery:

users.update().values(name='ed').where(
 users.c.name==select([addresses.c.email_address]).\
 where(addresses.c.user_id==users.c.id).\
 as_scalar()
)

Changed in version 0.7.4: The WHERE clause can refer to multiple tables.

	values¶ – Optional dictionary which specifies the SET conditions of the
UPDATE. If left as None, the SET
conditions are determined from those parameters passed to the
statement during the execution and/or compilation of the
statement. When compiled standalone without any parameters,
the SET clause generates for all columns.

Modern applications may prefer to use the generative
Update.values() method to set the values of the
UPDATE statement.

	inline¶ – if True, SQL defaults present on Column objects via
the default keyword will be compiled ‘inline’ into the statement
and not pre-executed. This means that their values will not
be available in the dictionary returned from
ResultProxy.last_updated_params().

	preserve_parameter_order¶ – if True, the update statement is
expected to receive parameters only via the Update.values()
method, and they must be passed as a Python list of 2-tuples.
The rendered UPDATE statement will emit the SET clause for each
referenced column maintaining this order.

New in version 1.0.10.

See also

Parameter-Ordered Updates - full example of the
preserve_parameter_order flag

If both values and compile-time bind parameters are present, the
compile-time bind parameters override the information specified
within values on a per-key basis.

The keys within values can be either Column
objects or their string identifiers (specifically the “key” of the
Column, normally but not necessarily equivalent to
its “name”). Normally, the
Column objects used here are expected to be
part of the target Table that is the table
to be updated. However when using MySQL, a multiple-table
UPDATE statement can refer to columns from any of
the tables referred to in the WHERE clause.

The values referred to in values are typically:

	a literal data value (i.e. string, number, etc.)

	a SQL expression, such as a related Column,
a scalar-returning select() construct,
etc.

When combining select() constructs within the values
clause of an update() construct,
the subquery represented by the select() should be
correlated to the parent table, that is, providing criterion
which links the table inside the subquery to the outer table
being updated:

users.update().values(
 name=select([addresses.c.email_address]).\
 where(addresses.c.user_id==users.c.id).\
 as_scalar()
)

See also

Inserts, Updates and Deletes - SQL Expression
Language Tutorial

	
class sqlalchemy.sql.expression.Delete(table, whereclause=None, bind=None, returning=None, prefixes=None, **dialect_kw)

	Bases: sqlalchemy.sql.expression.UpdateBase

Represent a DELETE construct.

The Delete object is created using the delete()
function.

	
__init__(table, whereclause=None, bind=None, returning=None, prefixes=None, **dialect_kw)

	Construct a new Delete object.

This constructor is mirrored as a public API function; see delete() for a full usage and argument description.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
bind

	
inherited from the bind attribute of UpdateBase

Return a ‘bind’ linked to this UpdateBase
or a Table associated with it.

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
cte(name=None, recursive=False)

	
inherited from the cte() method of HasCTE

Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
execute(*multiparams, **params)

	
inherited from the execute() method of Executable

Compile and execute this Executable.

	
execution_options(**kw)

	
inherited from the execution_options() method of Executable

Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
params(*arg, **kw)

	
inherited from the params() method of UpdateBase

Set the parameters for the statement.

This method raises NotImplementedError on the base class,
and is overridden by ValuesBase to provide the
SET/VALUES clause of UPDATE and INSERT.

	
prefix_with(*expr, **kw)

	
inherited from the prefix_with() method of HasPrefixes

Add one or more expressions following the statement keyword, i.e.
SELECT, INSERT, UPDATE, or DELETE. Generative.

This is used to support backend-specific prefix keywords such as those
provided by MySQL.

E.g.:

stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql")

Multiple prefixes can be specified by multiple calls
to prefix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the INSERT, UPDATE, or DELETE
keyword.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this prefix to only that dialect.

	
returning(*cols)

	
inherited from the returning() method of UpdateBase

Add a RETURNING or equivalent clause to this statement.

e.g.:

stmt = table.update().\
 where(table.c.data == 'value').\
 values(status='X').\
 returning(table.c.server_flag,
 table.c.updated_timestamp)

for server_flag, updated_timestamp in connection.execute(stmt):
 print(server_flag, updated_timestamp)

The given collection of column expressions should be derived from
the table that is
the target of the INSERT, UPDATE, or DELETE. While Column
objects are typical, the elements can also be expressions:

stmt = table.insert().returning(
 (table.c.first_name + " " + table.c.last_name).
 label('fullname'))

Upon compilation, a RETURNING clause, or database equivalent,
will be rendered within the statement. For INSERT and UPDATE,
the values are the newly inserted/updated values. For DELETE,
the values are those of the rows which were deleted.

Upon execution, the values of the columns to be returned are made
available via the result set and can be iterated using
ResultProxy.fetchone() and similar. For DBAPIs which do not
natively support returning values (i.e. cx_oracle), SQLAlchemy will
approximate this behavior at the result level so that a reasonable
amount of behavioral neutrality is provided.

Note that not all databases/DBAPIs
support RETURNING. For those backends with no support,
an exception is raised upon compilation and/or execution.
For those who do support it, the functionality across backends
varies greatly, including restrictions on executemany()
and other statements which return multiple rows. Please
read the documentation notes for the database in use in
order to determine the availability of RETURNING.

See also

ValuesBase.return_defaults() - an alternative method tailored
towards efficient fetching of server-side defaults and triggers
for single-row INSERTs or UPDATEs.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Executable

Compile and execute this Executable, returning the
result’s scalar representation.

	
self_group(against=None)

	
inherited from the self_group() method of ClauseElement

Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
where(whereclause)

	Add the given WHERE clause to a newly returned delete construct.

	
with_hint(text, selectable=None, dialect_name='*')

	
inherited from the with_hint() method of UpdateBase

Add a table hint for a single table to this
INSERT/UPDATE/DELETE statement.

Note

UpdateBase.with_hint() currently applies only to
Microsoft SQL Server. For MySQL INSERT/UPDATE/DELETE hints, use
UpdateBase.prefix_with().

The text of the hint is rendered in the appropriate
location for the database backend in use, relative
to the Table that is the subject of this
statement, or optionally to that of the given
Table passed as the selectable argument.

The dialect_name option will limit the rendering of a particular
hint to a particular backend. Such as, to add a hint
that only takes effect for SQL Server:

mytable.insert().with_hint("WITH (PAGLOCK)", dialect_name="mssql")

New in version 0.7.6.

	Parameters:
	
	text¶ – Text of the hint.

	selectable¶ – optional Table that specifies
an element of the FROM clause within an UPDATE or DELETE
to be the subject of the hint - applies only to certain backends.

	dialect_name¶ – defaults to *, if specified as the name
of a particular dialect, will apply these hints only when
that dialect is in use.

	
class sqlalchemy.sql.expression.Insert(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)

	Bases: sqlalchemy.sql.expression.ValuesBase

Represent an INSERT construct.

The Insert object is created using the
insert() function.

See also

Insert Expressions

	
__init__(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)

	Construct a new Insert object.

This constructor is mirrored as a public API function; see insert() for a full usage and argument description.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
bind

	
inherited from the bind attribute of UpdateBase

Return a ‘bind’ linked to this UpdateBase
or a Table associated with it.

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
cte(name=None, recursive=False)

	
inherited from the cte() method of HasCTE

Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
execute(*multiparams, **params)

	
inherited from the execute() method of Executable

Compile and execute this Executable.

	
execution_options(**kw)

	
inherited from the execution_options() method of Executable

Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
from_select(names, select, include_defaults=True)

	Return a new Insert construct which represents
an INSERT...FROM SELECT statement.

e.g.:

sel = select([table1.c.a, table1.c.b]).where(table1.c.c > 5)
ins = table2.insert().from_select(['a', 'b'], sel)

	Parameters:
	
	names¶ – a sequence of string column names or Column
objects representing the target columns.

	select¶ – a select() construct, FromClause
or other construct which resolves into a FromClause,
such as an ORM Query object, etc. The order of
columns returned from this FROM clause should correspond to the
order of columns sent as the names parameter; while this
is not checked before passing along to the database, the database
would normally raise an exception if these column lists don’t
correspond.

	include_defaults¶ – if True, non-server default values and
SQL expressions as specified on Column objects
(as documented in Column Insert/Update Defaults) not
otherwise specified in the list of names will be rendered
into the INSERT and SELECT statements, so that these values are also
included in the data to be inserted.

Note

A Python-side default that uses a Python callable function
will only be invoked once for the whole statement, and not
per row.

New in version 1.0.0: - Insert.from_select() now renders
Python-side and SQL expression column defaults into the
SELECT statement for columns otherwise not included in the
list of column names.

Changed in version 1.0.0: an INSERT that uses FROM SELECT
implies that the insert.inline flag is set to
True, indicating that the statement will not attempt to fetch
the “last inserted primary key” or other defaults. The statement
deals with an arbitrary number of rows, so the
ResultProxy.inserted_primary_key accessor does not apply.

New in version 0.8.3.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
params(*arg, **kw)

	
inherited from the params() method of UpdateBase

Set the parameters for the statement.

This method raises NotImplementedError on the base class,
and is overridden by ValuesBase to provide the
SET/VALUES clause of UPDATE and INSERT.

	
prefix_with(*expr, **kw)

	
inherited from the prefix_with() method of HasPrefixes

Add one or more expressions following the statement keyword, i.e.
SELECT, INSERT, UPDATE, or DELETE. Generative.

This is used to support backend-specific prefix keywords such as those
provided by MySQL.

E.g.:

stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql")

Multiple prefixes can be specified by multiple calls
to prefix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the INSERT, UPDATE, or DELETE
keyword.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this prefix to only that dialect.

	
return_defaults(*cols)

	
inherited from the return_defaults() method of ValuesBase

Make use of a RETURNING clause for the purpose
of fetching server-side expressions and defaults.

E.g.:

stmt = table.insert().values(data='newdata').return_defaults()

result = connection.execute(stmt)

server_created_at = result.returned_defaults['created_at']

When used against a backend that supports RETURNING, all column
values generated by SQL expression or server-side-default will be
added to any existing RETURNING clause, provided that
UpdateBase.returning() is not used simultaneously. The column
values will then be available on the result using the
ResultProxy.returned_defaults accessor as a dictionary,
referring to values keyed to the Column object as well as
its .key.

This method differs from UpdateBase.returning() in these ways:

	ValuesBase.return_defaults() is only intended for use with
an INSERT or an UPDATE statement that matches exactly one row.
While the RETURNING construct in the general sense supports
multiple rows for a multi-row UPDATE or DELETE statement, or for
special cases of INSERT that return multiple rows (e.g. INSERT from
SELECT, multi-valued VALUES clause),
ValuesBase.return_defaults() is intended only for an
“ORM-style” single-row INSERT/UPDATE statement. The row returned
by the statement is also consumed implicitly when
ValuesBase.return_defaults() is used. By contrast,
UpdateBase.returning() leaves the RETURNING result-set
intact with a collection of any number of rows.

	It is compatible with the existing logic to fetch auto-generated
primary key values, also known as “implicit returning”. Backends
that support RETURNING will automatically make use of RETURNING in
order to fetch the value of newly generated primary keys; while the
UpdateBase.returning() method circumvents this behavior,
ValuesBase.return_defaults() leaves it intact.

	It can be called against any backend. Backends that don’t support
RETURNING will skip the usage of the feature, rather than raising
an exception. The return value of
ResultProxy.returned_defaults will be None

ValuesBase.return_defaults() is used by the ORM to provide
an efficient implementation for the eager_defaults feature of
mapper().

	Parameters:
	cols¶ – optional list of column key names or Column
objects. If omitted, all column expressions evaluated on the server
are added to the returning list.

New in version 0.9.0.

See also

UpdateBase.returning()

ResultProxy.returned_defaults

	
returning(*cols)

	
inherited from the returning() method of UpdateBase

Add a RETURNING or equivalent clause to this statement.

e.g.:

stmt = table.update().\
 where(table.c.data == 'value').\
 values(status='X').\
 returning(table.c.server_flag,
 table.c.updated_timestamp)

for server_flag, updated_timestamp in connection.execute(stmt):
 print(server_flag, updated_timestamp)

The given collection of column expressions should be derived from
the table that is
the target of the INSERT, UPDATE, or DELETE. While Column
objects are typical, the elements can also be expressions:

stmt = table.insert().returning(
 (table.c.first_name + " " + table.c.last_name).
 label('fullname'))

Upon compilation, a RETURNING clause, or database equivalent,
will be rendered within the statement. For INSERT and UPDATE,
the values are the newly inserted/updated values. For DELETE,
the values are those of the rows which were deleted.

Upon execution, the values of the columns to be returned are made
available via the result set and can be iterated using
ResultProxy.fetchone() and similar. For DBAPIs which do not
natively support returning values (i.e. cx_oracle), SQLAlchemy will
approximate this behavior at the result level so that a reasonable
amount of behavioral neutrality is provided.

Note that not all databases/DBAPIs
support RETURNING. For those backends with no support,
an exception is raised upon compilation and/or execution.
For those who do support it, the functionality across backends
varies greatly, including restrictions on executemany()
and other statements which return multiple rows. Please
read the documentation notes for the database in use in
order to determine the availability of RETURNING.

See also

ValuesBase.return_defaults() - an alternative method tailored
towards efficient fetching of server-side defaults and triggers
for single-row INSERTs or UPDATEs.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Executable

Compile and execute this Executable, returning the
result’s scalar representation.

	
self_group(against=None)

	
inherited from the self_group() method of ClauseElement

Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
values(*args, **kwargs)

	
inherited from the values() method of ValuesBase

specify a fixed VALUES clause for an INSERT statement, or the SET
clause for an UPDATE.

Note that the Insert and Update constructs support
per-execution time formatting of the VALUES and/or SET clauses,
based on the arguments passed to Connection.execute().
However, the ValuesBase.values() method can be used to “fix” a
particular set of parameters into the statement.

Multiple calls to ValuesBase.values() will produce a new
construct, each one with the parameter list modified to include
the new parameters sent. In the typical case of a single
dictionary of parameters, the newly passed keys will replace
the same keys in the previous construct. In the case of a list-based
“multiple values” construct, each new list of values is extended
onto the existing list of values.

	Parameters:
	
	**kwargs¶ – key value pairs representing the string key
of a Column mapped to the value to be rendered into the
VALUES or SET clause:

users.insert().values(name="some name")

users.update().where(users.c.id==5).values(name="some name")

	*args¶ – As an alternative to passing key/value parameters,
a dictionary, tuple, or list of dictionaries or tuples can be passed
as a single positional argument in order to form the VALUES or
SET clause of the statement. The forms that are accepted vary
based on whether this is an Insert or an Update
construct.

For either an Insert or Update construct, a
single dictionary can be passed, which works the same as that of
the kwargs form:

users.insert().values({"name": "some name"})

users.update().values({"name": "some new name"})

Also for either form but more typically for the Insert
construct, a tuple that contains an entry for every column in the
table is also accepted:

users.insert().values((5, "some name"))

The Insert construct also supports being passed a list
of dictionaries or full-table-tuples, which on the server will
render the less common SQL syntax of “multiple values” - this
syntax is supported on backends such as SQLite, Postgresql, MySQL,
but not necessarily others:

users.insert().values([
 {"name": "some name"},
 {"name": "some other name"},
 {"name": "yet another name"},
])

The above form would render a multiple VALUES statement similar to:

INSERT INTO users (name) VALUES
 (:name_1),
 (:name_2),
 (:name_3)

It is essential to note that passing multiple values is
NOT the same as using traditional executemany() form. The above
syntax is a special syntax not typically used. To emit an
INSERT statement against multiple rows, the normal method is
to pass a multiple values list to the Connection.execute()
method, which is supported by all database backends and is generally
more efficient for a very large number of parameters.

See also

Executing Multiple Statements - an introduction to
the traditional Core method of multiple parameter set
invocation for INSERTs and other statements.

Changed in version 1.0.0: an INSERT that uses a multiple-VALUES
clause, even a list of length one,
implies that the Insert.inline flag is set to
True, indicating that the statement will not attempt to fetch
the “last inserted primary key” or other defaults. The
statement deals with an arbitrary number of rows, so the
ResultProxy.inserted_primary_key accessor does not
apply.

Changed in version 1.0.0: A multiple-VALUES INSERT now supports
columns with Python side default values and callables in the
same way as that of an “executemany” style of invocation; the
callable is invoked for each row. See Python-side defaults invoked for each row invidually when using a multivalued insert
for other details.

The Update construct supports a special form which is a
list of 2-tuples, which when provided must be passed in conjunction
with the
preserve_parameter_order
parameter.
This form causes the UPDATE statement to render the SET clauses
using the order of parameters given to Update.values(), rather
than the ordering of columns given in the Table.

New in version 1.0.10: - added support for parameter-ordered
UPDATE statements via the
preserve_parameter_order
flag.

See also

Parameter-Ordered Updates - full example of the
preserve_parameter_order
flag

See also

Inserts, Updates and Deletes - SQL Expression
Language Tutorial

insert() - produce an INSERT statement

update() - produce an UPDATE statement

	
with_hint(text, selectable=None, dialect_name='*')

	
inherited from the with_hint() method of UpdateBase

Add a table hint for a single table to this
INSERT/UPDATE/DELETE statement.

Note

UpdateBase.with_hint() currently applies only to
Microsoft SQL Server. For MySQL INSERT/UPDATE/DELETE hints, use
UpdateBase.prefix_with().

The text of the hint is rendered in the appropriate
location for the database backend in use, relative
to the Table that is the subject of this
statement, or optionally to that of the given
Table passed as the selectable argument.

The dialect_name option will limit the rendering of a particular
hint to a particular backend. Such as, to add a hint
that only takes effect for SQL Server:

mytable.insert().with_hint("WITH (PAGLOCK)", dialect_name="mssql")

New in version 0.7.6.

	Parameters:
	
	text¶ – Text of the hint.

	selectable¶ – optional Table that specifies
an element of the FROM clause within an UPDATE or DELETE
to be the subject of the hint - applies only to certain backends.

	dialect_name¶ – defaults to *, if specified as the name
of a particular dialect, will apply these hints only when
that dialect is in use.

	
class sqlalchemy.sql.expression.Update(table, whereclause=None, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, preserve_parameter_order=False, **dialect_kw)

	Bases: sqlalchemy.sql.expression.ValuesBase

Represent an Update construct.

The Update object is created using the update()
function.

	
__init__(table, whereclause=None, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, preserve_parameter_order=False, **dialect_kw)

	Construct a new Update object.

This constructor is mirrored as a public API function; see update() for a full usage and argument description.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
bind

	
inherited from the bind attribute of UpdateBase

Return a ‘bind’ linked to this UpdateBase
or a Table associated with it.

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
cte(name=None, recursive=False)

	
inherited from the cte() method of HasCTE

Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
execute(*multiparams, **params)

	
inherited from the execute() method of Executable

Compile and execute this Executable.

	
execution_options(**kw)

	
inherited from the execution_options() method of Executable

Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
params(*arg, **kw)

	
inherited from the params() method of UpdateBase

Set the parameters for the statement.

This method raises NotImplementedError on the base class,
and is overridden by ValuesBase to provide the
SET/VALUES clause of UPDATE and INSERT.

	
prefix_with(*expr, **kw)

	
inherited from the prefix_with() method of HasPrefixes

Add one or more expressions following the statement keyword, i.e.
SELECT, INSERT, UPDATE, or DELETE. Generative.

This is used to support backend-specific prefix keywords such as those
provided by MySQL.

E.g.:

stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql")

Multiple prefixes can be specified by multiple calls
to prefix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the INSERT, UPDATE, or DELETE
keyword.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this prefix to only that dialect.

	
return_defaults(*cols)

	
inherited from the return_defaults() method of ValuesBase

Make use of a RETURNING clause for the purpose
of fetching server-side expressions and defaults.

E.g.:

stmt = table.insert().values(data='newdata').return_defaults()

result = connection.execute(stmt)

server_created_at = result.returned_defaults['created_at']

When used against a backend that supports RETURNING, all column
values generated by SQL expression or server-side-default will be
added to any existing RETURNING clause, provided that
UpdateBase.returning() is not used simultaneously. The column
values will then be available on the result using the
ResultProxy.returned_defaults accessor as a dictionary,
referring to values keyed to the Column object as well as
its .key.

This method differs from UpdateBase.returning() in these ways:

	ValuesBase.return_defaults() is only intended for use with
an INSERT or an UPDATE statement that matches exactly one row.
While the RETURNING construct in the general sense supports
multiple rows for a multi-row UPDATE or DELETE statement, or for
special cases of INSERT that return multiple rows (e.g. INSERT from
SELECT, multi-valued VALUES clause),
ValuesBase.return_defaults() is intended only for an
“ORM-style” single-row INSERT/UPDATE statement. The row returned
by the statement is also consumed implicitly when
ValuesBase.return_defaults() is used. By contrast,
UpdateBase.returning() leaves the RETURNING result-set
intact with a collection of any number of rows.

	It is compatible with the existing logic to fetch auto-generated
primary key values, also known as “implicit returning”. Backends
that support RETURNING will automatically make use of RETURNING in
order to fetch the value of newly generated primary keys; while the
UpdateBase.returning() method circumvents this behavior,
ValuesBase.return_defaults() leaves it intact.

	It can be called against any backend. Backends that don’t support
RETURNING will skip the usage of the feature, rather than raising
an exception. The return value of
ResultProxy.returned_defaults will be None

ValuesBase.return_defaults() is used by the ORM to provide
an efficient implementation for the eager_defaults feature of
mapper().

	Parameters:
	cols¶ – optional list of column key names or Column
objects. If omitted, all column expressions evaluated on the server
are added to the returning list.

New in version 0.9.0.

See also

UpdateBase.returning()

ResultProxy.returned_defaults

	
returning(*cols)

	
inherited from the returning() method of UpdateBase

Add a RETURNING or equivalent clause to this statement.

e.g.:

stmt = table.update().\
 where(table.c.data == 'value').\
 values(status='X').\
 returning(table.c.server_flag,
 table.c.updated_timestamp)

for server_flag, updated_timestamp in connection.execute(stmt):
 print(server_flag, updated_timestamp)

The given collection of column expressions should be derived from
the table that is
the target of the INSERT, UPDATE, or DELETE. While Column
objects are typical, the elements can also be expressions:

stmt = table.insert().returning(
 (table.c.first_name + " " + table.c.last_name).
 label('fullname'))

Upon compilation, a RETURNING clause, or database equivalent,
will be rendered within the statement. For INSERT and UPDATE,
the values are the newly inserted/updated values. For DELETE,
the values are those of the rows which were deleted.

Upon execution, the values of the columns to be returned are made
available via the result set and can be iterated using
ResultProxy.fetchone() and similar. For DBAPIs which do not
natively support returning values (i.e. cx_oracle), SQLAlchemy will
approximate this behavior at the result level so that a reasonable
amount of behavioral neutrality is provided.

Note that not all databases/DBAPIs
support RETURNING. For those backends with no support,
an exception is raised upon compilation and/or execution.
For those who do support it, the functionality across backends
varies greatly, including restrictions on executemany()
and other statements which return multiple rows. Please
read the documentation notes for the database in use in
order to determine the availability of RETURNING.

See also

ValuesBase.return_defaults() - an alternative method tailored
towards efficient fetching of server-side defaults and triggers
for single-row INSERTs or UPDATEs.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Executable

Compile and execute this Executable, returning the
result’s scalar representation.

	
self_group(against=None)

	
inherited from the self_group() method of ClauseElement

Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
values(*args, **kwargs)

	
inherited from the values() method of ValuesBase

specify a fixed VALUES clause for an INSERT statement, or the SET
clause for an UPDATE.

Note that the Insert and Update constructs support
per-execution time formatting of the VALUES and/or SET clauses,
based on the arguments passed to Connection.execute().
However, the ValuesBase.values() method can be used to “fix” a
particular set of parameters into the statement.

Multiple calls to ValuesBase.values() will produce a new
construct, each one with the parameter list modified to include
the new parameters sent. In the typical case of a single
dictionary of parameters, the newly passed keys will replace
the same keys in the previous construct. In the case of a list-based
“multiple values” construct, each new list of values is extended
onto the existing list of values.

	Parameters:
	
	**kwargs¶ – key value pairs representing the string key
of a Column mapped to the value to be rendered into the
VALUES or SET clause:

users.insert().values(name="some name")

users.update().where(users.c.id==5).values(name="some name")

	*args¶ – As an alternative to passing key/value parameters,
a dictionary, tuple, or list of dictionaries or tuples can be passed
as a single positional argument in order to form the VALUES or
SET clause of the statement. The forms that are accepted vary
based on whether this is an Insert or an Update
construct.

For either an Insert or Update construct, a
single dictionary can be passed, which works the same as that of
the kwargs form:

users.insert().values({"name": "some name"})

users.update().values({"name": "some new name"})

Also for either form but more typically for the Insert
construct, a tuple that contains an entry for every column in the
table is also accepted:

users.insert().values((5, "some name"))

The Insert construct also supports being passed a list
of dictionaries or full-table-tuples, which on the server will
render the less common SQL syntax of “multiple values” - this
syntax is supported on backends such as SQLite, Postgresql, MySQL,
but not necessarily others:

users.insert().values([
 {"name": "some name"},
 {"name": "some other name"},
 {"name": "yet another name"},
])

The above form would render a multiple VALUES statement similar to:

INSERT INTO users (name) VALUES
 (:name_1),
 (:name_2),
 (:name_3)

It is essential to note that passing multiple values is
NOT the same as using traditional executemany() form. The above
syntax is a special syntax not typically used. To emit an
INSERT statement against multiple rows, the normal method is
to pass a multiple values list to the Connection.execute()
method, which is supported by all database backends and is generally
more efficient for a very large number of parameters.

See also

Executing Multiple Statements - an introduction to
the traditional Core method of multiple parameter set
invocation for INSERTs and other statements.

Changed in version 1.0.0: an INSERT that uses a multiple-VALUES
clause, even a list of length one,
implies that the Insert.inline flag is set to
True, indicating that the statement will not attempt to fetch
the “last inserted primary key” or other defaults. The
statement deals with an arbitrary number of rows, so the
ResultProxy.inserted_primary_key accessor does not
apply.

Changed in version 1.0.0: A multiple-VALUES INSERT now supports
columns with Python side default values and callables in the
same way as that of an “executemany” style of invocation; the
callable is invoked for each row. See Python-side defaults invoked for each row invidually when using a multivalued insert
for other details.

The Update construct supports a special form which is a
list of 2-tuples, which when provided must be passed in conjunction
with the
preserve_parameter_order
parameter.
This form causes the UPDATE statement to render the SET clauses
using the order of parameters given to Update.values(), rather
than the ordering of columns given in the Table.

New in version 1.0.10: - added support for parameter-ordered
UPDATE statements via the
preserve_parameter_order
flag.

See also

Parameter-Ordered Updates - full example of the
preserve_parameter_order
flag

See also

Inserts, Updates and Deletes - SQL Expression
Language Tutorial

insert() - produce an INSERT statement

update() - produce an UPDATE statement

	
where(whereclause)

	return a new update() construct with the given expression added to
its WHERE clause, joined to the existing clause via AND, if any.

	
with_hint(text, selectable=None, dialect_name='*')

	
inherited from the with_hint() method of UpdateBase

Add a table hint for a single table to this
INSERT/UPDATE/DELETE statement.

Note

UpdateBase.with_hint() currently applies only to
Microsoft SQL Server. For MySQL INSERT/UPDATE/DELETE hints, use
UpdateBase.prefix_with().

The text of the hint is rendered in the appropriate
location for the database backend in use, relative
to the Table that is the subject of this
statement, or optionally to that of the given
Table passed as the selectable argument.

The dialect_name option will limit the rendering of a particular
hint to a particular backend. Such as, to add a hint
that only takes effect for SQL Server:

mytable.insert().with_hint("WITH (PAGLOCK)", dialect_name="mssql")

New in version 0.7.6.

	Parameters:
	
	text¶ – Text of the hint.

	selectable¶ – optional Table that specifies
an element of the FROM clause within an UPDATE or DELETE
to be the subject of the hint - applies only to certain backends.

	dialect_name¶ – defaults to *, if specified as the name
of a particular dialect, will apply these hints only when
that dialect is in use.

	
class sqlalchemy.sql.expression.UpdateBase

	Bases: sqlalchemy.sql.expression.HasCTE, sqlalchemy.sql.base.DialectKWArgs, sqlalchemy.sql.expression.HasPrefixes, sqlalchemy.sql.expression.Executable, sqlalchemy.sql.expression.ClauseElement

Form the base for INSERT, UPDATE, and DELETE statements.

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
bind

	Return a ‘bind’ linked to this UpdateBase
or a Table associated with it.

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
cte(name=None, recursive=False)

	
inherited from the cte() method of HasCTE

Return a new CTE, or Common Table Expression instance.

Common table expressions are a SQL standard whereby SELECT
statements can draw upon secondary statements specified along
with the primary statement, using a clause called “WITH”.
Special semantics regarding UNION can also be employed to
allow “recursive” queries, where a SELECT statement can draw
upon the set of rows that have previously been selected.

CTEs can also be applied to DML constructs UPDATE, INSERT
and DELETE on some databases, both as a source of CTE rows
when combined with RETURNING, as well as a consumer of
CTE rows.

SQLAlchemy detects CTE objects, which are treated
similarly to Alias objects, as special elements
to be delivered to the FROM clause of the statement as well
as to a WITH clause at the top of the statement.

Changed in version 1.1: Added support for UPDATE/INSERT/DELETE as
CTE, CTEs added to UPDATE/INSERT/DELETE.

	Parameters:
	
	name¶ – name given to the common table expression. Like
_FromClause.alias(), the name can be left as None
in which case an anonymous symbol will be used at query
compile time.

	recursive¶ – if True, will render WITH RECURSIVE.
A recursive common table expression is intended to be used in
conjunction with UNION ALL in order to derive rows
from those already selected.

The following examples include two from Postgresql’s documentation at
http://www.postgresql.org/docs/current/static/queries-with.html,
as well as additional examples.

Example 1, non recursive:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

orders = Table('orders', metadata,
 Column('region', String),
 Column('amount', Integer),
 Column('product', String),
 Column('quantity', Integer)
)

regional_sales = select([
 orders.c.region,
 func.sum(orders.c.amount).label('total_sales')
]).group_by(orders.c.region).cte("regional_sales")

top_regions = select([regional_sales.c.region]).\
 where(
 regional_sales.c.total_sales >
 select([
 func.sum(regional_sales.c.total_sales)/10
])
).cte("top_regions")

statement = select([
 orders.c.region,
 orders.c.product,
 func.sum(orders.c.quantity).label("product_units"),
 func.sum(orders.c.amount).label("product_sales")
]).where(orders.c.region.in_(
 select([top_regions.c.region])
)).group_by(orders.c.region, orders.c.product)

result = conn.execute(statement).fetchall()

Example 2, WITH RECURSIVE:

from sqlalchemy import (Table, Column, String, Integer,
 MetaData, select, func)

metadata = MetaData()

parts = Table('parts', metadata,
 Column('part', String),
 Column('sub_part', String),
 Column('quantity', Integer),
)

included_parts = select([
 parts.c.sub_part,
 parts.c.part,
 parts.c.quantity]).\
 where(parts.c.part=='our part').\
 cte(recursive=True)

incl_alias = included_parts.alias()
parts_alias = parts.alias()
included_parts = included_parts.union_all(
 select([
 parts_alias.c.sub_part,
 parts_alias.c.part,
 parts_alias.c.quantity
]).
 where(parts_alias.c.part==incl_alias.c.sub_part)
)

statement = select([
 included_parts.c.sub_part,
 func.sum(included_parts.c.quantity).
 label('total_quantity')
]).\
 group_by(included_parts.c.sub_part)

result = conn.execute(statement).fetchall()

Example 3, an upsert using UPDATE and INSERT with CTEs:

orders = table(
 'orders',
 column('region'),
 column('amount'),
 column('product'),
 column('quantity')
)

upsert = (
 orders.update()
 .where(orders.c.region == 'Region1')
 .values(amount=1.0, product='Product1', quantity=1)
 .returning(*(orders.c._all_columns)).cte('upsert'))

insert = orders.insert().from_select(
 orders.c.keys(),
 select([
 literal('Region1'), literal(1.0),
 literal('Product1'), literal(1)
).where(exists(upsert.select()))
)

connection.execute(insert)

See also

orm.query.Query.cte() - ORM version of
HasCTE.cte().

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
execute(*multiparams, **params)

	
inherited from the execute() method of Executable

Compile and execute this Executable.

	
execution_options(**kw)

	
inherited from the execution_options() method of Executable

Set non-SQL options for the statement which take effect during
execution.

Execution options can be set on a per-statement or
per Connection basis. Additionally, the
Engine and ORM Query objects provide
access to execution options which they in turn configure upon
connections.

The execution_options() method is generative. A new
instance of this statement is returned that contains the options:

statement = select([table.c.x, table.c.y])
statement = statement.execution_options(autocommit=True)

Note that only a subset of possible execution options can be applied
to a statement - these include “autocommit” and “stream_results”,
but not “isolation_level” or “compiled_cache”.
See Connection.execution_options() for a full list of
possible options.

See also

Connection.execution_options()

Query.execution_options()

	
get_children(**kwargs)

	
inherited from the get_children() method of ClauseElement

Return immediate child elements of this ClauseElement.

This is used for visit traversal.

**kwargs may contain flags that change the collection that is
returned, for example to return a subset of items in order to
cut down on larger traversals, or to return child items from a
different context (such as schema-level collections instead of
clause-level).

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
params(*arg, **kw)

	Set the parameters for the statement.

This method raises NotImplementedError on the base class,
and is overridden by ValuesBase to provide the
SET/VALUES clause of UPDATE and INSERT.

	
prefix_with(*expr, **kw)

	
inherited from the prefix_with() method of HasPrefixes

Add one or more expressions following the statement keyword, i.e.
SELECT, INSERT, UPDATE, or DELETE. Generative.

This is used to support backend-specific prefix keywords such as those
provided by MySQL.

E.g.:

stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql")

Multiple prefixes can be specified by multiple calls
to prefix_with().

	Parameters:
	
	*expr¶ – textual or ClauseElement construct which
will be rendered following the INSERT, UPDATE, or DELETE
keyword.

	**kw¶ – A single keyword ‘dialect’ is accepted. This is an
optional string dialect name which will
limit rendering of this prefix to only that dialect.

	
returning(*cols)

	Add a RETURNING or equivalent clause to this statement.

e.g.:

stmt = table.update().\
 where(table.c.data == 'value').\
 values(status='X').\
 returning(table.c.server_flag,
 table.c.updated_timestamp)

for server_flag, updated_timestamp in connection.execute(stmt):
 print(server_flag, updated_timestamp)

The given collection of column expressions should be derived from
the table that is
the target of the INSERT, UPDATE, or DELETE. While Column
objects are typical, the elements can also be expressions:

stmt = table.insert().returning(
 (table.c.first_name + " " + table.c.last_name).
 label('fullname'))

Upon compilation, a RETURNING clause, or database equivalent,
will be rendered within the statement. For INSERT and UPDATE,
the values are the newly inserted/updated values. For DELETE,
the values are those of the rows which were deleted.

Upon execution, the values of the columns to be returned are made
available via the result set and can be iterated using
ResultProxy.fetchone() and similar. For DBAPIs which do not
natively support returning values (i.e. cx_oracle), SQLAlchemy will
approximate this behavior at the result level so that a reasonable
amount of behavioral neutrality is provided.

Note that not all databases/DBAPIs
support RETURNING. For those backends with no support,
an exception is raised upon compilation and/or execution.
For those who do support it, the functionality across backends
varies greatly, including restrictions on executemany()
and other statements which return multiple rows. Please
read the documentation notes for the database in use in
order to determine the availability of RETURNING.

See also

ValuesBase.return_defaults() - an alternative method tailored
towards efficient fetching of server-side defaults and triggers
for single-row INSERTs or UPDATEs.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Executable

Compile and execute this Executable, returning the
result’s scalar representation.

	
self_group(against=None)

	
inherited from the self_group() method of ClauseElement

Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
unique_params(*optionaldict, **kwargs)

	
inherited from the unique_params() method of ClauseElement

Return a copy with bindparam() elements replaced.

Same functionality as params(), except adds unique=True
to affected bind parameters so that multiple statements can be
used.

	
with_hint(text, selectable=None, dialect_name='*')

	Add a table hint for a single table to this
INSERT/UPDATE/DELETE statement.

Note

UpdateBase.with_hint() currently applies only to
Microsoft SQL Server. For MySQL INSERT/UPDATE/DELETE hints, use
UpdateBase.prefix_with().

The text of the hint is rendered in the appropriate
location for the database backend in use, relative
to the Table that is the subject of this
statement, or optionally to that of the given
Table passed as the selectable argument.

The dialect_name option will limit the rendering of a particular
hint to a particular backend. Such as, to add a hint
that only takes effect for SQL Server:

mytable.insert().with_hint("WITH (PAGLOCK)", dialect_name="mssql")

New in version 0.7.6.

	Parameters:
	
	text¶ – Text of the hint.

	selectable¶ – optional Table that specifies
an element of the FROM clause within an UPDATE or DELETE
to be the subject of the hint - applies only to certain backends.

	dialect_name¶ – defaults to *, if specified as the name
of a particular dialect, will apply these hints only when
that dialect is in use.

	
class sqlalchemy.sql.expression.ValuesBase(table, values, prefixes)

	Bases: sqlalchemy.sql.expression.UpdateBase

Supplies support for ValuesBase.values() to
INSERT and UPDATE constructs.

	
return_defaults(*cols)

	Make use of a RETURNING clause for the purpose
of fetching server-side expressions and defaults.

E.g.:

stmt = table.insert().values(data='newdata').return_defaults()

result = connection.execute(stmt)

server_created_at = result.returned_defaults['created_at']

When used against a backend that supports RETURNING, all column
values generated by SQL expression or server-side-default will be
added to any existing RETURNING clause, provided that
UpdateBase.returning() is not used simultaneously. The column
values will then be available on the result using the
ResultProxy.returned_defaults accessor as a dictionary,
referring to values keyed to the Column object as well as
its .key.

This method differs from UpdateBase.returning() in these ways:

	ValuesBase.return_defaults() is only intended for use with
an INSERT or an UPDATE statement that matches exactly one row.
While the RETURNING construct in the general sense supports
multiple rows for a multi-row UPDATE or DELETE statement, or for
special cases of INSERT that return multiple rows (e.g. INSERT from
SELECT, multi-valued VALUES clause),
ValuesBase.return_defaults() is intended only for an
“ORM-style” single-row INSERT/UPDATE statement. The row returned
by the statement is also consumed implicitly when
ValuesBase.return_defaults() is used. By contrast,
UpdateBase.returning() leaves the RETURNING result-set
intact with a collection of any number of rows.

	It is compatible with the existing logic to fetch auto-generated
primary key values, also known as “implicit returning”. Backends
that support RETURNING will automatically make use of RETURNING in
order to fetch the value of newly generated primary keys; while the
UpdateBase.returning() method circumvents this behavior,
ValuesBase.return_defaults() leaves it intact.

	It can be called against any backend. Backends that don’t support
RETURNING will skip the usage of the feature, rather than raising
an exception. The return value of
ResultProxy.returned_defaults will be None

ValuesBase.return_defaults() is used by the ORM to provide
an efficient implementation for the eager_defaults feature of
mapper().

	Parameters:
	cols¶ – optional list of column key names or Column
objects. If omitted, all column expressions evaluated on the server
are added to the returning list.

New in version 0.9.0.

See also

UpdateBase.returning()

ResultProxy.returned_defaults

	
values(*args, **kwargs)

	specify a fixed VALUES clause for an INSERT statement, or the SET
clause for an UPDATE.

Note that the Insert and Update constructs support
per-execution time formatting of the VALUES and/or SET clauses,
based on the arguments passed to Connection.execute().
However, the ValuesBase.values() method can be used to “fix” a
particular set of parameters into the statement.

Multiple calls to ValuesBase.values() will produce a new
construct, each one with the parameter list modified to include
the new parameters sent. In the typical case of a single
dictionary of parameters, the newly passed keys will replace
the same keys in the previous construct. In the case of a list-based
“multiple values” construct, each new list of values is extended
onto the existing list of values.

	Parameters:
	
	**kwargs¶ – key value pairs representing the string key
of a Column mapped to the value to be rendered into the
VALUES or SET clause:

users.insert().values(name="some name")

users.update().where(users.c.id==5).values(name="some name")

	*args¶ – As an alternative to passing key/value parameters,
a dictionary, tuple, or list of dictionaries or tuples can be passed
as a single positional argument in order to form the VALUES or
SET clause of the statement. The forms that are accepted vary
based on whether this is an Insert or an Update
construct.

For either an Insert or Update construct, a
single dictionary can be passed, which works the same as that of
the kwargs form:

users.insert().values({"name": "some name"})

users.update().values({"name": "some new name"})

Also for either form but more typically for the Insert
construct, a tuple that contains an entry for every column in the
table is also accepted:

users.insert().values((5, "some name"))

The Insert construct also supports being passed a list
of dictionaries or full-table-tuples, which on the server will
render the less common SQL syntax of “multiple values” - this
syntax is supported on backends such as SQLite, Postgresql, MySQL,
but not necessarily others:

users.insert().values([
 {"name": "some name"},
 {"name": "some other name"},
 {"name": "yet another name"},
])

The above form would render a multiple VALUES statement similar to:

INSERT INTO users (name) VALUES
 (:name_1),
 (:name_2),
 (:name_3)

It is essential to note that passing multiple values is
NOT the same as using traditional executemany() form. The above
syntax is a special syntax not typically used. To emit an
INSERT statement against multiple rows, the normal method is
to pass a multiple values list to the Connection.execute()
method, which is supported by all database backends and is generally
more efficient for a very large number of parameters.

See also

Executing Multiple Statements - an introduction to
the traditional Core method of multiple parameter set
invocation for INSERTs and other statements.

Changed in version 1.0.0: an INSERT that uses a multiple-VALUES
clause, even a list of length one,
implies that the Insert.inline flag is set to
True, indicating that the statement will not attempt to fetch
the “last inserted primary key” or other defaults. The
statement deals with an arbitrary number of rows, so the
ResultProxy.inserted_primary_key accessor does not
apply.

Changed in version 1.0.0: A multiple-VALUES INSERT now supports
columns with Python side default values and callables in the
same way as that of an “executemany” style of invocation; the
callable is invoked for each row. See Python-side defaults invoked for each row invidually when using a multivalued insert
for other details.

The Update construct supports a special form which is a
list of 2-tuples, which when provided must be passed in conjunction
with the
preserve_parameter_order
parameter.
This form causes the UPDATE statement to render the SET clauses
using the order of parameters given to Update.values(), rather
than the ordering of columns given in the Table.

New in version 1.0.10: - added support for parameter-ordered
UPDATE statements via the
preserve_parameter_order
flag.

See also

Parameter-Ordered Updates - full example of the
preserve_parameter_order
flag

See also

Inserts, Updates and Deletes - SQL Expression
Language Tutorial

insert() - produce an INSERT statement

update() - produce an UPDATE statement

SQL and Generic Functions

SQL functions which are known to SQLAlchemy with regards to database-specific
rendering, return types and argument behavior. Generic functions are invoked
like all SQL functions, using the func attribute:

select([func.count()]).select_from(sometable)

Note that any name not known to func generates the function name as is
- there is no restriction on what SQL functions can be called, known or
unknown to SQLAlchemy, built-in or user defined. The section here only
describes those functions where SQLAlchemy already knows what argument and
return types are in use.

SQL function API, factories, and built-in functions.

	
class sqlalchemy.sql.functions.AnsiFunction(**kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

	
identifier = 'AnsiFunction'

	

	
name = 'AnsiFunction'

	

	
class sqlalchemy.sql.functions.Function(name, *clauses, **kw)

	Bases: sqlalchemy.sql.functions.FunctionElement

Describe a named SQL function.

See the superclass FunctionElement for a description
of public methods.

See also

func - namespace which produces registered or ad-hoc
Function instances.

GenericFunction - allows creation of registered function
types.

	
__init__(name, *clauses, **kw)

	Construct a Function.

The func construct is normally used to construct
new Function instances.

	
class sqlalchemy.sql.functions.FunctionElement(*clauses, **kwargs)

	Bases: sqlalchemy.sql.expression.Executable, sqlalchemy.sql.expression.ColumnElement, sqlalchemy.sql.expression.FromClause

Base for SQL function-oriented constructs.

See also

Function - named SQL function.

func - namespace which produces registered or ad-hoc
Function instances.

GenericFunction - allows creation of registered function
types.

	
__init__(*clauses, **kwargs)

	Construct a FunctionElement.

	
alias(name=None, flat=False)

	Produce a Alias construct against this
FunctionElement.

This construct wraps the function in a named alias which
is suitable for the FROM clause, in the style accepted for example
by Postgresql.

e.g.:

from sqlalchemy.sql import column

stmt = select([column('data_view')]).\
 select_from(SomeTable).\
 select_from(func.unnest(SomeTable.data).alias('data_view')
)

Would produce:

SELECT data_view
FROM sometable, unnest(sometable.data) AS data_view

New in version 0.9.8: The FunctionElement.alias() method
is now supported. Previously, this method’s behavior was
undefined and did not behave consistently across versions.

	
clauses

	Return the underlying ClauseList which contains
the arguments for this FunctionElement.

	
columns

	The set of columns exported by this FunctionElement.

Function objects currently have no result column names built in;
this method returns a single-element column collection with
an anonymously named column.

An interim approach to providing named columns for a function
as a FROM clause is to build a select() with the
desired columns:

from sqlalchemy.sql import column

stmt = select([column('x'), column('y')]). select_from(func.myfunction())

	
execute()

	Execute this FunctionElement against an embedded
‘bind’.

This first calls select() to
produce a SELECT construct.

Note that FunctionElement can be passed to
the Connectable.execute() method of Connection
or Engine.

	
filter(*criterion)

	Produce a FILTER clause against this function.

Used against aggregate and window functions,
for database backends that support the “FILTER” clause.

The expression:

func.count(1).filter(True)

is shorthand for:

from sqlalchemy import funcfilter
funcfilter(func.count(1), True)

New in version 1.0.0.

See also

FunctionFilter

funcfilter()

	
get_children(**kwargs)

	

	
over(partition_by=None, order_by=None, rows=None, range_=None)

	Produce an OVER clause against this function.

Used against aggregate or so-called “window” functions,
for database backends that support window functions.

The expression:

func.row_number().over(order_by='x')

is shorthand for:

from sqlalchemy import over
over(func.row_number(), order_by='x')

See over() for a full description.

New in version 0.7.

	
packagenames = ()

	

	
scalar()

	Execute this FunctionElement against an embedded
‘bind’ and return a scalar value.

This first calls select() to
produce a SELECT construct.

Note that FunctionElement can be passed to
the Connectable.scalar() method of Connection
or Engine.

	
select()

	Produce a select() construct
against this FunctionElement.

This is shorthand for:

s = select([function_element])

	
self_group(against=None)

	

	
within_group(*order_by)

	Produce a WITHIN GROUP (ORDER BY expr) clause against this function.

Used against so-called “ordered set aggregate” and “hypothetical
set aggregate” functions, including percentile_cont,
rank, dense_rank, etc.

See within_group() for a full description.

New in version 1.1.

	
within_group_type(within_group)

	For types that define their return type as based on the criteria
within a WITHIN GROUP (ORDER BY) expression, called by the
WithinGroup construct.

Returns None by default, in which case the function’s normal .type
is used.

	
class sqlalchemy.sql.functions.GenericFunction(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.Function

Define a ‘generic’ function.

A generic function is a pre-established Function
class that is instantiated automatically when called
by name from the func attribute. Note that
calling any name from func has the effect that
a new Function instance is created automatically,
given that name. The primary use case for defining
a GenericFunction class is so that a function
of a particular name may be given a fixed return type.
It can also include custom argument parsing schemes as well
as additional methods.

Subclasses of GenericFunction are automatically
registered under the name of the class. For
example, a user-defined function as_utc() would
be available immediately:

from sqlalchemy.sql.functions import GenericFunction
from sqlalchemy.types import DateTime

class as_utc(GenericFunction):
 type = DateTime

print select([func.as_utc()])

User-defined generic functions can be organized into
packages by specifying the “package” attribute when defining
GenericFunction. Third party libraries
containing many functions may want to use this in order
to avoid name conflicts with other systems. For example,
if our as_utc() function were part of a package
“time”:

class as_utc(GenericFunction):
 type = DateTime
 package = "time"

The above function would be available from func
using the package name time:

print select([func.time.as_utc()])

A final option is to allow the function to be accessed
from one name in func but to render as a different name.
The identifier attribute will override the name used to
access the function as loaded from func, but will retain
the usage of name as the rendered name:

class GeoBuffer(GenericFunction):
 type = Geometry
 package = "geo"
 name = "ST_Buffer"
 identifier = "buffer"

The above function will render as follows:

>>> print func.geo.buffer()
ST_Buffer()

New in version 0.8: GenericFunction now supports
automatic registration of new functions as well as package
and custom naming support.

Changed in version 0.8: The attribute name type is used
to specify the function’s return type at the class level.
Previously, the name __return_type__ was used. This
name is still recognized for backwards-compatibility.

	
coerce_arguments = True

	

	
identifier = 'GenericFunction'

	

	
name = 'GenericFunction'

	

	
class sqlalchemy.sql.functions.OrderedSetAgg(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

Define a function where the return type is based on the sort
expression type as defined by the expression passed to the
FunctionElement.within_group() method.

	
array_for_multi_clause = False

	

	
identifier = 'OrderedSetAgg'

	

	
name = 'OrderedSetAgg'

	

	
within_group_type(within_group)

	

	
class sqlalchemy.sql.functions.ReturnTypeFromArgs(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

Define a function whose return type is the same as its arguments.

	
identifier = 'ReturnTypeFromArgs'

	

	
name = 'ReturnTypeFromArgs'

	

	
class sqlalchemy.sql.functions.array_agg(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

support for the ARRAY_AGG function.

The func.array_agg(expr) construct returns an expression of
type types.ARRAY.

e.g.:

stmt = select([func.array_agg(table.c.values)[2:5]])

New in version 1.1.

See also

postgresql.array_agg() - PostgreSQL-specific version that
returns postgresql.ARRAY, which has PG-specific operators added.

	
identifier = 'array_agg'

	

	
name = 'array_agg'

	

	
type

	alias of ARRAY

	
class sqlalchemy.sql.functions.char_length(arg, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

	
identifier = 'char_length'

	

	
name = 'char_length'

	

	
type

	alias of Integer

	
class sqlalchemy.sql.functions.coalesce(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.ReturnTypeFromArgs

	
identifier = 'coalesce'

	

	
name = 'coalesce'

	

	
class sqlalchemy.sql.functions.concat(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

	
identifier = 'concat'

	

	
name = 'concat'

	

	
type

	alias of String

	
class sqlalchemy.sql.functions.count(expression=None, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

The ANSI COUNT aggregate function. With no arguments,
emits COUNT *.

	
identifier = 'count'

	

	
name = 'count'

	

	
type

	alias of Integer

	
class sqlalchemy.sql.functions.cume_dist(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

Implement the cume_dist hypothetical-set aggregate function.

This function must be used with the FunctionElement.within_group()
modifier to supply a sort expression to operate upon.

The return type of this function is Numeric.

New in version 1.1.

	
identifier = 'cume_dist'

	

	
name = 'cume_dist'

	

	
type = Numeric()

	

	
class sqlalchemy.sql.functions.current_date(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'current_date'

	

	
name = 'current_date'

	

	
type

	alias of Date

	
class sqlalchemy.sql.functions.current_time(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'current_time'

	

	
name = 'current_time'

	

	
type

	alias of Time

	
class sqlalchemy.sql.functions.current_timestamp(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'current_timestamp'

	

	
name = 'current_timestamp'

	

	
type

	alias of DateTime

	
class sqlalchemy.sql.functions.current_user(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'current_user'

	

	
name = 'current_user'

	

	
type

	alias of String

	
class sqlalchemy.sql.functions.dense_rank(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

Implement the dense_rank hypothetical-set aggregate function.

This function must be used with the FunctionElement.within_group()
modifier to supply a sort expression to operate upon.

The return type of this function is Integer.

New in version 1.1.

	
identifier = 'dense_rank'

	

	
name = 'dense_rank'

	

	
type = Integer()

	

	
class sqlalchemy.sql.functions.localtime(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'localtime'

	

	
name = 'localtime'

	

	
type

	alias of DateTime

	
class sqlalchemy.sql.functions.localtimestamp(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'localtimestamp'

	

	
name = 'localtimestamp'

	

	
type

	alias of DateTime

	
class sqlalchemy.sql.functions.max(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.ReturnTypeFromArgs

	
identifier = 'max'

	

	
name = 'max'

	

	
class sqlalchemy.sql.functions.min(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.ReturnTypeFromArgs

	
identifier = 'min'

	

	
name = 'min'

	

	
class sqlalchemy.sql.functions.mode(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.OrderedSetAgg

implement the mode ordered-set aggregate function.

This function must be used with the FunctionElement.within_group()
modifier to supply a sort expression to operate upon.

The return type of this function is the same as the sort expression.

New in version 1.1.

	
identifier = 'mode'

	

	
name = 'mode'

	

	
class sqlalchemy.sql.functions.next_value(seq, **kw)

	Bases: sqlalchemy.sql.functions.GenericFunction

Represent the ‘next value’, given a Sequence
as its single argument.

Compiles into the appropriate function on each backend,
or will raise NotImplementedError if used on a backend
that does not provide support for sequences.

	
identifier = 'next_value'

	

	
name = 'next_value'

	

	
type = Integer()

	

	
class sqlalchemy.sql.functions.now(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

	
identifier = 'now'

	

	
name = 'now'

	

	
type

	alias of DateTime

	
class sqlalchemy.sql.functions.percent_rank(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

Implement the percent_rank hypothetical-set aggregate function.

This function must be used with the FunctionElement.within_group()
modifier to supply a sort expression to operate upon.

The return type of this function is Numeric.

New in version 1.1.

	
identifier = 'percent_rank'

	

	
name = 'percent_rank'

	

	
type = Numeric()

	

	
class sqlalchemy.sql.functions.percentile_cont(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.OrderedSetAgg

implement the percentile_cont ordered-set aggregate function.

This function must be used with the FunctionElement.within_group()
modifier to supply a sort expression to operate upon.

The return type of this function is the same as the sort expression,
or if the arguments are an array, an types.ARRAY of the sort
expression’s type.

New in version 1.1.

	
array_for_multi_clause = True

	

	
identifier = 'percentile_cont'

	

	
name = 'percentile_cont'

	

	
class sqlalchemy.sql.functions.percentile_disc(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.OrderedSetAgg

implement the percentile_disc ordered-set aggregate function.

This function must be used with the FunctionElement.within_group()
modifier to supply a sort expression to operate upon.

The return type of this function is the same as the sort expression,
or if the arguments are an array, an types.ARRAY of the sort
expression’s type.

New in version 1.1.

	
array_for_multi_clause = True

	

	
identifier = 'percentile_disc'

	

	
name = 'percentile_disc'

	

	
class sqlalchemy.sql.functions.random(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

	
identifier = 'random'

	

	
name = 'random'

	

	
class sqlalchemy.sql.functions.rank(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

Implement the rank hypothetical-set aggregate function.

This function must be used with the FunctionElement.within_group()
modifier to supply a sort expression to operate upon.

The return type of this function is Integer.

New in version 1.1.

	
identifier = 'rank'

	

	
name = 'rank'

	

	
type = Integer()

	

	
sqlalchemy.sql.functions.register_function(identifier, fn, package='_default')

	Associate a callable with a particular func. name.

This is normally called by _GenericMeta, but is also
available by itself so that a non-Function construct
can be associated with the func accessor (i.e.
CAST, EXTRACT).

	
class sqlalchemy.sql.functions.session_user(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'session_user'

	

	
name = 'session_user'

	

	
type

	alias of String

	
class sqlalchemy.sql.functions.sum(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.ReturnTypeFromArgs

	
identifier = 'sum'

	

	
name = 'sum'

	

	
class sqlalchemy.sql.functions.sysdate(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'sysdate'

	

	
name = 'sysdate'

	

	
type

	alias of DateTime

	
class sqlalchemy.sql.functions.user(**kwargs)

	Bases: sqlalchemy.sql.functions.AnsiFunction

	
identifier = 'user'

	

	
name = 'user'

	

	
type

	alias of String

Custom SQL Constructs and Compilation Extension

Provides an API for creation of custom ClauseElements and compilers.

Synopsis

Usage involves the creation of one or more
ClauseElement subclasses and one or
more callables defining its compilation:

from sqlalchemy.ext.compiler import compiles
from sqlalchemy.sql.expression import ColumnClause

class MyColumn(ColumnClause):
 pass

@compiles(MyColumn)
def compile_mycolumn(element, compiler, **kw):
 return "[%s]" % element.name

Above, MyColumn extends ColumnClause,
the base expression element for named column objects. The compiles
decorator registers itself with the MyColumn class so that it is invoked
when the object is compiled to a string:

from sqlalchemy import select

s = select([MyColumn('x'), MyColumn('y')])
print str(s)

Produces:

SELECT [x], [y]

Dialect-specific compilation rules

Compilers can also be made dialect-specific. The appropriate compiler will be
invoked for the dialect in use:

from sqlalchemy.schema import DDLElement

class AlterColumn(DDLElement):

 def __init__(self, column, cmd):
 self.column = column
 self.cmd = cmd

@compiles(AlterColumn)
def visit_alter_column(element, compiler, **kw):
 return "ALTER COLUMN %s ..." % element.column.name

@compiles(AlterColumn, 'postgresql')
def visit_alter_column(element, compiler, **kw):
 return "ALTER TABLE %s ALTER COLUMN %s ..." % (element.table.name,
 element.column.name)

The second visit_alter_table will be invoked when any postgresql
dialect is used.

Compiling sub-elements of a custom expression construct

The compiler argument is the
Compiled object in use. This object
can be inspected for any information about the in-progress compilation,
including compiler.dialect, compiler.statement etc. The
SQLCompiler and
DDLCompiler both include a process()
method which can be used for compilation of embedded attributes:

from sqlalchemy.sql.expression import Executable, ClauseElement

class InsertFromSelect(Executable, ClauseElement):
 def __init__(self, table, select):
 self.table = table
 self.select = select

@compiles(InsertFromSelect)
def visit_insert_from_select(element, compiler, **kw):
 return "INSERT INTO %s (%s)" % (
 compiler.process(element.table, asfrom=True),
 compiler.process(element.select)
)

insert = InsertFromSelect(t1, select([t1]).where(t1.c.x>5))
print insert

Produces:

"INSERT INTO mytable (SELECT mytable.x, mytable.y, mytable.z
 FROM mytable WHERE mytable.x > :x_1)"

Note

The above InsertFromSelect construct is only an example, this actual
functionality is already available using the
Insert.from_select() method.

Note

The above InsertFromSelect construct probably wants to have “autocommit”
enabled. See Enabling Autocommit on a Construct for this step.

Cross Compiling between SQL and DDL compilers

SQL and DDL constructs are each compiled using different base compilers -
SQLCompiler and DDLCompiler. A common need is to access the
compilation rules of SQL expressions from within a DDL expression. The
DDLCompiler includes an accessor sql_compiler for this reason, such as
below where we generate a CHECK constraint that embeds a SQL expression:

@compiles(MyConstraint)
def compile_my_constraint(constraint, ddlcompiler, **kw):
 return "CONSTRAINT %s CHECK (%s)" % (
 constraint.name,
 ddlcompiler.sql_compiler.process(
 constraint.expression, literal_binds=True)
)

Above, we add an additional flag to the process step as called by
SQLCompiler.process(), which is the literal_binds flag. This
indicates that any SQL expression which refers to a BindParameter
object or other “literal” object such as those which refer to strings or
integers should be rendered in-place, rather than being referred to as
a bound parameter; when emitting DDL, bound parameters are typically not
supported.

Enabling Autocommit on a Construct

Recall from the section Understanding Autocommit that the Engine, when
asked to execute a construct in the absence of a user-defined transaction,
detects if the given construct represents DML or DDL, that is, a data
modification or data definition statement, which requires (or may require,
in the case of DDL) that the transaction generated by the DBAPI be committed
(recall that DBAPI always has a transaction going on regardless of what
SQLAlchemy does). Checking for this is actually accomplished by checking for
the “autocommit” execution option on the construct. When building a
construct like an INSERT derivation, a new DDL type, or perhaps a stored
procedure that alters data, the “autocommit” option needs to be set in order
for the statement to function with “connectionless” execution
(as described in Connectionless Execution, Implicit Execution).

Currently a quick way to do this is to subclass Executable, then
add the “autocommit” flag to the _execution_options dictionary (note this
is a “frozen” dictionary which supplies a generative union() method):

from sqlalchemy.sql.expression import Executable, ClauseElement

class MyInsertThing(Executable, ClauseElement):
 _execution_options = \
 Executable._execution_options.union({'autocommit': True})

More succinctly, if the construct is truly similar to an INSERT, UPDATE, or
DELETE, UpdateBase can be used, which already is a subclass
of Executable, ClauseElement and includes the
autocommit flag:

from sqlalchemy.sql.expression import UpdateBase

class MyInsertThing(UpdateBase):
 def __init__(self, ...):
 ...

DDL elements that subclass DDLElement already have the
“autocommit” flag turned on.

Changing the default compilation of existing constructs

The compiler extension applies just as well to the existing constructs. When
overriding the compilation of a built in SQL construct, the @compiles
decorator is invoked upon the appropriate class (be sure to use the class,
i.e. Insert or Select, instead of the creation function such
as insert() or select()).

Within the new compilation function, to get at the “original” compilation
routine, use the appropriate visit_XXX method - this
because compiler.process() will call upon the overriding routine and cause
an endless loop. Such as, to add “prefix” to all insert statements:

from sqlalchemy.sql.expression import Insert

@compiles(Insert)
def prefix_inserts(insert, compiler, **kw):
 return compiler.visit_insert(insert.prefix_with("some prefix"), **kw)

The above compiler will prefix all INSERT statements with “some prefix” when
compiled.

Changing Compilation of Types

compiler works for types, too, such as below where we implement the
MS-SQL specific ‘max’ keyword for String/VARCHAR:

@compiles(String, 'mssql')
@compiles(VARCHAR, 'mssql')
def compile_varchar(element, compiler, **kw):
 if element.length == 'max':
 return "VARCHAR('max')"
 else:
 return compiler.visit_VARCHAR(element, **kw)

foo = Table('foo', metadata,
 Column('data', VARCHAR('max'))
)

Subclassing Guidelines

A big part of using the compiler extension is subclassing SQLAlchemy
expression constructs. To make this easier, the expression and
schema packages feature a set of “bases” intended for common tasks.
A synopsis is as follows:

	ClauseElement - This is the root
expression class. Any SQL expression can be derived from this base, and is
probably the best choice for longer constructs such as specialized INSERT
statements.

	ColumnElement - The root of all
“column-like” elements. Anything that you’d place in the “columns” clause of
a SELECT statement (as well as order by and group by) can derive from this -
the object will automatically have Python “comparison” behavior.

ColumnElement classes want to have a
type member which is expression’s return type. This can be established
at the instance level in the constructor, or at the class level if its
generally constant:

class timestamp(ColumnElement):
 type = TIMESTAMP()

	FunctionElement - This is a hybrid of a
ColumnElement and a “from clause” like object, and represents a SQL
function or stored procedure type of call. Since most databases support
statements along the line of “SELECT FROM <some function>”
FunctionElement adds in the ability to be used in the FROM clause of a
select() construct:

from sqlalchemy.sql.expression import FunctionElement

class coalesce(FunctionElement):
 name = 'coalesce'

@compiles(coalesce)
def compile(element, compiler, **kw):
 return "coalesce(%s)" % compiler.process(element.clauses)

@compiles(coalesce, 'oracle')
def compile(element, compiler, **kw):
 if len(element.clauses) > 2:
 raise TypeError("coalesce only supports two arguments on Oracle")
 return "nvl(%s)" % compiler.process(element.clauses)

	DDLElement - The root of all DDL expressions,
like CREATE TABLE, ALTER TABLE, etc. Compilation of DDLElement
subclasses is issued by a DDLCompiler instead of a SQLCompiler.
DDLElement also features Table and MetaData event hooks via the
execute_at() method, allowing the construct to be invoked during CREATE
TABLE and DROP TABLE sequences.

	Executable - This is a mixin which
should be used with any expression class that represents a “standalone”
SQL statement that can be passed directly to an execute() method. It
is already implicit within DDLElement and FunctionElement.

Further Examples

“UTC timestamp” function

A function that works like “CURRENT_TIMESTAMP” except applies the
appropriate conversions so that the time is in UTC time. Timestamps are best
stored in relational databases as UTC, without time zones. UTC so that your
database doesn’t think time has gone backwards in the hour when daylight
savings ends, without timezones because timezones are like character
encodings - they’re best applied only at the endpoints of an application
(i.e. convert to UTC upon user input, re-apply desired timezone upon display).

For Postgresql and Microsoft SQL Server:

from sqlalchemy.sql import expression
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.types import DateTime

class utcnow(expression.FunctionElement):
 type = DateTime()

@compiles(utcnow, 'postgresql')
def pg_utcnow(element, compiler, **kw):
 return "TIMEZONE('utc', CURRENT_TIMESTAMP)"

@compiles(utcnow, 'mssql')
def ms_utcnow(element, compiler, **kw):
 return "GETUTCDATE()"

Example usage:

from sqlalchemy import (
 Table, Column, Integer, String, DateTime, MetaData
)
metadata = MetaData()
event = Table("event", metadata,
 Column("id", Integer, primary_key=True),
 Column("description", String(50), nullable=False),
 Column("timestamp", DateTime, server_default=utcnow())
)

“GREATEST” function

The “GREATEST” function is given any number of arguments and returns the one
that is of the highest value - its equivalent to Python’s max
function. A SQL standard version versus a CASE based version which only
accommodates two arguments:

from sqlalchemy.sql import expression
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.types import Numeric

class greatest(expression.FunctionElement):
 type = Numeric()
 name = 'greatest'

@compiles(greatest)
def default_greatest(element, compiler, **kw):
 return compiler.visit_function(element)

@compiles(greatest, 'sqlite')
@compiles(greatest, 'mssql')
@compiles(greatest, 'oracle')
def case_greatest(element, compiler, **kw):
 arg1, arg2 = list(element.clauses)
 return "CASE WHEN %s > %s THEN %s ELSE %s END" % (
 compiler.process(arg1),
 compiler.process(arg2),
 compiler.process(arg1),
 compiler.process(arg2),
)

Example usage:

Session.query(Account).\
 filter(
 greatest(
 Account.checking_balance,
 Account.savings_balance) > 10000
)

“false” expression

Render a “false” constant expression, rendering as “0” on platforms that
don’t have a “false” constant:

from sqlalchemy.sql import expression
from sqlalchemy.ext.compiler import compiles

class sql_false(expression.ColumnElement):
 pass

@compiles(sql_false)
def default_false(element, compiler, **kw):
 return "false"

@compiles(sql_false, 'mssql')
@compiles(sql_false, 'mysql')
@compiles(sql_false, 'oracle')
def int_false(element, compiler, **kw):
 return "0"

Example usage:

from sqlalchemy import select, union_all

exp = union_all(
 select([users.c.name, sql_false().label("enrolled")]),
 select([customers.c.name, customers.c.enrolled])
)

	
sqlalchemy.ext.compiler.compiles(class_, *specs)

	Register a function as a compiler for a
given ClauseElement type.

	
sqlalchemy.ext.compiler.deregister(class_)

	Remove all custom compilers associated with a given
ClauseElement type.

Expression Serializer Extension

Serializer/Deserializer objects for usage with SQLAlchemy query structures,
allowing “contextual” deserialization.

Any SQLAlchemy query structure, either based on sqlalchemy.sql.*
or sqlalchemy.orm.* can be used. The mappers, Tables, Columns, Session
etc. which are referenced by the structure are not persisted in serialized
form, but are instead re-associated with the query structure
when it is deserialized.

Usage is nearly the same as that of the standard Python pickle module:

from sqlalchemy.ext.serializer import loads, dumps
metadata = MetaData(bind=some_engine)
Session = scoped_session(sessionmaker())

... define mappers

query = Session.query(MyClass).
 filter(MyClass.somedata=='foo').order_by(MyClass.sortkey)

pickle the query
serialized = dumps(query)

unpickle. Pass in metadata + scoped_session
query2 = loads(serialized, metadata, Session)

print query2.all()

Similar restrictions as when using raw pickle apply; mapped classes must be
themselves be pickleable, meaning they are importable from a module-level
namespace.

The serializer module is only appropriate for query structures. It is not
needed for:

	instances of user-defined classes. These contain no references to engines,
sessions or expression constructs in the typical case and can be serialized
directly.

	Table metadata that is to be loaded entirely from the serialized structure
(i.e. is not already declared in the application). Regular
pickle.loads()/dumps() can be used to fully dump any MetaData object,
typically one which was reflected from an existing database at some previous
point in time. The serializer module is specifically for the opposite case,
where the Table metadata is already present in memory.

	
sqlalchemy.ext.serializer.Serializer(*args, **kw)

	

	
sqlalchemy.ext.serializer.Deserializer(file, metadata=None, scoped_session=None, engine=None)

	

	
sqlalchemy.ext.serializer.dumps(obj, protocol=0)

	

	
sqlalchemy.ext.serializer.loads(data, metadata=None, scoped_session=None, engine=None)

	

Schema Definition Language

This section references SQLAlchemy schema metadata, a comprehensive system of describing and inspecting
database schemas.

The core of SQLAlchemy’s query and object mapping operations are supported by
database metadata, which is comprised of Python objects that describe tables
and other schema-level objects. These objects are at the core of three major
types of operations - issuing CREATE and DROP statements (known as DDL),
constructing SQL queries, and expressing information about structures that
already exist within the database.

Database metadata can be expressed by explicitly naming the various components
and their properties, using constructs such as
Table, Column,
ForeignKey and
Sequence, all of which are imported from the
sqlalchemy.schema package. It can also be generated by SQLAlchemy using a
process called reflection, which means you start with a single object such
as Table, assign it a name, and then instruct
SQLAlchemy to load all the additional information related to that name from a
particular engine source.

A key feature of SQLAlchemy’s database metadata constructs is that they are
designed to be used in a declarative style which closely resembles that of
real DDL. They are therefore most intuitive to those who have some background
in creating real schema generation scripts.

	Describing Databases with MetaData
	Accessing Tables and Columns

	Creating and Dropping Database Tables

	Altering Schemas through Migrations

	Specifying the Schema Name

	Backend-Specific Options

	Column, Table, MetaData API

	Reflecting Database Objects
	Overriding Reflected Columns

	Reflecting Views

	Reflecting All Tables at Once

	Fine Grained Reflection with Inspector

	Limitations of Reflection

	Column Insert/Update Defaults
	Scalar Defaults

	Python-Executed Functions

	SQL Expressions

	Server Side Defaults

	Triggered Columns

	Defining Sequences

	Default Objects API

	Defining Constraints and Indexes
	Defining Foreign Keys

	UNIQUE Constraint

	CHECK Constraint

	PRIMARY KEY Constraint

	Setting up Constraints when using the Declarative ORM Extension

	Configuring Constraint Naming Conventions

	Constraints API

	Indexes

	Index API

	Customizing DDL
	Custom DDL

	Controlling DDL Sequences

	Using the built-in DDLElement Classes

	DDL Expression Constructs API

Describing Databases with MetaData

This section discusses the fundamental Table, Column
and MetaData objects.

A collection of metadata entities is stored in an object aptly named
MetaData:

from sqlalchemy import *

metadata = MetaData()

MetaData is a container object that keeps together
many different features of a database (or multiple databases) being described.

To represent a table, use the Table class. Its two
primary arguments are the table name, then the
MetaData object which it will be associated with.
The remaining positional arguments are mostly
Column objects describing each column:

user = Table('user', metadata,
 Column('user_id', Integer, primary_key=True),
 Column('user_name', String(16), nullable=False),
 Column('email_address', String(60)),
 Column('password', String(20), nullable=False)
)

Above, a table called user is described, which contains four columns. The
primary key of the table consists of the user_id column. Multiple columns
may be assigned the primary_key=True flag which denotes a multi-column
primary key, known as a composite primary key.

Note also that each column describes its datatype using objects corresponding
to genericized types, such as Integer and
String. SQLAlchemy features dozens of types of
varying levels of specificity as well as the ability to create custom types.
Documentation on the type system can be found at Column and Data Types.

Accessing Tables and Columns

The MetaData object contains all of the schema
constructs we’ve associated with it. It supports a few methods of accessing
these table objects, such as the sorted_tables accessor which returns a
list of each Table object in order of foreign key
dependency (that is, each table is preceded by all tables which it
references):

>>> for t in metadata.sorted_tables:
... print(t.name)
user
user_preference
invoice
invoice_item

In most cases, individual Table objects have been
explicitly declared, and these objects are typically accessed directly as
module-level variables in an application. Once a
Table has been defined, it has a full set of
accessors which allow inspection of its properties. Given the following
Table definition:

employees = Table('employees', metadata,
 Column('employee_id', Integer, primary_key=True),
 Column('employee_name', String(60), nullable=False),
 Column('employee_dept', Integer, ForeignKey("departments.department_id"))
)

Note the ForeignKey object used in this table -
this construct defines a reference to a remote table, and is fully described
in Defining Foreign Keys. Methods of accessing information about this
table include:

access the column "EMPLOYEE_ID":
employees.columns.employee_id

or just
employees.c.employee_id

via string
employees.c['employee_id']

iterate through all columns
for c in employees.c:
 print(c)

get the table's primary key columns
for primary_key in employees.primary_key:
 print(primary_key)

get the table's foreign key objects:
for fkey in employees.foreign_keys:
 print(fkey)

access the table's MetaData:
employees.metadata

access the table's bound Engine or Connection, if its MetaData is bound:
employees.bind

access a column's name, type, nullable, primary key, foreign key
employees.c.employee_id.name
employees.c.employee_id.type
employees.c.employee_id.nullable
employees.c.employee_id.primary_key
employees.c.employee_dept.foreign_keys

get the "key" of a column, which defaults to its name, but can
be any user-defined string:
employees.c.employee_name.key

access a column's table:
employees.c.employee_id.table is employees

get the table related by a foreign key
list(employees.c.employee_dept.foreign_keys)[0].column.table

Creating and Dropping Database Tables

Once you’ve defined some Table objects, assuming
you’re working with a brand new database one thing you might want to do is
issue CREATE statements for those tables and their related constructs (as an
aside, it’s also quite possible that you don’t want to do this, if you
already have some preferred methodology such as tools included with your
database or an existing scripting system - if that’s the case, feel free to
skip this section - SQLAlchemy has no requirement that it be used to create
your tables).

The usual way to issue CREATE is to use
create_all() on the
MetaData object. This method will issue queries
that first check for the existence of each individual table, and if not found
will issue the CREATE statements:

engine = create_engine('sqlite:///:memory:')

metadata = MetaData()

user = Table('user', metadata,
 Column('user_id', Integer, primary_key=True),
 Column('user_name', String(16), nullable=False),
 Column('email_address', String(60), key='email'),
 Column('password', String(20), nullable=False)
)

user_prefs = Table('user_prefs', metadata,
 Column('pref_id', Integer, primary_key=True),
 Column('user_id', Integer, ForeignKey("user.user_id"), nullable=False),
 Column('pref_name', String(40), nullable=False),
 Column('pref_value', String(100))
)

sqlmetadata.create_all(engine)
PRAGMA table_info(user){}
CREATE TABLE user(
 user_id INTEGER NOT NULL PRIMARY KEY,
 user_name VARCHAR(16) NOT NULL,
 email_address VARCHAR(60),
 password VARCHAR(20) NOT NULL
)
PRAGMA table_info(user_prefs){}
CREATE TABLE user_prefs(
 pref_id INTEGER NOT NULL PRIMARY KEY,
 user_id INTEGER NOT NULL REFERENCES user(user_id),
 pref_name VARCHAR(40) NOT NULL,
 pref_value VARCHAR(100)
)

create_all() creates foreign key constraints
between tables usually inline with the table definition itself, and for this
reason it also generates the tables in order of their dependency. There are
options to change this behavior such that ALTER TABLE is used instead.

Dropping all tables is similarly achieved using the
drop_all() method. This method does the
exact opposite of create_all() - the
presence of each table is checked first, and tables are dropped in reverse
order of dependency.

Creating and dropping individual tables can be done via the create() and
drop() methods of Table. These methods by
default issue the CREATE or DROP regardless of the table being present:

engine = create_engine('sqlite:///:memory:')

meta = MetaData()

employees = Table('employees', meta,
 Column('employee_id', Integer, primary_key=True),
 Column('employee_name', String(60), nullable=False, key='name'),
 Column('employee_dept', Integer, ForeignKey("departments.department_id"))
)
sqlemployees.create(engine)
CREATE TABLE employees(
employee_id SERIAL NOT NULL PRIMARY KEY,
employee_name VARCHAR(60) NOT NULL,
employee_dept INTEGER REFERENCES departments(department_id)
)
{}

drop() method:

sqlemployees.drop(engine)
DROP TABLE employees
{}

To enable the “check first for the table existing” logic, add the
checkfirst=True argument to create() or drop():

employees.create(engine, checkfirst=True)
employees.drop(engine, checkfirst=False)

Altering Schemas through Migrations

While SQLAlchemy directly supports emitting CREATE and DROP statements for schema
constructs, the ability to alter those constructs, usually via the ALTER statement
as well as other database-specific constructs, is outside of the scope of SQLAlchemy
itself. While it’s easy enough to emit ALTER statements and similar by hand,
such as by passing a string to Connection.execute() or by using the
DDL construct, it’s a common practice to automate the maintenance of
database schemas in relation to application code using schema migration tools.

There are two major migration tools available for SQLAlchemy:

	Alembic - Written by the author of SQLAlchemy,
Alembic features a highly customizable environment and a minimalistic usage pattern,
supporting such features as transactional DDL, automatic generation of “candidate”
migrations, an “offline” mode which generates SQL scripts, and support for branch
resolution.

	SQLAlchemy-Migrate - The original
migration tool for SQLAlchemy, SQLAlchemy-Migrate is widely used and continues
under active development. SQLAlchemy-Migrate includes features such as
SQL script generation, ORM class generation, ORM model comparison, and extensive
support for SQLite migrations.

Specifying the Schema Name

Some databases support the concept of multiple schemas. A
Table can reference this by specifying the
schema keyword argument:

financial_info = Table('financial_info', meta,
 Column('id', Integer, primary_key=True),
 Column('value', String(100), nullable=False),
 schema='remote_banks'
)

Within the MetaData collection, this table will be
identified by the combination of financial_info and remote_banks. If
another table called financial_info is referenced without the
remote_banks schema, it will refer to a different
Table. ForeignKey
objects can specify references to columns in this table using the form
remote_banks.financial_info.id.

The schema argument should be used for any name qualifiers required,
including Oracle’s “owner” attribute and similar. It also can accommodate a
dotted name for longer schemes:

schema="dbo.scott"

Backend-Specific Options

Table supports database-specific options. For
example, MySQL has different table backend types, including “MyISAM” and
“InnoDB”. This can be expressed with Table using
mysql_engine:

addresses = Table('engine_email_addresses', meta,
 Column('address_id', Integer, primary_key=True),
 Column('remote_user_id', Integer, ForeignKey(users.c.user_id)),
 Column('email_address', String(20)),
 mysql_engine='InnoDB'
)

Other backends may support table-level options as well - these would be
described in the individual documentation sections for each dialect.

Column, Table, MetaData API

	
sqlalchemy.schema.BLANK_SCHEMA

	Symbol indicating that a Table or Sequence
should have ‘None’ for its schema, even if the parent
MetaData has specified a schema.

See also

MetaData.schema

Table.schema

Sequence.schema

New in version 1.0.14.

	
class sqlalchemy.schema.Column(*args, **kwargs)

	Bases: sqlalchemy.schema.SchemaItem, sqlalchemy.sql.expression.ColumnClause

Represents a column in a database table.

	
__eq__(other)

	
inherited from the __eq__() method of ColumnOperators

Implement the == operator.

In a column context, produces the clause a = b.
If the target is None, produces a IS NULL.

	
__init__(*args, **kwargs)

	Construct a new Column object.

	Parameters:
	
	name¶ – The name of this column as represented in the database.
This argument may be the first positional argument, or specified
via keyword.

Names which contain no upper case characters
will be treated as case insensitive names, and will not be quoted
unless they are a reserved word. Names with any number of upper
case characters will be quoted and sent exactly. Note that this
behavior applies even for databases which standardize upper
case names as case insensitive such as Oracle.

The name field may be omitted at construction time and applied
later, at any time before the Column is associated with a
Table. This is to support convenient
usage within the declarative extension.

	type_¶ – The column’s type, indicated using an instance which
subclasses TypeEngine. If no arguments
are required for the type, the class of the type can be sent
as well, e.g.:

use a type with arguments
Column('data', String(50))

use no arguments
Column('level', Integer)

The type argument may be the second positional argument
or specified by keyword.

If the type is None or is omitted, it will first default to
the special type NullType. If and when this
Column is made to refer to another column using
ForeignKey and/or ForeignKeyConstraint, the type
of the remote-referenced column will be copied to this column as
well, at the moment that the foreign key is resolved against that
remote Column object.

Changed in version 0.9.0: Support for propagation of type to a Column from its
ForeignKey object has been improved and should be
more reliable and timely.

	*args¶ – Additional positional arguments include various
SchemaItem derived constructs which will be applied
as options to the column. These include instances of
Constraint, ForeignKey, ColumnDefault,
and Sequence. In some cases an equivalent keyword
argument is available such as server_default, default
and unique.

	autoincrement¶ – Set up “auto increment” semantics for an integer
primary key column. The default value is the string "auto"
which indicates that a single-column primary key that is of
an INTEGER type with no stated client-side or python-side defaults
should receive auto increment semantics automatically;
all other varieties of primary key columns will not. This
includes that DDL such as Postgresql SERIAL or MySQL
AUTO_INCREMENT will be emitted for this column during a table
create, as well as that the column is assumed to generate new
integer primary key values when an INSERT statement invokes which
will be retrieved by the dialect.

The flag may be set to True to indicate that a column which
is part of a composite (e.g. multi-column) primary key should
have autoincrement semantics, though note that only one column
within a primary key may have this setting. It can also
be set to True to indicate autoincrement semantics on a
column that has a client-side or server-side default configured,
however note that not all dialects can accommodate all styles
of default as an “autoincrement”. It can also be
set to False on a single-column primary key that has a
datatype of INTEGER in order to disable auto increment semantics
for that column.

Changed in version 1.1: The autoincrement flag now defaults to
"auto" which indicates autoincrement semantics by default
for single-column integer primary keys only; for composite
(multi-column) primary keys, autoincrement is never implicitly
enabled; as always, autoincrement=True will allow for
at most one of those columns to be an “autoincrement” column.
autoincrement=True may also be set on a Column
that has an explicit client-side or server-side default,
subject to limitations of the backend database and dialect.

The setting only has an effect for columns which are:

	Integer derived (i.e. INT, SMALLINT, BIGINT).

	Part of the primary key

	Not refering to another column via ForeignKey, unless
the value is specified as 'ignore_fk':# turn on autoincrement for this column despite
the ForeignKey()
Column('id', ForeignKey('other.id'),
 primary_key=True, autoincrement='ignore_fk')

It is typically not desirable to have “autoincrement” enabled
on a column that refers to another via foreign key, as such a column
is required to refer to a value that originates from elsewhere.

The setting has these two effects on columns that meet the
above criteria:

	DDL issued for the column will include database-specific
keywords intended to signify this column as an
“autoincrement” column, such as AUTO INCREMENT on MySQL,
SERIAL on Postgresql, and IDENTITY on MS-SQL. It does
not issue AUTOINCREMENT for SQLite since this is a
special SQLite flag that is not required for autoincrementing
behavior.
See also

SQLite Auto Incrementing Behavior

	The column will be considered to be available using an
“autoincrement” method specific to the backend database, such
as calling upon cursor.lastrowid, using RETURNING in an
INSERT statement to get at a sequence-generated value, or using
special functions such as “SELECT scope_identity()”.
These methods are highly specific to the DBAPIs and databases in
use and vary greatly, so care should be taken when associating
autoincrement=True with a custom default generation function.

	default¶ – A scalar, Python callable, or
ColumnElement expression representing the
default value for this column, which will be invoked upon insert
if this column is otherwise not specified in the VALUES clause of
the insert. This is a shortcut to using ColumnDefault as
a positional argument; see that class for full detail on the
structure of the argument.

Contrast this argument to Column.server_default
which creates a default generator on the database side.

See also

Column Insert/Update Defaults

	doc¶ – optional String that can be used by the ORM or similar
to document attributes. This attribute does not render SQL
comments (a future attribute ‘comment’ will achieve that).

	key¶ – An optional string identifier which will identify this
Column object on the Table. When a key is provided,
this is the only identifier referencing the Column within the
application, including ORM attribute mapping; the name field
is used only when rendering SQL.

	index¶ – When True, indicates that the column is indexed.
This is a shortcut for using a Index construct on the
table. To specify indexes with explicit names or indexes that
contain multiple columns, use the Index construct
instead.

	info¶ – Optional data dictionary which will be populated into the
SchemaItem.info attribute of this object.

	nullable¶ – If set to the default of True, indicates the
column will be rendered as allowing NULL, else it’s rendered as
NOT NULL. This parameter is only used when issuing CREATE TABLE
statements.

	onupdate¶ – A scalar, Python callable, or
ClauseElement representing a
default value to be applied to the column within UPDATE
statements, which wil be invoked upon update if this column is not
present in the SET clause of the update. This is a shortcut to
using ColumnDefault as a positional argument with
for_update=True.

	primary_key¶ – If True, marks this column as a primary key
column. Multiple columns can have this flag set to specify
composite primary keys. As an alternative, the primary key of a
Table can be specified via an explicit
PrimaryKeyConstraint object.

	server_default¶ – A FetchedValue instance, str, Unicode
or text() construct representing
the DDL DEFAULT value for the column.

String types will be emitted as-is, surrounded by single quotes:

Column('x', Text, server_default="val")

x TEXT DEFAULT 'val'

A text() expression will be
rendered as-is, without quotes:

Column('y', DateTime, server_default=text('NOW()'))

y DATETIME DEFAULT NOW()

Strings and text() will be converted into a
DefaultClause object upon initialization.

Use FetchedValue to indicate that an already-existing
column will generate a default value on the database side which
will be available to SQLAlchemy for post-fetch after inserts. This
construct does not specify any DDL and the implementation is left
to the database, such as via a trigger.

See also

Server Side Defaults

	server_onupdate¶ – A FetchedValue instance
representing a database-side default generation function. This
indicates to SQLAlchemy that a newly generated value will be
available after updates. This construct does not specify any DDL
and the implementation is left to the database, such as via a
trigger.

	quote¶ – Force quoting of this column’s name on or off,
corresponding to True or False. When left at its default
of None, the column identifier will be quoted according to
whether the name is case sensitive (identifiers with at least one
upper case character are treated as case sensitive), or if it’s a
reserved word. This flag is only needed to force quoting of a
reserved word which is not known by the SQLAlchemy dialect.

	unique¶ – When True, indicates that this column contains a
unique constraint, or if index is True as well, indicates
that the Index should be created with the unique flag.
To specify multiple columns in the constraint/index or to specify
an explicit name, use the UniqueConstraint or
Index constructs explicitly.

	system¶ – When True, indicates this is a “system” column,
that is a column which is automatically made available by the
database, and should not be included in the columns list for a
CREATE TABLE statement.

For more elaborate scenarios where columns should be
conditionally rendered differently on different backends,
consider custom compilation rules for CreateColumn.

New in version 0.8.3: Added the system=True parameter to
Column.

	
__le__(other)

	
inherited from the __le__() method of ColumnOperators

Implement the <= operator.

In a column context, produces the clause a <= b.

	
__lt__(other)

	
inherited from the __lt__() method of ColumnOperators

Implement the < operator.

In a column context, produces the clause a < b.

	
__ne__(other)

	
inherited from the __ne__() method of ColumnOperators

Implement the != operator.

In a column context, produces the clause a != b.
If the target is None, produces a IS NOT NULL.

	
all_()

	
inherited from the all_() method of ColumnOperators

Produce a all_() clause against the
parent object.

New in version 1.1.

	
anon_label

	
inherited from the anon_label attribute of ColumnElement

provides a constant ‘anonymous label’ for this ColumnElement.

This is a label() expression which will be named at compile time.
The same label() is returned each time anon_label is called so
that expressions can reference anon_label multiple times, producing
the same label name at compile time.

the compiler uses this function automatically at compile time
for expressions that are known to be ‘unnamed’ like binary
expressions and function calls.

	
any_()

	
inherited from the any_() method of ColumnOperators

Produce a any_() clause against the
parent object.

New in version 1.1.

	
asc()

	
inherited from the asc() method of ColumnOperators

Produce a asc() clause against the
parent object.

	
between(cleft, cright, symmetric=False)

	
inherited from the between() method of ColumnOperators

Produce a between() clause against
the parent object, given the lower and upper range.

	
cast(type_)

	
inherited from the cast() method of ColumnElement

Produce a type cast, i.e. CAST(<expression> AS <type>).

This is a shortcut to the cast() function.

New in version 1.0.7.

	
collate(collation)

	
inherited from the collate() method of ColumnOperators

Produce a collate() clause against
the parent object, given the collation string.

	
compare(other, use_proxies=False, equivalents=None, **kw)

	
inherited from the compare() method of ColumnElement

Compare this ColumnElement to another.

Special arguments understood:

	Parameters:
	
	use_proxies¶ – when True, consider two columns that
share a common base column as equivalent (i.e. shares_lineage())

	equivalents¶ – a dictionary of columns as keys mapped to sets
of columns. If the given “other” column is present in this
dictionary, if any of the columns in the corresponding set() pass
the comparison test, the result is True. This is used to expand the
comparison to other columns that may be known to be equivalent to
this one via foreign key or other criterion.

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
concat(other)

	
inherited from the concat() method of ColumnOperators

Implement the ‘concat’ operator.

In a column context, produces the clause a || b,
or uses the concat() operator on MySQL.

	
contains(other, **kwargs)

	
inherited from the contains() method of ColumnOperators

Implement the ‘contains’ operator.

In a column context, produces the clause LIKE '%<other>%'

	
copy(**kw)

	Create a copy of this Column, unitialized.

This is used in Table.tometadata.

	
desc()

	
inherited from the desc() method of ColumnOperators

Produce a desc() clause against the
parent object.

	
distinct()

	
inherited from the distinct() method of ColumnOperators

Produce a distinct() clause against the
parent object.

	
endswith(other, **kwargs)

	
inherited from the endswith() method of ColumnOperators

Implement the ‘endswith’ operator.

In a column context, produces the clause LIKE '%<other>'

	
expression

	
inherited from the expression attribute of ColumnElement

Return a column expression.

Part of the inspection interface; returns self.

	
ilike(other, escape=None)

	
inherited from the ilike() method of ColumnOperators

Implement the ilike operator.

In a column context, produces the clause a ILIKE other.

E.g.:

select([sometable]).where(sometable.c.column.ilike("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.ilike("foo/%bar", escape="/")

See also

ColumnOperators.like()

	
in_(other)

	
inherited from the in_() method of ColumnOperators

Implement the in operator.

In a column context, produces the clause a IN other.
“other” may be a tuple/list of column expressions,
or a select() construct.

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
is_(other)

	
inherited from the is_() method of ColumnOperators

Implement the IS operator.

Normally, IS is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.isnot()

	
is_distinct_from(other)

	
inherited from the is_distinct_from() method of ColumnOperators

Implement the IS DISTINCT FROM operator.

Renders “a IS DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS NOT b”.

New in version 1.1.

	
isnot(other)

	
inherited from the isnot() method of ColumnOperators

Implement the IS NOT operator.

Normally, IS NOT is generated automatically when comparing to a
value of None, which resolves to NULL. However, explicit
usage of IS NOT may be desirable if comparing to boolean values
on certain platforms.

New in version 0.7.9.

See also

ColumnOperators.is_()

	
isnot_distinct_from(other)

	
inherited from the isnot_distinct_from() method of ColumnOperators

Implement the IS NOT DISTINCT FROM operator.

Renders “a IS NOT DISTINCT FROM b” on most platforms;
on some such as SQLite may render “a IS b”.

New in version 1.1.

	
label(name)

	
inherited from the label() method of ColumnElement

Produce a column label, i.e. <columnname> AS <name>.

This is a shortcut to the label() function.

if ‘name’ is None, an anonymous label name will be generated.

	
like(other, escape=None)

	
inherited from the like() method of ColumnOperators

Implement the like operator.

In a column context, produces the clause a LIKE other.

E.g.:

select([sometable]).where(sometable.c.column.like("%foobar%"))

	Parameters:
	
	other¶ – expression to be compared

	escape¶ – optional escape character, renders the ESCAPE
keyword, e.g.:

somecolumn.like("foo/%bar", escape="/")

See also

ColumnOperators.ilike()

	
match(other, **kwargs)

	
inherited from the match() method of ColumnOperators

Implements a database-specific ‘match’ operator.

match() attempts to resolve to
a MATCH-like function or operator provided by the backend.
Examples include:

	Postgresql - renders x @@ to_tsquery(y)

	MySQL - renders MATCH (x) AGAINST (y IN BOOLEAN MODE)

	Oracle - renders CONTAINS(x, y)

	other backends may provide special implementations.

	Backends without any special implementation will emit
the operator as “MATCH”. This is compatible with SQlite, for
example.

	
notilike(other, escape=None)

	
inherited from the notilike() method of ColumnOperators

implement the NOT ILIKE operator.

This is equivalent to using negation with
ColumnOperators.ilike(), i.e. ~x.ilike(y).

New in version 0.8.

See also

ColumnOperators.ilike()

	
notin_(other)

	
inherited from the notin_() method of ColumnOperators

implement the NOT IN operator.

This is equivalent to using negation with
ColumnOperators.in_(), i.e. ~x.in_(y).

New in version 0.8.

See also

ColumnOperators.in_()

	
notlike(other, escape=None)

	
inherited from the notlike() method of ColumnOperators

implement the NOT LIKE operator.

This is equivalent to using negation with
ColumnOperators.like(), i.e. ~x.like(y).

New in version 0.8.

See also

ColumnOperators.like()

	
nullsfirst()

	
inherited from the nullsfirst() method of ColumnOperators

Produce a nullsfirst() clause against the
parent object.

	
nullslast()

	
inherited from the nullslast() method of ColumnOperators

Produce a nullslast() clause against the
parent object.

	
op(opstring, precedence=0, is_comparison=False)

	
inherited from the op() method of Operators

produce a generic operator function.

e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

This function can also be used to make bitwise operators explicit. For
example:

somecolumn.op('&')(0xff)

is a bitwise AND of the value in somecolumn.

	Parameters:
	
	operator¶ – a string which will be output as the infix operator
between this element and the expression passed to the
generated function.

	precedence¶ – precedence to apply to the operator, when
parenthesizing expressions. A lower number will cause the expression
to be parenthesized when applied against another operator with
higher precedence. The default value of 0 is lower than all
operators except for the comma (,) and AS operators.
A value of 100 will be higher or equal to all operators, and -100
will be lower than or equal to all operators.

New in version 0.8: - added the ‘precedence’ argument.

	is_comparison¶ – if True, the operator will be considered as a
“comparison” operator, that is which evaluates to a boolean
true/false value, like ==, >, etc. This flag should be set
so that ORM relationships can establish that the operator is a
comparison operator when used in a custom join condition.

New in version 0.9.2: - added the
Operators.op.is_comparison flag.

See also

Redefining and Creating New Operators

Using custom operators in join conditions

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
references(column)

	Return True if this Column references the given column via foreign
key.

	
shares_lineage(othercolumn)

	
inherited from the shares_lineage() method of ColumnElement

Return True if the given ColumnElement
has a common ancestor to this ColumnElement.

	
startswith(other, **kwargs)

	
inherited from the startswith() method of ColumnOperators

Implement the startwith operator.

In a column context, produces the clause LIKE '<other>%'

	
class sqlalchemy.schema.MetaData(bind=None, reflect=False, schema=None, quote_schema=None, naming_convention=immutabledict({'ix': 'ix_%(column_0_label)s'}), info=None)

	Bases: sqlalchemy.schema.SchemaItem

A collection of Table objects and their associated schema
constructs.

Holds a collection of Table objects as well as
an optional binding to an Engine or
Connection. If bound, the Table objects
in the collection and their columns may participate in implicit SQL
execution.

The Table objects themselves are stored in the
MetaData.tables dictionary.

MetaData is a thread-safe object for read operations.
Construction of new tables within a single MetaData object,
either explicitly or via reflection, may not be completely thread-safe.

See also

Describing Databases with MetaData - Introduction to database metadata

	
__init__(bind=None, reflect=False, schema=None, quote_schema=None, naming_convention=immutabledict({'ix': 'ix_%(column_0_label)s'}), info=None)

	Create a new MetaData object.

	Parameters:
	
	bind¶ – An Engine or Connection to bind to. May also be a string or URL
instance, these are passed to create_engine() and this MetaData will
be bound to the resulting engine.

	reflect¶ – Optional, automatically load all tables from the bound database.
Defaults to False. bind is required when this option is set.

Deprecated since version 0.8: Please use the MetaData.reflect() method.

	schema¶ – The default schema to use for the Table,
Sequence, and potentially other objects associated with
this MetaData. Defaults to None.

When this value is set, any Table or Sequence
which specifies None for the schema parameter will instead
have this schema name defined. To build a Table
or Sequence that still has None for the schema
even when this parameter is present, use the BLANK_SCHEMA
symbol.

See also

Table.schema

Sequence.schema

	quote_schema¶ – Sets the quote_schema flag for those Table,
Sequence, and other objects which make usage of the
local schema name.

	info¶ – Optional data dictionary which will be populated into the
SchemaItem.info attribute of this object.

New in version 1.0.0.

	naming_convention¶ – a dictionary referring to values which
will establish default naming conventions for Constraint
and Index objects, for those objects which are not given
a name explicitly.

The keys of this dictionary may be:

	a constraint or Index class, e.g. the UniqueConstraint,
ForeignKeyConstraint class, the Index class

	a string mnemonic for one of the known constraint classes;
"fk", "pk", "ix", "ck", "uq" for foreign key,
primary key, index, check, and unique constraint, respectively.

	the string name of a user-defined “token” that can be used
to define new naming tokens.

The values associated with each “constraint class” or “constraint
mnemonic” key are string naming templates, such as
"uq_%(table_name)s_%(column_0_name)s",
which describe how the name should be composed. The values
associated with user-defined “token” keys should be callables of the
form fn(constraint, table), which accepts the constraint/index
object and Table as arguments, returning a string
result.

The built-in names are as follows, some of which may only be
available for certain types of constraint:

	%(table_name)s - the name of the Table object
associated with the constraint.

	%(referred_table_name)s - the name of the Table
object associated with the referencing target of a
ForeignKeyConstraint.

	%(column_0_name)s - the name of the Column at
index position “0” within the constraint.

	%(column_0_label)s - the label of the Column at
index position “0”, e.g. Column.label

	%(column_0_key)s - the key of the Column at
index position “0”, e.g. Column.key

	%(referred_column_0_name)s - the name of a Column
at index position “0” referenced by a
ForeignKeyConstraint.

	%(constraint_name)s - a special key that refers to the
existing name given to the constraint. When this key is
present, the Constraint object’s existing name will be
replaced with one that is composed from template string that
uses this token. When this token is present, it is required that
the Constraint is given an expicit name ahead of time.

	user-defined: any additional token may be implemented by passing
it along with a fn(constraint, table) callable to the
naming_convention dictionary.

New in version 0.9.2.

See also

Configuring Constraint Naming Conventions - for detailed usage
examples.

	
append_ddl_listener(event_name, listener)

	Append a DDL event listener to this MetaData.

Deprecated since version 0.7: See DDLEvents.

	
bind

	An Engine or Connection to which this
MetaData is bound.

Typically, a Engine is assigned to this attribute
so that “implicit execution” may be used, or alternatively
as a means of providing engine binding information to an
ORM Session object:

engine = create_engine("someurl://")
metadata.bind = engine

See also

Connectionless Execution, Implicit Execution - background on “bound metadata”

	
clear()

	Clear all Table objects from this MetaData.

	
create_all(bind=None, tables=None, checkfirst=True)

	Create all tables stored in this metadata.

Conditional by default, will not attempt to recreate tables already
present in the target database.

	Parameters:
	
	bind¶ – A Connectable used to access the
database; if None, uses the existing bind on this MetaData, if
any.

	tables¶ – Optional list of Table objects, which is a subset of the total
tables in the MetaData (others are ignored).

	checkfirst¶ – Defaults to True, don’t issue CREATEs for tables already present
in the target database.

	
drop_all(bind=None, tables=None, checkfirst=True)

	Drop all tables stored in this metadata.

Conditional by default, will not attempt to drop tables not present in
the target database.

	Parameters:
	
	bind¶ – A Connectable used to access the
database; if None, uses the existing bind on this MetaData, if
any.

	tables¶ – Optional list of Table objects, which is a subset of the
total tables in the MetaData (others are ignored).

	checkfirst¶ – Defaults to True, only issue DROPs for tables confirmed to be
present in the target database.

	
is_bound()

	True if this MetaData is bound to an Engine or Connection.

	
reflect(bind=None, schema=None, views=False, only=None, extend_existing=False, autoload_replace=True, **dialect_kwargs)

	Load all available table definitions from the database.

Automatically creates Table entries in this MetaData for any
table available in the database but not yet present in the
MetaData. May be called multiple times to pick up tables recently
added to the database, however no special action is taken if a table
in this MetaData no longer exists in the database.

	Parameters:
	
	bind¶ – A Connectable used to access the database; if None, uses
the existing bind on this MetaData, if any.

	schema¶ – Optional, query and reflect tables from an alterate schema.
If None, the schema associated with this MetaData
is used, if any.

	views¶ – If True, also reflect views.

	only¶ – Optional. Load only a sub-set of available named tables. May be
specified as a sequence of names or a callable.

If a sequence of names is provided, only those tables will be
reflected. An error is raised if a table is requested but not
available. Named tables already present in this MetaData are
ignored.

If a callable is provided, it will be used as a boolean predicate to
filter the list of potential table names. The callable is called
with a table name and this MetaData instance as positional
arguments and should return a true value for any table to reflect.

	extend_existing¶ – Passed along to each Table as
Table.extend_existing.

New in version 0.9.1.

	autoload_replace¶ – Passed along to each Table as
Table.autoload_replace.

New in version 0.9.1.

	**dialect_kwargs¶ – Additional keyword arguments not mentioned
above are dialect specific, and passed in the form
<dialectname>_<argname>. See the documentation regarding an
individual dialect at Dialects for detail on
documented arguments.

New in version 0.9.2: - Added
MetaData.reflect.**dialect_kwargs to support
dialect-level reflection options for all Table
objects reflected.

	
remove(table)

	Remove the given Table object from this MetaData.

	
sorted_tables

	Returns a list of Table objects sorted in order of
foreign key dependency.

The sorting will place Table objects that have dependencies
first, before the dependencies themselves, representing the
order in which they can be created. To get the order in which
the tables would be dropped, use the reversed() Python built-in.

Warning

The sorted_tables accessor cannot by itself accommodate
automatic resolution of dependency cycles between tables, which
are usually caused by mutually dependent foreign key constraints.
To resolve these cycles, either the
ForeignKeyConstraint.use_alter parameter may be appled
to those constraints, or use the
schema.sort_tables_and_constraints() function which will break
out foreign key constraints involved in cycles separately.

See also

schema.sort_tables()

schema.sort_tables_and_constraints()

MetaData.tables

Inspector.get_table_names()

Inspector.get_sorted_table_and_fkc_names()

	
tables = None

	A dictionary of Table objects keyed to their name or “table key”.

The exact key is that determined by the Table.key attribute;
for a table with no Table.schema attribute, this is the same
as Table.name. For a table with a schema, it is typically of the
form schemaname.tablename.

See also

MetaData.sorted_tables

	
class sqlalchemy.schema.SchemaItem

	Bases: sqlalchemy.sql.expression.SchemaEventTarget, sqlalchemy.sql.visitors.Visitable

Base class for items that define a database schema.

	
get_children(**kwargs)

	used to allow SchemaVisitor access

	
info

	Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
quote

	Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
class sqlalchemy.schema.Table(*args, **kw)

	Bases: sqlalchemy.sql.base.DialectKWArgs, sqlalchemy.schema.SchemaItem, sqlalchemy.sql.expression.TableClause

Represent a table in a database.

e.g.:

mytable = Table("mytable", metadata,
 Column('mytable_id', Integer, primary_key=True),
 Column('value', String(50))
)

The Table object constructs a unique instance of itself based
on its name and optional schema name within the given
MetaData object. Calling the Table
constructor with the same name and same MetaData argument
a second time will return the same Table object - in this way
the Table constructor acts as a registry function.

See also

Describing Databases with MetaData - Introduction to database metadata

Constructor arguments are as follows:

	Parameters:
	
	name¶ – The name of this table as represented in the database.

The table name, along with the value of the schema parameter,
forms a key which uniquely identifies this Table within
the owning MetaData collection.
Additional calls to Table with the same name, metadata,
and schema name will return the same Table object.

Names which contain no upper case characters
will be treated as case insensitive names, and will not be quoted
unless they are a reserved word or contain special characters.
A name with any number of upper case characters is considered
to be case sensitive, and will be sent as quoted.

To enable unconditional quoting for the table name, specify the flag
quote=True to the constructor, or use the quoted_name
construct to specify the name.

	metadata¶ – a MetaData object which will contain this
table. The metadata is used as a point of association of this table
with other tables which are referenced via foreign key. It also
may be used to associate this table with a particular
Connectable.

	*args¶ – Additional positional arguments are used primarily
to add the list of Column objects contained within this
table. Similar to the style of a CREATE TABLE statement, other
SchemaItem constructs may be added here, including
PrimaryKeyConstraint, and ForeignKeyConstraint.

	autoload¶ – Defaults to False, unless Table.autoload_with
is set in which case it defaults to True; Column objects
for this table should be reflected from the database, possibly
augmenting or replacing existing Column objects that were
expicitly specified.

Changed in version 1.0.0: setting the Table.autoload_with
parameter implies that Table.autoload will default
to True.

See also

Reflecting Database Objects

	autoload_replace¶ – Defaults to True; when using
Table.autoload
in conjunction with Table.extend_existing, indicates
that Column objects present in the already-existing
Table object should be replaced with columns of the same
name retrieved from the autoload process. When False, columns
already present under existing names will be omitted from the
reflection process.

Note that this setting does not impact Column objects
specified programmatically within the call to Table that
also is autoloading; those Column objects will always
replace existing columns of the same name when
Table.extend_existing is True.

New in version 0.7.5.

See also

Table.autoload

Table.extend_existing

	autoload_with¶ – An Engine or Connection object
with which this Table object will be reflected; when
set to a non-None value, it implies that Table.autoload
is True. If left unset, but Table.autoload is
explicitly set to True, an autoload operation will attempt to
proceed by locating an Engine or Connection bound
to the underlying MetaData object.

See also

Table.autoload

	extend_existing¶ – When True, indicates that if this
Table is already present in the given MetaData,
apply further arguments within the constructor to the existing
Table.

If Table.extend_existing or
Table.keep_existing are not set, and the given name
of the new Table refers to a Table that is
already present in the target MetaData collection, and
this Table specifies additional columns or other constructs
or flags that modify the table’s state, an
error is raised. The purpose of these two mutually-exclusive flags
is to specify what action should be taken when a Table
is specified that matches an existing Table, yet specifies
additional constructs.

Table.extend_existing will also work in conjunction
with Table.autoload to run a new reflection
operation against the database, even if a Table
of the same name is already present in the target
MetaData; newly reflected Column objects
and other options will be added into the state of the
Table, potentially overwriting existing columns
and options of the same name.

Changed in version 0.7.4: Table.extend_existing will
invoke a new reflection operation when combined with
Table.autoload set to True.

As is always the case with Table.autoload,
Column objects can be specified in the same Table
constructor, which will take precedence. Below, the existing
table mytable will be augmented with Column objects
both reflected from the database, as well as the given Column
named “y”:

Table("mytable", metadata,
 Column('y', Integer),
 extend_existing=True,
 autoload=True,
 autoload_with=engine
)

See also

Table.autoload

Table.autoload_replace

Table.keep_existing

	implicit_returning¶ – True by default - indicates that
RETURNING can be used by default to fetch newly inserted primary key
values, for backends which support this. Note that
create_engine() also provides an implicit_returning flag.

	include_columns¶ – A list of strings indicating a subset of
columns to be loaded via the autoload operation; table columns who
aren’t present in this list will not be represented on the resulting
Table object. Defaults to None which indicates all columns
should be reflected.

	info¶ – Optional data dictionary which will be populated into the
SchemaItem.info attribute of this object.

	keep_existing¶ – When True, indicates that if this Table
is already present in the given MetaData, ignore
further arguments within the constructor to the existing
Table, and return the Table object as
originally created. This is to allow a function that wishes
to define a new Table on first call, but on
subsequent calls will return the same Table,
without any of the declarations (particularly constraints)
being applied a second time.

If Table.extend_existing or
Table.keep_existing are not set, and the given name
of the new Table refers to a Table that is
already present in the target MetaData collection, and
this Table specifies additional columns or other constructs
or flags that modify the table’s state, an
error is raised. The purpose of these two mutually-exclusive flags
is to specify what action should be taken when a Table
is specified that matches an existing Table, yet specifies
additional constructs.

See also

Table.extend_existing

	listeners¶ – A list of tuples of the form (<eventname>, <fn>)
which will be passed to event.listen() upon construction.
This alternate hook to event.listen() allows the establishment
of a listener function specific to this Table before
the “autoload” process begins. Particularly useful for
the DDLEvents.column_reflect() event:

def listen_for_reflect(table, column_info):
 "handle the column reflection event"
 # ...

t = Table(
 'sometable',
 autoload=True,
 listeners=[
 ('column_reflect', listen_for_reflect)
])

	mustexist¶ – When True, indicates that this Table must already
be present in the given MetaData collection, else
an exception is raised.

	prefixes¶ – A list of strings to insert after CREATE in the CREATE TABLE
statement. They will be separated by spaces.

	quote¶ – Force quoting of this table’s name on or off, corresponding
to True or False. When left at its default of None,
the column identifier will be quoted according to whether the name is
case sensitive (identifiers with at least one upper case character are
treated as case sensitive), or if it’s a reserved word. This flag
is only needed to force quoting of a reserved word which is not known
by the SQLAlchemy dialect.

	quote_schema¶ – same as ‘quote’ but applies to the schema identifier.

	schema¶ – The schema name for this table, which is required if
the table resides in a schema other than the default selected schema
for the engine’s database connection. Defaults to None.

If the owning MetaData of this Table specifies
its own MetaData.schema parameter, then that schema
name will be applied to this Table if the schema parameter
here is set to None. To set a blank schema name on a Table
that would otherwise use the schema set on the owning MetaData,
specify the special symbol BLANK_SCHEMA.

New in version 1.0.14: Added the BLANK_SCHEMA symbol to
allow a Table to have a blank schema name even when the
parent MetaData specifies MetaData.schema.

The quoting rules for the schema name are the same as those for the
name parameter, in that quoting is applied for reserved words or
case-sensitive names; to enable unconditional quoting for the
schema name, specify the flag
quote_schema=True to the constructor, or use the
quoted_name construct to specify the name.

	useexisting¶ – Deprecated. Use Table.extend_existing.

	**kw¶ – Additional keyword arguments not mentioned above are
dialect specific, and passed in the form <dialectname>_<argname>.
See the documentation regarding an individual dialect at
Dialects for detail on documented arguments.

	
__init__(*args, **kw)

	Constructor for Table.

This method is a no-op. See the top-level
documentation for Table
for constructor arguments.

	
add_is_dependent_on(table)

	Add a ‘dependency’ for this Table.

This is another Table object which must be created
first before this one can, or dropped after this one.

Usually, dependencies between tables are determined via
ForeignKey objects. However, for other situations that
create dependencies outside of foreign keys (rules, inheriting),
this method can manually establish such a link.

	
alias(name=None, flat=False)

	
inherited from the alias() method of FromClause

return an alias of this FromClause.

This is shorthand for calling:

from sqlalchemy import alias
a = alias(self, name=name)

See alias() for details.

	
append_column(column)

	Append a Column to this Table.

The “key” of the newly added Column, i.e. the
value of its .key attribute, will then be available
in the .c collection of this Table, and the
column definition will be included in any CREATE TABLE, SELECT,
UPDATE, etc. statements generated from this Table
construct.

Note that this does not change the definition of the table
as it exists within any underlying database, assuming that
table has already been created in the database. Relational
databases support the addition of columns to existing tables
using the SQL ALTER command, which would need to be
emitted for an already-existing table that doesn’t contain
the newly added column.

	
append_constraint(constraint)

	Append a Constraint to this
Table.

This has the effect of the constraint being included in any
future CREATE TABLE statement, assuming specific DDL creation
events have not been associated with the given
Constraint object.

Note that this does not produce the constraint within the
relational database automatically, for a table that already exists
in the database. To add a constraint to an
existing relational database table, the SQL ALTER command must
be used. SQLAlchemy also provides the
AddConstraint construct which can produce this SQL when
invoked as an executable clause.

	
append_ddl_listener(event_name, listener)

	Append a DDL event listener to this Table.

Deprecated since version 0.7: See DDLEvents.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
bind

	Return the connectable associated with this Table.

	
c

	
inherited from the c attribute of FromClause

An alias for the columns attribute.

	
columns

	
inherited from the columns attribute of FromClause

A named-based collection of ColumnElement objects
maintained by this FromClause.

The columns, or c collection, is the gateway
to the construction of SQL expressions using table-bound or
other selectable-bound columns:

select([mytable]).where(mytable.c.somecolumn == 5)

	
compare(other, **kw)

	
inherited from the compare() method of ClauseElement

Compare this ClauseElement to the given ClauseElement.

Subclasses should override the default behavior, which is a
straight identity comparison.

**kw are arguments consumed by subclass compare() methods and
may be used to modify the criteria for comparison.
(see ColumnElement)

	
compile(bind=None, dialect=None, **kw)

	
inherited from the compile() method of ClauseElement

Compile this SQL expression.

The return value is a Compiled object.
Calling str() or unicode() on the returned value will yield a
string representation of the result. The
Compiled object also can return a
dictionary of bind parameter names and values
using the params accessor.

	Parameters:
	
	bind¶ – An Engine or Connection from which a
Compiled will be acquired. This argument takes precedence over
this ClauseElement‘s bound engine, if any.

	column_keys¶ – Used for INSERT and UPDATE statements, a list of
column names which should be present in the VALUES clause of the
compiled statement. If None, all columns from the target table
object are rendered.

	dialect¶ – A Dialect instance from which a Compiled
will be acquired. This argument takes precedence over the bind
argument as well as this ClauseElement‘s bound engine,
if any.

	inline¶ – Used for INSERT statements, for a dialect which does
not support inline retrieval of newly generated primary key
columns, will force the expression used to create the new primary
key value to be rendered inline within the INSERT statement’s
VALUES clause. This typically refers to Sequence execution but may
also refer to any server-side default generation function
associated with a primary key Column.

	compile_kwargs¶ – optional dictionary of additional parameters
that will be passed through to the compiler within all “visit”
methods. This allows any custom flag to be passed through to
a custom compilation construct, for example. It is also used
for the case of passing the literal_binds flag through:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print s.compile(compile_kwargs={"literal_binds": True})

New in version 0.9.0.

See also

How do I render SQL expressions as strings, possibly with bound parameters inlined?

	
correspond_on_equivalents(column, equivalents)

	
inherited from the correspond_on_equivalents() method of FromClause

Return corresponding_column for the given column, or if None
search for a match in the given dictionary.

	
corresponding_column(column, require_embedded=False)

	
inherited from the corresponding_column() method of FromClause

Given a ColumnElement, return the exported
ColumnElement object from this Selectable
which corresponds to that original
Column via a common ancestor
column.

	Parameters:
	
	column¶ – the target ColumnElement to be matched

	require_embedded¶ – only return corresponding columns for
the given ColumnElement, if the given
ColumnElement is actually present within a sub-element
of this FromClause. Normally the column will match if
it merely shares a common ancestor with one of the exported
columns of this FromClause.

	
count(whereclause=None, **params)

	
inherited from the count() method of FromClause

return a SELECT COUNT generated against this
FromClause.

Deprecated since version 1.1: FromClause.count() is deprecated. Counting rows requires that the correct column expression and accommodations for joins, DISTINCT, etc. must be made, otherwise results may not be what’s expected. Please use an appropriate func.count() expression directly.

The function generates COUNT against the
first column in the primary key of the table, or against
the first column in the table overall. Explicit use of
func.count() should be preferred:

row_count = conn.scalar(
 select([func.count('*')]).select_from(table)
)

See also

func

	
create(bind=None, checkfirst=False)

	Issue a CREATE statement for this
Table, using the given Connectable
for connectivity.

See also

MetaData.create_all().

	
delete(whereclause=None, **kwargs)

	
inherited from the delete() method of TableClause

Generate a delete() construct against this
TableClause.

E.g.:

table.delete().where(table.c.id==7)

See delete() for argument and usage information.

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
drop(bind=None, checkfirst=False)

	Issue a DROP statement for this
Table, using the given Connectable
for connectivity.

See also

MetaData.drop_all().

	
exists(bind=None)

	Return True if this table exists.

	
foreign_key_constraints

	ForeignKeyConstraint objects referred to by this
Table.

This list is produced from the collection of ForeignKey
objects currently associated.

New in version 1.0.0.

	
foreign_keys

	
inherited from the foreign_keys attribute of FromClause

Return the collection of ForeignKey objects which this
FromClause references.

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
insert(values=None, inline=False, **kwargs)

	
inherited from the insert() method of TableClause

Generate an insert() construct against this
TableClause.

E.g.:

table.insert().values(name='foo')

See insert() for argument and usage information.

	
is_derived_from(fromclause)

	
inherited from the is_derived_from() method of FromClause

Return True if this FromClause is ‘derived’ from the given
FromClause.

An example would be an Alias of a Table is derived from that Table.

	
join(right, onclause=None, isouter=False, full=False)

	
inherited from the join() method of FromClause

Return a Join from this FromClause
to another FromClause.

E.g.:

from sqlalchemy import join

j = user_table.join(address_table,
 user_table.c.id == address_table.c.user_id)
stmt = select([user_table]).select_from(j)

would emit SQL along the lines of:

SELECT user.id, user.name FROM user
JOIN address ON user.id = address.user_id

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	isouter¶ – if True, render a LEFT OUTER JOIN, instead of JOIN.

	full¶ – if True, render a FULL OUTER JOIN, instead of LEFT OUTER
JOIN. Implies FromClause.join.isouter.

New in version 1.1.

See also

join() - standalone function

Join - the type of object produced

	
key

	Return the ‘key’ for this Table.

This value is used as the dictionary key within the
MetaData.tables collection. It is typically the same
as that of Table.name for a table with no
Table.schema set; otherwise it is typically of the form
schemaname.tablename.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
lateral(name=None)

	
inherited from the lateral() method of FromClause

Return a LATERAL alias of this FromClause.

The return value is the Lateral construct also
provided by the top-level lateral() function.

New in version 1.1.

See also

LATERAL correlation - overview of usage.

	
outerjoin(right, onclause=None, full=False)

	
inherited from the outerjoin() method of FromClause

Return a Join from this FromClause
to another FromClause, with the “isouter” flag set to
True.

E.g.:

from sqlalchemy import outerjoin

j = user_table.outerjoin(address_table,
 user_table.c.id == address_table.c.user_id)

The above is equivalent to:

j = user_table.join(
 address_table,
 user_table.c.id == address_table.c.user_id,
 isouter=True)

	Parameters:
	
	right¶ – the right side of the join; this is any
FromClause object such as a Table object, and
may also be a selectable-compatible object such as an ORM-mapped
class.

	onclause¶ – a SQL expression representing the ON clause of the
join. If left at None, FromClause.join() will attempt to
join the two tables based on a foreign key relationship.

	full¶ – if True, render a FULL OUTER JOIN, instead of
LEFT OUTER JOIN.

New in version 1.1.

See also

FromClause.join()

Join

	
primary_key

	
inherited from the primary_key attribute of FromClause

Return the collection of Column objects which comprise the
primary key of this FromClause.

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
quote_schema

	Return the value of the quote_schema flag passed
to this Table.

Deprecated since version 0.9: Use table.schema.quote

	
replace_selectable(old, alias)

	
inherited from the replace_selectable() method of FromClause

replace all occurrences of FromClause ‘old’ with the given Alias
object, returning a copy of this FromClause.

	
select(whereclause=None, **params)

	
inherited from the select() method of FromClause

return a SELECT of this FromClause.

See also

select() - general purpose
method which allows for arbitrary column lists.

	
self_group(against=None)

	
inherited from the self_group() method of ClauseElement

Apply a ‘grouping’ to this ClauseElement.

This method is overridden by subclasses to return a
“grouping” construct, i.e. parenthesis. In particular
it’s used by “binary” expressions to provide a grouping
around themselves when placed into a larger expression,
as well as by select() constructs when placed into
the FROM clause of another select(). (Note that
subqueries should be normally created using the
Select.alias() method, as many platforms require
nested SELECT statements to be named).

As expressions are composed together, the application of
self_group() is automatic - end-user code should never
need to use this method directly. Note that SQLAlchemy’s
clause constructs take operator precedence into account -
so parenthesis might not be needed, for example, in
an expression like x OR (y AND z) - AND takes precedence
over OR.

The base self_group() method of ClauseElement
just returns self.

	
tablesample(sampling, name=None, seed=None)

	
inherited from the tablesample() method of FromClause

Return a TABLESAMPLE alias of this FromClause.

The return value is the TableSample construct also
provided by the top-level tablesample() function.

New in version 1.1.

See also

tablesample() - usage guidelines and parameters

	
tometadata(metadata, schema=symbol('retain_schema'), referred_schema_fn=None, name=None)

	Return a copy of this Table associated with a different
MetaData.

E.g.:

m1 = MetaData()

user = Table('user', m1, Column('id', Integer, priamry_key=True))

m2 = MetaData()
user_copy = user.tometadata(m2)

	Parameters:
	
	metadata¶ – Target MetaData object, into which the
new Table object will be created.

	schema¶ – optional string name indicating the target schema.
Defaults to the special symbol RETAIN_SCHEMA which indicates
that no change to the schema name should be made in the new
Table. If set to a string name, the new Table
will have this new name as the .schema. If set to None, the
schema will be set to that of the schema set on the target
MetaData, which is typically None as well, unless
set explicitly:

m2 = MetaData(schema='newschema')

user_copy_one will have "newschema" as the schema name
user_copy_one = user.tometadata(m2, schema=None)

m3 = MetaData() # schema defaults to None

user_copy_two will have None as the schema name
user_copy_two = user.tometadata(m3, schema=None)

	referred_schema_fn¶ – optional callable which can be supplied
in order to provide for the schema name that should be assigned
to the referenced table of a ForeignKeyConstraint.
The callable accepts this parent Table, the
target schema that we are changing to, the
ForeignKeyConstraint object, and the existing
“target schema” of that constraint. The function should return the
string schema name that should be applied.
E.g.:

def referred_schema_fn(table, to_schema,
 constraint, referred_schema):
 if referred_schema == 'base_tables':
 return referred_schema
 else:
 return to_schema

new_table = table.tometadata(m2, schema="alt_schema",
 referred_schema_fn=referred_schema_fn)

New in version 0.9.2.

	name¶ – optional string name indicating the target table name.
If not specified or None, the table name is retained. This allows
a Table to be copied to the same MetaData target
with a new name.

New in version 1.0.0.

	
update(whereclause=None, values=None, inline=False, **kwargs)

	
inherited from the update() method of TableClause

Generate an update() construct against this
TableClause.

E.g.:

table.update().where(table.c.id==7).values(name='foo')

See update() for argument and usage information.

	
class sqlalchemy.schema.ThreadLocalMetaData

	Bases: sqlalchemy.schema.MetaData

A MetaData variant that presents a different bind in every thread.

Makes the bind property of the MetaData a thread-local value, allowing
this collection of tables to be bound to different Engine
implementations or connections in each thread.

The ThreadLocalMetaData starts off bound to None in each thread. Binds
must be made explicitly by assigning to the bind property or using
connect(). You can also re-bind dynamically multiple times per
thread, just like a regular MetaData.

	
__init__()

	Construct a ThreadLocalMetaData.

	
bind

	The bound Engine or Connection for this thread.

This property may be assigned an Engine or Connection, or assigned a
string or URL to automatically create a basic Engine for this bind
with create_engine().

	
dispose()

	Dispose all bound engines, in all thread contexts.

	
is_bound()

	True if there is a bind for this thread.

Reflecting Database Objects

A Table object can be instructed to load
information about itself from the corresponding database schema object already
existing within the database. This process is called reflection. In the
most simple case you need only specify the table name, a MetaData
object, and the autoload=True flag. If the
MetaData is not persistently bound, also add the
autoload_with argument:

>>> messages = Table('messages', meta, autoload=True, autoload_with=engine)
>>> [c.name for c in messages.columns]
['message_id', 'message_name', 'date']

The above operation will use the given engine to query the database for
information about the messages table, and will then generate
Column, ForeignKey,
and other objects corresponding to this information as though the
Table object were hand-constructed in Python.

When tables are reflected, if a given table references another one via foreign
key, a second Table object is created within the
MetaData object representing the connection.
Below, assume the table shopping_cart_items references a table named
shopping_carts. Reflecting the shopping_cart_items table has the
effect such that the shopping_carts table will also be loaded:

>>> shopping_cart_items = Table('shopping_cart_items', meta, autoload=True, autoload_with=engine)
>>> 'shopping_carts' in meta.tables:
True

The MetaData has an interesting “singleton-like”
behavior such that if you requested both tables individually,
MetaData will ensure that exactly one
Table object is created for each distinct table
name. The Table constructor actually returns to
you the already-existing Table object if one
already exists with the given name. Such as below, we can access the already
generated shopping_carts table just by naming it:

shopping_carts = Table('shopping_carts', meta)

Of course, it’s a good idea to use autoload=True with the above table
regardless. This is so that the table’s attributes will be loaded if they have
not been already. The autoload operation only occurs for the table if it
hasn’t already been loaded; once loaded, new calls to
Table with the same name will not re-issue any
reflection queries.

Overriding Reflected Columns

Individual columns can be overridden with explicit values when reflecting
tables; this is handy for specifying custom datatypes, constraints such as
primary keys that may not be configured within the database, etc.:

>>> mytable = Table('mytable', meta,
... Column('id', Integer, primary_key=True), # override reflected 'id' to have primary key
... Column('mydata', Unicode(50)), # override reflected 'mydata' to be Unicode
... autoload=True)

Reflecting Views

The reflection system can also reflect views. Basic usage is the same as that
of a table:

my_view = Table("some_view", metadata, autoload=True)

Above, my_view is a Table object with
Column objects representing the names and types of
each column within the view “some_view”.

Usually, it’s desired to have at least a primary key constraint when
reflecting a view, if not foreign keys as well. View reflection doesn’t
extrapolate these constraints.

Use the “override” technique for this, specifying explicitly those columns
which are part of the primary key or have foreign key constraints:

my_view = Table("some_view", metadata,
 Column("view_id", Integer, primary_key=True),
 Column("related_thing", Integer, ForeignKey("othertable.thing_id")),
 autoload=True
)

Reflecting All Tables at Once

The MetaData object can also get a listing of
tables and reflect the full set. This is achieved by using the
reflect() method. After calling it, all
located tables are present within the MetaData
object’s dictionary of tables:

meta = MetaData()
meta.reflect(bind=someengine)
users_table = meta.tables['users']
addresses_table = meta.tables['addresses']

metadata.reflect() also provides a handy way to clear or delete all the rows in a database:

meta = MetaData()
meta.reflect(bind=someengine)
for table in reversed(meta.sorted_tables):
 someengine.execute(table.delete())

Fine Grained Reflection with Inspector

A low level interface which provides a backend-agnostic system of loading
lists of schema, table, column, and constraint descriptions from a given
database is also available. This is known as the “Inspector”:

from sqlalchemy import create_engine
from sqlalchemy.engine import reflection
engine = create_engine('...')
insp = reflection.Inspector.from_engine(engine)
print(insp.get_table_names())

	
class sqlalchemy.engine.reflection.Inspector(bind)

	Performs database schema inspection.

The Inspector acts as a proxy to the reflection methods of the
Dialect, providing a
consistent interface as well as caching support for previously
fetched metadata.

A Inspector object is usually created via the
inspect() function:

from sqlalchemy import inspect, create_engine
engine = create_engine('...')
insp = inspect(engine)

The inspection method above is equivalent to using the
Inspector.from_engine() method, i.e.:

engine = create_engine('...')
insp = Inspector.from_engine(engine)

Where above, the Dialect may opt
to return an Inspector subclass that provides additional
methods specific to the dialect’s target database.

	
__init__(bind)

	Initialize a new Inspector.

	Parameters:
	bind¶ – a Connectable,
which is typically an instance of
Engine or
Connection.

For a dialect-specific instance of Inspector, see
Inspector.from_engine()

	
default_schema_name

	Return the default schema name presented by the dialect
for the current engine’s database user.

E.g. this is typically public for Postgresql and dbo
for SQL Server.

	
classmethod from_engine(bind)

	Construct a new dialect-specific Inspector object from the given
engine or connection.

	Parameters:
	bind¶ – a Connectable,
which is typically an instance of
Engine or
Connection.

This method differs from direct a direct constructor call of
Inspector in that the
Dialect is given a chance to
provide a dialect-specific Inspector instance, which may
provide additional methods.

See the example at Inspector.

	
get_check_constraints(table_name, schema=None, **kw)

	Return information about check constraints in table_name.

Given a string table_name and an optional string schema, return
check constraint information as a list of dicts with these keys:

	name

	the check constraint’s name

	sqltext

	the check constraint’s SQL expression

	Parameters:
	
	table_name¶ – string name of the table. For special quoting,
use quoted_name.

	schema¶ – string schema name; if omitted, uses the default schema
of the database connection. For special quoting,
use quoted_name.

New in version 1.1.0.

	
get_columns(table_name, schema=None, **kw)

	Return information about columns in table_name.

Given a string table_name and an optional string schema, return
column information as a list of dicts with these keys:

	name

	the column’s name

	type

	TypeEngine

	nullable

	boolean

	default

	the column’s default value

	attrs

	dict containing optional column attributes

	Parameters:
	
	table_name¶ – string name of the table. For special quoting,
use quoted_name.

	schema¶ – string schema name; if omitted, uses the default schema
of the database connection. For special quoting,
use quoted_name.

	
get_foreign_keys(table_name, schema=None, **kw)

	Return information about foreign_keys in table_name.

Given a string table_name, and an optional string schema, return
foreign key information as a list of dicts with these keys:

	constrained_columns

	a list of column names that make up the foreign key

	referred_schema

	the name of the referred schema

	referred_table

	the name of the referred table

	referred_columns

	a list of column names in the referred table that correspond to
constrained_columns

	name

	optional name of the foreign key constraint.

	Parameters:
	
	table_name¶ – string name of the table. For special quoting,
use quoted_name.

	schema¶ – string schema name; if omitted, uses the default schema
of the database connection. For special quoting,
use quoted_name.

	
get_indexes(table_name, schema=None, **kw)

	Return information about indexes in table_name.

Given a string table_name and an optional string schema, return
index information as a list of dicts with these keys:

	name

	the index’s name

	column_names

	list of column names in order

	unique

	boolean

	dialect_options

	dict of dialect-specific index options. May not be present
for all dialects.

New in version 1.0.0.

	Parameters:
	
	table_name¶ – string name of the table. For special quoting,
use quoted_name.

	schema¶ – string schema name; if omitted, uses the default schema
of the database connection. For special quoting,
use quoted_name.

	
get_pk_constraint(table_name, schema=None, **kw)

	Return information about primary key constraint on table_name.

Given a string table_name, and an optional string schema, return
primary key information as a dictionary with these keys:

	constrained_columns

	a list of column names that make up the primary key

	name

	optional name of the primary key constraint.

	Parameters:
	
	table_name¶ – string name of the table. For special quoting,
use quoted_name.

	schema¶ – string schema name; if omitted, uses the default schema
of the database connection. For special quoting,
use quoted_name.

	
get_primary_keys(table_name, schema=None, **kw)

	Return information about primary keys in table_name.

Deprecated since version 0.7: Call to deprecated method get_primary_keys. Use get_pk_constraint instead.

Given a string table_name, and an optional string schema, return
primary key information as a list of column names.

	
get_schema_names()

	Return all schema names.

	
get_sorted_table_and_fkc_names(schema=None)

	Return dependency-sorted table and foreign key constraint names in
referred to within a particular schema.

This will yield 2-tuples of
(tablename, [(tname, fkname), (tname, fkname), ...])
consisting of table names in CREATE order grouped with the foreign key
constraint names that are not detected as belonging to a cycle.
The final element
will be (None, [(tname, fkname), (tname, fkname), ..])
which will consist of remaining
foreign key constraint names that would require a separate CREATE
step after-the-fact, based on dependencies between tables.

New in version 1.0.-.

See also

Inspector.get_table_names()

	sort_tables_and_constraints() - similar method which works

	with an already-given MetaData.

	
get_table_names(schema=None, order_by=None)

	Return all table names in referred to within a particular schema.

The names are expected to be real tables only, not views.
Views are instead returned using the Inspector.get_view_names()
method.

	Parameters:
	
	schema¶ – Schema name. If schema is left at None, the
database’s default schema is
used, else the named schema is searched. If the database does not
support named schemas, behavior is undefined if schema is not
passed as None. For special quoting, use quoted_name.

	order_by¶ – Optional, may be the string “foreign_key” to sort
the result on foreign key dependencies. Does not automatically
resolve cycles, and will raise CircularDependencyError
if cycles exist.

Deprecated since version 1.0.0: - see
Inspector.get_sorted_table_and_fkc_names() for a version
of this which resolves foreign key cycles between tables
automatically.

Changed in version 0.8: the “foreign_key” sorting sorts tables
in order of dependee to dependent; that is, in creation
order, rather than in drop order. This is to maintain
consistency with similar features such as
MetaData.sorted_tables and util.sort_tables().

See also

Inspector.get_sorted_table_and_fkc_names()

MetaData.sorted_tables

	
get_table_options(table_name, schema=None, **kw)

	Return a dictionary of options specified when the table of the
given name was created.

This currently includes some options that apply to MySQL tables.

	Parameters:
	
	table_name¶ – string name of the table. For special quoting,
use quoted_name.

	schema¶ – string schema name; if omitted, uses the default schema
of the database connection. For special quoting,
use quoted_name.

	
get_temp_table_names()

	return a list of temporary table names for the current bind.

This method is unsupported by most dialects; currently
only SQLite implements it.

New in version 1.0.0.

	
get_temp_view_names()

	return a list of temporary view names for the current bind.

This method is unsupported by most dialects; currently
only SQLite implements it.

New in version 1.0.0.

	
get_unique_constraints(table_name, schema=None, **kw)

	Return information about unique constraints in table_name.

Given a string table_name and an optional string schema, return
unique constraint information as a list of dicts with these keys:

	name

	the unique constraint’s name

	column_names

	list of column names in order

	Parameters:
	
	table_name¶ – string name of the table. For special quoting,
use quoted_name.

	schema¶ – string schema name; if omitted, uses the default schema
of the database connection. For special quoting,
use quoted_name.

New in version 0.8.4.

	
get_view_definition(view_name, schema=None)

	Return definition for view_name.

	Parameters:
	schema¶ – Optional, retrieve names from a non-default schema.
For special quoting, use quoted_name.

	
get_view_names(schema=None)

	Return all view names in schema.

	Parameters:
	schema¶ – Optional, retrieve names from a non-default schema.
For special quoting, use quoted_name.

	
reflecttable(table, include_columns, exclude_columns=())

	Given a Table object, load its internal constructs based on
introspection.

This is the underlying method used by most dialects to produce
table reflection. Direct usage is like:

from sqlalchemy import create_engine, MetaData, Table
from sqlalchemy.engine import reflection

engine = create_engine('...')
meta = MetaData()
user_table = Table('user', meta)
insp = Inspector.from_engine(engine)
insp.reflecttable(user_table, None)

	Parameters:
	
	table¶ – a Table instance.

	include_columns¶ – a list of string column names to include
in the reflection process. If None, all columns are reflected.

Limitations of Reflection

It’s important to note that the reflection process recreates Table
metadata using only information which is represented in the relational database.
This process by definition cannot restore aspects of a schema that aren’t
actually stored in the database. State which is not available from reflection
includes but is not limited to:

	Client side defaults, either Python functions or SQL expressions defined using
the default keyword of Column (note this is separate from server_default,
which specifically is what’s available via reflection).

	Column information, e.g. data that might have been placed into the
Column.info dictionary

	The value of the .quote setting for Column or Table

	The association of a particular Sequence with a given Column

The relational database also in many cases reports on table metadata in a
different format than what was specified in SQLAlchemy. The Table
objects returned from reflection cannot be always relied upon to produce the identical
DDL as the original Python-defined Table objects. Areas where
this occurs includes server defaults, column-associated sequences and various
idosyncrasies regarding constraints and datatypes. Server side defaults may
be returned with cast directives (typically Postgresql will include a ::<type>
cast) or different quoting patterns than originally specified.

Another category of limitation includes schema structures for which reflection
is only partially or not yet defined. Recent improvements to reflection allow
things like views, indexes and foreign key options to be reflected. As of this
writing, structures like CHECK constraints, table comments, and triggers are
not reflected.

Column Insert/Update Defaults

SQLAlchemy provides a very rich featureset regarding column level events which
take place during INSERT and UPDATE statements. Options include:

	Scalar values used as defaults during INSERT and UPDATE operations

	Python functions which execute upon INSERT and UPDATE operations

	SQL expressions which are embedded in INSERT statements (or in some cases execute beforehand)

	SQL expressions which are embedded in UPDATE statements

	Server side default values used during INSERT

	Markers for server-side triggers used during UPDATE

The general rule for all insert/update defaults is that they only take effect
if no value for a particular column is passed as an execute() parameter;
otherwise, the given value is used.

Scalar Defaults

The simplest kind of default is a scalar value used as the default value of a column:

Table("mytable", meta,
 Column("somecolumn", Integer, default=12)
)

Above, the value “12” will be bound as the column value during an INSERT if no
other value is supplied.

A scalar value may also be associated with an UPDATE statement, though this is
not very common (as UPDATE statements are usually looking for dynamic
defaults):

Table("mytable", meta,
 Column("somecolumn", Integer, onupdate=25)
)

Python-Executed Functions

The Column.default and Column.onupdate keyword arguments also accept Python
functions. These functions are invoked at the time of insert or update if no
other value for that column is supplied, and the value returned is used for
the column’s value. Below illustrates a crude “sequence” that assigns an
incrementing counter to a primary key column:

a function which counts upwards
i = 0
def mydefault():
 global i
 i += 1
 return i

t = Table("mytable", meta,
 Column('id', Integer, primary_key=True, default=mydefault),
)

It should be noted that for real “incrementing sequence” behavior, the
built-in capabilities of the database should normally be used, which may
include sequence objects or other autoincrementing capabilities. For primary
key columns, SQLAlchemy will in most cases use these capabilities
automatically. See the API documentation for
Column including the Column.autoincrement flag, as
well as the section on Sequence later in this
chapter for background on standard primary key generation techniques.

To illustrate onupdate, we assign the Python datetime function now to
the Column.onupdate attribute:

import datetime

t = Table("mytable", meta,
 Column('id', Integer, primary_key=True),

 # define 'last_updated' to be populated with datetime.now()
 Column('last_updated', DateTime, onupdate=datetime.datetime.now),
)

When an update statement executes and no value is passed for last_updated,
the datetime.datetime.now() Python function is executed and its return
value used as the value for last_updated. Notice that we provide now
as the function itself without calling it (i.e. there are no parenthesis
following) - SQLAlchemy will execute the function at the time the statement
executes.

Context-Sensitive Default Functions

The Python functions used by Column.default and Column.onupdate may also make use of
the current statement’s context in order to determine a value. The context
of a statement is an internal SQLAlchemy object which contains all information
about the statement being executed, including its source expression, the
parameters associated with it and the cursor. The typical use case for this
context with regards to default generation is to have access to the other
values being inserted or updated on the row. To access the context, provide a
function that accepts a single context argument:

def mydefault(context):
 return context.current_parameters['counter'] + 12

t = Table('mytable', meta,
 Column('counter', Integer),
 Column('counter_plus_twelve', Integer, default=mydefault, onupdate=mydefault)
)

Above we illustrate a default function which will execute for all INSERT and
UPDATE statements where a value for counter_plus_twelve was otherwise not
provided, and the value will be that of whatever value is present in the
execution for the counter column, plus the number 12.

While the context object passed to the default function has many attributes,
the current_parameters member is a special member provided only during the
execution of a default function for the purposes of deriving defaults from its
existing values. For a single statement that is executing many sets of bind
parameters, the user-defined function is called for each set of parameters,
and current_parameters will be provided with each individual parameter set
for each execution.

SQL Expressions

The “default” and “onupdate” keywords may also be passed SQL expressions,
including select statements or direct function calls:

t = Table("mytable", meta,
 Column('id', Integer, primary_key=True),

 # define 'create_date' to default to now()
 Column('create_date', DateTime, default=func.now()),

 # define 'key' to pull its default from the 'keyvalues' table
 Column('key', String(20), default=keyvalues.select(keyvalues.c.type='type1', limit=1)),

 # define 'last_modified' to use the current_timestamp SQL function on update
 Column('last_modified', DateTime, onupdate=func.utc_timestamp())
)

Above, the create_date column will be populated with the result of the
now() SQL function (which, depending on backend, compiles into NOW()
or CURRENT_TIMESTAMP in most cases) during an INSERT statement, and the
key column with the result of a SELECT subquery from another table. The
last_modified column will be populated with the value of
UTC_TIMESTAMP(), a function specific to MySQL, when an UPDATE statement is
emitted for this table.

Note that when using func functions, unlike when using Python datetime
functions we do call the function, i.e. with parenthesis “()” - this is
because what we want in this case is the return value of the function, which
is the SQL expression construct that will be rendered into the INSERT or
UPDATE statement.

The above SQL functions are usually executed “inline” with the INSERT or
UPDATE statement being executed, meaning, a single statement is executed which
embeds the given expressions or subqueries within the VALUES or SET clause of
the statement. Although in some cases, the function is “pre-executed” in a
SELECT statement of its own beforehand. This happens when all of the following
is true:

	the column is a primary key column

	the database dialect does not support a usable cursor.lastrowid accessor
(or equivalent); this currently includes PostgreSQL, Oracle, and Firebird, as
well as some MySQL dialects.

	the dialect does not support the “RETURNING” clause or similar, or the
implicit_returning flag is set to False for the dialect. Dialects
which support RETURNING currently include Postgresql, Oracle, Firebird, and
MS-SQL.

	the statement is a single execution, i.e. only supplies one set of
parameters and doesn’t use “executemany” behavior

	the inline=True flag is not set on the
Insert() or
Update() construct, and the statement has
not defined an explicit returning() clause.

Whether or not the default generation clause “pre-executes” is not something
that normally needs to be considered, unless it is being addressed for
performance reasons.

When the statement is executed with a single set of parameters (that is, it is
not an “executemany” style execution), the returned
ResultProxy will contain a collection
accessible via ResultProxy.postfetch_cols() which contains a list of all
Column objects which had an inline-executed
default. Similarly, all parameters which were bound to the statement,
including all Python and SQL expressions which were pre-executed, are present
in the ResultProxy.last_inserted_params() or ResultProxy.last_updated_params() collections on
ResultProxy. The ResultProxy.inserted_primary_key
collection contains a list of primary key values for the row inserted (a list
so that single-column and composite-column primary keys are represented in the
same format).

Server Side Defaults

A variant on the SQL expression default is the Column.server_default, which gets
placed in the CREATE TABLE statement during a Table.create() operation:

t = Table('test', meta,
 Column('abc', String(20), server_default='abc'),
 Column('created_at', DateTime, server_default=text("sysdate"))
)

A create call for the above table will produce:

CREATE TABLE test (
 abc varchar(20) default 'abc',
 created_at datetime default sysdate
)

The behavior of Column.server_default is similar to that of a regular SQL
default; if it’s placed on a primary key column for a database which doesn’t
have a way to “postfetch” the ID, and the statement is not “inlined”, the SQL
expression is pre-executed; otherwise, SQLAlchemy lets the default fire off on
the database side normally.

Triggered Columns

Columns with values set by a database trigger or other external process may be
called out using FetchedValue as a marker:

t = Table('test', meta,
 Column('abc', String(20), server_default=FetchedValue()),
 Column('def', String(20), server_onupdate=FetchedValue())
)

Changed in version 0.8.0b2,0.7.10: The for_update argument on FetchedValue is set automatically
when specified as the server_onupdate argument. If using an older version,
specify the onupdate above as server_onupdate=FetchedValue(for_update=True).

These markers do not emit a “default” clause when the table is created,
however they do set the same internal flags as a static server_default
clause, providing hints to higher-level tools that a “post-fetch” of these
rows should be performed after an insert or update.

Note

It’s generally not appropriate to use FetchedValue in
conjunction with a primary key column, particularly when using the
ORM or any other scenario where the ResultProxy.inserted_primary_key
attribute is required. This is becaue the “post-fetch” operation requires
that the primary key value already be available, so that the
row can be selected on its primary key.

For a server-generated primary key value, all databases provide special
accessors or other techniques in order to acquire the “last inserted
primary key” column of a table. These mechanisms aren’t affected by the presence
of FetchedValue. For special situations where triggers are
used to generate primary key values, and the database in use does not
support the RETURNING clause, it may be necessary to forego the usage
of the trigger and instead apply the SQL expression or function as a
“pre execute” expression:

t = Table('test', meta,
 Column('abc', MyType, default=func.generate_new_value(), primary_key=True)
)

Where above, when Table.insert() is used,
the func.generate_new_value() expression will be pre-executed
in the context of a scalar SELECT statement, and the new value will
be applied to the subsequent INSERT, while at the same time being
made available to the ResultProxy.inserted_primary_key
attribute.

Defining Sequences

SQLAlchemy represents database sequences using the
Sequence object, which is considered to be a
special case of “column default”. It only has an effect on databases which
have explicit support for sequences, which currently includes Postgresql,
Oracle, and Firebird. The Sequence object is
otherwise ignored.

The Sequence may be placed on any column as a
“default” generator to be used during INSERT operations, and can also be
configured to fire off during UPDATE operations if desired. It is most
commonly used in conjunction with a single integer primary key column:

table = Table("cartitems", meta,
 Column("cart_id", Integer, Sequence('cart_id_seq'), primary_key=True),
 Column("description", String(40)),
 Column("createdate", DateTime())
)

Where above, the table “cartitems” is associated with a sequence named
“cart_id_seq”. When INSERT statements take place for “cartitems”, and no value
is passed for the “cart_id” column, the “cart_id_seq” sequence will be used to
generate a value.

When the Sequence is associated with a table,
CREATE and DROP statements issued for that table will also issue CREATE/DROP
for the sequence object as well, thus “bundling” the sequence object with its
parent table.

The Sequence object also implements special
functionality to accommodate Postgresql’s SERIAL datatype. The SERIAL type in
PG automatically generates a sequence that is used implicitly during inserts.
This means that if a Table object defines a
Sequence on its primary key column so that it
works with Oracle and Firebird, the Sequence would
get in the way of the “implicit” sequence that PG would normally use. For this
use case, add the flag optional=True to the
Sequence object - this indicates that the
Sequence should only be used if the database
provides no other option for generating primary key identifiers.

The Sequence object also has the ability to be
executed standalone like a SQL expression, which has the effect of calling its
“next value” function:

seq = Sequence('some_sequence')
nextid = connection.execute(seq)

Associating a Sequence as the Server Side Default

When we associate a Sequence with a Column as above,
this association is an in-Python only association. The CREATE TABLE
that would be generated for our Table would not refer to this
sequence. If we want the sequence to be used as a server-side default,
meaning it takes place even if we emit INSERT commands to the table from
the SQL commandline, we can use the Column.server_default
parameter in conjunction with the value-generation function of the
sequence, available from the Sequence.next_value() method:

cart_id_seq = Sequence('cart_id_seq')
table = Table("cartitems", meta,
 Column(
 "cart_id", Integer, cart_id_seq,
 server_default=cart_id_seq.next_value(), primary_key=True),
 Column("description", String(40)),
 Column("createdate", DateTime())
)

The above metadata will generate a CREATE TABLE statement on Postgresql as:

CREATE TABLE cartitems (
 cart_id INTEGER DEFAULT nextval('cart_id_seq') NOT NULL,
 description VARCHAR(40),
 createdate TIMESTAMP WITHOUT TIME ZONE,
 PRIMARY KEY (cart_id)
)

We place the Sequence also as a Python-side default above, that
is, it is mentioned twice in the Column definition. Depending
on the backend in use, this may not be strictly necessary, for example
on the Postgresql backend the Core will use RETURNING to access the
newly generated primary key value in any case. However, for the best
compatibility, Sequence was originally intended to be a Python-side
directive first and foremost so it’s probably a good idea to specify it
in this way as well.

Default Objects API

	
class sqlalchemy.schema.ColumnDefault(arg, **kwargs)

	Bases: sqlalchemy.schema.DefaultGenerator

A plain default value on a column.

This could correspond to a constant, a callable function,
or a SQL clause.

ColumnDefault is generated automatically
whenever the default, onupdate arguments of
Column are used. A ColumnDefault
can be passed positionally as well.

For example, the following:

Column('foo', Integer, default=50)

Is equivalent to:

Column('foo', Integer, ColumnDefault(50))

	
class sqlalchemy.schema.DefaultClause(arg, for_update=False, _reflected=False)

	Bases: sqlalchemy.schema.FetchedValue

A DDL-specified DEFAULT column value.

DefaultClause is a FetchedValue
that also generates a “DEFAULT” clause when
“CREATE TABLE” is emitted.

DefaultClause is generated automatically
whenever the server_default, server_onupdate arguments of
Column are used. A DefaultClause
can be passed positionally as well.

For example, the following:

Column('foo', Integer, server_default="50")

Is equivalent to:

Column('foo', Integer, DefaultClause("50"))

	
class sqlalchemy.schema.DefaultGenerator(for_update=False)

	Bases: sqlalchemy.schema._NotAColumnExpr, sqlalchemy.schema.SchemaItem

Base class for column default values.

	
class sqlalchemy.schema.FetchedValue(for_update=False)

	Bases: sqlalchemy.schema._NotAColumnExpr, sqlalchemy.sql.expression.SchemaEventTarget

A marker for a transparent database-side default.

Use FetchedValue when the database is configured
to provide some automatic default for a column.

E.g.:

Column('foo', Integer, FetchedValue())

Would indicate that some trigger or default generator
will create a new value for the foo column during an
INSERT.

See also

Triggered Columns

	
class sqlalchemy.schema.PassiveDefault(*arg, **kw)

	Bases: sqlalchemy.schema.DefaultClause

A DDL-specified DEFAULT column value.

Deprecated since version 0.6: PassiveDefault is deprecated.
Use DefaultClause.

	
class sqlalchemy.schema.Sequence(name, start=None, increment=None, minvalue=None, maxvalue=None, nominvalue=None, nomaxvalue=None, cycle=None, schema=None, optional=False, quote=None, metadata=None, quote_schema=None, for_update=False)

	Bases: sqlalchemy.schema.DefaultGenerator

Represents a named database sequence.

The Sequence object represents the name and configurational
parameters of a database sequence. It also represents
a construct that can be “executed” by a SQLAlchemy Engine
or Connection, rendering the appropriate “next value” function
for the target database and returning a result.

The Sequence is typically associated with a primary key column:

some_table = Table(
 'some_table', metadata,
 Column('id', Integer, Sequence('some_table_seq'),
 primary_key=True)
)

When CREATE TABLE is emitted for the above Table, if the
target platform supports sequences, a CREATE SEQUENCE statement will
be emitted as well. For platforms that don’t support sequences,
the Sequence construct is ignored.

See also

CreateSequence

DropSequence

	
__init__(name, start=None, increment=None, minvalue=None, maxvalue=None, nominvalue=None, nomaxvalue=None, cycle=None, schema=None, optional=False, quote=None, metadata=None, quote_schema=None, for_update=False)

	Construct a Sequence object.

	Parameters:
	
	name¶ – The name of the sequence.

	start¶ – the starting index of the sequence. This value is
used when the CREATE SEQUENCE command is emitted to the database
as the value of the “START WITH” clause. If None, the
clause is omitted, which on most platforms indicates a starting
value of 1.

	increment¶ – the increment value of the sequence. This
value is used when the CREATE SEQUENCE command is emitted to
the database as the value of the “INCREMENT BY” clause. If None,
the clause is omitted, which on most platforms indicates an
increment of 1.

	minvalue¶ – the minimum value of the sequence. This
value is used when the CREATE SEQUENCE command is emitted to
the database as the value of the “MINVALUE” clause. If None,
the clause is omitted, which on most platforms indicates a
minvalue of 1 and -2^63-1 for ascending and descending sequences,
respectively.

New in version 1.0.7.

	maxvalue¶ – the maximum value of the sequence. This
value is used when the CREATE SEQUENCE command is emitted to
the database as the value of the “MAXVALUE” clause. If None,
the clause is omitted, which on most platforms indicates a
maxvalue of 2^63-1 and -1 for ascending and descending sequences,
respectively.

New in version 1.0.7.

	nominvalue¶ – no minimum value of the sequence. This
value is used when the CREATE SEQUENCE command is emitted to
the database as the value of the “NO MINVALUE” clause. If None,
the clause is omitted, which on most platforms indicates a
minvalue of 1 and -2^63-1 for ascending and descending sequences,
respectively.

New in version 1.0.7.

	nomaxvalue¶ – no maximum value of the sequence. This
value is used when the CREATE SEQUENCE command is emitted to
the database as the value of the “NO MAXVALUE” clause. If None,
the clause is omitted, which on most platforms indicates a
maxvalue of 2^63-1 and -1 for ascending and descending sequences,
respectively.

New in version 1.0.7.

	cycle¶ – allows the sequence to wrap around when the maxvalue
or minvalue has been reached by an ascending or descending sequence
respectively. This value is used when the CREATE SEQUENCE command
is emitted to the database as the “CYCLE” clause. If the limit is
reached, the next number generated will be the minvalue or maxvalue,
respectively. If cycle=False (the default) any calls to nextval
after the sequence has reached its maximum value will return an
error.

New in version 1.0.7.

	schema¶ – Optional schema name for the sequence, if located
in a schema other than the default. The rules for selecting the
schema name when a MetaData is also present are the same
as that of Table.schema.

	optional¶ – boolean value, when True, indicates that this
Sequence object only needs to be explicitly generated
on backends that don’t provide another way to generate primary
key identifiers. Currently, it essentially means, “don’t create
this sequence on the Postgresql backend, where the SERIAL keyword
creates a sequence for us automatically”.

	quote¶ – boolean value, when True or False, explicitly
forces quoting of the schema name on or off. When left at its
default of None, normal quoting rules based on casing and
reserved words take place.

	quote_schema¶ – set the quoting preferences for the schema
name.

	metadata¶ – optional MetaData object which will be
associated with this Sequence. A Sequence
that is associated with a MetaData gains access to the
bind of that MetaData, meaning the
Sequence.create() and Sequence.drop() methods will
make usage of that engine automatically.

Changed in version 0.7: Additionally, the appropriate CREATE SEQUENCE/
DROP SEQUENCE DDL commands will be emitted corresponding to this
Sequence when MetaData.create_all() and
MetaData.drop_all() are invoked.

Note that when a Sequence is applied to a Column,
the Sequence is automatically associated with the
MetaData object of that column’s parent Table,
when that association is made. The Sequence will then
be subject to automatic CREATE SEQUENCE/DROP SEQUENCE corresponding
to when the Table object itself is created or dropped,
rather than that of the MetaData object overall.

	for_update¶ – Indicates this Sequence, when associated
with a Column, should be invoked for UPDATE statements
on that column’s table, rather than for INSERT statements, when
no value is otherwise present for that column in the statement.

	
create(bind=None, checkfirst=True)

	Creates this sequence in the database.

	
drop(bind=None, checkfirst=True)

	Drops this sequence from the database.

	
next_value()

	Return a next_value function element
which will render the appropriate increment function
for this Sequence within any SQL expression.

Defining Constraints and Indexes

This section will discuss SQL constraints and indexes. In SQLAlchemy
the key classes include ForeignKeyConstraint and Index.

Defining Foreign Keys

A foreign key in SQL is a table-level construct that constrains one or more
columns in that table to only allow values that are present in a different set
of columns, typically but not always located on a different table. We call the
columns which are constrained the foreign key columns and the columns which
they are constrained towards the referenced columns. The referenced columns
almost always define the primary key for their owning table, though there are
exceptions to this. The foreign key is the “joint” that connects together
pairs of rows which have a relationship with each other, and SQLAlchemy
assigns very deep importance to this concept in virtually every area of its
operation.

In SQLAlchemy as well as in DDL, foreign key constraints can be defined as
additional attributes within the table clause, or for single-column foreign
keys they may optionally be specified within the definition of a single
column. The single column foreign key is more common, and at the column level
is specified by constructing a ForeignKey object
as an argument to a Column object:

user_preference = Table('user_preference', metadata,
 Column('pref_id', Integer, primary_key=True),
 Column('user_id', Integer, ForeignKey("user.user_id"), nullable=False),
 Column('pref_name', String(40), nullable=False),
 Column('pref_value', String(100))
)

Above, we define a new table user_preference for which each row must
contain a value in the user_id column that also exists in the user
table’s user_id column.

The argument to ForeignKey is most commonly a
string of the form <tablename>.<columnname>, or for a table in a remote
schema or “owner” of the form <schemaname>.<tablename>.<columnname>. It may
also be an actual Column object, which as we’ll
see later is accessed from an existing Table
object via its c collection:

ForeignKey(user.c.user_id)

The advantage to using a string is that the in-python linkage between user
and user_preference is resolved only when first needed, so that table
objects can be easily spread across multiple modules and defined in any order.

Foreign keys may also be defined at the table level, using the
ForeignKeyConstraint object. This object can
describe a single- or multi-column foreign key. A multi-column foreign key is
known as a composite foreign key, and almost always references a table that
has a composite primary key. Below we define a table invoice which has a
composite primary key:

invoice = Table('invoice', metadata,
 Column('invoice_id', Integer, primary_key=True),
 Column('ref_num', Integer, primary_key=True),
 Column('description', String(60), nullable=False)
)

And then a table invoice_item with a composite foreign key referencing
invoice:

invoice_item = Table('invoice_item', metadata,
 Column('item_id', Integer, primary_key=True),
 Column('item_name', String(60), nullable=False),
 Column('invoice_id', Integer, nullable=False),
 Column('ref_num', Integer, nullable=False),
 ForeignKeyConstraint(['invoice_id', 'ref_num'], ['invoice.invoice_id', 'invoice.ref_num'])
)

It’s important to note that the
ForeignKeyConstraint is the only way to define a
composite foreign key. While we could also have placed individual
ForeignKey objects on both the
invoice_item.invoice_id and invoice_item.ref_num columns, SQLAlchemy
would not be aware that these two values should be paired together - it would
be two individual foreign key constraints instead of a single composite
foreign key referencing two columns.

Creating/Dropping Foreign Key Constraints via ALTER

The behavior we’ve seen in tutorials and elsewhere involving
foreign keys with DDL illustrates that the constraints are typically
rendered “inline” within the CREATE TABLE statement, such as:

CREATE TABLE addresses (
 id INTEGER NOT NULL,
 user_id INTEGER,
 email_address VARCHAR NOT NULL,
 PRIMARY KEY (id),
 CONSTRAINT user_id_fk FOREIGN KEY(user_id) REFERENCES users (id)
)

The CONSTRAINT .. FOREIGN KEY directive is used to create the constraint
in an “inline” fashion within the CREATE TABLE definition. The
MetaData.create_all() and MetaData.drop_all() methods do
this by default, using a topological sort of all the Table objects
involved such that tables are created and dropped in order of their foreign
key dependency (this sort is also available via the
MetaData.sorted_tables accessor).

This approach can’t work when two or more foreign key constraints are
involved in a “dependency cycle”, where a set of tables
are mutually dependent on each other, assuming the backend enforces foreign
keys (always the case except on SQLite, MySQL/MyISAM). The methods will
therefore break out constraints in such a cycle into separate ALTER
statements, on all backends other than SQLite which does not support
most forms of ALTER. Given a schema like:

node = Table(
 'node', metadata,
 Column('node_id', Integer, primary_key=True),
 Column(
 'primary_element', Integer,
 ForeignKey('element.element_id')
)
)

element = Table(
 'element', metadata,
 Column('element_id', Integer, primary_key=True),
 Column('parent_node_id', Integer),
 ForeignKeyConstraint(
 ['parent_node_id'], ['node.node_id'],
 name='fk_element_parent_node_id'
)
)

When we call upon MetaData.create_all() on a backend such as the
Postgresql backend, the cycle between these two tables is resolved and the
constraints are created separately:

>>> with engine.connect() as conn:
... metadata.create_all(conn, checkfirst=False)
CREATE TABLE element (
 element_id SERIAL NOT NULL,
 parent_node_id INTEGER,
 PRIMARY KEY (element_id)
)

CREATE TABLE node (
 node_id SERIAL NOT NULL,
 primary_element INTEGER,
 PRIMARY KEY (node_id)
)

ALTER TABLE element ADD CONSTRAINT fk_element_parent_node_id
 FOREIGN KEY(parent_node_id) REFERENCES node (node_id)
ALTER TABLE node ADD FOREIGN KEY(primary_element)
 REFERENCES element (element_id)

In order to emit DROP for these tables, the same logic applies, however
note here that in SQL, to emit DROP CONSTRAINT requires that the constraint
has a name. In the case of the 'node' table above, we haven’t named
this constraint; the system will therefore attempt to emit DROP for only
those constraints that are named:

>>> with engine.connect() as conn:
... metadata.drop_all(conn, checkfirst=False)
ALTER TABLE element DROP CONSTRAINT fk_element_parent_node_id
DROP TABLE node
DROP TABLE element

In the case where the cycle cannot be resolved, such as if we hadn’t applied
a name to either constraint here, we will receive the following error:

sqlalchemy.exc.CircularDependencyError: Can't sort tables for DROP;
an unresolvable foreign key dependency exists between tables:
element, node. Please ensure that the ForeignKey and ForeignKeyConstraint
objects involved in the cycle have names so that they can be dropped
using DROP CONSTRAINT.

This error only applies to the DROP case as we can emit “ADD CONSTRAINT”
in the CREATE case without a name; the database typically assigns one
automatically.

The ForeignKeyConstraint.use_alter and
ForeignKey.use_alter keyword arguments can be used
to manually resolve dependency cycles. We can add this flag only to
the 'element' table as follows:

element = Table(
 'element', metadata,
 Column('element_id', Integer, primary_key=True),
 Column('parent_node_id', Integer),
 ForeignKeyConstraint(
 ['parent_node_id'], ['node.node_id'],
 use_alter=True, name='fk_element_parent_node_id'
)
)

in our CREATE DDL we will see the ALTER statement only for this constraint,
and not the other one:

>>> with engine.connect() as conn:
... metadata.create_all(conn, checkfirst=False)
CREATE TABLE element (
 element_id SERIAL NOT NULL,
 parent_node_id INTEGER,
 PRIMARY KEY (element_id)
)

CREATE TABLE node (
 node_id SERIAL NOT NULL,
 primary_element INTEGER,
 PRIMARY KEY (node_id),
 FOREIGN KEY(primary_element) REFERENCES element (element_id)
)

ALTER TABLE element ADD CONSTRAINT fk_element_parent_node_id
FOREIGN KEY(parent_node_id) REFERENCES node (node_id)

ForeignKeyConstraint.use_alter and
ForeignKey.use_alter, when used in conjunction with a drop
operation, will require that the constraint is named, else an error
like the following is generated:

sqlalchemy.exc.CompileError: Can't emit DROP CONSTRAINT for constraint
ForeignKeyConstraint(...); it has no name

Changed in version 1.0.0: - The DDL system invoked by
MetaData.create_all()
and MetaData.drop_all() will now automatically resolve mutually
depdendent foreign keys between tables declared by
ForeignKeyConstraint and ForeignKey objects, without
the need to explicitly set the ForeignKeyConstraint.use_alter
flag.

Changed in version 1.0.0: - The ForeignKeyConstraint.use_alter
flag can be used with an un-named constraint; only the DROP operation
will emit a specific error when actually called upon.

See also

Configuring Constraint Naming Conventions

sort_tables_and_constraints()

ON UPDATE and ON DELETE

Most databases support cascading of foreign key values, that is the when a
parent row is updated the new value is placed in child rows, or when the
parent row is deleted all corresponding child rows are set to null or deleted.
In data definition language these are specified using phrases like “ON UPDATE
CASCADE”, “ON DELETE CASCADE”, and “ON DELETE SET NULL”, corresponding to
foreign key constraints. The phrase after “ON UPDATE” or “ON DELETE” may also
other allow other phrases that are specific to the database in use. The
ForeignKey and
ForeignKeyConstraint objects support the
generation of this clause via the onupdate and ondelete keyword
arguments. The value is any string which will be output after the appropriate
“ON UPDATE” or “ON DELETE” phrase:

child = Table('child', meta,
 Column('id', Integer,
 ForeignKey('parent.id', onupdate="CASCADE", ondelete="CASCADE"),
 primary_key=True
)
)

composite = Table('composite', meta,
 Column('id', Integer, primary_key=True),
 Column('rev_id', Integer),
 Column('note_id', Integer),
 ForeignKeyConstraint(
 ['rev_id', 'note_id'],
 ['revisions.id', 'revisions.note_id'],
 onupdate="CASCADE", ondelete="SET NULL"
)
)

Note that these clauses are not supported on SQLite, and require InnoDB
tables when used with MySQL. They may also not be supported on other
databases.

UNIQUE Constraint

Unique constraints can be created anonymously on a single column using the
unique keyword on Column. Explicitly named
unique constraints and/or those with multiple columns are created via the
UniqueConstraint table-level construct.

from sqlalchemy import UniqueConstraint

meta = MetaData()
mytable = Table('mytable', meta,

 # per-column anonymous unique constraint
 Column('col1', Integer, unique=True),

 Column('col2', Integer),
 Column('col3', Integer),

 # explicit/composite unique constraint. 'name' is optional.
 UniqueConstraint('col2', 'col3', name='uix_1')
)

CHECK Constraint

Check constraints can be named or unnamed and can be created at the Column or
Table level, using the CheckConstraint construct.
The text of the check constraint is passed directly through to the database,
so there is limited “database independent” behavior. Column level check
constraints generally should only refer to the column to which they are
placed, while table level constraints can refer to any columns in the table.

Note that some databases do not actively support check constraints such as
MySQL.

from sqlalchemy import CheckConstraint

meta = MetaData()
mytable = Table('mytable', meta,

 # per-column CHECK constraint
 Column('col1', Integer, CheckConstraint('col1>5')),

 Column('col2', Integer),
 Column('col3', Integer),

 # table level CHECK constraint. 'name' is optional.
 CheckConstraint('col2 > col3 + 5', name='check1')
)

sqlmytable.create(engine)
CREATE TABLE mytable (
 col1 INTEGER CHECK (col1>5),
 col2 INTEGER,
 col3 INTEGER,
 CONSTRAINT check1 CHECK (col2 > col3 + 5)
)

PRIMARY KEY Constraint

The primary key constraint of any Table object is implicitly
present, based on the Column objects that are marked with the
Column.primary_key flag. The PrimaryKeyConstraint
object provides explicit access to this constraint, which includes the
option of being configured directly:

from sqlalchemy import PrimaryKeyConstraint

my_table = Table('mytable', metadata,
 Column('id', Integer),
 Column('version_id', Integer),
 Column('data', String(50)),
 PrimaryKeyConstraint('id', 'version_id', name='mytable_pk')
)

See also

PrimaryKeyConstraint - detailed API documentation.

Setting up Constraints when using the Declarative ORM Extension

The Table is the SQLAlchemy Core construct that allows one to define
table metadata, which among other things can be used by the SQLAlchemy ORM
as a target to map a class. The Declarative
extension allows the Table object to be created automatically, given
the contents of the table primarily as a mapping of Column objects.

To apply table-level constraint objects such as ForeignKeyConstraint
to a table defined using Declarative, use the __table_args__ attribute,
described at Table Configuration.

Configuring Constraint Naming Conventions

Relational databases typically assign explicit names to all constraints and
indexes. In the common case that a table is created using CREATE TABLE
where constraints such as CHECK, UNIQUE, and PRIMARY KEY constraints are
produced inline with the table definition, the database usually has a system
in place in which names are automatically assigned to these constraints, if
a name is not otherwise specified. When an existing database table is altered
in a database using a command such as ALTER TABLE, this command typically
needs to specify expicit names for new constraints as well as be able to
specify the name of an existing constraint that is to be dropped or modified.

Constraints can be named explicitly using the Constraint.name parameter,
and for indexes the Index.name parameter. However, in the
case of constraints this parameter is optional. There are also the use
cases of using the Column.unique and Column.index
parameters which create UniqueConstraint and Index objects
without an explicit name being specified.

The use case of alteration of existing tables and constraints can be handled
by schema migration tools such as Alembic.
However, neither Alembic nor SQLAlchemy currently create names for constraint
objects where the name is otherwise unspecified, leading to the case where
being able to alter existing constraints means that one must reverse-engineer
the naming system used by the relational database to auto-assign names,
or that care must be taken to ensure that all constraints are named.

In contrast to having to assign explicit names to all Constraint
and Index objects, automated naming schemes can be constructed
using events. This approach has the advantage that constraints will get
a consistent naming scheme without the need for explicit name parameters
throughout the code, and also that the convention takes place just as well
for those constraints and indexes produced by the Column.unique
and Column.index parameters. As of SQLAlchemy 0.9.2 this
event-based approach is included, and can be configured using the argument
MetaData.naming_convention.

MetaData.naming_convention refers to a dictionary which accepts
the Index class or individual Constraint classes as keys,
and Python string templates as values. It also accepts a series of
string-codes as alternative keys, "fk", "pk",
"ix", "ck", "uq" for foreign key, primary key, index,
check, and unique constraint, respectively. The string templates in this
dictionary are used whenever a constraint or index is associated with this
MetaData object that does not have an existing name given (including
one exception case where an existing name can be further embellished).

An example naming convention that suits basic cases is as follows:

convention = {
 "ix": 'ix_%(column_0_label)s',
 "uq": "uq_%(table_name)s_%(column_0_name)s",
 "ck": "ck_%(table_name)s_%(constraint_name)s",
 "fk": "fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s",
 "pk": "pk_%(table_name)s"
}

metadata = MetaData(naming_convention=convention)

The above convention will establish names for all constraints within
the target MetaData collection.
For example, we can observe the name produced when we create an unnamed
UniqueConstraint:

>>> user_table = Table('user', metadata,
... Column('id', Integer, primary_key=True),
... Column('name', String(30), nullable=False),
... UniqueConstraint('name')
...)
>>> list(user_table.constraints)[1].name
'uq_user_name'

This same feature takes effect even if we just use the Column.unique
flag:

>>> user_table = Table('user', metadata,
... Column('id', Integer, primary_key=True),
... Column('name', String(30), nullable=False, unique=True)
...)
>>> list(user_table.constraints)[1].name
'uq_user_name'

A key advantage to the naming convention approach is that the names are established
at Python construction time, rather than at DDL emit time. The effect this has
when using Alembic’s --autogenerate feature is that the naming convention
will be explicit when a new migration script is generated:

def upgrade():
 op.create_unique_constraint("uq_user_name", "user", ["name"])

The above "uq_user_name" string was copied from the UniqueConstraint
object that --autogenerate located in our metadata.

The default value for MetaData.naming_convention handles
the long-standing SQLAlchemy behavior of assigning a name to a Index
object that is created using the Column.index parameter:

>>> from sqlalchemy.sql.schema import DEFAULT_NAMING_CONVENTION
>>> DEFAULT_NAMING_CONVENTION
immutabledict({'ix': 'ix_%(column_0_label)s'})

The tokens available include %(table_name)s,
%(referred_table_name)s, %(column_0_name)s, %(column_0_label)s,
%(column_0_key)s, %(referred_column_0_name)s, and %(constraint_name)s;
the documentation for MetaData.naming_convention describes each
individually. New tokens can also be added, by specifying an additional
token and a callable within the naming_convention dictionary. For example,
if we wanted to name our foreign key constraints using a GUID scheme,
we could do that as follows:

import uuid

def fk_guid(constraint, table):
 str_tokens = [
 table.name,
] + [
 element.parent.name for element in constraint.elements
] + [
 element.target_fullname for element in constraint.elements
]
 guid = uuid.uuid5(uuid.NAMESPACE_OID, "_".join(str_tokens).encode('ascii'))
 return str(guid)

convention = {
 "fk_guid": fk_guid,
 "ix": 'ix_%(column_0_label)s',
 "fk": "fk_%(fk_guid)s",
}

Above, when we create a new ForeignKeyConstraint, we will get a
name as follows:

>>> metadata = MetaData(naming_convention=convention)

>>> user_table = Table('user', metadata,
... Column('id', Integer, primary_key=True),
... Column('version', Integer, primary_key=True),
... Column('data', String(30))
...)
>>> address_table = Table('address', metadata,
... Column('id', Integer, primary_key=True),
... Column('user_id', Integer),
... Column('user_version_id', Integer)
...)
>>> fk = ForeignKeyConstraint(['user_id', 'user_version_id'],
... ['user.id', 'user.version'])
>>> address_table.append_constraint(fk)
>>> fk.name
fk_0cd51ab5-8d70-56e8-a83c-86661737766d

See also

MetaData.naming_convention - for additional usage details
as well as a listing of all available naming components.

The Importance of Naming Constraints - in the Alembic documentation.

New in version 0.9.2: Added the MetaData.naming_convention argument.

Naming CHECK Constraints

The CheckConstraint object is configured against an arbitrary
SQL expression, which can have any number of columns present, and additionally
is often configured using a raw SQL string. Therefore a common convention
to use with CheckConstraint is one where we expect the object
to have a name already, and we then enhance it with other convention elements.
A typical convention is "ck_%(table_name)s_%(constraint_name)s":

metadata = MetaData(
 naming_convention={"ck": "ck_%(table_name)s_%(constraint_name)s"}
)

Table('foo', metadata,
 Column('value', Integer),
 CheckConstraint('value > 5', name='value_gt_5')
)

The above table will produce the name ck_foo_value_gt_5:

CREATE TABLE foo (
 value INTEGER,
 CONSTRAINT ck_foo_value_gt_5 CHECK (value > 5)
)

CheckConstraint also supports the %(columns_0_name)s
token; we can make use of this by ensuring we use a Column or
sql.expression.column() element within the constraint’s expression,
either by declaring the constraint separate from the table:

metadata = MetaData(
 naming_convention={"ck": "ck_%(table_name)s_%(column_0_name)s"}
)

foo = Table('foo', metadata,
 Column('value', Integer)
)

CheckConstraint(foo.c.value > 5)

or by using a sql.expression.column() inline:

from sqlalchemy import column

metadata = MetaData(
 naming_convention={"ck": "ck_%(table_name)s_%(column_0_name)s"}
)

foo = Table('foo', metadata,
 Column('value', Integer),
 CheckConstraint(column('value') > 5)
)

Both will produce the name ck_foo_value:

CREATE TABLE foo (
 value INTEGER,
 CONSTRAINT ck_foo_value CHECK (value > 5)
)

The determination of the name of “column zero” is performed by scanning
the given expression for column objects. If the expression has more than
one column present, the scan does use a deterministic search, however the
structure of the expression will determine which column is noted as
“column zero”.

New in version 1.0.0: The CheckConstraint object now supports
the column_0_name naming convention token.

Configuring Naming for Boolean, Enum, and other schema types

The SchemaType class refers to type objects such as Boolean
and Enum which generate a CHECK constraint accompanying the type.
The name for the constraint here is most directly set up by sending
the “name” parameter, e.g. Boolean.name:

Table('foo', metadata,
 Column('flag', Boolean(name='ck_foo_flag'))
)

The naming convention feature may be combined with these types as well,
normally by using a convention which includes %(constraint_name)s
and then applying a name to the type:

metadata = MetaData(
 naming_convention={"ck": "ck_%(table_name)s_%(constraint_name)s"}
)

Table('foo', metadata,
 Column('flag', Boolean(name='flag_bool'))
)

The above table will produce the constraint name ck_foo_flag_bool:

CREATE TABLE foo (
 flag BOOL,
 CONSTRAINT ck_foo_flag_bool CHECK (flag IN (0, 1))
)

The SchemaType classes use special internal symbols so that
the naming convention is only determined at DDL compile time. On Postgresql,
there’s a native BOOLEAN type, so the CHECK constraint of Boolean
is not needed; we are safe to set up a Boolean type without a
name, even though a naming convention is in place for check constraints.
This convention will only be consulted for the CHECK constraint if we
run against a database without a native BOOLEAN type like SQLite or
MySQL.

The CHECK constraint may also make use of the column_0_name token,
which works nicely with SchemaType since these constraints have
only one column:

metadata = MetaData(
 naming_convention={"ck": "ck_%(table_name)s_%(column_0_name)s"}
)

Table('foo', metadata,
 Column('flag', Boolean())
)

The above schema will produce:

CREATE TABLE foo (
 flag BOOL,
 CONSTRAINT ck_foo_flag CHECK (flag IN (0, 1))
)

Changed in version 1.0: Constraint naming conventions that don’t include
%(constraint_name)s again work with SchemaType constraints.

Constraints API

	
class sqlalchemy.schema.Constraint(name=None, deferrable=None, initially=None, _create_rule=None, info=None, _type_bound=False, **dialect_kw)

	Bases: sqlalchemy.sql.base.DialectKWArgs, sqlalchemy.schema.SchemaItem

A table-level SQL constraint.

	
__init__(name=None, deferrable=None, initially=None, _create_rule=None, info=None, _type_bound=False, **dialect_kw)

	Create a SQL constraint.

	Parameters:
	
	name¶ – Optional, the in-database name of this Constraint.

	deferrable¶ – Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when
issuing DDL for this constraint.

	initially¶ – Optional string. If set, emit INITIALLY <value> when issuing DDL
for this constraint.

	info¶ – Optional data dictionary which will be populated into the
SchemaItem.info attribute of this object.

New in version 1.0.0.

	_create_rule¶ – a callable which is passed the DDLCompiler object during
compilation. Returns True or False to signal inline generation of
this Constraint.

The AddConstraint and DropConstraint DDL constructs provide
DDLElement’s more comprehensive “conditional DDL” approach that is
passed a database connection when DDL is being issued. _create_rule
is instead called during any CREATE TABLE compilation, where there
may not be any transaction/connection in progress. However, it
allows conditional compilation of the constraint even for backends
which do not support addition of constraints through ALTER TABLE,
which currently includes SQLite.

_create_rule is used by some types to create constraints.
Currently, its call signature is subject to change at any time.

	**dialect_kw¶ – Additional keyword arguments are dialect
specific, and passed in the form <dialectname>_<argname>. See
the documentation regarding an individual dialect at
Dialects for detail on documented arguments.

	
class sqlalchemy.schema.ColumnCollectionMixin(*columns, **kw)

	
	
columns = None

	A ColumnCollection of Column objects.

This collection represents the columns which are referred to by
this object.

	
class sqlalchemy.schema.ColumnCollectionConstraint(*columns, **kw)

	Bases: sqlalchemy.schema.ColumnCollectionMixin, sqlalchemy.schema.Constraint

A constraint that proxies a ColumnCollection.

	
__init__(*columns, **kw)

	

	Parameters:
	
	*columns¶ – A sequence of column names or Column objects.

	name¶ – Optional, the in-database name of this constraint.

	deferrable¶ – Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when
issuing DDL for this constraint.

	initially¶ – Optional string. If set, emit INITIALLY <value> when issuing DDL
for this constraint.

	**kw¶ – other keyword arguments including dialect-specific
arguments are propagated to the Constraint superclass.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
contains_column(col)

	Return True if this constraint contains the given column.

Note that this object also contains an attribute .columns
which is a ColumnCollection of Column objects.

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
get_children(**kwargs)

	
inherited from the get_children() method of SchemaItem

used to allow SchemaVisitor access

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
class sqlalchemy.schema.CheckConstraint(sqltext, name=None, deferrable=None, initially=None, table=None, info=None, _create_rule=None, _autoattach=True, _type_bound=False)

	Bases: sqlalchemy.schema.ColumnCollectionConstraint

A table- or column-level CHECK constraint.

Can be included in the definition of a Table or Column.

	
__init__(sqltext, name=None, deferrable=None, initially=None, table=None, info=None, _create_rule=None, _autoattach=True, _type_bound=False)

	Construct a CHECK constraint.

	Parameters:
	
	sqltext¶ – A string containing the constraint definition, which will be used
verbatim, or a SQL expression construct. If given as a string,
the object is converted to a Text object. If the textual
string includes a colon character, escape this using a backslash:

CheckConstraint(r"foo ~ E'a(?\:b|c)d")

	name¶ – Optional, the in-database name of the constraint.

	deferrable¶ – Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when
issuing DDL for this constraint.

	initially¶ – Optional string. If set, emit INITIALLY <value> when issuing DDL
for this constraint.

	info¶ – Optional data dictionary which will be populated into the
SchemaItem.info attribute of this object.

New in version 1.0.0.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
contains_column(col)

	
inherited from the contains_column() method of ColumnCollectionConstraint

Return True if this constraint contains the given column.

Note that this object also contains an attribute .columns
which is a ColumnCollection of Column objects.

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
get_children(**kwargs)

	
inherited from the get_children() method of SchemaItem

used to allow SchemaVisitor access

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
class sqlalchemy.schema.ForeignKey(column, _constraint=None, use_alter=False, name=None, onupdate=None, ondelete=None, deferrable=None, initially=None, link_to_name=False, match=None, info=None, **dialect_kw)

	Bases: sqlalchemy.sql.base.DialectKWArgs, sqlalchemy.schema.SchemaItem

Defines a dependency between two columns.

ForeignKey is specified as an argument to a Column object,
e.g.:

t = Table("remote_table", metadata,
 Column("remote_id", ForeignKey("main_table.id"))
)

Note that ForeignKey is only a marker object that defines
a dependency between two columns. The actual constraint
is in all cases represented by the ForeignKeyConstraint
object. This object will be generated automatically when
a ForeignKey is associated with a Column which
in turn is associated with a Table. Conversely,
when ForeignKeyConstraint is applied to a Table,
ForeignKey markers are automatically generated to be
present on each associated Column, which are also
associated with the constraint object.

Note that you cannot define a “composite” foreign key constraint,
that is a constraint between a grouping of multiple parent/child
columns, using ForeignKey objects. To define this grouping,
the ForeignKeyConstraint object must be used, and applied
to the Table. The associated ForeignKey objects
are created automatically.

The ForeignKey objects associated with an individual
Column object are available in the foreign_keys collection
of that column.

Further examples of foreign key configuration are in
Defining Foreign Keys.

	
__init__(column, _constraint=None, use_alter=False, name=None, onupdate=None, ondelete=None, deferrable=None, initially=None, link_to_name=False, match=None, info=None, **dialect_kw)

	Construct a column-level FOREIGN KEY.

The ForeignKey object when constructed generates a
ForeignKeyConstraint which is associated with the parent
Table object’s collection of constraints.

	Parameters:
	
	column¶ – A single target column for the key relationship. A
Column object or a column name as a string:
tablename.columnkey or schema.tablename.columnkey.
columnkey is the key which has been assigned to the column
(defaults to the column name itself), unless link_to_name is
True in which case the rendered name of the column is used.

New in version 0.7.4: Note that if the schema name is not included, and the
underlying MetaData has a “schema”, that value will
be used.

	name¶ – Optional string. An in-database name for the key if
constraint is not provided.

	onupdate¶ – Optional string. If set, emit ON UPDATE <value> when
issuing DDL for this constraint. Typical values include CASCADE,
DELETE and RESTRICT.

	ondelete¶ – Optional string. If set, emit ON DELETE <value> when
issuing DDL for this constraint. Typical values include CASCADE,
DELETE and RESTRICT.

	deferrable¶ – Optional bool. If set, emit DEFERRABLE or NOT
DEFERRABLE when issuing DDL for this constraint.

	initially¶ – Optional string. If set, emit INITIALLY <value> when
issuing DDL for this constraint.

	link_to_name¶ – if True, the string name given in column is
the rendered name of the referenced column, not its locally
assigned key.

	use_alter¶ – passed to the underlying
ForeignKeyConstraint to indicate the constraint should
be generated/dropped externally from the CREATE TABLE/ DROP TABLE
statement. See ForeignKeyConstraint.use_alter
for further description.

See also

ForeignKeyConstraint.use_alter

Creating/Dropping Foreign Key Constraints via ALTER

	match¶ – Optional string. If set, emit MATCH <value> when issuing
DDL for this constraint. Typical values include SIMPLE, PARTIAL
and FULL.

	info¶ – Optional data dictionary which will be populated into the
SchemaItem.info attribute of this object.

New in version 1.0.0.

	**dialect_kw¶ – Additional keyword arguments are dialect
specific, and passed in the form <dialectname>_<argname>. The
arguments are ultimately handled by a corresponding
ForeignKeyConstraint. See the documentation regarding
an individual dialect at Dialects for detail on
documented arguments.

New in version 0.9.2.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
column

	Return the target Column referenced by this
ForeignKey.

If no target column has been established, an exception
is raised.

Changed in version 0.9.0: Foreign key target column resolution now occurs as soon as both
the ForeignKey object and the remote Column to which it refers
are both associated with the same MetaData object.

	
copy(schema=None)

	Produce a copy of this ForeignKey object.

The new ForeignKey will not be bound
to any Column.

This method is usually used by the internal
copy procedures of Column, Table,
and MetaData.

	Parameters:
	schema¶ – The returned ForeignKey will
reference the original table and column name, qualified
by the given string schema name.

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
get_children(**kwargs)

	
inherited from the get_children() method of SchemaItem

used to allow SchemaVisitor access

	
get_referent(table)

	Return the Column in the given Table
referenced by this ForeignKey.

Returns None if this ForeignKey does not reference the given
Table.

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
references(table)

	Return True if the given Table is referenced by this
ForeignKey.

	
target_fullname

	Return a string based ‘column specification’ for this
ForeignKey.

This is usually the equivalent of the string-based “tablename.colname”
argument first passed to the object’s constructor.

	
class sqlalchemy.schema.ForeignKeyConstraint(columns, refcolumns, name=None, onupdate=None, ondelete=None, deferrable=None, initially=None, use_alter=False, link_to_name=False, match=None, table=None, info=None, **dialect_kw)

	Bases: sqlalchemy.schema.ColumnCollectionConstraint

A table-level FOREIGN KEY constraint.

Defines a single column or composite FOREIGN KEY ... REFERENCES
constraint. For a no-frills, single column foreign key, adding a
ForeignKey to the definition of a Column is a
shorthand equivalent for an unnamed, single column
ForeignKeyConstraint.

Examples of foreign key configuration are in Defining Foreign Keys.

	
__init__(columns, refcolumns, name=None, onupdate=None, ondelete=None, deferrable=None, initially=None, use_alter=False, link_to_name=False, match=None, table=None, info=None, **dialect_kw)

	Construct a composite-capable FOREIGN KEY.

	Parameters:
	
	columns¶ – A sequence of local column names. The named columns
must be defined and present in the parent Table. The names should
match the key given to each column (defaults to the name) unless
link_to_name is True.

	refcolumns¶ – A sequence of foreign column names or Column
objects. The columns must all be located within the same Table.

	name¶ – Optional, the in-database name of the key.

	onupdate¶ – Optional string. If set, emit ON UPDATE <value> when
issuing DDL for this constraint. Typical values include CASCADE,
DELETE and RESTRICT.

	ondelete¶ – Optional string. If set, emit ON DELETE <value> when
issuing DDL for this constraint. Typical values include CASCADE,
DELETE and RESTRICT.

	deferrable¶ – Optional bool. If set, emit DEFERRABLE or NOT
DEFERRABLE when issuing DDL for this constraint.

	initially¶ – Optional string. If set, emit INITIALLY <value> when
issuing DDL for this constraint.

	link_to_name¶ – if True, the string name given in column is
the rendered name of the referenced column, not its locally assigned
key.

	use_alter¶ – If True, do not emit the DDL for this constraint as
part of the CREATE TABLE definition. Instead, generate it via an
ALTER TABLE statement issued after the full collection of tables
have been created, and drop it via an ALTER TABLE statement before
the full collection of tables are dropped.

The use of ForeignKeyConstraint.use_alter is
particularly geared towards the case where two or more tables
are established within a mutually-dependent foreign key constraint
relationship; however, the MetaData.create_all() and
MetaData.drop_all() methods will perform this resolution
automatically, so the flag is normally not needed.

Changed in version 1.0.0: Automatic resolution of foreign key
cycles has been added, removing the need to use the
ForeignKeyConstraint.use_alter in typical use
cases.

See also

Creating/Dropping Foreign Key Constraints via ALTER

	match¶ – Optional string. If set, emit MATCH <value> when issuing
DDL for this constraint. Typical values include SIMPLE, PARTIAL
and FULL.

	info¶ – Optional data dictionary which will be populated into the
SchemaItem.info attribute of this object.

New in version 1.0.0.

	**dialect_kw¶ – Additional keyword arguments are dialect
specific, and passed in the form <dialectname>_<argname>. See
the documentation regarding an individual dialect at
Dialects for detail on documented arguments.

New in version 0.9.2.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
column_keys

	Return a list of string keys representing the local
columns in this ForeignKeyConstraint.

This list is either the original string arguments sent
to the constructor of the ForeignKeyConstraint,
or if the constraint has been initialized with Column
objects, is the string .key of each element.

New in version 1.0.0.

	
contains_column(col)

	
inherited from the contains_column() method of ColumnCollectionConstraint

Return True if this constraint contains the given column.

Note that this object also contains an attribute .columns
which is a ColumnCollection of Column objects.

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
get_children(**kwargs)

	
inherited from the get_children() method of SchemaItem

used to allow SchemaVisitor access

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
referred_table

	The Table object to which this
ForeignKeyConstraint references.

This is a dynamically calculated attribute which may not be available
if the constraint and/or parent table is not yet associated with
a metadata collection that contains the referred table.

New in version 1.0.0.

	
class sqlalchemy.schema.PrimaryKeyConstraint(*columns, **kw)

	Bases: sqlalchemy.schema.ColumnCollectionConstraint

A table-level PRIMARY KEY constraint.

The PrimaryKeyConstraint object is present automatically
on any Table object; it is assigned a set of
Column objects corresponding to those marked with
the Column.primary_key flag:

>>> my_table = Table('mytable', metadata,
... Column('id', Integer, primary_key=True),
... Column('version_id', Integer, primary_key=True),
... Column('data', String(50))
...)
>>> my_table.primary_key
PrimaryKeyConstraint(
 Column('id', Integer(), table=<mytable>,
 primary_key=True, nullable=False),
 Column('version_id', Integer(), table=<mytable>,
 primary_key=True, nullable=False)
)

The primary key of a Table can also be specified by using
a PrimaryKeyConstraint object explicitly; in this mode of usage,
the “name” of the constraint can also be specified, as well as other
options which may be recognized by dialects:

my_table = Table('mytable', metadata,
 Column('id', Integer),
 Column('version_id', Integer),
 Column('data', String(50)),
 PrimaryKeyConstraint('id', 'version_id',
 name='mytable_pk')
)

The two styles of column-specification should generally not be mixed.
An warning is emitted if the columns present in the
PrimaryKeyConstraint
don’t match the columns that were marked as primary_key=True, if both
are present; in this case, the columns are taken strictly from the
PrimaryKeyConstraint declaration, and those columns otherwise
marked as primary_key=True are ignored. This behavior is intended to
be backwards compatible with previous behavior.

Changed in version 0.9.2: Using a mixture of columns within a
PrimaryKeyConstraint in addition to columns marked as
primary_key=True now emits a warning if the lists don’t match.
The ultimate behavior of ignoring those columns marked with the flag
only is currently maintained for backwards compatibility; this warning
may raise an exception in a future release.

For the use case where specific options are to be specified on the
PrimaryKeyConstraint, but the usual style of using
primary_key=True flags is still desirable, an empty
PrimaryKeyConstraint may be specified, which will take on the
primary key column collection from the Table based on the
flags:

my_table = Table('mytable', metadata,
 Column('id', Integer, primary_key=True),
 Column('version_id', Integer, primary_key=True),
 Column('data', String(50)),
 PrimaryKeyConstraint(name='mytable_pk',
 mssql_clustered=True)
)

New in version 0.9.2: an empty PrimaryKeyConstraint may now
be specified for the purposes of establishing keyword arguments with
the constraint, independently of the specification of “primary key”
columns within the Table itself; columns marked as
primary_key=True will be gathered into the empty constraint’s
column collection.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
contains_column(col)

	
inherited from the contains_column() method of ColumnCollectionConstraint

Return True if this constraint contains the given column.

Note that this object also contains an attribute .columns
which is a ColumnCollection of Column objects.

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
get_children(**kwargs)

	
inherited from the get_children() method of SchemaItem

used to allow SchemaVisitor access

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
class sqlalchemy.schema.UniqueConstraint(*columns, **kw)

	Bases: sqlalchemy.schema.ColumnCollectionConstraint

A table-level UNIQUE constraint.

Defines a single column or composite UNIQUE constraint. For a no-frills,
single column constraint, adding unique=True to the Column
definition is a shorthand equivalent for an unnamed, single column
UniqueConstraint.

	
__init__(*columns, **kw)

	
inherited from the __init__() method of ColumnCollectionConstraint

	Parameters:
	
	*columns¶ – A sequence of column names or Column objects.

	name¶ – Optional, the in-database name of this constraint.

	deferrable¶ – Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when
issuing DDL for this constraint.

	initially¶ – Optional string. If set, emit INITIALLY <value> when issuing DDL
for this constraint.

	**kw¶ – other keyword arguments including dialect-specific
arguments are propagated to the Constraint superclass.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
contains_column(col)

	
inherited from the contains_column() method of ColumnCollectionConstraint

Return True if this constraint contains the given column.

Note that this object also contains an attribute .columns
which is a ColumnCollection of Column objects.

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
get_children(**kwargs)

	
inherited from the get_children() method of SchemaItem

used to allow SchemaVisitor access

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

	
sqlalchemy.schema.conv(cls, value, quote=None)

	Mark a string indicating that a name has already been converted
by a naming convention.

This is a string subclass that indicates a name that should not be
subject to any further naming conventions.

E.g. when we create a Constraint using a naming convention
as follows:

m = MetaData(naming_convention={
 "ck": "ck_%(table_name)s_%(constraint_name)s"
})
t = Table('t', m, Column('x', Integer),
 CheckConstraint('x > 5', name='x5'))

The name of the above constraint will be rendered as "ck_t_x5".
That is, the existing name x5 is used in the naming convention as the
constraint_name token.

In some situations, such as in migration scripts, we may be rendering
the above CheckConstraint with a name that’s already been
converted. In order to make sure the name isn’t double-modified, the
new name is applied using the schema.conv() marker. We can
use this explicitly as follows:

m = MetaData(naming_convention={
 "ck": "ck_%(table_name)s_%(constraint_name)s"
})
t = Table('t', m, Column('x', Integer),
 CheckConstraint('x > 5', name=conv('ck_t_x5')))

Where above, the schema.conv() marker indicates that the constraint
name here is final, and the name will render as "ck_t_x5" and not
"ck_t_ck_t_x5"

New in version 0.9.4.

See also

Configuring Constraint Naming Conventions

Indexes

Indexes can be created anonymously (using an auto-generated name ix_<column
label>) for a single column using the inline index keyword on
Column, which also modifies the usage of
unique to apply the uniqueness to the index itself, instead of adding a
separate UNIQUE constraint. For indexes with specific names or which encompass
more than one column, use the Index construct,
which requires a name.

Below we illustrate a Table with several
Index objects associated. The DDL for “CREATE
INDEX” is issued right after the create statements for the table:

meta = MetaData()
mytable = Table('mytable', meta,
 # an indexed column, with index "ix_mytable_col1"
 Column('col1', Integer, index=True),

 # a uniquely indexed column with index "ix_mytable_col2"
 Column('col2', Integer, index=True, unique=True),

 Column('col3', Integer),
 Column('col4', Integer),

 Column('col5', Integer),
 Column('col6', Integer),
)

place an index on col3, col4
Index('idx_col34', mytable.c.col3, mytable.c.col4)

place a unique index on col5, col6
Index('myindex', mytable.c.col5, mytable.c.col6, unique=True)

sqlmytable.create(engine)
CREATE TABLE mytable (
 col1 INTEGER,
 col2 INTEGER,
 col3 INTEGER,
 col4 INTEGER,
 col5 INTEGER,
 col6 INTEGER
)
CREATE INDEX ix_mytable_col1 ON mytable (col1)
CREATE UNIQUE INDEX ix_mytable_col2 ON mytable (col2)
CREATE UNIQUE INDEX myindex ON mytable (col5, col6)
CREATE INDEX idx_col34 ON mytable (col3, col4)

Note in the example above, the Index construct is created
externally to the table which it corresponds, using Column
objects directly. Index also supports
“inline” definition inside the Table, using string names to
identify columns:

meta = MetaData()
mytable = Table('mytable', meta,
 Column('col1', Integer),

 Column('col2', Integer),

 Column('col3', Integer),
 Column('col4', Integer),

 # place an index on col1, col2
 Index('idx_col12', 'col1', 'col2'),

 # place a unique index on col3, col4
 Index('idx_col34', 'col3', 'col4', unique=True)
)

New in version 0.7: Support of “inline” definition inside the Table
for Index.

The Index object also supports its own create() method:

i = Index('someindex', mytable.c.col5)
sqli.create(engine)
CREATE INDEX someindex ON mytable (col5)

Functional Indexes

Index supports SQL and function expressions, as supported by the
target backend. To create an index against a column using a descending
value, the ColumnElement.desc() modifier may be used:

from sqlalchemy import Index

Index('someindex', mytable.c.somecol.desc())

Or with a backend that supports functional indexes such as Postgresql,
a “case insensitive” index can be created using the lower() function:

from sqlalchemy import func, Index

Index('someindex', func.lower(mytable.c.somecol))

New in version 0.8: Index supports SQL expressions and functions
as well as plain columns.

Index API

	
class sqlalchemy.schema.Index(name, *expressions, **kw)

	Bases: sqlalchemy.sql.base.DialectKWArgs, sqlalchemy.schema.ColumnCollectionMixin, sqlalchemy.schema.SchemaItem

A table-level INDEX.

Defines a composite (one or more column) INDEX.

E.g.:

sometable = Table("sometable", metadata,
 Column("name", String(50)),
 Column("address", String(100))
)

Index("some_index", sometable.c.name)

For a no-frills, single column index, adding
Column also supports index=True:

sometable = Table("sometable", metadata,
 Column("name", String(50), index=True)
)

For a composite index, multiple columns can be specified:

Index("some_index", sometable.c.name, sometable.c.address)

Functional indexes are supported as well, typically by using the
func construct in conjunction with table-bound
Column objects:

Index("some_index", func.lower(sometable.c.name))

New in version 0.8: support for functional and expression-based indexes.

An Index can also be manually associated with a Table,
either through inline declaration or using
Table.append_constraint(). When this approach is used, the names
of the indexed columns can be specified as strings:

Table("sometable", metadata,
 Column("name", String(50)),
 Column("address", String(100)),
 Index("some_index", "name", "address")
)

To support functional or expression-based indexes in this form, the
text() construct may be used:

from sqlalchemy import text

Table("sometable", metadata,
 Column("name", String(50)),
 Column("address", String(100)),
 Index("some_index", text("lower(name)"))
)

New in version 0.9.5: the text() construct may be used to
specify Index expressions, provided the Index
is explicitly associated with the Table.

See also

Indexes - General information on Index.

Postgresql-Specific Index Options - PostgreSQL-specific options available for
the Index construct.

MySQL Specific Index Options - MySQL-specific options available for the
Index construct.

Clustered Index Support - MSSQL-specific options available for the
Index construct.

	
__init__(name, *expressions, **kw)

	Construct an index object.

	Parameters:
	
	name¶ – The name of the index

	*expressions¶ – Column expressions to include in the index. The expressions
are normally instances of Column, but may also
be arbitrary SQL expressions which ultimately refer to a
Column.

	unique=False¶ – Keyword only argument; if True, create a unique index.

	quote=None¶ – Keyword only argument; whether to apply quoting to the name of
the index. Works in the same manner as that of
Column.quote.

	info=None¶ – Optional data dictionary which will be populated
into the SchemaItem.info attribute of this object.

New in version 1.0.0.

	**kw¶ – Additional keyword arguments not mentioned above are
dialect specific, and passed in the form
<dialectname>_<argname>. See the documentation regarding an
individual dialect at Dialects for detail on
documented arguments.

	
argument_for(dialect_name, argument_name, default)

	
inherited from the argument_for() method of DialectKWArgs

Add a new kind of dialect-specific keyword argument for this class.

E.g.:

Index.argument_for("mydialect", "length", None)

some_index = Index('a', 'b', mydialect_length=5)

The DialectKWArgs.argument_for() method is a per-argument
way adding extra arguments to the
DefaultDialect.construct_arguments dictionary. This
dictionary provides a list of argument names accepted by various
schema-level constructs on behalf of a dialect.

New dialects should typically specify this dictionary all at once as a
data member of the dialect class. The use case for ad-hoc addition of
argument names is typically for end-user code that is also using
a custom compilation scheme which consumes the additional arguments.

	Parameters:
	
	dialect_name¶ – name of a dialect. The dialect must be
locatable, else a NoSuchModuleError is raised. The
dialect must also include an existing
DefaultDialect.construct_arguments collection, indicating
that it participates in the keyword-argument validation and default
system, else ArgumentError is raised. If the dialect does
not include this collection, then any keyword argument can be
specified on behalf of this dialect already. All dialects packaged
within SQLAlchemy include this collection, however for third party
dialects, support may vary.

	argument_name¶ – name of the parameter.

	default¶ – default value of the parameter.

New in version 0.9.4.

	
bind

	Return the connectable associated with this Index.

	
create(bind=None)

	Issue a CREATE statement for this
Index, using the given Connectable
for connectivity.

See also

MetaData.create_all().

	
dialect_kwargs

	
inherited from the dialect_kwargs attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

The arguments are present here in their original <dialect>_<kwarg>
format. Only arguments that were actually passed are included;
unlike the DialectKWArgs.dialect_options collection, which
contains all options known by this dialect including defaults.

The collection is also writable; keys are accepted of the
form <dialect>_<kwarg> where the value will be assembled
into the list of options.

New in version 0.9.2.

Changed in version 0.9.4: The DialectKWArgs.dialect_kwargs
collection is now writable.

See also

DialectKWArgs.dialect_options - nested dictionary form

	
dialect_options

	
inherited from the dialect_options attribute of DialectKWArgs

A collection of keyword arguments specified as dialect-specific
options to this construct.

This is a two-level nested registry, keyed to <dialect_name>
and <argument_name>. For example, the postgresql_where
argument would be locatable as:

arg = my_object.dialect_options['postgresql']['where']

New in version 0.9.2.

See also

DialectKWArgs.dialect_kwargs - flat dictionary form

	
drop(bind=None)

	Issue a DROP statement for this
Index, using the given Connectable
for connectivity.

See also

MetaData.drop_all().

	
get_children(**kwargs)

	
inherited from the get_children() method of SchemaItem

used to allow SchemaVisitor access

	
info

	
inherited from the info attribute of SchemaItem

Info dictionary associated with the object, allowing user-defined
data to be associated with this SchemaItem.

The dictionary is automatically generated when first accessed.
It can also be specified in the constructor of some objects,
such as Table and Column.

	
kwargs

	
inherited from the kwargs attribute of DialectKWArgs

A synonym for DialectKWArgs.dialect_kwargs.

	
quote

	
inherited from the quote attribute of SchemaItem

Return the value of the quote flag passed
to this schema object, for those schema items which
have a name field.

Deprecated since version 0.9: Use <obj>.name.quote

Customizing DDL

In the preceding sections we’ve discussed a variety of schema constructs
including Table,
ForeignKeyConstraint,
CheckConstraint, and
Sequence. Throughout, we’ve relied upon the
create() and create_all() methods of
Table and MetaData in
order to issue data definition language (DDL) for all constructs. When issued,
a pre-determined order of operations is invoked, and DDL to create each table
is created unconditionally including all constraints and other objects
associated with it. For more complex scenarios where database-specific DDL is
required, SQLAlchemy offers two techniques which can be used to add any DDL
based on any condition, either accompanying the standard generation of tables
or by itself.

Custom DDL

Custom DDL phrases are most easily achieved using the
DDL construct. This construct works like all the
other DDL elements except it accepts a string which is the text to be emitted:

event.listen(
 metadata,
 "after_create",
 DDL("ALTER TABLE users ADD CONSTRAINT "
 "cst_user_name_length "
 " CHECK (length(user_name) >= 8)")
)

A more comprehensive method of creating libraries of DDL constructs is to use
custom compilation - see Custom SQL Constructs and Compilation Extension for
details.

Controlling DDL Sequences

The DDL construct introduced previously also has the
ability to be invoked conditionally based on inspection of the
database. This feature is available using the DDLElement.execute_if()
method. For example, if we wanted to create a trigger but only on
the Postgresql backend, we could invoke this as:

mytable = Table(
 'mytable', metadata,
 Column('id', Integer, primary_key=True),
 Column('data', String(50))
)

trigger = DDL(
 "CREATE TRIGGER dt_ins BEFORE INSERT ON mytable "
 "FOR EACH ROW BEGIN SET NEW.data='ins'; END"
)

event.listen(
 mytable,
 'after_create',
 trigger.execute_if(dialect='postgresql')
)

The DDLElement.execute_if.dialect keyword also accepts a tuple
of string dialect names:

event.listen(
 mytable,
 "after_create",
 trigger.execute_if(dialect=('postgresql', 'mysql'))
)
event.listen(
 mytable,
 "before_drop",
 trigger.execute_if(dialect=('postgresql', 'mysql'))
)

The DDLElement.execute_if() method can also work against a callable
function that will receive the database connection in use. In the
example below, we use this to conditionally create a CHECK constraint,
first looking within the Postgresql catalogs to see if it exists:

def should_create(ddl, target, connection, **kw):
 row = connection.execute(
 "select conname from pg_constraint where conname='%s'" %
 ddl.element.name).scalar()
 return not bool(row)

def should_drop(ddl, target, connection, **kw):
 return not should_create(ddl, target, connection, **kw)

event.listen(
 users,
 "after_create",
 DDL(
 "ALTER TABLE users ADD CONSTRAINT "
 "cst_user_name_length CHECK (length(user_name) >= 8)"
).execute_if(callable_=should_create)
)
event.listen(
 users,
 "before_drop",
 DDL(
 "ALTER TABLE users DROP CONSTRAINT cst_user_name_length"
).execute_if(callable_=should_drop)
)

sqlusers.create(engine)
CREATE TABLE users (
 user_id SERIAL NOT NULL,
 user_name VARCHAR(40) NOT NULL,
 PRIMARY KEY (user_id)
)

select conname from pg_constraint where conname='cst_user_name_length'
ALTER TABLE users ADD CONSTRAINT cst_user_name_length CHECK (length(user_name) >= 8)

sqlusers.drop(engine)
select conname from pg_constraint where conname='cst_user_name_length'
ALTER TABLE users DROP CONSTRAINT cst_user_name_length
DROP TABLE users

Using the built-in DDLElement Classes

The sqlalchemy.schema package contains SQL expression constructs that
provide DDL expressions. For example, to produce a CREATE TABLE statement:

from sqlalchemy.schema import CreateTable
sqlengine.execute(CreateTable(mytable))
CREATE TABLE mytable (
 col1 INTEGER,
 col2 INTEGER,
 col3 INTEGER,
 col4 INTEGER,
 col5 INTEGER,
 col6 INTEGER
)

Above, the CreateTable construct works like any
other expression construct (such as select(), table.insert(), etc.).
All of SQLAlchemy’s DDL oriented constructs are subclasses of
the DDLElement base class; this is the base of all the
objects corresponding to CREATE and DROP as well as ALTER,
not only in SQLAlchemy but in Alembic Migrations as well.
A full reference of available constructs is in DDL Expression Constructs API.

User-defined DDL constructs may also be created as subclasses of
DDLElement itself. The documentation in
Custom SQL Constructs and Compilation Extension has several examples of this.

The event-driven DDL system described in the previous section
Controlling DDL Sequences is available with other DDLElement
objects as well. However, when dealing with the built-in constructs
such as CreateIndex, CreateSequence, etc, the event
system is of limited use, as methods like Table.create() and
MetaData.create_all() will invoke these constructs unconditionally.
In a future SQLAlchemy release, the DDL event system including conditional
execution will taken into account for built-in constructs that currently
invoke in all cases.

We can illustrate an event-driven
example with the AddConstraint and DropConstraint
constructs, as the event-driven system will work for CHECK and UNIQUE
constraints, using these as we did in our previous example of
DDLElement.execute_if():

def should_create(ddl, target, connection, **kw):
 row = connection.execute(
 "select conname from pg_constraint where conname='%s'" %
 ddl.element.name).scalar()
 return not bool(row)

def should_drop(ddl, target, connection, **kw):
 return not should_create(ddl, target, connection, **kw)

event.listen(
 users,
 "after_create",
 AddConstraint(constraint).execute_if(callable_=should_create)
)
event.listen(
 users,
 "before_drop",
 DropConstraint(constraint).execute_if(callable_=should_drop)
)

sqlusers.create(engine)
CREATE TABLE users (
 user_id SERIAL NOT NULL,
 user_name VARCHAR(40) NOT NULL,
 PRIMARY KEY (user_id)
)

select conname from pg_constraint where conname='cst_user_name_length'
ALTER TABLE users ADD CONSTRAINT cst_user_name_length CHECK (length(user_name) >= 8)

sqlusers.drop(engine)
select conname from pg_constraint where conname='cst_user_name_length'
ALTER TABLE users DROP CONSTRAINT cst_user_name_length
DROP TABLE users

While the above example is against the built-in AddConstraint
and DropConstraint objects, the main usefulness of DDL events
for now remains focused on the use of the DDL construct itself,
as well as with user-defined subclasses of DDLElement that aren’t
already part of the MetaData.create_all(), Table.create(),
and corresponding “drop” processes.

DDL Expression Constructs API

	
sqlalchemy.schema.sort_tables(tables, skip_fn=None, extra_dependencies=None)

	sort a collection of Table objects based on dependency.

This is a dependency-ordered sort which will emit Table
objects such that they will follow their dependent Table objects.
Tables are dependent on another based on the presence of
ForeignKeyConstraint objects as well as explicit dependencies
added by Table.add_is_dependent_on().

Warning

The sort_tables() function cannot by itself accommodate
automatic resolution of dependency cycles between tables, which
are usually caused by mutually dependent foreign key constraints.
To resolve these cycles, either the
ForeignKeyConstraint.use_alter parameter may be appled
to those constraints, or use the
sql.sort_tables_and_constraints() function which will break
out foreign key constraints involved in cycles separately.

	Parameters:
	
	tables¶ – a sequence of Table objects.

	skip_fn¶ – optional callable which will be passed a
ForeignKey object; if it returns True, this
constraint will not be considered as a dependency. Note this is
different from the same parameter in
sort_tables_and_constraints(), which is
instead passed the owning ForeignKeyConstraint object.

	extra_dependencies¶ – a sequence of 2-tuples of tables which will
also be considered as dependent on each other.

See also

sort_tables_and_constraints()

MetaData.sorted_tables() - uses this function to sort

	
sqlalchemy.schema.sort_tables_and_constraints(tables, filter_fn=None, extra_dependencies=None)

	sort a collection of Table / ForeignKeyConstraint
objects.

This is a dependency-ordered sort which will emit tuples of
(Table, [ForeignKeyConstraint, ...]) such that each
Table follows its dependent Table objects.
Remaining ForeignKeyConstraint objects that are separate due to
dependency rules not satisifed by the sort are emitted afterwards
as (None, [ForeignKeyConstraint ...]).

Tables are dependent on another based on the presence of
ForeignKeyConstraint objects, explicit dependencies
added by Table.add_is_dependent_on(), as well as dependencies
stated here using the skip_fn
and/or extra_dependencies
parameters.

	Parameters:
	
	tables¶ – a sequence of Table objects.

	filter_fn¶ – optional callable which will be passed a
ForeignKeyConstraint object, and returns a value based on
whether this constraint should definitely be included or excluded as
an inline constraint, or neither. If it returns False, the constraint
will definitely be included as a dependency that cannot be subject
to ALTER; if True, it will only be included as an ALTER result at
the end. Returning None means the constraint is included in the
table-based result unless it is detected as part of a dependency cycle.

	extra_dependencies¶ – a sequence of 2-tuples of tables which will
also be considered as dependent on each other.

New in version 1.0.0.

See also

sort_tables()

	
class sqlalchemy.schema.DDLElement

	Bases: sqlalchemy.sql.expression.Executable, sqlalchemy.schema._DDLCompiles

Base class for DDL expression constructs.

This class is the base for the general purpose DDL class,
as well as the various create/drop clause constructs such as
CreateTable, DropTable, AddConstraint,
etc.

DDLElement integrates closely with SQLAlchemy events,
introduced in Events. An instance of one is
itself an event receiving callable:

event.listen(
 users,
 'after_create',
 AddConstraint(constraint).execute_if(dialect='postgresql')
)

See also

DDL

DDLEvents

Events

Controlling DDL Sequences

	
__call__(target, bind, **kw)

	Execute the DDL as a ddl_listener.

	
against(target)

	Return a copy of this DDL against a specific schema item.

	
bind

	

	
callable_ = None

	

	
dialect = None

	

	
execute(bind=None, target=None)

	Execute this DDL immediately.

Executes the DDL statement in isolation using the supplied
Connectable or
Connectable assigned to the .bind
property, if not supplied. If the DDL has a conditional on
criteria, it will be invoked with None as the event.

	Parameters:
	
	bind¶ – Optional, an Engine or Connection. If not supplied, a valid
Connectable must be present in the
.bind property.

	target¶ – Optional, defaults to None. The target SchemaItem for the
execute call. Will be passed to the on callable if any,
and may also provide string expansion data for the
statement. See execute_at for more information.

	
execute_at(event_name, target)

	Link execution of this DDL to the DDL lifecycle of a SchemaItem.

Deprecated since version 0.7: See DDLEvents, as well as DDLElement.execute_if().

Links this DDLElement to a Table or MetaData instance,
executing it when that schema item is created or dropped. The DDL
statement will be executed using the same Connection and transactional
context as the Table create/drop itself. The .bind property of
this statement is ignored.

	Parameters:
	
	event¶ – One of the events defined in the schema item’s .ddl_events;
e.g. ‘before-create’, ‘after-create’, ‘before-drop’ or ‘after-drop’

	target¶ – The Table or MetaData instance for which this DDLElement will
be associated with.

A DDLElement instance can be linked to any number of schema items.

execute_at builds on the append_ddl_listener interface of
MetaData and Table objects.

Caveat: Creating or dropping a Table in isolation will also trigger
any DDL set to execute_at that Table’s MetaData. This may change
in a future release.

	
execute_if(dialect=None, callable_=None, state=None)

	Return a callable that will execute this
DDLElement conditionally.

Used to provide a wrapper for event listening:

event.listen(
 metadata,
 'before_create',
 DDL("my_ddl").execute_if(dialect='postgresql')
)

	Parameters:
	
	dialect¶ – May be a string, tuple or a callable
predicate. If a string, it will be compared to the name of the
executing database dialect:

DDL('something').execute_if(dialect='postgresql')

If a tuple, specifies multiple dialect names:

DDL('something').execute_if(dialect=('postgresql', 'mysql'))

	callable_¶ – A callable, which will be invoked with
four positional arguments as well as optional keyword
arguments:

	ddl:
	This DDL element.

	target:
	The Table or MetaData object which is the
target of this event. May be None if the DDL is executed
explicitly.

	bind:
	The Connection being used for DDL execution

	tables:
	Optional keyword argument - a list of Table objects which are to
be created/ dropped within a MetaData.create_all() or drop_all()
method call.

	state:
	Optional keyword argument - will be the state argument
passed to this function.

	checkfirst:
	Keyword argument, will be True if the ‘checkfirst’ flag was
set during the call to create(), create_all(),
drop(), drop_all().

If the callable returns a true value, the DDL statement will be
executed.

	state¶ – any value which will be passed to the callable_
as the state keyword argument.

See also

DDLEvents

Events

	
on = None

	

	
target = None

	

	
class sqlalchemy.schema.DDL(statement, on=None, context=None, bind=None)

	Bases: sqlalchemy.schema.DDLElement

A literal DDL statement.

Specifies literal SQL DDL to be executed by the database. DDL objects
function as DDL event listeners, and can be subscribed to those events
listed in DDLEvents, using either Table or
MetaData objects as targets. Basic templating support allows
a single DDL instance to handle repetitive tasks for multiple tables.

Examples:

from sqlalchemy import event, DDL

tbl = Table('users', metadata, Column('uid', Integer))
event.listen(tbl, 'before_create', DDL('DROP TRIGGER users_trigger'))

spow = DDL('ALTER TABLE %(table)s SET secretpowers TRUE')
event.listen(tbl, 'after_create', spow.execute_if(dialect='somedb'))

drop_spow = DDL('ALTER TABLE users SET secretpowers FALSE')
connection.execute(drop_spow)

When operating on Table events, the following statement
string substitions are available:

%(table)s - the Table name, with any required quoting applied
%(schema)s - the schema name, with any required quoting applied
%(fullname)s - the Table name including schema, quoted if needed

The DDL’s “context”, if any, will be combined with the standard
substitutions noted above. Keys present in the context will override
the standard substitutions.

	
__init__(statement, on=None, context=None, bind=None)

	Create a DDL statement.

	Parameters:
	
	statement¶ – A string or unicode string to be executed. Statements will be
processed with Python’s string formatting operator. See the
context argument and the execute_at method.

A literal ‘%’ in a statement must be escaped as ‘%%’.

SQL bind parameters are not available in DDL statements.

	on¶ –
Deprecated since version 0.7: See DDLElement.execute_if().

Optional filtering criteria. May be a string, tuple or a callable
predicate. If a string, it will be compared to the name of the
executing database dialect:

DDL('something', on='postgresql')

If a tuple, specifies multiple dialect names:

DDL('something', on=('postgresql', 'mysql'))

If a callable, it will be invoked with four positional arguments
as well as optional keyword arguments:

	ddl:
	This DDL element.

	event:
	The name of the event that has triggered this DDL, such as
‘after-create’ Will be None if the DDL is executed explicitly.

	target:
	The Table or MetaData object which is the target of
this event. May be None if the DDL is executed explicitly.

	connection:
	The Connection being used for DDL execution

	tables:
	Optional keyword argument - a list of Table objects which are to
be created/ dropped within a MetaData.create_all() or drop_all()
method call.

If the callable returns a true value, the DDL statement will be
executed.

	context¶ – Optional dictionary, defaults to None. These values will be
available for use in string substitutions on the DDL statement.

	bind¶ – Optional. A Connectable, used by
default when execute() is invoked without a bind argument.

See also

DDLEvents

Events

	
class sqlalchemy.schema._CreateDropBase(element, on=None, bind=None)

	Bases: sqlalchemy.schema.DDLElement

Base class for DDL constructs that represent CREATE and DROP or
equivalents.

The common theme of _CreateDropBase is a single
element attribute which refers to the element
to be created or dropped.

	
class sqlalchemy.schema.CreateTable(element, on=None, bind=None, include_foreign_key_constraints=None)

	Bases: sqlalchemy.schema._CreateDropBase

Represent a CREATE TABLE statement.

	
__init__(element, on=None, bind=None, include_foreign_key_constraints=None)

	Create a CreateTable construct.

	Parameters:
	
	element¶ – a Table that’s the subject
of the CREATE

	on¶ – See the description for ‘on’ in DDL.

	bind¶ – See the description for ‘bind’ in DDL.

	include_foreign_key_constraints¶ – optional sequence of
ForeignKeyConstraint objects that will be included
inline within the CREATE construct; if omitted, all foreign key
constraints that do not specify use_alter=True are included.

New in version 1.0.0.

	
class sqlalchemy.schema.DropTable(element, on=None, bind=None)

	Bases: sqlalchemy.schema._CreateDropBase

Represent a DROP TABLE statement.

	
class sqlalchemy.schema.CreateColumn(element)

	Bases: sqlalchemy.schema._DDLCompiles

Represent a Column as rendered in a CREATE TABLE statement,
via the CreateTable construct.

This is provided to support custom column DDL within the generation
of CREATE TABLE statements, by using the
compiler extension documented in Custom SQL Constructs and Compilation Extension
to extend CreateColumn.

Typical integration is to examine the incoming Column
object, and to redirect compilation if a particular flag or condition
is found:

from sqlalchemy import schema
from sqlalchemy.ext.compiler import compiles

@compiles(schema.CreateColumn)
def compile(element, compiler, **kw):
 column = element.element

 if "special" not in column.info:
 return compiler.visit_create_column(element, **kw)

 text = "%s SPECIAL DIRECTIVE %s" % (
 column.name,
 compiler.type_compiler.process(column.type)
)
 default = compiler.get_column_default_string(column)
 if default is not None:
 text += " DEFAULT " + default

 if not column.nullable:
 text += " NOT NULL"

 if column.constraints:
 text += " ".join(
 compiler.process(const)
 for const in column.constraints)
 return text

The above construct can be applied to a Table as follows:

from sqlalchemy import Table, Metadata, Column, Integer, String
from sqlalchemy import schema

metadata = MetaData()

table = Table('mytable', MetaData(),
 Column('x', Integer, info={"special":True}, primary_key=True),
 Column('y', String(50)),
 Column('z', String(20), info={"special":True})
)

metadata.create_all(conn)

Above, the directives we’ve added to the Column.info collection
will be detected by our custom compilation scheme:

CREATE TABLE mytable (
 x SPECIAL DIRECTIVE INTEGER NOT NULL,
 y VARCHAR(50),
 z SPECIAL DIRECTIVE VARCHAR(20),
 PRIMARY KEY (x)
)

The CreateColumn construct can also be used to skip certain
columns when producing a CREATE TABLE. This is accomplished by
creating a compilation rule that conditionally returns None.
This is essentially how to produce the same effect as using the
system=True argument on Column, which marks a column
as an implicitly-present “system” column.

For example, suppose we wish to produce a Table which skips
rendering of the Postgresql xmin column against the Postgresql
backend, but on other backends does render it, in anticipation of a
triggered rule. A conditional compilation rule could skip this name only
on Postgresql:

from sqlalchemy.schema import CreateColumn

@compiles(CreateColumn, "postgresql")
def skip_xmin(element, compiler, **kw):
 if element.element.name == 'xmin':
 return None
 else:
 return compiler.visit_create_column(element, **kw)

my_table = Table('mytable', metadata,
 Column('id', Integer, primary_key=True),
 Column('xmin', Integer)
)

Above, a CreateTable construct will generate a CREATE TABLE
which only includes the id column in the string; the xmin column
will be omitted, but only against the Postgresql backend.

New in version 0.8.3: The CreateColumn construct supports
skipping of columns by returning None from a custom compilation
rule.

New in version 0.8: The CreateColumn construct was added
to support custom column creation styles.

	
class sqlalchemy.schema.CreateSequence(element, on=None, bind=None)

	Bases: sqlalchemy.schema._CreateDropBase

Represent a CREATE SEQUENCE statement.

	
class sqlalchemy.schema.DropSequence(element, on=None, bind=None)

	Bases: sqlalchemy.schema._CreateDropBase

Represent a DROP SEQUENCE statement.

	
class sqlalchemy.schema.CreateIndex(element, on=None, bind=None)

	Bases: sqlalchemy.schema._CreateDropBase

Represent a CREATE INDEX statement.

	
class sqlalchemy.schema.DropIndex(element, on=None, bind=None)

	Bases: sqlalchemy.schema._CreateDropBase

Represent a DROP INDEX statement.

	
class sqlalchemy.schema.AddConstraint(element, *args, **kw)

	Bases: sqlalchemy.schema._CreateDropBase

Represent an ALTER TABLE ADD CONSTRAINT statement.

	
class sqlalchemy.schema.DropConstraint(element, cascade=False, **kw)

	Bases: sqlalchemy.schema._CreateDropBase

Represent an ALTER TABLE DROP CONSTRAINT statement.

	
class sqlalchemy.schema.CreateSchema(name, quote=None, **kw)

	Bases: sqlalchemy.schema._CreateDropBase

Represent a CREATE SCHEMA statement.

New in version 0.7.4.

The argument here is the string name of the schema.

	
__init__(name, quote=None, **kw)

	Create a new CreateSchema construct.

	
class sqlalchemy.schema.DropSchema(name, quote=None, cascade=False, **kw)

	Bases: sqlalchemy.schema._CreateDropBase

Represent a DROP SCHEMA statement.

The argument here is the string name of the schema.

New in version 0.7.4.

	
__init__(name, quote=None, cascade=False, **kw)

	Create a new DropSchema construct.

Column and Data Types

	Column and Data Types
	Generic Types

	SQL Standard and Multiple Vendor Types

	Vendor-Specific Types

	Custom Types
	Overriding Type Compilation

	Augmenting Existing Types

	TypeDecorator Recipes

	Replacing the Bind/Result Processing of Existing Types

	Applying SQL-level Bind/Result Processing

	Redefining and Creating New Operators

	Creating New Types

	Base Type API

Column and Data Types

SQLAlchemy provides abstractions for most common database data types,
and a mechanism for specifying your own custom data types.

The methods and attributes of type objects are rarely used directly.
Type objects are supplied to Table definitions
and can be supplied as type hints to functions for occasions where
the database driver returns an incorrect type.

>>> users = Table('users', metadata,
... Column('id', Integer, primary_key=True)
... Column('login', String(32))
...)

SQLAlchemy will use the Integer and String(32) type
information when issuing a CREATE TABLE statement and will use it
again when reading back rows SELECTed from the database.
Functions that accept a type (such as Column()) will
typically accept a type class or instance; Integer is equivalent
to Integer() with no construction arguments in this case.

Generic Types

Generic types specify a column that can read, write and store a
particular type of Python data. SQLAlchemy will choose the best
database column type available on the target database when issuing a
CREATE TABLE statement. For complete control over which column
type is emitted in CREATE TABLE, such as VARCHAR see `SQL
Standard Types`_ and the other sections of this chapter.

	
class sqlalchemy.types.BigInteger

	Bases: sqlalchemy.types.Integer

A type for bigger int integers.

Typically generates a BIGINT in DDL, and otherwise acts like
a normal Integer on the Python side.

	
class sqlalchemy.types.Boolean(create_constraint=True, name=None, _create_events=True)

	Bases: sqlalchemy.types.TypeEngine, sqlalchemy.types.SchemaType

A bool datatype.

Boolean typically uses BOOLEAN or SMALLINT on the DDL side, and on
the Python side deals in True or False.

	
__init__(create_constraint=True, name=None, _create_events=True)

	Construct a Boolean.

	Parameters:
	
	create_constraint¶ – defaults to True. If the boolean
is generated as an int/smallint, also create a CHECK constraint
on the table that ensures 1 or 0 as a value.

	name¶ – if a CHECK constraint is generated, specify
the name of the constraint.

	
class sqlalchemy.types.Date

	Bases: sqlalchemy.types._DateAffinity, sqlalchemy.types.TypeEngine

A type for datetime.date() objects.

	
class sqlalchemy.types.DateTime(timezone=False)

	Bases: sqlalchemy.types._DateAffinity, sqlalchemy.types.TypeEngine

A type for datetime.datetime() objects.

Date and time types return objects from the Python datetime
module. Most DBAPIs have built in support for the datetime
module, with the noted exception of SQLite. In the case of
SQLite, date and time types are stored as strings which are then
converted back to datetime objects when rows are returned.

	
__init__(timezone=False)

	Construct a new DateTime.

	Parameters:
	timezone¶ – boolean. If True, and supported by the
backend, will produce ‘TIMESTAMP WITH TIMEZONE’. For backends
that don’t support timezone aware timestamps, has no
effect.

	
class sqlalchemy.types.Enum(*enums, **kw)

	Bases: sqlalchemy.types.String, sqlalchemy.types.SchemaType

Generic Enum Type.

The Enum type provides a set of possible string values
which the column is constrained towards.

The Enum type will make use of the backend’s native “ENUM”
type if one is available; otherwise, it uses a VARCHAR datatype and
produces a CHECK constraint. Use of the backend-native enum type
can be disabled using the Enum.native_enum flag, and
the production of the CHECK constraint is configurable using the
Enum.create_constraint flag.

The Enum type also provides in-Python validation of both
input values and database-returned values. A LookupError is raised
for any Python value that’s not located in the given list of possible
values.

Changed in version 1.1: the Enum type now provides in-Python
validation of input values as well as on data being returned by
the database.

The source of enumerated values may be a list of string values, or
alternatively a PEP-435-compliant enumerated class. For the purposes
of the Enum datatype, this class need only provide a
__members__ method.

When using an enumerated class, the enumerated objects are used
both for input and output, rather than strings as is the case with
a plain-string enumerated type:

import enum
class MyEnum(enum.Enum):
 one = "one"
 two = "two"
 three = "three"

t = Table(
 'data', MetaData(),
 Column('value', Enum(MyEnum))
)

connection.execute(t.insert(), {"value": MyEnum.two})
assert connection.scalar(t.select()) is MyEnum.two

New in version 1.1: - support for PEP-435-style enumerated
classes.

See also

ENUM - PostgreSQL-specific type,
which has additional functionality.

	
__init__(*enums, **kw)

	Construct an enum.

Keyword arguments which don’t apply to a specific backend are ignored
by that backend.

	Parameters:
	
	*enums¶ – either exactly one PEP-435 compliant enumerated type
or one or more string or unicode enumeration labels. If unicode
labels are present, the convert_unicode flag is auto-enabled.

New in version 1.1: a PEP-435 style enumerated class may be
passed.

	convert_unicode¶ – Enable unicode-aware bind parameter and
result-set processing for this Enum’s data. This is set
automatically based on the presence of unicode label strings.

	create_constraint¶ – defaults to True. When creating a non-native
enumerated type, also build a CHECK constraint on the database
against the valid values.

New in version 1.1: - added Enum.create_constraint
which provides the option to disable the production of the
CHECK constraint for a non-native enumerated type.

	metadata¶ – Associate this type directly with a MetaData
object. For types that exist on the target database as an
independent schema construct (Postgresql), this type will be
created and dropped within create_all() and drop_all()
operations. If the type is not associated with any MetaData
object, it will associate itself with each Table in which it is
used, and will be created when any of those individual tables are
created, after a check is performed for its existence. The type is
only dropped when drop_all() is called for that Table
object’s metadata, however.

	name¶ – The name of this type. This is required for Postgresql
and any future supported database which requires an explicitly
named type, or an explicitly named constraint in order to generate
the type and/or a table that uses it. If a PEP-435 enumerated
class was used, its name (converted to lower case) is used by
default.

	native_enum¶ – Use the database’s native ENUM type when
available. Defaults to True. When False, uses VARCHAR + check
constraint for all backends.

	schema¶ – Schema name of this type. For types that exist on the
target database as an independent schema construct (Postgresql),
this parameter specifies the named schema in which the type is
present.

Note

The schema of the Enum type does not
by default make use of the schema established on the
owning Table. If this behavior is desired,
set the inherit_schema flag to True.

	quote¶ – Set explicit quoting preferences for the type’s name.

	inherit_schema¶ – When True, the “schema” from the owning
Table will be copied to the “schema” attribute of this
Enum, replacing whatever value was passed for the
schema attribute. This also takes effect when using the
Table.tometadata() operation.

	validate_strings¶ – when True, invalid string values will
be validated and not be allowed to pass through.

New in version 1.1.0b2.

	
create(bind=None, checkfirst=False)

	
inherited from the create() method of SchemaType

Issue CREATE ddl for this type, if applicable.

	
drop(bind=None, checkfirst=False)

	
inherited from the drop() method of SchemaType

Issue DROP ddl for this type, if applicable.

	
class sqlalchemy.types.Float(precision=None, asdecimal=False, decimal_return_scale=None, **kwargs)

	Bases: sqlalchemy.types.Numeric

Type representing floating point types, such as FLOAT or REAL.

This type returns Python float objects by default, unless the
Float.asdecimal flag is set to True, in which case they
are coerced to decimal.Decimal objects.

Note

The Float type is designed to receive data from a database
type that is explicitly known to be a floating point type
(e.g. FLOAT, REAL, others)
and not a decimal type (e.g. DECIMAL, NUMERIC, others).
If the database column on the server is in fact a Numeric
type, such as DECIMAL or NUMERIC, use the Numeric
type or a subclass, otherwise numeric coercion between
float/Decimal may or may not function as expected.

	
__init__(precision=None, asdecimal=False, decimal_return_scale=None, **kwargs)

	Construct a Float.

	Parameters:
	
	precision¶ – the numeric precision for use in DDL CREATE
TABLE.

	asdecimal¶ – the same flag as that of Numeric, but
defaults to False. Note that setting this flag to True
results in floating point conversion.

	decimal_return_scale¶ – Default scale to use when converting
from floats to Python decimals. Floating point values will typically
be much longer due to decimal inaccuracy, and most floating point
database types don’t have a notion of “scale”, so by default the
float type looks for the first ten decimal places when converting.
Specfiying this value will override that length. Note that the
MySQL float types, which do include “scale”, will use “scale”
as the default for decimal_return_scale, if not otherwise specified.

New in version 0.9.0.

	**kwargs¶ – deprecated. Additional arguments here are ignored
by the default Float type. For database specific
floats that support additional arguments, see that dialect’s
documentation for details, such as
sqlalchemy.dialects.mysql.FLOAT.

	
class sqlalchemy.types.Integer

	Bases: sqlalchemy.types._DateAffinity, sqlalchemy.types.TypeEngine

A type for int integers.

	
class sqlalchemy.types.Interval(native=True, second_precision=None, day_precision=None)

	Bases: sqlalchemy.types._DateAffinity, sqlalchemy.types.TypeDecorator

A type for datetime.timedelta() objects.

The Interval type deals with datetime.timedelta objects. In
PostgreSQL, the native INTERVAL type is used; for others, the
value is stored as a date which is relative to the “epoch”
(Jan. 1, 1970).

Note that the Interval type does not currently provide date arithmetic
operations on platforms which do not support interval types natively. Such
operations usually require transformation of both sides of the expression
(such as, conversion of both sides into integer epoch values first) which
currently is a manual procedure (such as via
func).

	
__init__(native=True, second_precision=None, day_precision=None)

	Construct an Interval object.

	Parameters:
	
	native¶ – when True, use the actual
INTERVAL type provided by the database, if
supported (currently Postgresql, Oracle).
Otherwise, represent the interval data as
an epoch value regardless.

	second_precision¶ – For native interval types
which support a “fractional seconds precision” parameter,
i.e. Oracle and Postgresql

	day_precision¶ – for native interval types which
support a “day precision” parameter, i.e. Oracle.

	
coerce_compared_value(op, value)

	See TypeEngine.coerce_compared_value() for a description.

	
impl

	alias of DateTime

	
class sqlalchemy.types.LargeBinary(length=None)

	Bases: sqlalchemy.types._Binary

A type for large binary byte data.

The LargeBinary type corresponds to a large and/or unlengthed
binary type for the target platform, such as BLOB on MySQL and BYTEA for
Postgresql. It also handles the necessary conversions for the DBAPI.

	
__init__(length=None)

	Construct a LargeBinary type.

	Parameters:
	length¶ – optional, a length for the column for use in
DDL statements, for those binary types that accept a length,
such as the MySQL BLOB type.

	
class sqlalchemy.types.MatchType(create_constraint=True, name=None, _create_events=True)

	Bases: sqlalchemy.types.Boolean

Refers to the return type of the MATCH operator.

As the ColumnOperators.match() is probably the most open-ended
operator in generic SQLAlchemy Core, we can’t assume the return type
at SQL evaluation time, as MySQL returns a floating point, not a boolean,
and other backends might do something different. So this type
acts as a placeholder, currently subclassing Boolean.
The type allows dialects to inject result-processing functionality
if needed, and on MySQL will return floating-point values.

New in version 1.0.0.

	
class sqlalchemy.types.Numeric(precision=None, scale=None, decimal_return_scale=None, asdecimal=True)

	Bases: sqlalchemy.types._DateAffinity, sqlalchemy.types.TypeEngine

A type for fixed precision numbers, such as NUMERIC or DECIMAL.

This type returns Python decimal.Decimal objects by default, unless
the Numeric.asdecimal flag is set to False, in which case
they are coerced to Python float objects.

Note

The Numeric type is designed to receive data from a database
type that is explicitly known to be a decimal type
(e.g. DECIMAL, NUMERIC, others) and not a floating point
type (e.g. FLOAT, REAL, others).
If the database column on the server is in fact a floating-point type
type, such as FLOAT or REAL, use the Float
type or a subclass, otherwise numeric coercion between
float/Decimal may or may not function as expected.

Note

The Python decimal.Decimal class is generally slow
performing; cPython 3.3 has now switched to use the cdecimal library natively. For
older Python versions, the cdecimal library can be patched
into any application where it will replace the decimal
library fully, however this needs to be applied globally and
before any other modules have been imported, as follows:

import sys
import cdecimal
sys.modules["decimal"] = cdecimal

Note that the cdecimal and decimal libraries are not
compatible with each other, so patching cdecimal at the
global level is the only way it can be used effectively with
various DBAPIs that hardcode to import the decimal library.

	
__init__(precision=None, scale=None, decimal_return_scale=None, asdecimal=True)

	Construct a Numeric.

	Parameters:
	
	precision¶ – the numeric precision for use in DDL CREATE
TABLE.

	scale¶ – the numeric scale for use in DDL CREATE TABLE.

	asdecimal¶ – default True. Return whether or not
values should be sent as Python Decimal objects, or
as floats. Different DBAPIs send one or the other based on
datatypes - the Numeric type will ensure that return values
are one or the other across DBAPIs consistently.

	decimal_return_scale¶ – Default scale to use when converting
from floats to Python decimals. Floating point values will typically
be much longer due to decimal inaccuracy, and most floating point
database types don’t have a notion of “scale”, so by default the
float type looks for the first ten decimal places when converting.
Specfiying this value will override that length. Types which
do include an explicit ”.scale” value, such as the base
Numeric as well as the MySQL float types, will use the
value of ”.scale” as the default for decimal_return_scale, if not
otherwise specified.

New in version 0.9.0.

When using the Numeric type, care should be taken to ensure
that the asdecimal setting is apppropriate for the DBAPI in use -
when Numeric applies a conversion from Decimal->float or float->
Decimal, this conversion incurs an additional performance overhead
for all result columns received.

DBAPIs that return Decimal natively (e.g. psycopg2) will have
better accuracy and higher performance with a setting of True,
as the native translation to Decimal reduces the amount of floating-
point issues at play, and the Numeric type itself doesn’t need
to apply any further conversions. However, another DBAPI which
returns floats natively will incur an additional conversion
overhead, and is still subject to floating point data loss - in
which case asdecimal=False will at least remove the extra
conversion overhead.

	
class sqlalchemy.types.PickleType(protocol=2, pickler=None, comparator=None)

	Bases: sqlalchemy.types.TypeDecorator

Holds Python objects, which are serialized using pickle.

PickleType builds upon the Binary type to apply Python’s
pickle.dumps() to incoming objects, and pickle.loads() on
the way out, allowing any pickleable Python object to be stored as
a serialized binary field.

To allow ORM change events to propagate for elements associated
with PickleType, see Mutation Tracking.

	
__init__(protocol=2, pickler=None, comparator=None)

	Construct a PickleType.

	Parameters:
	
	protocol¶ – defaults to pickle.HIGHEST_PROTOCOL.

	pickler¶ – defaults to cPickle.pickle or pickle.pickle if
cPickle is not available. May be any object with
pickle-compatible dumps` and ``loads methods.

	comparator¶ – a 2-arg callable predicate used
to compare values of this type. If left as None,
the Python “equals” operator is used to compare values.

	
impl

	alias of LargeBinary

	
class sqlalchemy.types.SchemaType(name=None, schema=None, metadata=None, inherit_schema=False, quote=None, _create_events=True)

	Bases: sqlalchemy.sql.expression.SchemaEventTarget

Mark a type as possibly requiring schema-level DDL for usage.

Supports types that must be explicitly created/dropped (i.e. PG ENUM type)
as well as types that are complimented by table or schema level
constraints, triggers, and other rules.

SchemaType classes can also be targets for the
DDLEvents.before_parent_attach() and
DDLEvents.after_parent_attach() events, where the events fire off
surrounding the association of the type object with a parent
Column.

See also

Enum

Boolean

	
adapt(impltype, **kw)

	

	
bind

	

	
copy(**kw)

	

	
create(bind=None, checkfirst=False)

	Issue CREATE ddl for this type, if applicable.

	
drop(bind=None, checkfirst=False)

	Issue DROP ddl for this type, if applicable.

	
class sqlalchemy.types.SmallInteger

	Bases: sqlalchemy.types.Integer

A type for smaller int integers.

Typically generates a SMALLINT in DDL, and otherwise acts like
a normal Integer on the Python side.

	
class sqlalchemy.types.String(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.Concatenable, sqlalchemy.types.TypeEngine

The base for all string and character types.

In SQL, corresponds to VARCHAR. Can also take Python unicode objects
and encode to the database’s encoding in bind params (and the reverse for
result sets.)

The length field is usually required when the String type is
used within a CREATE TABLE statement, as VARCHAR requires a length
on most databases.

	
__init__(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Create a string-holding type.

	Parameters:
	
	length¶ – optional, a length for the column for use in
DDL and CAST expressions. May be safely omitted if no CREATE
TABLE will be issued. Certain databases may require a
length for use in DDL, and will raise an exception when
the CREATE TABLE DDL is issued if a VARCHAR
with no length is included. Whether the value is
interpreted as bytes or characters is database specific.

	collation¶ – Optional, a column-level collation for
use in DDL and CAST expressions. Renders using the
COLLATE keyword supported by SQLite, MySQL, and Postgresql.
E.g.:

>>> from sqlalchemy import cast, select, String
>>> print select([cast('some string', String(collation='utf8'))])
SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1

New in version 0.8: Added support for COLLATE to all
string types.

	convert_unicode¶ – When set to True, the
String type will assume that
input is to be passed as Python unicode objects,
and results returned as Python unicode objects.
If the DBAPI in use does not support Python unicode
(which is fewer and fewer these days), SQLAlchemy
will encode/decode the value, using the
value of the encoding parameter passed to
create_engine() as the encoding.

When using a DBAPI that natively supports Python
unicode objects, this flag generally does not
need to be set. For columns that are explicitly
intended to store non-ASCII data, the Unicode
or UnicodeText
types should be used regardless, which feature
the same behavior of convert_unicode but
also indicate an underlying column type that
directly supports unicode, such as NVARCHAR.

For the extremely rare case that Python unicode
is to be encoded/decoded by SQLAlchemy on a backend
that does natively support Python unicode,
the value force can be passed here which will
cause SQLAlchemy’s encode/decode services to be
used unconditionally.

	unicode_error¶ – Optional, a method to use to handle Unicode
conversion errors. Behaves like the errors keyword argument to
the standard library’s string.decode() functions. This flag
requires that convert_unicode is set to force - otherwise,
SQLAlchemy is not guaranteed to handle the task of unicode
conversion. Note that this flag adds significant performance
overhead to row-fetching operations for backends that already
return unicode objects natively (which most DBAPIs do). This
flag should only be used as a last resort for reading
strings from a column with varied or corrupted encodings.

	
class sqlalchemy.types.Text(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.String

A variably sized string type.

In SQL, usually corresponds to CLOB or TEXT. Can also take Python
unicode objects and encode to the database’s encoding in bind
params (and the reverse for result sets.) In general, TEXT objects
do not have a length; while some databases will accept a length
argument here, it will be rejected by others.

	
class sqlalchemy.types.Time(timezone=False)

	Bases: sqlalchemy.types._DateAffinity, sqlalchemy.types.TypeEngine

A type for datetime.time() objects.

	
class sqlalchemy.types.Unicode(length=None, **kwargs)

	Bases: sqlalchemy.types.String

A variable length Unicode string type.

The Unicode type is a String subclass
that assumes input and output as Python unicode data,
and in that regard is equivalent to the usage of the
convert_unicode flag with the String type.
However, unlike plain String, it also implies an
underlying column type that is explicitly supporting of non-ASCII
data, such as NVARCHAR on Oracle and SQL Server.
This can impact the output of CREATE TABLE statements
and CAST functions at the dialect level, and can
also affect the handling of bound parameters in some
specific DBAPI scenarios.

The encoding used by the Unicode type is usually
determined by the DBAPI itself; most modern DBAPIs
feature support for Python unicode objects as bound
values and result set values, and the encoding should
be configured as detailed in the notes for the target
DBAPI in the Dialects section.

For those DBAPIs which do not support, or are not configured
to accommodate Python unicode objects
directly, SQLAlchemy does the encoding and decoding
outside of the DBAPI. The encoding in this scenario
is determined by the encoding flag passed to
create_engine().

When using the Unicode type, it is only appropriate
to pass Python unicode objects, and not plain str.
If a plain str is passed under Python 2, a warning
is emitted. If you notice your application emitting these warnings but
you’re not sure of the source of them, the Python
warnings filter, documented at
http://docs.python.org/library/warnings.html,
can be used to turn these warnings into exceptions
which will illustrate a stack trace:

import warnings
warnings.simplefilter('error')

For an application that wishes to pass plain bytestrings
and Python unicode objects to the Unicode type
equally, the bytestrings must first be decoded into
unicode. The recipe at Coercing Encoded Strings to Unicode illustrates
how this is done.

See also:

UnicodeText - unlengthed textual counterpart
to Unicode.

	
__init__(length=None, **kwargs)

	Create a Unicode object.

Parameters are the same as that of String,
with the exception that convert_unicode
defaults to True.

	
class sqlalchemy.types.UnicodeText(length=None, **kwargs)

	Bases: sqlalchemy.types.Text

An unbounded-length Unicode string type.

See Unicode for details on the unicode
behavior of this object.

Like Unicode, usage the UnicodeText type implies a
unicode-capable type being used on the backend, such as
NCLOB, NTEXT.

	
__init__(length=None, **kwargs)

	Create a Unicode-converting Text type.

Parameters are the same as that of Text,
with the exception that convert_unicode
defaults to True.

SQL Standard and Multiple Vendor Types

This category of types refers to types that are either part of the
SQL standard, or are potentially found within a subset of database backends.
Unlike the “generic” types, the SQL standard/multi-vendor types have no
guarantee of working on all backends, and will only work on those backends
that explicitly support them by name. That is, the type will always emit
its exact name in DDL with CREATE TABLE is issued.

	
class sqlalchemy.types.ARRAY(item_type, as_tuple=False, dimensions=None, zero_indexes=False)

	Bases: sqlalchemy.types.Indexable, sqlalchemy.types.Concatenable, sqlalchemy.types.TypeEngine

Represent a SQL Array type.

Note

This type serves as the basis for all ARRAY operations.
However, currently only the Postgresql backend has support
for SQL arrays in SQLAlchemy. It is recommended to use the
postgresql.ARRAY type directly when using ARRAY types
with PostgreSQL, as it provides additional operators specific
to that backend.

types.ARRAY is part of the Core in support of various SQL standard
functions such as array_agg which explicitly involve arrays;
however, with the exception of the PostgreSQL backend and possibly
some third-party dialects, no other SQLAlchemy built-in dialect has
support for this type.

An types.ARRAY type is constructed given the “type”
of element:

mytable = Table("mytable", metadata,
 Column("data", ARRAY(Integer))
)

The above type represents an N-dimensional array,
meaning a supporting backend such as Postgresql will interpret values
with any number of dimensions automatically. To produce an INSERT
construct that passes in a 1-dimensional array of integers:

connection.execute(
 mytable.insert(),
 data=[1,2,3]
)

The types.ARRAY type can be constructed given a fixed number
of dimensions:

mytable = Table("mytable", metadata,
 Column("data", ARRAY(Integer, dimensions=2))
)

Sending a number of dimensions is optional, but recommended if the
datatype is to represent arrays of more than one dimension. This number
is used:

	When emitting the type declaration itself to the database, e.g.
INTEGER[][]

	When translating Python values to database values, and vice versa, e.g.
an ARRAY of Unicode objects uses this number to efficiently
access the string values inside of array structures without resorting
to per-row type inspection

	When used with the Python getitem accessor, the number of dimensions
serves to define the kind of type that the [] operator should
return, e.g. for an ARRAY of INTEGER with two dimensions:

>>> expr = table.c.column[5] # returns ARRAY(Integer, dimensions=1)
>>> expr = expr[6] # returns Integer

For 1-dimensional arrays, an types.ARRAY instance with no
dimension parameter will generally assume single-dimensional behaviors.

SQL expressions of type types.ARRAY have support for “index” and
“slice” behavior. The Python [] operator works normally here, given
integer indexes or slices. Arrays default to 1-based indexing.
The operator produces binary expression
constructs which will produce the appropriate SQL, both for
SELECT statements:

select([mytable.c.data[5], mytable.c.data[2:7]])

as well as UPDATE statements when the Update.values() method
is used:

mytable.update().values({
 mytable.c.data[5]: 7,
 mytable.c.data[2:7]: [1, 2, 3]
})

The types.ARRAY type also provides for the operators
types.ARRAY.Comparator.any() and types.ARRAY.Comparator.all().
The PostgreSQL-specific version of types.ARRAY also provides additional
operators.

New in version 1.1.0.

See also

postgresql.ARRAY

	
class Comparator(expr)

	Bases: sqlalchemy.types.Comparator, sqlalchemy.types.Comparator

Define comparison operations for types.ARRAY.

More operators are available on the dialect-specific form
of this type. See postgresql.ARRAY.Comparator.

	
all(other, operator=None)

	Return other operator ALL (array) clause.

Argument places are switched, because ALL requires array
expression to be on the right hand-side.

E.g.:

from sqlalchemy.sql import operators

conn.execute(
 select([table.c.data]).where(
 table.c.data.all(7, operator=operators.lt)
)
)

	Parameters:
	
	other¶ – expression to be compared

	operator¶ – an operator object from the
sqlalchemy.sql.operators
package, defaults to operators.eq().

See also

sql.expression.all_()

types.ARRAY.Comparator.any()

	
any(other, operator=None)

	Return other operator ANY (array) clause.

Argument places are switched, because ANY requires array
expression to be on the right hand-side.

E.g.:

from sqlalchemy.sql import operators

conn.execute(
 select([table.c.data]).where(
 table.c.data.any(7, operator=operators.lt)
)
)

	Parameters:
	
	other¶ – expression to be compared

	operator¶ – an operator object from the
sqlalchemy.sql.operators
package, defaults to operators.eq().

See also

sql.expression.any_()

types.ARRAY.Comparator.all()

	
ARRAY.__init__(item_type, as_tuple=False, dimensions=None, zero_indexes=False)

	Construct an types.ARRAY.

E.g.:

Column('myarray', ARRAY(Integer))

Arguments are:

	Parameters:
	
	item_type¶ – The data type of items of this array. Note that
dimensionality is irrelevant here, so multi-dimensional arrays like
INTEGER[][], are constructed as ARRAY(Integer), not as
ARRAY(ARRAY(Integer)) or such.

	as_tuple=False¶ – Specify whether return results
should be converted to tuples from lists. This parameter is
not generally needed as a Python list corresponds well
to a SQL array.

	dimensions¶ – if non-None, the ARRAY will assume a fixed
number of dimensions. This impacts how the array is declared
on the database, how it goes about interpreting Python and
result values, as well as how expression behavior in conjunction
with the “getitem” operator works. See the description at
types.ARRAY for additional detail.

	zero_indexes=False¶ – when True, index values will be converted
between Python zero-based and SQL one-based indexes, e.g.
a value of one will be added to all index values before passing
to the database.

	
ARRAY.comparator_factory

	alias of Comparator

	
ARRAY.zero_indexes = False

	if True, Python zero-based indexes should be interpreted as one-based
on the SQL expression side.

	
class sqlalchemy.types.BIGINT

	Bases: sqlalchemy.types.BigInteger

The SQL BIGINT type.

	
class sqlalchemy.types.BINARY(length=None)

	Bases: sqlalchemy.types._Binary

The SQL BINARY type.

	
class sqlalchemy.types.BLOB(length=None)

	Bases: sqlalchemy.types.LargeBinary

The SQL BLOB type.

	
class sqlalchemy.types.BOOLEAN(create_constraint=True, name=None, _create_events=True)

	Bases: sqlalchemy.types.Boolean

The SQL BOOLEAN type.

	
class sqlalchemy.types.CHAR(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.String

The SQL CHAR type.

	
class sqlalchemy.types.CLOB(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.Text

The CLOB type.

This type is found in Oracle and Informix.

	
class sqlalchemy.types.DATE

	Bases: sqlalchemy.types.Date

The SQL DATE type.

	
class sqlalchemy.types.DATETIME(timezone=False)

	Bases: sqlalchemy.types.DateTime

The SQL DATETIME type.

	
class sqlalchemy.types.DECIMAL(precision=None, scale=None, decimal_return_scale=None, asdecimal=True)

	Bases: sqlalchemy.types.Numeric

The SQL DECIMAL type.

	
class sqlalchemy.types.FLOAT(precision=None, asdecimal=False, decimal_return_scale=None, **kwargs)

	Bases: sqlalchemy.types.Float

The SQL FLOAT type.

	
sqlalchemy.types.INT

	alias of INTEGER

	
class sqlalchemy.types.JSON(none_as_null=False)

	Bases: sqlalchemy.types.Indexable, sqlalchemy.types.TypeEngine

Represent a SQL JSON type.

Note

types.JSON is provided as a facade for vendor-specific
JSON types. Since it supports JSON SQL operations, it only
works on backends that have an actual JSON type, currently
Postgresql as well as certain versions of MySQL.

types.JSON is part of the Core in support of the growing
popularity of native JSON datatypes.

The types.JSON type stores arbitrary JSON format data, e.g.:

data_table = Table('data_table', metadata,
 Column('id', Integer, primary_key=True),
 Column('data', JSON)
)

with engine.connect() as conn:
 conn.execute(
 data_table.insert(),
 data = {"key1": "value1", "key2": "value2"}
)

The base types.JSON provides these two operations:

	Keyed index operations:

data_table.c.data['some key']

	Integer index operations:

data_table.c.data[3]

	Path index operations:

data_table.c.data[('key_1', 'key_2', 5, ..., 'key_n')]

Additional operations are available from the dialect-specific versions
of types.JSON, such as postgresql.JSON and
postgresql.JSONB, each of which offer more operators than
just the basic type.

Index operations return an expression object whose type defaults to
JSON by default, so that further JSON-oriented instructions
may be called upon the result type.

The JSON type, when used with the SQLAlchemy ORM, does not
detect in-place mutations to the structure. In order to detect these, the
sqlalchemy.ext.mutable extension must be used. This extension will
allow “in-place” changes to the datastructure to produce events which
will be detected by the unit of work. See the example at HSTORE
for a simple example involving a dictionary.

When working with NULL values, the JSON type recommends the
use of two specific constants in order to differentiate between a column
that evaluates to SQL NULL, e.g. no value, vs. the JSON-encoded string
of "null". To insert or select against a value that is SQL NULL,
use the constant null():

from sqlalchemy import null
conn.execute(table.insert(), json_value=null())

To insert or select against a value that is JSON "null", use the
constant JSON.NULL:

conn.execute(table.insert(), json_value=JSON.NULL)

The JSON type supports a flag
JSON.none_as_null which when set to True will result
in the Python constant None evaluating to the value of SQL
NULL, and when set to False results in the Python constant
None evaluating to the value of JSON "null". The Python
value None may be used in conjunction with either
JSON.NULL and null() in order to indicate NULL
values, but care must be taken as to the value of the
JSON.none_as_null in these cases.

See also

postgresql.JSON

postgresql.JSONB

mysql.JSON

New in version 1.1.

	
class Comparator(expr)

	Bases: sqlalchemy.types.Comparator, sqlalchemy.types.Comparator

Define comparison operations for types.JSON.

	
class JSON.JSONIndexType

	Bases: sqlalchemy.types.TypeEngine

Placeholder for the datatype of a JSON index value.

This allows execution-time processing of JSON index values
for special syntaxes.

	
class JSON.JSONPathType

	Bases: sqlalchemy.types.TypeEngine

Placeholder type for JSON path operations.

This allows execution-time processing of a path-based
index value into a specific SQL syntax.

	
JSON.NULL = symbol('JSON_NULL')

	Describe the json value of NULL.

This value is used to force the JSON value of "null" to be
used as the value. A value of Python None will be recognized
either as SQL NULL or JSON "null", based on the setting
of the JSON.none_as_null flag; the JSON.NULL
constant can be used to always resolve to JSON "null" regardless
of this setting. This is in contrast to the sql.null() construct,
which always resolves to SQL NULL. E.g.:

from sqlalchemy import null
from sqlalchemy.dialects.postgresql import JSON

obj1 = MyObject(json_value=null()) # will *always* insert SQL NULL
obj2 = MyObject(json_value=JSON.NULL) # will *always* insert JSON string "null"

session.add_all([obj1, obj2])
session.commit()

	
JSON.__init__(none_as_null=False)

	Construct a types.JSON type.

	Parameters:
	none_as_null=False¶ – if True, persist the value None as a
SQL NULL value, not the JSON encoding of null. Note that
when this flag is False, the null() construct can still
be used to persist a NULL value:

from sqlalchemy import null
conn.execute(table.insert(), data=null())

See also

types.JSON.NULL

	
JSON.comparator_factory

	alias of Comparator

	
class sqlalchemy.types.INTEGER

	Bases: sqlalchemy.types.Integer

The SQL INT or INTEGER type.

	
class sqlalchemy.types.NCHAR(length=None, **kwargs)

	Bases: sqlalchemy.types.Unicode

The SQL NCHAR type.

	
class sqlalchemy.types.NVARCHAR(length=None, **kwargs)

	Bases: sqlalchemy.types.Unicode

The SQL NVARCHAR type.

	
class sqlalchemy.types.NUMERIC(precision=None, scale=None, decimal_return_scale=None, asdecimal=True)

	Bases: sqlalchemy.types.Numeric

The SQL NUMERIC type.

	
class sqlalchemy.types.REAL(precision=None, asdecimal=False, decimal_return_scale=None, **kwargs)

	Bases: sqlalchemy.types.Float

The SQL REAL type.

	
class sqlalchemy.types.SMALLINT

	Bases: sqlalchemy.types.SmallInteger

The SQL SMALLINT type.

	
class sqlalchemy.types.TEXT(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.Text

The SQL TEXT type.

	
class sqlalchemy.types.TIME(timezone=False)

	Bases: sqlalchemy.types.Time

The SQL TIME type.

	
class sqlalchemy.types.TIMESTAMP(timezone=False)

	Bases: sqlalchemy.types.DateTime

The SQL TIMESTAMP type.

	
class sqlalchemy.types.VARBINARY(length=None)

	Bases: sqlalchemy.types._Binary

The SQL VARBINARY type.

	
class sqlalchemy.types.VARCHAR(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.String

The SQL VARCHAR type.

Vendor-Specific Types

Database-specific types are also available for import from each
database’s dialect module. See the Dialects
reference for the database you’re interested in.

For example, MySQL has a BIGINT type and PostgreSQL has an
INET type. To use these, import them from the module explicitly:

from sqlalchemy.dialects import mysql

table = Table('foo', metadata,
 Column('id', mysql.BIGINT),
 Column('enumerates', mysql.ENUM('a', 'b', 'c'))
)

Or some PostgreSQL types:

from sqlalchemy.dialects import postgresql

table = Table('foo', metadata,
 Column('ipaddress', postgresql.INET),
 Column('elements', postgresql.ARRAY(String))
)

Each dialect provides the full set of typenames supported by
that backend within its __all__ collection, so that a simple
import * or similar will import all supported types as
implemented for that backend:

from sqlalchemy.dialects.postgresql import *

t = Table('mytable', metadata,
 Column('id', INTEGER, primary_key=True),
 Column('name', VARCHAR(300)),
 Column('inetaddr', INET)
)

Where above, the INTEGER and VARCHAR types are ultimately from
sqlalchemy.types, and INET is specific to the Postgresql dialect.

Some dialect level types have the same name as the SQL standard type,
but also provide additional arguments. For example, MySQL implements
the full range of character and string types including additional arguments
such as collation and charset:

from sqlalchemy.dialects.mysql import VARCHAR, TEXT

table = Table('foo', meta,
 Column('col1', VARCHAR(200, collation='binary')),
 Column('col2', TEXT(charset='latin1'))
)

Custom Types

A variety of methods exist to redefine the behavior of existing types
as well as to provide new ones.

Overriding Type Compilation

A frequent need is to force the “string” version of a type, that is
the one rendered in a CREATE TABLE statement or other SQL function
like CAST, to be changed. For example, an application may want
to force the rendering of BINARY for all platforms
except for one, in which is wants BLOB to be rendered. Usage
of an existing generic type, in this case LargeBinary, is
preferred for most use cases. But to control
types more accurately, a compilation directive that is per-dialect
can be associated with any type:

from sqlalchemy.ext.compiler import compiles
from sqlalchemy.types import BINARY

@compiles(BINARY, "sqlite")
def compile_binary_sqlite(type_, compiler, **kw):
 return "BLOB"

The above code allows the usage of types.BINARY, which
will produce the string BINARY against all backends except SQLite,
in which case it will produce BLOB.

See the section Changing Compilation of Types, a subsection of
Custom SQL Constructs and Compilation Extension, for additional examples.

Augmenting Existing Types

The TypeDecorator allows the creation of custom types which
add bind-parameter and result-processing behavior to an existing
type object. It is used when additional in-Python marshaling of data
to and from the database is required.

Note

The bind- and result-processing of TypeDecorator
is in addition to the processing already performed by the hosted
type, which is customized by SQLAlchemy on a per-DBAPI basis to perform
processing specific to that DBAPI. To change the DBAPI-level processing
for an existing type, see the section Replacing the Bind/Result Processing of Existing Types.

	
class sqlalchemy.types.TypeDecorator(*args, **kwargs)

	Bases: sqlalchemy.sql.expression.SchemaEventTarget, sqlalchemy.types.TypeEngine

Allows the creation of types which add additional functionality
to an existing type.

This method is preferred to direct subclassing of SQLAlchemy’s
built-in types as it ensures that all required functionality of
the underlying type is kept in place.

Typical usage:

import sqlalchemy.types as types

class MyType(types.TypeDecorator):
 '''Prefixes Unicode values with "PREFIX:" on the way in and
 strips it off on the way out.
 '''

 impl = types.Unicode

 def process_bind_param(self, value, dialect):
 return "PREFIX:" + value

 def process_result_value(self, value, dialect):
 return value[7:]

 def copy(self, **kw):
 return MyType(self.impl.length)

The class-level “impl” attribute is required, and can reference any
TypeEngine class. Alternatively, the load_dialect_impl() method
can be used to provide different type classes based on the dialect
given; in this case, the “impl” variable can reference
TypeEngine as a placeholder.

Types that receive a Python type that isn’t similar to the ultimate type
used may want to define the TypeDecorator.coerce_compared_value()
method. This is used to give the expression system a hint when coercing
Python objects into bind parameters within expressions. Consider this
expression:

mytable.c.somecol + datetime.date(2009, 5, 15)

Above, if “somecol” is an Integer variant, it makes sense that
we’re doing date arithmetic, where above is usually interpreted
by databases as adding a number of days to the given date.
The expression system does the right thing by not attempting to
coerce the “date()” value into an integer-oriented bind parameter.

However, in the case of TypeDecorator, we are usually changing an
incoming Python type to something new - TypeDecorator by default will
“coerce” the non-typed side to be the same type as itself. Such as below,
we define an “epoch” type that stores a date value as an integer:

class MyEpochType(types.TypeDecorator):
 impl = types.Integer

 epoch = datetime.date(1970, 1, 1)

 def process_bind_param(self, value, dialect):
 return (value - self.epoch).days

 def process_result_value(self, value, dialect):
 return self.epoch + timedelta(days=value)

Our expression of somecol + date with the above type will coerce the
“date” on the right side to also be treated as MyEpochType.

This behavior can be overridden via the
coerce_compared_value() method, which returns a type
that should be used for the value of the expression. Below we set it such
that an integer value will be treated as an Integer, and any other
value is assumed to be a date and will be treated as a MyEpochType:

def coerce_compared_value(self, op, value):
 if isinstance(value, int):
 return Integer()
 else:
 return self

Warning

Note that the behavior of coerce_compared_value is not inherited
by default from that of the base type.
If the TypeDecorator is augmenting a
type that requires special logic for certain types of operators,
this method must be overridden. A key example is when decorating
the postgresql.JSON and postgresql.JSONB types;
the default rules of TypeEngine.coerce_compared_value() should
be used in order to deal with operators like index operations:

class MyJsonType(TypeDecorator):
 impl = postgresql.JSON

 def coerce_compared_value(self, op, value):
 return self.impl.coerce_compared_value(op, value)

Without the above step, index operations such as mycol['foo']
will cause the index value 'foo' to be JSON encoded.

	
__init__(*args, **kwargs)

	Construct a TypeDecorator.

Arguments sent here are passed to the constructor
of the class assigned to the impl class level attribute,
assuming the impl is a callable, and the resulting
object is assigned to the self.impl instance attribute
(thus overriding the class attribute of the same name).

If the class level impl is not a callable (the unusual case),
it will be assigned to the same instance attribute ‘as-is’,
ignoring those arguments passed to the constructor.

Subclasses can override this to customize the generation
of self.impl entirely.

	
adapt(cls, **kw)

	
inherited from the adapt() method of TypeEngine

Produce an “adapted” form of this type, given an “impl” class
to work with.

This method is used internally to associate generic
types with “implementation” types that are specific to a particular
dialect.

	
bind_expression(bindvalue)

	
inherited from the bind_expression() method of TypeEngine

“Given a bind value (i.e. a BindParameter instance),
return a SQL expression in its place.

This is typically a SQL function that wraps the existing bound
parameter within the statement. It is used for special data types
that require literals being wrapped in some special database function
in order to coerce an application-level value into a database-specific
format. It is the SQL analogue of the
TypeEngine.bind_processor() method.

The method is evaluated at statement compile time, as opposed
to statement construction time.

Note that this method, when implemented, should always return
the exact same structure, without any conditional logic, as it
may be used in an executemany() call against an arbitrary number
of bound parameter sets.

See also:

Applying SQL-level Bind/Result Processing

	
bind_processor(dialect)

	Provide a bound value processing function for the
given Dialect.

This is the method that fulfills the TypeEngine
contract for bound value conversion. TypeDecorator
will wrap a user-defined implementation of
process_bind_param() here.

User-defined code can override this method directly,
though its likely best to use process_bind_param() so that
the processing provided by self.impl is maintained.

	Parameters:
	dialect¶ – Dialect instance in use.

This method is the reverse counterpart to the
result_processor() method of this class.

	
coerce_compared_value(op, value)

	Suggest a type for a ‘coerced’ Python value in an expression.

By default, returns self. This method is called by
the expression system when an object using this type is
on the left or right side of an expression against a plain Python
object which does not yet have a SQLAlchemy type assigned:

expr = table.c.somecolumn + 35

Where above, if somecolumn uses this type, this method will
be called with the value operator.add
and 35. The return value is whatever SQLAlchemy type should
be used for 35 for this particular operation.

	
coerce_to_is_types = (<type 'NoneType'>,)

	Specify those Python types which should be coerced at the expression
level to “IS <constant>” when compared using == (and same for
IS NOT in conjunction with !=.

For most SQLAlchemy types, this includes NoneType, as well as
bool.

TypeDecorator modifies this list to only include NoneType,
as typedecorator implementations that deal with boolean types are common.

Custom TypeDecorator classes can override this attribute to
return an empty tuple, in which case no values will be coerced to
constants.

	..versionadded:: 0.8.2

	Added TypeDecorator.coerce_to_is_types to allow for easier
control of __eq__() __ne__() operations.

	
column_expression(colexpr)

	
inherited from the column_expression() method of TypeEngine

Given a SELECT column expression, return a wrapping SQL expression.

This is typically a SQL function that wraps a column expression
as rendered in the columns clause of a SELECT statement.
It is used for special data types that require
columns to be wrapped in some special database function in order
to coerce the value before being sent back to the application.
It is the SQL analogue of the TypeEngine.result_processor()
method.

The method is evaluated at statement compile time, as opposed
to statement construction time.

See also:

Applying SQL-level Bind/Result Processing

	
compare_against_backend(dialect, conn_type)

	
inherited from the compare_against_backend() method of TypeEngine

Compare this type against the given backend type.

This function is currently not implemented for SQLAlchemy
types, and for all built in types will return None. However,
it can be implemented by a user-defined type
where it can be consumed by schema comparison tools such as
Alembic autogenerate.

A future release of SQLAlchemy will potentially impement this method
for builtin types as well.

The function should return True if this type is equivalent to the
given type; the type is typically reflected from the database
so should be database specific. The dialect in use is also
passed. It can also return False to assert that the type is
not equivalent.

	Parameters:
	
	dialect¶ – a Dialect that is involved in the comparison.

	conn_type¶ – the type object reflected from the backend.

New in version 1.0.3.

	
compare_values(x, y)

	Given two values, compare them for equality.

By default this calls upon TypeEngine.compare_values()
of the underlying “impl”, which in turn usually
uses the Python equals operator ==.

This function is used by the ORM to compare
an original-loaded value with an intercepted
“changed” value, to determine if a net change
has occurred.

	
compile(dialect=None)

	
inherited from the compile() method of TypeEngine

Produce a string-compiled form of this TypeEngine.

When called with no arguments, uses a “default” dialect
to produce a string result.

	Parameters:
	dialect¶ – a Dialect instance.

	
copy(**kw)

	Produce a copy of this TypeDecorator instance.

This is a shallow copy and is provided to fulfill part of
the TypeEngine contract. It usually does not
need to be overridden unless the user-defined TypeDecorator
has local state that should be deep-copied.

	
dialect_impl(dialect)

	
inherited from the dialect_impl() method of TypeEngine

Return a dialect-specific implementation for this
TypeEngine.

	
evaluates_none()

	
inherited from the evaluates_none() method of TypeEngine

Return a copy of this type which has the should_evaluate_none
flag set to True.

E.g.:

Table(
 'some_table', metadata,
 Column(
 String(50).evaluates_none(),
 nullable=True,
 server_default='no value')
)

The ORM uses this flag to indicate that a positive value of None
is passed to the column in an INSERT statement, rather than omitting
the column from the INSERT statement which has the effect of firing
off column-level defaults. It also allows for types which have
special behavior associated with the Python None value to indicate
that the value doesn’t necessarily translate into SQL NULL; a
prime example of this is a JSON type which may wish to persist the
JSON value 'null'.

In all cases, the actual NULL SQL value can be always be
persisted in any column by using
the null SQL construct in an INSERT statement
or associated with an ORM-mapped attribute.

New in version 1.1.

See also

Forcing NULL on a column with a default - in the ORM documentation

postgresql.JSON.none_as_null - Postgresql JSON
interaction with this flag.

TypeEngine.should_evaluate_none - class-level flag

	
get_dbapi_type(dbapi)

	Return the DBAPI type object represented by this
TypeDecorator.

By default this calls upon TypeEngine.get_dbapi_type() of the
underlying “impl”.

	
literal_processor(dialect)

	Provide a literal processing function for the given
Dialect.

Subclasses here will typically override
TypeDecorator.process_literal_param() instead of this method
directly.

By default, this method makes use of
TypeDecorator.process_bind_param() if that method is
implemented, where TypeDecorator.process_literal_param() is
not. The rationale here is that TypeDecorator typically
deals with Python conversions of data that are above the layer of
database presentation. With the value converted by
TypeDecorator.process_bind_param(), the underlying type will
then handle whether it needs to be presented to the DBAPI as a bound
parameter or to the database as an inline SQL value.

New in version 0.9.0.

	
load_dialect_impl(dialect)

	Return a TypeEngine object corresponding to a dialect.

This is an end-user override hook that can be used to provide
differing types depending on the given dialect. It is used
by the TypeDecorator implementation of type_engine()
to help determine what type should ultimately be returned
for a given TypeDecorator.

By default returns self.impl.

	
process_bind_param(value, dialect)

	Receive a bound parameter value to be converted.

Subclasses override this method to return the
value that should be passed along to the underlying
TypeEngine object, and from there to the
DBAPI execute() method.

The operation could be anything desired to perform custom
behavior, such as transforming or serializing data.
This could also be used as a hook for validating logic.

This operation should be designed with the reverse operation
in mind, which would be the process_result_value method of
this class.

	Parameters:
	
	value¶ – Data to operate upon, of any type expected by
this method in the subclass. Can be None.

	dialect¶ – the Dialect in use.

	
process_literal_param(value, dialect)

	Receive a literal parameter value to be rendered inline within
a statement.

This method is used when the compiler renders a
literal value without using binds, typically within DDL
such as in the “server default” of a column or an expression
within a CHECK constraint.

The returned string will be rendered into the output string.

New in version 0.9.0.

	
process_result_value(value, dialect)

	Receive a result-row column value to be converted.

Subclasses should implement this method to operate on data
fetched from the database.

Subclasses override this method to return the
value that should be passed back to the application,
given a value that is already processed by
the underlying TypeEngine object, originally
from the DBAPI cursor method fetchone() or similar.

The operation could be anything desired to perform custom
behavior, such as transforming or serializing data.
This could also be used as a hook for validating logic.

	Parameters:
	
	value¶ – Data to operate upon, of any type expected by
this method in the subclass. Can be None.

	dialect¶ – the Dialect in use.

This operation should be designed to be reversible by
the “process_bind_param” method of this class.

	
python_type

	
inherited from the python_type attribute of TypeEngine

Return the Python type object expected to be returned
by instances of this type, if known.

Basically, for those types which enforce a return type,
or are known across the board to do such for all common
DBAPIs (like int for example), will return that type.

If a return type is not defined, raises
NotImplementedError.

Note that any type also accommodates NULL in SQL which
means you can also get back None from any type
in practice.

	
result_processor(dialect, coltype)

	Provide a result value processing function for the given
Dialect.

This is the method that fulfills the TypeEngine
contract for result value conversion. TypeDecorator
will wrap a user-defined implementation of
process_result_value() here.

User-defined code can override this method directly,
though its likely best to use process_result_value() so that
the processing provided by self.impl is maintained.

	Parameters:
	
	dialect¶ – Dialect instance in use.

	coltype¶ – A SQLAlchemy data type

This method is the reverse counterpart to the
bind_processor() method of this class.

	
type_engine(dialect)

	Return a dialect-specific TypeEngine instance
for this TypeDecorator.

In most cases this returns a dialect-adapted form of
the TypeEngine type represented by self.impl.
Makes usage of dialect_impl() but also traverses
into wrapped TypeDecorator instances.
Behavior can be customized here by overriding
load_dialect_impl().

	
with_variant(type_, dialect_name)

	
inherited from the with_variant() method of TypeEngine

Produce a new type object that will utilize the given
type when applied to the dialect of the given name.

e.g.:

from sqlalchemy.types import String
from sqlalchemy.dialects import mysql

s = String()

s = s.with_variant(mysql.VARCHAR(collation='foo'), 'mysql')

The construction of TypeEngine.with_variant() is always
from the “fallback” type to that which is dialect specific.
The returned type is an instance of Variant, which
itself provides a Variant.with_variant()
that can be called repeatedly.

	Parameters:
	
	type_¶ – a TypeEngine that will be selected
as a variant from the originating type, when a dialect
of the given name is in use.

	dialect_name¶ – base name of the dialect which uses
this type. (i.e. 'postgresql', 'mysql', etc.)

New in version 0.7.2.

TypeDecorator Recipes

A few key TypeDecorator recipes follow.

Coercing Encoded Strings to Unicode

A common source of confusion regarding the Unicode type
is that it is intended to deal only with Python unicode objects
on the Python side, meaning values passed to it as bind parameters
must be of the form u'some string' if using Python 2 and not 3.
The encoding/decoding functions it performs are only to suit what the
DBAPI in use requires, and are primarily a private implementation detail.

The use case of a type that can safely receive Python bytestrings,
that is strings that contain non-ASCII characters and are not u''
objects in Python 2, can be achieved using a TypeDecorator
which coerces as needed:

from sqlalchemy.types import TypeDecorator, Unicode

class CoerceUTF8(TypeDecorator):
 """Safely coerce Python bytestrings to Unicode
 before passing off to the database."""

 impl = Unicode

 def process_bind_param(self, value, dialect):
 if isinstance(value, str):
 value = value.decode('utf-8')
 return value

Rounding Numerics

Some database connectors like those of SQL Server choke if a Decimal is passed with too
many decimal places. Here’s a recipe that rounds them down:

from sqlalchemy.types import TypeDecorator, Numeric
from decimal import Decimal

class SafeNumeric(TypeDecorator):
 """Adds quantization to Numeric."""

 impl = Numeric

 def __init__(self, *arg, **kw):
 TypeDecorator.__init__(self, *arg, **kw)
 self.quantize_int = - self.impl.scale
 self.quantize = Decimal(10) ** self.quantize_int

 def process_bind_param(self, value, dialect):
 if isinstance(value, Decimal) and \
 value.as_tuple()[2] < self.quantize_int:
 value = value.quantize(self.quantize)
 return value

Backend-agnostic GUID Type

Receives and returns Python uuid() objects. Uses the PG UUID type
when using Postgresql, CHAR(32) on other backends, storing them
in stringified hex format. Can be modified to store
binary in CHAR(16) if desired:

from sqlalchemy.types import TypeDecorator, CHAR
from sqlalchemy.dialects.postgresql import UUID
import uuid

class GUID(TypeDecorator):
 """Platform-independent GUID type.

 Uses Postgresql's UUID type, otherwise uses
 CHAR(32), storing as stringified hex values.

 """
 impl = CHAR

 def load_dialect_impl(self, dialect):
 if dialect.name == 'postgresql':
 return dialect.type_descriptor(UUID())
 else:
 return dialect.type_descriptor(CHAR(32))

 def process_bind_param(self, value, dialect):
 if value is None:
 return value
 elif dialect.name == 'postgresql':
 return str(value)
 else:
 if not isinstance(value, uuid.UUID):
 return "%.32x" % uuid.UUID(value).int
 else:
 # hexstring
 return "%.32x" % value.int

 def process_result_value(self, value, dialect):
 if value is None:
 return value
 else:
 return uuid.UUID(value)

Marshal JSON Strings

This type uses simplejson to marshal Python data structures
to/from JSON. Can be modified to use Python’s builtin json encoder:

from sqlalchemy.types import TypeDecorator, VARCHAR
import json

class JSONEncodedDict(TypeDecorator):
 """Represents an immutable structure as a json-encoded string.

 Usage::

 JSONEncodedDict(255)

 """

 impl = VARCHAR

 def process_bind_param(self, value, dialect):
 if value is not None:
 value = json.dumps(value)

 return value

 def process_result_value(self, value, dialect):
 if value is not None:
 value = json.loads(value)
 return value

Note that the ORM by default will not detect “mutability” on such a type -
meaning, in-place changes to values will not be detected and will not be
flushed. Without further steps, you instead would need to replace the existing
value with a new one on each parent object to detect changes. Note that
there’s nothing wrong with this, as many applications may not require that the
values are ever mutated once created. For those which do have this requirement,
support for mutability is best applied using the sqlalchemy.ext.mutable
extension - see the example in Mutation Tracking.

Replacing the Bind/Result Processing of Existing Types

Most augmentation of type behavior at the bind/result level
is achieved using TypeDecorator. For the rare scenario
where the specific processing applied by SQLAlchemy at the DBAPI
level needs to be replaced, the SQLAlchemy type can be subclassed
directly, and the bind_processor() or result_processor()
methods can be overridden. Doing so requires that the
adapt() method also be overridden. This method is the mechanism
by which SQLAlchemy produces DBAPI-specific type behavior during
statement execution. Overriding it allows a copy of the custom
type to be used in lieu of a DBAPI-specific type. Below we subclass
the types.TIME type to have custom result processing behavior.
The process() function will receive value from the DBAPI
cursor directly:

class MySpecialTime(TIME):
 def __init__(self, special_argument):
 super(MySpecialTime, self).__init__()
 self.special_argument = special_argument

 def result_processor(self, dialect, coltype):
 import datetime
 time = datetime.time
 def process(value):
 if value is not None:
 microseconds = value.microseconds
 seconds = value.seconds
 minutes = seconds / 60
 return time(
 minutes / 60,
 minutes % 60,
 seconds - minutes * 60,
 microseconds)
 else:
 return None
 return process

 def adapt(self, impltype):
 return MySpecialTime(self.special_argument)

Applying SQL-level Bind/Result Processing

As seen in the sections Augmenting Existing Types and Replacing the Bind/Result Processing of Existing Types,
SQLAlchemy allows Python functions to be invoked both when parameters are sent
to a statement, as well as when result rows are loaded from the database, to apply
transformations to the values as they are sent to or from the database. It is also
possible to define SQL-level transformations as well. The rationale here is when
only the relational database contains a particular series of functions that are necessary
to coerce incoming and outgoing data between an application and persistence format.
Examples include using database-defined encryption/decryption functions, as well
as stored procedures that handle geographic data. The Postgis extension to Postgresql
includes an extensive array of SQL functions that are necessary for coercing
data into particular formats.

Any TypeEngine, UserDefinedType or TypeDecorator subclass
can include implementations of
TypeEngine.bind_expression() and/or TypeEngine.column_expression(), which
when defined to return a non-None value should return a ColumnElement
expression to be injected into the SQL statement, either surrounding
bound parameters or a column expression. For example, to build a Geometry
type which will apply the Postgis function ST_GeomFromText to all outgoing
values and the function ST_AsText to all incoming data, we can create
our own subclass of UserDefinedType which provides these methods
in conjunction with func:

from sqlalchemy import func
from sqlalchemy.types import UserDefinedType

class Geometry(UserDefinedType):
 def get_col_spec(self):
 return "GEOMETRY"

 def bind_expression(self, bindvalue):
 return func.ST_GeomFromText(bindvalue, type_=self)

 def column_expression(self, col):
 return func.ST_AsText(col, type_=self)

We can apply the Geometry type into Table metadata
and use it in a select() construct:

geometry = Table('geometry', metadata,
 Column('geom_id', Integer, primary_key=True),
 Column('geom_data', Geometry)
)

print(select([geometry]).where(
 geometry.c.geom_data == 'LINESTRING(189412 252431,189631 259122)'))

The resulting SQL embeds both functions as appropriate. ST_AsText
is applied to the columns clause so that the return value is run through
the function before passing into a result set, and ST_GeomFromText
is run on the bound parameter so that the passed-in value is converted:

SELECT geometry.geom_id, ST_AsText(geometry.geom_data) AS geom_data_1
FROM geometry
WHERE geometry.geom_data = ST_GeomFromText(:geom_data_2)

The TypeEngine.column_expression() method interacts with the
mechanics of the compiler such that the SQL expression does not interfere
with the labeling of the wrapped expression. Such as, if we rendered
a select() against a label() of our expression, the string
label is moved to the outside of the wrapped expression:

print(select([geometry.c.geom_data.label('my_data')]))

Output:

SELECT ST_AsText(geometry.geom_data) AS my_data
FROM geometry

For an example of subclassing a built in type directly, we subclass
postgresql.BYTEA to provide a PGPString, which will make use of the
Postgresql pgcrypto extension to encrpyt/decrypt values
transparently:

from sqlalchemy import create_engine, String, select, func, \
 MetaData, Table, Column, type_coerce

from sqlalchemy.dialects.postgresql import BYTEA

class PGPString(BYTEA):
 def __init__(self, passphrase, length=None):
 super(PGPString, self).__init__(length)
 self.passphrase = passphrase

 def bind_expression(self, bindvalue):
 # convert the bind's type from PGPString to
 # String, so that it's passed to psycopg2 as is without
 # a dbapi.Binary wrapper
 bindvalue = type_coerce(bindvalue, String)
 return func.pgp_sym_encrypt(bindvalue, self.passphrase)

 def column_expression(self, col):
 return func.pgp_sym_decrypt(col, self.passphrase)

metadata = MetaData()
message = Table('message', metadata,
 Column('username', String(50)),
 Column('message',
 PGPString("this is my passphrase", length=1000)),
)

engine = create_engine("postgresql://scott:tiger@localhost/test", echo=True)
with engine.begin() as conn:
 metadata.create_all(conn)

 conn.execute(message.insert(), username="some user",
 message="this is my message")

 print(conn.scalar(
 select([message.c.message]).\
 where(message.c.username == "some user")
))

The pgp_sym_encrypt and pgp_sym_decrypt functions are applied
to the INSERT and SELECT statements:

INSERT INTO message (username, message)
 VALUES (%(username)s, pgp_sym_encrypt(%(message)s, %(pgp_sym_encrypt_1)s))
 {'username': 'some user', 'message': 'this is my message',
 'pgp_sym_encrypt_1': 'this is my passphrase'}

SELECT pgp_sym_decrypt(message.message, %(pgp_sym_decrypt_1)s) AS message_1
 FROM message
 WHERE message.username = %(username_1)s
 {'pgp_sym_decrypt_1': 'this is my passphrase', 'username_1': 'some user'}

New in version 0.8: Added the TypeEngine.bind_expression() and
TypeEngine.column_expression() methods.

See also:

PostGIS Integration

Redefining and Creating New Operators

SQLAlchemy Core defines a fixed set of expression operators available to all column expressions.
Some of these operations have the effect of overloading Python’s built in operators;
examples of such operators include
ColumnOperators.__eq__() (table.c.somecolumn == 'foo'),
ColumnOperators.__invert__() (~table.c.flag),
and ColumnOperators.__add__() (table.c.x + table.c.y). Other operators are exposed as
explicit methods on column expressions, such as
ColumnOperators.in_() (table.c.value.in_(['x', 'y'])) and ColumnOperators.like()
(table.c.value.like('%ed%')).

The Core expression constructs in all cases consult the type of the expression in order to determine
the behavior of existing operators, as well as to locate additional operators that aren’t part of
the built in set. The TypeEngine base class defines a root “comparison” implementation
TypeEngine.Comparator, and many specific types provide their own sub-implementations of this
class. User-defined TypeEngine.Comparator implementations can be built directly into a
simple subclass of a particular type in order to override or define new operations. Below,
we create a Integer subclass which overrides the ColumnOperators.__add__() operator:

from sqlalchemy import Integer

class MyInt(Integer):
 class comparator_factory(Integer.Comparator):
 def __add__(self, other):
 return self.op("goofy")(other)

The above configuration creates a new class MyInt, which
establishes the TypeEngine.comparator_factory attribute as
referring to a new class, subclassing the TypeEngine.Comparator class
associated with the Integer type.

Usage:

>>> sometable = Table("sometable", metadata, Column("data", MyInt))
>>> print(sometable.c.data + 5)
sometable.data goofy :data_1

The implementation for ColumnOperators.__add__() is consulted
by an owning SQL expression, by instantiating the TypeEngine.Comparator with
itself as the expr attribute. The mechanics of the expression
system are such that operations continue recursively until an
expression object produces a new SQL expression construct. Above, we
could just as well have said self.expr.op("goofy")(other) instead
of self.op("goofy")(other).

New methods added to a TypeEngine.Comparator are exposed on an
owning SQL expression
using a __getattr__ scheme, which exposes methods added to
TypeEngine.Comparator onto the owning ColumnElement.
For example, to add a log() function
to integers:

from sqlalchemy import Integer, func

class MyInt(Integer):
 class comparator_factory(Integer.Comparator):
 def log(self, other):
 return func.log(self.expr, other)

Using the above type:

>>> print(sometable.c.data.log(5))
log(:log_1, :log_2)

Unary operations
are also possible. For example, to add an implementation of the
Postgresql factorial operator, we combine the UnaryExpression construct
along with a custom_op to produce the factorial expression:

from sqlalchemy import Integer
from sqlalchemy.sql.expression import UnaryExpression
from sqlalchemy.sql import operators

class MyInteger(Integer):
 class comparator_factory(Integer.Comparator):
 def factorial(self):
 return UnaryExpression(self.expr,
 modifier=operators.custom_op("!"),
 type_=MyInteger)

Using the above type:

>>> from sqlalchemy.sql import column
>>> print(column('x', MyInteger).factorial())
x !

See also:

TypeEngine.comparator_factory

New in version 0.8: The expression system was enhanced to support
customization of operators on a per-type level.

Creating New Types

The UserDefinedType class is provided as a simple base class
for defining entirely new database types. Use this to represent native
database types not known by SQLAlchemy. If only Python translation behavior
is needed, use TypeDecorator instead.

	
class sqlalchemy.types.UserDefinedType

	Bases: sqlalchemy.types.TypeEngine

Base for user defined types.

This should be the base of new types. Note that
for most cases, TypeDecorator is probably
more appropriate:

import sqlalchemy.types as types

class MyType(types.UserDefinedType):
 def __init__(self, precision = 8):
 self.precision = precision

 def get_col_spec(self, **kw):
 return "MYTYPE(%s)" % self.precision

 def bind_processor(self, dialect):
 def process(value):
 return value
 return process

 def result_processor(self, dialect, coltype):
 def process(value):
 return value
 return process

Once the type is made, it’s immediately usable:

table = Table('foo', meta,
 Column('id', Integer, primary_key=True),
 Column('data', MyType(16))
)

The get_col_spec() method will in most cases receive a keyword
argument type_expression which refers to the owning expression
of the type as being compiled, such as a Column or
cast() construct. This keyword is only sent if the method
accepts keyword arguments (e.g. **kw) in its argument signature;
introspection is used to check for this in order to support legacy
forms of this function.

New in version 1.0.0: the owning expression is passed to
the get_col_spec() method via the keyword argument
type_expression, if it receives **kw in its signature.

	
coerce_compared_value(op, value)

	Suggest a type for a ‘coerced’ Python value in an expression.

Default behavior for UserDefinedType is the
same as that of TypeDecorator; by default it returns
self, assuming the compared value should be coerced into
the same type as this one. See
TypeDecorator.coerce_compared_value() for more detail.

Changed in version 0.8: UserDefinedType.coerce_compared_value()
now returns self by default, rather than falling onto the
more fundamental behavior of
TypeEngine.coerce_compared_value().

Base Type API

	
class sqlalchemy.types.TypeEngine

	Bases: sqlalchemy.sql.visitors.Visitable

The ultimate base class for all SQL datatypes.

Common subclasses of TypeEngine include
String, Integer, and Boolean.

For an overview of the SQLAlchemy typing system, see
Column and Data Types.

See also

Column and Data Types

	
class Comparator(expr)

	Bases: sqlalchemy.sql.operators.ColumnOperators

Base class for custom comparison operations defined at the
type level. See TypeEngine.comparator_factory.

	
TypeEngine.adapt(cls, **kw)

	Produce an “adapted” form of this type, given an “impl” class
to work with.

This method is used internally to associate generic
types with “implementation” types that are specific to a particular
dialect.

	
TypeEngine.bind_expression(bindvalue)

	“Given a bind value (i.e. a BindParameter instance),
return a SQL expression in its place.

This is typically a SQL function that wraps the existing bound
parameter within the statement. It is used for special data types
that require literals being wrapped in some special database function
in order to coerce an application-level value into a database-specific
format. It is the SQL analogue of the
TypeEngine.bind_processor() method.

The method is evaluated at statement compile time, as opposed
to statement construction time.

Note that this method, when implemented, should always return
the exact same structure, without any conditional logic, as it
may be used in an executemany() call against an arbitrary number
of bound parameter sets.

See also:

Applying SQL-level Bind/Result Processing

	
TypeEngine.bind_processor(dialect)

	Return a conversion function for processing bind values.

Returns a callable which will receive a bind parameter value
as the sole positional argument and will return a value to
send to the DB-API.

If processing is not necessary, the method should return None.

	Parameters:
	dialect¶ – Dialect instance in use.

	
TypeEngine.coerce_compared_value(op, value)

	Suggest a type for a ‘coerced’ Python value in an expression.

Given an operator and value, gives the type a chance
to return a type which the value should be coerced into.

The default behavior here is conservative; if the right-hand
side is already coerced into a SQL type based on its
Python type, it is usually left alone.

End-user functionality extension here should generally be via
TypeDecorator, which provides more liberal behavior in that
it defaults to coercing the other side of the expression into this
type, thus applying special Python conversions above and beyond those
needed by the DBAPI to both ides. It also provides the public method
TypeDecorator.coerce_compared_value() which is intended for
end-user customization of this behavior.

	
TypeEngine.column_expression(colexpr)

	Given a SELECT column expression, return a wrapping SQL expression.

This is typically a SQL function that wraps a column expression
as rendered in the columns clause of a SELECT statement.
It is used for special data types that require
columns to be wrapped in some special database function in order
to coerce the value before being sent back to the application.
It is the SQL analogue of the TypeEngine.result_processor()
method.

The method is evaluated at statement compile time, as opposed
to statement construction time.

See also:

Applying SQL-level Bind/Result Processing

	
TypeEngine.comparator_factory

	Bases: sqlalchemy.sql.operators.ColumnOperators

A TypeEngine.Comparator class which will apply
to operations performed by owning ColumnElement objects.

The comparator_factory attribute is a hook consulted by
the core expression system when column and SQL expression operations
are performed. When a TypeEngine.Comparator class is
associated with this attribute, it allows custom re-definition of
all existing operators, as well as definition of new operators.
Existing operators include those provided by Python operator overloading
such as operators.ColumnOperators.__add__() and
operators.ColumnOperators.__eq__(),
those provided as standard
attributes of operators.ColumnOperators such as
operators.ColumnOperators.like()
and operators.ColumnOperators.in_().

Rudimentary usage of this hook is allowed through simple subclassing
of existing types, or alternatively by using TypeDecorator.
See the documentation section Redefining and Creating New Operators for examples.

New in version 0.8: The expression system was enhanced to support
customization of operators on a per-type level.

alias of Comparator

	
TypeEngine.compare_against_backend(dialect, conn_type)

	Compare this type against the given backend type.

This function is currently not implemented for SQLAlchemy
types, and for all built in types will return None. However,
it can be implemented by a user-defined type
where it can be consumed by schema comparison tools such as
Alembic autogenerate.

A future release of SQLAlchemy will potentially impement this method
for builtin types as well.

The function should return True if this type is equivalent to the
given type; the type is typically reflected from the database
so should be database specific. The dialect in use is also
passed. It can also return False to assert that the type is
not equivalent.

	Parameters:
	
	dialect¶ – a Dialect that is involved in the comparison.

	conn_type¶ – the type object reflected from the backend.

New in version 1.0.3.

	
TypeEngine.compare_values(x, y)

	Compare two values for equality.

	
TypeEngine.compile(dialect=None)

	Produce a string-compiled form of this TypeEngine.

When called with no arguments, uses a “default” dialect
to produce a string result.

	Parameters:
	dialect¶ – a Dialect instance.

	
TypeEngine.dialect_impl(dialect)

	Return a dialect-specific implementation for this
TypeEngine.

	
TypeEngine.evaluates_none()

	Return a copy of this type which has the should_evaluate_none
flag set to True.

E.g.:

Table(
 'some_table', metadata,
 Column(
 String(50).evaluates_none(),
 nullable=True,
 server_default='no value')
)

The ORM uses this flag to indicate that a positive value of None
is passed to the column in an INSERT statement, rather than omitting
the column from the INSERT statement which has the effect of firing
off column-level defaults. It also allows for types which have
special behavior associated with the Python None value to indicate
that the value doesn’t necessarily translate into SQL NULL; a
prime example of this is a JSON type which may wish to persist the
JSON value 'null'.

In all cases, the actual NULL SQL value can be always be
persisted in any column by using
the null SQL construct in an INSERT statement
or associated with an ORM-mapped attribute.

New in version 1.1.

See also

Forcing NULL on a column with a default - in the ORM documentation

postgresql.JSON.none_as_null - Postgresql JSON
interaction with this flag.

TypeEngine.should_evaluate_none - class-level flag

	
TypeEngine.get_dbapi_type(dbapi)

	Return the corresponding type object from the underlying DB-API, if
any.

This can be useful for calling setinputsizes(), for example.

	
TypeEngine.hashable = True

	Flag, if False, means values from this type aren’t hashable.

Used by the ORM when uniquing result lists.

	
TypeEngine.literal_processor(dialect)

	Return a conversion function for processing literal values that are
to be rendered directly without using binds.

This function is used when the compiler makes use of the
“literal_binds” flag, typically used in DDL generation as well
as in certain scenarios where backends don’t accept bound parameters.

New in version 0.9.0.

	
TypeEngine.python_type

	Return the Python type object expected to be returned
by instances of this type, if known.

Basically, for those types which enforce a return type,
or are known across the board to do such for all common
DBAPIs (like int for example), will return that type.

If a return type is not defined, raises
NotImplementedError.

Note that any type also accommodates NULL in SQL which
means you can also get back None from any type
in practice.

	
TypeEngine.result_processor(dialect, coltype)

	Return a conversion function for processing result row values.

Returns a callable which will receive a result row column
value as the sole positional argument and will return a value
to return to the user.

If processing is not necessary, the method should return None.

	Parameters:
	
	dialect¶ – Dialect instance in use.

	coltype¶ – DBAPI coltype argument received in cursor.description.

	
TypeEngine.should_evaluate_none = False

	If True, the Python constant None is considered to be handled
explicitly by this type.

The ORM uses this flag to indicate that a positive value of None
is passed to the column in an INSERT statement, rather than omitting
the column from the INSERT statement which has the effect of firing
off column-level defaults. It also allows types which have special
behavior for Python None, such as a JSON type, to indicate that
they’d like to handle the None value explicitly.

To set this flag on an existing type, use the
TypeEngine.evaluates_none() method.

See also

TypeEngine.evaluates_none()

New in version 1.1.

	
TypeEngine.with_variant(type_, dialect_name)

	Produce a new type object that will utilize the given
type when applied to the dialect of the given name.

e.g.:

from sqlalchemy.types import String
from sqlalchemy.dialects import mysql

s = String()

s = s.with_variant(mysql.VARCHAR(collation='foo'), 'mysql')

The construction of TypeEngine.with_variant() is always
from the “fallback” type to that which is dialect specific.
The returned type is an instance of Variant, which
itself provides a Variant.with_variant()
that can be called repeatedly.

	Parameters:
	
	type_¶ – a TypeEngine that will be selected
as a variant from the originating type, when a dialect
of the given name is in use.

	dialect_name¶ – base name of the dialect which uses
this type. (i.e. 'postgresql', 'mysql', etc.)

New in version 0.7.2.

	
class sqlalchemy.types.Concatenable

	A mixin that marks a type as supporting ‘concatenation’,
typically strings.

	
class sqlalchemy.types.Indexable

	A mixin that marks a type as supporting indexing operations,
such as array or JSON structures.

New in version 1.1.0.

	
class sqlalchemy.types.NullType

	Bases: sqlalchemy.types.TypeEngine

An unknown type.

NullType is used as a default type for those cases where
a type cannot be determined, including:

	During table reflection, when the type of a column is not recognized
by the Dialect

	When constructing SQL expressions using plain Python objects of
unknown types (e.g. somecolumn == my_special_object)

	When a new Column is created, and the given type is passed
as None or is not passed at all.

The NullType can be used within SQL expression invocation
without issue, it just has no behavior either at the expression
construction level or at the bind-parameter/result processing level.
NullType will result in a CompileError if the compiler
is asked to render the type itself, such as if it is used in a
cast() operation or within a schema creation operation such as that
invoked by MetaData.create_all() or the CreateTable
construct.

	
class sqlalchemy.types.Variant(base, mapping)

	Bases: sqlalchemy.types.TypeDecorator

A wrapping type that selects among a variety of
implementations based on dialect in use.

The Variant type is typically constructed
using the TypeEngine.with_variant() method.

New in version 0.7.2.

See also

TypeEngine.with_variant() for an example of use.

	Members:
	with_variant, __init__

Engine and Connection Use

	Engine Configuration
	Supported Databases

	Database Urls

	Engine Creation API

	Pooling

	Custom DBAPI connect() arguments

	Configuring Logging

	Working with Engines and Connections
	Basic Usage

	Using Transactions

	Understanding Autocommit

	Connectionless Execution, Implicit Execution

	Translation of Schema Names

	Engine Disposal

	Using the Threadlocal Execution Strategy

	Working with Raw DBAPI Connections

	Registering New Dialects

	Connection / Engine API

	Connection Pooling
	Connection Pool Configuration

	Switching Pool Implementations

	Using a Custom Connection Function

	Constructing a Pool

	Pool Events

	Dealing with Disconnects

	Using Connection Pools with Multiprocessing

	API Documentation - Available Pool Implementations

	Pooling Plain DB-API Connections

	Core Events
	Connection Pool Events

	SQL Execution and Connection Events

	Schema Events

Engine Configuration

The Engine is the starting point for any SQLAlchemy application. It’s
“home base” for the actual database and its DBAPI, delivered to the SQLAlchemy
application through a connection pool and a Dialect, which describes how
to talk to a specific kind of database/DBAPI combination.

The general structure can be illustrated as follows:

[image: ../_images/sqla_engine_arch.png]
Where above, an Engine references both a
Dialect and a Pool,
which together interpret the DBAPI’s module functions as well as the behavior
of the database.

Creating an engine is just a matter of issuing a single call,
create_engine():

from sqlalchemy import create_engine
engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')

The above engine creates a Dialect object tailored towards
PostgreSQL, as well as a Pool object which will establish a DBAPI
connection at localhost:5432 when a connection request is first received.
Note that the Engine and its underlying Pool do not
establish the first actual DBAPI connection until the Engine.connect()
method is called, or an operation which is dependent on this method such as
Engine.execute() is invoked. In this way, Engine and
Pool can be said to have a lazy initialization behavior.

The Engine, once created, can either be used directly to interact with the database,
or can be passed to a Session object to work with the ORM. This section
covers the details of configuring an Engine. The next section, Working with Engines and Connections,
will detail the usage API of the Engine and similar, typically for non-ORM
applications.

Supported Databases

SQLAlchemy includes many Dialect implementations for various
backends. Dialects for the most common databases are included with SQLAlchemy; a handful
of others require an additional install of a separate dialect.

See the section Dialects for information on the various backends available.

Database Urls

The create_engine() function produces an Engine object based
on a URL. These URLs follow RFC-1738, and usually can include username, password,
hostname, database name as well as optional keyword arguments for additional configuration.
In some cases a file path is accepted, and in others a “data source name” replaces
the “host” and “database” portions. The typical form of a database URL is:

dialect+driver://username:password@host:port/database

Dialect names include the identifying name of the SQLAlchemy dialect,
a name such as sqlite, mysql, postgresql, oracle, or mssql.
The drivername is the name of the DBAPI to be used to connect to
the database using all lowercase letters. If not specified, a “default” DBAPI
will be imported if available - this default is typically the most widely
known driver available for that backend.

Examples for common connection styles follow below. For a full index of
detailed information on all included dialects as well as links to third-party dialects, see
Dialects.

Postgresql

The Postgresql dialect uses psycopg2 as the default DBAPI. pg8000 is
also available as a pure-Python substitute:

default
engine = create_engine('postgresql://scott:tiger@localhost/mydatabase')

psycopg2
engine = create_engine('postgresql+psycopg2://scott:tiger@localhost/mydatabase')

pg8000
engine = create_engine('postgresql+pg8000://scott:tiger@localhost/mydatabase')

More notes on connecting to Postgresql at PostgreSQL.

MySQL

The MySQL dialect uses mysql-python as the default DBAPI. There are many
MySQL DBAPIs available, including MySQL-connector-python and OurSQL:

default
engine = create_engine('mysql://scott:tiger@localhost/foo')

mysql-python
engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')

MySQL-connector-python
engine = create_engine('mysql+mysqlconnector://scott:tiger@localhost/foo')

OurSQL
engine = create_engine('mysql+oursql://scott:tiger@localhost/foo')

More notes on connecting to MySQL at MySQL.

Oracle

The Oracle dialect uses cx_oracle as the default DBAPI:

engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')

engine = create_engine('oracle+cx_oracle://scott:tiger@tnsname')

More notes on connecting to Oracle at Oracle.

Microsoft SQL Server

The SQL Server dialect uses pyodbc as the default DBAPI. pymssql is
also available:

pyodbc
engine = create_engine('mssql+pyodbc://scott:tiger@mydsn')

pymssql
engine = create_engine('mssql+pymssql://scott:tiger@hostname:port/dbname')

More notes on connecting to SQL Server at Microsoft SQL Server.

SQLite

SQLite connects to file-based databases, using the Python built-in
module sqlite3 by default.

As SQLite connects to local files, the URL format is slightly different.
The “file” portion of the URL is the filename of the database.
For a relative file path, this requires three slashes:

sqlite://<nohostname>/<path>
where <path> is relative:
engine = create_engine('sqlite:///foo.db')

And for an absolute file path, the three slashes are followed by the absolute path:

#Unix/Mac - 4 initial slashes in total
engine = create_engine('sqlite:////absolute/path/to/foo.db')
#Windows
engine = create_engine('sqlite:///C:\\path\\to\\foo.db')
#Windows alternative using raw string
engine = create_engine(r'sqlite:///C:\path\to\foo.db')

To use a SQLite :memory: database, specify an empty URL:

engine = create_engine('sqlite://')

More notes on connecting to SQLite at SQLite.

Others

See Dialects, the top-level page for all additional dialect
documentation.

Engine Creation API

	
sqlalchemy.create_engine(*args, **kwargs)

	Create a new Engine instance.

The standard calling form is to send the URL as the
first positional argument, usually a string
that indicates database dialect and connection arguments:

engine = create_engine("postgresql://scott:tiger@localhost/test")

Additional keyword arguments may then follow it which
establish various options on the resulting Engine
and its underlying Dialect and Pool
constructs:

engine = create_engine("mysql://scott:tiger@hostname/dbname",
 encoding='latin1', echo=True)

The string form of the URL is
dialect[+driver]://user:password@host/dbname[?key=value..], where
dialect is a database name such as mysql, oracle,
postgresql, etc., and driver the name of a DBAPI, such as
psycopg2, pyodbc, cx_oracle, etc. Alternatively,
the URL can be an instance of URL.

**kwargs takes a wide variety of options which are routed
towards their appropriate components. Arguments may be specific to
the Engine, the underlying Dialect, as well as the
Pool. Specific dialects also accept keyword arguments that
are unique to that dialect. Here, we describe the parameters
that are common to most create_engine() usage.

Once established, the newly resulting Engine will
request a connection from the underlying Pool once
Engine.connect() is called, or a method which depends on it
such as Engine.execute() is invoked. The Pool in turn
will establish the first actual DBAPI connection when this request
is received. The create_engine() call itself does not
establish any actual DBAPI connections directly.

See also

Engine Configuration

Dialects

Working with Engines and Connections

	Parameters:
	
	case_sensitive=True¶ – if False, result column names
will match in a case-insensitive fashion, that is,
row['SomeColumn'].

Changed in version 0.8: By default, result row names match case-sensitively.
In version 0.7 and prior, all matches were case-insensitive.

	connect_args¶ – a dictionary of options which will be
passed directly to the DBAPI’s connect() method as
additional keyword arguments. See the example
at Custom DBAPI connect() arguments.

	convert_unicode=False¶ – if set to True, sets
the default behavior of convert_unicode on the
String type to True, regardless
of a setting of False on an individual
String type, thus causing all String
-based columns
to accommodate Python unicode objects. This flag
is useful as an engine-wide setting when using a
DBAPI that does not natively support Python
unicode objects and raises an error when
one is received (such as pyodbc with FreeTDS).

See String for further details on
what this flag indicates.

	creator¶ – a callable which returns a DBAPI connection.
This creation function will be passed to the underlying
connection pool and will be used to create all new database
connections. Usage of this function causes connection
parameters specified in the URL argument to be bypassed.

	echo=False¶ – if True, the Engine will log all statements
as well as a repr() of their parameter lists to the engines
logger, which defaults to sys.stdout. The echo attribute of
Engine can be modified at any time to turn logging on and
off. If set to the string "debug", result rows will be
printed to the standard output as well. This flag ultimately
controls a Python logger; see Configuring Logging for
information on how to configure logging directly.

	echo_pool=False¶ – if True, the connection pool will log
all checkouts/checkins to the logging stream, which defaults to
sys.stdout. This flag ultimately controls a Python logger; see
Configuring Logging for information on how to configure logging
directly.

	encoding¶ – Defaults to utf-8. This is the string
encoding used by SQLAlchemy for string encode/decode
operations which occur within SQLAlchemy, outside of
the DBAPI. Most modern DBAPIs feature some degree of
direct support for Python unicode objects,
what you see in Python 2 as a string of the form
u'some string'. For those scenarios where the
DBAPI is detected as not supporting a Python unicode
object, this encoding is used to determine the
source/destination encoding. It is not used
for those cases where the DBAPI handles unicode
directly.

To properly configure a system to accommodate Python
unicode objects, the DBAPI should be
configured to handle unicode to the greatest
degree as is appropriate - see
the notes on unicode pertaining to the specific
target database in use at Dialects.

Areas where string encoding may need to be accommodated
outside of the DBAPI include zero or more of:

	the values passed to bound parameters, corresponding to
the Unicode type or the String type
when convert_unicode is True;

	the values returned in result set columns corresponding
to the Unicode type or the String
type when convert_unicode is True;

	the string SQL statement passed to the DBAPI’s
cursor.execute() method;

	the string names of the keys in the bound parameter
dictionary passed to the DBAPI’s cursor.execute()
as well as cursor.setinputsizes() methods;

	the string column names retrieved from the DBAPI’s
cursor.description attribute.

When using Python 3, the DBAPI is required to support
all of the above values as Python unicode objects,
which in Python 3 are just known as str. In Python 2,
the DBAPI does not specify unicode behavior at all,
so SQLAlchemy must make decisions for each of the above
values on a per-DBAPI basis - implementations are
completely inconsistent in their behavior.

	execution_options¶ – Dictionary execution options which will
be applied to all connections. See
execution_options()

	implicit_returning=True¶ – When True, a RETURNING-
compatible construct, if available, will be used to
fetch newly generated primary key values when a single row
INSERT statement is emitted with no existing returning()
clause. This applies to those backends which support RETURNING
or a compatible construct, including Postgresql, Firebird, Oracle,
Microsoft SQL Server. Set this to False to disable
the automatic usage of RETURNING.

	isolation_level¶ – this string parameter is interpreted by various
dialects in order to affect the transaction isolation level of the
database connection. The parameter essentially accepts some subset of
these string arguments: "SERIALIZABLE", "REPEATABLE_READ",
"READ_COMMITTED", "READ_UNCOMMITTED" and "AUTOCOMMIT".
Behavior here varies per backend, and
individual dialects should be consulted directly.

Note that the isolation level can also be set on a per-Connection
basis as well, using the
Connection.execution_options.isolation_level
feature.

See also

Connection.default_isolation_level - view default level

Connection.execution_options.isolation_level
- set per Connection isolation level

SQLite Transaction Isolation

Postgresql Transaction Isolation

MySQL Transaction Isolation

Setting Transaction Isolation Levels - for the ORM

	label_length=None¶ – optional integer value which limits
the size of dynamically generated column labels to that many
characters. If less than 6, labels are generated as
“_(counter)”. If None, the value of
dialect.max_identifier_length is used instead.

	listeners¶ – A list of one or more
PoolListener objects which will
receive connection pool events.

	logging_name¶ – String identifier which will be used within
the “name” field of logging records generated within the
“sqlalchemy.engine” logger. Defaults to a hexstring of the
object’s id.

	max_overflow=10¶ – the number of connections to allow in
connection pool “overflow”, that is connections that can be
opened above and beyond the pool_size setting, which defaults
to five. this is only used with QueuePool.

	module=None¶ – reference to a Python module object (the module
itself, not its string name). Specifies an alternate DBAPI module to
be used by the engine’s dialect. Each sub-dialect references a
specific DBAPI which will be imported before first connect. This
parameter causes the import to be bypassed, and the given module to
be used instead. Can be used for testing of DBAPIs as well as to
inject “mock” DBAPI implementations into the Engine.

	paramstyle=None¶ – The paramstyle
to use when rendering bound parameters. This style defaults to the
one recommended by the DBAPI itself, which is retrieved from the
.paramstyle attribute of the DBAPI. However, most DBAPIs accept
more than one paramstyle, and in particular it may be desirable
to change a “named” paramstyle into a “positional” one, or vice versa.
When this attribute is passed, it should be one of the values
"qmark", "numeric", "named", "format" or
"pyformat", and should correspond to a parameter style known
to be supported by the DBAPI in use.

	pool=None¶ – an already-constructed instance of
Pool, such as a
QueuePool instance. If non-None, this
pool will be used directly as the underlying connection pool
for the engine, bypassing whatever connection parameters are
present in the URL argument. For information on constructing
connection pools manually, see Connection Pooling.

	poolclass=None¶ – a Pool
subclass, which will be used to create a connection pool
instance using the connection parameters given in the URL. Note
this differs from pool in that you don’t actually
instantiate the pool in this case, you just indicate what type
of pool to be used.

	pool_logging_name¶ – String identifier which will be used within
the “name” field of logging records generated within the
“sqlalchemy.pool” logger. Defaults to a hexstring of the object’s
id.

	pool_size=5¶ – the number of connections to keep open
inside the connection pool. This used with
QueuePool as
well as SingletonThreadPool. With
QueuePool, a pool_size setting
of 0 indicates no limit; to disable pooling, set poolclass to
NullPool instead.

	pool_recycle=-1¶ – this setting causes the pool to recycle
connections after the given number of seconds has passed. It
defaults to -1, or no timeout. For example, setting to 3600
means connections will be recycled after one hour. Note that
MySQL in particular will disconnect automatically if no
activity is detected on a connection for eight hours (although
this is configurable with the MySQLDB connection itself and the
server configuration as well).

	pool_reset_on_return='rollback'¶ – set the “reset on return”
behavior of the pool, which is whether rollback(),
commit(), or nothing is called upon connections
being returned to the pool. See the docstring for
reset_on_return at Pool.

New in version 0.7.6.

	pool_timeout=30¶ – number of seconds to wait before giving
up on getting a connection from the pool. This is only used
with QueuePool.

	strategy='plain'¶ – selects alternate engine implementations.
Currently available are:

	the threadlocal strategy, which is described in
Using the Threadlocal Execution Strategy;

	the mock strategy, which dispatches all statement
execution to a function passed as the argument executor.
See example in the FAQ.

	executor=None¶ – a function taking arguments
(sql, *multiparams, **params), to which the mock strategy will
dispatch all statement execution. Used only by strategy='mock'.

	
sqlalchemy.engine_from_config(configuration, prefix='sqlalchemy.', **kwargs)

	Create a new Engine instance using a configuration dictionary.

The dictionary is typically produced from a config file.

The keys of interest to engine_from_config() should be prefixed, e.g.
sqlalchemy.url, sqlalchemy.echo, etc. The ‘prefix’ argument
indicates the prefix to be searched for. Each matching key (after the
prefix is stripped) is treated as though it were the corresponding keyword
argument to a create_engine() call.

The only required key is (assuming the default prefix) sqlalchemy.url,
which provides the database URL.

A select set of keyword arguments will be “coerced” to their
expected type based on string values. The set of arguments
is extensible per-dialect using the engine_config_types accessor.

	Parameters:
	
	configuration¶ – A dictionary (typically produced from a config file,
but this is not a requirement). Items whose keys start with the value
of ‘prefix’ will have that prefix stripped, and will then be passed to
create_engine.

	prefix¶ – Prefix to match and then strip from keys
in ‘configuration’.

	kwargs¶ – Each keyword argument to engine_from_config() itself
overrides the corresponding item taken from the ‘configuration’
dictionary. Keyword arguments should not be prefixed.

	
sqlalchemy.engine.url.make_url(name_or_url)

	Given a string or unicode instance, produce a new URL instance.

The given string is parsed according to the RFC 1738 spec. If an
existing URL object is passed, just returns the object.

	
class sqlalchemy.engine.url.URL(drivername, username=None, password=None, host=None, port=None, database=None, query=None)

	Represent the components of a URL used to connect to a database.

This object is suitable to be passed directly to a
create_engine() call. The fields of the URL are parsed
from a string by the make_url() function. the string
format of the URL is an RFC-1738-style string.

All initialization parameters are available as public attributes.

	Parameters:
	
	drivername¶ – the name of the database backend.
This name will correspond to a module in sqlalchemy/databases
or a third party plug-in.

	username¶ – The user name.

	password¶ – database password.

	host¶ – The name of the host.

	port¶ – The port number.

	database¶ – The database name.

	query¶ – A dictionary of options to be passed to the
dialect and/or the DBAPI upon connect.

	
get_dialect()

	Return the SQLAlchemy database dialect class corresponding
to this URL’s driver name.

	
translate_connect_args(names=[], **kw)

	Translate url attributes into a dictionary of connection arguments.

Returns attributes of this url (host, database, username,
password, port) as a plain dictionary. The attribute names are
used as the keys by default. Unset or false attributes are omitted
from the final dictionary.

	Parameters:
	
	**kw¶ – Optional, alternate key names for url attributes.

	names¶ – Deprecated. Same purpose as the keyword-based alternate
names, but correlates the name to the original positionally.

Pooling

The Engine will ask the connection pool for a
connection when the connect() or execute() methods are called. The
default connection pool, QueuePool, will open connections to the
database on an as-needed basis. As concurrent statements are executed,
QueuePool will grow its pool of connections to a
default size of five, and will allow a default “overflow” of ten. Since the
Engine is essentially “home base” for the
connection pool, it follows that you should keep a single
Engine per database established within an
application, rather than creating a new one for each connection.

Note

QueuePool is not used by default for SQLite engines. See
SQLite for details on SQLite connection pool usage.

For more information on connection pooling, see Connection Pooling.

Custom DBAPI connect() arguments

Custom arguments used when issuing the connect() call to the underlying
DBAPI may be issued in three distinct ways. String-based arguments can be
passed directly from the URL string as query arguments:

db = create_engine('postgresql://scott:tiger@localhost/test?argument1=foo&argument2=bar')

If SQLAlchemy’s database connector is aware of a particular query argument, it
may convert its type from string to its proper type.

create_engine() also takes an argument connect_args which is an additional dictionary that will be passed to connect(). This can be used when arguments of a type other than string are required, and SQLAlchemy’s database connector has no type conversion logic present for that parameter:

db = create_engine('postgresql://scott:tiger@localhost/test', connect_args = {'argument1':17, 'argument2':'bar'})

The most customizable connection method of all is to pass a creator
argument, which specifies a callable that returns a DBAPI connection:

def connect():
 return psycopg.connect(user='scott', host='localhost')

db = create_engine('postgresql://', creator=connect)

Configuring Logging

Python’s standard logging module is used to
implement informational and debug log output with SQLAlchemy. This allows
SQLAlchemy’s logging to integrate in a standard way with other applications
and libraries. The echo and echo_pool flags that are present on
create_engine(), as well as the echo_uow flag used on
Session, all interact with regular loggers.

This section assumes familiarity with the above linked logging module. All
logging performed by SQLAlchemy exists underneath the sqlalchemy
namespace, as used by logging.getLogger('sqlalchemy'). When logging has
been configured (i.e. such as via logging.basicConfig()), the general
namespace of SA loggers that can be turned on is as follows:

	sqlalchemy.engine - controls SQL echoing. set to logging.INFO for SQL query output, logging.DEBUG for query + result set output.

	sqlalchemy.dialects - controls custom logging for SQL dialects. See the documentation of individual dialects for details.

	sqlalchemy.pool - controls connection pool logging. set to logging.INFO or lower to log connection pool checkouts/checkins.

	sqlalchemy.orm - controls logging of various ORM functions. set to logging.INFO for information on mapper configurations.

For example, to log SQL queries using Python logging instead of the echo=True flag:

import logging

logging.basicConfig()
logging.getLogger('sqlalchemy.engine').setLevel(logging.INFO)

By default, the log level is set to logging.WARN within the entire
sqlalchemy namespace so that no log operations occur, even within an
application that has logging enabled otherwise.

The echo flags present as keyword arguments to
create_engine() and others as well as the echo property
on Engine, when set to True, will first
attempt to ensure that logging is enabled. Unfortunately, the logging
module provides no way of determining if output has already been configured
(note we are referring to if a logging configuration has been set up, not just
that the logging level is set). For this reason, any echo=True flags will
result in a call to logging.basicConfig() using sys.stdout as the
destination. It also sets up a default format using the level name, timestamp,
and logger name. Note that this configuration has the affect of being
configured in addition to any existing logger configurations. Therefore,
when using Python logging, ensure all echo flags are set to False at all
times, to avoid getting duplicate log lines.

The logger name of instance such as an Engine
or Pool defaults to using a truncated hex identifier
string. To set this to a specific name, use the “logging_name” and
“pool_logging_name” keyword arguments with sqlalchemy.create_engine().

Note

The SQLAlchemy Engine conserves Python function call overhead
by only emitting log statements when the current logging level is detected
as logging.INFO or logging.DEBUG. It only checks this level when
a new connection is procured from the connection pool. Therefore when
changing the logging configuration for an already-running application, any
Connection that’s currently active, or more commonly a
Session object that’s active in a transaction, won’t log any
SQL according to the new configuration until a new Connection
is procured (in the case of Session, this is
after the current transaction ends and a new one begins).

Working with Engines and Connections

This section details direct usage of the Engine,
Connection, and related objects. Its important to note that when
using the SQLAlchemy ORM, these objects are not generally accessed; instead,
the Session object is used as the interface to the database.
However, for applications that are built around direct usage of textual SQL
statements and/or SQL expression constructs without involvement by the ORM’s
higher level management services, the Engine and
Connection are king (and queen?) - read on.

Basic Usage

Recall from Engine Configuration that an Engine is created via
the create_engine() call:

engine = create_engine('mysql://scott:tiger@localhost/test')

The typical usage of create_engine() is once per particular database
URL, held globally for the lifetime of a single application process. A single
Engine manages many individual DBAPI connections on behalf of the
process and is intended to be called upon in a concurrent fashion. The
Engine is not synonymous to the DBAPI connect function,
which represents just one connection resource - the Engine is most
efficient when created just once at the module level of an application, not
per-object or per-function call.

For a multiple-process application that uses the os.fork system call, or
for example the Python multiprocessing module, it’s usually required that a
separate Engine be used for each child process. This is because the
Engine maintains a reference to a connection pool that ultimately
references DBAPI connections - these tend to not be portable across process
boundaries. An Engine that is configured not to use pooling (which
is achieved via the usage of NullPool) does not have this
requirement.

The engine can be used directly to issue SQL to the database. The most generic
way is first procure a connection resource, which you get via the
Engine.connect() method:

connection = engine.connect()
result = connection.execute("select username from users")
for row in result:
 print("username:", row['username'])
connection.close()

The connection is an instance of Connection,
which is a proxy object for an actual DBAPI connection. The DBAPI
connection is retrieved from the connection pool at the point at which
Connection is created.

The returned result is an instance of ResultProxy, which
references a DBAPI cursor and provides a largely compatible interface
with that of the DBAPI cursor. The DBAPI cursor will be closed
by the ResultProxy when all of its result rows (if any) are
exhausted. A ResultProxy that returns no rows, such as that of
an UPDATE statement (without any returned rows),
releases cursor resources immediately upon construction.

When the close() method is called, the referenced DBAPI
connection is released to the connection pool. From the perspective
of the database itself, nothing is actually “closed”, assuming pooling is
in use. The pooling mechanism issues a rollback() call on the DBAPI
connection so that any transactional state or locks are removed, and
the connection is ready for its next usage.

The above procedure can be performed in a shorthand way by using the
execute() method of Engine itself:

result = engine.execute("select username from users")
for row in result:
 print("username:", row['username'])

Where above, the execute() method acquires a new
Connection on its own, executes the statement with that object,
and returns the ResultProxy. In this case, the ResultProxy
contains a special flag known as close_with_result, which indicates
that when its underlying DBAPI cursor is closed, the Connection
object itself is also closed, which again returns the DBAPI connection
to the connection pool, releasing transactional resources.

If the ResultProxy potentially has rows remaining, it can be
instructed to close out its resources explicitly:

result.close()

If the ResultProxy has pending rows remaining and is dereferenced by
the application without being closed, Python garbage collection will
ultimately close out the cursor as well as trigger a return of the pooled
DBAPI connection resource to the pool (SQLAlchemy achieves this by the usage
of weakref callbacks - never the __del__ method) - however it’s never a
good idea to rely upon Python garbage collection to manage resources.

Our example above illustrated the execution of a textual SQL string.
The execute() method can of course accommodate more than
that, including the variety of SQL expression constructs described
in SQL Expression Language Tutorial.

Using Transactions

Note

This section describes how to use transactions when working directly
with Engine and Connection objects. When using the
SQLAlchemy ORM, the public API for transaction control is via the
Session object, which makes usage of the Transaction
object internally. See Managing Transactions for further
information.

The Connection object provides a begin()
method which returns a Transaction object.
This object is usually used within a try/except clause so that it is
guaranteed to invoke Transaction.rollback() or Transaction.commit():

connection = engine.connect()
trans = connection.begin()
try:
 r1 = connection.execute(table1.select())
 connection.execute(table1.insert(), col1=7, col2='this is some data')
 trans.commit()
except:
 trans.rollback()
 raise

The above block can be created more succinctly using context
managers, either given an Engine:

runs a transaction
with engine.begin() as connection:
 r1 = connection.execute(table1.select())
 connection.execute(table1.insert(), col1=7, col2='this is some data')

Or from the Connection, in which case the Transaction object
is available as well:

with connection.begin() as trans:
 r1 = connection.execute(table1.select())
 connection.execute(table1.insert(), col1=7, col2='this is some data')

Nesting of Transaction Blocks

The Transaction object also handles “nested”
behavior by keeping track of the outermost begin/commit pair. In this example,
two functions both issue a transaction on a Connection, but only the outermost
Transaction object actually takes effect when it is committed.

method_a starts a transaction and calls method_b
def method_a(connection):
 trans = connection.begin() # open a transaction
 try:
 method_b(connection)
 trans.commit() # transaction is committed here
 except:
 trans.rollback() # this rolls back the transaction unconditionally
 raise

method_b also starts a transaction
def method_b(connection):
 trans = connection.begin() # open a transaction - this runs in the context of method_a's transaction
 try:
 connection.execute("insert into mytable values ('bat', 'lala')")
 connection.execute(mytable.insert(), col1='bat', col2='lala')
 trans.commit() # transaction is not committed yet
 except:
 trans.rollback() # this rolls back the transaction unconditionally
 raise

open a Connection and call method_a
conn = engine.connect()
method_a(conn)
conn.close()

Above, method_a is called first, which calls connection.begin(). Then
it calls method_b. When method_b calls connection.begin(), it just
increments a counter that is decremented when it calls commit(). If either
method_a or method_b calls rollback(), the whole transaction is
rolled back. The transaction is not committed until method_a calls the
commit() method. This “nesting” behavior allows the creation of functions
which “guarantee” that a transaction will be used if one was not already
available, but will automatically participate in an enclosing transaction if
one exists.

Understanding Autocommit

The previous transaction example illustrates how to use Transaction
so that several executions can take part in the same transaction. What happens
when we issue an INSERT, UPDATE or DELETE call without using
Transaction? While some DBAPI
implementations provide various special “non-transactional” modes, the core
behavior of DBAPI per PEP-0249 is that a transaction is always in progress,
providing only rollback() and commit() methods but no begin().
SQLAlchemy assumes this is the case for any given DBAPI.

Given this requirement, SQLAlchemy implements its own “autocommit” feature which
works completely consistently across all backends. This is achieved by
detecting statements which represent data-changing operations, i.e. INSERT,
UPDATE, DELETE, as well as data definition language (DDL) statements such as
CREATE TABLE, ALTER TABLE, and then issuing a COMMIT automatically if no
transaction is in progress. The detection is based on the presence of the
autocommit=True execution option on the statement. If the statement
is a text-only statement and the flag is not set, a regular expression is used
to detect INSERT, UPDATE, DELETE, as well as a variety of other commands
for a particular backend:

conn = engine.connect()
conn.execute("INSERT INTO users VALUES (1, 'john')") # autocommits

The “autocommit” feature is only in effect when no Transaction has
otherwise been declared. This means the feature is not generally used with
the ORM, as the Session object by default always maintains an
ongoing Transaction.

Full control of the “autocommit” behavior is available using the generative
Connection.execution_options() method provided on Connection,
Engine, Executable, using the “autocommit” flag which will
turn on or off the autocommit for the selected scope. For example, a
text() construct representing a stored procedure that commits might use
it so that a SELECT statement will issue a COMMIT:

engine.execute(text("SELECT my_mutating_procedure()").execution_options(autocommit=True))

Connectionless Execution, Implicit Execution

Recall from the first section we mentioned executing with and without explicit
usage of Connection. “Connectionless” execution
refers to the usage of the execute() method on an object which is not a
Connection. This was illustrated using the execute() method
of Engine:

result = engine.execute("select username from users")
for row in result:
 print("username:", row['username'])

In addition to “connectionless” execution, it is also possible
to use the execute() method of
any Executable construct, which is a marker for SQL expression objects
that support execution. The SQL expression object itself references an
Engine or Connection known as the bind, which it uses
in order to provide so-called “implicit” execution services.

Given a table as below:

from sqlalchemy import MetaData, Table, Column, Integer

meta = MetaData()
users_table = Table('users', meta,
 Column('id', Integer, primary_key=True),
 Column('name', String(50))
)

Explicit execution delivers the SQL text or constructed SQL expression to the
execute() method of Connection:

engine = create_engine('sqlite:///file.db')
connection = engine.connect()
result = connection.execute(users_table.select())
for row in result:
 #
connection.close()

Explicit, connectionless execution delivers the expression to the
execute() method of Engine:

engine = create_engine('sqlite:///file.db')
result = engine.execute(users_table.select())
for row in result:
 #
result.close()

Implicit execution is also connectionless, and makes usage of the execute() method
on the expression itself. This method is provided as part of the
Executable class, which refers to a SQL statement that is sufficient
for being invoked against the database. The method makes usage of
the assumption that either an
Engine or
Connection has been bound to the expression
object. By “bound” we mean that the special attribute MetaData.bind
has been used to associate a series of
Table objects and all SQL constructs derived from them with a specific
engine:

engine = create_engine('sqlite:///file.db')
meta.bind = engine
result = users_table.select().execute()
for row in result:
 #
result.close()

Above, we associate an Engine with a MetaData object using
the special attribute MetaData.bind. The select() construct produced
from the Table object has a method execute(), which will
search for an Engine that’s “bound” to the Table.

Overall, the usage of “bound metadata” has three general effects:

	SQL statement objects gain an Executable.execute() method which automatically
locates a “bind” with which to execute themselves.

	The ORM Session object supports using “bound metadata” in order
to establish which Engine should be used to invoke SQL statements
on behalf of a particular mapped class, though the Session
also features its own explicit system of establishing complex Engine/
mapped class configurations.

	The MetaData.create_all(), MetaData.drop_all(), Table.create(),
Table.drop(), and “autoload” features all make usage of the bound
Engine automatically without the need to pass it explicitly.

Note

The concepts of “bound metadata” and “implicit execution” are not emphasized in modern SQLAlchemy.
While they offer some convenience, they are no longer required by any API and
are never necessary.

In applications where multiple Engine objects are present, each one logically associated
with a certain set of tables (i.e. vertical sharding), the “bound metadata” technique can be used
so that individual Table can refer to the appropriate Engine automatically;
in particular this is supported within the ORM via the Session object
as a means to associate Table objects with an appropriate Engine,
as an alternative to using the bind arguments accepted directly by the Session.

However, the “implicit execution” technique is not at all appropriate for use with the
ORM, as it bypasses the transactional context maintained by the Session.

Overall, in the vast majority of cases, “bound metadata” and “implicit execution”
are not useful. While “bound metadata” has a marginal level of usefulness with regards to
ORM configuration, “implicit execution” is a very old usage pattern that in most
cases is more confusing than it is helpful, and its usage is discouraged.
Both patterns seem to encourage the overuse of expedient “short cuts” in application design
which lead to problems later on.

Modern SQLAlchemy usage, especially the ORM, places a heavy stress on working within the context
of a transaction at all times; the “implicit execution” concept makes the job of
associating statement execution with a particular transaction much more difficult.
The Executable.execute() method on a particular SQL statement
usually implies that the execution is not part of any particular transaction, which is
usually not the desired effect.

In both “connectionless” examples, the
Connection is created behind the scenes; the
ResultProxy returned by the execute()
call references the Connection used to issue
the SQL statement. When the ResultProxy is closed, the underlying
Connection is closed for us, resulting in the
DBAPI connection being returned to the pool with transactional resources removed.

Translation of Schema Names

To support multi-tenancy applications that distribute common sets of tables
into multiple schemas, the
Connection.execution_options.schema_translate_map
execution option may be used to repurpose a set of Table objects
to render under different schema names without any changes.

Given a table:

user_table = Table(
 'user', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50))
)

The “schema” of this Table as defined by the
Table.schema attribute is None. The
Connection.execution_options.schema_translate_map can specify
that all Table objects with a schema of None would instead
render the schema as user_schema_one:

connection = engine.connect().execution_options(
 schema_translate_map={None: "user_schema_one"})

result = connection.execute(user_table.select())

The above code will invoke SQL on the database of the form:

SELECT user_schema_one.user.id, user_schema_one.user.name FROM
user_schema.user

That is, the schema name is substituted with our translated name. The
map can specify any number of target->destination schemas:

connection = engine.connect().execution_options(
 schema_translate_map={
 None: "user_schema_one", # no schema name -> "user_schema_one"
 "special": "special_schema", # schema="special" becomes "special_schema"
 "public": None # Table objects with schema="public" will render with no schema
 })

The Connection.execution_options.schema_translate_map parameter
affects all DDL and SQL constructs generated from the SQL expression language,
as derived from the Table or Sequence objects.
It does not impact literal string SQL used via the expression.text()
construct nor via plain strings passed to Connection.execute().

The feature takes effect only in those cases where the name of the
schema is derived directly from that of a Table or Sequence;
it does not impact methods where a string schema name is passed directly.
By this pattern, it takes effect within the “can create” / “can drop” checks
performed by methods such as MetaData.create_all() or
MetaData.drop_all() are called, and it takes effect when
using table reflection given a Table object. However it does
not affect the operations present on the Inspector object,
as the schema name is passed to these methods explicitly.

New in version 1.1.

Engine Disposal

The Engine refers to a connection pool, which means under normal
circumstances, there are open database connections present while the
Engine object is still resident in memory. When an Engine
is garbage collected, its connection pool is no longer referred to by
that Engine, and assuming none of its connections are still checked
out, the pool and its connections will also be garbage collected, which has the
effect of closing out the actual database connections as well. But otherwise,
the Engine will hold onto open database connections assuming
it uses the normally default pool implementation of QueuePool.

The Engine is intended to normally be a permanent
fixture established up-front and maintained throughout the lifespan of an
application. It is not intended to be created and disposed on a
per-connection basis; it is instead a registry that maintains both a pool
of connections as well as configurational information about the database
and DBAPI in use, as well as some degree of internal caching of per-database
resources.

However, there are many cases where it is desirable that all connection resources
referred to by the Engine be completely closed out. It’s
generally not a good idea to rely on Python garbage collection for this
to occur for these cases; instead, the Engine can be explicitly disposed using
the Engine.dispose() method. This disposes of the engine’s
underlying connection pool and replaces it with a new one that’s empty.
Provided that the Engine
is discarded at this point and no longer used, all checked-in connections
which it refers to will also be fully closed.

Valid use cases for calling Engine.dispose() include:

	When a program wants to release any remaining checked-in connections
held by the connection pool and expects to no longer be connected
to that database at all for any future operations.

	When a program uses multiprocessing or fork(), and an
Engine object is copied to the child process,
Engine.dispose() should be called so that the engine creates
brand new database connections local to that fork. Database connections
generally do not travel across process boundaries.

	Within test suites or multitenancy scenarios where many
ad-hoc, short-lived Engine objects may be created and disposed.

Connections that are checked out are not discarded when the
engine is disposed or garbage collected, as these connections are still
strongly referenced elsewhere by the application.
However, after Engine.dispose() is called, those
connections are no longer associated with that Engine; when they
are closed, they will be returned to their now-orphaned connection pool
which will ultimately be garbage collected, once all connections which refer
to it are also no longer referenced anywhere.
Since this process is not easy to control, it is strongly recommended that
Engine.dispose() is called only after all checked out connections
are checked in or otherwise de-associated from their pool.

An alternative for applications that are negatively impacted by the
Engine object’s use of connection pooling is to disable pooling
entirely. This typically incurs only a modest performance impact upon the
use of new connections, and means that when a connection is checked in,
it is entirely closed out and is not held in memory. See Switching Pool Implementations
for guidelines on how to disable pooling.

Using the Threadlocal Execution Strategy

The “threadlocal” engine strategy is an optional feature which
can be used by non-ORM applications to associate transactions
with the current thread, such that all parts of the
application can participate in that transaction implicitly without the need to
explicitly reference a Connection.

Note

The “threadlocal” feature is generally discouraged. It’s
designed for a particular pattern of usage which is generally
considered as a legacy pattern. It has no impact on the “thread safety”
of SQLAlchemy components
or one’s application. It also should not be used when using an ORM
Session object, as the
Session itself represents an ongoing
transaction and itself handles the job of maintaining connection and
transactional resources.

Enabling threadlocal is achieved as follows:

db = create_engine('mysql://localhost/test', strategy='threadlocal')

The above Engine will now acquire a Connection using
connection resources derived from a thread-local variable whenever
Engine.execute() or Engine.contextual_connect() is called. This
connection resource is maintained as long as it is referenced, which allows
multiple points of an application to share a transaction while using
connectionless execution:

def call_operation1():
 engine.execute("insert into users values (?, ?)", 1, "john")

def call_operation2():
 users.update(users.c.user_id==5).execute(name='ed')

db.begin()
try:
 call_operation1()
 call_operation2()
 db.commit()
except:
 db.rollback()

Explicit execution can be mixed with connectionless execution by
using the Engine.connect() method to acquire a Connection
that is not part of the threadlocal scope:

db.begin()
conn = db.connect()
try:
 conn.execute(log_table.insert(), message="Operation started")
 call_operation1()
 call_operation2()
 db.commit()
 conn.execute(log_table.insert(), message="Operation succeeded")
except:
 db.rollback()
 conn.execute(log_table.insert(), message="Operation failed")
finally:
 conn.close()

To access the Connection that is bound to the threadlocal scope,
call Engine.contextual_connect():

conn = db.contextual_connect()
call_operation3(conn)
conn.close()

Calling close() on the “contextual” connection does not release
its resources until all other usages of that resource are closed as well, including
that any ongoing transactions are rolled back or committed.

Working with Raw DBAPI Connections

There are some cases where SQLAlchemy does not provide a genericized way
at accessing some DBAPI functions, such as calling stored procedures as well
as dealing with multiple result sets. In these cases, it’s just as expedient
to deal with the raw DBAPI connection directly.

The most common way to access the raw DBAPI connection is to get it
from an already present Connection object directly. It is
present using the Connection.connection attribute:

connection = engine.connect()
dbapi_conn = connection.connection

The DBAPI connection here is actually a “proxied” in terms of the
originating connection pool, however this is an implementation detail
that in most cases can be ignored. As this DBAPI connection is still
contained within the scope of an owning Connection object, it is
best to make use of the Connection object for most features such
as transaction control as well as calling the Connection.close()
method; if these operations are performed on the DBAPI connection directly,
the owning Connection will not be aware of these changes in state.

To overcome the limitations imposed by the DBAPI connection that is
maintained by an owning Connection, a DBAPI connection is also
available without the need to procure a
Connection first, using the Engine.raw_connection() method
of Engine:

dbapi_conn = engine.raw_connection()

This DBAPI connection is again a “proxied” form as was the case before.
The purpose of this proxying is now apparent, as when we call the .close()
method of this connection, the DBAPI connection is typically not actually
closed, but instead released back to the
engine’s connection pool:

dbapi_conn.close()

While SQLAlchemy may in the future add built-in patterns for more DBAPI
use cases, there are diminishing returns as these cases tend to be rarely
needed and they also vary highly dependent on the type of DBAPI in use,
so in any case the direct DBAPI calling pattern is always there for those
cases where it is needed.

Some recipes for DBAPI connection use follow.

Calling Stored Procedures

For stored procedures with special syntactical or parameter concerns,
DBAPI-level callproc
may be used:

connection = engine.raw_connection()
try:
 cursor = connection.cursor()
 cursor.callproc("my_procedure", ['x', 'y', 'z'])
 results = list(cursor.fetchall())
 cursor.close()
 connection.commit()
finally:
 connection.close()

Multiple Result Sets

Multiple result set support is available from a raw DBAPI cursor using the
nextset method:

connection = engine.raw_connection()
try:
 cursor = connection.cursor()
 cursor.execute("select * from table1; select * from table2")
 results_one = cursor.fetchall()
 cursor.nextset()
 results_two = cursor.fetchall()
 cursor.close()
finally:
 connection.close()

Registering New Dialects

The create_engine() function call locates the given dialect
using setuptools entrypoints. These entry points can be established
for third party dialects within the setup.py script. For example,
to create a new dialect “foodialect://”, the steps are as follows:

	Create a package called foodialect.

	The package should have a module containing the dialect class,
which is typically a subclass of sqlalchemy.engine.default.DefaultDialect.
In this example let’s say it’s called FooDialect and its module is accessed
via foodialect.dialect.

	The entry point can be established in setup.py as follows:

entry_points="""
[sqlalchemy.dialects]
foodialect = foodialect.dialect:FooDialect
"""

If the dialect is providing support for a particular DBAPI on top of
an existing SQLAlchemy-supported database, the name can be given
including a database-qualification. For example, if FooDialect
were in fact a MySQL dialect, the entry point could be established like this:

entry_points="""
[sqlalchemy.dialects]
mysql.foodialect = foodialect.dialect:FooDialect
"""

The above entrypoint would then be accessed as create_engine("mysql+foodialect://").

Registering Dialects In-Process

SQLAlchemy also allows a dialect to be registered within the current process, bypassing
the need for separate installation. Use the register() function as follows:

from sqlalchemy.dialects import registry
registry.register("mysql.foodialect", "myapp.dialect", "MyMySQLDialect")

The above will respond to create_engine("mysql+foodialect://") and load the
MyMySQLDialect class from the myapp.dialect module.

New in version 0.8.

Connection / Engine API

	
class sqlalchemy.engine.Connection(engine, connection=None, close_with_result=False, _branch_from=None, _execution_options=None, _dispatch=None, _has_events=None)

	Bases: sqlalchemy.engine.Connectable

Provides high-level functionality for a wrapped DB-API connection.

Provides execution support for string-based SQL statements as well as
ClauseElement, Compiled and DefaultGenerator
objects. Provides a begin() method to return Transaction
objects.

The Connection object is not thread-safe. While a Connection can be
shared among threads using properly synchronized access, it is still
possible that the underlying DBAPI connection may not support shared
access between threads. Check the DBAPI documentation for details.

The Connection object represents a single dbapi connection checked out
from the connection pool. In this state, the connection pool has no affect
upon the connection, including its expiration or timeout state. For the
connection pool to properly manage connections, connections should be
returned to the connection pool (i.e. connection.close()) whenever the
connection is not in use.

	
__init__(engine, connection=None, close_with_result=False, _branch_from=None, _execution_options=None, _dispatch=None, _has_events=None)

	Construct a new Connection.

The constructor here is not public and is only called only by an
Engine. See Engine.connect() and
Engine.contextual_connect() methods.

	
begin()

	Begin a transaction and return a transaction handle.

The returned object is an instance of Transaction.
This object represents the “scope” of the transaction,
which completes when either the Transaction.rollback()
or Transaction.commit() method is called.

Nested calls to begin() on the same Connection
will return new Transaction objects that represent
an emulated transaction within the scope of the enclosing
transaction, that is:

trans = conn.begin() # outermost transaction
trans2 = conn.begin() # "nested"
trans2.commit() # does nothing
trans.commit() # actually commits

Calls to Transaction.commit() only have an effect
when invoked via the outermost Transaction object, though the
Transaction.rollback() method of any of the
Transaction objects will roll back the
transaction.

See also:

Connection.begin_nested() - use a SAVEPOINT

Connection.begin_twophase() - use a two phase /XID transaction

Engine.begin() - context manager available from
Engine.

	
begin_nested()

	Begin a nested transaction and return a transaction handle.

The returned object is an instance of NestedTransaction.

Nested transactions require SAVEPOINT support in the
underlying database. Any transaction in the hierarchy may
commit and rollback, however the outermost transaction
still controls the overall commit or rollback of the
transaction of a whole.

See also Connection.begin(),
Connection.begin_twophase().

	
begin_twophase(xid=None)

	Begin a two-phase or XA transaction and return a transaction
handle.

The returned object is an instance of TwoPhaseTransaction,
which in addition to the methods provided by
Transaction, also provides a
prepare() method.

	Parameters:
	xid¶ – the two phase transaction id. If not supplied, a
random id will be generated.

See also Connection.begin(),
Connection.begin_twophase().

	
close()

	Close this Connection.

This results in a release of the underlying database
resources, that is, the DBAPI connection referenced
internally. The DBAPI connection is typically restored
back to the connection-holding Pool referenced
by the Engine that produced this
Connection. Any transactional state present on
the DBAPI connection is also unconditionally released via
the DBAPI connection’s rollback() method, regardless
of any Transaction object that may be
outstanding with regards to this Connection.

After close() is called, the
Connection is permanently in a closed state,
and will allow no further operations.

	
closed

	Return True if this connection is closed.

	
connect()

	Returns a branched version of this Connection.

The Connection.close() method on the returned
Connection can be called and this
Connection will remain open.

This method provides usage symmetry with
Engine.connect(), including for usage
with context managers.

	
connection

	The underlying DB-API connection managed by this Connection.

See also

Working with Raw DBAPI Connections

	
contextual_connect(**kwargs)

	Returns a branched version of this Connection.

The Connection.close() method on the returned
Connection can be called and this
Connection will remain open.

This method provides usage symmetry with
Engine.contextual_connect(), including for usage
with context managers.

	
default_isolation_level

	The default isolation level assigned to this Connection.

This is the isolation level setting that the Connection
has when first procured via the Engine.connect() method.
This level stays in place until the
Connection.execution_options.isolation_level is used
to change the setting on a per-Connection basis.

Unlike Connection.get_isolation_level(), this attribute is set
ahead of time from the first connection procured by the dialect,
so SQL query is not invoked when this accessor is called.

New in version 0.9.9.

See also

Connection.get_isolation_level() - view current level

create_engine.isolation_level
- set per Engine isolation level

Connection.execution_options.isolation_level
- set per Connection isolation level

	
detach()

	Detach the underlying DB-API connection from its connection pool.

E.g.:

with engine.connect() as conn:
 conn.detach()
 conn.execute("SET search_path TO schema1, schema2")

 # work with connection

connection is fully closed (since we used "with:", can
also call .close())

This Connection instance will remain usable. When closed
(or exited from a context manager context as above),
the DB-API connection will be literally closed and not
returned to its originating pool.

This method can be used to insulate the rest of an application
from a modified state on a connection (such as a transaction
isolation level or similar).

	
execute(object, *multiparams, **params)

	Executes a SQL statement construct and returns a
ResultProxy.

	Parameters:
	
	object¶ – The statement to be executed. May be
one of:

	a plain string

	any ClauseElement construct that is also
a subclass of Executable, such as a
select() construct

	a FunctionElement, such as that generated
by func, will be automatically wrapped in
a SELECT statement, which is then executed.

	a DDLElement object

	a DefaultGenerator object

	a Compiled object

	*multiparams/**params¶ – represent bound parameter
values to be used in the execution. Typically,
the format is either a collection of one or more
dictionaries passed to *multiparams:

conn.execute(
 table.insert(),
 {"id":1, "value":"v1"},
 {"id":2, "value":"v2"}
)

...or individual key/values interpreted by **params:

conn.execute(
 table.insert(), id=1, value="v1"
)

In the case that a plain SQL string is passed, and the underlying
DBAPI accepts positional bind parameters, a collection of tuples
or individual values in *multiparams may be passed:

conn.execute(
 "INSERT INTO table (id, value) VALUES (?, ?)",
 (1, "v1"), (2, "v2")
)

conn.execute(
 "INSERT INTO table (id, value) VALUES (?, ?)",
 1, "v1"
)

Note above, the usage of a question mark ”?” or other
symbol is contingent upon the “paramstyle” accepted by the DBAPI
in use, which may be any of “qmark”, “named”, “pyformat”, “format”,
“numeric”. See pep-249
for details on paramstyle.

To execute a textual SQL statement which uses bound parameters in a
DBAPI-agnostic way, use the text() construct.

	
execution_options(**opt)

	Set non-SQL options for the connection which take effect
during execution.

The method returns a copy of this Connection which references
the same underlying DBAPI connection, but also defines the given
execution options which will take effect for a call to
execute(). As the new Connection references the same
underlying resource, it’s usually a good idea to ensure that the copies
will be discarded immediately, which is implicit if used as in:

result = connection.execution_options(stream_results=True).\
 execute(stmt)

Note that any key/value can be passed to
Connection.execution_options(), and it will be stored in the
_execution_options dictionary of the Connection. It
is suitable for usage by end-user schemes to communicate with
event listeners, for example.

The keywords that are currently recognized by SQLAlchemy itself
include all those listed under Executable.execution_options(),
as well as others that are specific to Connection.

	Parameters:
	
	autocommit¶ – Available on: Connection, statement.
When True, a COMMIT will be invoked after execution
when executed in ‘autocommit’ mode, i.e. when an explicit
transaction is not begun on the connection. Note that DBAPI
connections by default are always in a transaction - SQLAlchemy uses
rules applied to different kinds of statements to determine if
COMMIT will be invoked in order to provide its “autocommit” feature.
Typically, all INSERT/UPDATE/DELETE statements as well as
CREATE/DROP statements have autocommit behavior enabled; SELECT
constructs do not. Use this option when invoking a SELECT or other
specific SQL construct where COMMIT is desired (typically when
calling stored procedures and such), and an explicit
transaction is not in progress.

	compiled_cache¶ – Available on: Connection.
A dictionary where Compiled objects
will be cached when the Connection compiles a clause
expression into a Compiled object.
It is the user’s responsibility to
manage the size of this dictionary, which will have keys
corresponding to the dialect, clause element, the column
names within the VALUES or SET clause of an INSERT or UPDATE,
as well as the “batch” mode for an INSERT or UPDATE statement.
The format of this dictionary is not guaranteed to stay the
same in future releases.

Note that the ORM makes use of its own “compiled” caches for
some operations, including flush operations. The caching
used by the ORM internally supersedes a cache dictionary
specified here.

	isolation_level¶ – Available on: Connection.
Set the transaction isolation level for
the lifespan of this Connection object (not the
underyling DBAPI connection, for which the level is reset
to its original setting upon termination of this
Connection object).

Valid values include
those string values accepted by the
create_engine.isolation_level
parameter passed to create_engine(). These levels are
semi-database specific; see individual dialect documentation for
valid levels.

Note that this option necessarily affects the underlying
DBAPI connection for the lifespan of the originating
Connection, and is not per-execution. This
setting is not removed until the underlying DBAPI connection
is returned to the connection pool, i.e.
the Connection.close() method is called.

Warning

The isolation_level execution option should
not be used when a transaction is already established, that
is, the Connection.begin() method or similar has been
called. A database cannot change the isolation level on a
transaction in progress, and different DBAPIs and/or
SQLAlchemy dialects may implicitly roll back or commit
the transaction, or not affect the connection at all.

Changed in version 0.9.9: A warning is emitted when the
isolation_level execution option is used after a
transaction has been started with Connection.begin()
or similar.

Note

The isolation_level execution option is implicitly
reset if the Connection is invalidated, e.g. via
the Connection.invalidate() method, or if a
disconnection error occurs. The new connection produced after
the invalidation will not have the isolation level re-applied
to it automatically.

See also

create_engine.isolation_level
- set per Engine isolation level

Connection.get_isolation_level() - view current level

SQLite Transaction Isolation

Postgresql Transaction Isolation

MySQL Transaction Isolation

SQL Server Transaction Isolation

Setting Transaction Isolation Levels - for the ORM

	no_parameters¶ – When True, if the final parameter
list or dictionary is totally empty, will invoke the
statement on the cursor as cursor.execute(statement),
not passing the parameter collection at all.
Some DBAPIs such as psycopg2 and mysql-python consider
percent signs as significant only when parameters are
present; this option allows code to generate SQL
containing percent signs (and possibly other characters)
that is neutral regarding whether it’s executed by the DBAPI
or piped into a script that’s later invoked by
command line tools.

New in version 0.7.6.

	stream_results¶ – Available on: Connection, statement.
Indicate to the dialect that results should be
“streamed” and not pre-buffered, if possible. This is a limitation
of many DBAPIs. The flag is currently understood only by the
psycopg2 dialect.

	schema_translate_map¶ – Available on: Connection, Engine.
A dictionary mapping schema names to schema names, that will be
applied to the Table.schema element of each
Table encountered when SQL or DDL expression elements
are compiled into strings; the resulting schema name will be
converted based on presence in the map of the original name.

New in version 1.1.

See also

Translation of Schema Names

	
get_isolation_level()

	Return the current isolation level assigned to this
Connection.

This will typically be the default isolation level as determined
by the dialect, unless if the
Connection.execution_options.isolation_level
feature has been used to alter the isolation level on a
per-Connection basis.

This attribute will typically perform a live SQL operation in order
to procure the current isolation level, so the value returned is the
actual level on the underlying DBAPI connection regardless of how
this state was set. Compare to the
Connection.default_isolation_level accessor
which returns the dialect-level setting without performing a SQL
query.

New in version 0.9.9.

See also

Connection.default_isolation_level - view default level

create_engine.isolation_level
- set per Engine isolation level

Connection.execution_options.isolation_level
- set per Connection isolation level

	
in_transaction()

	Return True if a transaction is in progress.

	
info

	Info dictionary associated with the underlying DBAPI connection
referred to by this Connection, allowing user-defined
data to be associated with the connection.

The data here will follow along with the DBAPI connection including
after it is returned to the connection pool and used again
in subsequent instances of Connection.

	
invalidate(exception=None)

	Invalidate the underlying DBAPI connection associated with
this Connection.

The underlying DBAPI connection is literally closed (if
possible), and is discarded. Its source connection pool will
typically lazily create a new connection to replace it.

Upon the next use (where “use” typically means using the
Connection.execute() method or similar),
this Connection will attempt to
procure a new DBAPI connection using the services of the
Pool as a source of connectivty (e.g. a “reconnection”).

If a transaction was in progress (e.g. the
Connection.begin() method has been called) when
Connection.invalidate() method is called, at the DBAPI
level all state associated with this transaction is lost, as
the DBAPI connection is closed. The Connection
will not allow a reconnection to proceed until the
Transaction object is ended, by calling the
Transaction.rollback() method; until that point, any attempt at
continuing to use the Connection will raise an
InvalidRequestError.
This is to prevent applications from accidentally
continuing an ongoing transactional operations despite the
fact that the transaction has been lost due to an
invalidation.

The Connection.invalidate() method, just like auto-invalidation,
will at the connection pool level invoke the
PoolEvents.invalidate() event.

See also

More on Invalidation

	
invalidated

	Return True if this connection was invalidated.

	
run_callable(callable_, *args, **kwargs)

	Given a callable object or function, execute it, passing
a Connection as the first argument.

The given *args and **kwargs are passed subsequent
to the Connection argument.

This function, along with Engine.run_callable(),
allows a function to be run with a Connection
or Engine object without the need to know
which one is being dealt with.

	
scalar(object, *multiparams, **params)

	Executes and returns the first column of the first row.

The underlying result/cursor is closed after execution.

	
schema_for_object = <sqlalchemy.sql.schema._SchemaTranslateMap object>

	Return the ”.schema” attribute for an object.

Used for Table, Sequence and similar objects,
and takes into account
the Connection.execution_options.schema_translate_map
parameter.

New in version 1.1.

See also

Translation of Schema Names

	
transaction(callable_, *args, **kwargs)

	Execute the given function within a transaction boundary.

The function is passed this Connection
as the first argument, followed by the given *args and **kwargs,
e.g.:

def do_something(conn, x, y):
 conn.execute("some statement", {'x':x, 'y':y})

conn.transaction(do_something, 5, 10)

The operations inside the function are all invoked within the
context of a single Transaction.
Upon success, the transaction is committed. If an
exception is raised, the transaction is rolled back
before propagating the exception.

Note

The transaction() method is superseded by
the usage of the Python with: statement, which can
be used with Connection.begin():

with conn.begin():
 conn.execute("some statement", {'x':5, 'y':10})

As well as with Engine.begin():

with engine.begin() as conn:
 conn.execute("some statement", {'x':5, 'y':10})

See also:

Engine.begin() - engine-level transactional
context

Engine.transaction() - engine-level version of
Connection.transaction()

	
class sqlalchemy.engine.Connectable

	Interface for an object which supports execution of SQL constructs.

The two implementations of Connectable are
Connection and Engine.

Connectable must also implement the ‘dialect’ member which references a
Dialect instance.

	
connect(**kwargs)

	Return a Connection object.

Depending on context, this may be self if this object
is already an instance of Connection, or a newly
procured Connection if this object is an instance
of Engine.

	
contextual_connect()

	Return a Connection object which may be part of an ongoing
context.

Depending on context, this may be self if this object
is already an instance of Connection, or a newly
procured Connection if this object is an instance
of Engine.

	
create(entity, **kwargs)

	Emit CREATE statements for the given schema entity.

Deprecated since version 0.7: Use the create() method on the given schema object directly, i.e. Table.create(), Index.create(), MetaData.create_all()

	
drop(entity, **kwargs)

	Emit DROP statements for the given schema entity.

Deprecated since version 0.7: Use the drop() method on the given schema object directly, i.e. Table.drop(), Index.drop(), MetaData.drop_all()

	
execute(object, *multiparams, **params)

	Executes the given construct and returns a ResultProxy.

	
scalar(object, *multiparams, **params)

	Executes and returns the first column of the first row.

The underlying cursor is closed after execution.

	
class sqlalchemy.engine.CreateEnginePlugin(url, kwargs)

	A set of hooks intended to augment the construction of an
Engine object based on entrypoint names in a URL.

The purpose of CreateEnginePlugin is to allow third-party
systems to apply engine, pool and dialect level event listeners without
the need for the target application to be modified; instead, the plugin
names can be added to the database URL. Target applications for
CreateEnginePlugin include:

	connection and SQL performance tools, e.g. which use events to track
number of checkouts and/or time spent with statements

	connectivity plugins such as proxies

Plugins are registered using entry points in a similar way as that
of dialects:

entry_points={
 'sqlalchemy.plugins': [
 'myplugin = myapp.plugins:MyPlugin'
]

A plugin that uses the above names would be invoked from a database
URL as in:

from sqlalchemy import create_engine

engine = create_engine(
 "mysql+pymysql://scott:tiger@localhost/test?plugin=myplugin")

The plugin argument supports multiple instances, so that a URL
may specify multiple plugins; they are loaded in the order stated
in the URL:

engine = create_engine(
 "mysql+pymysql://scott:tiger@localhost/"
 "test?plugin=plugin_one&plugin=plugin_twp&plugin=plugin_three")

A plugin can receive additional arguments from the URL string as
well as from the keyword arguments passed to create_engine().
The URL object and the keyword dictionary are passed to the
constructor so that these arguments can be extracted from the url’s
URL.query collection as well as from the dictionary:

class MyPlugin(CreateEnginePlugin):
 def __init__(self, url, kwargs):
 self.my_argument_one = url.query.pop('my_argument_one')
 self.my_argument_two = url.query.pop('my_argument_two')
 self.my_argument_three = kwargs.pop('my_argument_three', None)

Arguments like those illustrated above would be consumed from the
following:

from sqlalchemy import create_engine

engine = create_engine(
 "mysql+pymysql://scott:tiger@localhost/"
 "test?plugin=myplugin&my_argument_one=foo&my_argument_two=bar",
 my_argument_three='bat')

The URL and dictionary are used for subsequent setup of the engine
as they are, so the plugin can modify their arguments in-place.
Arguments that are only understood by the plugin should be popped
or otherwise removed so that they aren’t interpreted as erroneous
arguments afterwards.

When the engine creation process completes and produces the
Engine object, it is again passed to the plugin via the
CreateEnginePlugin.engine_created() hook. In this hook, additional
changes can be made to the engine, most typically involving setup of
events (e.g. those defined in Core Events).

New in version 1.1.

	
__init__(url, kwargs)

	Contruct a new CreateEnginePlugin.

The plugin object is instantiated individually for each call
to create_engine(). A single Engine will be
passed to the CreateEnginePlugin.engine_created() method
corresponding to this URL.

	Parameters:
	
	url¶ – the URL object. The plugin should inspect
what it needs here as well as remove its custom arguments from the
URL.query collection. The URL can be modified in-place
in any other way as well.

	kwargs¶ – The keyword arguments passed to :func`.create_engine`.
The plugin can read and modify this dictionary in-place, to affect
the ultimate arguments used to create the engine. It should
remove its custom arguments from the dictionary as well.

	
engine_created(engine)

	Receive the Engine object when it is fully constructed.

The plugin may make additional changes to the engine, such as
registering engine or connection pool events.

	
class sqlalchemy.engine.Engine(pool, dialect, url, logging_name=None, echo=None, proxy=None, execution_options=None)

	Bases: sqlalchemy.engine.Connectable, sqlalchemy.log.Identified

Connects a Pool and
Dialect together to provide a
source of database connectivity and behavior.

An Engine object is instantiated publicly using the
create_engine() function.

See also:

Engine Configuration

Working with Engines and Connections

	
begin(close_with_result=False)

	Return a context manager delivering a Connection
with a Transaction established.

E.g.:

with engine.begin() as conn:
 conn.execute("insert into table (x, y, z) values (1, 2, 3)")
 conn.execute("my_special_procedure(5)")

Upon successful operation, the Transaction
is committed. If an error is raised, the Transaction
is rolled back.

The close_with_result flag is normally False, and indicates
that the Connection will be closed when the operation
is complete. When set to True, it indicates the
Connection is in “single use” mode, where the
ResultProxy returned by the first call to
Connection.execute() will close the Connection when
that ResultProxy has exhausted all result rows.

New in version 0.7.6.

See also:

Engine.connect() - procure a Connection from
an Engine.

Connection.begin() - start a Transaction
for a particular Connection.

	
connect(**kwargs)

	Return a new Connection object.

The Connection object is a facade that uses a DBAPI
connection internally in order to communicate with the database. This
connection is procured from the connection-holding Pool
referenced by this Engine. When the
close() method of the Connection object
is called, the underlying DBAPI connection is then returned to the
connection pool, where it may be used again in a subsequent call to
connect().

	
contextual_connect(close_with_result=False, **kwargs)

	Return a Connection object which may be part of some
ongoing context.

By default, this method does the same thing as Engine.connect().
Subclasses of Engine may override this method
to provide contextual behavior.

	Parameters:
	close_with_result¶ – When True, the first ResultProxy
created by the Connection will call the
Connection.close() method of that connection as soon as any
pending result rows are exhausted. This is used to supply the
“connectionless execution” behavior provided by the
Engine.execute() method.

	
dispose()

	Dispose of the connection pool used by this Engine.

This has the effect of fully closing all currently checked in
database connections. Connections that are still checked out
will not be closed, however they will no longer be associated
with this Engine, so when they are closed individually,
eventually the Pool which they are associated with will
be garbage collected and they will be closed out fully, if
not already closed on checkin.

A new connection pool is created immediately after the old one has
been disposed. This new pool, like all SQLAlchemy connection pools,
does not make any actual connections to the database until one is
first requested, so as long as the Engine isn’t used again,
no new connections will be made.

See also

Engine Disposal

	
driver

	Driver name of the Dialect
in use by this Engine.

	
execute(statement, *multiparams, **params)

	Executes the given construct and returns a ResultProxy.

The arguments are the same as those used by
Connection.execute().

Here, a Connection is acquired using the
contextual_connect() method, and the statement executed
with that connection. The returned ResultProxy is flagged
such that when the ResultProxy is exhausted and its
underlying cursor is closed, the Connection created here
will also be closed, which allows its associated DBAPI connection
resource to be returned to the connection pool.

	
execution_options(**opt)

	Return a new Engine that will provide
Connection objects with the given execution options.

The returned Engine remains related to the original
Engine in that it shares the same connection pool and
other state:

	The Pool used by the new Engine is the
same instance. The Engine.dispose() method will replace
the connection pool instance for the parent engine as well
as this one.

	Event listeners are “cascaded” - meaning, the new Engine
inherits the events of the parent, and new events can be associated
with the new Engine individually.

	The logging configuration and logging_name is copied from the parent
Engine.

The intent of the Engine.execution_options() method is
to implement “sharding” schemes where multiple Engine
objects refer to the same connection pool, but are differentiated
by options that would be consumed by a custom event:

primary_engine = create_engine("mysql://")
shard1 = primary_engine.execution_options(shard_id="shard1")
shard2 = primary_engine.execution_options(shard_id="shard2")

Above, the shard1 engine serves as a factory for
Connection objects that will contain the execution option
shard_id=shard1, and shard2 will produce Connection
objects that contain the execution option shard_id=shard2.

An event handler can consume the above execution option to perform
a schema switch or other operation, given a connection. Below
we emit a MySQL use statement to switch databases, at the same
time keeping track of which database we’ve established using the
Connection.info dictionary, which gives us a persistent
storage space that follows the DBAPI connection:

from sqlalchemy import event
from sqlalchemy.engine import Engine

shards = {"default": "base", shard_1: "db1", "shard_2": "db2"}

@event.listens_for(Engine, "before_cursor_execute")
def _switch_shard(conn, cursor, stmt,
 params, context, executemany):
 shard_id = conn._execution_options.get('shard_id', "default")
 current_shard = conn.info.get("current_shard", None)

 if current_shard != shard_id:
 cursor.execute("use %s" % shards[shard_id])
 conn.info["current_shard"] = shard_id

New in version 0.8.

See also

Connection.execution_options() - update execution options
on a Connection object.

Engine.update_execution_options() - update the execution
options for a given Engine in place.

	
has_table(table_name, schema=None)

	Return True if the given backend has a table of the given name.

See also

Fine Grained Reflection with Inspector - detailed schema inspection
using the Inspector interface.

quoted_name - used to pass quoting information along
with a schema identifier.

	
name

	String name of the Dialect
in use by this Engine.

	
raw_connection(_connection=None)

	Return a “raw” DBAPI connection from the connection pool.

The returned object is a proxied version of the DBAPI
connection object used by the underlying driver in use.
The object will have all the same behavior as the real DBAPI
connection, except that its close() method will result in the
connection being returned to the pool, rather than being closed
for real.

This method provides direct DBAPI connection access for
special situations when the API provided by Connection
is not needed. When a Connection object is already
present, the DBAPI connection is available using
the Connection.connection accessor.

See also

Working with Raw DBAPI Connections

	
run_callable(callable_, *args, **kwargs)

	Given a callable object or function, execute it, passing
a Connection as the first argument.

The given *args and **kwargs are passed subsequent
to the Connection argument.

This function, along with Connection.run_callable(),
allows a function to be run with a Connection
or Engine object without the need to know
which one is being dealt with.

	
schema_for_object = <sqlalchemy.sql.schema._SchemaTranslateMap object>

	Return the ”.schema” attribute for an object.

Used for Table, Sequence and similar objects,
and takes into account
the Connection.execution_options.schema_translate_map
parameter.

New in version 1.1.

See also

Translation of Schema Names

	
table_names(schema=None, connection=None)

	Return a list of all table names available in the database.

	Parameters:
	
	schema¶ – Optional, retrieve names from a non-default schema.

	connection¶ – Optional, use a specified connection. Default is
the contextual_connect for this Engine.

	
transaction(callable_, *args, **kwargs)

	Execute the given function within a transaction boundary.

The function is passed a Connection newly procured
from Engine.contextual_connect() as the first argument,
followed by the given *args and **kwargs.

e.g.:

def do_something(conn, x, y):
 conn.execute("some statement", {'x':x, 'y':y})

engine.transaction(do_something, 5, 10)

The operations inside the function are all invoked within the
context of a single Transaction.
Upon success, the transaction is committed. If an
exception is raised, the transaction is rolled back
before propagating the exception.

Note

The transaction() method is superseded by
the usage of the Python with: statement, which can
be used with Engine.begin():

with engine.begin() as conn:
 conn.execute("some statement", {'x':5, 'y':10})

See also:

Engine.begin() - engine-level transactional
context

Connection.transaction() - connection-level version of
Engine.transaction()

	
update_execution_options(**opt)

	Update the default execution_options dictionary
of this Engine.

The given keys/values in **opt are added to the
default execution options that will be used for
all connections. The initial contents of this dictionary
can be sent via the execution_options parameter
to create_engine().

See also

Connection.execution_options()

Engine.execution_options()

	
class sqlalchemy.engine.ExceptionContext

	Encapsulate information about an error condition in progress.

This object exists solely to be passed to the
ConnectionEvents.handle_error() event, supporting an interface that
can be extended without backwards-incompatibility.

New in version 0.9.7.

	
chained_exception = None

	The exception that was returned by the previous handler in the
exception chain, if any.

If present, this exception will be the one ultimately raised by
SQLAlchemy unless a subsequent handler replaces it.

May be None.

	
connection = None

	The Connection in use during the exception.

This member is present, except in the case of a failure when
first connecting.

See also

ExceptionContext.engine

	
cursor = None

	The DBAPI cursor object.

May be None.

	
engine = None

	The Engine in use during the exception.

This member should always be present, even in the case of a failure
when first connecting.

New in version 1.0.0.

	
execution_context = None

	The ExecutionContext corresponding to the execution
operation in progress.

This is present for statement execution operations, but not for
operations such as transaction begin/end. It also is not present when
the exception was raised before the ExecutionContext
could be constructed.

Note that the ExceptionContext.statement and
ExceptionContext.parameters members may represent a
different value than that of the ExecutionContext,
potentially in the case where a
ConnectionEvents.before_cursor_execute() event or similar
modified the statement/parameters to be sent.

May be None.

	
invalidate_pool_on_disconnect = True

	Represent whether all connections in the pool should be invalidated
when a “disconnect” condition is in effect.

Setting this flag to False within the scope of the
ConnectionEvents.handle_error() event will have the effect such
that the full collection of connections in the pool will not be
invalidated during a disconnect; only the current connection that is the
subject of the error will actually be invalidated.

The purpose of this flag is for custom disconnect-handling schemes where
the invalidation of other connections in the pool is to be performed
based on other conditions, or even on a per-connection basis.

New in version 1.0.3.

	
is_disconnect = None

	Represent whether the exception as occurred represents a “disconnect”
condition.

This flag will always be True or False within the scope of the
ConnectionEvents.handle_error() handler.

SQLAlchemy will defer to this flag in order to determine whether or not
the connection should be invalidated subsequently. That is, by
assigning to this flag, a “disconnect” event which then results in
a connection and pool invalidation can be invoked or prevented by
changing this flag.

	
original_exception = None

	The exception object which was caught.

This member is always present.

	
parameters = None

	Parameter collection that was emitted directly to the DBAPI.

May be None.

	
sqlalchemy_exception = None

	The sqlalchemy.exc.StatementError which wraps the original,
and will be raised if exception handling is not circumvented by the event.

May be None, as not all exception types are wrapped by SQLAlchemy.
For DBAPI-level exceptions that subclass the dbapi’s Error class, this
field will always be present.

	
statement = None

	String SQL statement that was emitted directly to the DBAPI.

May be None.

	
class sqlalchemy.engine.NestedTransaction(connection, parent)

	Bases: sqlalchemy.engine.Transaction

Represent a ‘nested’, or SAVEPOINT transaction.

A new NestedTransaction object may be procured
using the Connection.begin_nested() method.

The interface is the same as that of Transaction.

	
class sqlalchemy.engine.ResultProxy(context)

	Wraps a DB-API cursor object to provide easier access to row columns.

Individual columns may be accessed by their integer position,
case-insensitive column name, or by schema.Column
object. e.g.:

row = fetchone()

col1 = row[0] # access via integer position

col2 = row['col2'] # access via name

col3 = row[mytable.c.mycol] # access via Column object.

ResultProxy also handles post-processing of result column
data using TypeEngine objects, which are referenced from
the originating SQL statement that produced this result set.

	
_cursor_description()

	May be overridden by subclasses.

	
_process_row

	alias of RowProxy

	
_soft_close(_autoclose_connection=True)

	Soft close this ResultProxy.

This releases all DBAPI cursor resources, but leaves the
ResultProxy “open” from a semantic perspective, meaning the
fetchXXX() methods will continue to return empty results.

This method is called automatically when:

	all result rows are exhausted using the fetchXXX() methods.

	cursor.description is None.

This method is not public, but is documented in order to clarify
the “autoclose” process used.

New in version 1.0.0.

See also

ResultProxy.close()

	
close()

	Close this ResultProxy.

This closes out the underlying DBAPI cursor corresonding
to the statement execution, if one is still present. Note that the
DBAPI cursor is automatically released when the ResultProxy
exhausts all available rows. ResultProxy.close() is generally
an optional method except in the case when discarding a
ResultProxy that still has additional rows pending for fetch.

In the case of a result that is the product of
connectionless execution,
the underyling Connection object is also closed, which
releases DBAPI connection resources.

After this method is called, it is no longer valid to call upon
the fetch methods, which will raise a ResourceClosedError
on subsequent use.

Changed in version 1.0.0: - the ResultProxy.close() method
has been separated out from the process that releases the underlying
DBAPI cursor resource. The “auto close” feature of the
Connection now performs a so-called “soft close”, which
releases the underlying DBAPI cursor, but allows the
ResultProxy to still behave as an open-but-exhausted
result set; the actual ResultProxy.close() method is never
called. It is still safe to discard a ResultProxy
that has been fully exhausted without calling this method.

See also

Working with Engines and Connections

ResultProxy._soft_close()

	
fetchall()

	Fetch all rows, just like DB-API cursor.fetchall().

After all rows have been exhausted, the underlying DBAPI
cursor resource is released, and the object may be safely
discarded.

Subsequent calls to ResultProxy.fetchall() will return
an empty list. After the ResultProxy.close() method is
called, the method will raise ResourceClosedError.

Changed in version 1.0.0: - Added “soft close” behavior which
allows the result to be used in an “exhausted” state prior to
calling the ResultProxy.close() method.

	
fetchmany(size=None)

	Fetch many rows, just like DB-API
cursor.fetchmany(size=cursor.arraysize).

After all rows have been exhausted, the underlying DBAPI
cursor resource is released, and the object may be safely
discarded.

Calls to ResultProxy.fetchmany() after all rows have been
exhuasted will return
an empty list. After the ResultProxy.close() method is
called, the method will raise ResourceClosedError.

Changed in version 1.0.0: - Added “soft close” behavior which
allows the result to be used in an “exhausted” state prior to
calling the ResultProxy.close() method.

	
fetchone()

	Fetch one row, just like DB-API cursor.fetchone().

After all rows have been exhausted, the underlying DBAPI
cursor resource is released, and the object may be safely
discarded.

Calls to ResultProxy.fetchone() after all rows have
been exhausted will return None.
After the ResultProxy.close() method is
called, the method will raise ResourceClosedError.

Changed in version 1.0.0: - Added “soft close” behavior which
allows the result to be used in an “exhausted” state prior to
calling the ResultProxy.close() method.

	
first()

	Fetch the first row and then close the result set unconditionally.

Returns None if no row is present.

After calling this method, the object is fully closed,
e.g. the ResultProxy.close() method will have been called.

	
inserted_primary_key

	Return the primary key for the row just inserted.

The return value is a list of scalar values
corresponding to the list of primary key columns
in the target table.

This only applies to single row insert()
constructs which did not explicitly specify
Insert.returning().

Note that primary key columns which specify a
server_default clause,
or otherwise do not qualify as “autoincrement”
columns (see the notes at Column), and were
generated using the database-side default, will
appear in this list as None unless the backend
supports “returning” and the insert statement executed
with the “implicit returning” enabled.

Raises InvalidRequestError if the executed
statement is not a compiled expression construct
or is not an insert() construct.

	
is_insert

	True if this ResultProxy is the result
of a executing an expression language compiled
expression.insert() construct.

When True, this implies that the
inserted_primary_key attribute is accessible,
assuming the statement did not include
a user defined “returning” construct.

	
keys()

	Return the current set of string keys for rows.

	
last_inserted_params()

	Return the collection of inserted parameters from this
execution.

Raises InvalidRequestError if the executed
statement is not a compiled expression construct
or is not an insert() construct.

	
last_updated_params()

	Return the collection of updated parameters from this
execution.

Raises InvalidRequestError if the executed
statement is not a compiled expression construct
or is not an update() construct.

	
lastrow_has_defaults()

	Return lastrow_has_defaults() from the underlying
ExecutionContext.

See ExecutionContext for details.

	
lastrowid

	return the ‘lastrowid’ accessor on the DBAPI cursor.

This is a DBAPI specific method and is only functional
for those backends which support it, for statements
where it is appropriate. It’s behavior is not
consistent across backends.

Usage of this method is normally unnecessary when
using insert() expression constructs; the
inserted_primary_key attribute provides a
tuple of primary key values for a newly inserted row,
regardless of database backend.

	
postfetch_cols()

	Return postfetch_cols() from the underlying
ExecutionContext.

See ExecutionContext for details.

Raises InvalidRequestError if the executed
statement is not a compiled expression construct
or is not an insert() or update() construct.

	
prefetch_cols()

	Return prefetch_cols() from the underlying
ExecutionContext.

See ExecutionContext for details.

Raises InvalidRequestError if the executed
statement is not a compiled expression construct
or is not an insert() or update() construct.

	
returned_defaults

	Return the values of default columns that were fetched using
the ValuesBase.return_defaults() feature.

The value is an instance of RowProxy, or None
if ValuesBase.return_defaults() was not used or if the
backend does not support RETURNING.

New in version 0.9.0.

See also

ValuesBase.return_defaults()

	
returns_rows

	True if this ResultProxy returns rows.

I.e. if it is legal to call the methods
fetchone(),
fetchmany()
fetchall().

	
rowcount

	Return the ‘rowcount’ for this result.

The ‘rowcount’ reports the number of rows matched
by the WHERE criterion of an UPDATE or DELETE statement.

Note

Notes regarding ResultProxy.rowcount:

	This attribute returns the number of rows matched,
which is not necessarily the same as the number of rows
that were actually modified - an UPDATE statement, for example,
may have no net change on a given row if the SET values
given are the same as those present in the row already.
Such a row would be matched but not modified.
On backends that feature both styles, such as MySQL,
rowcount is configured by default to return the match
count in all cases.

	ResultProxy.rowcount is only useful in conjunction
with an UPDATE or DELETE statement. Contrary to what the Python
DBAPI says, it does not return the
number of rows available from the results of a SELECT statement
as DBAPIs cannot support this functionality when rows are
unbuffered.

	ResultProxy.rowcount may not be fully implemented by
all dialects. In particular, most DBAPIs do not support an
aggregate rowcount result from an executemany call.
The ResultProxy.supports_sane_rowcount() and
ResultProxy.supports_sane_multi_rowcount() methods
will report from the dialect if each usage is known to be
supported.

	Statements that use RETURNING may not return a correct
rowcount.

	
scalar()

	Fetch the first column of the first row, and close the result set.

Returns None if no row is present.

After calling this method, the object is fully closed,
e.g. the ResultProxy.close() method will have been called.

	
supports_sane_multi_rowcount()

	Return supports_sane_multi_rowcount from the dialect.

See ResultProxy.rowcount for background.

	
supports_sane_rowcount()

	Return supports_sane_rowcount from the dialect.

See ResultProxy.rowcount for background.

	
class sqlalchemy.engine.RowProxy(parent, row, processors, keymap)

	Bases: sqlalchemy.engine.BaseRowProxy

Proxy values from a single cursor row.

Mostly follows “ordered dictionary” behavior, mapping result
values to the string-based column name, the integer position of
the result in the row, as well as Column instances which can be
mapped to the original Columns that produced this result set (for
results that correspond to constructed SQL expressions).

	
has_key(key)

	Return True if this RowProxy contains the given key.

	
items()

	Return a list of tuples, each tuple containing a key/value pair.

	
keys()

	Return the list of keys as strings represented by this RowProxy.

	
class sqlalchemy.engine.Transaction(connection, parent)

	Represent a database transaction in progress.

The Transaction object is procured by
calling the begin() method of
Connection:

from sqlalchemy import create_engine
engine = create_engine("postgresql://scott:tiger@localhost/test")
connection = engine.connect()
trans = connection.begin()
connection.execute("insert into x (a, b) values (1, 2)")
trans.commit()

The object provides rollback() and commit()
methods in order to control transaction boundaries. It
also implements a context manager interface so that
the Python with statement can be used with the
Connection.begin() method:

with connection.begin():
 connection.execute("insert into x (a, b) values (1, 2)")

The Transaction object is not threadsafe.

See also: Connection.begin(), Connection.begin_twophase(),
Connection.begin_nested().

	
close()

	Close this Transaction.

If this transaction is the base transaction in a begin/commit
nesting, the transaction will rollback(). Otherwise, the
method returns.

This is used to cancel a Transaction without affecting the scope of
an enclosing transaction.

	
commit()

	Commit this Transaction.

	
rollback()

	Roll back this Transaction.

	
class sqlalchemy.engine.TwoPhaseTransaction(connection, xid)

	Bases: sqlalchemy.engine.Transaction

Represent a two-phase transaction.

A new TwoPhaseTransaction object may be procured
using the Connection.begin_twophase() method.

The interface is the same as that of Transaction
with the addition of the prepare() method.

	
prepare()

	Prepare this TwoPhaseTransaction.

After a PREPARE, the transaction can be committed.

Connection Pooling

A connection pool is a standard technique used to maintain
long running connections in memory for efficient re-use,
as well as to provide
management for the total number of connections an application
might use simultaneously.

Particularly for
server-side web applications, a connection pool is the standard way to
maintain a “pool” of active database connections in memory which are
reused across requests.

SQLAlchemy includes several connection pool implementations
which integrate with the Engine. They can also be used
directly for applications that want to add pooling to an otherwise
plain DBAPI approach.

Connection Pool Configuration

The Engine returned by the
create_engine() function in most cases has a QueuePool
integrated, pre-configured with reasonable pooling defaults. If
you’re reading this section only to learn how to enable pooling - congratulations!
You’re already done.

The most common QueuePool tuning parameters can be passed
directly to create_engine() as keyword arguments:
pool_size, max_overflow, pool_recycle and
pool_timeout. For example:

engine = create_engine('postgresql://me@localhost/mydb',
 pool_size=20, max_overflow=0)

In the case of SQLite, the SingletonThreadPool or
NullPool are selected by the dialect to provide
greater compatibility with SQLite’s threading and locking
model, as well as to provide a reasonable default behavior
to SQLite “memory” databases, which maintain their entire
dataset within the scope of a single connection.

All SQLAlchemy pool implementations have in common
that none of them “pre create” connections - all implementations wait
until first use before creating a connection. At that point, if
no additional concurrent checkout requests for more connections
are made, no additional connections are created. This is why it’s perfectly
fine for create_engine() to default to using a QueuePool
of size five without regard to whether or not the application really needs five connections
queued up - the pool would only grow to that size if the application
actually used five connections concurrently, in which case the usage of a
small pool is an entirely appropriate default behavior.

Switching Pool Implementations

The usual way to use a different kind of pool with create_engine()
is to use the poolclass argument. This argument accepts a class
imported from the sqlalchemy.pool module, and handles the details
of building the pool for you. Common options include specifying
QueuePool with SQLite:

from sqlalchemy.pool import QueuePool
engine = create_engine('sqlite:///file.db', poolclass=QueuePool)

Disabling pooling using NullPool:

from sqlalchemy.pool import NullPool
engine = create_engine(
 'postgresql+psycopg2://scott:tiger@localhost/test',
 poolclass=NullPool)

Using a Custom Connection Function

All Pool classes accept an argument creator which is
a callable that creates a new connection. create_engine()
accepts this function to pass onto the pool via an argument of
the same name:

import sqlalchemy.pool as pool
import psycopg2

def getconn():
 c = psycopg2.connect(username='ed', host='127.0.0.1', dbname='test')
 # do things with 'c' to set up
 return c

engine = create_engine('postgresql+psycopg2://', creator=getconn)

For most “initialize on connection” routines, it’s more convenient
to use the PoolEvents event hooks, so that the usual URL argument to
create_engine() is still usable. creator is there as
a last resort for when a DBAPI has some form of connect
that is not at all supported by SQLAlchemy.

Constructing a Pool

To use a Pool by itself, the creator function is
the only argument that’s required and is passed first, followed
by any additional options:

import sqlalchemy.pool as pool
import psycopg2

def getconn():
 c = psycopg2.connect(username='ed', host='127.0.0.1', dbname='test')
 return c

mypool = pool.QueuePool(getconn, max_overflow=10, pool_size=5)

DBAPI connections can then be procured from the pool using the Pool.connect()
function. The return value of this method is a DBAPI connection that’s contained
within a transparent proxy:

get a connection
conn = mypool.connect()

use it
cursor = conn.cursor()
cursor.execute("select foo")

The purpose of the transparent proxy is to intercept the close() call,
such that instead of the DBAPI connection being closed, it is returned to the
pool:

"close" the connection. Returns
it to the pool.
conn.close()

The proxy also returns its contained DBAPI connection to the pool
when it is garbage collected,
though it’s not deterministic in Python that this occurs immediately (though
it is typical with cPython).

The close() step also performs the important step of calling the
rollback() method of the DBAPI connection. This is so that any
existing transaction on the connection is removed, not only ensuring
that no existing state remains on next usage, but also so that table
and row locks are released as well as that any isolated data snapshots
are removed. This behavior can be disabled using the reset_on_return
option of Pool.

A particular pre-created Pool can be shared with one or more
engines by passing it to the pool argument of create_engine():

e = create_engine('postgresql://', pool=mypool)

Pool Events

Connection pools support an event interface that allows hooks to execute
upon first connect, upon each new connection, and upon checkout and
checkin of connections. See PoolEvents for details.

Dealing with Disconnects

The connection pool has the ability to refresh individual connections as well as
its entire set of connections, setting the previously pooled connections as
“invalid”. A common use case is allow the connection pool to gracefully recover
when the database server has been restarted, and all previously established connections
are no longer functional. There are two approaches to this.

Disconnect Handling - Optimistic

The most common approach is to let SQLAlchemy handle disconnects as they
occur, at which point the pool is refreshed. This assumes the Pool
is used in conjunction with a Engine. The Engine has
logic which can detect disconnection events and refresh the pool automatically.

When the Connection attempts to use a DBAPI connection, and an
exception is raised that corresponds to a “disconnect” event, the connection
is invalidated. The Connection then calls the Pool.recreate()
method, effectively invalidating all connections not currently checked out so
that they are replaced with new ones upon next checkout:

from sqlalchemy import create_engine, exc
e = create_engine(...)
c = e.connect()

try:
 # suppose the database has been restarted.
 c.execute("SELECT * FROM table")
 c.close()
except exc.DBAPIError, e:
 # an exception is raised, Connection is invalidated.
 if e.connection_invalidated:
 print("Connection was invalidated!")

after the invalidate event, a new connection
starts with a new Pool
c = e.connect()
c.execute("SELECT * FROM table")

The above example illustrates that no special intervention is needed, the pool
continues normally after a disconnection event is detected. However, an exception is
raised. In a typical web application using an ORM Session, the above condition would
correspond to a single request failing with a 500 error, then the web application
continuing normally beyond that. Hence the approach is “optimistic” in that frequent
database restarts are not anticipated.

Setting Pool Recycle

An additional setting that can augment the “optimistic” approach is to set the
pool recycle parameter. This parameter prevents the pool from using a particular
connection that has passed a certain age, and is appropriate for database backends
such as MySQL that automatically close connections that have been stale after a particular
period of time:

from sqlalchemy import create_engine
e = create_engine("mysql://scott:tiger@localhost/test", pool_recycle=3600)

Above, any DBAPI connection that has been open for more than one hour will be invalidated and replaced,
upon next checkout. Note that the invalidation only occurs during checkout - not on
any connections that are held in a checked out state. pool_recycle is a function
of the Pool itself, independent of whether or not an Engine is in use.

Disconnect Handling - Pessimistic

At the expense of some extra SQL emitted for each connection checked out from
the pool, a “ping” operation established by a checkout event handler can
detect an invalid connection before it is used. In modern SQLAlchemy, the
best way to do this is to make use of the
ConnectionEvents.engine_connect() event, assuming the use of a
Engine and not just a raw Pool object:

from sqlalchemy import exc
from sqlalchemy import event
from sqlalchemy import select

some_engine = create_engine(...)

@event.listens_for(some_engine, "engine_connect")
def ping_connection(connection, branch):
 if branch:
 # "branch" refers to a sub-connection of a connection,
 # we don't want to bother pinging on these.
 return

 # turn off "close with result". This flag is only used with
 # "connectionless" execution, otherwise will be False in any case
 save_should_close_with_result = connection.should_close_with_result
 connection.should_close_with_result = False

 try:
 # run a SELECT 1. use a core select() so that
 # the SELECT of a scalar value without a table is
 # appropriately formatted for the backend
 connection.scalar(select([1]))
 except exc.DBAPIError as err:
 # catch SQLAlchemy's DBAPIError, which is a wrapper
 # for the DBAPI's exception. It includes a .connection_invalidated
 # attribute which specifies if this connection is a "disconnect"
 # condition, which is based on inspection of the original exception
 # by the dialect in use.
 if err.connection_invalidated:
 # run the same SELECT again - the connection will re-validate
 # itself and establish a new connection. The disconnect detection
 # here also causes the whole connection pool to be invalidated
 # so that all stale connections are discarded.
 connection.scalar(select([1]))
 else:
 raise
 finally:
 # restore "close with result"
 connection.should_close_with_result = save_should_close_with_result

The above recipe has the advantage that we are making use of SQLAlchemy’s
facilities for detecting those DBAPI exceptions that are known to indicate
a “disconnect” situation, as well as the Engine object’s ability
to correctly invalidate the current connection pool when this condition
occurs and allowing the current Connection to re-validate onto
a new DBAPI connection.

For the much less common case of where a Pool is being used without
an Engine, an older approach may be used as below:

from sqlalchemy import exc
from sqlalchemy import event
from sqlalchemy.pool import Pool

@event.listens_for(Pool, "checkout")
def ping_connection(dbapi_connection, connection_record, connection_proxy):
 cursor = dbapi_connection.cursor()
 try:
 cursor.execute("SELECT 1")
 except:
 # raise DisconnectionError - pool will try
 # connecting again up to three times before raising.
 raise exc.DisconnectionError()
 cursor.close()

Above, the Pool object specifically catches
DisconnectionError and attempts to create a new DBAPI
connection, up to three times, before giving up and then raising
InvalidRequestError, failing the connection. The
disadvantage of the above approach is that we don’t have any easy way of
determining if the exception raised is in fact a “disconnect” situation, since
there is no Engine or Dialect in play, and also the above
error would occur individually for all stale connections still in the pool.

More on Invalidation

The Pool provides “connection invalidation” services which allow
both explicit invalidation of a connection as well as automatic invalidation
in response to conditions that are determined to render a connection unusable.

“Invalidation” means that a particular DBAPI connection is removed from the
pool and discarded. The .close() method is called on this connection
if it is not clear that the connection itself might not be closed, however
if this method fails, the exception is logged but the operation still proceeds.

When using a Engine, the Connection.invalidate() method is
the usual entrypoint to explicit invalidation. Other conditions by which
a DBAPI connection might be invalidated include:

	a DBAPI exception such as OperationalError, raised when a
method like connection.execute() is called, is detected as indicating
a so-called “disconnect” condition. As the Python DBAPI provides no
standard system for determining the nature of an exception, all SQLAlchemy
dialects include a system called is_disconnect() which will examine
the contents of an exception object, including the string message and
any potential error codes included with it, in order to determine if this
exception indicates that the connection is no longer usable. If this is the
case, the _ConnectionFairy.invalidate() method is called and the
DBAPI connection is then discarded.

	When the connection is returned to the pool, and
calling the connection.rollback() or connection.commit() methods,
as dictated by the pool’s “reset on return” behavior, throws an exception.
A final attempt at calling .close() on the connection will be made,
and it is then discarded.

	When a listener implementing PoolEvents.checkout() raises the
DisconnectionError exception, indicating that the connection
won’t be usable and a new connection attempt needs to be made.

All invalidations which occur will invoke the PoolEvents.invalidate()
event.

Using Connection Pools with Multiprocessing

It’s critical that when using a connection pool, and by extension when
using an Engine created via create_engine(), that
the pooled connections are not shared to a forked process. TCP connections
are represented as file descriptors, which usually work across process
boundaries, meaning this will cause concurrent access to the file descriptor
on behalf of two or more entirely independent Python interpreter states.

There are two approaches to dealing with this.

The first is, either create a new Engine within the child
process, or upon an existing Engine, call Engine.dispose()
before the child process uses any connections. This will remove all existing
connections from the pool so that it makes all new ones. Below is
a simple version using multiprocessing.Process, but this idea
should be adapted to the style of forking in use:

eng = create_engine("...")

def run_in_process():
 eng.dispose()

 with eng.connect() as conn:
 conn.execute("...")

p = Process(target=run_in_process)

The next approach is to instrument the Pool itself with events
so that connections are automatically invalidated in the subprocess.
This is a little more magical but probably more foolproof:

from sqlalchemy import event
from sqlalchemy import exc
import os

eng = create_engine("...")

@event.listens_for(engine, "connect")
def connect(dbapi_connection, connection_record):
 connection_record.info['pid'] = os.getpid()

@event.listens_for(engine, "checkout")
def checkout(dbapi_connection, connection_record, connection_proxy):
 pid = os.getpid()
 if connection_record.info['pid'] != pid:
 connection_record.connection = connection_proxy.connection = None
 raise exc.DisconnectionError(
 "Connection record belongs to pid %s, "
 "attempting to check out in pid %s" %
 (connection_record.info['pid'], pid)
)

Above, we use an approach similar to that described in
Disconnect Handling - Pessimistic to treat a DBAPI connection that
originated in a different parent process as an “invalid” connection,
coercing the pool to recycle the connection record to make a new connection.

API Documentation - Available Pool Implementations

	
class sqlalchemy.pool.Pool(creator, recycle=-1, echo=None, use_threadlocal=False, logging_name=None, reset_on_return=True, listeners=None, events=None, _dispatch=None, _dialect=None)

	Bases: sqlalchemy.log.Identified

Abstract base class for connection pools.

	
__init__(creator, recycle=-1, echo=None, use_threadlocal=False, logging_name=None, reset_on_return=True, listeners=None, events=None, _dispatch=None, _dialect=None)

	Construct a Pool.

	Parameters:
	
	creator¶ – a callable function that returns a DB-API
connection object. The function will be called with
parameters.

	recycle¶ – If set to non -1, number of seconds between
connection recycling, which means upon checkout, if this
timeout is surpassed the connection will be closed and
replaced with a newly opened connection. Defaults to -1.

	logging_name¶ – String identifier which will be used within
the “name” field of logging records generated within the
“sqlalchemy.pool” logger. Defaults to a hexstring of the object’s
id.

	echo¶ – If True, connections being pulled and retrieved
from the pool will be logged to the standard output, as well
as pool sizing information. Echoing can also be achieved by
enabling logging for the “sqlalchemy.pool”
namespace. Defaults to False.

	use_threadlocal¶ – If set to True, repeated calls to
connect() within the same application thread will be
guaranteed to return the same connection object, if one has
already been retrieved from the pool and has not been
returned yet. Offers a slight performance advantage at the
cost of individual transactions by default. The
Pool.unique_connection() method is provided to return
a consistenty unique connection to bypass this behavior
when the flag is set.

Warning

The Pool.use_threadlocal flag
does not affect the behavior of Engine.connect().
Engine.connect() makes use of the
Pool.unique_connection() method which does not use thread
local context. To produce a Connection which refers
to the Pool.connect() method, use
Engine.contextual_connect().

Note that other SQLAlchemy connectivity systems such as
Engine.execute() as well as the orm
Session make use of
Engine.contextual_connect() internally, so these functions
are compatible with the Pool.use_threadlocal setting.

See also

Using the Threadlocal Execution Strategy - contains detail on the
“threadlocal” engine strategy, which provides a more comprehensive
approach to “threadlocal” connectivity for the specific
use case of using Engine and Connection objects
directly.

	reset_on_return¶ – Determine steps to take on
connections as they are returned to the pool.
reset_on_return can have any of these values:

	"rollback" - call rollback() on the connection,
to release locks and transaction resources.
This is the default value. The vast majority
of use cases should leave this value set.

	True - same as ‘rollback’, this is here for
backwards compatibility.

	"commit" - call commit() on the connection,
to release locks and transaction resources.
A commit here may be desirable for databases that
cache query plans if a commit is emitted,
such as Microsoft SQL Server. However, this
value is more dangerous than ‘rollback’ because
any data changes present on the transaction
are committed unconditionally.

	None - don’t do anything on the connection.
This setting should only be made on a database
that has no transaction support at all,
namely MySQL MyISAM. By not doing anything,
performance can be improved. This
setting should never be selected for a
database that supports transactions,
as it will lead to deadlocks and stale
state.

	"none" - same as None
New in version 0.9.10.

	False - same as None, this is here for
backwards compatibility.

Changed in version 0.7.6: Pool.reset_on_return accepts "rollback"
and "commit" arguments.

	events¶ – a list of 2-tuples, each of the form
(callable, target) which will be passed to event.listen()
upon construction. Provided here so that event listeners
can be assigned via create_engine() before dialect-level
listeners are applied.

	listeners¶ – Deprecated. A list of
PoolListener-like objects or
dictionaries of callables that receive events when DB-API
connections are created, checked out and checked in to the
pool. This has been superseded by
listen().

	
connect()

	Return a DBAPI connection from the pool.

The connection is instrumented such that when its
close() method is called, the connection will be returned to
the pool.

	
dispose()

	Dispose of this pool.

This method leaves the possibility of checked-out connections
remaining open, as it only affects connections that are
idle in the pool.

See also the Pool.recreate() method.

	
recreate()

	Return a new Pool, of the same class as this one
and configured with identical creation arguments.

This method is used in conjunction with dispose()
to close out an entire Pool and create a new one in
its place.

	
unique_connection()

	Produce a DBAPI connection that is not referenced by any
thread-local context.

This method is equivalent to Pool.connect() when the
Pool.use_threadlocal flag is not set to True.
When Pool.use_threadlocal is True, the
Pool.unique_connection() method provides a means of bypassing
the threadlocal context.

	
class sqlalchemy.pool.QueuePool(creator, pool_size=5, max_overflow=10, timeout=30, **kw)

	Bases: sqlalchemy.pool.Pool

A Pool that imposes a limit on the number of open connections.

QueuePool is the default pooling implementation used for
all Engine objects, unless the SQLite dialect is in use.

	
__init__(creator, pool_size=5, max_overflow=10, timeout=30, **kw)

	Construct a QueuePool.

	Parameters:
	
	creator¶ – a callable function that returns a DB-API
connection object, same as that of Pool.creator.

	pool_size¶ – The size of the pool to be maintained,
defaults to 5. This is the largest number of connections that
will be kept persistently in the pool. Note that the pool
begins with no connections; once this number of connections
is requested, that number of connections will remain.
pool_size can be set to 0 to indicate no size limit; to
disable pooling, use a NullPool
instead.

	max_overflow¶ – The maximum overflow size of the
pool. When the number of checked-out connections reaches the
size set in pool_size, additional connections will be
returned up to this limit. When those additional connections
are returned to the pool, they are disconnected and
discarded. It follows then that the total number of
simultaneous connections the pool will allow is pool_size +
max_overflow, and the total number of “sleeping”
connections the pool will allow is pool_size. max_overflow
can be set to -1 to indicate no overflow limit; no limit
will be placed on the total number of concurrent
connections. Defaults to 10.

	timeout¶ – The number of seconds to wait before giving up
on returning a connection. Defaults to 30.

	**kw¶ – Other keyword arguments including
Pool.recycle, Pool.echo,
Pool.reset_on_return and others are passed to the
Pool constructor.

	
connect()

	
inherited from the connect() method of Pool

Return a DBAPI connection from the pool.

The connection is instrumented such that when its
close() method is called, the connection will be returned to
the pool.

	
unique_connection()

	
inherited from the unique_connection() method of Pool

Produce a DBAPI connection that is not referenced by any
thread-local context.

This method is equivalent to Pool.connect() when the
Pool.use_threadlocal flag is not set to True.
When Pool.use_threadlocal is True, the
Pool.unique_connection() method provides a means of bypassing
the threadlocal context.

	
class sqlalchemy.pool.SingletonThreadPool(creator, pool_size=5, **kw)

	Bases: sqlalchemy.pool.Pool

A Pool that maintains one connection per thread.

Maintains one connection per each thread, never moving a connection to a
thread other than the one which it was created in.

Warning

the SingletonThreadPool will call .close()
on arbitrary connections that exist beyond the size setting of
pool_size, e.g. if more unique thread identities
than what pool_size states are used. This cleanup is
non-deterministic and not sensitive to whether or not the connections
linked to those thread identities are currently in use.

SingletonThreadPool may be improved in a future release,
however in its current status it is generally used only for test
scenarios using a SQLite :memory: database and is not recommended
for production use.

Options are the same as those of Pool, as well as:

	Parameters:
	pool_size¶ – The number of threads in which to maintain connections
at once. Defaults to five.

SingletonThreadPool is used by the SQLite dialect
automatically when a memory-based database is used.
See SQLite.

	
__init__(creator, pool_size=5, **kw)

	

	
class sqlalchemy.pool.AssertionPool(*args, **kw)

	Bases: sqlalchemy.pool.Pool

A Pool that allows at most one checked out connection at
any given time.

This will raise an exception if more than one connection is checked out
at a time. Useful for debugging code that is using more connections
than desired.

Changed in version 0.7: AssertionPool also logs a traceback of where
the original connection was checked out, and reports
this in the assertion error raised.

	
class sqlalchemy.pool.NullPool(creator, recycle=-1, echo=None, use_threadlocal=False, logging_name=None, reset_on_return=True, listeners=None, events=None, _dispatch=None, _dialect=None)

	Bases: sqlalchemy.pool.Pool

A Pool which does not pool connections.

Instead it literally opens and closes the underlying DB-API connection
per each connection open/close.

Reconnect-related functions such as recycle and connection
invalidation are not supported by this Pool implementation, since
no connections are held persistently.

Changed in version 0.7: NullPool is used by the SQlite dialect automatically
when a file-based database is used. See SQLite.

	
class sqlalchemy.pool.StaticPool(creator, recycle=-1, echo=None, use_threadlocal=False, logging_name=None, reset_on_return=True, listeners=None, events=None, _dispatch=None, _dialect=None)

	Bases: sqlalchemy.pool.Pool

A Pool of exactly one connection, used for all requests.

Reconnect-related functions such as recycle and connection
invalidation (which is also used to support auto-reconnect) are not
currently supported by this Pool implementation but may be implemented
in a future release.

	
class sqlalchemy.pool._ConnectionFairy(dbapi_connection, connection_record, echo)

	Proxies a DBAPI connection and provides return-on-dereference
support.

This is an internal object used by the Pool implementation
to provide context management to a DBAPI connection delivered by
that Pool.

The name “fairy” is inspired by the fact that the
_ConnectionFairy object’s lifespan is transitory, as it lasts
only for the length of a specific DBAPI connection being checked out from
the pool, and additionally that as a transparent proxy, it is mostly
invisible.

See also

_ConnectionRecord

	
_connection_record = None

	A reference to the _ConnectionRecord object associated
with the DBAPI connection.

This is currently an internal accessor which is subject to change.

	
connection = None

	A reference to the actual DBAPI connection being tracked.

	
cursor(*args, **kwargs)

	Return a new DBAPI cursor for the underlying connection.

This method is a proxy for the connection.cursor() DBAPI
method.

	
detach()

	Separate this connection from its Pool.

This means that the connection will no longer be returned to the
pool when closed, and will instead be literally closed. The
containing ConnectionRecord is separated from the DB-API connection,
and will create a new connection when next used.

Note that any overall connection limiting constraints imposed by a
Pool implementation may be violated after a detach, as the detached
connection is removed from the pool’s knowledge and control.

	
info

	Info dictionary associated with the underlying DBAPI connection
referred to by this ConnectionFairy, allowing user-defined
data to be associated with the connection.

The data here will follow along with the DBAPI connection including
after it is returned to the connection pool and used again
in subsequent instances of _ConnectionFairy. It is shared
with the _ConnectionRecord.info and Connection.info
accessors.

	
invalidate(e=None, soft=False)

	Mark this connection as invalidated.

This method can be called directly, and is also called as a result
of the Connection.invalidate() method. When invoked,
the DBAPI connection is immediately closed and discarded from
further use by the pool. The invalidation mechanism proceeds
via the _ConnectionRecord.invalidate() internal method.

	Parameters:
	
	e¶ – an exception object indicating a reason for the invalidation.

	soft¶ – if True, the connection isn’t closed; instead, this
connection will be recycled on next checkout.

New in version 1.0.3.

See also

More on Invalidation

	
is_valid

	Return True if this _ConnectionFairy still refers
to an active DBAPI connection.

	
class sqlalchemy.pool._ConnectionRecord(pool)

	Internal object which maintains an individual DBAPI connection
referenced by a Pool.

The _ConnectionRecord object always exists for any particular
DBAPI connection whether or not that DBAPI connection has been
“checked out”. This is in contrast to the _ConnectionFairy
which is only a public facade to the DBAPI connection while it is checked
out.

A _ConnectionRecord may exist for a span longer than that
of a single DBAPI connection. For example, if the
_ConnectionRecord.invalidate()
method is called, the DBAPI connection associated with this
_ConnectionRecord
will be discarded, but the _ConnectionRecord may be used again,
in which case a new DBAPI connection is produced when the Pool
next uses this record.

The _ConnectionRecord is delivered along with connection
pool events, including PoolEvents.connect() and
PoolEvents.checkout(), however _ConnectionRecord still
remains an internal object whose API and internals may change.

See also

_ConnectionFairy

	
connection = None

	A reference to the actual DBAPI connection being tracked.

May be None if this _ConnectionRecord has been marked
as invalidated; a new DBAPI connection may replace it if the owning
pool calls upon this _ConnectionRecord to reconnect.

	
info

	The .info dictionary associated with the DBAPI connection.

This dictionary is shared among the _ConnectionFairy.info
and Connection.info accessors.

	
invalidate(e=None, soft=False)

	Invalidate the DBAPI connection held by this _ConnectionRecord.

This method is called for all connection invalidations, including
when the _ConnectionFairy.invalidate() or
Connection.invalidate() methods are called, as well as when any
so-called “automatic invalidation” condition occurs.

	Parameters:
	
	e¶ – an exception object indicating a reason for the invalidation.

	soft¶ – if True, the connection isn’t closed; instead, this
connection will be recycled on next checkout.

New in version 1.0.3.

See also

More on Invalidation

Pooling Plain DB-API Connections

Any PEP 249 DB-API module can be “proxied” through the connection
pool transparently. Usage of the DB-API is exactly as before, except
the connect() method will consult the pool. Below we illustrate
this with psycopg2:

import sqlalchemy.pool as pool
import psycopg2 as psycopg

psycopg = pool.manage(psycopg)

then connect normally
connection = psycopg.connect(database='test', username='scott',
 password='tiger')

This produces a _DBProxy object which supports the same
connect() function as the original DB-API module. Upon
connection, a connection proxy object is returned, which delegates its
calls to a real DB-API connection object. This connection object is
stored persistently within a connection pool (an instance of
Pool) that corresponds to the exact connection arguments sent
to the connect() function.

The connection proxy supports all of the methods on the original
connection object, most of which are proxied via __getattr__().
The close() method will return the connection to the pool, and the
cursor() method will return a proxied cursor object. Both the
connection proxy and the cursor proxy will also return the underlying
connection to the pool after they have both been garbage collected,
which is detected via weakref callbacks (__del__ is not used).

Additionally, when connections are returned to the pool, a
rollback() is issued on the connection unconditionally. This is
to release any locks still held by the connection that may have
resulted from normal activity.

By default, the connect() method will return the same connection
that is already checked out in the current thread. This allows a
particular connection to be used in a given thread without needing to
pass it around between functions. To disable this behavior, specify
use_threadlocal=False to the manage() function.

	
sqlalchemy.pool.manage(module, **params)

	Return a proxy for a DB-API module that automatically
pools connections.

Given a DB-API 2.0 module and pool management parameters, returns
a proxy for the module that will automatically pool connections,
creating new connection pools for each distinct set of connection
arguments sent to the decorated module’s connect() function.

	Parameters:
	
	module¶ – a DB-API 2.0 database module

	poolclass¶ – the class used by the pool module to provide
pooling. Defaults to QueuePool.

	**params¶ – will be passed through to poolclass

	
sqlalchemy.pool.clear_managers()

	Remove all current DB-API 2.0 managers.

All pools and connections are disposed.

Core Events

This section describes the event interfaces provided in
SQLAlchemy Core.
For an introduction to the event listening API, see Events.
ORM events are described in ORM Events.

	
class sqlalchemy.event.base.Events

	Define event listening functions for a particular target type.

Connection Pool Events

	
class sqlalchemy.events.PoolEvents

	Bases: sqlalchemy.event.base.Events

Available events for Pool.

The methods here define the name of an event as well
as the names of members that are passed to listener
functions.

e.g.:

from sqlalchemy import event

def my_on_checkout(dbapi_conn, connection_rec, connection_proxy):
 "handle an on checkout event"

event.listen(Pool, 'checkout', my_on_checkout)

In addition to accepting the Pool class and
Pool instances, PoolEvents also accepts
Engine objects and the Engine class as
targets, which will be resolved to the .pool attribute of the
given engine or the Pool class:

engine = create_engine("postgresql://scott:tiger@localhost/test")

will associate with engine.pool
event.listen(engine, 'checkout', my_on_checkout)

	
checkin(dbapi_connection, connection_record)

	Called when a connection returns to the pool.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'checkin')
def receive_checkin(dbapi_connection, connection_record):
 "listen for the 'checkin' event"

 # ... (event handling logic) ...

Note that the connection may be closed, and may be None if the
connection has been invalidated. checkin will not be called
for detached connections. (They do not return to the pool.)

	Parameters:
	
	dbapi_connection¶ – a DBAPI connection.

	connection_record¶ – the _ConnectionRecord managing the
DBAPI connection.

	
checkout(dbapi_connection, connection_record, connection_proxy)

	Called when a connection is retrieved from the Pool.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'checkout')
def receive_checkout(dbapi_connection, connection_record, connection_proxy):
 "listen for the 'checkout' event"

 # ... (event handling logic) ...

	Parameters:
	
	dbapi_connection¶ – a DBAPI connection.

	connection_record¶ – the _ConnectionRecord managing the
DBAPI connection.

	connection_proxy¶ – the _ConnectionFairy object which
will proxy the public interface of the DBAPI connection for the
lifespan of the checkout.

If you raise a DisconnectionError, the current
connection will be disposed and a fresh connection retrieved.
Processing of all checkout listeners will abort and restart
using the new connection.

See also

ConnectionEvents.engine_connect() - a similar event
which occurs upon creation of a new Connection.

	
close(dbapi_connection, connection_record)

	Called when a DBAPI connection is closed.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'close')
def receive_close(dbapi_connection, connection_record):
 "listen for the 'close' event"

 # ... (event handling logic) ...

The event is emitted before the close occurs.

The close of a connection can fail; typically this is because
the connection is already closed. If the close operation fails,
the connection is discarded.

The close() event corresponds to a connection that’s still
associated with the pool. To intercept close events for detached
connections use close_detached().

New in version 1.1.

	
close_detached(dbapi_connection)

	Called when a detached DBAPI connection is closed.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'close_detached')
def receive_close_detached(dbapi_connection):
 "listen for the 'close_detached' event"

 # ... (event handling logic) ...

The event is emitted before the close occurs.

The close of a connection can fail; typically this is because
the connection is already closed. If the close operation fails,
the connection is discarded.

New in version 1.1.

	
connect(dbapi_connection, connection_record)

	Called at the moment a particular DBAPI connection is first
created for a given Pool.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'connect')
def receive_connect(dbapi_connection, connection_record):
 "listen for the 'connect' event"

 # ... (event handling logic) ...

This event allows one to capture the point directly after which
the DBAPI module-level .connect() method has been used in order
to produce a new DBAPI connection.

	Parameters:
	
	dbapi_connection¶ – a DBAPI connection.

	connection_record¶ – the _ConnectionRecord managing the
DBAPI connection.

	
detach(dbapi_connection, connection_record)

	Called when a DBAPI connection is “detached” from a pool.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'detach')
def receive_detach(dbapi_connection, connection_record):
 "listen for the 'detach' event"

 # ... (event handling logic) ...

This event is emitted after the detach occurs. The connection
is no longer associated with the given connection record.

New in version 1.1.

	
first_connect(dbapi_connection, connection_record)

	Called exactly once for the first time a DBAPI connection is
checked out from a particular Pool.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'first_connect')
def receive_first_connect(dbapi_connection, connection_record):
 "listen for the 'first_connect' event"

 # ... (event handling logic) ...

The rationale for PoolEvents.first_connect() is to determine
information about a particular series of database connections based
on the settings used for all connections. Since a particular
Pool refers to a single “creator” function (which in terms
of a Engine refers to the URL and connection options used),
it is typically valid to make observations about a single connection
that can be safely assumed to be valid about all subsequent
connections, such as the database version, the server and client
encoding settings, collation settings, and many others.

	Parameters:
	
	dbapi_connection¶ – a DBAPI connection.

	connection_record¶ – the _ConnectionRecord managing the
DBAPI connection.

	
invalidate(dbapi_connection, connection_record, exception)

	Called when a DBAPI connection is to be “invalidated”.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'invalidate')
def receive_invalidate(dbapi_connection, connection_record, exception):
 "listen for the 'invalidate' event"

 # ... (event handling logic) ...

This event is called any time the _ConnectionRecord.invalidate()
method is invoked, either from API usage or via “auto-invalidation”,
without the soft flag.

The event occurs before a final attempt to call .close() on the
connection occurs.

	Parameters:
	
	dbapi_connection¶ – a DBAPI connection.

	connection_record¶ – the _ConnectionRecord managing the
DBAPI connection.

	exception¶ – the exception object corresponding to the reason
for this invalidation, if any. May be None.

New in version 0.9.2: Added support for connection invalidation
listening.

See also

More on Invalidation

	
reset(dbapi_connection, connection_record)

	Called before the “reset” action occurs for a pooled connection.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'reset')
def receive_reset(dbapi_connection, connection_record):
 "listen for the 'reset' event"

 # ... (event handling logic) ...

This event represents
when the rollback() method is called on the DBAPI connection
before it is returned to the pool. The behavior of “reset” can
be controlled, including disabled, using the reset_on_return
pool argument.

The PoolEvents.reset() event is usually followed by the
PoolEvents.checkin() event is called, except in those
cases where the connection is discarded immediately after reset.

	Parameters:
	
	dbapi_connection¶ – a DBAPI connection.

	connection_record¶ – the _ConnectionRecord managing the
DBAPI connection.

New in version 0.8.

See also

ConnectionEvents.rollback()

ConnectionEvents.commit()

	
soft_invalidate(dbapi_connection, connection_record, exception)

	Called when a DBAPI connection is to be “soft invalidated”.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngineOrPool, 'soft_invalidate')
def receive_soft_invalidate(dbapi_connection, connection_record, exception):
 "listen for the 'soft_invalidate' event"

 # ... (event handling logic) ...

This event is called any time the _ConnectionRecord.invalidate()
method is invoked with the soft flag.

Soft invalidation refers to when the connection record that tracks
this connection will force a reconnect after the current connection
is checked in. It does not actively close the dbapi_connection
at the point at which it is called.

New in version 1.0.3.

SQL Execution and Connection Events

	
class sqlalchemy.events.ConnectionEvents

	Bases: sqlalchemy.event.base.Events

Available events for Connectable, which includes
Connection and Engine.

The methods here define the name of an event as well as the names of
members that are passed to listener functions.

An event listener can be associated with any Connectable
class or instance, such as an Engine, e.g.:

from sqlalchemy import event, create_engine

def before_cursor_execute(conn, cursor, statement, parameters, context,
 executemany):
 log.info("Received statement: %s", statement)

engine = create_engine('postgresql://scott:tiger@localhost/test')
event.listen(engine, "before_cursor_execute", before_cursor_execute)

or with a specific Connection:

with engine.begin() as conn:
 @event.listens_for(conn, 'before_cursor_execute')
 def before_cursor_execute(conn, cursor, statement, parameters,
 context, executemany):
 log.info("Received statement: %s", statement)

When the methods are called with a statement parameter, such as in
after_cursor_execute(), before_cursor_execute() and
dbapi_error(), the statement is the exact SQL string that was
prepared for transmission to the DBAPI cursor in the connection’s
Dialect.

The before_execute() and before_cursor_execute()
events can also be established with the retval=True flag, which
allows modification of the statement and parameters to be sent
to the database. The before_cursor_execute() event is
particularly useful here to add ad-hoc string transformations, such
as comments, to all executions:

from sqlalchemy.engine import Engine
from sqlalchemy import event

@event.listens_for(Engine, "before_cursor_execute", retval=True)
def comment_sql_calls(conn, cursor, statement, parameters,
 context, executemany):
 statement = statement + " -- some comment"
 return statement, parameters

Note

ConnectionEvents can be established on any
combination of Engine, Connection, as well
as instances of each of those classes. Events across all
four scopes will fire off for a given instance of
Connection. However, for performance reasons, the
Connection object determines at instantiation time
whether or not its parent Engine has event listeners
established. Event listeners added to the Engine
class or to an instance of Engine after the instantiation
of a dependent Connection instance will usually
not be available on that Connection instance. The newly
added listeners will instead take effect for Connection
instances created subsequent to those event listeners being
established on the parent Engine class or instance.

	Parameters:
	retval=False¶ – Applies to the before_execute() and
before_cursor_execute() events only. When True, the
user-defined event function must have a return value, which
is a tuple of parameters that replace the given statement
and parameters. See those methods for a description of
specific return arguments.

Changed in version 0.8: ConnectionEvents can now be associated
with any Connectable including Connection,
in addition to the existing support for Engine.

	
after_cursor_execute(conn, cursor, statement, parameters, context, executemany)

	Intercept low-level cursor execute() events after execution.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'after_cursor_execute')
def receive_after_cursor_execute(conn, cursor, statement, parameters, context, executemany):
 "listen for the 'after_cursor_execute' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeEngine, 'after_cursor_execute', named=True)
def receive_after_cursor_execute(**kw):
 "listen for the 'after_cursor_execute' event"
 conn = kw['conn']
 cursor = kw['cursor']

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	cursor¶ – DBAPI cursor object. Will have results pending
if the statement was a SELECT, but these should not be consumed
as they will be needed by the ResultProxy.

	statement¶ – string SQL statement, as passed to the DBAPI

	parameters¶ – Dictionary, tuple, or list of parameters being
passed to the execute() or executemany() method of the
DBAPI cursor. In some cases may be None.

	context¶ – ExecutionContext object in use. May
be None.

	executemany¶ – boolean, if True, this is an executemany()
call, if False, this is an execute() call.

	
after_execute(conn, clauseelement, multiparams, params, result)

	Intercept high level execute() events after execute.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'after_execute')
def receive_after_execute(conn, clauseelement, multiparams, params, result):
 "listen for the 'after_execute' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeEngine, 'after_execute', named=True)
def receive_after_execute(**kw):
 "listen for the 'after_execute' event"
 conn = kw['conn']
 clauseelement = kw['clauseelement']

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	clauseelement¶ – SQL expression construct, Compiled
instance, or string statement passed to Connection.execute().

	multiparams¶ – Multiple parameter sets, a list of dictionaries.

	params¶ – Single parameter set, a single dictionary.

	result¶ – ResultProxy generated by the execution.

	
before_cursor_execute(conn, cursor, statement, parameters, context, executemany)

	Intercept low-level cursor execute() events before execution,
receiving the string SQL statement and DBAPI-specific parameter list to
be invoked against a cursor.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'before_cursor_execute')
def receive_before_cursor_execute(conn, cursor, statement, parameters, context, executemany):
 "listen for the 'before_cursor_execute' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeEngine, 'before_cursor_execute', named=True)
def receive_before_cursor_execute(**kw):
 "listen for the 'before_cursor_execute' event"
 conn = kw['conn']
 cursor = kw['cursor']

 # ... (event handling logic) ...

This event is a good choice for logging as well as late modifications
to the SQL string. It’s less ideal for parameter modifications except
for those which are specific to a target backend.

This event can be optionally established with the retval=True
flag. The statement and parameters arguments should be
returned as a two-tuple in this case:

@event.listens_for(Engine, "before_cursor_execute", retval=True)
def before_cursor_execute(conn, cursor, statement,
 parameters, context, executemany):
 # do something with statement, parameters
 return statement, parameters

See the example at ConnectionEvents.

	Parameters:
	
	conn¶ – Connection object

	cursor¶ – DBAPI cursor object

	statement¶ – string SQL statement, as to be passed to the DBAPI

	parameters¶ – Dictionary, tuple, or list of parameters being
passed to the execute() or executemany() method of the
DBAPI cursor. In some cases may be None.

	context¶ – ExecutionContext object in use. May
be None.

	executemany¶ – boolean, if True, this is an executemany()
call, if False, this is an execute() call.

See also:

before_execute()

after_cursor_execute()

	
before_execute(conn, clauseelement, multiparams, params)

	Intercept high level execute() events, receiving uncompiled
SQL constructs and other objects prior to rendering into SQL.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'before_execute')
def receive_before_execute(conn, clauseelement, multiparams, params):
 "listen for the 'before_execute' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeEngine, 'before_execute', named=True)
def receive_before_execute(**kw):
 "listen for the 'before_execute' event"
 conn = kw['conn']
 clauseelement = kw['clauseelement']

 # ... (event handling logic) ...

This event is good for debugging SQL compilation issues as well
as early manipulation of the parameters being sent to the database,
as the parameter lists will be in a consistent format here.

This event can be optionally established with the retval=True
flag. The clauseelement, multiparams, and params
arguments should be returned as a three-tuple in this case:

@event.listens_for(Engine, "before_execute", retval=True)
def before_execute(conn, conn, clauseelement, multiparams, params):
 # do something with clauseelement, multiparams, params
 return clauseelement, multiparams, params

	Parameters:
	
	conn¶ – Connection object

	clauseelement¶ – SQL expression construct, Compiled
instance, or string statement passed to Connection.execute().

	multiparams¶ – Multiple parameter sets, a list of dictionaries.

	params¶ – Single parameter set, a single dictionary.

See also:

before_cursor_execute()

	
begin(conn)

	Intercept begin() events.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'begin')
def receive_begin(conn):
 "listen for the 'begin' event"

 # ... (event handling logic) ...

	Parameters:
	conn¶ – Connection object

	
begin_twophase(conn, xid)

	Intercept begin_twophase() events.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'begin_twophase')
def receive_begin_twophase(conn, xid):
 "listen for the 'begin_twophase' event"

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	xid¶ – two-phase XID identifier

	
commit(conn)

	Intercept commit() events, as initiated by a
Transaction.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'commit')
def receive_commit(conn):
 "listen for the 'commit' event"

 # ... (event handling logic) ...

Note that the Pool may also “auto-commit”
a DBAPI connection upon checkin, if the reset_on_return
flag is set to the value 'commit'. To intercept this
commit, use the PoolEvents.reset() hook.

	Parameters:
	conn¶ – Connection object

	
commit_twophase(conn, xid, is_prepared)

	Intercept commit_twophase() events.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'commit_twophase')
def receive_commit_twophase(conn, xid, is_prepared):
 "listen for the 'commit_twophase' event"

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	xid¶ – two-phase XID identifier

	is_prepared¶ – boolean, indicates if
TwoPhaseTransaction.prepare() was called.

	
dbapi_error(conn, cursor, statement, parameters, context, exception)

	Intercept a raw DBAPI error.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'dbapi_error')
def receive_dbapi_error(conn, cursor, statement, parameters, context, exception):
 "listen for the 'dbapi_error' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeEngine, 'dbapi_error', named=True)
def receive_dbapi_error(**kw):
 "listen for the 'dbapi_error' event"
 conn = kw['conn']
 cursor = kw['cursor']

 # ... (event handling logic) ...

This event is called with the DBAPI exception instance
received from the DBAPI itself, before SQLAlchemy wraps the
exception with it’s own exception wrappers, and before any
other operations are performed on the DBAPI cursor; the
existing transaction remains in effect as well as any state
on the cursor.

The use case here is to inject low-level exception handling
into an Engine, typically for logging and
debugging purposes.

Warning

Code should not modify
any state or throw any exceptions here as this will
interfere with SQLAlchemy’s cleanup and error handling
routines. For exception modification, please refer to the
new ConnectionEvents.handle_error() event.

Subsequent to this hook, SQLAlchemy may attempt any
number of operations on the connection/cursor, including
closing the cursor, rolling back of the transaction in the
case of connectionless execution, and disposing of the entire
connection pool if a “disconnect” was detected. The
exception is then wrapped in a SQLAlchemy DBAPI exception
wrapper and re-thrown.

	Parameters:
	
	conn¶ – Connection object

	cursor¶ – DBAPI cursor object

	statement¶ – string SQL statement, as passed to the DBAPI

	parameters¶ – Dictionary, tuple, or list of parameters being
passed to the execute() or executemany() method of the
DBAPI cursor. In some cases may be None.

	context¶ – ExecutionContext object in use. May
be None.

	exception¶ – The unwrapped exception emitted directly from the
DBAPI. The class here is specific to the DBAPI module in use.

Deprecated since version 0.9.7: - replaced by
ConnectionEvents.handle_error()

	
engine_connect(conn, branch)

	Intercept the creation of a new Connection.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'engine_connect')
def receive_engine_connect(conn, branch):
 "listen for the 'engine_connect' event"

 # ... (event handling logic) ...

This event is called typically as the direct result of calling
the Engine.connect() method.

It differs from the PoolEvents.connect() method, which
refers to the actual connection to a database at the DBAPI level;
a DBAPI connection may be pooled and reused for many operations.
In contrast, this event refers only to the production of a higher level
Connection wrapper around such a DBAPI connection.

It also differs from the PoolEvents.checkout() event
in that it is specific to the Connection object, not the
DBAPI connection that PoolEvents.checkout() deals with, although
this DBAPI connection is available here via the
Connection.connection attribute. But note there can in fact
be multiple PoolEvents.checkout() events within the lifespan
of a single Connection object, if that Connection
is invalidated and re-established. There can also be multiple
Connection objects generated for the same already-checked-out
DBAPI connection, in the case that a “branch” of a Connection
is produced.

	Parameters:
	
	conn¶ – Connection object.

	branch¶ – if True, this is a “branch” of an existing
Connection. A branch is generated within the course
of a statement execution to invoke supplemental statements, most
typically to pre-execute a SELECT of a default value for the purposes
of an INSERT statement.

New in version 0.9.0.

See also

Disconnect Handling - Pessimistic - illustrates how to use
ConnectionEvents.engine_connect()
to transparently ensure pooled connections are connected to the
database.

PoolEvents.checkout() the lower-level pool checkout event
for an individual DBAPI connection

ConnectionEvents.set_connection_execution_options() - a copy
of a Connection is also made when the
Connection.execution_options() method is called.

	
engine_disposed(engine)

	Intercept when the Engine.dispose() method is called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'engine_disposed')
def receive_engine_disposed(engine):
 "listen for the 'engine_disposed' event"

 # ... (event handling logic) ...

The Engine.dispose() method instructs the engine to
“dispose” of it’s connection pool (e.g. Pool), and
replaces it with a new one. Disposing of the old pool has the
effect that existing checked-in connections are closed. The new
pool does not establish any new connections until it is first used.

This event can be used to indicate that resources related to the
Engine should also be cleaned up, keeping in mind that the
Engine can still be used for new requests in which case
it re-acquires connection resources.

New in version 1.0.5.

	
handle_error(exception_context)

	Intercept all exceptions processed by the Connection.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'handle_error')
def receive_handle_error(exception_context):
 "listen for the 'handle_error' event"

 # ... (event handling logic) ...

This includes all exceptions emitted by the DBAPI as well as
within SQLAlchemy’s statement invocation process, including
encoding errors and other statement validation errors. Other areas
in which the event is invoked include transaction begin and end,
result row fetching, cursor creation.

Note that handle_error() may support new kinds of exceptions
and new calling scenarios at any time. Code which uses this
event must expect new calling patterns to be present in minor
releases.

To support the wide variety of members that correspond to an exception,
as well as to allow extensibility of the event without backwards
incompatibility, the sole argument received is an instance of
ExceptionContext. This object contains data members
representing detail about the exception.

Use cases supported by this hook include:

	read-only, low-level exception handling for logging and
debugging purposes

	exception re-writing

The hook is called while the cursor from the failed operation
(if any) is still open and accessible. Special cleanup operations
can be called on this cursor; SQLAlchemy will attempt to close
this cursor subsequent to this hook being invoked. If the connection
is in “autocommit” mode, the transaction also remains open within
the scope of this hook; the rollback of the per-statement transaction
also occurs after the hook is called.

The user-defined event handler has two options for replacing
the SQLAlchemy-constructed exception into one that is user
defined. It can either raise this new exception directly, in
which case all further event listeners are bypassed and the
exception will be raised, after appropriate cleanup as taken
place:

@event.listens_for(Engine, "handle_error")
def handle_exception(context):
 if isinstance(context.original_exception,
 psycopg2.OperationalError) and \
 "failed" in str(context.original_exception):
 raise MySpecialException("failed operation")

Warning

Because the ConnectionEvents.handle_error()
event specifically provides for exceptions to be re-thrown as
the ultimate exception raised by the failed statement,
stack traces will be misleading if the user-defined event
handler itself fails and throws an unexpected exception;
the stack trace may not illustrate the actual code line that
failed! It is advised to code carefully here and use
logging and/or inline debugging if unexpected exceptions are
occurring.

Alternatively, a “chained” style of event handling can be
used, by configuring the handler with the retval=True
modifier and returning the new exception instance from the
function. In this case, event handling will continue onto the
next handler. The “chained” exception is available using
ExceptionContext.chained_exception:

@event.listens_for(Engine, "handle_error", retval=True)
def handle_exception(context):
 if context.chained_exception is not None and \
 "special" in context.chained_exception.message:
 return MySpecialException("failed",
 cause=context.chained_exception)

Handlers that return None may remain within this chain; the
last non-None return value is the one that continues to be
passed to the next handler.

When a custom exception is raised or returned, SQLAlchemy raises
this new exception as-is, it is not wrapped by any SQLAlchemy
object. If the exception is not a subclass of
sqlalchemy.exc.StatementError,
certain features may not be available; currently this includes
the ORM’s feature of adding a detail hint about “autoflush” to
exceptions raised within the autoflush process.

	Parameters:
	context¶ – an ExceptionContext object. See this
class for details on all available members.

New in version 0.9.7: Added the
ConnectionEvents.handle_error() hook.

Changed in version 1.0.0: The handle_error() event is now
invoked when an Engine fails during the initial
call to Engine.connect(), as well as when a
Connection object encounters an error during a
reconnect operation.

Changed in version 1.0.0: The handle_error() event is
not fired off when a dialect makes use of the
skip_user_error_events execution option. This is used
by dialects which intend to catch SQLAlchemy-specific exceptions
within specific operations, such as when the MySQL dialect detects
a table not present within the has_table() dialect method.
Prior to 1.0.0, code which implements handle_error() needs
to ensure that exceptions thrown in these scenarios are re-raised
without modification.

	
prepare_twophase(conn, xid)

	Intercept prepare_twophase() events.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'prepare_twophase')
def receive_prepare_twophase(conn, xid):
 "listen for the 'prepare_twophase' event"

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	xid¶ – two-phase XID identifier

	
release_savepoint(conn, name, context)

	Intercept release_savepoint() events.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'release_savepoint')
def receive_release_savepoint(conn, name, context):
 "listen for the 'release_savepoint' event"

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	name¶ – specified name used for the savepoint.

	context¶ – ExecutionContext in use. May be None.

	
rollback(conn)

	Intercept rollback() events, as initiated by a
Transaction.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'rollback')
def receive_rollback(conn):
 "listen for the 'rollback' event"

 # ... (event handling logic) ...

Note that the Pool also “auto-rolls back”
a DBAPI connection upon checkin, if the reset_on_return
flag is set to its default value of 'rollback'.
To intercept this
rollback, use the PoolEvents.reset() hook.

	Parameters:
	conn¶ – Connection object

See also

PoolEvents.reset()

	
rollback_savepoint(conn, name, context)

	Intercept rollback_savepoint() events.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'rollback_savepoint')
def receive_rollback_savepoint(conn, name, context):
 "listen for the 'rollback_savepoint' event"

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	name¶ – specified name used for the savepoint.

	context¶ – ExecutionContext in use. May be None.

	
rollback_twophase(conn, xid, is_prepared)

	Intercept rollback_twophase() events.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'rollback_twophase')
def receive_rollback_twophase(conn, xid, is_prepared):
 "listen for the 'rollback_twophase' event"

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	xid¶ – two-phase XID identifier

	is_prepared¶ – boolean, indicates if
TwoPhaseTransaction.prepare() was called.

	
savepoint(conn, name)

	Intercept savepoint() events.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'savepoint')
def receive_savepoint(conn, name):
 "listen for the 'savepoint' event"

 # ... (event handling logic) ...

	Parameters:
	
	conn¶ – Connection object

	name¶ – specified name used for the savepoint.

	
set_connection_execution_options(conn, opts)

	Intercept when the Connection.execution_options()
method is called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'set_connection_execution_options')
def receive_set_connection_execution_options(conn, opts):
 "listen for the 'set_connection_execution_options' event"

 # ... (event handling logic) ...

This method is called after the new Connection has been
produced, with the newly updated execution options collection, but
before the Dialect has acted upon any of those new options.

Note that this method is not called when a new Connection
is produced which is inheriting execution options from its parent
Engine; to intercept this condition, use the
ConnectionEvents.engine_connect() event.

	Parameters:
	
	conn¶ – The newly copied Connection object

	opts¶ – dictionary of options that were passed to the
Connection.execution_options() method.

New in version 0.9.0.

See also

ConnectionEvents.set_engine_execution_options() - event
which is called when Engine.execution_options() is called.

	
set_engine_execution_options(engine, opts)

	Intercept when the Engine.execution_options()
method is called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'set_engine_execution_options')
def receive_set_engine_execution_options(engine, opts):
 "listen for the 'set_engine_execution_options' event"

 # ... (event handling logic) ...

The Engine.execution_options() method produces a shallow
copy of the Engine which stores the new options. That new
Engine is passed here. A particular application of this
method is to add a ConnectionEvents.engine_connect() event
handler to the given Engine which will perform some per-
Connection task specific to these execution options.

	Parameters:
	
	conn¶ – The newly copied Engine object

	opts¶ – dictionary of options that were passed to the
Connection.execution_options() method.

New in version 0.9.0.

See also

ConnectionEvents.set_connection_execution_options() - event
which is called when Connection.execution_options() is
called.

	
class sqlalchemy.events.DialectEvents

	Bases: sqlalchemy.event.base.Events

event interface for execution-replacement functions.

These events allow direct instrumentation and replacement
of key dialect functions which interact with the DBAPI.

Note

DialectEvents hooks should be considered semi-public
and experimental.
These hooks are not for general use and are only for those situations
where intricate re-statement of DBAPI mechanics must be injected onto
an existing dialect. For general-use statement-interception events,
please use the ConnectionEvents interface.

See also

ConnectionEvents.before_cursor_execute()

ConnectionEvents.before_execute()

ConnectionEvents.after_cursor_execute()

ConnectionEvents.after_execute()

New in version 0.9.4.

	
do_connect(dialect, conn_rec, cargs, cparams)

	Receive connection arguments before a connection is made.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'do_connect')
def receive_do_connect(dialect, conn_rec, cargs, cparams):
 "listen for the 'do_connect' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeEngine, 'do_connect', named=True)
def receive_do_connect(**kw):
 "listen for the 'do_connect' event"
 dialect = kw['dialect']
 conn_rec = kw['conn_rec']

 # ... (event handling logic) ...

Return a DBAPI connection to halt further events from invoking;
the returned connection will be used.

Alternatively, the event can manipulate the cargs and/or cparams
collections; cargs will always be a Python list that can be mutated
in-place and cparams a Python dictionary. Return None to
allow control to pass to the next event handler and ultimately
to allow the dialect to connect normally, given the updated
arguments.

New in version 1.0.3.

	
do_execute(cursor, statement, parameters, context)

	Receive a cursor to have execute() called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'do_execute')
def receive_do_execute(cursor, statement, parameters, context):
 "listen for the 'do_execute' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeEngine, 'do_execute', named=True)
def receive_do_execute(**kw):
 "listen for the 'do_execute' event"
 cursor = kw['cursor']
 statement = kw['statement']

 # ... (event handling logic) ...

Return the value True to halt further events from invoking,
and to indicate that the cursor execution has already taken
place within the event handler.

	
do_execute_no_params(cursor, statement, context)

	Receive a cursor to have execute() with no parameters called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'do_execute_no_params')
def receive_do_execute_no_params(cursor, statement, context):
 "listen for the 'do_execute_no_params' event"

 # ... (event handling logic) ...

Return the value True to halt further events from invoking,
and to indicate that the cursor execution has already taken
place within the event handler.

	
do_executemany(cursor, statement, parameters, context)

	Receive a cursor to have executemany() called.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeEngine, 'do_executemany')
def receive_do_executemany(cursor, statement, parameters, context):
 "listen for the 'do_executemany' event"

 # ... (event handling logic) ...

named argument style (new in 0.9)
@event.listens_for(SomeEngine, 'do_executemany', named=True)
def receive_do_executemany(**kw):
 "listen for the 'do_executemany' event"
 cursor = kw['cursor']
 statement = kw['statement']

 # ... (event handling logic) ...

Return the value True to halt further events from invoking,
and to indicate that the cursor execution has already taken
place within the event handler.

Schema Events

	
class sqlalchemy.events.DDLEvents

	Bases: sqlalchemy.event.base.Events

Define event listeners for schema objects,
that is, SchemaItem and other SchemaEventTarget
subclasses, including MetaData, Table,
Column.

MetaData and Table support events
specifically regarding when CREATE and DROP
DDL is emitted to the database.

Attachment events are also provided to customize
behavior whenever a child schema element is associated
with a parent, such as, when a Column is associated
with its Table, when a ForeignKeyConstraint
is associated with a Table, etc.

Example using the after_create event:

from sqlalchemy import event
from sqlalchemy import Table, Column, Metadata, Integer

m = MetaData()
some_table = Table('some_table', m, Column('data', Integer))

def after_create(target, connection, **kw):
 connection.execute("ALTER TABLE %s SET name=foo_%s" %
 (target.name, target.name))

event.listen(some_table, "after_create", after_create)

DDL events integrate closely with the
DDL class and the DDLElement hierarchy
of DDL clause constructs, which are themselves appropriate
as listener callables:

from sqlalchemy import DDL
event.listen(
 some_table,
 "after_create",
 DDL("ALTER TABLE %(table)s SET name=foo_%(table)s")
)

The methods here define the name of an event as well
as the names of members that are passed to listener
functions.

See also:

Events

DDLElement

DDL

Controlling DDL Sequences

	
after_create(target, connection, **kw)

	Called after CREATE statements are emitted.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSchemaClassOrObject, 'after_create')
def receive_after_create(target, connection, **kw):
 "listen for the 'after_create' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the MetaData or Table
object which is the target of the event.

	connection¶ – the Connection where the
CREATE statement or statements have been emitted.

	**kw¶ – additional keyword arguments relevant
to the event. The contents of this dictionary
may vary across releases, and include the
list of tables being generated for a metadata-level
event, the checkfirst flag, and other
elements used by internal events.

	
after_drop(target, connection, **kw)

	Called after DROP statements are emitted.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSchemaClassOrObject, 'after_drop')
def receive_after_drop(target, connection, **kw):
 "listen for the 'after_drop' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the MetaData or Table
object which is the target of the event.

	connection¶ – the Connection where the
DROP statement or statements have been emitted.

	**kw¶ – additional keyword arguments relevant
to the event. The contents of this dictionary
may vary across releases, and include the
list of tables being generated for a metadata-level
event, the checkfirst flag, and other
elements used by internal events.

	
after_parent_attach(target, parent)

	Called after a SchemaItem is associated with
a parent SchemaItem.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSchemaClassOrObject, 'after_parent_attach')
def receive_after_parent_attach(target, parent):
 "listen for the 'after_parent_attach' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the target object

	parent¶ – the parent to which the target is being attached.

event.listen() also accepts a modifier for this event:

	Parameters:
	propagate=False¶ – When True, the listener function will
be established for any copies made of the target object,
i.e. those copies that are generated when
Table.tometadata() is used.

	
before_create(target, connection, **kw)

	Called before CREATE statements are emitted.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSchemaClassOrObject, 'before_create')
def receive_before_create(target, connection, **kw):
 "listen for the 'before_create' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the MetaData or Table
object which is the target of the event.

	connection¶ – the Connection where the
CREATE statement or statements will be emitted.

	**kw¶ – additional keyword arguments relevant
to the event. The contents of this dictionary
may vary across releases, and include the
list of tables being generated for a metadata-level
event, the checkfirst flag, and other
elements used by internal events.

	
before_drop(target, connection, **kw)

	Called before DROP statements are emitted.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSchemaClassOrObject, 'before_drop')
def receive_before_drop(target, connection, **kw):
 "listen for the 'before_drop' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the MetaData or Table
object which is the target of the event.

	connection¶ – the Connection where the
DROP statement or statements will be emitted.

	**kw¶ – additional keyword arguments relevant
to the event. The contents of this dictionary
may vary across releases, and include the
list of tables being generated for a metadata-level
event, the checkfirst flag, and other
elements used by internal events.

	
before_parent_attach(target, parent)

	Called before a SchemaItem is associated with
a parent SchemaItem.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSchemaClassOrObject, 'before_parent_attach')
def receive_before_parent_attach(target, parent):
 "listen for the 'before_parent_attach' event"

 # ... (event handling logic) ...

	Parameters:
	
	target¶ – the target object

	parent¶ – the parent to which the target is being attached.

event.listen() also accepts a modifier for this event:

	Parameters:
	propagate=False¶ – When True, the listener function will
be established for any copies made of the target object,
i.e. those copies that are generated when
Table.tometadata() is used.

	
column_reflect(inspector, table, column_info)

	Called for each unit of ‘column info’ retrieved when
a Table is being reflected.

Example argument forms:

from sqlalchemy import event

standard decorator style
@event.listens_for(SomeSchemaClassOrObject, 'column_reflect')
def receive_column_reflect(inspector, table, column_info):
 "listen for the 'column_reflect' event"

 # ... (event handling logic) ...

The dictionary of column information as returned by the
dialect is passed, and can be modified. The dictionary
is that returned in each element of the list returned
by reflection.Inspector.get_columns().

The event is called before any action is taken against
this dictionary, and the contents can be modified.
The Column specific arguments info, key,
and quote can also be added to the dictionary and
will be passed to the constructor of Column.

Note that this event is only meaningful if either
associated with the Table class across the
board, e.g.:

from sqlalchemy.schema import Table
from sqlalchemy import event

def listen_for_reflect(inspector, table, column_info):
 "receive a column_reflect event"
 # ...

event.listen(
 Table,
 'column_reflect',
 listen_for_reflect)

...or with a specific Table instance using
the listeners argument:

def listen_for_reflect(inspector, table, column_info):
 "receive a column_reflect event"
 # ...

t = Table(
 'sometable',
 autoload=True,
 listeners=[
 ('column_reflect', listen_for_reflect)
])

This because the reflection process initiated by autoload=True
completes within the scope of the constructor for Table.

	
class sqlalchemy.events.SchemaEventTarget

	Base class for elements that are the targets of DDLEvents
events.

This includes SchemaItem as well as SchemaType.

Core API Basics

	Events
	Event Registration

	Named Argument Styles

	Targets

	Modifiers

	Event Reference

	API Reference

	Runtime Inspection API
	Available Inspection Targets

	Deprecated Event Interfaces
	Execution, Connection and Cursor Events

	Connection Pool Events

	Core Exceptions

	Core Internals

Events

SQLAlchemy includes an event API which publishes a wide variety of hooks into
the internals of both SQLAlchemy Core and ORM.

New in version 0.7: The system supersedes the previous system of “extension”, “proxy”,
and “listener” classes.

Event Registration

Subscribing to an event occurs through a single API point, the listen() function,
or alternatively the listens_for() decorator. These functions accept a
target, a string identifier which identifies the event to be intercepted, and
a user-defined listening function. Additional positional and keyword arguments to these
two functions may be supported by
specific types of events, which may specify alternate interfaces for the given event function, or provide
instructions regarding secondary event targets based on the given target.

The name of an event and the argument signature of a corresponding listener function is derived from
a class bound specification method, which exists bound to a marker class that’s described in the documentation.
For example, the documentation for PoolEvents.connect() indicates that the event name is "connect"
and that a user-defined listener function should receive two positional arguments:

from sqlalchemy.event import listen
from sqlalchemy.pool import Pool

def my_on_connect(dbapi_con, connection_record):
 print("New DBAPI connection:", dbapi_con)

listen(Pool, 'connect', my_on_connect)

To listen with the listens_for() decorator looks like:

from sqlalchemy.event import listens_for
from sqlalchemy.pool import Pool

@listens_for(Pool, "connect")
def my_on_connect(dbapi_con, connection_record):
 print("New DBAPI connection:", dbapi_con)

Named Argument Styles

There are some varieties of argument styles which can be accepted by listener
functions. Taking the example of PoolEvents.connect(), this function
is documented as receiving dbapi_connection and connection_record arguments.
We can opt to receive these arguments by name, by establishing a listener function
that accepts **keyword arguments, by passing named=True to either
listen() or listens_for():

from sqlalchemy.event import listens_for
from sqlalchemy.pool import Pool

@listens_for(Pool, "connect", named=True)
def my_on_connect(**kw):
 print("New DBAPI connection:", kw['dbapi_connection'])

When using named argument passing, the names listed in the function argument
specification will be used as keys in the dictionary.

Named style passes all arguments by name regardless of the function
signature, so specific arguments may be listed as well, in any order,
as long as the names match up:

from sqlalchemy.event import listens_for
from sqlalchemy.pool import Pool

@listens_for(Pool, "connect", named=True)
def my_on_connect(dbapi_connection, **kw):
 print("New DBAPI connection:", dbapi_connection)
 print("Connection record:", kw['connection_record'])

Above, the presence of **kw tells listens_for() that
arguments should be passed to the function by name, rather than positionally.

New in version 0.9.0: Added optional named argument dispatch to
event calling.

Targets

The listen() function is very flexible regarding targets. It
generally accepts classes, instances of those classes, and related
classes or objects from which the appropriate target can be derived.
For example, the above mentioned "connect" event accepts
Engine classes and objects as well as Pool classes
and objects:

from sqlalchemy.event import listen
from sqlalchemy.pool import Pool, QueuePool
from sqlalchemy import create_engine
from sqlalchemy.engine import Engine
import psycopg2

def connect():
 return psycopg2.connect(username='ed', host='127.0.0.1', dbname='test')

my_pool = QueuePool(connect)
my_engine = create_engine('postgresql://ed@localhost/test')

associate listener with all instances of Pool
listen(Pool, 'connect', my_on_connect)

associate listener with all instances of Pool
via the Engine class
listen(Engine, 'connect', my_on_connect)

associate listener with my_pool
listen(my_pool, 'connect', my_on_connect)

associate listener with my_engine.pool
listen(my_engine, 'connect', my_on_connect)

Modifiers

Some listeners allow modifiers to be passed to listen(). These
modifiers sometimes provide alternate calling signatures for
listeners. Such as with ORM events, some event listeners can have a
return value which modifies the subsequent handling. By default, no
listener ever requires a return value, but by passing retval=True
this value can be supported:

def validate_phone(target, value, oldvalue, initiator):
 """Strip non-numeric characters from a phone number"""

 return re.sub(r'(?![0-9])', '', value)

setup listener on UserContact.phone attribute, instructing
it to use the return value
listen(UserContact.phone, 'set', validate_phone, retval=True)

Event Reference

Both SQLAlchemy Core and SQLAlchemy ORM feature a wide variety of event hooks:

	Core Events - these are described in
Core Events and include event hooks specific to
connection pool lifecycle, SQL statement execution,
transaction lifecycle, and schema creation and teardown.

	ORM Events - these are described in
ORM Events, and include event hooks specific to
class and attribute instrumentation, object initialization
hooks, attribute on-change hooks, session state, flush, and
commit hooks, mapper initialization, object/result population,
and per-instance persistence hooks.

API Reference

	
sqlalchemy.event.listen(target, identifier, fn, *args, **kw)

	Register a listener function for the given target.

e.g.:

from sqlalchemy import event
from sqlalchemy.schema import UniqueConstraint

def unique_constraint_name(const, table):
 const.name = "uq_%s_%s" % (
 table.name,
 list(const.columns)[0].name
)
event.listen(
 UniqueConstraint,
 "after_parent_attach",
 unique_constraint_name)

A given function can also be invoked for only the first invocation
of the event using the once argument:

def on_config():
 do_config()

event.listen(Mapper, "before_configure", on_config, once=True)

New in version 0.9.4: Added once=True to event.listen()
and event.listens_for().

Note

The listen() function cannot be called at the same time
that the target event is being run. This has implications
for thread safety, and also means an event cannot be added
from inside the listener function for itself. The list of
events to be run are present inside of a mutable collection
that can’t be changed during iteration.

Event registration and removal is not intended to be a “high
velocity” operation; it is a configurational operation. For
systems that need to quickly associate and deassociate with
events at high scale, use a mutable structure that is handled
from inside of a single listener.

Changed in version 1.0.0: - a collections.deque() object is now
used as the container for the list of events, which explicitly
disallows collection mutation while the collection is being
iterated.

See also

listens_for()

remove()

	
sqlalchemy.event.listens_for(target, identifier, *args, **kw)

	Decorate a function as a listener for the given target + identifier.

e.g.:

from sqlalchemy import event
from sqlalchemy.schema import UniqueConstraint

@event.listens_for(UniqueConstraint, "after_parent_attach")
def unique_constraint_name(const, table):
 const.name = "uq_%s_%s" % (
 table.name,
 list(const.columns)[0].name
)

A given function can also be invoked for only the first invocation
of the event using the once argument:

@event.listens_for(Mapper, "before_configure", once=True)
def on_config():
 do_config()

New in version 0.9.4: Added once=True to event.listen()
and event.listens_for().

See also

listen() - general description of event listening

	
sqlalchemy.event.remove(target, identifier, fn)

	Remove an event listener.

The arguments here should match exactly those which were sent to
listen(); all the event registration which proceeded as a result
of this call will be reverted by calling remove() with the same
arguments.

e.g.:

if a function was registered like this...
@event.listens_for(SomeMappedClass, "before_insert", propagate=True)
def my_listener_function(*arg):
 pass

... it's removed like this
event.remove(SomeMappedClass, "before_insert", my_listener_function)

Above, the listener function associated with SomeMappedClass was also
propagated to subclasses of SomeMappedClass; the remove()
function will revert all of these operations.

New in version 0.9.0.

Note

The remove() function cannot be called at the same time
that the target event is being run. This has implications
for thread safety, and also means an event cannot be removed
from inside the listener function for itself. The list of
events to be run are present inside of a mutable collection
that can’t be changed during iteration.

Event registration and removal is not intended to be a “high
velocity” operation; it is a configurational operation. For
systems that need to quickly associate and deassociate with
events at high scale, use a mutable structure that is handled
from inside of a single listener.

Changed in version 1.0.0: - a collections.deque() object is now
used as the container for the list of events, which explicitly
disallows collection mutation while the collection is being
iterated.

See also

listen()

	
sqlalchemy.event.contains(target, identifier, fn)

	Return True if the given target/ident/fn is set up to listen.

New in version 0.9.0.

Runtime Inspection API

The inspection module provides the inspect() function,
which delivers runtime information about a wide variety
of SQLAlchemy objects, both within the Core as well as the
ORM.

The inspect() function is the entry point to SQLAlchemy’s
public API for viewing the configuration and construction
of in-memory objects. Depending on the type of object
passed to inspect(), the return value will either be
a related object which provides a known interface, or in many
cases it will return the object itself.

The rationale for inspect() is twofold. One is that
it replaces the need to be aware of a large variety of “information
getting” functions in SQLAlchemy, such as Inspector.from_engine(),
orm.attributes.instance_state(), orm.class_mapper(),
and others. The other is that the return value of inspect()
is guaranteed to obey a documented API, thus allowing third party
tools which build on top of SQLAlchemy configurations to be constructed
in a forwards-compatible way.

New in version 0.8: The inspect() system is introduced
as of version 0.8.

	
sqlalchemy.inspection.inspect(subject, raiseerr=True)

	Produce an inspection object for the given target.

The returned value in some cases may be the
same object as the one given, such as if a
Mapper object is passed. In other
cases, it will be an instance of the registered
inspection type for the given object, such as
if an engine.Engine is passed, an
Inspector object is returned.

	Parameters:
	
	subject¶ – the subject to be inspected.

	raiseerr¶ – When True, if the given subject
does not
correspond to a known SQLAlchemy inspected type,
sqlalchemy.exc.NoInspectionAvailable
is raised. If False, None is returned.

Available Inspection Targets

Below is a listing of many of the most common inspection targets.

	Connectable (i.e. Engine,
Connection) - returns an Inspector object.

	ClauseElement - all SQL expression components, including
Table, Column, serve as their own inspection objects,
meaning any of these objects passed to inspect() return themselves.

	object - an object given will be checked by the ORM for a mapping -
if so, an InstanceState is returned representing the mapped
state of the object. The InstanceState also provides access
to per attribute state via the AttributeState interface as well
as the per-flush “history” of any attribute via the History
object.

	type (i.e. a class) - a class given will be checked by the ORM for a
mapping - if so, a Mapper for that class is returned.

	mapped attribute - passing a mapped attribute to inspect(), such
as inspect(MyClass.some_attribute), returns a QueryableAttribute
object, which is the descriptor associated with a mapped class.
This descriptor refers to a MapperProperty, which is usually
an instance of ColumnProperty
or RelationshipProperty, via its QueryableAttribute.property
attribute.

	AliasedClass - returns an AliasedInsp object.

Deprecated Event Interfaces

This section describes the class-based core event interface introduced in
SQLAlchemy 0.5. The ORM analogue is described at Deprecated ORM Event Interfaces.

Deprecated since version 0.7: The new event system described in Events replaces
the extension/proxy/listener system, providing a consistent interface
to all events without the need for subclassing.

Execution, Connection and Cursor Events

	
class sqlalchemy.interfaces.ConnectionProxy

	Allows interception of statement execution by Connections.

Note

ConnectionProxy is deprecated. Please
refer to ConnectionEvents.

Either or both of the execute() and cursor_execute()
may be implemented to intercept compiled statement and
cursor level executions, e.g.:

class MyProxy(ConnectionProxy):
 def execute(self, conn, execute, clauseelement,
 *multiparams, **params):
 print "compiled statement:", clauseelement
 return execute(clauseelement, *multiparams, **params)

 def cursor_execute(self, execute, cursor, statement,
 parameters, context, executemany):
 print "raw statement:", statement
 return execute(cursor, statement, parameters, context)

The execute argument is a function that will fulfill the default
execution behavior for the operation. The signature illustrated
in the example should be used.

The proxy is installed into an Engine via
the proxy argument:

e = create_engine('someurl://', proxy=MyProxy())

	
begin(conn, begin)

	Intercept begin() events.

	
begin_twophase(conn, begin_twophase, xid)

	Intercept begin_twophase() events.

	
commit(conn, commit)

	Intercept commit() events.

	
commit_twophase(conn, commit_twophase, xid, is_prepared)

	Intercept commit_twophase() events.

	
cursor_execute(execute, cursor, statement, parameters, context, executemany)

	Intercept low-level cursor execute() events.

	
execute(conn, execute, clauseelement, *multiparams, **params)

	Intercept high level execute() events.

	
prepare_twophase(conn, prepare_twophase, xid)

	Intercept prepare_twophase() events.

	
release_savepoint(conn, release_savepoint, name, context)

	Intercept release_savepoint() events.

	
rollback(conn, rollback)

	Intercept rollback() events.

	
rollback_savepoint(conn, rollback_savepoint, name, context)

	Intercept rollback_savepoint() events.

	
rollback_twophase(conn, rollback_twophase, xid, is_prepared)

	Intercept rollback_twophase() events.

	
savepoint(conn, savepoint, name=None)

	Intercept savepoint() events.

Connection Pool Events

	
class sqlalchemy.interfaces.PoolListener

	Hooks into the lifecycle of connections in a Pool.

Note

PoolListener is deprecated. Please
refer to PoolEvents.

Usage:

class MyListener(PoolListener):
 def connect(self, dbapi_con, con_record):
 '''perform connect operations'''
 # etc.

create a new pool with a listener
p = QueuePool(..., listeners=[MyListener()])

add a listener after the fact
p.add_listener(MyListener())

usage with create_engine()
e = create_engine("url://", listeners=[MyListener()])

All of the standard connection Pool types can
accept event listeners for key connection lifecycle events:
creation, pool check-out and check-in. There are no events fired
when a connection closes.

For any given DB-API connection, there will be one connect
event, n number of checkout events, and either n or n - 1
checkin events. (If a Connection is detached from its
pool via the detach() method, it won’t be checked back in.)

These are low-level events for low-level objects: raw Python
DB-API connections, without the conveniences of the SQLAlchemy
Connection wrapper, Dialect services or ClauseElement
execution. If you execute SQL through the connection, explicitly
closing all cursors and other resources is recommended.

Events also receive a _ConnectionRecord, a long-lived internal
Pool object that basically represents a “slot” in the
connection pool. _ConnectionRecord objects have one public
attribute of note: info, a dictionary whose contents are
scoped to the lifetime of the DB-API connection managed by the
record. You can use this shared storage area however you like.

There is no need to subclass PoolListener to handle events.
Any class that implements one or more of these methods can be used
as a pool listener. The Pool will inspect the methods
provided by a listener object and add the listener to one or more
internal event queues based on its capabilities. In terms of
efficiency and function call overhead, you’re much better off only
providing implementations for the hooks you’ll be using.

	
checkin(dbapi_con, con_record)

	Called when a connection returns to the pool.

Note that the connection may be closed, and may be None if the
connection has been invalidated. checkin will not be called
for detached connections. (They do not return to the pool.)

	dbapi_con

	A raw DB-API connection

	con_record

	The _ConnectionRecord that persistently manages the connection

	
checkout(dbapi_con, con_record, con_proxy)

	Called when a connection is retrieved from the Pool.

	dbapi_con

	A raw DB-API connection

	con_record

	The _ConnectionRecord that persistently manages the connection

	con_proxy

	The _ConnectionFairy which manages the connection for the span of
the current checkout.

If you raise an exc.DisconnectionError, the current
connection will be disposed and a fresh connection retrieved.
Processing of all checkout listeners will abort and restart
using the new connection.

	
connect(dbapi_con, con_record)

	Called once for each new DB-API connection or Pool’s creator().

	dbapi_con

	A newly connected raw DB-API connection (not a SQLAlchemy
Connection wrapper).

	con_record

	The _ConnectionRecord that persistently manages the connection

	
first_connect(dbapi_con, con_record)

	Called exactly once for the first DB-API connection.

	dbapi_con

	A newly connected raw DB-API connection (not a SQLAlchemy
Connection wrapper).

	con_record

	The _ConnectionRecord that persistently manages the connection

Core Exceptions

Exceptions used with SQLAlchemy.

The base exception class is SQLAlchemyError. Exceptions which are
raised as a result of DBAPI exceptions are all subclasses of
DBAPIError.

	
exception sqlalchemy.exc.AmbiguousForeignKeysError

	Raised when more than one foreign key matching can be located
between two selectables during a join.

	
exception sqlalchemy.exc.ArgumentError

	Raised when an invalid or conflicting function argument is supplied.

This error generally corresponds to construction time state errors.

	
exception sqlalchemy.exc.CircularDependencyError(message, cycles, edges, msg=None)

	Raised by topological sorts when a circular dependency is detected.

There are two scenarios where this error occurs:

	In a Session flush operation, if two objects are mutually dependent
on each other, they can not be inserted or deleted via INSERT or
DELETE statements alone; an UPDATE will be needed to post-associate
or pre-deassociate one of the foreign key constrained values.
The post_update flag described at Rows that point to themselves / Mutually Dependent Rows can resolve
this cycle.

	In a MetaData.sorted_tables operation, two ForeignKey
or ForeignKeyConstraint objects mutually refer to each
other. Apply the use_alter=True flag to one or both,
see Creating/Dropping Foreign Key Constraints via ALTER.

	
exception sqlalchemy.exc.CompileError

	Raised when an error occurs during SQL compilation

	
exception sqlalchemy.exc.DBAPIError(statement, params, orig, connection_invalidated=False)

	Raised when the execution of a database operation fails.

Wraps exceptions raised by the DB-API underlying the
database operation. Driver-specific implementations of the standard
DB-API exception types are wrapped by matching sub-types of SQLAlchemy’s
DBAPIError when possible. DB-API’s Error type maps to
DBAPIError in SQLAlchemy, otherwise the names are identical. Note
that there is no guarantee that different DB-API implementations will
raise the same exception type for any given error condition.

DBAPIError features statement
and params attributes which supply context
regarding the specifics of the statement which had an issue, for the
typical case when the error was raised within the context of
emitting a SQL statement.

The wrapped exception object is available in the
orig attribute. Its type and properties are
DB-API implementation specific.

	
exception sqlalchemy.exc.DataError(statement, params, orig, connection_invalidated=False)

	Wraps a DB-API DataError.

	
exception sqlalchemy.exc.DatabaseError(statement, params, orig, connection_invalidated=False)

	Wraps a DB-API DatabaseError.

	
exception sqlalchemy.exc.DisconnectionError

	A disconnect is detected on a raw DB-API connection.

This error is raised and consumed internally by a connection pool. It can
be raised by the PoolEvents.checkout() event so that the host pool
forces a retry; the exception will be caught three times in a row before
the pool gives up and raises InvalidRequestError
regarding the connection attempt.

	
class sqlalchemy.exc.DontWrapMixin

	A mixin class which, when applied to a user-defined Exception class,
will not be wrapped inside of StatementError if the error is
emitted within the process of executing a statement.

E.g.:

from sqlalchemy.exc import DontWrapMixin

class MyCustomException(Exception, DontWrapMixin):
 pass

class MySpecialType(TypeDecorator):
 impl = String

 def process_bind_param(self, value, dialect):
 if value == 'invalid':
 raise MyCustomException("invalid!")

	
exception sqlalchemy.exc.IdentifierError

	Raised when a schema name is beyond the max character limit

	
exception sqlalchemy.exc.IntegrityError(statement, params, orig, connection_invalidated=False)

	Wraps a DB-API IntegrityError.

	
exception sqlalchemy.exc.InterfaceError(statement, params, orig, connection_invalidated=False)

	Wraps a DB-API InterfaceError.

	
exception sqlalchemy.exc.InternalError(statement, params, orig, connection_invalidated=False)

	Wraps a DB-API InternalError.

	
exception sqlalchemy.exc.InvalidRequestError

	SQLAlchemy was asked to do something it can’t do.

This error generally corresponds to runtime state errors.

	
exception sqlalchemy.exc.NoForeignKeysError

	Raised when no foreign keys can be located between two selectables
during a join.

	
exception sqlalchemy.exc.NoInspectionAvailable

	A subject passed to sqlalchemy.inspection.inspect() produced
no context for inspection.

	
exception sqlalchemy.exc.NoReferenceError

	Raised by ForeignKey to indicate a reference cannot be resolved.

	
exception sqlalchemy.exc.NoReferencedColumnError(message, tname, cname)

	Raised by ForeignKey when the referred Column cannot be
located.

	
exception sqlalchemy.exc.NoReferencedTableError(message, tname)

	Raised by ForeignKey when the referred Table cannot be
located.

	
exception sqlalchemy.exc.NoSuchColumnError

	A nonexistent column is requested from a RowProxy.

	
exception sqlalchemy.exc.NoSuchModuleError

	Raised when a dynamically-loaded module (usually a database dialect)
of a particular name cannot be located.

	
exception sqlalchemy.exc.NoSuchTableError

	Table does not exist or is not visible to a connection.

	
exception sqlalchemy.exc.NotSupportedError(statement, params, orig, connection_invalidated=False)

	Wraps a DB-API NotSupportedError.

	
exception sqlalchemy.exc.OperationalError(statement, params, orig, connection_invalidated=False)

	Wraps a DB-API OperationalError.

	
exception sqlalchemy.exc.ProgrammingError(statement, params, orig, connection_invalidated=False)

	Wraps a DB-API ProgrammingError.

	
exception sqlalchemy.exc.ResourceClosedError

	An operation was requested from a connection, cursor, or other
object that’s in a closed state.

	
exception sqlalchemy.exc.SADeprecationWarning

	Issued once per usage of a deprecated API.

	
exception sqlalchemy.exc.SAPendingDeprecationWarning

	Issued once per usage of a deprecated API.

	
exception sqlalchemy.exc.SAWarning

	Issued at runtime.

	
exception sqlalchemy.exc.SQLAlchemyError

	Generic error class.

	
exception sqlalchemy.exc.StatementError(message, statement, params, orig)

	An error occurred during execution of a SQL statement.

StatementError wraps the exception raised
during execution, and features statement
and params attributes which supply context regarding
the specifics of the statement which had an issue.

The wrapped exception object is available in
the orig attribute.

	
orig = None

	The DBAPI exception object.

	
params = None

	The parameter list being used when this exception occurred.

	
statement = None

	The string SQL statement being invoked when this exception occurred.

	
exception sqlalchemy.exc.TimeoutError

	Raised when a connection pool times out on getting a connection.

	
exception sqlalchemy.exc.UnboundExecutionError

	SQL was attempted without a database connection to execute it on.

	
exception sqlalchemy.exc.UnsupportedCompilationError(compiler, element_type)

	Raised when an operation is not supported by the given compiler.

New in version 0.8.3.

Core Internals

Some key internal constructs are listed here.

	
class sqlalchemy.engine.interfaces.Compiled(dialect, statement, bind=None, schema_translate_map=None, compile_kwargs=immutabledict({}))

	Represent a compiled SQL or DDL expression.

The __str__ method of the Compiled object should produce
the actual text of the statement. Compiled objects are
specific to their underlying database dialect, and also may
or may not be specific to the columns referenced within a
particular set of bind parameters. In no case should the
Compiled object be dependent on the actual values of those
bind parameters, even though it may reference those values as
defaults.

	
__init__(dialect, statement, bind=None, schema_translate_map=None, compile_kwargs=immutabledict({}))

	Construct a new Compiled object.

	Parameters:
	
	dialect¶ – Dialect to compile against.

	statement¶ – ClauseElement to be compiled.

	bind¶ – Optional Engine or Connection to compile this
statement against.

	schema_translate_map¶ – dictionary of schema names to be
translated when forming the resultant SQL

New in version 1.1.

See also

Translation of Schema Names

	compile_kwargs¶ – additional kwargs that will be
passed to the initial call to Compiled.process().

	
compile()

	Produce the internal string representation of this element.

Deprecated since version 0.7: Compiled objects now compile within the constructor.

	
construct_params(params=None)

	Return the bind params for this compiled object.

	Parameters:
	params¶ – a dict of string/object pairs whose values will
override bind values compiled in to the
statement.

	
execute(*multiparams, **params)

	Execute this compiled object.

	
params

	Return the bind params for this compiled object.

	
scalar(*multiparams, **params)

	Execute this compiled object and return the result’s
scalar value.

	
sql_compiler

	Return a Compiled that is capable of processing SQL expressions.

If this compiler is one, it would likely just return ‘self’.

	
class sqlalchemy.sql.compiler.DDLCompiler(dialect, statement, bind=None, schema_translate_map=None, compile_kwargs=immutabledict({}))

	Bases: sqlalchemy.sql.compiler.Compiled

	
__init__(dialect, statement, bind=None, schema_translate_map=None, compile_kwargs=immutabledict({}))

	
inherited from the __init__() method of Compiled

Construct a new Compiled object.

	Parameters:
	
	dialect¶ – Dialect to compile against.

	statement¶ – ClauseElement to be compiled.

	bind¶ – Optional Engine or Connection to compile this
statement against.

	schema_translate_map¶ – dictionary of schema names to be
translated when forming the resultant SQL

New in version 1.1.

See also

Translation of Schema Names

	compile_kwargs¶ – additional kwargs that will be
passed to the initial call to Compiled.process().

	
compile()

	
inherited from the compile() method of Compiled

Produce the internal string representation of this element.

Deprecated since version 0.7: Compiled objects now compile within the constructor.

	
define_constraint_remote_table(constraint, table, preparer)

	Format the remote table clause of a CREATE CONSTRAINT clause.

	
execute(*multiparams, **params)

	
inherited from the execute() method of Compiled

Execute this compiled object.

	
params

	
inherited from the params attribute of Compiled

Return the bind params for this compiled object.

	
scalar(*multiparams, **params)

	
inherited from the scalar() method of Compiled

Execute this compiled object and return the result’s
scalar value.

	
class sqlalchemy.engine.default.DefaultDialect(convert_unicode=False, encoding='utf-8', paramstyle=None, dbapi=None, implicit_returning=None, supports_right_nested_joins=None, case_sensitive=True, supports_native_boolean=None, label_length=None, **kwargs)

	Bases: sqlalchemy.engine.interfaces.Dialect

Default implementation of Dialect

	
construct_arguments = None

	Optional set of argument specifiers for various SQLAlchemy
constructs, typically schema items.

To implement, establish as a series of tuples, as in:

construct_arguments = [
 (schema.Index, {
 "using": False,
 "where": None,
 "ops": None
 })
]

If the above construct is established on the Postgresql dialect,
the Index construct will now accept the keyword arguments
postgresql_using, postgresql_where, nad postgresql_ops.
Any other argument specified to the constructor of Index
which is prefixed with postgresql_ will raise ArgumentError.

A dialect which does not include a construct_arguments member will
not participate in the argument validation system. For such a dialect,
any argument name is accepted by all participating constructs, within
the namespace of arguments prefixed with that dialect name. The rationale
here is so that third-party dialects that haven’t yet implemented this
feature continue to function in the old way.

New in version 0.9.2.

See also

DialectKWArgs - implementing base class which consumes
DefaultDialect.construct_arguments

	
create_xid()

	Create a random two-phase transaction ID.

This id will be passed to do_begin_twophase(), do_rollback_twophase(),
do_commit_twophase(). Its format is unspecified.

	
dbapi_exception_translation_map = immutabledict({})

	mapping used in the extremely unusual case that a DBAPI’s
published exceptions don’t actually have the __name__ that they
are linked towards.

New in version 1.0.5.

	
denormalize_name(name)

	
inherited from the denormalize_name() method of Dialect

convert the given name to a case insensitive identifier
for the backend if it is an all-lowercase name.

this method is only used if the dialect defines
requires_name_normalize=True.

	
do_begin_twophase(connection, xid)

	
inherited from the do_begin_twophase() method of Dialect

Begin a two phase transaction on the given connection.

	Parameters:
	
	connection¶ – a Connection.

	xid¶ – xid

	
do_commit_twophase(connection, xid, is_prepared=True, recover=False)

	
inherited from the do_commit_twophase() method of Dialect

Commit a two phase transaction on the given connection.

	Parameters:
	
	connection¶ – a Connection.

	xid¶ – xid

	is_prepared¶ – whether or not
TwoPhaseTransaction.prepare() was called.

	recover¶ – if the recover flag was passed.

	
do_prepare_twophase(connection, xid)

	
inherited from the do_prepare_twophase() method of Dialect

Prepare a two phase transaction on the given connection.

	Parameters:
	
	connection¶ – a Connection.

	xid¶ – xid

	
do_recover_twophase(connection)

	
inherited from the do_recover_twophase() method of Dialect

Recover list of uncommited prepared two phase transaction
identifiers on the given connection.

	Parameters:
	connection¶ – a Connection.

	
do_rollback_twophase(connection, xid, is_prepared=True, recover=False)

	
inherited from the do_rollback_twophase() method of Dialect

Rollback a two phase transaction on the given connection.

	Parameters:
	
	connection¶ – a Connection.

	xid¶ – xid

	is_prepared¶ – whether or not
TwoPhaseTransaction.prepare() was called.

	recover¶ – if the recover flag was passed.

	
engine_created(engine)

	
inherited from the engine_created() method of Dialect

A convenience hook called before returning the final Engine.

If the dialect returned a different class from the
get_dialect_cls()
method, then the hook is called on both classes, first on
the dialect class returned by the get_dialect_cls() method and
then on the class on which the method was called.

The hook should be used by dialects and/or wrappers to apply special
events to the engine or its components. In particular, it allows
a dialect-wrapping class to apply dialect-level events.

New in version 1.0.3.

	
execute_sequence_format

	alias of tuple

	
get_check_constraints(connection, table_name, schema=None, **kw)

	
inherited from the get_check_constraints() method of Dialect

Return information about check constraints in table_name.

Given a string table_name and an optional string schema, return
check constraint information as a list of dicts with these keys:

	name

	the check constraint’s name

	sqltext

	the check constraint’s SQL expression

	**kw

	other options passed to the dialect’s get_check_constraints()
method.

New in version 1.1.0.

	
get_columns(connection, table_name, schema=None, **kw)

	
inherited from the get_columns() method of Dialect

Return information about columns in table_name.

Given a Connection, a string
table_name, and an optional string schema, return column
information as a list of dictionaries with these keys:

	name

	the column’s name

	type

	[sqlalchemy.types#TypeEngine]

	nullable

	boolean

	default

	the column’s default value

	autoincrement

	boolean

	sequence

	
	a dictionary of the form

	
	{‘name’ : str, ‘start’ :int, ‘increment’: int, ‘minvalue’: int,

	‘maxvalue’: int, ‘nominvalue’: bool, ‘nomaxvalue’: bool,
‘cycle’: bool}

Additional column attributes may be present.

	
get_dialect_cls(url)

	
inherited from the get_dialect_cls() method of Dialect

Given a URL, return the Dialect that will be used.

This is a hook that allows an external plugin to provide functionality
around an existing dialect, by allowing the plugin to be loaded
from the url based on an entrypoint, and then the plugin returns
the actual dialect to be used.

By default this just returns the cls.

New in version 1.0.3.

	
get_foreign_keys(connection, table_name, schema=None, **kw)

	
inherited from the get_foreign_keys() method of Dialect

Return information about foreign_keys in table_name.

Given a Connection, a string
table_name, and an optional string schema, return foreign
key information as a list of dicts with these keys:

	name

	the constraint’s name

	constrained_columns

	a list of column names that make up the foreign key

	referred_schema

	the name of the referred schema

	referred_table

	the name of the referred table

	referred_columns

	a list of column names in the referred table that correspond to
constrained_columns

	
get_indexes(connection, table_name, schema=None, **kw)

	
inherited from the get_indexes() method of Dialect

Return information about indexes in table_name.

Given a Connection, a string
table_name and an optional string schema, return index
information as a list of dictionaries with these keys:

	name

	the index’s name

	column_names

	list of column names in order

	unique

	boolean

	
get_isolation_level(dbapi_conn)

	
inherited from the get_isolation_level() method of Dialect

Given a DBAPI connection, return its isolation level.

When working with a Connection object, the corresponding
DBAPI connection may be procured using the
Connection.connection accessor.

Note that this is a dialect-level method which is used as part
of the implementation of the Connection and
Engine isolation level facilities;
these APIs should be preferred for most typical use cases.

See also

Connection.get_isolation_level() - view current level

Connection.default_isolation_level - view default level

Connection.execution_options.isolation_level -
set per Connection isolation level

create_engine.isolation_level -
set per Engine isolation level

	
get_pk_constraint(conn, table_name, schema=None, **kw)

	Compatibility method, adapts the result of get_primary_keys()
for those dialects which don’t implement get_pk_constraint().

	
get_primary_keys(connection, table_name, schema=None, **kw)

	
inherited from the get_primary_keys() method of Dialect

Return information about primary keys in table_name.

Deprecated. This method is only called by the default
implementation of Dialect.get_pk_constraint(). Dialects should
instead implement the Dialect.get_pk_constraint() method
directly.

	
get_table_names(connection, schema=None, **kw)

	
inherited from the get_table_names() method of Dialect

Return a list of table names for schema.

	
get_temp_table_names(connection, schema=None, **kw)

	
inherited from the get_temp_table_names() method of Dialect

Return a list of temporary table names on the given connection,
if supported by the underlying backend.

	
get_temp_view_names(connection, schema=None, **kw)

	
inherited from the get_temp_view_names() method of Dialect

Return a list of temporary view names on the given connection,
if supported by the underlying backend.

	
get_unique_constraints(connection, table_name, schema=None, **kw)

	
inherited from the get_unique_constraints() method of Dialect

Return information about unique constraints in table_name.

Given a string table_name and an optional string schema, return
unique constraint information as a list of dicts with these keys:

	name

	the unique constraint’s name

	column_names

	list of column names in order

	**kw

	other options passed to the dialect’s get_unique_constraints()
method.

New in version 0.9.0.

	
get_view_definition(connection, view_name, schema=None, **kw)

	
inherited from the get_view_definition() method of Dialect

Return view definition.

Given a Connection, a string
view_name, and an optional string schema, return the view
definition.

	
get_view_names(connection, schema=None, **kw)

	
inherited from the get_view_names() method of Dialect

Return a list of all view names available in the database.

	schema:

	Optional, retrieve names from a non-default schema.

	
has_sequence(connection, sequence_name, schema=None)

	
inherited from the has_sequence() method of Dialect

Check the existence of a particular sequence in the database.

Given a Connection object and a string
sequence_name, return True if the given sequence exists in
the database, False otherwise.

	
has_table(connection, table_name, schema=None)

	
inherited from the has_table() method of Dialect

Check the existence of a particular table in the database.

Given a Connection object and a string
table_name, return True if the given table (possibly within
the specified schema) exists in the database, False
otherwise.

	
normalize_name(name)

	
inherited from the normalize_name() method of Dialect

convert the given name to lowercase if it is detected as
case insensitive.

this method is only used if the dialect defines
requires_name_normalize=True.

	
on_connect()

	return a callable which sets up a newly created DBAPI connection.

This is used to set dialect-wide per-connection options such as
isolation modes, unicode modes, etc.

If a callable is returned, it will be assembled into a pool listener
that receives the direct DBAPI connection, with all wrappers removed.

If None is returned, no listener will be generated.

	
preparer

	alias of IdentifierPreparer

	
set_isolation_level(dbapi_conn, level)

	
inherited from the set_isolation_level() method of Dialect

Given a DBAPI connection, set its isolation level.

Note that this is a dialect-level method which is used as part
of the implementation of the Connection and
Engine
isolation level facilities; these APIs should be preferred for
most typical use cases.

See also

Connection.get_isolation_level() - view current level

Connection.default_isolation_level - view default level

Connection.execution_options.isolation_level -
set per Connection isolation level

create_engine.isolation_level -
set per Engine isolation level

	
statement_compiler

	alias of SQLCompiler

	
type_descriptor(typeobj)

	Provide a database-specific TypeEngine object, given
the generic object which comes from the types module.

This method looks for a dictionary called
colspecs as a class or instance-level variable,
and passes on to types.adapt_type().

	
class sqlalchemy.engine.interfaces.Dialect

	Define the behavior of a specific database and DB-API combination.

Any aspect of metadata definition, SQL query generation,
execution, result-set handling, or anything else which varies
between databases is defined under the general category of the
Dialect. The Dialect acts as a factory for other
database-specific object implementations including
ExecutionContext, Compiled, DefaultGenerator, and TypeEngine.

All Dialects implement the following attributes:

	name

	identifying name for the dialect from a DBAPI-neutral point of view
(i.e. ‘sqlite’)

	driver

	identifying name for the dialect’s DBAPI

	positional

	True if the paramstyle for this Dialect is positional.

	paramstyle

	the paramstyle to be used (some DB-APIs support multiple
paramstyles).

	convert_unicode

	True if Unicode conversion should be applied to all str
types.

	encoding

	type of encoding to use for unicode, usually defaults to
‘utf-8’.

	statement_compiler

	a Compiled class used to compile SQL statements

	ddl_compiler

	a Compiled class used to compile DDL statements

	server_version_info

	a tuple containing a version number for the DB backend in use.
This value is only available for supporting dialects, and is
typically populated during the initial connection to the database.

	default_schema_name

	the name of the default schema. This value is only available for
supporting dialects, and is typically populated during the
initial connection to the database.

	execution_ctx_cls

	a ExecutionContext class used to handle statement execution

	execute_sequence_format

	either the ‘tuple’ or ‘list’ type, depending on what cursor.execute()
accepts for the second argument (they vary).

	preparer

	a IdentifierPreparer class used to
quote identifiers.

	supports_alter

	True if the database supports ALTER TABLE.

	max_identifier_length

	The maximum length of identifier names.

	supports_unicode_statements

	Indicate whether the DB-API can receive SQL statements as Python
unicode strings

	supports_unicode_binds

	Indicate whether the DB-API can receive string bind parameters
as Python unicode strings

	supports_sane_rowcount

	Indicate whether the dialect properly implements rowcount for
UPDATE and DELETE statements.

	supports_sane_multi_rowcount

	Indicate whether the dialect properly implements rowcount for
UPDATE and DELETE statements when executed via
executemany.

	preexecute_autoincrement_sequences

	True if ‘implicit’ primary key functions must be executed separately
in order to get their value. This is currently oriented towards
Postgresql.

	implicit_returning

	use RETURNING or equivalent during INSERT execution in order to load
newly generated primary keys and other column defaults in one execution,
which are then available via inserted_primary_key.
If an insert statement has returning() specified explicitly,
the “implicit” functionality is not used and inserted_primary_key
will not be available.

	dbapi_type_map

	A mapping of DB-API type objects present in this Dialect’s
DB-API implementation mapped to TypeEngine implementations used
by the dialect.

This is used to apply types to result sets based on the DB-API
types present in cursor.description; it only takes effect for
result sets against textual statements where no explicit
typemap was present.

	colspecs

	A dictionary of TypeEngine classes from sqlalchemy.types mapped
to subclasses that are specific to the dialect class. This
dictionary is class-level only and is not accessed from the
dialect instance itself.

	supports_default_values

	Indicates if the construct INSERT INTO tablename DEFAULT
VALUES is supported

	supports_sequences

	Indicates if the dialect supports CREATE SEQUENCE or similar.

	sequences_optional

	If True, indicates if the “optional” flag on the Sequence() construct
should signal to not generate a CREATE SEQUENCE. Applies only to
dialects that support sequences. Currently used only to allow Postgresql
SERIAL to be used on a column that specifies Sequence() for usage on
other backends.

	supports_native_enum

	Indicates if the dialect supports a native ENUM construct.
This will prevent types.Enum from generating a CHECK
constraint when that type is used.

	supports_native_boolean

	Indicates if the dialect supports a native boolean construct.
This will prevent types.Boolean from generating a CHECK
constraint when that type is used.

	dbapi_exception_translation_map

	A dictionary of names that will contain as values the names of
pep-249 exceptions (“IntegrityError”, “OperationalError”, etc)
keyed to alternate class names, to support the case where a
DBAPI has exception classes that aren’t named as they are
referred to (e.g. IntegrityError = MyException). In the vast
majority of cases this dictionary is empty.

New in version 1.0.5.

	
connect()

	return a callable which sets up a newly created DBAPI connection.

The callable accepts a single argument “conn” which is the
DBAPI connection itself. It has no return value.

This is used to set dialect-wide per-connection options such as
isolation modes, unicode modes, etc.

If a callable is returned, it will be assembled into a pool listener
that receives the direct DBAPI connection, with all wrappers removed.

If None is returned, no listener will be generated.

	
create_connect_args(url)

	Build DB-API compatible connection arguments.

Given a URL object, returns a tuple
consisting of a *args/**kwargs suitable to send directly
to the dbapi’s connect function.

	
create_xid()

	Create a two-phase transaction ID.

This id will be passed to do_begin_twophase(),
do_rollback_twophase(), do_commit_twophase(). Its format is
unspecified.

	
denormalize_name(name)

	convert the given name to a case insensitive identifier
for the backend if it is an all-lowercase name.

this method is only used if the dialect defines
requires_name_normalize=True.

	
do_begin(dbapi_connection)

	Provide an implementation of connection.begin(), given a
DB-API connection.

The DBAPI has no dedicated “begin” method and it is expected
that transactions are implicit. This hook is provided for those
DBAPIs that might need additional help in this area.

Note that Dialect.do_begin() is not called unless a
Transaction object is in use. The
Dialect.do_autocommit()
hook is provided for DBAPIs that need some extra commands emitted
after a commit in order to enter the next transaction, when the
SQLAlchemy Connection is used in its default “autocommit”
mode.

	Parameters:
	dbapi_connection¶ – a DBAPI connection, typically
proxied within a ConnectionFairy.

	
do_begin_twophase(connection, xid)

	Begin a two phase transaction on the given connection.

	Parameters:
	
	connection¶ – a Connection.

	xid¶ – xid

	
do_close(dbapi_connection)

	Provide an implementation of connection.close(), given a DBAPI
connection.

This hook is called by the Pool when a connection has been
detached from the pool, or is being returned beyond the normal
capacity of the pool.

New in version 0.8.

	
do_commit(dbapi_connection)

	Provide an implementation of connection.commit(), given a
DB-API connection.

	Parameters:
	dbapi_connection¶ – a DBAPI connection, typically
proxied within a ConnectionFairy.

	
do_commit_twophase(connection, xid, is_prepared=True, recover=False)

	Commit a two phase transaction on the given connection.

	Parameters:
	
	connection¶ – a Connection.

	xid¶ – xid

	is_prepared¶ – whether or not
TwoPhaseTransaction.prepare() was called.

	recover¶ – if the recover flag was passed.

	
do_execute(cursor, statement, parameters, context=None)

	Provide an implementation of cursor.execute(statement,
parameters).

	
do_execute_no_params(cursor, statement, parameters, context=None)

	Provide an implementation of cursor.execute(statement).

The parameter collection should not be sent.

	
do_executemany(cursor, statement, parameters, context=None)

	Provide an implementation of cursor.executemany(statement,
parameters).

	
do_prepare_twophase(connection, xid)

	Prepare a two phase transaction on the given connection.

	Parameters:
	
	connection¶ – a Connection.

	xid¶ – xid

	
do_recover_twophase(connection)

	Recover list of uncommited prepared two phase transaction
identifiers on the given connection.

	Parameters:
	connection¶ – a Connection.

	
do_release_savepoint(connection, name)

	Release the named savepoint on a connection.

	Parameters:
	
	connection¶ – a Connection.

	name¶ – savepoint name.

	
do_rollback(dbapi_connection)

	Provide an implementation of connection.rollback(), given
a DB-API connection.

	Parameters:
	dbapi_connection¶ – a DBAPI connection, typically
proxied within a ConnectionFairy.

	
do_rollback_to_savepoint(connection, name)

	Rollback a connection to the named savepoint.

	Parameters:
	
	connection¶ – a Connection.

	name¶ – savepoint name.

	
do_rollback_twophase(connection, xid, is_prepared=True, recover=False)

	Rollback a two phase transaction on the given connection.

	Parameters:
	
	connection¶ – a Connection.

	xid¶ – xid

	is_prepared¶ – whether or not
TwoPhaseTransaction.prepare() was called.

	recover¶ – if the recover flag was passed.

	
do_savepoint(connection, name)

	Create a savepoint with the given name.

	Parameters:
	
	connection¶ – a Connection.

	name¶ – savepoint name.

	
classmethod engine_created(engine)

	A convenience hook called before returning the final Engine.

If the dialect returned a different class from the
get_dialect_cls()
method, then the hook is called on both classes, first on
the dialect class returned by the get_dialect_cls() method and
then on the class on which the method was called.

The hook should be used by dialects and/or wrappers to apply special
events to the engine or its components. In particular, it allows
a dialect-wrapping class to apply dialect-level events.

New in version 1.0.3.

	
get_check_constraints(connection, table_name, schema=None, **kw)

	Return information about check constraints in table_name.

Given a string table_name and an optional string schema, return
check constraint information as a list of dicts with these keys:

	name

	the check constraint’s name

	sqltext

	the check constraint’s SQL expression

	**kw

	other options passed to the dialect’s get_check_constraints()
method.

New in version 1.1.0.

	
get_columns(connection, table_name, schema=None, **kw)

	Return information about columns in table_name.

Given a Connection, a string
table_name, and an optional string schema, return column
information as a list of dictionaries with these keys:

	name

	the column’s name

	type

	[sqlalchemy.types#TypeEngine]

	nullable

	boolean

	default

	the column’s default value

	autoincrement

	boolean

	sequence

	
	a dictionary of the form

	
	{‘name’ : str, ‘start’ :int, ‘increment’: int, ‘minvalue’: int,

	‘maxvalue’: int, ‘nominvalue’: bool, ‘nomaxvalue’: bool,
‘cycle’: bool}

Additional column attributes may be present.

	
classmethod get_dialect_cls(url)

	Given a URL, return the Dialect that will be used.

This is a hook that allows an external plugin to provide functionality
around an existing dialect, by allowing the plugin to be loaded
from the url based on an entrypoint, and then the plugin returns
the actual dialect to be used.

By default this just returns the cls.

New in version 1.0.3.

	
get_foreign_keys(connection, table_name, schema=None, **kw)

	Return information about foreign_keys in table_name.

Given a Connection, a string
table_name, and an optional string schema, return foreign
key information as a list of dicts with these keys:

	name

	the constraint’s name

	constrained_columns

	a list of column names that make up the foreign key

	referred_schema

	the name of the referred schema

	referred_table

	the name of the referred table

	referred_columns

	a list of column names in the referred table that correspond to
constrained_columns

	
get_indexes(connection, table_name, schema=None, **kw)

	Return information about indexes in table_name.

Given a Connection, a string
table_name and an optional string schema, return index
information as a list of dictionaries with these keys:

	name

	the index’s name

	column_names

	list of column names in order

	unique

	boolean

	
get_isolation_level(dbapi_conn)

	Given a DBAPI connection, return its isolation level.

When working with a Connection object, the corresponding
DBAPI connection may be procured using the
Connection.connection accessor.

Note that this is a dialect-level method which is used as part
of the implementation of the Connection and
Engine isolation level facilities;
these APIs should be preferred for most typical use cases.

See also

Connection.get_isolation_level() - view current level

Connection.default_isolation_level - view default level

Connection.execution_options.isolation_level -
set per Connection isolation level

create_engine.isolation_level -
set per Engine isolation level

	
get_pk_constraint(connection, table_name, schema=None, **kw)

	Return information about the primary key constraint on
table_name`.

Given a Connection, a string
table_name, and an optional string schema, return primary
key information as a dictionary with these keys:

	constrained_columns

	a list of column names that make up the primary key

	name

	optional name of the primary key constraint.

	
get_primary_keys(connection, table_name, schema=None, **kw)

	Return information about primary keys in table_name.

Deprecated. This method is only called by the default
implementation of Dialect.get_pk_constraint(). Dialects should
instead implement the Dialect.get_pk_constraint() method
directly.

	
get_table_names(connection, schema=None, **kw)

	Return a list of table names for schema.

	
get_temp_table_names(connection, schema=None, **kw)

	Return a list of temporary table names on the given connection,
if supported by the underlying backend.

	
get_temp_view_names(connection, schema=None, **kw)

	Return a list of temporary view names on the given connection,
if supported by the underlying backend.

	
get_unique_constraints(connection, table_name, schema=None, **kw)

	Return information about unique constraints in table_name.

Given a string table_name and an optional string schema, return
unique constraint information as a list of dicts with these keys:

	name

	the unique constraint’s name

	column_names

	list of column names in order

	**kw

	other options passed to the dialect’s get_unique_constraints()
method.

New in version 0.9.0.

	
get_view_definition(connection, view_name, schema=None, **kw)

	Return view definition.

Given a Connection, a string
view_name, and an optional string schema, return the view
definition.

	
get_view_names(connection, schema=None, **kw)

	Return a list of all view names available in the database.

	schema:

	Optional, retrieve names from a non-default schema.

	
has_sequence(connection, sequence_name, schema=None)

	Check the existence of a particular sequence in the database.

Given a Connection object and a string
sequence_name, return True if the given sequence exists in
the database, False otherwise.

	
has_table(connection, table_name, schema=None)

	Check the existence of a particular table in the database.

Given a Connection object and a string
table_name, return True if the given table (possibly within
the specified schema) exists in the database, False
otherwise.

	
initialize(connection)

	Called during strategized creation of the dialect with a
connection.

Allows dialects to configure options based on server version info or
other properties.

The connection passed here is a SQLAlchemy Connection object,
with full capabilities.

The initialize() method of the base dialect should be called via
super().

	
is_disconnect(e, connection, cursor)

	Return True if the given DB-API error indicates an invalid
connection

	
normalize_name(name)

	convert the given name to lowercase if it is detected as
case insensitive.

this method is only used if the dialect defines
requires_name_normalize=True.

	
reflecttable(connection, table, include_columns, exclude_columns)

	Load table description from the database.

Given a Connection and a
Table object, reflect its columns and
properties from the database.

The implementation of this method is provided by
DefaultDialect.reflecttable(), which makes use of
Inspector to retrieve column information.

Dialects should not seek to implement this method, and should
instead implement individual schema inspection operations such as
Dialect.get_columns(), Dialect.get_pk_constraint(),
etc.

	
reset_isolation_level(dbapi_conn)

	Given a DBAPI connection, revert its isolation to the default.

Note that this is a dialect-level method which is used as part
of the implementation of the Connection and
Engine
isolation level facilities; these APIs should be preferred for
most typical use cases.

See also

Connection.get_isolation_level() - view current level

Connection.default_isolation_level - view default level

Connection.execution_options.isolation_level -
set per Connection isolation level

create_engine.isolation_level -
set per Engine isolation level

	
set_isolation_level(dbapi_conn, level)

	Given a DBAPI connection, set its isolation level.

Note that this is a dialect-level method which is used as part
of the implementation of the Connection and
Engine
isolation level facilities; these APIs should be preferred for
most typical use cases.

See also

Connection.get_isolation_level() - view current level

Connection.default_isolation_level - view default level

Connection.execution_options.isolation_level -
set per Connection isolation level

create_engine.isolation_level -
set per Engine isolation level

	
classmethod type_descriptor(typeobj)

	Transform a generic type to a dialect-specific type.

Dialect classes will usually use the
types.adapt_type() function in the types module to
accomplish this.

The returned result is cached per dialect class so can
contain no dialect-instance state.

	
class sqlalchemy.engine.default.DefaultExecutionContext

	Bases: sqlalchemy.engine.interfaces.ExecutionContext

	
get_lastrowid()

	return self.cursor.lastrowid, or equivalent, after an INSERT.

This may involve calling special cursor functions,
issuing a new SELECT on the cursor (or a new one),
or returning a stored value that was
calculated within post_exec().

This function will only be called for dialects
which support “implicit” primary key generation,
keep preexecute_autoincrement_sequences set to False,
and when no explicit id value was bound to the
statement.

The function is called once, directly after
post_exec() and before the transaction is committed
or ResultProxy is generated. If the post_exec()
method assigns a value to self._lastrowid, the
value is used in place of calling get_lastrowid().

Note that this method is not equivalent to the
lastrowid method on ResultProxy, which is a
direct proxy to the DBAPI lastrowid accessor
in all cases.

	
get_result_processor(type_, colname, coltype)

	Return a ‘result processor’ for a given type as present in
cursor.description.

This has a default implementation that dialects can override
for context-sensitive result type handling.

	
set_input_sizes(translate=None, exclude_types=None)

	Given a cursor and ClauseParameters, call the appropriate
style of setinputsizes() on the cursor, using DB-API types
from the bind parameter’s TypeEngine objects.

This method only called by those dialects which require it,
currently cx_oracle.

	
class sqlalchemy.engine.interfaces.ExecutionContext

	A messenger object for a Dialect that corresponds to a single
execution.

ExecutionContext should have these data members:

	connection

	Connection object which can be freely used by default value
generators to execute SQL. This Connection should reference the
same underlying connection/transactional resources of
root_connection.

	root_connection

	Connection object which is the source of this ExecutionContext. This
Connection may have close_with_result=True set, in which case it can
only be used once.

	dialect

	dialect which created this ExecutionContext.

	cursor

	DB-API cursor procured from the connection,

	compiled

	if passed to constructor, sqlalchemy.engine.base.Compiled object
being executed,

	statement

	string version of the statement to be executed. Is either
passed to the constructor, or must be created from the
sql.Compiled object by the time pre_exec() has completed.

	parameters

	bind parameters passed to the execute() method. For compiled
statements, this is a dictionary or list of dictionaries. For
textual statements, it should be in a format suitable for the
dialect’s paramstyle (i.e. dict or list of dicts for non
positional, list or list of lists/tuples for positional).

	isinsert

	True if the statement is an INSERT.

	isupdate

	True if the statement is an UPDATE.

	should_autocommit

	True if the statement is a “committable” statement.

	prefetch_cols

	a list of Column objects for which a client-side default
was fired off. Applies to inserts and updates.

	postfetch_cols

	a list of Column objects for which a server-side default or
inline SQL expression value was fired off. Applies to inserts
and updates.

	
create_cursor()

	Return a new cursor generated from this ExecutionContext’s
connection.

Some dialects may wish to change the behavior of
connection.cursor(), such as postgresql which may return a PG
“server side” cursor.

	
exception = None

	A DBAPI-level exception that was caught when this ExecutionContext
attempted to execute a statement.

This attribute is meaningful only within the
ConnectionEvents.dbapi_error() event.

New in version 0.9.7.

See also

ExecutionContext.is_disconnect

ConnectionEvents.dbapi_error()

	
get_rowcount()

	Return the DBAPI cursor.rowcount value, or in some
cases an interpreted value.

See ResultProxy.rowcount for details on this.

	
handle_dbapi_exception(e)

	Receive a DBAPI exception which occurred upon execute, result
fetch, etc.

	
is_disconnect = None

	Boolean flag set to True or False when a DBAPI-level exception
is caught when this ExecutionContext attempted to execute a statement.

This attribute is meaningful only within the
ConnectionEvents.dbapi_error() event.

New in version 0.9.7.

See also

ExecutionContext.exception

ConnectionEvents.dbapi_error()

	
lastrow_has_defaults()

	Return True if the last INSERT or UPDATE row contained
inlined or database-side defaults.

	
post_exec()

	Called after the execution of a compiled statement.

If a compiled statement was passed to this ExecutionContext,
the last_insert_ids, last_inserted_params, etc.
datamembers should be available after this method completes.

	
pre_exec()

	Called before an execution of a compiled statement.

If a compiled statement was passed to this ExecutionContext,
the statement and parameters datamembers must be
initialized after this statement is complete.

	
result()

	Return a result object corresponding to this ExecutionContext.

Returns a ResultProxy.

	
should_autocommit_text(statement)

	Parse the given textual statement and return True if it refers to
a “committable” statement

	
class sqlalchemy.log.Identified

	

	
class sqlalchemy.sql.compiler.IdentifierPreparer(dialect, initial_quote='"', final_quote=None, escape_quote='"', omit_schema=False)

	Handle quoting and case-folding of identifiers based on options.

	
__init__(dialect, initial_quote='"', final_quote=None, escape_quote='"', omit_schema=False)

	Construct a new IdentifierPreparer object.

	initial_quote

	Character that begins a delimited identifier.

	final_quote

	Character that ends a delimited identifier. Defaults to
initial_quote.

	omit_schema

	Prevent prepending schema name. Useful for databases that do
not support schemae.

	
format_column(column, use_table=False, name=None, table_name=None)

	Prepare a quoted column name.

	
format_schema(name, quote=None)

	Prepare a quoted schema name.

	
format_table(table, use_schema=True, name=None)

	Prepare a quoted table and schema name.

	
format_table_seq(table, use_schema=True)

	Format table name and schema as a tuple.

	
quote(ident, force=None)

	Conditionally quote an identifier.

the ‘force’ flag should be considered deprecated.

	
quote_identifier(value)

	Quote an identifier.

Subclasses should override this to provide database-dependent
quoting behavior.

	
quote_schema(schema, force=None)

	Conditionally quote a schema.

Subclasses can override this to provide database-dependent
quoting behavior for schema names.

the ‘force’ flag should be considered deprecated.

	
unformat_identifiers(identifiers)

	Unpack ‘schema.table.column’-like strings into components.

	
class sqlalchemy.sql.compiler.SQLCompiler(dialect, statement, column_keys=None, inline=False, **kwargs)

	Bases: sqlalchemy.sql.compiler.Compiled

Default implementation of Compiled.

Compiles ClauseElement objects into SQL strings.

	
__init__(dialect, statement, column_keys=None, inline=False, **kwargs)

	Construct a new SQLCompiler object.

	Parameters:
	
	dialect¶ – Dialect to be used

	statement¶ – ClauseElement to be compiled

	column_keys¶ – a list of column names to be compiled into an
INSERT or UPDATE statement.

	inline¶ – whether to generate INSERT statements as “inline”, e.g.
not formatted to return any generated defaults

	kwargs¶ – additional keyword arguments to be consumed by the
superclass.

	
ansi_bind_rules = False

	SQL 92 doesn’t allow bind parameters to be used
in the columns clause of a SELECT, nor does it allow
ambiguous expressions like ”? = ?”. A compiler
subclass can set this flag to False if the target
driver/DB enforces this

	
construct_params(params=None, _group_number=None, _check=True)

	return a dictionary of bind parameter keys and values

	
default_from()

	Called when a SELECT statement has no froms, and no FROM clause is
to be appended.

Gives Oracle a chance to tack on a FROM DUAL to the string output.

	
escape_literal_column(text)

	provide escaping for the literal_column() construct.

	
get_select_precolumns(select, **kw)

	Called when building a SELECT statement, position is just
before column list.

	
isdelete = False

	class-level defaults which can be set at the instance
level to define if this Compiled instance represents
INSERT/UPDATE/DELETE

	
isinsert = False

	class-level defaults which can be set at the instance
level to define if this Compiled instance represents
INSERT/UPDATE/DELETE

	
isupdate = False

	class-level defaults which can be set at the instance
level to define if this Compiled instance represents
INSERT/UPDATE/DELETE

	
params

	Return the bind param dictionary embedded into this
compiled object, for those values that are present.

	
render_literal_value(value, type_)

	Render the value of a bind parameter as a quoted literal.

This is used for statement sections that do not accept bind parameters
on the target driver/database.

This should be implemented by subclasses using the quoting services
of the DBAPI.

	
render_table_with_column_in_update_from = False

	set to True classwide to indicate the SET clause
in a multi-table UPDATE statement should qualify
columns with the table name (i.e. MySQL only)

	
returning = None

	holds the “returning” collection of columns if
the statement is CRUD and defines returning columns
either implicitly or explicitly

	
returning_precedes_values = False

	set to True classwide to generate RETURNING
clauses before the VALUES or WHERE clause (i.e. MSSQL)

	
update_from_clause(update_stmt, from_table, extra_froms, from_hints, **kw)

	Provide a hook to override the generation of an
UPDATE..FROM clause.

MySQL and MSSQL override this.

	
update_limit_clause(update_stmt)

	Provide a hook for MySQL to add LIMIT to the UPDATE

	
update_tables_clause(update_stmt, from_table, extra_froms, **kw)

	Provide a hook to override the initial table clause
in an UPDATE statement.

MySQL overrides this.

Dialects

The dialect is the system SQLAlchemy uses to communicate with various types of DBAPI implementations and databases.
The sections that follow contain reference documentation and notes specific to the usage of each backend, as well as notes
for the various DBAPIs.

All dialects require that an appropriate DBAPI driver is installed.

Included Dialects

	Firebird

	Microsoft SQL Server

	MySQL

	Oracle

	PostgreSQL

	SQLite

	Sybase

External Dialects

Changed in version 0.8: As of SQLAlchemy 0.8, several dialects have been moved to external
projects, and dialects for new databases will also be published
as external projects. The rationale here is to keep the base
SQLAlchemy install and test suite from growing inordinately large.

The “classic” dialects such as SQLite, MySQL, Postgresql, Oracle,
SQL Server, and Firebird will remain in the Core for the time being.

Changed in version 1.0: The Drizzle dialect has been moved into the third party system.

Current external dialect projects for SQLAlchemy include:

Production Ready

	ibm_db_sa - driver for IBM DB2 and Informix,
developed jointly by IBM and SQLAlchemy developers.

	sqlalchemy-redshift - driver for Amazon Redshift, adapts
the existing Postgresql/psycopg2 driver.

	sqlalchemy_exasol - driver for EXASolution.

	sqlalchemy-sqlany - driver for SAP Sybase SQL
Anywhere, developed by SAP.

	sqlalchemy-monetdb - driver for MonetDB.

Experimental / Incomplete

Dialects that are in an incomplete state or are considered somewhat experimental.

	CALCHIPAN - Adapts Pandas dataframes to SQLAlchemy.

	sqlalchemy-cubrid - driver for the CUBRID database.

Attic

Dialects in the “attic” are those that were contributed for SQLAlchemy long ago
but have received little attention or demand since then, and are now moved out to
their own repositories in at best a semi-working state.
Community members interested in these dialects should feel free to pick up on
their current codebase and fork off into working libraries.

	sqlalchemy-access - driver for Microsoft Access.

	sqlalchemy-drizzle - driver for the Drizzle MySQL variant.

	sqlalchemy-informixdb - driver for the informixdb DBAPI.

	sqlalchemy-maxdb - driver for the MaxDB database

Firebird

Support for the Firebird database.

DBAPI Support

The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.

	fdb

	kinterbasdb

Firebird Dialects

Firebird offers two distinct dialects (not to be confused with a
SQLAlchemy Dialect):

	dialect 1

	This is the old syntax and behaviour, inherited from Interbase pre-6.0.

	dialect 3

	This is the newer and supported syntax, introduced in Interbase 6.0.

The SQLAlchemy Firebird dialect detects these versions and
adjusts its representation of SQL accordingly. However,
support for dialect 1 is not well tested and probably has
incompatibilities.

Locking Behavior

Firebird locks tables aggressively. For this reason, a DROP TABLE may
hang until other transactions are released. SQLAlchemy does its best
to release transactions as quickly as possible. The most common cause
of hanging transactions is a non-fully consumed result set, i.e.:

result = engine.execute("select * from table")
row = result.fetchone()
return

Where above, the ResultProxy has not been fully consumed. The
connection will be returned to the pool and the transactional state
rolled back once the Python garbage collector reclaims the objects
which hold onto the connection, which often occurs asynchronously.
The above use case can be alleviated by calling first() on the
ResultProxy which will fetch the first row and immediately close
all remaining cursor/connection resources.

RETURNING support

Firebird 2.0 supports returning a result set from inserts, and 2.1
extends that to deletes and updates. This is generically exposed by
the SQLAlchemy returning() method, such as:

INSERT..RETURNING
result = table.insert().returning(table.c.col1, table.c.col2).\
 values(name='foo')
print result.fetchall()

UPDATE..RETURNING
raises = empl.update().returning(empl.c.id, empl.c.salary).\
 where(empl.c.sales>100).\
 values(dict(salary=empl.c.salary * 1.1))
print raises.fetchall()

fdb

Support for the Firebird database via the fdb driver.

fdb is a kinterbasdb compatible DBAPI for Firebird.

New in version 0.8: - Support for the fdb Firebird driver.

Changed in version 0.9: - The fdb dialect is now the default dialect
under the firebird:// URL space, as fdb is now the official
Python driver for Firebird.

DBAPI

Documentation and download information (if applicable) for fdb is available at:
http://pypi.python.org/pypi/fdb/

Connecting

Connect String:

firebird+fdb://user:password@host:port/path/to/db[?key=value&key=value...]

Arguments

The fdb dialect is based on the
sqlalchemy.dialects.firebird.kinterbasdb dialect, however does not
accept every argument that Kinterbasdb does.

	enable_rowcount - True by default, setting this to False disables
the usage of “cursor.rowcount” with the
Kinterbasdb dialect, which SQLAlchemy ordinarily calls upon automatically
after any UPDATE or DELETE statement. When disabled, SQLAlchemy’s
ResultProxy will return -1 for result.rowcount. The rationale here is
that Kinterbasdb requires a second round trip to the database when
.rowcount is called - since SQLA’s resultproxy automatically closes
the cursor after a non-result-returning statement, rowcount must be
called, if at all, before the result object is returned. Additionally,
cursor.rowcount may not return correct results with older versions
of Firebird, and setting this flag to False will also cause the
SQLAlchemy ORM to ignore its usage. The behavior can also be controlled on a
per-execution basis using the enable_rowcount option with
Connection.execution_options():

conn = engine.connect().execution_options(enable_rowcount=True)
r = conn.execute(stmt)
print r.rowcount

	retaining - False by default. Setting this to True will pass the
retaining=True keyword argument to the .commit() and .rollback()
methods of the DBAPI connection, which can improve performance in some
situations, but apparently with significant caveats.
Please read the fdb and/or kinterbasdb DBAPI documentation in order to
understand the implications of this flag.

New in version 0.8.2: - retaining keyword argument specifying
transaction retaining behavior - in 0.8 it defaults to True
for backwards compatibility.

Changed in version 0.9.0: - the retaining flag defaults to False.
In 0.8 it defaulted to True.

See also

http://pythonhosted.org/fdb/usage-guide.html#retaining-transactions
- information on the “retaining” flag.

kinterbasdb

Support for the Firebird database via the kinterbasdb driver.

DBAPI

Documentation and download information (if applicable) for kinterbasdb is available at:
http://firebirdsql.org/index.php?op=devel&sub=python

Connecting

Connect String:

firebird+kinterbasdb://user:password@host:port/path/to/db[?key=value&key=value...]

Arguments

The Kinterbasdb backend accepts the enable_rowcount and retaining
arguments accepted by the sqlalchemy.dialects.firebird.fdb dialect.
In addition, it also accepts the following:

	type_conv - select the kind of mapping done on the types: by default
SQLAlchemy uses 200 with Unicode, datetime and decimal support. See
the linked documents below for further information.

	concurrency_level - set the backend policy with regards to threading
issues: by default SQLAlchemy uses policy 1. See the linked documents
below for further information.

See also

http://sourceforge.net/projects/kinterbasdb

http://kinterbasdb.sourceforge.net/dist_docs/usage.html#adv_param_conv_dynamic_type_translation

http://kinterbasdb.sourceforge.net/dist_docs/usage.html#special_issue_concurrency

Microsoft SQL Server

Support for the Microsoft SQL Server database.

DBAPI Support

The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.

	PyODBC

	mxODBC

	pymssql

	zxJDBC for Jython

	adodbapi

Auto Increment Behavior

SQL Server provides so-called “auto incrementing” behavior using the
IDENTITY construct, which can be placed on an integer primary key.
SQLAlchemy considers IDENTITY within its default “autoincrement” behavior,
described at Column.autoincrement; this means
that by default, the first integer primary key column in a Table
will be considered to be the identity column and will generate DDL as such:

from sqlalchemy import Table, MetaData, Column, Integer

m = MetaData()
t = Table('t', m,
 Column('id', Integer, primary_key=True),
 Column('x', Integer))
m.create_all(engine)

The above example will generate DDL as:

CREATE TABLE t (
 id INTEGER NOT NULL IDENTITY(1,1),
 x INTEGER NULL,
 PRIMARY KEY (id)
)

For the case where this default generation of IDENTITY is not desired,
specify autoincrement=False on all integer primary key columns:

m = MetaData()
t = Table('t', m,
 Column('id', Integer, primary_key=True, autoincrement=False),
 Column('x', Integer))
m.create_all(engine)

Note

An INSERT statement which refers to an explicit value for such
a column is prohibited by SQL Server, however SQLAlchemy will detect this
and modify the IDENTITY_INSERT flag accordingly at statement execution
time. As this is not a high performing process, care should be taken to
set the autoincrement flag appropriately for columns that will not
actually require IDENTITY behavior.

Controlling “Start” and “Increment”

Specific control over the parameters of the IDENTITY value is supported
using the schema.Sequence object. While this object normally
represents an explicit “sequence” for supporting backends, on SQL Server it is
re-purposed to specify behavior regarding the identity column, including
support of the “start” and “increment” values:

from sqlalchemy import Table, Integer, Sequence, Column

Table('test', metadata,
 Column('id', Integer,
 Sequence('blah', start=100, increment=10),
 primary_key=True),
 Column('name', String(20))
).create(some_engine)

would yield:

CREATE TABLE test (
 id INTEGER NOT NULL IDENTITY(100,10) PRIMARY KEY,
 name VARCHAR(20) NULL,
)

Note that the start and increment values for sequences are
optional and will default to 1,1.

INSERT behavior

Handling of the IDENTITY column at INSERT time involves two key
techniques. The most common is being able to fetch the “last inserted value”
for a given IDENTITY column, a process which SQLAlchemy performs
implicitly in many cases, most importantly within the ORM.

The process for fetching this value has several variants:

	In the vast majority of cases, RETURNING is used in conjunction with INSERT
statements on SQL Server in order to get newly generated primary key values:

INSERT INTO t (x) OUTPUT inserted.id VALUES (?)

	When RETURNING is not available or has been disabled via
implicit_returning=False, either the scope_identity() function or
the @@identity variable is used; behavior varies by backend:

	when using PyODBC, the phrase ; select scope_identity() will be
appended to the end of the INSERT statement; a second result set will be
fetched in order to receive the value. Given a table as:

t = Table('t', m, Column('id', Integer, primary_key=True),
 Column('x', Integer),
 implicit_returning=False)

an INSERT will look like:

INSERT INTO t (x) VALUES (?); select scope_identity()

	Other dialects such as pymssql will call upon
SELECT scope_identity() AS lastrowid subsequent to an INSERT
statement. If the flag use_scope_identity=False is passed to
create_engine(), the statement SELECT @@identity AS lastrowid
is used instead.

A table that contains an IDENTITY column will prohibit an INSERT statement
that refers to the identity column explicitly. The SQLAlchemy dialect will
detect when an INSERT construct, created using a core insert()
construct (not a plain string SQL), refers to the identity column, and
in this case will emit SET IDENTITY_INSERT ON prior to the insert
statement proceeding, and SET IDENTITY_INSERT OFF subsequent to the
execution. Given this example:

m = MetaData()
t = Table('t', m, Column('id', Integer, primary_key=True),
 Column('x', Integer))
m.create_all(engine)

engine.execute(t.insert(), {'id': 1, 'x':1}, {'id':2, 'x':2})

The above column will be created with IDENTITY, however the INSERT statement
we emit is specifying explicit values. In the echo output we can see
how SQLAlchemy handles this:

CREATE TABLE t (
 id INTEGER NOT NULL IDENTITY(1,1),
 x INTEGER NULL,
 PRIMARY KEY (id)
)

COMMIT
SET IDENTITY_INSERT t ON
INSERT INTO t (id, x) VALUES (?, ?)
((1, 1), (2, 2))
SET IDENTITY_INSERT t OFF
COMMIT

This
is an auxilliary use case suitable for testing and bulk insert scenarios.

Collation Support

Character collations are supported by the base string types,
specified by the string argument “collation”:

from sqlalchemy import VARCHAR
Column('login', VARCHAR(32, collation='Latin1_General_CI_AS'))

When such a column is associated with a Table, the
CREATE TABLE statement for this column will yield:

login VARCHAR(32) COLLATE Latin1_General_CI_AS NULL

New in version 0.8: Character collations are now part of the base string
types.

LIMIT/OFFSET Support

MSSQL has no support for the LIMIT or OFFSET keywords. LIMIT is
supported directly through the TOP Transact SQL keyword:

select.limit

will yield:

SELECT TOP n

If using SQL Server 2005 or above, LIMIT with OFFSET
support is available through the ROW_NUMBER OVER construct.
For versions below 2005, LIMIT with OFFSET usage will fail.

Transaction Isolation Level

All SQL Server dialects support setting of transaction isolation level
both via a dialect-specific parameter
create_engine.isolation_level
accepted by create_engine(),
as well as the Connection.execution_options.isolation_level
argument as passed to
Connection.execution_options(). This feature works by issuing the
command SET TRANSACTION ISOLATION LEVEL <level> for
each new connection.

To set isolation level using create_engine():

engine = create_engine(
 "mssql+pyodbc://scott:tiger@ms_2008",
 isolation_level="REPEATABLE READ"
)

To set using per-connection execution options:

connection = engine.connect()
connection = connection.execution_options(
 isolation_level="READ COMMITTED"
)

Valid values for isolation_level include:

	READ COMMITTED

	READ UNCOMMITTED

	REPEATABLE READ

	SERIALIZABLE

	SNAPSHOT - specific to SQL Server

New in version 1.1: support for isolation level setting on Microsoft
SQL Server.

Nullability

MSSQL has support for three levels of column nullability. The default
nullability allows nulls and is explicit in the CREATE TABLE
construct:

name VARCHAR(20) NULL

If nullable=None is specified then no specification is made. In
other words the database’s configured default is used. This will
render:

name VARCHAR(20)

If nullable is True or False then the column will be
NULL or NOT NULL respectively.

Date / Time Handling

DATE and TIME are supported. Bind parameters are converted
to datetime.datetime() objects as required by most MSSQL drivers,
and results are processed from strings if needed.
The DATE and TIME types are not available for MSSQL 2005 and
previous - if a server version below 2008 is detected, DDL
for these types will be issued as DATETIME.

Large Text/Binary Type Deprecation

Per SQL Server 2012/2014 Documentation,
the NTEXT, TEXT and IMAGE datatypes are to be removed from SQL Server
in a future release. SQLAlchemy normally relates these types to the
UnicodeText, Text and LargeBinary datatypes.

In order to accommodate this change, a new flag deprecate_large_types
is added to the dialect, which will be automatically set based on detection
of the server version in use, if not otherwise set by the user. The
behavior of this flag is as follows:

	When this flag is True, the UnicodeText, Text and
LargeBinary datatypes, when used to render DDL, will render the
types NVARCHAR(max), VARCHAR(max), and VARBINARY(max),
respectively. This is a new behavior as of the addition of this flag.

	When this flag is False, the UnicodeText, Text and
LargeBinary datatypes, when used to render DDL, will render the
types NTEXT, TEXT, and IMAGE,
respectively. This is the long-standing behavior of these types.

	The flag begins with the value None, before a database connection is
established. If the dialect is used to render DDL without the flag being
set, it is interpreted the same as False.

	On first connection, the dialect detects if SQL Server version 2012 or greater
is in use; if the flag is still at None, it sets it to True or
False based on whether 2012 or greater is detected.

	The flag can be set to either True or False when the dialect
is created, typically via create_engine():

eng = create_engine("mssql+pymssql://user:pass@host/db",
 deprecate_large_types=True)

	Complete control over whether the “old” or “new” types are rendered is
available in all SQLAlchemy versions by using the UPPERCASE type objects
instead: NVARCHAR, VARCHAR, types.VARBINARY,
TEXT, mssql.NTEXT, mssql.IMAGE will always remain
fixed and always output exactly that type.

New in version 1.0.0.

Legacy Schema Mode

Very old versions of the MSSQL dialect introduced the behavior such that a
schema-qualified table would be auto-aliased when used in a
SELECT statement; given a table:

account_table = Table(
 'account', metadata,
 Column('id', Integer, primary_key=True),
 Column('info', String(100)),
 schema="customer_schema"
)

this legacy mode of rendering would assume that “customer_schema.account”
would not be accepted by all parts of the SQL statement, as illustrated
below:

>>> eng = create_engine("mssql+pymssql://mydsn", legacy_schema_aliasing=True)
>>> print(account_table.select().compile(eng))
SELECT account_1.id, account_1.info
FROM customer_schema.account AS account_1

This mode of behavior is now off by default, as it appears to have served
no purpose; however in the case that legacy applications rely upon it,
it is available using the legacy_schema_aliasing argument to
create_engine() as illustrated above.

Changed in version 1.1: the legacy_schema_aliasing flag introduced
in version 1.0.5 to allow disabling of legacy mode for schemas now
defaults to False.

Clustered Index Support

The MSSQL dialect supports clustered indexes (and primary keys) via the
mssql_clustered option. This option is available to Index,
UniqueConstraint. and PrimaryKeyConstraint.

To generate a clustered index:

Index("my_index", table.c.x, mssql_clustered=True)

which renders the index as CREATE CLUSTERED INDEX my_index ON table (x).

To generate a clustered primary key use:

Table('my_table', metadata,
 Column('x', ...),
 Column('y', ...),
 PrimaryKeyConstraint("x", "y", mssql_clustered=True))

which will render the table, for example, as:

CREATE TABLE my_table (x INTEGER NOT NULL, y INTEGER NOT NULL,
 PRIMARY KEY CLUSTERED (x, y))

Similarly, we can generate a clustered unique constraint using:

Table('my_table', metadata,
 Column('x', ...),
 Column('y', ...),
 PrimaryKeyConstraint("x"),
 UniqueConstraint("y", mssql_clustered=True),
)

To explicitly request a non-clustered primary key (for example, when
a separate clustered index is desired), use:

Table('my_table', metadata,
 Column('x', ...),
 Column('y', ...),
 PrimaryKeyConstraint("x", "y", mssql_clustered=False))

which will render the table, for example, as:

CREATE TABLE my_table (x INTEGER NOT NULL, y INTEGER NOT NULL,
 PRIMARY KEY NONCLUSTERED (x, y))

Changed in version 1.1: the mssql_clustered option now defaults
to None, rather than False. mssql_clustered=False now explicitly
renders the NONCLUSTERED clause, whereas None omits the CLUSTERED
clause entirely, allowing SQL Server defaults to take effect.

MSSQL-Specific Index Options

In addition to clustering, the MSSQL dialect supports other special options
for Index.

INCLUDE

The mssql_include option renders INCLUDE(colname) for the given string
names:

Index("my_index", table.c.x, mssql_include=['y'])

would render the index as CREATE INDEX my_index ON table (x) INCLUDE (y)

New in version 0.8.

Index ordering

Index ordering is available via functional expressions, such as:

Index("my_index", table.c.x.desc())

would render the index as CREATE INDEX my_index ON table (x DESC)

New in version 0.8.

See also

Functional Indexes

Compatibility Levels

MSSQL supports the notion of setting compatibility levels at the
database level. This allows, for instance, to run a database that
is compatible with SQL2000 while running on a SQL2005 database
server. server_version_info will always return the database
server version information (in this case SQL2005) and not the
compatibility level information. Because of this, if running under
a backwards compatibility mode SQAlchemy may attempt to use T-SQL
statements that are unable to be parsed by the database server.

Triggers

SQLAlchemy by default uses OUTPUT INSERTED to get at newly
generated primary key values via IDENTITY columns or other
server side defaults. MS-SQL does not
allow the usage of OUTPUT INSERTED on tables that have triggers.
To disable the usage of OUTPUT INSERTED on a per-table basis,
specify implicit_returning=False for each Table
which has triggers:

Table('mytable', metadata,
 Column('id', Integer, primary_key=True),
 # ...,
 implicit_returning=False
)

Declarative form:

class MyClass(Base):
 # ...
 __table_args__ = {'implicit_returning':False}

This option can also be specified engine-wide using the
implicit_returning=False argument on create_engine().

Rowcount Support / ORM Versioning

The SQL Server drivers have very limited ability to return the number
of rows updated from an UPDATE or DELETE statement. In particular, the
pymssql driver has no support, whereas the pyodbc driver can only return
this value under certain conditions.

In particular, updated rowcount is not available when OUTPUT INSERTED
is used. This impacts the SQLAlchemy ORM’s versioning feature when
server-side versioning schemes are used. When
using pyodbc, the “implicit_returning” flag needs to be set to false
for any ORM mapped class that uses a version_id column in conjunction with
a server-side version generator:

class MyTable(Base):
 __tablename__ = 'mytable'
 id = Column(Integer, primary_key=True)
 stuff = Column(String(10))
 timestamp = Column(TIMESTAMP(), default=text('DEFAULT'))
 __mapper_args__ = {
 'version_id_col': timestamp,
 'version_id_generator': False,
 }
 __table_args__ = {
 'implicit_returning': False
 }

Without the implicit_returning flag above, the UPDATE statement will
use OUTPUT inserted.timestamp and the rowcount will be returned as
-1, causing the versioning logic to fail.

Enabling Snapshot Isolation

Not necessarily specific to SQLAlchemy, SQL Server has a default transaction
isolation mode that locks entire tables, and causes even mildly concurrent
applications to have long held locks and frequent deadlocks.
Enabling snapshot isolation for the database as a whole is recommended
for modern levels of concurrency support. This is accomplished via the
following ALTER DATABASE commands executed at the SQL prompt:

ALTER DATABASE MyDatabase SET ALLOW_SNAPSHOT_ISOLATION ON

ALTER DATABASE MyDatabase SET READ_COMMITTED_SNAPSHOT ON

Background on SQL Server snapshot isolation is available at
http://msdn.microsoft.com/en-us/library/ms175095.aspx.

Known Issues

	No support for more than one IDENTITY column per table

	reflection of indexes does not work with versions older than
SQL Server 2005

SQL Server Data Types

As with all SQLAlchemy dialects, all UPPERCASE types that are known to be
valid with SQL server are importable from the top level dialect, whether
they originate from sqlalchemy.types or from the local dialect:

from sqlalchemy.dialects.mssql import \
 BIGINT, BINARY, BIT, CHAR, DATE, DATETIME, DATETIME2, \
 DATETIMEOFFSET, DECIMAL, FLOAT, IMAGE, INTEGER, MONEY, \
 NCHAR, NTEXT, NUMERIC, NVARCHAR, REAL, SMALLDATETIME, \
 SMALLINT, SMALLMONEY, SQL_VARIANT, TEXT, TIME, \
 TIMESTAMP, TINYINT, UNIQUEIDENTIFIER, VARBINARY, VARCHAR

Types which are specific to SQL Server, or have SQL Server-specific
construction arguments, are as follows:

	
class sqlalchemy.dialects.mssql.BIT

	Bases: sqlalchemy.types.TypeEngine

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.mssql.CHAR(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.String

The SQL CHAR type.

	
__init__(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	
inherited from the __init__() method of String

Create a string-holding type.

	Parameters:
	
	length¶ – optional, a length for the column for use in
DDL and CAST expressions. May be safely omitted if no CREATE
TABLE will be issued. Certain databases may require a
length for use in DDL, and will raise an exception when
the CREATE TABLE DDL is issued if a VARCHAR
with no length is included. Whether the value is
interpreted as bytes or characters is database specific.

	collation¶ – Optional, a column-level collation for
use in DDL and CAST expressions. Renders using the
COLLATE keyword supported by SQLite, MySQL, and Postgresql.
E.g.:

>>> from sqlalchemy import cast, select, String
>>> print select([cast('some string', String(collation='utf8'))])
SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1

New in version 0.8: Added support for COLLATE to all
string types.

	convert_unicode¶ – When set to True, the
String type will assume that
input is to be passed as Python unicode objects,
and results returned as Python unicode objects.
If the DBAPI in use does not support Python unicode
(which is fewer and fewer these days), SQLAlchemy
will encode/decode the value, using the
value of the encoding parameter passed to
create_engine() as the encoding.

When using a DBAPI that natively supports Python
unicode objects, this flag generally does not
need to be set. For columns that are explicitly
intended to store non-ASCII data, the Unicode
or UnicodeText
types should be used regardless, which feature
the same behavior of convert_unicode but
also indicate an underlying column type that
directly supports unicode, such as NVARCHAR.

For the extremely rare case that Python unicode
is to be encoded/decoded by SQLAlchemy on a backend
that does natively support Python unicode,
the value force can be passed here which will
cause SQLAlchemy’s encode/decode services to be
used unconditionally.

	unicode_error¶ – Optional, a method to use to handle Unicode
conversion errors. Behaves like the errors keyword argument to
the standard library’s string.decode() functions. This flag
requires that convert_unicode is set to force - otherwise,
SQLAlchemy is not guaranteed to handle the task of unicode
conversion. Note that this flag adds significant performance
overhead to row-fetching operations for backends that already
return unicode objects natively (which most DBAPIs do). This
flag should only be used as a last resort for reading
strings from a column with varied or corrupted encodings.

	
class sqlalchemy.dialects.mssql.DATETIME2(precision=None, **kw)

	Bases: sqlalchemy.dialects.mssql.base._DateTimeBase, sqlalchemy.types.DateTime

	
class sqlalchemy.dialects.mssql.DATETIMEOFFSET(precision=None, **kwargs)

	Bases: sqlalchemy.types.TypeEngine

	
class sqlalchemy.dialects.mssql.IMAGE(length=None)

	Bases: sqlalchemy.types.LargeBinary

	
__init__(length=None)

	
inherited from the __init__() method of LargeBinary

Construct a LargeBinary type.

	Parameters:
	length¶ – optional, a length for the column for use in
DDL statements, for those binary types that accept a length,
such as the MySQL BLOB type.

	
class sqlalchemy.dialects.mssql.MONEY

	Bases: sqlalchemy.types.TypeEngine

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.mssql.NCHAR(length=None, **kwargs)

	Bases: sqlalchemy.types.Unicode

The SQL NCHAR type.

	
__init__(length=None, **kwargs)

	
inherited from the __init__() method of Unicode

Create a Unicode object.

Parameters are the same as that of String,
with the exception that convert_unicode
defaults to True.

	
class sqlalchemy.dialects.mssql.NTEXT(length=None, **kwargs)

	Bases: sqlalchemy.types.UnicodeText

MSSQL NTEXT type, for variable-length unicode text up to 2^30
characters.

	
__init__(length=None, **kwargs)

	
inherited from the __init__() method of UnicodeText

Create a Unicode-converting Text type.

Parameters are the same as that of Text,
with the exception that convert_unicode
defaults to True.

	
class sqlalchemy.dialects.mssql.NVARCHAR(length=None, **kwargs)

	Bases: sqlalchemy.types.Unicode

The SQL NVARCHAR type.

	
__init__(length=None, **kwargs)

	
inherited from the __init__() method of Unicode

Create a Unicode object.

Parameters are the same as that of String,
with the exception that convert_unicode
defaults to True.

	
class sqlalchemy.dialects.mssql.REAL(**kw)

	Bases: sqlalchemy.types.REAL

	
class sqlalchemy.dialects.mssql.SMALLDATETIME(timezone=False)

	Bases: sqlalchemy.dialects.mssql.base._DateTimeBase, sqlalchemy.types.DateTime

	
__init__(timezone=False)

	
inherited from the __init__() method of DateTime

Construct a new DateTime.

	Parameters:
	timezone¶ – boolean. If True, and supported by the
backend, will produce ‘TIMESTAMP WITH TIMEZONE’. For backends
that don’t support timezone aware timestamps, has no
effect.

	
class sqlalchemy.dialects.mssql.SMALLMONEY

	Bases: sqlalchemy.types.TypeEngine

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.mssql.SQL_VARIANT

	Bases: sqlalchemy.types.TypeEngine

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.mssql.TEXT(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.Text

The SQL TEXT type.

	
__init__(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	
inherited from the __init__() method of String

Create a string-holding type.

	Parameters:
	
	length¶ – optional, a length for the column for use in
DDL and CAST expressions. May be safely omitted if no CREATE
TABLE will be issued. Certain databases may require a
length for use in DDL, and will raise an exception when
the CREATE TABLE DDL is issued if a VARCHAR
with no length is included. Whether the value is
interpreted as bytes or characters is database specific.

	collation¶ – Optional, a column-level collation for
use in DDL and CAST expressions. Renders using the
COLLATE keyword supported by SQLite, MySQL, and Postgresql.
E.g.:

>>> from sqlalchemy import cast, select, String
>>> print select([cast('some string', String(collation='utf8'))])
SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1

New in version 0.8: Added support for COLLATE to all
string types.

	convert_unicode¶ – When set to True, the
String type will assume that
input is to be passed as Python unicode objects,
and results returned as Python unicode objects.
If the DBAPI in use does not support Python unicode
(which is fewer and fewer these days), SQLAlchemy
will encode/decode the value, using the
value of the encoding parameter passed to
create_engine() as the encoding.

When using a DBAPI that natively supports Python
unicode objects, this flag generally does not
need to be set. For columns that are explicitly
intended to store non-ASCII data, the Unicode
or UnicodeText
types should be used regardless, which feature
the same behavior of convert_unicode but
also indicate an underlying column type that
directly supports unicode, such as NVARCHAR.

For the extremely rare case that Python unicode
is to be encoded/decoded by SQLAlchemy on a backend
that does natively support Python unicode,
the value force can be passed here which will
cause SQLAlchemy’s encode/decode services to be
used unconditionally.

	unicode_error¶ – Optional, a method to use to handle Unicode
conversion errors. Behaves like the errors keyword argument to
the standard library’s string.decode() functions. This flag
requires that convert_unicode is set to force - otherwise,
SQLAlchemy is not guaranteed to handle the task of unicode
conversion. Note that this flag adds significant performance
overhead to row-fetching operations for backends that already
return unicode objects natively (which most DBAPIs do). This
flag should only be used as a last resort for reading
strings from a column with varied or corrupted encodings.

	
class sqlalchemy.dialects.mssql.TIME(precision=None, **kwargs)

	Bases: sqlalchemy.types.TIME

	
class sqlalchemy.dialects.mssql.TINYINT

	Bases: sqlalchemy.types.Integer

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.mssql.UNIQUEIDENTIFIER

	Bases: sqlalchemy.types.TypeEngine

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.mssql.VARCHAR(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.String

The SQL VARCHAR type.

	
__init__(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	
inherited from the __init__() method of String

Create a string-holding type.

	Parameters:
	
	length¶ – optional, a length for the column for use in
DDL and CAST expressions. May be safely omitted if no CREATE
TABLE will be issued. Certain databases may require a
length for use in DDL, and will raise an exception when
the CREATE TABLE DDL is issued if a VARCHAR
with no length is included. Whether the value is
interpreted as bytes or characters is database specific.

	collation¶ – Optional, a column-level collation for
use in DDL and CAST expressions. Renders using the
COLLATE keyword supported by SQLite, MySQL, and Postgresql.
E.g.:

>>> from sqlalchemy import cast, select, String
>>> print select([cast('some string', String(collation='utf8'))])
SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1

New in version 0.8: Added support for COLLATE to all
string types.

	convert_unicode¶ – When set to True, the
String type will assume that
input is to be passed as Python unicode objects,
and results returned as Python unicode objects.
If the DBAPI in use does not support Python unicode
(which is fewer and fewer these days), SQLAlchemy
will encode/decode the value, using the
value of the encoding parameter passed to
create_engine() as the encoding.

When using a DBAPI that natively supports Python
unicode objects, this flag generally does not
need to be set. For columns that are explicitly
intended to store non-ASCII data, the Unicode
or UnicodeText
types should be used regardless, which feature
the same behavior of convert_unicode but
also indicate an underlying column type that
directly supports unicode, such as NVARCHAR.

For the extremely rare case that Python unicode
is to be encoded/decoded by SQLAlchemy on a backend
that does natively support Python unicode,
the value force can be passed here which will
cause SQLAlchemy’s encode/decode services to be
used unconditionally.

	unicode_error¶ – Optional, a method to use to handle Unicode
conversion errors. Behaves like the errors keyword argument to
the standard library’s string.decode() functions. This flag
requires that convert_unicode is set to force - otherwise,
SQLAlchemy is not guaranteed to handle the task of unicode
conversion. Note that this flag adds significant performance
overhead to row-fetching operations for backends that already
return unicode objects natively (which most DBAPIs do). This
flag should only be used as a last resort for reading
strings from a column with varied or corrupted encodings.

PyODBC

Support for the Microsoft SQL Server database via the PyODBC driver.

DBAPI

Documentation and download information (if applicable) for PyODBC is available at:
http://pypi.python.org/pypi/pyodbc/

Connecting

Connect String:

mssql+pyodbc://<username>:<password>@<dsnname>

Connecting to PyODBC

The URL here is to be translated to PyODBC connection strings, as
detailed in ConnectionStrings.

DSN Connections

A DSN-based connection is preferred overall when using ODBC. A
basic DSN-based connection looks like:

engine = create_engine("mssql+pyodbc://scott:tiger@some_dsn")

Which above, will pass the following connection string to PyODBC:

dsn=mydsn;UID=user;PWD=pass

If the username and password are omitted, the DSN form will also add
the Trusted_Connection=yes directive to the ODBC string.

Hostname Connections

Hostname-based connections are not preferred, however are supported.
The ODBC driver name must be explicitly specified:

engine = create_engine("mssql+pyodbc://scott:tiger@myhost:port/databasename?driver=SQL+Server+Native+Client+10.0")

Changed in version 1.0.0: Hostname-based PyODBC connections now require the
SQL Server driver name specified explicitly. SQLAlchemy cannot
choose an optimal default here as it varies based on platform
and installed drivers.

Other keywords interpreted by the Pyodbc dialect to be passed to
pyodbc.connect() in both the DSN and hostname cases include:
odbc_autotranslate, ansi, unicode_results, autocommit.

Pass through exact Pyodbc string

A PyODBC connection string can also be sent exactly as specified in
ConnectionStrings
into the driver using the parameter odbc_connect. The delimeters must be URL escaped, however,
as illustrated below using urllib.quote_plus:

import urllib
params = urllib.quote_plus("DRIVER={SQL Server Native Client 10.0};SERVER=dagger;DATABASE=test;UID=user;PWD=password")

engine = create_engine("mssql+pyodbc:///?odbc_connect=%s" % params)

Unicode Binds

The current state of PyODBC on a unix backend with FreeTDS and/or
EasySoft is poor regarding unicode; different OS platforms and versions of
UnixODBC versus IODBC versus FreeTDS/EasySoft versus PyODBC itself
dramatically alter how strings are received. The PyODBC dialect attempts to
use all the information it knows to determine whether or not a Python unicode
literal can be passed directly to the PyODBC driver or not; while SQLAlchemy
can encode these to bytestrings first, some users have reported that PyODBC
mis-handles bytestrings for certain encodings and requires a Python unicode
object, while the author has observed widespread cases where a Python unicode
is completely misinterpreted by PyODBC, particularly when dealing with
the information schema tables used in table reflection, and the value
must first be encoded to a bytestring.

It is for this reason that whether or not unicode literals for bound
parameters be sent to PyODBC can be controlled using the
supports_unicode_binds parameter to create_engine(). When
left at its default of None, the PyODBC dialect will use its
best guess as to whether or not the driver deals with unicode literals
well. When False, unicode literals will be encoded first, and when
True unicode literals will be passed straight through. This is an interim
flag that hopefully should not be needed when the unicode situation stabilizes
for unix + PyODBC.

New in version 0.7.7: supports_unicode_binds parameter to create_engine().

Rowcount Support

Pyodbc only has partial support for rowcount. See the notes at
Rowcount Support / ORM Versioning for important notes when using ORM
versioning.

mxODBC

Support for the Microsoft SQL Server database via the mxODBC driver.

DBAPI

Documentation and download information (if applicable) for mxODBC is available at:
http://www.egenix.com/

Connecting

Connect String:

mssql+mxodbc://<username>:<password>@<dsnname>

Execution Modes

mxODBC features two styles of statement execution, using the
cursor.execute() and cursor.executedirect() methods (the second being
an extension to the DBAPI specification). The former makes use of a particular
API call specific to the SQL Server Native Client ODBC driver known
SQLDescribeParam, while the latter does not.

mxODBC apparently only makes repeated use of a single prepared statement
when SQLDescribeParam is used. The advantage to prepared statement reuse is
one of performance. The disadvantage is that SQLDescribeParam has a limited
set of scenarios in which bind parameters are understood, including that they
cannot be placed within the argument lists of function calls, anywhere outside
the FROM, or even within subqueries within the FROM clause - making the usage
of bind parameters within SELECT statements impossible for all but the most
simplistic statements.

For this reason, the mxODBC dialect uses the “native” mode by default only for
INSERT, UPDATE, and DELETE statements, and uses the escaped string mode for
all other statements.

This behavior can be controlled via
execution_options() using the
native_odbc_execute flag with a value of True or False, where a
value of True will unconditionally use native bind parameters and a value
of False will unconditionally use string-escaped parameters.

pymssql

Support for the Microsoft SQL Server database via the pymssql driver.

DBAPI

Documentation and download information (if applicable) for pymssql is available at:
http://pymssql.org/

Connecting

Connect String:

mssql+pymssql://<username>:<password>@<freetds_name>/?charset=utf8

pymssql is a Python module that provides a Python DBAPI interface around
FreeTDS. Compatible builds are available for
Linux, MacOSX and Windows platforms.

zxjdbc

Support for the Microsoft SQL Server database via the zxJDBC for Jython driver.

Note

Jython is not supported by current versions of SQLAlchemy. The
zxjdbc dialect should be considered as experimental.

DBAPI

Drivers for this database are available at:
http://jtds.sourceforge.net/

Connecting

Connect String:

mssql+zxjdbc://user:pass@host:port/dbname[?key=value&key=value...]

AdoDBAPI

Support for the Microsoft SQL Server database via the adodbapi driver.

DBAPI

Documentation and download information (if applicable) for adodbapi is available at:
http://adodbapi.sourceforge.net/

Connecting

Connect String:

mssql+adodbapi://<username>:<password>@<dsnname>

Note

The adodbapi dialect is not implemented SQLAlchemy versions 0.6 and
above at this time.

MySQL

Support for the MySQL database.

DBAPI Support

The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.

	MySQL-Python

	PyMySQL

	MySQL Connector/Python

	CyMySQL

	OurSQL

	Google Cloud SQL

	PyODBC

	zxjdbc for Jython

Supported Versions and Features

SQLAlchemy supports MySQL starting with version 4.1 through modern releases.
However, no heroic measures are taken to work around major missing
SQL features - if your server version does not support sub-selects, for
example, they won’t work in SQLAlchemy either.

See the official MySQL documentation for detailed information about features
supported in any given server release.

Connection Timeouts

MySQL features an automatic connection close behavior, for connections that
have been idle for eight hours or more. To circumvent having this issue, use
the pool_recycle option which controls the maximum age of any connection:

engine = create_engine('mysql+mysqldb://...', pool_recycle=3600)

See also

Setting Pool Recycle - full description of the pool recycle feature.

CREATE TABLE arguments including Storage Engines

MySQL’s CREATE TABLE syntax includes a wide array of special options,
including ENGINE, CHARSET, MAX_ROWS, ROW_FORMAT,
INSERT_METHOD, and many more.
To accommodate the rendering of these arguments, specify the form
mysql_argument_name="value". For example, to specify a table with
ENGINE of InnoDB, CHARSET of utf8, and KEY_BLOCK_SIZE
of 1024:

Table('mytable', metadata,
 Column('data', String(32)),
 mysql_engine='InnoDB',
 mysql_charset='utf8',
 mysql_key_block_size="1024"
)

The MySQL dialect will normally transfer any keyword specified as
mysql_keyword_name to be rendered as KEYWORD_NAME in the
CREATE TABLE statement. A handful of these names will render with a space
instead of an underscore; to support this, the MySQL dialect has awareness of
these particular names, which include DATA DIRECTORY
(e.g. mysql_data_directory), CHARACTER SET (e.g.
mysql_character_set) and INDEX DIRECTORY (e.g.
mysql_index_directory).

The most common argument is mysql_engine, which refers to the storage
engine for the table. Historically, MySQL server installations would default
to MyISAM for this value, although newer versions may be defaulting
to InnoDB. The InnoDB engine is typically preferred for its support
of transactions and foreign keys.

A Table that is created in a MySQL database with a storage engine
of MyISAM will be essentially non-transactional, meaning any
INSERT/UPDATE/DELETE statement referring to this table will be invoked as
autocommit. It also will have no support for foreign key constraints; while
the CREATE TABLE statement accepts foreign key options, when using the
MyISAM storage engine these arguments are discarded. Reflecting such a
table will also produce no foreign key constraint information.

For fully atomic transactions as well as support for foreign key
constraints, all participating CREATE TABLE statements must specify a
transactional engine, which in the vast majority of cases is InnoDB.

See also

The InnoDB Storage Engine -
on the MySQL website.

Case Sensitivity and Table Reflection

MySQL has inconsistent support for case-sensitive identifier
names, basing support on specific details of the underlying
operating system. However, it has been observed that no matter
what case sensitivity behavior is present, the names of tables in
foreign key declarations are always received from the database
as all-lower case, making it impossible to accurately reflect a
schema where inter-related tables use mixed-case identifier names.

Therefore it is strongly advised that table names be declared as
all lower case both within SQLAlchemy as well as on the MySQL
database itself, especially if database reflection features are
to be used.

Transaction Isolation Level

All MySQL dialects support setting of transaction isolation level
both via a dialect-specific parameter create_engine.isolation_level
accepted by create_engine(),
as well as the Connection.execution_options.isolation_level
argument as passed to Connection.execution_options().
This feature works by issuing the command
SET SESSION TRANSACTION ISOLATION LEVEL <level> for
each new connection. For the special AUTOCOMMIT isolation level, DBAPI-specific
techniques are used.

To set isolation level using create_engine():

engine = create_engine(
 "mysql://scott:tiger@localhost/test",
 isolation_level="READ UNCOMMITTED"
)

To set using per-connection execution options:

connection = engine.connect()
connection = connection.execution_options(
 isolation_level="READ COMMITTED"
)

Valid values for isolation_level include:

	READ COMMITTED

	READ UNCOMMITTED

	REPEATABLE READ

	SERIALIZABLE

	AUTOCOMMIT

The special AUTOCOMMIT value makes use of the various “autocommit”
attributes provided by specific DBAPIs, and is currently supported by
MySQLdb, MySQL-Client, MySQL-Connector Python, and PyMySQL. Using it,
the MySQL connection will return true for the value of
SELECT @@autocommit;.

New in version 1.1: - added support for the AUTOCOMMIT isolation level.

AUTO_INCREMENT Behavior

When creating tables, SQLAlchemy will automatically set AUTO_INCREMENT on
the first Integer primary key column which is not marked as a
foreign key:

>>> t = Table('mytable', metadata,
... Column('mytable_id', Integer, primary_key=True)
...)
>>> t.create()
CREATE TABLE mytable (
 id INTEGER NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (id)
)

You can disable this behavior by passing False to the
autoincrement argument of Column. This flag
can also be used to enable auto-increment on a secondary column in a
multi-column key for some storage engines:

Table('mytable', metadata,
 Column('gid', Integer, primary_key=True, autoincrement=False),
 Column('id', Integer, primary_key=True)
)

Unicode

Charset Selection

Most MySQL DBAPIs offer the option to set the client character set for
a connection. This is typically delivered using the charset parameter
in the URL, such as:

e = create_engine("mysql+pymysql://scott:tiger@localhost/test?charset=utf8")

This charset is the client character set for the connection. Some
MySQL DBAPIs will default this to a value such as latin1, and some
will make use of the default-character-set setting in the my.cnf
file as well. Documentation for the DBAPI in use should be consulted
for specific behavior.

The encoding used for Unicode has traditionally been 'utf8'. However,
for MySQL versions 5.5.3 on forward, a new MySQL-specific encoding
'utf8mb4' has been introduced. The rationale for this new encoding
is due to the fact that MySQL’s utf-8 encoding only supports
codepoints up to three bytes instead of four. Therefore,
when communicating with a MySQL database
that includes codepoints more than three bytes in size,
this new charset is preferred, if supported by both the database as well
as the client DBAPI, as in:

e = create_engine("mysql+pymysql://scott:tiger@localhost/test?charset=utf8mb4")

At the moment, up-to-date versions of MySQLdb and PyMySQL support the
utf8mb4 charset. Other DBAPIs such as MySQL-Connector and OurSQL
may not support it as of yet.

In order to use utf8mb4 encoding, changes to
the MySQL schema and/or server configuration may be required.

See also

The utf8mb4 Character Set - in the MySQL documentation

Unicode Encoding / Decoding

All modern MySQL DBAPIs all offer the service of handling the encoding and
decoding of unicode data between the Python application space and the database.
As this was not always the case, SQLAlchemy also includes a comprehensive system
of performing the encode/decode task as well. As only one of these systems
should be in use at at time, SQLAlchemy has long included functionality
to automatically detect upon first connection whether or not the DBAPI is
automatically handling unicode.

Whether or not the MySQL DBAPI will handle encoding can usually be configured
using a DBAPI flag use_unicode, which is known to be supported at least
by MySQLdb, PyMySQL, and MySQL-Connector. Setting this value to 0
in the “connect args” or query string will have the effect of disabling the
DBAPI’s handling of unicode, such that it instead will return data of the
str type or bytes type, with data in the configured charset:

connect while disabling the DBAPI's unicode encoding/decoding
e = create_engine("mysql+mysqldb://scott:tiger@localhost/test?charset=utf8&use_unicode=0")

Current recommendations for modern DBAPIs are as follows:

	It is generally always safe to leave the use_unicode flag set at
its default; that is, don’t use it at all.

	Under Python 3, the use_unicode=0 flag should never be used.
SQLAlchemy under Python 3 generally assumes the DBAPI receives and returns
string values as Python 3 strings, which are inherently unicode objects.

	Under Python 2 with MySQLdb, the use_unicode=0 flag will offer
superior performance, as MySQLdb’s unicode converters under Python 2 only
have been observed to have unusually slow performance compared to SQLAlchemy’s
fast C-based encoders/decoders.

In short: don’t specify use_unicode at all, with the possible
exception of use_unicode=0 on MySQLdb with Python 2 only for a
potential performance gain.

Ansi Quoting Style

MySQL features two varieties of identifier “quoting style”, one using
backticks and the other using quotes, e.g. `some_identifier` vs.
"some_identifier". All MySQL dialects detect which version
is in use by checking the value of sql_mode when a connection is first
established with a particular Engine. This quoting style comes
into play when rendering table and column names as well as when reflecting
existing database structures. The detection is entirely automatic and
no special configuration is needed to use either quoting style.

Changed in version 0.6: detection of ANSI quoting style is entirely automatic,
there’s no longer any end-user create_engine() options in this regard.

MySQL SQL Extensions

Many of the MySQL SQL extensions are handled through SQLAlchemy’s generic
function and operator support:

table.select(table.c.password==func.md5('plaintext'))
table.select(table.c.username.op('regexp')('^[a-d]'))

And of course any valid MySQL statement can be executed as a string as well.

Some limited direct support for MySQL extensions to SQL is currently
available.

	SELECT pragma:

select(..., prefixes=['HIGH_PRIORITY', 'SQL_SMALL_RESULT'])

	UPDATE with LIMIT:

update(..., mysql_limit=10)

rowcount Support

SQLAlchemy standardizes the DBAPI cursor.rowcount attribute to be the
usual definition of “number of rows matched by an UPDATE or DELETE” statement.
This is in contradiction to the default setting on most MySQL DBAPI drivers,
which is “number of rows actually modified/deleted”. For this reason, the
SQLAlchemy MySQL dialects always add the constants.CLIENT.FOUND_ROWS
flag, or whatever is equivalent for the target dialect, upon connection.
This setting is currently hardcoded.

See also

ResultProxy.rowcount

CAST Support

MySQL documents the CAST operator as available in version 4.0.2. When using
the SQLAlchemy cast() function, SQLAlchemy
will not render the CAST token on MySQL before this version, based on server
version detection, instead rendering the internal expression directly.

CAST may still not be desirable on an early MySQL version post-4.0.2, as it
didn’t add all datatype support until 4.1.1. If your application falls into
this narrow area, the behavior of CAST can be controlled using the
Custom SQL Constructs and Compilation Extension system, as per the recipe below:

from sqlalchemy.sql.expression import Cast
from sqlalchemy.ext.compiler import compiles

@compiles(Cast, 'mysql')
def _check_mysql_version(element, compiler, **kw):
 if compiler.dialect.server_version_info < (4, 1, 0):
 return compiler.process(element.clause, **kw)
 else:
 return compiler.visit_cast(element, **kw)

The above function, which only needs to be declared once
within an application, overrides the compilation of the
cast() construct to check for version 4.1.0 before
fully rendering CAST; else the internal element of the
construct is rendered directly.

MySQL Specific Index Options

MySQL-specific extensions to the Index construct are available.

Index Length

MySQL provides an option to create index entries with a certain length, where
“length” refers to the number of characters or bytes in each value which will
become part of the index. SQLAlchemy provides this feature via the
mysql_length parameter:

Index('my_index', my_table.c.data, mysql_length=10)

Index('a_b_idx', my_table.c.a, my_table.c.b, mysql_length={'a': 4,
 'b': 9})

Prefix lengths are given in characters for nonbinary string types and in bytes
for binary string types. The value passed to the keyword argument must be
either an integer (and, thus, specify the same prefix length value for all
columns of the index) or a dict in which keys are column names and values are
prefix length values for corresponding columns. MySQL only allows a length for
a column of an index if it is for a CHAR, VARCHAR, TEXT, BINARY, VARBINARY and
BLOB.

New in version 0.8.2: mysql_length may now be specified as a dictionary
for use with composite indexes.

Index Types

Some MySQL storage engines permit you to specify an index type when creating
an index or primary key constraint. SQLAlchemy provides this feature via the
mysql_using parameter on Index:

Index('my_index', my_table.c.data, mysql_using='hash')

As well as the mysql_using parameter on PrimaryKeyConstraint:

PrimaryKeyConstraint("data", mysql_using='hash')

The value passed to the keyword argument will be simply passed through to the
underlying CREATE INDEX or PRIMARY KEY clause, so it must be a valid index
type for your MySQL storage engine.

More information can be found at:

http://dev.mysql.com/doc/refman/5.0/en/create-index.html

http://dev.mysql.com/doc/refman/5.0/en/create-table.html

MySQL Foreign Keys

MySQL’s behavior regarding foreign keys has some important caveats.

Foreign Key Arguments to Avoid

MySQL does not support the foreign key arguments “DEFERRABLE”, “INITIALLY”,
or “MATCH”. Using the deferrable or initially keyword argument with
ForeignKeyConstraint or ForeignKey will have the effect of
these keywords being rendered in a DDL expression, which will then raise an
error on MySQL. In order to use these keywords on a foreign key while having
them ignored on a MySQL backend, use a custom compile rule:

from sqlalchemy.ext.compiler import compiles
from sqlalchemy.schema import ForeignKeyConstraint

@compiles(ForeignKeyConstraint, "mysql")
def process(element, compiler, **kw):
 element.deferrable = element.initially = None
 return compiler.visit_foreign_key_constraint(element, **kw)

Changed in version 0.9.0: - the MySQL backend no longer silently ignores
the deferrable or initially keyword arguments of
ForeignKeyConstraint and ForeignKey.

The “MATCH” keyword is in fact more insidious, and is explicitly disallowed
by SQLAlchemy in conjunction with the MySQL backend. This argument is
silently ignored by MySQL, but in addition has the effect of ON UPDATE and ON
DELETE options also being ignored by the backend. Therefore MATCH should
never be used with the MySQL backend; as is the case with DEFERRABLE and
INITIALLY, custom compilation rules can be used to correct a MySQL
ForeignKeyConstraint at DDL definition time.

New in version 0.9.0: - the MySQL backend will raise a
CompileError when the match keyword is used with
ForeignKeyConstraint or ForeignKey.

Reflection of Foreign Key Constraints

Not all MySQL storage engines support foreign keys. When using the
very common MyISAM MySQL storage engine, the information loaded by table
reflection will not include foreign keys. For these tables, you may supply a
ForeignKeyConstraint at reflection time:

Table('mytable', metadata,
 ForeignKeyConstraint(['other_id'], ['othertable.other_id']),
 autoload=True
)

See also

CREATE TABLE arguments including Storage Engines

MySQL Unique Constraints and Reflection

SQLAlchemy supports both the Index construct with the
flag unique=True, indicating a UNIQUE index, as well as the
UniqueConstraint construct, representing a UNIQUE constraint.
Both objects/syntaxes are supported by MySQL when emitting DDL to create
these constraints. However, MySQL does not have a unique constraint
construct that is separate from a unique index; that is, the “UNIQUE”
constraint on MySQL is equivalent to creating a “UNIQUE INDEX”.

When reflecting these constructs, the Inspector.get_indexes()
and the Inspector.get_unique_constraints() methods will both
return an entry for a UNIQUE index in MySQL. However, when performing
full table reflection using Table(..., autoload=True),
the UniqueConstraint construct is
not part of the fully reflected Table construct under any
circumstances; this construct is always represented by a Index
with the unique=True setting present in the Table.indexes
collection.

TIMESTAMP Columns and NULL

MySQL historically enforces that a column which specifies the
TIMESTAMP datatype implicitly includes a default value of
CURRENT_TIMESTAMP, even though this is not stated, and additionally
sets the column as NOT NULL, the opposite behavior vs. that of all
other datatypes:

mysql> CREATE TABLE ts_test (
 -> a INTEGER,
 -> b INTEGER NOT NULL,
 -> c TIMESTAMP,
 -> d TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 -> e TIMESTAMP NULL);
Query OK, 0 rows affected (0.03 sec)

mysql> SHOW CREATE TABLE ts_test;
+---------+---
| Table | Create Table
+---------+---
| ts_test | CREATE TABLE `ts_test` (
 `a` int(11) DEFAULT NULL,
 `b` int(11) NOT NULL,
 `c` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 `d` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `e` timestamp NULL DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1

Above, we see that an INTEGER column defaults to NULL, unless it is specified
with NOT NULL. But when the column is of type TIMESTAMP, an implicit
default of CURRENT_TIMESTAMP is generated which also coerces the column
to be a NOT NULL, even though we did not specify it as such.

This behavior of MySQL can be changed on the MySQL side using the
explicit_defaults_for_timestamp configuration flag introduced in
MySQL 5.6. With this server setting enabled, TIMESTAMP columns behave like
any other datatype on the MySQL side with regards to defaults and nullability.

However, to accommodate the vast majority of MySQL databases that do not
specify this new flag, SQLAlchemy emits the “NULL” specifier explicitly with
any TIMESTAMP column that does not specify nullable=False. In order
to accommodate newer databases that specify explicit_defaults_for_timestamp,
SQLAlchemy also emits NOT NULL for TIMESTAMP columns that do specify
nullable=False. The following example illustrates:

from sqlalchemy import MetaData, Integer, Table, Column, text
from sqlalchemy.dialects.mysql import TIMESTAMP

m = MetaData()
t = Table('ts_test', m,
 Column('a', Integer),
 Column('b', Integer, nullable=False),
 Column('c', TIMESTAMP),
 Column('d', TIMESTAMP, nullable=False)
)

from sqlalchemy import create_engine
e = create_engine("mysql://scott:tiger@localhost/test", echo=True)
m.create_all(e)

output:

CREATE TABLE ts_test (
 a INTEGER,
 b INTEGER NOT NULL,
 c TIMESTAMP NULL,
 d TIMESTAMP NOT NULL
)

Changed in version 1.0.0: - SQLAlchemy now renders NULL or NOT NULL in all
cases for TIMESTAMP columns, to accommodate
explicit_defaults_for_timestamp. Prior to this version, it will
not render “NOT NULL” for a TIMESTAMP column that is nullable=False.

MySQL Data Types

As with all SQLAlchemy dialects, all UPPERCASE types that are known to be
valid with MySQL are importable from the top level dialect:

from sqlalchemy.dialects.mysql import \
 BIGINT, BINARY, BIT, BLOB, BOOLEAN, CHAR, DATE, \
 DATETIME, DECIMAL, DECIMAL, DOUBLE, ENUM, FLOAT, INTEGER, \
 LONGBLOB, LONGTEXT, MEDIUMBLOB, MEDIUMINT, MEDIUMTEXT, NCHAR, \
 NUMERIC, NVARCHAR, REAL, SET, SMALLINT, TEXT, TIME, TIMESTAMP, \
 TINYBLOB, TINYINT, TINYTEXT, VARBINARY, VARCHAR, YEAR

Types which are specific to MySQL, or have MySQL-specific
construction arguments, are as follows:

	
class sqlalchemy.dialects.mysql.BIGINT(display_width=None, **kw)

	Bases: sqlalchemy.dialects.mysql.types._IntegerType, sqlalchemy.types.BIGINT

MySQL BIGINTEGER type.

	
__init__(display_width=None, **kw)

	Construct a BIGINTEGER.

	Parameters:
	
	display_width¶ – Optional, maximum display width for this number.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.BINARY(length=None)

	Bases: sqlalchemy.types._Binary

The SQL BINARY type.

	
class sqlalchemy.dialects.mysql.BIT(length=None)

	Bases: sqlalchemy.types.TypeEngine

MySQL BIT type.

This type is for MySQL 5.0.3 or greater for MyISAM, and 5.0.5 or greater
for MyISAM, MEMORY, InnoDB and BDB. For older versions, use a
MSTinyInteger() type.

	
__init__(length=None)

	Construct a BIT.

	Parameters:
	length¶ – Optional, number of bits.

	
class sqlalchemy.dialects.mysql.BLOB(length=None)

	Bases: sqlalchemy.types.LargeBinary

The SQL BLOB type.

	
__init__(length=None)

	
inherited from the __init__() method of LargeBinary

Construct a LargeBinary type.

	Parameters:
	length¶ – optional, a length for the column for use in
DDL statements, for those binary types that accept a length,
such as the MySQL BLOB type.

	
class sqlalchemy.dialects.mysql.BOOLEAN(create_constraint=True, name=None, _create_events=True)

	Bases: sqlalchemy.types.Boolean

The SQL BOOLEAN type.

	
__init__(create_constraint=True, name=None, _create_events=True)

	
inherited from the __init__() method of Boolean

Construct a Boolean.

	Parameters:
	
	create_constraint¶ – defaults to True. If the boolean
is generated as an int/smallint, also create a CHECK constraint
on the table that ensures 1 or 0 as a value.

	name¶ – if a CHECK constraint is generated, specify
the name of the constraint.

	
class sqlalchemy.dialects.mysql.CHAR(length=None, **kwargs)

	Bases: sqlalchemy.dialects.mysql.types._StringType, sqlalchemy.types.CHAR

MySQL CHAR type, for fixed-length character data.

	
__init__(length=None, **kwargs)

	Construct a CHAR.

	Parameters:
	
	length¶ – Maximum data length, in characters.

	binary¶ – Optional, use the default binary collation for the
national character set. This does not affect the type of data
stored, use a BINARY type for binary data.

	collation¶ – Optional, request a particular collation. Must be
compatible with the national character set.

	
class sqlalchemy.dialects.mysql.DATE

	Bases: sqlalchemy.types.Date

The SQL DATE type.

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.mysql.DATETIME(timezone=False, fsp=None)

	Bases: sqlalchemy.types.DATETIME

MySQL DATETIME type.

	
__init__(timezone=False, fsp=None)

	Construct a MySQL DATETIME type.

	Parameters:
	
	timezone¶ – not used by the MySQL dialect.

	fsp¶ – fractional seconds precision value.
MySQL 5.6.4 supports storage of fractional seconds;
this parameter will be used when emitting DDL
for the DATETIME type.

Note

DBAPI driver support for fractional seconds may
be limited; current support includes
MySQL Connector/Python.

New in version 0.8.5: Added MySQL-specific mysql.DATETIME
with fractional seconds support.

	
class sqlalchemy.dialects.mysql.DECIMAL(precision=None, scale=None, asdecimal=True, **kw)

	Bases: sqlalchemy.dialects.mysql.types._NumericType, sqlalchemy.types.DECIMAL

MySQL DECIMAL type.

	
__init__(precision=None, scale=None, asdecimal=True, **kw)

	Construct a DECIMAL.

	Parameters:
	
	precision¶ – Total digits in this number. If scale and precision
are both None, values are stored to limits allowed by the server.

	scale¶ – The number of digits after the decimal point.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.DOUBLE(precision=None, scale=None, asdecimal=True, **kw)

	Bases: sqlalchemy.dialects.mysql.types._FloatType

MySQL DOUBLE type.

	
__init__(precision=None, scale=None, asdecimal=True, **kw)

	Construct a DOUBLE.

Note

The DOUBLE type by default converts from float
to Decimal, using a truncation that defaults to 10 digits.
Specify either scale=n or decimal_return_scale=n in order
to change this scale, or asdecimal=False to return values
directly as Python floating points.

	Parameters:
	
	precision¶ – Total digits in this number. If scale and precision
are both None, values are stored to limits allowed by the server.

	scale¶ – The number of digits after the decimal point.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.ENUM(*enums, **kw)

	Bases: sqlalchemy.types.Enum, sqlalchemy.dialects.mysql.enumerated._EnumeratedValues

MySQL ENUM type.

	
__init__(*enums, **kw)

	Construct an ENUM.

E.g.:

Column('myenum', ENUM("foo", "bar", "baz"))

	Parameters:
	
	enums¶ – The range of valid values for this ENUM. Values will be
quoted when generating the schema according to the quoting flag (see
below). This object may also be a PEP-435-compliant enumerated
type.

	strict¶ – This flag has no effect.

Changed in version The: MySQL ENUM type as well as the base Enum
type now validates all Python data values.

	charset¶ – Optional, a column-level character set for this string
value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.

	collation¶ – Optional, a column-level collation for this string
value. Takes precedence to ‘binary’ short-hand.

	ascii¶ – Defaults to False: short-hand for the latin1
character set, generates ASCII in schema.

	unicode¶ – Defaults to False: short-hand for the ucs2
character set, generates UNICODE in schema.

	binary¶ – Defaults to False: short-hand, pick the binary
collation type that matches the column’s character set. Generates
BINARY in schema. This does not affect the type of data stored,
only the collation of character data.

	quoting¶ – Defaults to ‘auto’: automatically determine enum value
quoting. If all enum values are surrounded by the same quoting
character, then use ‘quoted’ mode. Otherwise, use ‘unquoted’ mode.

‘quoted’: values in enums are already quoted, they will be used
directly when generating the schema - this usage is deprecated.

‘unquoted’: values in enums are not quoted, they will be escaped and
surrounded by single quotes when generating the schema.

Previous versions of this type always required manually quoted
values to be supplied; future versions will always quote the string
literals for you. This is a transitional option.

	
class sqlalchemy.dialects.mysql.FLOAT(precision=None, scale=None, asdecimal=False, **kw)

	Bases: sqlalchemy.dialects.mysql.types._FloatType, sqlalchemy.types.FLOAT

MySQL FLOAT type.

	
__init__(precision=None, scale=None, asdecimal=False, **kw)

	Construct a FLOAT.

	Parameters:
	
	precision¶ – Total digits in this number. If scale and precision
are both None, values are stored to limits allowed by the server.

	scale¶ – The number of digits after the decimal point.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.INTEGER(display_width=None, **kw)

	Bases: sqlalchemy.dialects.mysql.types._IntegerType, sqlalchemy.types.INTEGER

MySQL INTEGER type.

	
__init__(display_width=None, **kw)

	Construct an INTEGER.

	Parameters:
	
	display_width¶ – Optional, maximum display width for this number.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.JSON(none_as_null=False)

	Bases: sqlalchemy.types.JSON

MySQL JSON type.

MySQL supports JSON as of version 5.7. Note that MariaDB does not
support JSON at the time of this writing.

The mysql.JSON type supports persistence of JSON values
as well as the core index operations provided by types.JSON
datatype, by adapting the operations to render the JSON_EXTRACT
function at the database level.

New in version 1.1.

	
class sqlalchemy.dialects.mysql.LONGBLOB(length=None)

	Bases: sqlalchemy.types._Binary

MySQL LONGBLOB type, for binary data up to 2^32 bytes.

	
class sqlalchemy.dialects.mysql.LONGTEXT(**kwargs)

	Bases: sqlalchemy.dialects.mysql.types._StringType

MySQL LONGTEXT type, for text up to 2^32 characters.

	
__init__(**kwargs)

	Construct a LONGTEXT.

	Parameters:
	
	charset¶ – Optional, a column-level character set for this string
value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.

	collation¶ – Optional, a column-level collation for this string
value. Takes precedence to ‘binary’ short-hand.

	ascii¶ – Defaults to False: short-hand for the latin1
character set, generates ASCII in schema.

	unicode¶ – Defaults to False: short-hand for the ucs2
character set, generates UNICODE in schema.

	national¶ – Optional. If true, use the server’s configured
national character set.

	binary¶ – Defaults to False: short-hand, pick the binary
collation type that matches the column’s character set. Generates
BINARY in schema. This does not affect the type of data stored,
only the collation of character data.

	
class sqlalchemy.dialects.mysql.MEDIUMBLOB(length=None)

	Bases: sqlalchemy.types._Binary

MySQL MEDIUMBLOB type, for binary data up to 2^24 bytes.

	
class sqlalchemy.dialects.mysql.MEDIUMINT(display_width=None, **kw)

	Bases: sqlalchemy.dialects.mysql.types._IntegerType

MySQL MEDIUMINTEGER type.

	
__init__(display_width=None, **kw)

	Construct a MEDIUMINTEGER

	Parameters:
	
	display_width¶ – Optional, maximum display width for this number.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.MEDIUMTEXT(**kwargs)

	Bases: sqlalchemy.dialects.mysql.types._StringType

MySQL MEDIUMTEXT type, for text up to 2^24 characters.

	
__init__(**kwargs)

	Construct a MEDIUMTEXT.

	Parameters:
	
	charset¶ – Optional, a column-level character set for this string
value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.

	collation¶ – Optional, a column-level collation for this string
value. Takes precedence to ‘binary’ short-hand.

	ascii¶ – Defaults to False: short-hand for the latin1
character set, generates ASCII in schema.

	unicode¶ – Defaults to False: short-hand for the ucs2
character set, generates UNICODE in schema.

	national¶ – Optional. If true, use the server’s configured
national character set.

	binary¶ – Defaults to False: short-hand, pick the binary
collation type that matches the column’s character set. Generates
BINARY in schema. This does not affect the type of data stored,
only the collation of character data.

	
class sqlalchemy.dialects.mysql.NCHAR(length=None, **kwargs)

	Bases: sqlalchemy.dialects.mysql.types._StringType, sqlalchemy.types.NCHAR

MySQL NCHAR type.

For fixed-length character data in the server’s configured national
character set.

	
__init__(length=None, **kwargs)

	Construct an NCHAR.

	Parameters:
	
	length¶ – Maximum data length, in characters.

	binary¶ – Optional, use the default binary collation for the
national character set. This does not affect the type of data
stored, use a BINARY type for binary data.

	collation¶ – Optional, request a particular collation. Must be
compatible with the national character set.

	
class sqlalchemy.dialects.mysql.NUMERIC(precision=None, scale=None, asdecimal=True, **kw)

	Bases: sqlalchemy.dialects.mysql.types._NumericType, sqlalchemy.types.NUMERIC

MySQL NUMERIC type.

	
__init__(precision=None, scale=None, asdecimal=True, **kw)

	Construct a NUMERIC.

	Parameters:
	
	precision¶ – Total digits in this number. If scale and precision
are both None, values are stored to limits allowed by the server.

	scale¶ – The number of digits after the decimal point.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.NVARCHAR(length=None, **kwargs)

	Bases: sqlalchemy.dialects.mysql.types._StringType, sqlalchemy.types.NVARCHAR

MySQL NVARCHAR type.

For variable-length character data in the server’s configured national
character set.

	
__init__(length=None, **kwargs)

	Construct an NVARCHAR.

	Parameters:
	
	length¶ – Maximum data length, in characters.

	binary¶ – Optional, use the default binary collation for the
national character set. This does not affect the type of data
stored, use a BINARY type for binary data.

	collation¶ – Optional, request a particular collation. Must be
compatible with the national character set.

	
class sqlalchemy.dialects.mysql.REAL(precision=None, scale=None, asdecimal=True, **kw)

	Bases: sqlalchemy.dialects.mysql.types._FloatType, sqlalchemy.types.REAL

MySQL REAL type.

	
__init__(precision=None, scale=None, asdecimal=True, **kw)

	Construct a REAL.

Note

The REAL type by default converts from float
to Decimal, using a truncation that defaults to 10 digits.
Specify either scale=n or decimal_return_scale=n in order
to change this scale, or asdecimal=False to return values
directly as Python floating points.

	Parameters:
	
	precision¶ – Total digits in this number. If scale and precision
are both None, values are stored to limits allowed by the server.

	scale¶ – The number of digits after the decimal point.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.SET(*values, **kw)

	Bases: sqlalchemy.dialects.mysql.enumerated._EnumeratedValues

MySQL SET type.

	
__init__(*values, **kw)

	Construct a SET.

E.g.:

Column('myset', SET("foo", "bar", "baz"))

The list of potential values is required in the case that this
set will be used to generate DDL for a table, or if the
SET.retrieve_as_bitwise flag is set to True.

	Parameters:
	
	values¶ – The range of valid values for this SET.

	convert_unicode¶ – Same flag as that of
String.convert_unicode.

	collation¶ – same as that of String.collation

	charset¶ – same as that of VARCHAR.charset.

	ascii¶ – same as that of VARCHAR.ascii.

	unicode¶ – same as that of VARCHAR.unicode.

	binary¶ – same as that of VARCHAR.binary.

	quoting¶ – Defaults to ‘auto’: automatically determine set value
quoting. If all values are surrounded by the same quoting
character, then use ‘quoted’ mode. Otherwise, use ‘unquoted’ mode.

‘quoted’: values in enums are already quoted, they will be used
directly when generating the schema - this usage is deprecated.

‘unquoted’: values in enums are not quoted, they will be escaped and
surrounded by single quotes when generating the schema.

Previous versions of this type always required manually quoted
values to be supplied; future versions will always quote the string
literals for you. This is a transitional option.

New in version 0.9.0.

	retrieve_as_bitwise¶ – if True, the data for the set type will be
persisted and selected using an integer value, where a set is coerced
into a bitwise mask for persistence. MySQL allows this mode which
has the advantage of being able to store values unambiguously,
such as the blank string ''. The datatype will appear
as the expression col + 0 in a SELECT statement, so that the
value is coerced into an integer value in result sets.
This flag is required if one wishes
to persist a set that can store the blank string '' as a value.

Warning

When using mysql.SET.retrieve_as_bitwise, it is
essential that the list of set values is expressed in the
exact same order as exists on the MySQL database.

New in version 1.0.0.

	
class sqlalchemy.dialects.mysql.SMALLINT(display_width=None, **kw)

	Bases: sqlalchemy.dialects.mysql.types._IntegerType, sqlalchemy.types.SMALLINT

MySQL SMALLINTEGER type.

	
__init__(display_width=None, **kw)

	Construct a SMALLINTEGER.

	Parameters:
	
	display_width¶ – Optional, maximum display width for this number.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.TEXT(length=None, **kw)

	Bases: sqlalchemy.dialects.mysql.types._StringType, sqlalchemy.types.TEXT

MySQL TEXT type, for text up to 2^16 characters.

	
__init__(length=None, **kw)

	Construct a TEXT.

	Parameters:
	
	length¶ – Optional, if provided the server may optimize storage
by substituting the smallest TEXT type sufficient to store
length characters.

	charset¶ – Optional, a column-level character set for this string
value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.

	collation¶ – Optional, a column-level collation for this string
value. Takes precedence to ‘binary’ short-hand.

	ascii¶ – Defaults to False: short-hand for the latin1
character set, generates ASCII in schema.

	unicode¶ – Defaults to False: short-hand for the ucs2
character set, generates UNICODE in schema.

	national¶ – Optional. If true, use the server’s configured
national character set.

	binary¶ – Defaults to False: short-hand, pick the binary
collation type that matches the column’s character set. Generates
BINARY in schema. This does not affect the type of data stored,
only the collation of character data.

	
class sqlalchemy.dialects.mysql.TIME(timezone=False, fsp=None)

	Bases: sqlalchemy.types.TIME

MySQL TIME type.

	
__init__(timezone=False, fsp=None)

	Construct a MySQL TIME type.

	Parameters:
	
	timezone¶ – not used by the MySQL dialect.

	fsp¶ – fractional seconds precision value.
MySQL 5.6 supports storage of fractional seconds;
this parameter will be used when emitting DDL
for the TIME type.

Note

DBAPI driver support for fractional seconds may
be limited; current support includes
MySQL Connector/Python.

New in version 0.8: The MySQL-specific TIME
type as well as fractional seconds support.

	
class sqlalchemy.dialects.mysql.TIMESTAMP(timezone=False, fsp=None)

	Bases: sqlalchemy.types.TIMESTAMP

MySQL TIMESTAMP type.

	
__init__(timezone=False, fsp=None)

	Construct a MySQL TIMESTAMP type.

	Parameters:
	
	timezone¶ – not used by the MySQL dialect.

	fsp¶ – fractional seconds precision value.
MySQL 5.6.4 supports storage of fractional seconds;
this parameter will be used when emitting DDL
for the TIMESTAMP type.

Note

DBAPI driver support for fractional seconds may
be limited; current support includes
MySQL Connector/Python.

New in version 0.8.5: Added MySQL-specific mysql.TIMESTAMP
with fractional seconds support.

	
class sqlalchemy.dialects.mysql.TINYBLOB(length=None)

	Bases: sqlalchemy.types._Binary

MySQL TINYBLOB type, for binary data up to 2^8 bytes.

	
class sqlalchemy.dialects.mysql.TINYINT(display_width=None, **kw)

	Bases: sqlalchemy.dialects.mysql.types._IntegerType

MySQL TINYINT type.

	
__init__(display_width=None, **kw)

	Construct a TINYINT.

	Parameters:
	
	display_width¶ – Optional, maximum display width for this number.

	unsigned¶ – a boolean, optional.

	zerofill¶ – Optional. If true, values will be stored as strings
left-padded with zeros. Note that this does not effect the values
returned by the underlying database API, which continue to be
numeric.

	
class sqlalchemy.dialects.mysql.TINYTEXT(**kwargs)

	Bases: sqlalchemy.dialects.mysql.types._StringType

MySQL TINYTEXT type, for text up to 2^8 characters.

	
__init__(**kwargs)

	Construct a TINYTEXT.

	Parameters:
	
	charset¶ – Optional, a column-level character set for this string
value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.

	collation¶ – Optional, a column-level collation for this string
value. Takes precedence to ‘binary’ short-hand.

	ascii¶ – Defaults to False: short-hand for the latin1
character set, generates ASCII in schema.

	unicode¶ – Defaults to False: short-hand for the ucs2
character set, generates UNICODE in schema.

	national¶ – Optional. If true, use the server’s configured
national character set.

	binary¶ – Defaults to False: short-hand, pick the binary
collation type that matches the column’s character set. Generates
BINARY in schema. This does not affect the type of data stored,
only the collation of character data.

	
class sqlalchemy.dialects.mysql.VARBINARY(length=None)

	Bases: sqlalchemy.types._Binary

The SQL VARBINARY type.

	
class sqlalchemy.dialects.mysql.VARCHAR(length=None, **kwargs)

	Bases: sqlalchemy.dialects.mysql.types._StringType, sqlalchemy.types.VARCHAR

MySQL VARCHAR type, for variable-length character data.

	
__init__(length=None, **kwargs)

	Construct a VARCHAR.

	Parameters:
	
	charset¶ – Optional, a column-level character set for this string
value. Takes precedence to ‘ascii’ or ‘unicode’ short-hand.

	collation¶ – Optional, a column-level collation for this string
value. Takes precedence to ‘binary’ short-hand.

	ascii¶ – Defaults to False: short-hand for the latin1
character set, generates ASCII in schema.

	unicode¶ – Defaults to False: short-hand for the ucs2
character set, generates UNICODE in schema.

	national¶ – Optional. If true, use the server’s configured
national character set.

	binary¶ – Defaults to False: short-hand, pick the binary
collation type that matches the column’s character set. Generates
BINARY in schema. This does not affect the type of data stored,
only the collation of character data.

	
class sqlalchemy.dialects.mysql.YEAR(display_width=None)

	Bases: sqlalchemy.types.TypeEngine

MySQL YEAR type, for single byte storage of years 1901-2155.

MySQL-Python

Support for the MySQL database via the MySQL-Python driver.

DBAPI

Documentation and download information (if applicable) for MySQL-Python is available at:
http://sourceforge.net/projects/mysql-python

Connecting

Connect String:

mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>

Unicode

Please see Unicode for current recommendations on unicode
handling.

Py3K Support

Currently, MySQLdb only runs on Python 2 and development has been stopped.
mysqlclient is fork of MySQLdb and provides Python 3 support as well
as some bugfixes.

Using MySQLdb with Google Cloud SQL

Google Cloud SQL now recommends use of the MySQLdb dialect. Connect
using a URL like the following:

mysql+mysqldb://root@/<dbname>?unix_socket=/cloudsql/<projectid>:<instancename>

pymysql

Support for the MySQL database via the PyMySQL driver.

DBAPI

Documentation and download information (if applicable) for PyMySQL is available at:
http://www.pymysql.org/

Connecting

Connect String:

mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]

Unicode

Please see Unicode for current recommendations on unicode
handling.

MySQL-Python Compatibility

The pymysql DBAPI is a pure Python port of the MySQL-python (MySQLdb) driver,
and targets 100% compatibility. Most behavioral notes for MySQL-python apply
to the pymysql driver as well.

MySQL-Connector

Support for the MySQL database via the MySQL Connector/Python driver.

DBAPI

Documentation and download information (if applicable) for MySQL Connector/Python is available at:
http://dev.mysql.com/downloads/connector/python/

Connecting

Connect String:

mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>

Unicode

Please see Unicode for current recommendations on unicode
handling.

cymysql

Support for the MySQL database via the CyMySQL driver.

DBAPI

Documentation and download information (if applicable) for CyMySQL is available at:
https://github.com/nakagami/CyMySQL

Connecting

Connect String:

mysql+cymysql://<username>:<password>@<host>/<dbname>[?<options>]

OurSQL

Support for the MySQL database via the OurSQL driver.

DBAPI

Documentation and download information (if applicable) for OurSQL is available at:
http://packages.python.org/oursql/

Connecting

Connect String:

mysql+oursql://<user>:<password>@<host>[:<port>]/<dbname>

Unicode

Please see Unicode for current recommendations on unicode
handling.

Google App Engine

Support for the MySQL database via the Google Cloud SQL driver.

This dialect is based primarily on the mysql.mysqldb dialect with
minimal changes.

New in version 0.7.8.

Deprecated since version 1.0: This dialect is no longer necessary for
Google Cloud SQL; the MySQLdb dialect can be used directly.
Cloud SQL now recommends creating connections via the
mysql dialect using the URL format

mysql+mysqldb://root@/<dbname>?unix_socket=/cloudsql/<projectid>:<instancename>

DBAPI

Documentation and download information (if applicable) for Google Cloud SQL is available at:
https://developers.google.com/appengine/docs/python/cloud-sql/developers-guide

Connecting

Connect String:

mysql+gaerdbms:///<dbname>?instance=<instancename>

Pooling

Google App Engine connections appear to be randomly recycled,
so the dialect does not pool connections. The NullPool
implementation is installed within the Engine by
default.

pyodbc

Support for the MySQL database via the PyODBC driver.

Note

The PyODBC for MySQL dialect is not well supported, and
is subject to unresolved character encoding issues
which exist within the current ODBC drivers available.
(see http://code.google.com/p/pyodbc/issues/detail?id=25).
Other dialects for MySQL are recommended.

DBAPI

Documentation and download information (if applicable) for PyODBC is available at:
http://pypi.python.org/pypi/pyodbc/

Connecting

Connect String:

mysql+pyodbc://<username>:<password>@<dsnname>

zxjdbc

Support for the MySQL database via the zxjdbc for Jython driver.

Note

Jython is not supported by current versions of SQLAlchemy. The
zxjdbc dialect should be considered as experimental.

DBAPI

Drivers for this database are available at:
http://dev.mysql.com/downloads/connector/j/

Connecting

Connect String:

mysql+zxjdbc://<user>:<password>@<hostname>[:<port>]/<database>

Character Sets

SQLAlchemy zxjdbc dialects pass unicode straight through to the
zxjdbc/JDBC layer. To allow multiple character sets to be sent from the
MySQL Connector/J JDBC driver, by default SQLAlchemy sets its
characterEncoding connection property to UTF-8. It may be
overridden via a create_engine URL parameter.

Oracle

Support for the Oracle database.

DBAPI Support

The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.

	cx-Oracle

	zxJDBC for Jython

Connect Arguments

The dialect supports several create_engine() arguments
which affect the behavior of the dialect regardless of driver in use.

	use_ansi - Use ANSI JOIN constructs (see the section on Oracle 8).
Defaults to True. If False, Oracle-8 compatible constructs are used
for joins.

	optimize_limits - defaults to False. see the section on
LIMIT/OFFSET.

	use_binds_for_limits - defaults to True. see the section on
LIMIT/OFFSET.

Auto Increment Behavior

SQLAlchemy Table objects which include integer primary keys are usually
assumed to have “autoincrementing” behavior, meaning they can generate their
own primary key values upon INSERT. Since Oracle has no “autoincrement”
feature, SQLAlchemy relies upon sequences to produce these values. With the
Oracle dialect, a sequence must always be explicitly specified to enable
autoincrement. This is divergent with the majority of documentation
examples which assume the usage of an autoincrement-capable database. To
specify sequences, use the sqlalchemy.schema.Sequence object which is passed
to a Column construct:

t = Table('mytable', metadata,
 Column('id', Integer, Sequence('id_seq'), primary_key=True),
 Column(...), ...
)

This step is also required when using table reflection, i.e. autoload=True:

t = Table('mytable', metadata,
 Column('id', Integer, Sequence('id_seq'), primary_key=True),
 autoload=True
)

Identifier Casing

In Oracle, the data dictionary represents all case insensitive identifier
names using UPPERCASE text. SQLAlchemy on the other hand considers an
all-lower case identifier name to be case insensitive. The Oracle dialect
converts all case insensitive identifiers to and from those two formats during
schema level communication, such as reflection of tables and indexes. Using
an UPPERCASE name on the SQLAlchemy side indicates a case sensitive
identifier, and SQLAlchemy will quote the name - this will cause mismatches
against data dictionary data received from Oracle, so unless identifier names
have been truly created as case sensitive (i.e. using quoted names), all
lowercase names should be used on the SQLAlchemy side.

LIMIT/OFFSET Support

Oracle has no support for the LIMIT or OFFSET keywords. SQLAlchemy uses
a wrapped subquery approach in conjunction with ROWNUM. The exact methodology
is taken from
http://www.oracle.com/technology/oramag/oracle/06-sep/o56asktom.html .

There are two options which affect its behavior:

	the “FIRST ROWS()” optimization keyword is not used by default. To enable
the usage of this optimization directive, specify optimize_limits=True
to create_engine().

	the values passed for the limit/offset are sent as bound parameters. Some
users have observed that Oracle produces a poor query plan when the values
are sent as binds and not rendered literally. To render the limit/offset
values literally within the SQL statement, specify
use_binds_for_limits=False to create_engine().

Some users have reported better performance when the entirely different
approach of a window query is used, i.e. ROW_NUMBER() OVER (ORDER BY), to
provide LIMIT/OFFSET (note that the majority of users don’t observe this).
To suit this case the method used for LIMIT/OFFSET can be replaced entirely.
See the recipe at
http://www.sqlalchemy.org/trac/wiki/UsageRecipes/WindowFunctionsByDefault
which installs a select compiler that overrides the generation of limit/offset
with a window function.

RETURNING Support

The Oracle database supports a limited form of RETURNING, in order to retrieve
result sets of matched rows from INSERT, UPDATE and DELETE statements.
Oracle’s RETURNING..INTO syntax only supports one row being returned, as it
relies upon OUT parameters in order to function. In addition, supported
DBAPIs have further limitations (see RETURNING Support).

SQLAlchemy’s “implicit returning” feature, which employs RETURNING within an
INSERT and sometimes an UPDATE statement in order to fetch newly generated
primary key values and other SQL defaults and expressions, is normally enabled
on the Oracle backend. By default, “implicit returning” typically only
fetches the value of a single nextval(some_seq) expression embedded into
an INSERT in order to increment a sequence within an INSERT statement and get
the value back at the same time. To disable this feature across the board,
specify implicit_returning=False to create_engine():

engine = create_engine("oracle://scott:tiger@dsn",
 implicit_returning=False)

Implicit returning can also be disabled on a table-by-table basis as a table
option:

Core Table
my_table = Table("my_table", metadata, ..., implicit_returning=False)

declarative
class MyClass(Base):
 __tablename__ = 'my_table'
 __table_args__ = {"implicit_returning": False}

See also

RETURNING Support - additional cx_oracle-specific restrictions on
implicit returning.

ON UPDATE CASCADE

Oracle doesn’t have native ON UPDATE CASCADE functionality. A trigger based
solution is available at
http://asktom.oracle.com/tkyte/update_cascade/index.html .

When using the SQLAlchemy ORM, the ORM has limited ability to manually issue
cascading updates - specify ForeignKey objects using the
“deferrable=True, initially=’deferred’” keyword arguments,
and specify “passive_updates=False” on each relationship().

Oracle 8 Compatibility

When Oracle 8 is detected, the dialect internally configures itself to the
following behaviors:

	the use_ansi flag is set to False. This has the effect of converting all
JOIN phrases into the WHERE clause, and in the case of LEFT OUTER JOIN
makes use of Oracle’s (+) operator.

	the NVARCHAR2 and NCLOB datatypes are no longer generated as DDL when
the Unicode is used - VARCHAR2 and CLOB are
issued instead. This because these types don’t seem to work correctly on
Oracle 8 even though they are available. The
NVARCHAR and
NCLOB types will always generate
NVARCHAR2 and NCLOB.

	the “native unicode” mode is disabled when using cx_oracle, i.e. SQLAlchemy
encodes all Python unicode objects to “string” before passing in as bind
parameters.

Synonym/DBLINK Reflection

When using reflection with Table objects, the dialect can optionally search
for tables indicated by synonyms, either in local or remote schemas or
accessed over DBLINK, by passing the flag oracle_resolve_synonyms=True as
a keyword argument to the Table construct:

some_table = Table('some_table', autoload=True,
 autoload_with=some_engine,
 oracle_resolve_synonyms=True)

When this flag is set, the given name (such as some_table above) will
be searched not just in the ALL_TABLES view, but also within the
ALL_SYNONYMS view to see if this name is actually a synonym to another
name. If the synonym is located and refers to a DBLINK, the oracle dialect
knows how to locate the table’s information using DBLINK syntax(e.g.
@dblink).

oracle_resolve_synonyms is accepted wherever reflection arguments are
accepted, including methods such as MetaData.reflect() and
Inspector.get_columns().

If synonyms are not in use, this flag should be left disabled.

DateTime Compatibility

Oracle has no datatype known as DATETIME, it instead has only DATE,
which can actually store a date and time value. For this reason, the Oracle
dialect provides a type oracle.DATE which is a subclass of
DateTime. This type has no special behavior, and is only
present as a “marker” for this type; additionally, when a database column
is reflected and the type is reported as DATE, the time-supporting
oracle.DATE type is used.

Changed in version 0.9.4: Added oracle.DATE to subclass
DateTime. This is a change as previous versions
would reflect a DATE column as types.DATE, which subclasses
Date. The only significance here is for schemes that are
examining the type of column for use in special Python translations or
for migrating schemas to other database backends.

Oracle Table Options

The CREATE TABLE phrase supports the following options with Oracle
in conjunction with the Table construct:

	ON COMMIT:

Table(
 "some_table", metadata, ...,
 prefixes=['GLOBAL TEMPORARY'], oracle_on_commit='PRESERVE ROWS')

New in version 1.0.0.

	COMPRESS:

 Table('mytable', metadata, Column('data', String(32)),
 oracle_compress=True)

 Table('mytable', metadata, Column('data', String(32)),
 oracle_compress=6)

The ``oracle_compress`` parameter accepts either an integer compression
level, or ``True`` to use the default compression level.

New in version 1.0.0.

Oracle Specific Index Options

Bitmap Indexes

You can specify the oracle_bitmap parameter to create a bitmap index
instead of a B-tree index:

Index('my_index', my_table.c.data, oracle_bitmap=True)

Bitmap indexes cannot be unique and cannot be compressed. SQLAlchemy will not
check for such limitations, only the database will.

New in version 1.0.0.

Index compression

Oracle has a more efficient storage mode for indexes containing lots of
repeated values. Use the oracle_compress parameter to turn on key c
ompression:

Index('my_index', my_table.c.data, oracle_compress=True)

Index('my_index', my_table.c.data1, my_table.c.data2, unique=True,
 oracle_compress=1)

The oracle_compress parameter accepts either an integer specifying the
number of prefix columns to compress, or True to use the default (all
columns for non-unique indexes, all but the last column for unique indexes).

New in version 1.0.0.

Oracle Data Types

As with all SQLAlchemy dialects, all UPPERCASE types that are known to be
valid with Oracle are importable from the top level dialect, whether
they originate from sqlalchemy.types or from the local dialect:

from sqlalchemy.dialects.oracle import \
 BFILE, BLOB, CHAR, CLOB, DATE, \
 DOUBLE_PRECISION, FLOAT, INTERVAL, LONG, NCLOB, \
 NUMBER, NVARCHAR, NVARCHAR2, RAW, TIMESTAMP, VARCHAR, \
 VARCHAR2

Types which are specific to Oracle, or have Oracle-specific
construction arguments, are as follows:

	
class sqlalchemy.dialects.oracle.BFILE(length=None)

	Bases: sqlalchemy.types.LargeBinary

	
__init__(length=None)

	
inherited from the __init__() method of LargeBinary

Construct a LargeBinary type.

	Parameters:
	length¶ – optional, a length for the column for use in
DDL statements, for those binary types that accept a length,
such as the MySQL BLOB type.

	
class sqlalchemy.dialects.oracle.DATE(timezone=False)

	Bases: sqlalchemy.types.DateTime

Provide the oracle DATE type.

This type has no special Python behavior, except that it subclasses
types.DateTime; this is to suit the fact that the Oracle
DATE type supports a time value.

New in version 0.9.4.

	
__init__(timezone=False)

	
inherited from the __init__() method of DateTime

Construct a new DateTime.

	Parameters:
	timezone¶ – boolean. If True, and supported by the
backend, will produce ‘TIMESTAMP WITH TIMEZONE’. For backends
that don’t support timezone aware timestamps, has no
effect.

	
class sqlalchemy.dialects.oracle.DOUBLE_PRECISION(precision=None, scale=None, asdecimal=None)

	Bases: sqlalchemy.types.Numeric

	
class sqlalchemy.dialects.oracle.INTERVAL(day_precision=None, second_precision=None)

	Bases: sqlalchemy.types.TypeEngine

	
__init__(day_precision=None, second_precision=None)

	Construct an INTERVAL.

Note that only DAY TO SECOND intervals are currently supported.
This is due to a lack of support for YEAR TO MONTH intervals
within available DBAPIs (cx_oracle and zxjdbc).

	Parameters:
	
	day_precision¶ – the day precision value. this is the number of
digits to store for the day field. Defaults to “2”

	second_precision¶ – the second precision value. this is the
number of digits to store for the fractional seconds field.
Defaults to “6”.

	
class sqlalchemy.dialects.oracle.NCLOB(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.Text

	
__init__(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	
inherited from the __init__() method of String

Create a string-holding type.

	Parameters:
	
	length¶ – optional, a length for the column for use in
DDL and CAST expressions. May be safely omitted if no CREATE
TABLE will be issued. Certain databases may require a
length for use in DDL, and will raise an exception when
the CREATE TABLE DDL is issued if a VARCHAR
with no length is included. Whether the value is
interpreted as bytes or characters is database specific.

	collation¶ – Optional, a column-level collation for
use in DDL and CAST expressions. Renders using the
COLLATE keyword supported by SQLite, MySQL, and Postgresql.
E.g.:

>>> from sqlalchemy import cast, select, String
>>> print select([cast('some string', String(collation='utf8'))])
SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1

New in version 0.8: Added support for COLLATE to all
string types.

	convert_unicode¶ – When set to True, the
String type will assume that
input is to be passed as Python unicode objects,
and results returned as Python unicode objects.
If the DBAPI in use does not support Python unicode
(which is fewer and fewer these days), SQLAlchemy
will encode/decode the value, using the
value of the encoding parameter passed to
create_engine() as the encoding.

When using a DBAPI that natively supports Python
unicode objects, this flag generally does not
need to be set. For columns that are explicitly
intended to store non-ASCII data, the Unicode
or UnicodeText
types should be used regardless, which feature
the same behavior of convert_unicode but
also indicate an underlying column type that
directly supports unicode, such as NVARCHAR.

For the extremely rare case that Python unicode
is to be encoded/decoded by SQLAlchemy on a backend
that does natively support Python unicode,
the value force can be passed here which will
cause SQLAlchemy’s encode/decode services to be
used unconditionally.

	unicode_error¶ – Optional, a method to use to handle Unicode
conversion errors. Behaves like the errors keyword argument to
the standard library’s string.decode() functions. This flag
requires that convert_unicode is set to force - otherwise,
SQLAlchemy is not guaranteed to handle the task of unicode
conversion. Note that this flag adds significant performance
overhead to row-fetching operations for backends that already
return unicode objects natively (which most DBAPIs do). This
flag should only be used as a last resort for reading
strings from a column with varied or corrupted encodings.

	
class sqlalchemy.dialects.oracle.NUMBER(precision=None, scale=None, asdecimal=None)

	Bases: sqlalchemy.types.Numeric, sqlalchemy.types.Integer

	
class sqlalchemy.dialects.oracle.LONG(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	Bases: sqlalchemy.types.Text

	
__init__(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False)

	
inherited from the __init__() method of String

Create a string-holding type.

	Parameters:
	
	length¶ – optional, a length for the column for use in
DDL and CAST expressions. May be safely omitted if no CREATE
TABLE will be issued. Certain databases may require a
length for use in DDL, and will raise an exception when
the CREATE TABLE DDL is issued if a VARCHAR
with no length is included. Whether the value is
interpreted as bytes or characters is database specific.

	collation¶ – Optional, a column-level collation for
use in DDL and CAST expressions. Renders using the
COLLATE keyword supported by SQLite, MySQL, and Postgresql.
E.g.:

>>> from sqlalchemy import cast, select, String
>>> print select([cast('some string', String(collation='utf8'))])
SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1

New in version 0.8: Added support for COLLATE to all
string types.

	convert_unicode¶ – When set to True, the
String type will assume that
input is to be passed as Python unicode objects,
and results returned as Python unicode objects.
If the DBAPI in use does not support Python unicode
(which is fewer and fewer these days), SQLAlchemy
will encode/decode the value, using the
value of the encoding parameter passed to
create_engine() as the encoding.

When using a DBAPI that natively supports Python
unicode objects, this flag generally does not
need to be set. For columns that are explicitly
intended to store non-ASCII data, the Unicode
or UnicodeText
types should be used regardless, which feature
the same behavior of convert_unicode but
also indicate an underlying column type that
directly supports unicode, such as NVARCHAR.

For the extremely rare case that Python unicode
is to be encoded/decoded by SQLAlchemy on a backend
that does natively support Python unicode,
the value force can be passed here which will
cause SQLAlchemy’s encode/decode services to be
used unconditionally.

	unicode_error¶ – Optional, a method to use to handle Unicode
conversion errors. Behaves like the errors keyword argument to
the standard library’s string.decode() functions. This flag
requires that convert_unicode is set to force - otherwise,
SQLAlchemy is not guaranteed to handle the task of unicode
conversion. Note that this flag adds significant performance
overhead to row-fetching operations for backends that already
return unicode objects natively (which most DBAPIs do). This
flag should only be used as a last resort for reading
strings from a column with varied or corrupted encodings.

	
class sqlalchemy.dialects.oracle.RAW(length=None)

	Bases: sqlalchemy.types._Binary

cx_Oracle

Support for the Oracle database via the cx-Oracle driver.

DBAPI

Documentation and download information (if applicable) for cx-Oracle is available at:
http://cx-oracle.sourceforge.net/

Connecting

Connect String:

oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]

Additional Connect Arguments

When connecting with dbname present, the host, port, and dbname tokens are
converted to a TNS name using
the cx_oracle makedsn() function. Otherwise, the host token is taken
directly as a TNS name.

Additional arguments which may be specified either as query string arguments
on the URL, or as keyword arguments to create_engine() are:

	allow_twophase - enable two-phase transactions. Defaults to True.

	arraysize - set the cx_oracle.arraysize value on cursors, defaulted
to 50. This setting is significant with cx_Oracle as the contents of LOB
objects are only readable within a “live” row (e.g. within a batch of
50 rows).

	auto_convert_lobs - defaults to True; See LOB Objects.

	auto_setinputsizes - the cx_oracle.setinputsizes() call is issued for
all bind parameters. This is required for LOB datatypes but can be
disabled to reduce overhead. Defaults to True. Specific types
can be excluded from this process using the exclude_setinputsizes
parameter.

	coerce_to_unicode - see Unicode for detail.

	coerce_to_decimal - see Precision Numerics for detail.

	exclude_setinputsizes - a tuple or list of string DBAPI type names to
be excluded from the “auto setinputsizes” feature. The type names here
must match DBAPI types that are found in the “cx_Oracle” module namespace,
such as cx_Oracle.UNICODE, cx_Oracle.NCLOB, etc. Defaults to
(STRING, UNICODE).

New in version 0.8: specific DBAPI types can be excluded from the
auto_setinputsizes feature via the exclude_setinputsizes attribute.

	mode - This is given the string value of SYSDBA or SYSOPER, or
alternatively an integer value. This value is only available as a URL query
string argument.

	threaded - enable multithreaded access to cx_oracle connections.
Defaults to True. Note that this is the opposite default of the
cx_Oracle DBAPI itself.

	service_name - An option to use connection string (DSN) with
SERVICE_NAME instead of SID. It can’t be passed when a database
part is given.
E.g. oracle+cx_oracle://scott:tiger@host:1521/?service_name=hr
is a valid url. This value is only available as a URL query string argument.

New in version 1.0.0.

Unicode

The cx_Oracle DBAPI as of version 5 fully supports unicode, and has the
ability to return string results as Python unicode objects natively.

When used in Python 3, cx_Oracle returns all strings as Python unicode objects
(that is, plain str in Python 3). In Python 2, it will return as Python
unicode those column values that are of type NVARCHAR or NCLOB. For
column values that are of type VARCHAR or other non-unicode string types,
it will return values as Python strings (e.g. bytestrings).

The cx_Oracle SQLAlchemy dialect presents two different options for the use
case of returning VARCHAR column values as Python unicode objects under
Python 2:

	the cx_Oracle DBAPI has the ability to coerce all string results to Python
unicode objects unconditionally using output type handlers. This has
the advantage that the unicode conversion is global to all statements
at the cx_Oracle driver level, meaning it works with raw textual SQL
statements that have no typing information associated. However, this system
has been observed to incur signfiicant performance overhead, not only
because it takes effect for all string values unconditionally, but also
because cx_Oracle under Python 2 seems to use a pure-Python function call in
order to do the decode operation, which under cPython can orders of
magnitude slower than doing it using C functions alone.

	SQLAlchemy has unicode-decoding services built in, and when using
SQLAlchemy’s C extensions, these functions do not use any Python function
calls and are very fast. The disadvantage to this approach is that the
unicode conversion only takes effect for statements where the
Unicode type or String type with
convert_unicode=True is explicitly associated with the result column.
This is the case for any ORM or Core query or SQL expression as well as for
a text() construct that specifies output column types, so in the vast
majority of cases this is not an issue. However, when sending a completely
raw string to Connection.execute(), this typing information isn’t
present, unless the string is handled within a text() construct that
adds typing information.

As of version 0.9.2 of SQLAlchemy, the default approach is to use SQLAlchemy’s
typing system. This keeps cx_Oracle’s expensive Python 2 approach
disabled unless the user explicitly wants it. Under Python 3, SQLAlchemy
detects that cx_Oracle is returning unicode objects natively and cx_Oracle’s
system is used.

To re-enable cx_Oracle’s output type handler under Python 2, the
coerce_to_unicode=True flag (new in 0.9.4) can be passed to
create_engine():

engine = create_engine("oracle+cx_oracle://dsn", coerce_to_unicode=True)

Alternatively, to run a pure string SQL statement and get VARCHAR results
as Python unicode under Python 2 without using cx_Oracle’s native handlers,
the text() feature can be used:

from sqlalchemy import text, Unicode
result = conn.execute(
 text("select username from user").columns(username=Unicode))

Changed in version 0.9.2: cx_Oracle’s outputtypehandlers are no longer used
for unicode results of non-unicode datatypes in Python 2, after they were
identified as a major performance bottleneck. SQLAlchemy’s own unicode
facilities are used instead.

New in version 0.9.4: Added the coerce_to_unicode flag, to re-enable
cx_Oracle’s outputtypehandler and revert to pre-0.9.2 behavior.

RETURNING Support

The cx_oracle DBAPI supports a limited subset of Oracle’s already limited
RETURNING support. Typically, results can only be guaranteed for at most one
column being returned; this is the typical case when SQLAlchemy uses RETURNING
to get just the value of a primary-key-associated sequence value.
Additional column expressions will cause problems in a non-determinative way,
due to cx_oracle’s lack of support for the OCI_DATA_AT_EXEC API which is
required for more complex RETURNING scenarios.

For this reason, stability may be enhanced by disabling RETURNING support
completely; SQLAlchemy otherwise will use RETURNING to fetch newly
sequence-generated primary keys. As illustrated in RETURNING Support:

engine = create_engine("oracle://scott:tiger@dsn",
 implicit_returning=False)

See also

http://docs.oracle.com/cd/B10501_01/appdev.920/a96584/oci05bnd.htm#420693
- OCI documentation for RETURNING

http://sourceforge.net/mailarchive/message.php?msg_id=31338136
- cx_oracle developer commentary

LOB Objects

cx_oracle returns oracle LOBs using the cx_oracle.LOB object. SQLAlchemy
converts these to strings so that the interface of the Binary type is
consistent with that of other backends, and so that the linkage to a live
cursor is not needed in scenarios like result.fetchmany() and
result.fetchall(). This means that by default, LOB objects are fully fetched
unconditionally by SQLAlchemy, and the linkage to a live cursor is broken.

To disable this processing, pass auto_convert_lobs=False to
create_engine().

Two Phase Transaction Support

Two Phase transactions are implemented using XA transactions, and are known
to work in a rudimental fashion with recent versions of cx_Oracle
as of SQLAlchemy 0.8.0b2, 0.7.10. However, the mechanism is not yet
considered to be robust and should still be regarded as experimental.

In particular, the cx_Oracle DBAPI as recently as 5.1.2 has a bug regarding
two phase which prevents
a particular DBAPI connection from being consistently usable in both
prepared transactions as well as traditional DBAPI usage patterns; therefore
once a particular connection is used via Connection.begin_prepared(),
all subsequent usages of the underlying DBAPI connection must be within
the context of prepared transactions.

The default behavior of Engine is to maintain a pool of DBAPI
connections. Therefore, due to the above glitch, a DBAPI connection that has
been used in a two-phase operation, and is then returned to the pool, will
not be usable in a non-two-phase context. To avoid this situation,
the application can make one of several choices:

	Disable connection pooling using NullPool

	Ensure that the particular Engine in use is only used
for two-phase operations. A Engine bound to an ORM
Session which includes twophase=True will consistently
use the two-phase transaction style.

	For ad-hoc two-phase operations without disabling pooling, the DBAPI
connection in use can be evicted from the connection pool using the
Connection.detach() method.

Changed in version 0.8.0b2,0.7.10: Support for cx_oracle prepared transactions has been implemented
and tested.

Precision Numerics

The SQLAlchemy dialect goes through a lot of steps to ensure
that decimal numbers are sent and received with full accuracy.
An “outputtypehandler” callable is associated with each
cx_oracle connection object which detects numeric types and
receives them as string values, instead of receiving a Python
float directly, which is then passed to the Python
Decimal constructor. The Numeric and
Float types under the cx_oracle dialect are aware of
this behavior, and will coerce the Decimal to float if
the asdecimal flag is False (default on Float,
optional on Numeric).

Because the handler coerces to Decimal in all cases first,
the feature can detract significantly from performance.
If precision numerics aren’t required, the decimal handling
can be disabled by passing the flag coerce_to_decimal=False
to create_engine():

engine = create_engine("oracle+cx_oracle://dsn", coerce_to_decimal=False)

New in version 0.7.6: Add the coerce_to_decimal flag.

Another alternative to performance is to use the
cdecimal library;
see Numeric for additional notes.

The handler attempts to use the “precision” and “scale”
attributes of the result set column to best determine if
subsequent incoming values should be received as Decimal as
opposed to int (in which case no processing is added). There are
several scenarios where OCI does not provide unambiguous data
as to the numeric type, including some situations where
individual rows may return a combination of floating point and
integer values. Certain values for “precision” and “scale” have
been observed to determine this scenario. When it occurs, the
outputtypehandler receives as string and then passes off to a
processing function which detects, for each returned value, if a
decimal point is present, and if so converts to Decimal,
otherwise to int. The intention is that simple int-based
statements like “SELECT my_seq.nextval() FROM DUAL” continue to
return ints and not Decimal objects, and that any kind of
floating point value is received as a string so that there is no
floating point loss of precision.

The “decimal point is present” logic itself is also sensitive to
locale. Under OCI, this is controlled by the NLS_LANG
environment variable. Upon first connection, the dialect runs a
test to determine the current “decimal” character, which can be
a comma ”,” for European locales. From that point forward the
outputtypehandler uses that character to represent a decimal
point. Note that cx_oracle 5.0.3 or greater is required
when dealing with numerics with locale settings that don’t use
a period ”.” as the decimal character.

Changed in version 0.6.6: The outputtypehandler supports the case where the locale uses a
comma ”,” character to represent a decimal point.

zxjdbc

Support for the Oracle database via the zxJDBC for Jython driver.

Note

Jython is not supported by current versions of SQLAlchemy. The
zxjdbc dialect should be considered as experimental.

DBAPI

Drivers for this database are available at:
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Connecting

Connect String:

oracle+zxjdbc://user:pass@host/dbname

PostgreSQL

Support for the PostgreSQL database.

DBAPI Support

The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.

	psycopg2

	pg8000

	psycopg2cffi

	py-postgresql

	pygresql

	zxJDBC for Jython

Sequences/SERIAL

PostgreSQL supports sequences, and SQLAlchemy uses these as the default means
of creating new primary key values for integer-based primary key columns. When
creating tables, SQLAlchemy will issue the SERIAL datatype for
integer-based primary key columns, which generates a sequence and server side
default corresponding to the column.

To specify a specific named sequence to be used for primary key generation,
use the Sequence() construct:

Table('sometable', metadata,
 Column('id', Integer, Sequence('some_id_seq'), primary_key=True)
)

When SQLAlchemy issues a single INSERT statement, to fulfill the contract of
having the “last insert identifier” available, a RETURNING clause is added to
the INSERT statement which specifies the primary key columns should be
returned after the statement completes. The RETURNING functionality only takes
place if Postgresql 8.2 or later is in use. As a fallback approach, the
sequence, whether specified explicitly or implicitly via SERIAL, is
executed independently beforehand, the returned value to be used in the
subsequent insert. Note that when an
insert() construct is executed using
“executemany” semantics, the “last inserted identifier” functionality does not
apply; no RETURNING clause is emitted nor is the sequence pre-executed in this
case.

To force the usage of RETURNING by default off, specify the flag
implicit_returning=False to create_engine().

Transaction Isolation Level

All Postgresql dialects support setting of transaction isolation level
both via a dialect-specific parameter
create_engine.isolation_level accepted by create_engine(),
as well as the Connection.execution_options.isolation_level
argument as passed to Connection.execution_options().
When using a non-psycopg2 dialect, this feature works by issuing the command
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL <level> for
each new connection. For the special AUTOCOMMIT isolation level,
DBAPI-specific techniques are used.

To set isolation level using create_engine():

engine = create_engine(
 "postgresql+pg8000://scott:tiger@localhost/test",
 isolation_level="READ UNCOMMITTED"
)

To set using per-connection execution options:

connection = engine.connect()
connection = connection.execution_options(
 isolation_level="READ COMMITTED"
)

Valid values for isolation_level include:

	READ COMMITTED

	READ UNCOMMITTED

	REPEATABLE READ

	SERIALIZABLE

	AUTOCOMMIT - on psycopg2 / pg8000 only

See also

Psycopg2 Transaction Isolation Level

pg8000 Transaction Isolation Level

Remote-Schema Table Introspection and Postgresql search_path

The Postgresql dialect can reflect tables from any schema. The
Table.schema argument, or alternatively the
MetaData.reflect.schema argument determines which schema will
be searched for the table or tables. The reflected Table objects
will in all cases retain this .schema attribute as was specified.
However, with regards to tables which these Table objects refer to
via foreign key constraint, a decision must be made as to how the .schema
is represented in those remote tables, in the case where that remote
schema name is also a member of the current
Postgresql search path.

By default, the Postgresql dialect mimics the behavior encouraged by
Postgresql’s own pg_get_constraintdef() builtin procedure. This function
returns a sample definition for a particular foreign key constraint,
omitting the referenced schema name from that definition when the name is
also in the Postgresql schema search path. The interaction below
illustrates this behavior:

test=> CREATE TABLE test_schema.referred(id INTEGER PRIMARY KEY);
CREATE TABLE
test=> CREATE TABLE referring(
test(> id INTEGER PRIMARY KEY,
test(> referred_id INTEGER REFERENCES test_schema.referred(id));
CREATE TABLE
test=> SET search_path TO public, test_schema;
test=> SELECT pg_catalog.pg_get_constraintdef(r.oid, true) FROM
test-> pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n
test-> ON n.oid = c.relnamespace
test-> JOIN pg_catalog.pg_constraint r ON c.oid = r.conrelid
test-> WHERE c.relname='referring' AND r.contype = 'f'
test-> ;
 pg_get_constraintdef

 FOREIGN KEY (referred_id) REFERENCES referred(id)
(1 row)

Above, we created a table referred as a member of the remote schema
test_schema, however when we added test_schema to the
PG search_path and then asked pg_get_constraintdef() for the
FOREIGN KEY syntax, test_schema was not included in the output of
the function.

On the other hand, if we set the search path back to the typical default
of public:

test=> SET search_path TO public;
SET

The same query against pg_get_constraintdef() now returns the fully
schema-qualified name for us:

test=> SELECT pg_catalog.pg_get_constraintdef(r.oid, true) FROM
test-> pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n
test-> ON n.oid = c.relnamespace
test-> JOIN pg_catalog.pg_constraint r ON c.oid = r.conrelid
test-> WHERE c.relname='referring' AND r.contype = 'f';
 pg_get_constraintdef

 FOREIGN KEY (referred_id) REFERENCES test_schema.referred(id)
(1 row)

SQLAlchemy will by default use the return value of pg_get_constraintdef()
in order to determine the remote schema name. That is, if our search_path
were set to include test_schema, and we invoked a table
reflection process as follows:

>>> from sqlalchemy import Table, MetaData, create_engine
>>> engine = create_engine("postgresql://scott:tiger@localhost/test")
>>> with engine.connect() as conn:
... conn.execute("SET search_path TO test_schema, public")
... meta = MetaData()
... referring = Table('referring', meta,
... autoload=True, autoload_with=conn)
...
<sqlalchemy.engine.result.ResultProxy object at 0x101612ed0>

The above process would deliver to the MetaData.tables collection
referred table named without the schema:

>>> meta.tables['referred'].schema is None
True

To alter the behavior of reflection such that the referred schema is
maintained regardless of the search_path setting, use the
postgresql_ignore_search_path option, which can be specified as a
dialect-specific argument to both Table as well as
MetaData.reflect():

>>> with engine.connect() as conn:
... conn.execute("SET search_path TO test_schema, public")
... meta = MetaData()
... referring = Table('referring', meta, autoload=True,
... autoload_with=conn,
... postgresql_ignore_search_path=True)
...
<sqlalchemy.engine.result.ResultProxy object at 0x1016126d0>

We will now have test_schema.referred stored as schema-qualified:

>>> meta.tables['test_schema.referred'].schema
'test_schema'

Best Practices for Postgresql Schema reflection

The description of Postgresql schema reflection behavior is complex, and
is the product of many years of dealing with widely varied use cases and
user preferences. But in fact, there’s no need to understand any of it if
you just stick to the simplest use pattern: leave the search_path set
to its default of public only, never refer to the name public as
an explicit schema name otherwise, and refer to all other schema names
explicitly when building up a Table object. The options
described here are only for those users who can’t, or prefer not to, stay
within these guidelines.

Note that in all cases, the “default” schema is always reflected as
None. The “default” schema on Postgresql is that which is returned by the
Postgresql current_schema() function. On a typical Postgresql
installation, this is the name public. So a table that refers to another
which is in the public (i.e. default) schema will always have the
.schema attribute set to None.

New in version 0.9.2: Added the postgresql_ignore_search_path
dialect-level option accepted by Table and
MetaData.reflect().

See also

The Schema Search Path
- on the Postgresql website.

INSERT/UPDATE...RETURNING

The dialect supports PG 8.2’s INSERT..RETURNING, UPDATE..RETURNING and
DELETE..RETURNING syntaxes. INSERT..RETURNING is used by default
for single-row INSERT statements in order to fetch newly generated
primary key identifiers. To specify an explicit RETURNING clause,
use the _UpdateBase.returning() method on a per-statement basis:

INSERT..RETURNING
result = table.insert().returning(table.c.col1, table.c.col2).\
 values(name='foo')
print result.fetchall()

UPDATE..RETURNING
result = table.update().returning(table.c.col1, table.c.col2).\
 where(table.c.name=='foo').values(name='bar')
print result.fetchall()

DELETE..RETURNING
result = table.delete().returning(table.c.col1, table.c.col2).\
 where(table.c.name=='foo')
print result.fetchall()

INSERT...ON CONFLICT (Upsert)

Starting with version 9.5, PostgreSQL allows “upserts” (update or insert)
of rows into a table via the ON CONFLICT clause of the INSERT statement.
A candidate row will only be inserted if that row does not violate
any unique constraints. In the case of a unique constraint violation,
a secondary action can occur which can be either “DO UPDATE”, indicating
that the data in the target row should be updated, or “DO NOTHING”,
which indicates to silently skip this row.

Conflicts are determined using existing unique constraints and indexes. These
constraints may be identified either using their name as stated in DDL,
or they may be inferred by stating the columns and conditions that comprise
the indexes.

SQLAlchemy provides ON CONFLICT support via the Postgresql-specific
postgresql.dml.insert() function, which provides
the generative methods on_conflict_do_update()
and on_conflict_do_nothing():

from sqlalchemy.dialects.postgresql import insert

insert_stmt = insert(my_table).values(
 id='some_existing_id',
 data='inserted value')

do_nothing_stmt = insert_stmt.on_conflict_do_nothing(
 index_elements=['id']
)

conn.execute(do_nothing_stmt)

do_update_stmt = insert_stmt.on_conflict_do_update(
 constraint='pk_my_table',
 set_=dict(data='updated value')
)

conn.execute(do_update_stmt)

Both methods supply the “target” of the conflict using either the
named constraint or by column inference:

	The Insert.on_conflict_do_update.index_elements argument
specifies a sequence containing string column names, Column objects,
and/or SQL expression elements, which would identify a unique index:

do_update_stmt = insert_stmt.on_conflict_do_update(
 index_elements=['id'],
 set_=dict(data='updated value')
)

do_update_stmt = insert_stmt.on_conflict_do_update(
 index_elements=[my_table.c.id],
 set_=dict(data='updated value')
)

	When using Insert.on_conflict_do_update.index_elements to
infer an index, a partial index can be inferred by also specifying the
use the Insert.on_conflict_do_update.index_where parameter:

from sqlalchemy.dialects.postgresql import insert

stmt = insert(my_table).values(user_email='a@b.com', data='inserted data')
stmt = stmt.on_conflict_do_update(
 index_elements=[my_table.c.user_email],
 index_where=my_table.c.user_email.like('%@gmail.com'),
 set_=dict(data=stmt.excluded.data)
)
conn.execute(stmt)

	The Insert.on_conflict_do_update.constraint argument is
used to specify an index directly rather than inferring it. This can be
the name of a UNIQUE constraint, a PRIMARY KEY constraint, or an INDEX:

do_update_stmt = insert_stmt.on_conflict_do_update(
 constraint='my_table_idx_1',
 set_=dict(data='updated value')
)

do_update_stmt = insert_stmt.on_conflict_do_update(
 constraint='my_table_pk',
 set_=dict(data='updated value')
)

	The Insert.on_conflict_do_update.constraint argument may
also refer to a SQLAlchemy construct representing a constraint,
e.g. UniqueConstraint, PrimaryKeyConstraint,
Index, or ExcludeConstraint. In this use,
if the constraint has a name, it is used directly. Otherwise, if the
constraint is unnamed, then inference will be used, where the expressions
and optional WHERE clause of the constraint will be spelled out in the
construct. This use is especially convenient
to refer to the named or unnamed primary key of a Table using the
Table.primary_key attribute:

do_update_stmt = insert_stmt.on_conflict_do_update(
 constraint=my_table.primary_key,
 set_=dict(data='updated value')
)

ON CONFLICT...DO UPDATE is used to perform an update of the already
existing row, using any combination of new values as well as values
from the proposed insertion. These values are specified using the
Insert.on_conflict_do_update.set_ parameter. This
parameter accepts a dictionary which consists of direct values
for UPDATE:

from sqlalchemy.dialects.postgresql import insert

stmt = insert(my_table).values(id='some_id', data='inserted value')
do_update_stmt = stmt.on_conflict_do_update(
 index_elements=['id'],
 set_=dict(data='updated value')
)
conn.execute(do_update_stmt)

Warning

The Insert.on_conflict_do_update() method does not take into
account Python-side default UPDATE values or generation functions, e.g.
e.g. those specified using Column.onupdate.
These values will not be exercised for an ON CONFLICT style of UPDATE,
unless they are manually specified in the
Insert.on_conflict_do_update.set_ dictionary.

In order to refer to the proposed insertion row, the special alias
excluded is available as an attribute on
the postgresql.dml.Insert object; this object is a
ColumnCollection which alias contains all columns of the target
table:

from sqlalchemy.dialects.postgresql import insert

stmt = insert(my_table).values(
 id='some_id',
 data='inserted value',
 author='jlh')
do_update_stmt = stmt.on_conflict_do_update(
 index_elements=['id'],
 set_=dict(data='updated value', author=stmt.excluded.author)
)
conn.execute(do_update_stmt)

The Insert.on_conflict_do_update() method also accepts
a WHERE clause using the Insert.on_conflict_do_update.where
parameter, which will limit those rows which receive an UPDATE:

from sqlalchemy.dialects.postgresql import insert

stmt = insert(my_table).values(
 id='some_id',
 data='inserted value',
 author='jlh')
on_update_stmt = stmt.on_conflict_do_update(
 index_elements=['id'],
 set_=dict(data='updated value', author=stmt.excluded.author)
 where=(my_table.c.status == 2)
)
conn.execute(on_update_stmt)

ON CONFLICT may also be used to skip inserting a row entirely
if any conflict with a unique or exclusion constraint occurs; below
this is illustrated using the
on_conflict_do_nothing() method:

from sqlalchemy.dialects.postgresql import insert

stmt = insert(my_table).values(id='some_id', data='inserted value')
stmt = stmt.on_conflict_do_nothing(index_elements=['id'])
conn.execute(stmt)

If DO NOTHING is used without specifying any columns or constraint,
it has the effect of skipping the INSERT for any unique or exclusion
constraint violation which occurs:

from sqlalchemy.dialects.postgresql import insert

stmt = insert(my_table).values(id='some_id', data='inserted value')
stmt = stmt.on_conflict_do_nothing()
conn.execute(stmt)

New in version 1.1: Added support for Postgresql ON CONFLICT clauses

See also

INSERT .. ON CONFLICT - in the Postgresql documentation.

Full Text Search

SQLAlchemy makes available the Postgresql @@ operator via the
ColumnElement.match() method on any textual column expression.
On a Postgresql dialect, an expression like the following:

select([sometable.c.text.match("search string")])

will emit to the database:

SELECT text @@ to_tsquery('search string') FROM table

The Postgresql text search functions such as to_tsquery()
and to_tsvector() are available
explicitly using the standard func construct. For example:

select([
 func.to_tsvector('fat cats ate rats').match('cat & rat')
])

Emits the equivalent of:

SELECT to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat')

The postgresql.TSVECTOR type can provide for explicit CAST:

from sqlalchemy.dialects.postgresql import TSVECTOR
from sqlalchemy import select, cast
select([cast("some text", TSVECTOR)])

produces a statement equivalent to:

SELECT CAST('some text' AS TSVECTOR) AS anon_1

Full Text Searches in Postgresql are influenced by a combination of: the
PostgresSQL setting of default_text_search_config, the regconfig used
to build the GIN/GiST indexes, and the regconfig optionally passed in
during a query.

When performing a Full Text Search against a column that has a GIN or
GiST index that is already pre-computed (which is common on full text
searches) one may need to explicitly pass in a particular PostgresSQL
regconfig value to ensure the query-planner utilizes the index and does
not re-compute the column on demand.

In order to provide for this explicit query planning, or to use different
search strategies, the match method accepts a postgresql_regconfig
keyword argument:

select([mytable.c.id]).where(
 mytable.c.title.match('somestring', postgresql_regconfig='english')
)

Emits the equivalent of:

SELECT mytable.id FROM mytable
WHERE mytable.title @@ to_tsquery('english', 'somestring')

One can also specifically pass in a ‘regconfig’ value to the
to_tsvector() command as the initial argument:

select([mytable.c.id]).where(
 func.to_tsvector('english', mytable.c.title) .match('somestring', postgresql_regconfig='english')
)

produces a statement equivalent to:

SELECT mytable.id FROM mytable
WHERE to_tsvector('english', mytable.title) @@
 to_tsquery('english', 'somestring')

It is recommended that you use the EXPLAIN ANALYZE... tool from
PostgresSQL to ensure that you are generating queries with SQLAlchemy that
take full advantage of any indexes you may have created for full text search.

FROM ONLY ...

The dialect supports PostgreSQL’s ONLY keyword for targeting only a particular
table in an inheritance hierarchy. This can be used to produce the
SELECT ... FROM ONLY, UPDATE ONLY ..., and DELETE FROM ONLY ...
syntaxes. It uses SQLAlchemy’s hints mechanism:

SELECT ... FROM ONLY ...
result = table.select().with_hint(table, 'ONLY', 'postgresql')
print result.fetchall()

UPDATE ONLY ...
table.update(values=dict(foo='bar')).with_hint('ONLY',
 dialect_name='postgresql')

DELETE FROM ONLY ...
table.delete().with_hint('ONLY', dialect_name='postgresql')

Postgresql-Specific Index Options

Several extensions to the Index construct are available, specific
to the PostgreSQL dialect.

Partial Indexes

Partial indexes add criterion to the index definition so that the index is
applied to a subset of rows. These can be specified on Index
using the postgresql_where keyword argument:

Index('my_index', my_table.c.id, postgresql_where=tbl.c.value > 10)

Operator Classes

PostgreSQL allows the specification of an operator class for each column of
an index (see
http://www.postgresql.org/docs/8.3/interactive/indexes-opclass.html).
The Index construct allows these to be specified via the
postgresql_ops keyword argument:

Index('my_index', my_table.c.id, my_table.c.data,
 postgresql_ops={
 'data': 'text_pattern_ops',
 'id': 'int4_ops'
 })

New in version 0.7.2: postgresql_ops keyword argument to Index construct.

Note that the keys in the postgresql_ops dictionary are the “key” name of
the Column, i.e. the name used to access it from the .c
collection of Table, which can be configured to be different than
the actual name of the column as expressed in the database.

Index Types

PostgreSQL provides several index types: B-Tree, Hash, GiST, and GIN, as well
as the ability for users to create their own (see
http://www.postgresql.org/docs/8.3/static/indexes-types.html). These can be
specified on Index using the postgresql_using keyword argument:

Index('my_index', my_table.c.data, postgresql_using='gin')

The value passed to the keyword argument will be simply passed through to the
underlying CREATE INDEX command, so it must be a valid index type for your
version of PostgreSQL.

Index Storage Parameters

PostgreSQL allows storage parameters to be set on indexes. The storage
parameters available depend on the index method used by the index. Storage
parameters can be specified on Index using the postgresql_with
keyword argument:

Index('my_index', my_table.c.data, postgresql_with={"fillfactor": 50})

New in version 1.0.6.

PostgreSQL allows to define the tablespace in which to create the index.
The tablespace can be specified on Index using the
postgresql_tablespace keyword argument:

Index('my_index', my_table.c.data, postgresql_tablespace='my_tablespace')

New in version 1.1.

Note that the same option is available on Table as well.

Indexes with CONCURRENTLY

The Postgresql index option CONCURRENTLY is supported by passing the
flag postgresql_concurrently to the Index construct:

tbl = Table('testtbl', m, Column('data', Integer))

idx1 = Index('test_idx1', tbl.c.data, postgresql_concurrently=True)

The above index construct will render DDL for CREATE INDEX, assuming
Postgresql 8.2 or higher is detected or for a connection-less dialect, as:

CREATE INDEX CONCURRENTLY test_idx1 ON testtbl (data)

For DROP INDEX, assuming Postgresql 9.2 or higher is detected or for
a connection-less dialect, it will emit:

DROP INDEX CONCURRENTLY test_idx1

New in version 1.1: support for CONCURRENTLY on DROP INDEX. The
CONCURRENTLY keyword is now only emitted if a high enough version
of Postgresql is detected on the connection (or for a connection-less
dialect).

Postgresql Index Reflection

The Postgresql database creates a UNIQUE INDEX implicitly whenever the
UNIQUE CONSTRAINT construct is used. When inspecting a table using
Inspector, the Inspector.get_indexes()
and the Inspector.get_unique_constraints() will report on these
two constructs distinctly; in the case of the index, the key
duplicates_constraint will be present in the index entry if it is
detected as mirroring a constraint. When performing reflection using
Table(..., autoload=True), the UNIQUE INDEX is not returned
in Table.indexes when it is detected as mirroring a
UniqueConstraint in the Table.constraints collection.

Changed in version 1.0.0: - Table reflection now includes
UniqueConstraint objects present in the Table.constraints
collection; the Postgresql backend will no longer include a “mirrored”
Index construct in Table.indexes if it is detected
as corresponding to a unique constraint.

Special Reflection Options

The Inspector used for the Postgresql backend is an instance
of PGInspector, which offers additional methods:

from sqlalchemy import create_engine, inspect

engine = create_engine("postgresql+psycopg2://localhost/test")
insp = inspect(engine) # will be a PGInspector

print(insp.get_enums())

	
class sqlalchemy.dialects.postgresql.base.PGInspector(conn)

	Bases: sqlalchemy.engine.reflection.Inspector

	
get_enums(schema=None)

	Return a list of ENUM objects.

Each member is a dictionary containing these fields:

	name - name of the enum

	schema - the schema name for the enum.

	visible - boolean, whether or not this enum is visible
in the default search path.

	labels - a list of string labels that apply to the enum.

	Parameters:
	schema¶ – schema name. If None, the default schema
(typically ‘public’) is used. May also be set to ‘*’ to
indicate load enums for all schemas.

New in version 1.0.0.

	
get_foreign_table_names(schema=None)

	Return a list of FOREIGN TABLE names.

Behavior is similar to that of Inspector.get_table_names(),
except that the list is limited to those tables tha report a
relkind value of f.

New in version 1.0.0.

	
get_table_oid(table_name, schema=None)

	Return the OID for the given table name.

	
get_view_names(schema=None, include=('plain', 'materialized'))

	Return all view names in schema.

	Parameters:
	
	schema¶ – Optional, retrieve names from a non-default schema.
For special quoting, use quoted_name.

	include¶ – specify which types of views to return. Passed
as a string value (for a single type) or a tuple (for any number
of types). Defaults to ('plain', 'materialized').

New in version 1.1.

PostgreSQL Table Options

Several options for CREATE TABLE are supported directly by the PostgreSQL
dialect in conjunction with the Table construct:

	TABLESPACE:

Table("some_table", metadata, ..., postgresql_tablespace='some_tablespace')

The above option is also available on the Index construct.

	ON COMMIT:

Table("some_table", metadata, ..., postgresql_on_commit='PRESERVE ROWS')

	WITH OIDS:

Table("some_table", metadata, ..., postgresql_with_oids=True)

	WITHOUT OIDS:

Table("some_table", metadata, ..., postgresql_with_oids=False)

	INHERITS:

Table("some_table", metadata, ..., postgresql_inherits="some_supertable")

Table("some_table", metadata, ..., postgresql_inherits=("t1", "t2", ...))

New in version 1.0.0.

See also

Postgresql CREATE TABLE options

ARRAY Types

The Postgresql dialect supports arrays, both as multidimensional column types
as well as array literals:

	postgresql.ARRAY - ARRAY datatype

	postgresql.array - array literal

	postgresql.array_agg() - ARRAY_AGG SQL function

	postgresql.aggregate_order_by - helper for PG’s ORDER BY aggregate
function syntax.

JSON Types

The Postgresql dialect supports both JSON and JSONB datatypes, including
psycopg2’s native support and support for all of Postgresql’s special
operators:

	postgresql.JSON

	postgresql.JSONB

HSTORE Type

The Postgresql HSTORE type as well as hstore literals are supported:

	postgresql.HSTORE - HSTORE datatype

	postgresql.hstore - hstore literal

ENUM Types

Postgresql has an independently creatable TYPE structure which is used
to implement an enumerated type. This approach introduces significant
complexity on the SQLAlchemy side in terms of when this type should be
CREATED and DROPPED. The type object is also an independently reflectable
entity. The following sections should be consulted:

	postgresql.ENUM - DDL and typing support for ENUM.

	PGInspector.get_enums() - retrieve a listing of current ENUM types

	postgresql.ENUM.create() , postgresql.ENUM.drop() - individual
CREATE and DROP commands for ENUM.

Using ENUM with ARRAY

The combination of ENUM and ARRAY is not directly supported by backend
DBAPIs at this time. In order to send and receive an ARRAY of ENUM,
use the following workaround type:

class ArrayOfEnum(ARRAY):

 def bind_expression(self, bindvalue):
 return sa.cast(bindvalue, self)

 def result_processor(self, dialect, coltype):
 super_rp = super(ArrayOfEnum, self).result_processor(
 dialect, coltype)

 def handle_raw_string(value):
 inner = re.match(r"^{(.*)}$", value).group(1)
 return inner.split(",") if inner else []

 def process(value):
 if value is None:
 return None
 return super_rp(handle_raw_string(value))
 return process

E.g.:

Table(
 'mydata', metadata,
 Column('id', Integer, primary_key=True),
 Column('data', ArrayOfEnum(ENUM('a', 'b, 'c', name='myenum')))

)

This type is not included as a built-in type as it would be incompatible
with a DBAPI that suddenly decides to support ARRAY of ENUM directly in
a new version.

PostgreSQL Data Types

As with all SQLAlchemy dialects, all UPPERCASE types that are known to be
valid with Postgresql are importable from the top level dialect, whether
they originate from sqlalchemy.types or from the local dialect:

from sqlalchemy.dialects.postgresql import \
 ARRAY, BIGINT, BIT, BOOLEAN, BYTEA, CHAR, CIDR, DATE, \
 DOUBLE_PRECISION, ENUM, FLOAT, HSTORE, INET, INTEGER, \
 INTERVAL, JSON, JSONB, MACADDR, NUMERIC, OID, REAL, SMALLINT, TEXT, \
 TIME, TIMESTAMP, UUID, VARCHAR, INT4RANGE, INT8RANGE, NUMRANGE, \
 DATERANGE, TSRANGE, TSTZRANGE, TSVECTOR

Types which are specific to PostgreSQL, or have PostgreSQL-specific
construction arguments, are as follows:

	
class sqlalchemy.dialects.postgresql.aggregate_order_by(target, order_by)

	Bases: sqlalchemy.sql.expression.ColumnElement

Represent a Postgresql aggregate order by expression.

E.g.:

from sqlalchemy.dialects.postgresql import aggregate_order_by
expr = func.array_agg(aggregate_order_by(table.c.a, table.c.b.desc()))
stmt = select([expr])

would represent the expression:

SELECT array_agg(a ORDER BY b DESC) FROM table;

Similarly:

expr = func.string_agg(
 table.c.a,
 aggregate_order_by(literal_column("','"), table.c.a)
)
stmt = select([expr])

Would represent:

SELECT string_agg(a, ',' ORDER BY a) FROM table;

New in version 1.1.

See also

array_agg

	
class sqlalchemy.dialects.postgresql.array(clauses, **kw)

	Bases: sqlalchemy.sql.expression.Tuple

A Postgresql ARRAY literal.

This is used to produce ARRAY literals in SQL expressions, e.g.:

from sqlalchemy.dialects.postgresql import array
from sqlalchemy.dialects import postgresql
from sqlalchemy import select, func

stmt = select([
 array([1,2]) + array([3,4,5])
])

print stmt.compile(dialect=postgresql.dialect())

Produces the SQL:

SELECT ARRAY[%(param_1)s, %(param_2)s] ||
 ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1

An instance of array will always have the datatype
ARRAY. The “inner” type of the array is inferred from
the values present, unless the type_ keyword argument is passed:

array(['foo', 'bar'], type_=CHAR)

New in version 0.8: Added the array literal type.

See also:

postgresql.ARRAY

	
class sqlalchemy.dialects.postgresql.ARRAY(item_type, as_tuple=False, dimensions=None, zero_indexes=False)

	Bases: sqlalchemy.sql.expression.SchemaEventTarget, sqlalchemy.types.ARRAY

Postgresql ARRAY type.

Changed in version 1.1: The postgresql.ARRAY type is now
a subclass of the core types.ARRAY type.

The postgresql.ARRAY type is constructed in the same way
as the core types.ARRAY type; a member type is required, and a
number of dimensions is recommended if the type is to be used for more
than one dimension:

from sqlalchemy.dialects import postgresql

mytable = Table("mytable", metadata,
 Column("data", postgresql.ARRAY(Integer, dimensions=2))
)

The postgresql.ARRAY type provides all operations defined on the
core types.ARRAY type, including support for “dimensions”, indexed
access, and simple matching such as types.ARRAY.Comparator.any()
and types.ARRAY.Comparator.all(). postgresql.ARRAY class also
provides PostgreSQL-specific methods for containment operations, including
postgresql.ARRAY.Comparator.contains()
postgresql.ARRAY.Comparator.contained_by(),
and postgresql.ARRAY.Comparator.overlap(), e.g.:

mytable.c.data.contains([1, 2])

The postgresql.ARRAY type may not be supported on all
PostgreSQL DBAPIs; it is currently known to work on psycopg2 only.

Additionally, the postgresql.ARRAY type does not work directly in
conjunction with the ENUM type. For a workaround, see the
special type at Using ENUM with ARRAY.

See also

types.ARRAY - base array type

postgresql.array - produces a literal array value.

	
class Comparator(expr)

	Bases: sqlalchemy.types.Comparator

Define comparison operations for ARRAY.

Note that these operations are in addition to those provided
by the base types.ARRAY.Comparator class, including
types.ARRAY.Comparator.any() and
types.ARRAY.Comparator.all().

	
contained_by(other)

	Boolean expression. Test if elements are a proper subset of the
elements of the argument array expression.

	
contains(other, **kwargs)

	Boolean expression. Test if elements are a superset of the
elements of the argument array expression.

	
overlap(other)

	Boolean expression. Test if array has elements in common with
an argument array expression.

	
ARRAY.__init__(item_type, as_tuple=False, dimensions=None, zero_indexes=False)

	Construct an ARRAY.

E.g.:

Column('myarray', ARRAY(Integer))

Arguments are:

	Parameters:
	
	item_type¶ – The data type of items of this array. Note that
dimensionality is irrelevant here, so multi-dimensional arrays like
INTEGER[][], are constructed as ARRAY(Integer), not as
ARRAY(ARRAY(Integer)) or such.

	as_tuple=False¶ – Specify whether return results
should be converted to tuples from lists. DBAPIs such
as psycopg2 return lists by default. When tuples are
returned, the results are hashable.

	dimensions¶ – if non-None, the ARRAY will assume a fixed
number of dimensions. This will cause the DDL emitted for this
ARRAY to include the exact number of bracket clauses [],
and will also optimize the performance of the type overall.
Note that PG arrays are always implicitly “non-dimensioned”,
meaning they can store any number of dimensions no matter how
they were declared.

	zero_indexes=False¶ – when True, index values will be converted
between Python zero-based and Postgresql one-based indexes, e.g.
a value of one will be added to all index values before passing
to the database.

New in version 0.9.5.

	
sqlalchemy.dialects.postgresql.array_agg(*arg, **kw)

	Postgresql-specific form of array_agg, ensures
return type is postgresql.ARRAY and not
the plain types.ARRAY.

New in version 1.1.

	
sqlalchemy.dialects.postgresql.Any(other, arrexpr, operator=<built-in function eq>)

	A synonym for the ARRAY.Comparator.any() method.

This method is legacy and is here for backwards-compatiblity.

See also

expression.any_()

	
sqlalchemy.dialects.postgresql.All(other, arrexpr, operator=<built-in function eq>)

	A synonym for the ARRAY.Comparator.all() method.

This method is legacy and is here for backwards-compatiblity.

See also

expression.all_()

	
class sqlalchemy.dialects.postgresql.BIT(length=None, varying=False)

	Bases: sqlalchemy.types.TypeEngine

	
class sqlalchemy.dialects.postgresql.BYTEA(length=None)

	Bases: sqlalchemy.types.LargeBinary

	
__init__(length=None)

	
inherited from the __init__() method of LargeBinary

Construct a LargeBinary type.

	Parameters:
	length¶ – optional, a length for the column for use in
DDL statements, for those binary types that accept a length,
such as the MySQL BLOB type.

	
class sqlalchemy.dialects.postgresql.CIDR

	Bases: sqlalchemy.types.TypeEngine

	
class sqlalchemy.dialects.postgresql.DOUBLE_PRECISION(precision=None, asdecimal=False, decimal_return_scale=None, **kwargs)

	Bases: sqlalchemy.types.Float

	
__init__(precision=None, asdecimal=False, decimal_return_scale=None, **kwargs)

	
inherited from the __init__() method of Float

Construct a Float.

	Parameters:
	
	precision¶ – the numeric precision for use in DDL CREATE
TABLE.

	asdecimal¶ – the same flag as that of Numeric, but
defaults to False. Note that setting this flag to True
results in floating point conversion.

	decimal_return_scale¶ – Default scale to use when converting
from floats to Python decimals. Floating point values will typically
be much longer due to decimal inaccuracy, and most floating point
database types don’t have a notion of “scale”, so by default the
float type looks for the first ten decimal places when converting.
Specfiying this value will override that length. Note that the
MySQL float types, which do include “scale”, will use “scale”
as the default for decimal_return_scale, if not otherwise specified.

New in version 0.9.0.

	**kwargs¶ – deprecated. Additional arguments here are ignored
by the default Float type. For database specific
floats that support additional arguments, see that dialect’s
documentation for details, such as
sqlalchemy.dialects.mysql.FLOAT.

	
class sqlalchemy.dialects.postgresql.ENUM(*enums, **kw)

	Bases: sqlalchemy.types.Enum

Postgresql ENUM type.

This is a subclass of types.Enum which includes
support for PG’s CREATE TYPE and DROP TYPE.

When the builtin type types.Enum is used and the
Enum.native_enum flag is left at its default of
True, the Postgresql backend will use a postgresql.ENUM
type as the implementation, so the special create/drop rules
will be used.

The create/drop behavior of ENUM is necessarily intricate, due to the
awkward relationship the ENUM type has in relationship to the
parent table, in that it may be “owned” by just a single table, or
may be shared among many tables.

When using types.Enum or postgresql.ENUM
in an “inline” fashion, the CREATE TYPE and DROP TYPE is emitted
corresponding to when the Table.create() and Table.drop()
methods are called:

table = Table('sometable', metadata,
 Column('some_enum', ENUM('a', 'b', 'c', name='myenum'))
)

table.create(engine) # will emit CREATE ENUM and CREATE TABLE
table.drop(engine) # will emit DROP TABLE and DROP ENUM

To use a common enumerated type between multiple tables, the best
practice is to declare the types.Enum or
postgresql.ENUM independently, and associate it with the
MetaData object itself:

my_enum = ENUM('a', 'b', 'c', name='myenum', metadata=metadata)

t1 = Table('sometable_one', metadata,
 Column('some_enum', myenum)
)

t2 = Table('sometable_two', metadata,
 Column('some_enum', myenum)
)

When this pattern is used, care must still be taken at the level
of individual table creates. Emitting CREATE TABLE without also
specifying checkfirst=True will still cause issues:

t1.create(engine) # will fail: no such type 'myenum'

If we specify checkfirst=True, the individual table-level create
operation will check for the ENUM and create if not exists:

will check if enum exists, and emit CREATE TYPE if not
t1.create(engine, checkfirst=True)

When using a metadata-level ENUM type, the type will always be created
and dropped if either the metadata-wide create/drop is called:

metadata.create_all(engine) # will emit CREATE TYPE
metadata.drop_all(engine) # will emit DROP TYPE

The type can also be created and dropped directly:

my_enum.create(engine)
my_enum.drop(engine)

Changed in version 1.0.0: The Postgresql postgresql.ENUM type
now behaves more strictly with regards to CREATE/DROP. A metadata-level
ENUM type will only be created and dropped at the metadata level,
not the table level, with the exception of
table.create(checkfirst=True).
The table.drop() call will now emit a DROP TYPE for a table-level
enumerated type.

	
__init__(*enums, **kw)

	Construct an ENUM.

Arguments are the same as that of
types.Enum, but also including
the following parameters.

	Parameters:
	create_type¶ – Defaults to True.
Indicates that CREATE TYPE should be
emitted, after optionally checking for the
presence of the type, when the parent
table is being created; and additionally
that DROP TYPE is called when the table
is dropped. When False, no check
will be performed and no CREATE TYPE
or DROP TYPE is emitted, unless
create()
or drop()
are called directly.
Setting to False is helpful
when invoking a creation scheme to a SQL file
without access to the actual database -
the create() and
drop() methods can
be used to emit SQL to a target bind.

New in version 0.7.4.

	
create(bind=None, checkfirst=True)

	Emit CREATE TYPE for this
ENUM.

If the underlying dialect does not support
Postgresql CREATE TYPE, no action is taken.

	Parameters:
	
	bind¶ – a connectable Engine,
Connection, or similar object to emit
SQL.

	checkfirst¶ – if True, a query against
the PG catalog will be first performed to see
if the type does not exist already before
creating.

	
drop(bind=None, checkfirst=True)

	Emit DROP TYPE for this
ENUM.

If the underlying dialect does not support
Postgresql DROP TYPE, no action is taken.

	Parameters:
	
	bind¶ – a connectable Engine,
Connection, or similar object to emit
SQL.

	checkfirst¶ – if True, a query against
the PG catalog will be first performed to see
if the type actually exists before dropping.

	
class sqlalchemy.dialects.postgresql.HSTORE(text_type=None)

	Bases: sqlalchemy.types.Indexable, sqlalchemy.types.Concatenable, sqlalchemy.types.TypeEngine

Represent the Postgresql HSTORE type.

The HSTORE type stores dictionaries containing strings, e.g.:

data_table = Table('data_table', metadata,
 Column('id', Integer, primary_key=True),
 Column('data', HSTORE)
)

with engine.connect() as conn:
 conn.execute(
 data_table.insert(),
 data = {"key1": "value1", "key2": "value2"}
)

HSTORE provides for a wide range of operations, including:

	Index operations:

data_table.c.data['some key'] == 'some value'

	Containment operations:

data_table.c.data.has_key('some key')

data_table.c.data.has_all(['one', 'two', 'three'])

	Concatenation:

data_table.c.data + {"k1": "v1"}

For a full list of special methods see
HSTORE.comparator_factory.

For usage with the SQLAlchemy ORM, it may be desirable to combine
the usage of HSTORE with MutableDict dictionary
now part of the sqlalchemy.ext.mutable
extension. This extension will allow “in-place” changes to the
dictionary, e.g. addition of new keys or replacement/removal of existing
keys to/from the current dictionary, to produce events which will be
detected by the unit of work:

from sqlalchemy.ext.mutable import MutableDict

class MyClass(Base):
 __tablename__ = 'data_table'

 id = Column(Integer, primary_key=True)
 data = Column(MutableDict.as_mutable(HSTORE))

my_object = session.query(MyClass).one()

in-place mutation, requires Mutable extension
in order for the ORM to detect
my_object.data['some_key'] = 'some value'

session.commit()

When the sqlalchemy.ext.mutable extension is not used, the ORM
will not be alerted to any changes to the contents of an existing
dictionary, unless that dictionary value is re-assigned to the
HSTORE-attribute itself, thus generating a change event.

New in version 0.8.

See also

hstore - render the Postgresql hstore() function.

	
class Comparator(expr)

	Bases: sqlalchemy.types.Comparator, sqlalchemy.types.Comparator

Define comparison operations for HSTORE.

	
array()

	Text array expression. Returns array of alternating keys and
values.

	
contained_by(other)

	Boolean expression. Test if keys are a proper subset of the
keys of the argument jsonb expression.

	
contains(other, **kwargs)

	Boolean expression. Test if keys (or array) are a superset
of/contained the keys of the argument jsonb expression.

	
defined(key)

	Boolean expression. Test for presence of a non-NULL value for
the key. Note that the key may be a SQLA expression.

	
delete(key)

	HStore expression. Returns the contents of this hstore with the
given key deleted. Note that the key may be a SQLA expression.

	
has_all(other)

	Boolean expression. Test for presence of all keys in jsonb

	
has_any(other)

	Boolean expression. Test for presence of any key in jsonb

	
has_key(other)

	Boolean expression. Test for presence of a key. Note that the
key may be a SQLA expression.

	
keys()

	Text array expression. Returns array of keys.

	
matrix()

	Text array expression. Returns array of [key, value] pairs.

	
slice(array)

	HStore expression. Returns a subset of an hstore defined by
array of keys.

	
vals()

	Text array expression. Returns array of values.

	
HSTORE.__init__(text_type=None)

	Construct a new HSTORE.

	Parameters:
	text_type¶ – the type that should be used for indexed values.
Defaults to types.Text.

New in version 1.1.0.

	
HSTORE.comparator_factory

	alias of Comparator

	
class sqlalchemy.dialects.postgresql.hstore(*args, **kwargs)

	Bases: sqlalchemy.sql.functions.GenericFunction

Construct an hstore value within a SQL expression using the
Postgresql hstore() function.

The hstore function accepts one or two arguments as described
in the Postgresql documentation.

E.g.:

from sqlalchemy.dialects.postgresql import array, hstore

select([hstore('key1', 'value1')])

select([
 hstore(
 array(['key1', 'key2', 'key3']),
 array(['value1', 'value2', 'value3'])
)
])

New in version 0.8.

See also

HSTORE - the Postgresql HSTORE datatype.

	
type

	alias of HSTORE

	
class sqlalchemy.dialects.postgresql.INET

	Bases: sqlalchemy.types.TypeEngine

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.postgresql.INTERVAL(precision=None)

	Bases: sqlalchemy.types.TypeEngine

Postgresql INTERVAL type.

The INTERVAL type may not be supported on all DBAPIs.
It is known to work on psycopg2 and not pg8000 or zxjdbc.

	
class sqlalchemy.dialects.postgresql.JSON(none_as_null=False, astext_type=None)

	Bases: sqlalchemy.types.JSON

Represent the Postgresql JSON type.

This type is a specialization of the Core-level types.JSON
type. Be sure to read the documentation for types.JSON for
important tips regarding treatment of NULL values and ORM use.

Changed in version 1.1: postgresql.JSON is now a Postgresql-
specific specialization of the new types.JSON type.

The operators provided by the Postgresql version of JSON
include:

	Index operations (the -> operator):

data_table.c.data['some key']

data_table.c.data[5]

	Index operations returning text (the ->> operator):

data_table.c.data['some key'].astext == 'some value'

	Index operations with CAST
(equivalent to CAST(col ->> ['some key'] AS <type>)):

data_table.c.data['some key'].astext.cast(Integer) == 5

	Path index operations (the #> operator):

data_table.c.data[('key_1', 'key_2', 5, ..., 'key_n')]

	Path index operations returning text (the #>> operator):

data_table.c.data[('key_1', 'key_2', 5, ..., 'key_n')].astext == 'some value'

Changed in version 1.1: The ColumnElement.cast() operator on
JSON objects now requires that the JSON.Comparator.astext
modifier be called explicitly, if the cast works only from a textual
string.

Index operations return an expression object whose type defaults to
JSON by default, so that further JSON-oriented instructions
may be called upon the result type.

Custom serializers and deserializers are specified at the dialect level,
that is using create_engine(). The reason for this is that when
using psycopg2, the DBAPI only allows serializers at the per-cursor
or per-connection level. E.g.:

engine = create_engine("postgresql://scott:tiger@localhost/test",
 json_serializer=my_serialize_fn,
 json_deserializer=my_deserialize_fn
)

When using the psycopg2 dialect, the json_deserializer is registered
against the database using psycopg2.extras.register_default_json.

See also

types.JSON - Core level JSON type

JSONB

	
class Comparator(expr)

	Bases: sqlalchemy.types.Comparator

Define comparison operations for JSON.

	
astext

	On an indexed expression, use the “astext” (e.g. “->>”)
conversion when rendered in SQL.

E.g.:

select([data_table.c.data['some key'].astext])

See also

ColumnElement.cast()

	
JSON.__init__(none_as_null=False, astext_type=None)

	Construct a JSON type.

	Parameters:
	
	none_as_null¶ – if True, persist the value None as a
SQL NULL value, not the JSON encoding of null. Note that
when this flag is False, the null() construct can still
be used to persist a NULL value:

from sqlalchemy import null
conn.execute(table.insert(), data=null())

Changed in version 0.9.8: - Added none_as_null, and null()
is now supported in order to persist a NULL value.

See also

JSON.NULL

	astext_type¶ – the type to use for the
JSON.Comparator.astext
accessor on indexed attributes. Defaults to types.Text.

New in version 1.1.

	
JSON.comparator_factory

	alias of Comparator

	
class sqlalchemy.dialects.postgresql.JSONB(none_as_null=False, astext_type=None)

	Bases: sqlalchemy.dialects.postgresql.json.JSON

Represent the Postgresql JSONB type.

The JSONB type stores arbitrary JSONB format data, e.g.:

data_table = Table('data_table', metadata,
 Column('id', Integer, primary_key=True),
 Column('data', JSONB)
)

with engine.connect() as conn:
 conn.execute(
 data_table.insert(),
 data = {"key1": "value1", "key2": "value2"}
)

The JSONB type includes all operations provided by
JSON, including the same behaviors for indexing operations.
It also adds additional operators specific to JSONB, including
JSONB.Comparator.has_key(), JSONB.Comparator.has_all(),
JSONB.Comparator.has_any(), JSONB.Comparator.contains(),
and JSONB.Comparator.contained_by().

Like the JSON type, the JSONB type does not detect
in-place changes when used with the ORM, unless the
sqlalchemy.ext.mutable extension is used.

Custom serializers and deserializers
are shared with the JSON class, using the json_serializer
and json_deserializer keyword arguments. These must be specified
at the dialect level using create_engine(). When using
psycopg2, the serializers are associated with the jsonb type using
psycopg2.extras.register_default_jsonb on a per-connection basis,
in the same way that psycopg2.extras.register_default_json is used
to register these handlers with the json type.

New in version 0.9.7.

See also

JSON

	
class Comparator(expr)

	Bases: sqlalchemy.dialects.postgresql.json.Comparator

Define comparison operations for JSON.

	
contained_by(other)

	Boolean expression. Test if keys are a proper subset of the
keys of the argument jsonb expression.

	
contains(other, **kwargs)

	Boolean expression. Test if keys (or array) are a superset
of/contained the keys of the argument jsonb expression.

	
has_all(other)

	Boolean expression. Test for presence of all keys in jsonb

	
has_any(other)

	Boolean expression. Test for presence of any key in jsonb

	
has_key(other)

	Boolean expression. Test for presence of a key. Note that the
key may be a SQLA expression.

	
JSONB.comparator_factory

	alias of Comparator

	
class sqlalchemy.dialects.postgresql.MACADDR

	Bases: sqlalchemy.types.TypeEngine

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.postgresql.OID

	Bases: sqlalchemy.types.TypeEngine

Provide the Postgresql OID type.

New in version 0.9.5.

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.postgresql.REAL(precision=None, asdecimal=False, decimal_return_scale=None, **kwargs)

	Bases: sqlalchemy.types.Float

The SQL REAL type.

	
__init__(precision=None, asdecimal=False, decimal_return_scale=None, **kwargs)

	
inherited from the __init__() method of Float

Construct a Float.

	Parameters:
	
	precision¶ – the numeric precision for use in DDL CREATE
TABLE.

	asdecimal¶ – the same flag as that of Numeric, but
defaults to False. Note that setting this flag to True
results in floating point conversion.

	decimal_return_scale¶ – Default scale to use when converting
from floats to Python decimals. Floating point values will typically
be much longer due to decimal inaccuracy, and most floating point
database types don’t have a notion of “scale”, so by default the
float type looks for the first ten decimal places when converting.
Specfiying this value will override that length. Note that the
MySQL float types, which do include “scale”, will use “scale”
as the default for decimal_return_scale, if not otherwise specified.

New in version 0.9.0.

	**kwargs¶ – deprecated. Additional arguments here are ignored
by the default Float type. For database specific
floats that support additional arguments, see that dialect’s
documentation for details, such as
sqlalchemy.dialects.mysql.FLOAT.

	
class sqlalchemy.dialects.postgresql.TSVECTOR

	Bases: sqlalchemy.types.TypeEngine

The postgresql.TSVECTOR type implements the Postgresql
text search type TSVECTOR.

It can be used to do full text queries on natural language
documents.

New in version 0.9.0.

See also

Full Text Search

	
__init__

	
inherited from the __init__ attribute of object

x.__init__(...) initializes x; see help(type(x)) for signature

	
class sqlalchemy.dialects.postgresql.UUID(as_uuid=False)

	Bases: sqlalchemy.types.TypeEngine

Postgresql UUID type.

Represents the UUID column type, interpreting
data either as natively returned by the DBAPI
or as Python uuid objects.

The UUID type may not be supported on all DBAPIs.
It is known to work on psycopg2 and not pg8000.

	
__init__(as_uuid=False)

	Construct a UUID type.

	Parameters:
	as_uuid=False¶ – if True, values will be interpreted
as Python uuid objects, converting to/from string via the
DBAPI.

Range Types

The new range column types found in PostgreSQL 9.2 onwards are
catered for by the following types:

	
class sqlalchemy.dialects.postgresql.INT4RANGE

	Bases: sqlalchemy.dialects.postgresql.ranges.RangeOperators, sqlalchemy.types.TypeEngine

Represent the Postgresql INT4RANGE type.

New in version 0.8.2.

	
class sqlalchemy.dialects.postgresql.INT8RANGE

	Bases: sqlalchemy.dialects.postgresql.ranges.RangeOperators, sqlalchemy.types.TypeEngine

Represent the Postgresql INT8RANGE type.

New in version 0.8.2.

	
class sqlalchemy.dialects.postgresql.NUMRANGE

	Bases: sqlalchemy.dialects.postgresql.ranges.RangeOperators, sqlalchemy.types.TypeEngine

Represent the Postgresql NUMRANGE type.

New in version 0.8.2.

	
class sqlalchemy.dialects.postgresql.DATERANGE

	Bases: sqlalchemy.dialects.postgresql.ranges.RangeOperators, sqlalchemy.types.TypeEngine

Represent the Postgresql DATERANGE type.

New in version 0.8.2.

	
class sqlalchemy.dialects.postgresql.TSRANGE

	Bases: sqlalchemy.dialects.postgresql.ranges.RangeOperators, sqlalchemy.types.TypeEngine

Represent the Postgresql TSRANGE type.

New in version 0.8.2.

	
class sqlalchemy.dialects.postgresql.TSTZRANGE

	Bases: sqlalchemy.dialects.postgresql.ranges.RangeOperators, sqlalchemy.types.TypeEngine

Represent the Postgresql TSTZRANGE type.

New in version 0.8.2.

The types above get most of their functionality from the following
mixin:

	
class sqlalchemy.dialects.postgresql.ranges.RangeOperators

	This mixin provides functionality for the Range Operators
listed in Table 9-44 of the postgres documentation for Range
Functions and Operators. It is used by all the range types
provided in the postgres dialect and can likely be used for
any range types you create yourself.

No extra support is provided for the Range Functions listed in
Table 9-45 of the postgres documentation. For these, the normal
func() object should be used.

New in version 0.8.2: Support for Postgresql RANGE operations.

	
class comparator_factory(expr)

	Bases: sqlalchemy.types.Comparator

Define comparison operations for range types.

	
__ne__(other)

	Boolean expression. Returns true if two ranges are not equal

	
adjacent_to(other)

	Boolean expression. Returns true if the range in the column
is adjacent to the range in the operand.

	
contained_by(other)

	Boolean expression. Returns true if the column is contained
within the right hand operand.

	
contains(other, **kw)

	Boolean expression. Returns true if the right hand operand,
which can be an element or a range, is contained within the
column.

	
not_extend_left_of(other)

	Boolean expression. Returns true if the range in the column
does not extend left of the range in the operand.

	
not_extend_right_of(other)

	Boolean expression. Returns true if the range in the column
does not extend right of the range in the operand.

	
overlaps(other)

	Boolean expression. Returns true if the column overlaps
(has points in common with) the right hand operand.

	
strictly_left_of(other)

	Boolean expression. Returns true if the column is strictly
left of the right hand operand.

	
strictly_right_of(other)

	Boolean expression. Returns true if the column is strictly
right of the right hand operand.

Warning

The range type DDL support should work with any Postgres DBAPI
driver, however the data types returned may vary. If you are using
psycopg2, it’s recommended to upgrade to version 2.5 or later
before using these column types.

When instantiating models that use these column types, you should pass
whatever data type is expected by the DBAPI driver you’re using for
the column type. For psycopg2 these are
NumericRange,
DateRange,
DateTimeRange and
DateTimeTZRange or the class you’ve
registered with register_range().

For example:

from psycopg2.extras import DateTimeRange
from sqlalchemy.dialects.postgresql import TSRANGE

class RoomBooking(Base):

 __tablename__ = 'room_booking'

 room = Column(Integer(), primary_key=True)
 during = Column(TSRANGE())

booking = RoomBooking(
 room=101,
 during=DateTimeRange(datetime(2013, 3, 23), None)
)

PostgreSQL Constraint Types

SQLAlchemy supports Postgresql EXCLUDE constraints via the
ExcludeConstraint class:

	
class sqlalchemy.dialects.postgresql.ExcludeConstraint(*elements, **kw)

	Bases: sqlalchemy.schema.ColumnCollectionConstraint

A table-level EXCLUDE constraint.

Defines an EXCLUDE constraint as described in the postgres
documentation.

	
__init__(*elements, **kw)

	

	Parameters:
	
	*elements¶ – A sequence of two tuples of the form (column, operator) where
column must be a column name or Column object and operator must
be a string containing the operator to use.

	name¶ – Optional, the in-database name of this constraint.

	deferrable¶ – Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when
issuing DDL for this constraint.

	initially¶ – Optional string. If set, emit INITIALLY <value> when issuing DDL
for this constraint.

	using¶ – Optional string. If set, emit USING <index_method> when issuing DDL
for this constraint. Defaults to ‘gist’.

	where¶ – Optional string. If set, emit WHERE <predicate> when issuing DDL
for this constraint.

For example:

from sqlalchemy.dialects.postgresql import ExcludeConstraint, TSRANGE

class RoomBooking(Base):

 __tablename__ = 'room_booking'

 room = Column(Integer(), primary_key=True)
 during = Column(TSRANGE())

 __table_args__ = (
 ExcludeConstraint(('room', '='), ('during', '&&')),
)

PostgreSQL DML Constructs

	
sqlalchemy.dialects.postgresql.dml.insert(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)

	Construct a new Insert object.

This constructor is mirrored as a public API function; see insert() for a full usage and argument description.

	
class sqlalchemy.dialects.postgresql.dml.Insert(table, values=None, inline=False, bind=None, prefixes=None, returning=None, return_defaults=False, **dialect_kw)

	Bases: sqlalchemy.sql.expression.Insert

Postgresql-specific implementation of INSERT.

Adds methods for PG-specific syntaxes such as ON CONFLICT.

New in version 1.1.

	
excluded

	Provide the excluded namespace for an ON CONFLICT statement

PG’s ON CONFLICT clause allows reference to the row that would
be inserted, known as excluded. This attribute provides
all columns in this row to be referenaceable.

See also

INSERT...ON CONFLICT (Upsert) - example of how
to use Insert.excluded

	
on_conflict_do_nothing(constraint=None, index_elements=None, index_where=None)

	Specifies a DO NOTHING action for ON CONFLICT clause.

The constraint and index_elements arguments
are optional, but only one of these can be specified.

	Parameters:
	constraint¶ –

The name of a unique or exclusion constraint on the table,
or the constraint object itself if it has a .name attribute.

	Parameters:
	index_elements¶ –

A sequence consisting of string column names, Column
objects, or other column expression objects that will be used
to infer a target index.

	Parameters:
	index_where¶ –

Additional WHERE criterion that can be used to infer a
conditional target index.

New in version 1.1.

See also

INSERT...ON CONFLICT (Upsert)

	
on_conflict_do_update(constraint=None, index_elements=None, index_where=None, set_=None, where=None)

	Specifies a DO UPDATE SET action for ON CONFLICT clause.

Either the constraint or index_elements argument is
required, but only one of these can be specified.

	Parameters:
	constraint¶ –

The name of a unique or exclusion constraint on the table,
or the constraint object itself if it has a .name attribute.

	Parameters:
	index_elements¶ –

A sequence consisting of string column names, Column
objects, or other column expression objects that will be used
to infer a target index.

	Parameters:
	index_where¶ –

Additional WHERE criterion that can be used to infer a
conditional target index.

	Parameters:
	set_¶ –

Required argument. A dictionary or other mapping object
with column names as keys and expressions or literals as values,
specifying the SET actions to take.

Warning

This dictionary does not take into account
Python-specified default UPDATE values or generation functions,
e.g. those specified using Column.onupdate.
These values will not be exercised for an ON CONFLICT style of
UPDATE, unless they are manually specified in the
Insert.on_conflict_do_update.set_ dictionary.

	Parameters:
	where¶ –

Optional argument. If present, can be a literal SQL
string or an acceptable expression for a WHERE clause
that restricts the rows affected by DO UPDATE SET. Rows
not meeting the WHERE condition will not be updated
(effectively a DO NOTHING for those rows).

New in version 1.1.

See also

INSERT...ON CONFLICT (Upsert)

psycopg2

Support for the PostgreSQL database via the psycopg2 driver.

DBAPI

Documentation and download information (if applicable) for psycopg2 is available at:
http://pypi.python.org/pypi/psycopg2/

Connecting

Connect String:

postgresql+psycopg2://user:password@host:port/dbname[?key=value&key=value...]

psycopg2 Connect Arguments

psycopg2-specific keyword arguments which are accepted by
create_engine() are:

	server_side_cursors: Enable the usage of “server side cursors” for SQL
statements which support this feature. What this essentially means from a
psycopg2 point of view is that the cursor is created using a name, e.g.
connection.cursor('some name'), which has the effect that result rows
are not immediately pre-fetched and buffered after statement execution, but
are instead left on the server and only retrieved as needed. SQLAlchemy’s
ResultProxy uses special row-buffering
behavior when this feature is enabled, such that groups of 100 rows at a
time are fetched over the wire to reduce conversational overhead.
Note that the stream_results=True execution option is a more targeted
way of enabling this mode on a per-execution basis.

	use_native_unicode: Enable the usage of Psycopg2 “native unicode” mode
per connection. True by default.

See also

Disabling Native Unicode

	isolation_level: This option, available for all PostgreSQL dialects,
includes the AUTOCOMMIT isolation level when using the psycopg2
dialect.

See also

Psycopg2 Transaction Isolation Level

	client_encoding: sets the client encoding in a libpq-agnostic way,
using psycopg2’s set_client_encoding() method.

See also

Unicode with Psycopg2

Unix Domain Connections

psycopg2 supports connecting via Unix domain connections. When the host
portion of the URL is omitted, SQLAlchemy passes None to psycopg2,
which specifies Unix-domain communication rather than TCP/IP communication:

create_engine("postgresql+psycopg2://user:password@/dbname")

By default, the socket file used is to connect to a Unix-domain socket
in /tmp, or whatever socket directory was specified when PostgreSQL
was built. This value can be overridden by passing a pathname to psycopg2,
using host as an additional keyword argument:

create_engine("postgresql+psycopg2://user:password@/dbname?host=/var/lib/postgresql")

See also:

PQconnectdbParams

Per-Statement/Connection Execution Options

The following DBAPI-specific options are respected when used with
Connection.execution_options(), Executable.execution_options(),
Query.execution_options(), in addition to those not specific to DBAPIs:

	isolation_level - Set the transaction isolation level for the lifespan of a
Connection (can only be set on a connection, not a statement
or query). See Psycopg2 Transaction Isolation Level.

	stream_results - Enable or disable usage of psycopg2 server side cursors -
this feature makes use of “named” cursors in combination with special
result handling methods so that result rows are not fully buffered.
If None or not set, the server_side_cursors option of the
Engine is used.

	max_row_buffer - when using stream_results, an integer value that
specifies the maximum number of rows to buffer at a time. This is
interpreted by the BufferedRowResultProxy, and if omitted the
buffer will grow to ultimately store 1000 rows at a time.

New in version 1.0.6.

Unicode with Psycopg2

By default, the psycopg2 driver uses the psycopg2.extensions.UNICODE
extension, such that the DBAPI receives and returns all strings as Python
Unicode objects directly - SQLAlchemy passes these values through without
change. Psycopg2 here will encode/decode string values based on the
current “client encoding” setting; by default this is the value in
the postgresql.conf file, which often defaults to SQL_ASCII.
Typically, this can be changed to utf8, as a more useful default:

postgresql.conf file

client_encoding = sql_ascii # actually, defaults to database
 # encoding
client_encoding = utf8

A second way to affect the client encoding is to set it within Psycopg2
locally. SQLAlchemy will call psycopg2’s
connection.set_client_encoding() method
on all new connections based on the value passed to
create_engine() using the client_encoding parameter:

set_client_encoding() setting;
works for *all* Postgresql versions
engine = create_engine("postgresql://user:pass@host/dbname",
 client_encoding='utf8')

This overrides the encoding specified in the Postgresql client configuration.
When using the parameter in this way, the psycopg2 driver emits
SET client_encoding TO 'utf8' on the connection explicitly, and works
in all Postgresql versions.

Note that the client_encoding setting as passed to create_engine()
is not the same as the more recently added client_encoding parameter
now supported by libpq directly. This is enabled when client_encoding
is passed directly to psycopg2.connect(), and from SQLAlchemy is passed
using the create_engine.connect_args parameter:

libpq direct parameter setting;
only works for Postgresql **9.1 and above**
engine = create_engine("postgresql://user:pass@host/dbname",
 connect_args={'client_encoding': 'utf8'})

using the query string is equivalent
engine = create_engine("postgresql://user:pass@host/dbname?client_encoding=utf8")

The above parameter was only added to libpq as of version 9.1 of Postgresql,
so using the previous method is better for cross-version support.

Disabling Native Unicode

SQLAlchemy can also be instructed to skip the usage of the psycopg2
UNICODE extension and to instead utilize its own unicode encode/decode
services, which are normally reserved only for those DBAPIs that don’t
fully support unicode directly. Passing use_native_unicode=False to
create_engine() will disable usage of psycopg2.extensions.UNICODE.
SQLAlchemy will instead encode data itself into Python bytestrings on the way
in and coerce from bytes on the way back,
using the value of the create_engine() encoding parameter, which
defaults to utf-8.
SQLAlchemy’s own unicode encode/decode functionality is steadily becoming
obsolete as most DBAPIs now support unicode fully.

Bound Parameter Styles

The default parameter style for the psycopg2 dialect is “pyformat”, where
SQL is rendered using %(paramname)s style. This format has the limitation
that it does not accommodate the unusual case of parameter names that
actually contain percent or parenthesis symbols; as SQLAlchemy in many cases
generates bound parameter names based on the name of a column, the presence
of these characters in a column name can lead to problems.

There are two solutions to the issue of a schema.Column that contains
one of these characters in its name. One is to specify the
schema.Column.key for columns that have such names:

measurement = Table('measurement', metadata,
 Column('Size (meters)', Integer, key='size_meters')
)

Above, an INSERT statement such as measurement.insert() will use
size_meters as the parameter name, and a SQL expression such as
measurement.c.size_meters > 10 will derive the bound parameter name
from the size_meters key as well.

Changed in version 1.0.0: - SQL expressions will use Column.key
as the source of naming when anonymous bound parameters are created
in SQL expressions; previously, this behavior only applied to
Table.insert() and Table.update() parameter names.

The other solution is to use a positional format; psycopg2 allows use of the
“format” paramstyle, which can be passed to
create_engine.paramstyle:

engine = create_engine(
 'postgresql://scott:tiger@localhost:5432/test', paramstyle='format')

With the above engine, instead of a statement like:

INSERT INTO measurement ("Size (meters)") VALUES (%(Size (meters))s)
{'Size (meters)': 1}

we instead see:

INSERT INTO measurement ("Size (meters)") VALUES (%s)
(1,)

Where above, the dictionary style is converted into a tuple with positional
style.

Transactions

The psycopg2 dialect fully supports SAVEPOINT and two-phase commit operations.

Psycopg2 Transaction Isolation Level

As discussed in Transaction Isolation Level,
all Postgresql dialects support setting of transaction isolation level
both via the isolation_level parameter passed to create_engine(),
as well as the isolation_level argument used by
Connection.execution_options(). When using the psycopg2 dialect, these
options make use of psycopg2’s set_isolation_level() connection method,
rather than emitting a Postgresql directive; this is because psycopg2’s
API-level setting is always emitted at the start of each transaction in any
case.

The psycopg2 dialect supports these constants for isolation level:

	READ COMMITTED

	READ UNCOMMITTED

	REPEATABLE READ

	SERIALIZABLE

	AUTOCOMMIT

New in version 0.8.2: support for AUTOCOMMIT isolation level when using
psycopg2.

See also

Transaction Isolation Level

pg8000 Transaction Isolation Level

NOTICE logging

The psycopg2 dialect will log Postgresql NOTICE messages via the
sqlalchemy.dialects.postgresql logger:

import logging
logging.getLogger('sqlalchemy.dialects.postgresql').setLevel(logging.INFO)

HSTORE type

The psycopg2 DBAPI includes an extension to natively handle marshalling of
the HSTORE type. The SQLAlchemy psycopg2 dialect will enable this extension
by default when psycopg2 version 2.4 or greater is used, and
it is detected that the target database has the HSTORE type set up for use.
In other words, when the dialect makes the first
connection, a sequence like the following is performed:

	Request the available HSTORE oids using
psycopg2.extras.HstoreAdapter.get_oids().
If this function returns a list of HSTORE identifiers, we then determine
that the HSTORE extension is present.
This function is skipped if the version of psycopg2 installed is
less than version 2.4.

	If the use_native_hstore flag is at its default of True, and
we’ve detected that HSTORE oids are available, the
psycopg2.extensions.register_hstore() extension is invoked for all
connections.

The register_hstore() extension has the effect of all Python
dictionaries being accepted as parameters regardless of the type of target
column in SQL. The dictionaries are converted by this extension into a
textual HSTORE expression. If this behavior is not desired, disable the
use of the hstore extension by setting use_native_hstore to False as
follows:

engine = create_engine("postgresql+psycopg2://scott:tiger@localhost/test",
 use_native_hstore=False)

The HSTORE type is still supported when the
psycopg2.extensions.register_hstore() extension is not used. It merely
means that the coercion between Python dictionaries and the HSTORE
string format, on both the parameter side and the result side, will take
place within SQLAlchemy’s own marshalling logic, and not that of psycopg2
which may be more performant.

pg8000

Support for the PostgreSQL database via the pg8000 driver.

DBAPI

Documentation and download information (if applicable) for pg8000 is available at:
https://pythonhosted.org/pg8000/

Connecting

Connect String:

postgresql+pg8000://user:password@host:port/dbname[?key=value&key=value...]

Unicode

pg8000 will encode / decode string values between it and the server using the
PostgreSQL client_encoding parameter; by default this is the value in
the postgresql.conf file, which often defaults to SQL_ASCII.
Typically, this can be changed to utf-8, as a more useful default:

#client_encoding = sql_ascii # actually, defaults to database
 # encoding
client_encoding = utf8

The client_encoding can be overriden for a session by executing the SQL:

SET CLIENT_ENCODING TO ‘utf8’;

SQLAlchemy will execute this SQL on all new connections based on the value
passed to create_engine() using the client_encoding parameter:

engine = create_engine(
 "postgresql+pg8000://user:pass@host/dbname", client_encoding='utf8')

pg8000 Transaction Isolation Level

The pg8000 dialect offers the same isolation level settings as that
of the psycopg2 dialect:

	READ COMMITTED

	READ UNCOMMITTED

	REPEATABLE READ

	SERIALIZABLE

	AUTOCOMMIT

New in version 0.9.5: support for AUTOCOMMIT isolation level when using
pg8000.

See also

Transaction Isolation Level

Psycopg2 Transaction Isolation Level

psycopg2cffi

Support for the PostgreSQL database via the psycopg2cffi driver.

DBAPI

Documentation and download information (if applicable) for psycopg2cffi is available at:
http://pypi.python.org/pypi/psycopg2cffi/

Connecting

Connect String:

postgresql+psycopg2cffi://user:password@host:port/dbname[?key=value&key=value...]

psycopg2cffi is an adaptation of psycopg2, using CFFI for the C
layer. This makes it suitable for use in e.g. PyPy. Documentation
is as per psycopg2.

New in version 1.0.0.

See also

sqlalchemy.dialects.postgresql.psycopg2

py-postgresql

Support for the PostgreSQL database via the py-postgresql driver.

DBAPI

Documentation and download information (if applicable) for py-postgresql is available at:
http://python.projects.pgfoundry.org/

Connecting

Connect String:

postgresql+pypostgresql://user:password@host:port/dbname[?key=value&key=value...]

pygresql

Support for the PostgreSQL database via the pygresql driver.

DBAPI

Documentation and download information (if applicable) for pygresql is available at:
http://www.pygresql.org/

Connecting

Connect String:

postgresql+pygresql://user:password@host:port/dbname[?key=value&key=value...]

zxjdbc

Support for the PostgreSQL database via the zxJDBC for Jython driver.

DBAPI

Drivers for this database are available at:
http://jdbc.postgresql.org/

Connecting

Connect String:

postgresql+zxjdbc://scott:tiger@localhost/db

SQLite

Support for the SQLite database.

DBAPI Support

The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.

	pysqlite

	pysqlcipher

Date and Time Types

SQLite does not have built-in DATE, TIME, or DATETIME types, and pysqlite does
not provide out of the box functionality for translating values between Python
datetime objects and a SQLite-supported format. SQLAlchemy’s own
DateTime and related types provide date formatting
and parsing functionality when SQlite is used. The implementation classes are
DATETIME, DATE and TIME.
These types represent dates and times as ISO formatted strings, which also
nicely support ordering. There’s no reliance on typical “libc” internals for
these functions so historical dates are fully supported.

Ensuring Text affinity

The DDL rendered for these types is the standard DATE, TIME
and DATETIME indicators. However, custom storage formats can also be
applied to these types. When the
storage format is detected as containing no alpha characters, the DDL for
these types is rendered as DATE_CHAR, TIME_CHAR, and DATETIME_CHAR,
so that the column continues to have textual affinity.

See also

Type Affinity - in the SQLite documentation

SQLite Auto Incrementing Behavior

Background on SQLite’s autoincrement is at: http://sqlite.org/autoinc.html

Key concepts:

	SQLite has an implicit “auto increment” feature that takes place for any
non-composite primary-key column that is specifically created using
“INTEGER PRIMARY KEY” for the type + primary key.

	SQLite also has an explicit “AUTOINCREMENT” keyword, that is not
equivalent to the implicit autoincrement feature; this keyword is not
recommended for general use. SQLAlchemy does not render this keyword
unless a special SQLite-specific directive is used (see below). However,
it still requires that the column’s type is named “INTEGER”.

Using the AUTOINCREMENT Keyword

To specifically render the AUTOINCREMENT keyword on the primary key column
when rendering DDL, add the flag sqlite_autoincrement=True to the Table
construct:

Table('sometable', metadata,
 Column('id', Integer, primary_key=True),
 sqlite_autoincrement=True)

Allowing autoincrement behavior SQLAlchemy types other than Integer/INTEGER

SQLite’s typing model is based on naming conventions. Among
other things, this means that any type name which contains the
substring "INT" will be determined to be of “integer affinity”. A
type named "BIGINT", "SPECIAL_INT" or even "XYZINTQPR", will be considered by
SQLite to be of “integer” affinity. However, the SQLite
autoincrement feature, whether implicitly or explicitly enabled,
requires that the name of the column’s type
is exactly the string “INTEGER”. Therefore, if an
application uses a type like BigInteger for a primary key, on
SQLite this type will need to be rendered as the name "INTEGER" when
emitting the initial CREATE TABLE statement in order for the autoincrement
behavior to be available.

One approach to achieve this is to use Integer on SQLite
only using TypeEngine.with_variant():

table = Table(
 "my_table", metadata,
 Column("id", BigInteger().with_variant(Integer, "sqlite"), primary_key=True)
)

Another is to use a subclass of BigInteger that overrides its DDL name
to be INTEGER when compiled against SQLite:

from sqlalchemy import BigInteger
from sqlalchemy.ext.compiler import compiles

class SLBigInteger(BigInteger):
 pass

@compiles(SLBigInteger, 'sqlite')
def bi_c(element, compiler, **kw):
 return "INTEGER"

@compiles(SLBigInteger)
def bi_c(element, compiler, **kw):
 return compiler.visit_BIGINT(element, **kw)

table = Table(
 "my_table", metadata,
 Column("id", SLBigInteger(), primary_key=True)
)

See also

TypeEngine.with_variant()

Custom SQL Constructs and Compilation Extension

Datatypes In SQLite Version 3

Database Locking Behavior / Concurrency

SQLite is not designed for a high level of write concurrency. The database
itself, being a file, is locked completely during write operations within
transactions, meaning exactly one “connection” (in reality a file handle)
has exclusive access to the database during this period - all other
“connections” will be blocked during this time.

The Python DBAPI specification also calls for a connection model that is
always in a transaction; there is no connection.begin() method,
only connection.commit() and connection.rollback(), upon which a
new transaction is to be begun immediately. This may seem to imply
that the SQLite driver would in theory allow only a single filehandle on a
particular database file at any time; however, there are several
factors both within SQlite itself as well as within the pysqlite driver
which loosen this restriction significantly.

However, no matter what locking modes are used, SQLite will still always
lock the database file once a transaction is started and DML (e.g. INSERT,
UPDATE, DELETE) has at least been emitted, and this will block
other transactions at least at the point that they also attempt to emit DML.
By default, the length of time on this block is very short before it times out
with an error.

This behavior becomes more critical when used in conjunction with the
SQLAlchemy ORM. SQLAlchemy’s Session object by default runs
within a transaction, and with its autoflush model, may emit DML preceding
any SELECT statement. This may lead to a SQLite database that locks
more quickly than is expected. The locking mode of SQLite and the pysqlite
driver can be manipulated to some degree, however it should be noted that
achieving a high degree of write-concurrency with SQLite is a losing battle.

For more information on SQLite’s lack of write concurrency by design, please
see
Situations Where Another RDBMS May Work Better - High Concurrency near the bottom of the page.

The following subsections introduce areas that are impacted by SQLite’s
file-based architecture and additionally will usually require workarounds to
work when using the pysqlite driver.

Transaction Isolation Level

SQLite supports “transaction isolation” in a non-standard way, along two
axes. One is that of the PRAGMA read_uncommitted
instruction. This setting can essentially switch SQLite between its
default mode of SERIALIZABLE isolation, and a “dirty read” isolation
mode normally referred to as READ UNCOMMITTED.

SQLAlchemy ties into this PRAGMA statement using the
create_engine.isolation_level parameter of create_engine().
Valid values for this parameter when used with SQLite are "SERIALIZABLE"
and "READ UNCOMMITTED" corresponding to a value of 0 and 1, respectively.
SQLite defaults to SERIALIZABLE, however its behavior is impacted by
the pysqlite driver’s default behavior.

The other axis along which SQLite’s transactional locking is impacted is
via the nature of the BEGIN statement used. The three varieties
are “deferred”, “immediate”, and “exclusive”, as described at
BEGIN TRANSACTION. A straight
BEGIN statement uses the “deferred” mode, where the the database file is
not locked until the first read or write operation, and read access remains
open to other transactions until the first write operation. But again,
it is critical to note that the pysqlite driver interferes with this behavior
by not even emitting BEGIN until the first write operation.

Warning

SQLite’s transactional scope is impacted by unresolved
issues in the pysqlite driver, which defers BEGIN statements to a greater
degree than is often feasible. See the section Serializable isolation / Savepoints / Transactional DDL
for techniques to work around this behavior.

SAVEPOINT Support

SQLite supports SAVEPOINTs, which only function once a transaction is
begun. SQLAlchemy’s SAVEPOINT support is available using the
Connection.begin_nested() method at the Core level, and
Session.begin_nested() at the ORM level. However, SAVEPOINTs
won’t work at all with pysqlite unless workarounds are taken.

Warning

SQLite’s SAVEPOINT feature is impacted by unresolved
issues in the pysqlite driver, which defers BEGIN statements to a greater
degree than is often feasible. See the section Serializable isolation / Savepoints / Transactional DDL
for techniques to work around this behavior.

Transactional DDL

The SQLite database supports transactional DDL as well.
In this case, the pysqlite driver is not only failing to start transactions,
it also is ending any existing transction when DDL is detected, so again,
workarounds are required.

Warning

SQLite’s transactional DDL is impacted by unresolved issues
in the pysqlite driver, which fails to emit BEGIN and additionally
forces a COMMIT to cancel any transaction when DDL is encountered.
See the section Serializable isolation / Savepoints / Transactional DDL
for techniques to work around this behavior.

Foreign Key Support

SQLite supports FOREIGN KEY syntax when emitting CREATE statements for tables,
however by default these constraints have no effect on the operation of the
table.

Constraint checking on SQLite has three prerequisites:

	At least version 3.6.19 of SQLite must be in use

	The SQLite library must be compiled without the SQLITE_OMIT_FOREIGN_KEY
or SQLITE_OMIT_TRIGGER symbols enabled.

	The PRAGMA foreign_keys = ON statement must be emitted on all
connections before use.

SQLAlchemy allows for the PRAGMA statement to be emitted automatically for
new connections through the usage of events:

from sqlalchemy.engine import Engine
from sqlalchemy import event

@event.listens_for(Engine, "connect")
def set_sqlite_pragma(dbapi_connection, connection_record):
 cursor = dbapi_connection.cursor()
 cursor.execute("PRAGMA foreign_keys=ON")
 cursor.close()

Warning

When SQLite foreign keys are enabled, it is not possible
to emit CREATE or DROP statements for tables that contain
mutually-dependent foreign key constraints;
to emit the DDL for these tables requires that ALTER TABLE be used to
create or drop these constraints separately, for which SQLite has
no support.

See also

SQLite Foreign Key Support
- on the SQLite web site.

Events - SQLAlchemy event API.

	Creating/Dropping Foreign Key Constraints via ALTER - more information on SQLAlchemy’s facilities for handling

	mutually-dependent foreign key constraints.

Type Reflection

SQLite types are unlike those of most other database backends, in that
the string name of the type usually does not correspond to a “type” in a
one-to-one fashion. Instead, SQLite links per-column typing behavior
to one of five so-called “type affinities” based on a string matching
pattern for the type.

SQLAlchemy’s reflection process, when inspecting types, uses a simple
lookup table to link the keywords returned to provided SQLAlchemy types.
This lookup table is present within the SQLite dialect as it is for all
other dialects. However, the SQLite dialect has a different “fallback”
routine for when a particular type name is not located in the lookup map;
it instead implements the SQLite “type affinity” scheme located at
http://www.sqlite.org/datatype3.html section 2.1.

The provided typemap will make direct associations from an exact string
name match for the following types:

BIGINT, BLOB,
BOOLEAN, BOOLEAN,
CHAR, DATE,
DATETIME, FLOAT,
DECIMAL, FLOAT,
INTEGER, INTEGER,
NUMERIC, REAL,
SMALLINT, TEXT,
TIME, TIMESTAMP,
VARCHAR, NVARCHAR,
NCHAR

When a type name does not match one of the above types, the “type affinity”
lookup is used instead:

	INTEGER is returned if the type name includes the
string INT

	TEXT is returned if the type name includes the
string CHAR, CLOB or TEXT

	NullType is returned if the type name includes the
string BLOB

	REAL is returned if the type name includes the string
REAL, FLOA or DOUB.

	Otherwise, the NUMERIC type is used.

New in version 0.9.3: Support for SQLite type affinity rules when reflecting
columns.

Partial Indexes

A partial index, e.g. one which uses a WHERE clause, can be specified
with the DDL system using the argument sqlite_where:

tbl = Table('testtbl', m, Column('data', Integer))
idx = Index('test_idx1', tbl.c.data,
 sqlite_where=and_(tbl.c.data > 5, tbl.c.data < 10))

The index will be rendered at create time as:

CREATE INDEX test_idx1 ON testtbl (data)
WHERE data > 5 AND data < 10

New in version 0.9.9.

Dotted Column Names

Using table or column names that explicitly have periods in them is
not recommended. While this is generally a bad idea for relational
databases in general, as the dot is a syntactically significant character,
the SQLite driver up until version 3.10.0 of SQLite has a bug which
requires that SQLAlchemy filter out these dots in result sets.

Changed in version 1.1: The following SQLite issue has been resolved as of version 3.10.0
of SQLite. SQLAlchemy as of 1.1 automatically disables its internal
workarounds based on detection of this version.

The bug, entirely outside of SQLAlchemy, can be illustrated thusly:

import sqlite3

assert sqlite3.sqlite_version_info < (3, 10, 0), "bug is fixed in this version"

conn = sqlite3.connect(":memory:")
cursor = conn.cursor()

cursor.execute("create table x (a integer, b integer)")
cursor.execute("insert into x (a, b) values (1, 1)")
cursor.execute("insert into x (a, b) values (2, 2)")

cursor.execute("select x.a, x.b from x")
assert [c[0] for c in cursor.description] == ['a', 'b']

cursor.execute('''
 select x.a, x.b from x where a=1
 union
 select x.a, x.b from x where a=2
''')
assert [c[0] for c in cursor.description] == ['a', 'b'], \
 [c[0] for c in cursor.description]

The second assertion fails:

Traceback (most recent call last):
 File "test.py", line 19, in <module>
 [c[0] for c in cursor.description]
AssertionError: ['x.a', 'x.b']

Where above, the driver incorrectly reports the names of the columns
including the name of the table, which is entirely inconsistent vs.
when the UNION is not present.

SQLAlchemy relies upon column names being predictable in how they match
to the original statement, so the SQLAlchemy dialect has no choice but
to filter these out:

from sqlalchemy import create_engine

eng = create_engine("sqlite://")
conn = eng.connect()

conn.execute("create table x (a integer, b integer)")
conn.execute("insert into x (a, b) values (1, 1)")
conn.execute("insert into x (a, b) values (2, 2)")

result = conn.execute("select x.a, x.b from x")
assert result.keys() == ["a", "b"]

result = conn.execute('''
 select x.a, x.b from x where a=1
 union
 select x.a, x.b from x where a=2
''')
assert result.keys() == ["a", "b"]

Note that above, even though SQLAlchemy filters out the dots, both
names are still addressable:

>>> row = result.first()
>>> row["a"]
1
>>> row["x.a"]
1
>>> row["b"]
1
>>> row["x.b"]
1

Therefore, the workaround applied by SQLAlchemy only impacts
ResultProxy.keys() and RowProxy.keys() in the public API.
In the very specific case where
an application is forced to use column names that contain dots, and the
functionality of ResultProxy.keys() and RowProxy.keys()
is required to return these dotted names unmodified, the sqlite_raw_colnames
execution option may be provided, either on a per-Connection basis:

result = conn.execution_options(sqlite_raw_colnames=True).execute('''
 select x.a, x.b from x where a=1
 union
 select x.a, x.b from x where a=2
''')
assert result.keys() == ["x.a", "x.b"]

or on a per-Engine basis:

engine = create_engine("sqlite://", execution_options={"sqlite_raw_colnames": True})

When using the per-Engine execution option, note that
Core and ORM queries that use UNION may not function properly.

SQLite Data Types

As with all SQLAlchemy dialects, all UPPERCASE types that are known to be
valid with SQLite are importable from the top level dialect, whether
they originate from sqlalchemy.types or from the local dialect:

from sqlalchemy.dialects.sqlite import \
 BLOB, BOOLEAN, CHAR, DATE, DATETIME, DECIMAL, FLOAT, \
 INTEGER, NUMERIC, SMALLINT, TEXT, TIME, TIMESTAMP, \
 VARCHAR

	
class sqlalchemy.dialects.sqlite.DATETIME(*args, **kwargs)

	Bases: sqlalchemy.dialects.sqlite.base._DateTimeMixin, sqlalchemy.types.DateTime

Represent a Python datetime object in SQLite using a string.

The default string storage format is:

"%(year)04d-%(month)02d-%(day)02d %(hour)02d:%(min)02d:%(second)02d.%(microsecond)06d"

e.g.:

2011-03-15 12:05:57.10558

The storage format can be customized to some degree using the
storage_format and regexp parameters, such as:

import re
from sqlalchemy.dialects.sqlite import DATETIME

dt = DATETIME(
 storage_format="%(year)04d/%(month)02d/%(day)02d %(hour)02d:%(min)02d:%(second)02d",
 regexp=r"(\d+)/(\d+)/(\d+) (\d+)-(\d+)-(\d+)"
)

	Parameters:
	
	storage_format¶ – format string which will be applied to the dict
with keys year, month, day, hour, minute, second, and microsecond.

	regexp¶ – regular expression which will be applied to incoming result
rows. If the regexp contains named groups, the resulting match dict is
applied to the Python datetime() constructor as keyword arguments.
Otherwise, if positional groups are used, the datetime() constructor
is called with positional arguments via
*map(int, match_obj.groups(0)).

	
class sqlalchemy.dialects.sqlite.DATE(storage_format=None, regexp=None, **kw)

	Bases: sqlalchemy.dialects.sqlite.base._DateTimeMixin, sqlalchemy.types.Date

Represent a Python date object in SQLite using a string.

The default string storage format is:

"%(year)04d-%(month)02d-%(day)02d"

e.g.:

2011-03-15

The storage format can be customized to some degree using the
storage_format and regexp parameters, such as:

import re
from sqlalchemy.dialects.sqlite import DATE

d = DATE(
 storage_format="%(month)02d/%(day)02d/%(year)04d",
 regexp=re.compile("(?P<month>\d+)/(?P<day>\d+)/(?P<year>\d+)")
)

	Parameters:
	
	storage_format¶ – format string which will be applied to the
dict with keys year, month, and day.

	regexp¶ – regular expression which will be applied to
incoming result rows. If the regexp contains named groups, the
resulting match dict is applied to the Python date() constructor
as keyword arguments. Otherwise, if positional groups are used, the
date() constructor is called with positional arguments via
*map(int, match_obj.groups(0)).

	
class sqlalchemy.dialects.sqlite.TIME(*args, **kwargs)

	Bases: sqlalchemy.dialects.sqlite.base._DateTimeMixin, sqlalchemy.types.Time

Represent a Python time object in SQLite using a string.

The default string storage format is:

"%(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d"

e.g.:

12:05:57.10558

The storage format can be customized to some degree using the
storage_format and regexp parameters, such as:

import re
from sqlalchemy.dialects.sqlite import TIME

t = TIME(
 storage_format="%(hour)02d-%(minute)02d-%(second)02d-%(microsecond)06d",
 regexp=re.compile("(\d+)-(\d+)-(\d+)-(?:-(\d+))?")
)

	Parameters:
	
	storage_format¶ – format string which will be applied to the dict
with keys hour, minute, second, and microsecond.

	regexp¶ – regular expression which will be applied to incoming result
rows. If the regexp contains named groups, the resulting match dict is
applied to the Python time() constructor as keyword arguments. Otherwise,
if positional groups are used, the time() constructor is called with
positional arguments via *map(int, match_obj.groups(0)).

Pysqlite

Support for the SQLite database via the pysqlite driver.

Note that pysqlite is the same driver as the sqlite3
module included with the Python distribution.

DBAPI

Documentation and download information (if applicable) for pysqlite is available at:
http://docs.python.org/library/sqlite3.html

Connecting

Connect String:

sqlite+pysqlite:///file_path

Driver

When using Python 2.5 and above, the built in sqlite3 driver is
already installed and no additional installation is needed. Otherwise,
the pysqlite2 driver needs to be present. This is the same driver as
sqlite3, just with a different name.

The pysqlite2 driver will be loaded first, and if not found, sqlite3
is loaded. This allows an explicitly installed pysqlite driver to take
precedence over the built in one. As with all dialects, a specific
DBAPI module may be provided to create_engine() to control
this explicitly:

from sqlite3 import dbapi2 as sqlite
e = create_engine('sqlite+pysqlite:///file.db', module=sqlite)

Connect Strings

The file specification for the SQLite database is taken as the “database”
portion of the URL. Note that the format of a SQLAlchemy url is:

driver://user:pass@host/database

This means that the actual filename to be used starts with the characters to
the right of the third slash. So connecting to a relative filepath
looks like:

relative path
e = create_engine('sqlite:///path/to/database.db')

An absolute path, which is denoted by starting with a slash, means you
need four slashes:

absolute path
e = create_engine('sqlite:////path/to/database.db')

To use a Windows path, regular drive specifications and backslashes can be
used. Double backslashes are probably needed:

absolute path on Windows
e = create_engine('sqlite:///C:\\path\\to\\database.db')

The sqlite :memory: identifier is the default if no filepath is
present. Specify sqlite:// and nothing else:

in-memory database
e = create_engine('sqlite://')

Compatibility with sqlite3 “native” date and datetime types

The pysqlite driver includes the sqlite3.PARSE_DECLTYPES and
sqlite3.PARSE_COLNAMES options, which have the effect of any column
or expression explicitly cast as “date” or “timestamp” will be converted
to a Python date or datetime object. The date and datetime types provided
with the pysqlite dialect are not currently compatible with these options,
since they render the ISO date/datetime including microseconds, which
pysqlite’s driver does not. Additionally, SQLAlchemy does not at
this time automatically render the “cast” syntax required for the
freestanding functions “current_timestamp” and “current_date” to return
datetime/date types natively. Unfortunately, pysqlite
does not provide the standard DBAPI types in cursor.description,
leaving SQLAlchemy with no way to detect these types on the fly
without expensive per-row type checks.

Keeping in mind that pysqlite’s parsing option is not recommended,
nor should be necessary, for use with SQLAlchemy, usage of PARSE_DECLTYPES
can be forced if one configures “native_datetime=True” on create_engine():

engine = create_engine('sqlite://',
 connect_args={'detect_types':
 sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES},
 native_datetime=True
)

With this flag enabled, the DATE and TIMESTAMP types (but note - not the
DATETIME or TIME types...confused yet ?) will not perform any bind parameter
or result processing. Execution of “func.current_date()” will return a string.
“func.current_timestamp()” is registered as returning a DATETIME type in
SQLAlchemy, so this function still receives SQLAlchemy-level result
processing.

Threading/Pooling Behavior

Pysqlite’s default behavior is to prohibit the usage of a single connection
in more than one thread. This is originally intended to work with older
versions of SQLite that did not support multithreaded operation under
various circumstances. In particular, older SQLite versions
did not allow a :memory: database to be used in multiple threads
under any circumstances.

Pysqlite does include a now-undocumented flag known as
check_same_thread which will disable this check, however note that
pysqlite connections are still not safe to use in concurrently in multiple
threads. In particular, any statement execution calls would need to be
externally mutexed, as Pysqlite does not provide for thread-safe propagation
of error messages among other things. So while even :memory: databases
can be shared among threads in modern SQLite, Pysqlite doesn’t provide enough
thread-safety to make this usage worth it.

SQLAlchemy sets up pooling to work with Pysqlite’s default behavior:

	When a :memory: SQLite database is specified, the dialect by default
will use SingletonThreadPool. This pool maintains a single
connection per thread, so that all access to the engine within the current
thread use the same :memory: database - other threads would access a
different :memory: database.

	When a file-based database is specified, the dialect will use
NullPool as the source of connections. This pool closes and
discards connections which are returned to the pool immediately. SQLite
file-based connections have extremely low overhead, so pooling is not
necessary. The scheme also prevents a connection from being used again in
a different thread and works best with SQLite’s coarse-grained file locking.

Changed in version 0.7: Default selection of NullPool for SQLite file-based databases.
Previous versions select SingletonThreadPool by
default for all SQLite databases.

Using a Memory Database in Multiple Threads

To use a :memory: database in a multithreaded scenario, the same
connection object must be shared among threads, since the database exists
only within the scope of that connection. The
StaticPool implementation will maintain a single connection
globally, and the check_same_thread flag can be passed to Pysqlite
as False:

from sqlalchemy.pool import StaticPool
engine = create_engine('sqlite://',
 connect_args={'check_same_thread':False},
 poolclass=StaticPool)

Note that using a :memory: database in multiple threads requires a recent
version of SQLite.

Using Temporary Tables with SQLite

Due to the way SQLite deals with temporary tables, if you wish to use a
temporary table in a file-based SQLite database across multiple checkouts
from the connection pool, such as when using an ORM Session where
the temporary table should continue to remain after Session.commit() or
Session.rollback() is called, a pool which maintains a single
connection must be used. Use SingletonThreadPool if the scope is
only needed within the current thread, or StaticPool is scope is
needed within multiple threads for this case:

maintain the same connection per thread
from sqlalchemy.pool import SingletonThreadPool
engine = create_engine('sqlite:///mydb.db',
 poolclass=SingletonThreadPool)

maintain the same connection across all threads
from sqlalchemy.pool import StaticPool
engine = create_engine('sqlite:///mydb.db',
 poolclass=StaticPool)

Note that SingletonThreadPool should be configured for the number
of threads that are to be used; beyond that number, connections will be
closed out in a non deterministic way.

Unicode

The pysqlite driver only returns Python unicode objects in result sets,
never plain strings, and accommodates unicode objects within bound
parameter values in all cases. Regardless of the SQLAlchemy string type in
use, string-based result values will by Python unicode in Python 2.
The Unicode type should still be used to indicate those columns that
require unicode, however, so that non-unicode values passed inadvertently
will emit a warning. Pysqlite will emit an error if a non-unicode string
is passed containing non-ASCII characters.

Serializable isolation / Savepoints / Transactional DDL

In the section Database Locking Behavior / Concurrency, we refer to the pysqlite
driver’s assortment of issues that prevent several features of SQLite
from working correctly. The pysqlite DBAPI driver has several
long-standing bugs which impact the correctness of its transactional
behavior. In its default mode of operation, SQLite features such as
SERIALIZABLE isolation, transactional DDL, and SAVEPOINT support are
non-functional, and in order to use these features, workarounds must
be taken.

The issue is essentially that the driver attempts to second-guess the user’s
intent, failing to start transactions and sometimes ending them prematurely, in
an effort to minimize the SQLite databases’s file locking behavior, even
though SQLite itself uses “shared” locks for read-only activities.

SQLAlchemy chooses to not alter this behavior by default, as it is the
long-expected behavior of the pysqlite driver; if and when the pysqlite
driver attempts to repair these issues, that will be more of a driver towards
defaults for SQLAlchemy.

The good news is that with a few events, we can implement transactional
support fully, by disabling pysqlite’s feature entirely and emitting BEGIN
ourselves. This is achieved using two event listeners:

from sqlalchemy import create_engine, event

engine = create_engine("sqlite:///myfile.db")

@event.listens_for(engine, "connect")
def do_connect(dbapi_connection, connection_record):
 # disable pysqlite's emitting of the BEGIN statement entirely.
 # also stops it from emitting COMMIT before any DDL.
 dbapi_connection.isolation_level = None

@event.listens_for(engine, "begin")
def do_begin(conn):
 # emit our own BEGIN
 conn.execute("BEGIN")

Above, we intercept a new pysqlite connection and disable any transactional
integration. Then, at the point at which SQLAlchemy knows that transaction
scope is to begin, we emit "BEGIN" ourselves.

When we take control of "BEGIN", we can also control directly SQLite’s
locking modes, introduced at BEGIN TRANSACTION,
by adding the desired locking mode to our "BEGIN":

@event.listens_for(engine, "begin")
def do_begin(conn):
 conn.execute("BEGIN EXCLUSIVE")

See also

BEGIN TRANSACTION - on the SQLite site

sqlite3 SELECT does not BEGIN a transaction - on the Python bug tracker

sqlite3 module breaks transactions and potentially corrupts data - on the Python bug tracker

Pysqlcipher

Support for the SQLite database via the pysqlcipher driver.

pysqlcipher is a fork of the standard pysqlite driver to make
use of the SQLCipher backend.

New in version 0.9.9.

DBAPI

Documentation and download information (if applicable) for pysqlcipher is available at:
https://pypi.python.org/pypi/pysqlcipher

Connecting

Connect String:

sqlite+pysqlcipher://:passphrase/file_path[?kdf_iter=<iter>]

Driver

The driver here is the pysqlcipher
driver, which makes use of the SQLCipher engine. This system essentially
introduces new PRAGMA commands to SQLite which allows the setting of a
passphrase and other encryption parameters, allowing the database
file to be encrypted.

Connect Strings

The format of the connect string is in every way the same as that
of the pysqlite driver, except that the
“password” field is now accepted, which should contain a passphrase:

e = create_engine('sqlite+pysqlcipher://:testing@/foo.db')

For an absolute file path, two leading slashes should be used for the
database name:

e = create_engine('sqlite+pysqlcipher://:testing@//path/to/foo.db')

A selection of additional encryption-related pragmas supported by SQLCipher
as documented at https://www.zetetic.net/sqlcipher/sqlcipher-api/ can be passed
in the query string, and will result in that PRAGMA being called for each
new connection. Currently, cipher, kdf_iter
cipher_page_size and cipher_use_hmac are supported:

e = create_engine('sqlite+pysqlcipher://:testing@/foo.db?cipher=aes-256-cfb&kdf_iter=64000')

Pooling Behavior

The driver makes a change to the default pool behavior of pysqlite
as described in Threading/Pooling Behavior. The pysqlcipher driver
has been observed to be significantly slower on connection than the
pysqlite driver, most likely due to the encryption overhead, so the
dialect here defaults to using the SingletonThreadPool
implementation,
instead of the NullPool pool used by pysqlite. As always, the pool
implementation is entirely configurable using the
create_engine.poolclass parameter; the StaticPool may
be more feasible for single-threaded use, or NullPool may be used
to prevent unencrypted connections from being held open for long periods of
time, at the expense of slower startup time for new connections.

Sybase

Support for the Sybase database.

DBAPI Support

The following dialect/DBAPI options are available. Please refer to individual DBAPI sections for connect information.

	Python-Sybase

	PyODBC

	mxODBC

Note

The Sybase dialect functions on current SQLAlchemy versions
but is not regularly tested, and may have many issues and
caveats not currently handled.

python-sybase

Support for the Sybase database via the Python-Sybase driver.

DBAPI

Documentation and download information (if applicable) for Python-Sybase is available at:
http://python-sybase.sourceforge.net/

Connecting

Connect String:

sybase+pysybase://<username>:<password>@<dsn>/[database name]

Unicode Support

The python-sybase driver does not appear to support non-ASCII strings of any
kind at this time.

pyodbc

Support for the Sybase database via the PyODBC driver.

DBAPI

Documentation and download information (if applicable) for PyODBC is available at:
http://pypi.python.org/pypi/pyodbc/

Connecting

Connect String:

sybase+pyodbc://<username>:<password>@<dsnname>[/<database>]

Unicode Support

The pyodbc driver currently supports usage of these Sybase types with
Unicode or multibyte strings:

CHAR
NCHAR
NVARCHAR
TEXT
VARCHAR

Currently not supported are:

UNICHAR
UNITEXT
UNIVARCHAR

mxodbc

Support for the Sybase database via the mxODBC driver.

DBAPI

Documentation and download information (if applicable) for mxODBC is available at:
http://www.egenix.com/

Connecting

Connect String:

sybase+mxodbc://<username>:<password>@<dsnname>

Note

This dialect is a stub only and is likely non functional at this time.

Frequently Asked Questions

The Frequently Asked Questions section is a growing collection of commonly
observed questions to well-known issues.

	Connections / Engines

	MetaData / Schema

	SQL Expressions

	ORM Configuration

	Performance

	Sessions / Queries

Connections / Engines

	How do I configure logging?

	How do I pool database connections? Are my connections pooled?

	How do I pass custom connect arguments to my database API?

	“MySQL Server has gone away”

	Why does SQLAlchemy issue so many ROLLBACKs?
	I’m on MyISAM - how do I turn it off?

	I’m on SQL Server - how do I turn those ROLLBACKs into COMMITs?

	I am using multiple connections with a SQLite database (typically to test transaction operation), and my test program is not working!

	How do I get at the raw DBAPI connection when using an Engine?

	How do I use engines / connections / sessions with Python multiprocessing, or os.fork()?

How do I configure logging?

See Configuring Logging.

How do I pool database connections? Are my connections pooled?

SQLAlchemy performs application-level connection pooling automatically
in most cases. With the exception of SQLite, a Engine object
refers to a QueuePool as a source of connectivity.

For more detail, see Engine Configuration and Connection Pooling.

How do I pass custom connect arguments to my database API?

The create_engine() call accepts additional arguments either
directly via the connect_args keyword argument:

e = create_engine("mysql://scott:tiger@localhost/test",
 connect_args={"encoding": "utf8"})

Or for basic string and integer arguments, they can usually be specified
in the query string of the URL:

e = create_engine("mysql://scott:tiger@localhost/test?encoding=utf8")

See also

Custom DBAPI connect() arguments

“MySQL Server has gone away”

There are two major causes for this error:

1. The MySQL client closes connections which have been idle for a set period
of time, defaulting to eight hours. This can be avoided by using the pool_recycle
setting with create_engine(), described at Connection Timeouts.

2. Usage of the MySQLdb DBAPI, or a similar DBAPI, in a non-threadsafe manner, or in an otherwise
inappropriate way. The MySQLdb connection object is not threadsafe - this expands
out to any SQLAlchemy system that links to a single connection, which includes the ORM
Session. For background
on how Session should be used in a multithreaded environment,
see Is the session thread-safe?.

Why does SQLAlchemy issue so many ROLLBACKs?

SQLAlchemy currently assumes DBAPI connections are in “non-autocommit” mode -
this is the default behavior of the Python database API, meaning it
must be assumed that a transaction is always in progress. The
connection pool issues connection.rollback() when a connection is returned.
This is so that any transactional resources remaining on the connection are
released. On a database like Postgresql or MSSQL where table resources are
aggressively locked, this is critical so that rows and tables don’t remain
locked within connections that are no longer in use. An application can
otherwise hang. It’s not just for locks, however, and is equally critical on
any database that has any kind of transaction isolation, including MySQL with
InnoDB. Any connection that is still inside an old transaction will return
stale data, if that data was already queried on that connection within
isolation. For background on why you might see stale data even on MySQL, see
http://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-model.html

I’m on MyISAM - how do I turn it off?

The behavior of the connection pool’s connection return behavior can be
configured using reset_on_return:

from sqlalchemy import create_engine
from sqlalchemy.pool import QueuePool

engine = create_engine('mysql://scott:tiger@localhost/myisam_database', pool=QueuePool(reset_on_return=False))

I’m on SQL Server - how do I turn those ROLLBACKs into COMMITs?

reset_on_return accepts the values commit, rollback in addition
to True, False, and None. Setting to commit will cause
a COMMIT as any connection is returned to the pool:

engine = create_engine('mssql://scott:tiger@mydsn', pool=QueuePool(reset_on_return='commit'))

I am using multiple connections with a SQLite database (typically to test transaction operation), and my test program is not working!

If using a SQLite :memory: database, or a version of SQLAlchemy prior
to version 0.7, the default connection pool is the SingletonThreadPool,
which maintains exactly one SQLite connection per thread. So two
connections in use in the same thread will actually be the same SQLite
connection. Make sure you’re not using a :memory: database and
use NullPool, which is the default for non-memory databases in
current SQLAlchemy versions.

See also

Threading/Pooling Behavior - info on PySQLite’s behavior.

How do I get at the raw DBAPI connection when using an Engine?

With a regular SA engine-level Connection, you can get at a pool-proxied
version of the DBAPI connection via the Connection.connection attribute on
Connection, and for the really-real DBAPI connection you can call the
ConnectionFairy.connection attribute on that - but there should never be any need to access
the non-pool-proxied DBAPI connection, as all methods are proxied through:

engine = create_engine(...)
conn = engine.connect()
conn.connection.<do DBAPI things>
cursor = conn.connection.cursor(<DBAPI specific arguments..>)

You must ensure that you revert any isolation level settings or other
operation-specific settings on the connection back to normal before returning
it to the pool.

As an alternative to reverting settings, you can call the Connection.detach() method on
either Connection or the proxied connection, which will de-associate
the connection from the pool such that it will be closed and discarded
when Connection.close() is called:

conn = engine.connect()
conn.detach() # detaches the DBAPI connection from the connection pool
conn.connection.<go nuts>
conn.close() # connection is closed for real, the pool replaces it with a new connection

How do I use engines / connections / sessions with Python multiprocessing, or os.fork()?

The key goal with multiple python processes is to prevent any database connections
from being shared across processes. Depending on specifics of the driver and OS,
the issues that arise here range from non-working connections to socket connections that
are used by multiple processes concurrently, leading to broken messaging (the latter
case is typically the most common).

The SQLAlchemy Engine object refers to a connection pool of existing
database connections. So when this object is replicated to a child process,
the goal is to ensure that no database connections are carried over. There
are three general approaches to this:

	Disable pooling using NullPool. This is the most simplistic,
one shot system that prevents the Engine from using any connection
more than once.

	Call Engine.dispose() on any given Engine as soon one is
within the new process. In Python multiprocessing, constructs such as
multiprocessing.Pool include “initializer” hooks which are a place
that this can be performed; otherwise at the top of where os.fork()
or where the Process object begins the child fork, a single call
to Engine.dispose() will ensure any remaining connections are flushed.

	An event handler can be applied to the connection pool that tests for connections
being shared across process boundaries, and invalidates them. This looks like
the following:

import os
import warnings

from sqlalchemy import event
from sqlalchemy import exc

def add_engine_pidguard(engine):
 """Add multiprocessing guards.

 Forces a connection to be reconnected if it is detected
 as having been shared to a sub-process.

 """

 @event.listens_for(engine, "connect")
 def connect(dbapi_connection, connection_record):
 connection_record.info['pid'] = os.getpid()

 @event.listens_for(engine, "checkout")
 def checkout(dbapi_connection, connection_record, connection_proxy):
 pid = os.getpid()
 if connection_record.info['pid'] != pid:
 # substitute log.debug() or similar here as desired
 warnings.warn(
 "Parent process %(orig)s forked (%(newproc)s) with an open "
 "database connection, "
 "which is being discarded and recreated." %
 {"newproc": pid, "orig": connection_record.info['pid']})
 connection_record.connection = connection_proxy.connection = None
 raise exc.DisconnectionError(
 "Connection record belongs to pid %s, "
 "attempting to check out in pid %s" %
 (connection_record.info['pid'], pid)
)

These events are applied to an Engine as soon as its created:

engine = create_engine("...")

add_engine_pidguard(engine)

The above strategies will accommodate the case of an Engine
being shared among processes. However, for the case of a transaction-active
Session or Connection being shared, there’s no automatic
fix for this; an application needs to ensure a new child process only
initiate new Connection objects and transactions, as well as ORM
Session objects. For a Session object, technically
this is only needed if the session is currently transaction-bound, however
the scope of a single Session is in any case intended to be
kept within a single call stack in any case (e.g. not a global object, not
shared between processes or threads).

MetaData / Schema

	My program is hanging when I say table.drop() / metadata.drop_all()

	Does SQLAlchemy support ALTER TABLE, CREATE VIEW, CREATE TRIGGER, Schema Upgrade Functionality?

	How can I sort Table objects in order of their dependency?

	How can I get the CREATE TABLE/ DROP TABLE output as a string?

	How can I subclass Table/Column to provide certain behaviors/configurations?

My program is hanging when I say table.drop() / metadata.drop_all()

This usually corresponds to two conditions: 1. using PostgreSQL, which is really
strict about table locks, and 2. you have a connection still open which
contains locks on the table and is distinct from the connection being used for
the DROP statement. Heres the most minimal version of the pattern:

connection = engine.connect()
result = connection.execute(mytable.select())

mytable.drop(engine)

Above, a connection pool connection is still checked out; furthermore, the
result object above also maintains a link to this connection. If
“implicit execution” is used, the result will hold this connection opened until
the result object is closed or all rows are exhausted.

The call to mytable.drop(engine) attempts to emit DROP TABLE on a second
connection procured from the Engine which will lock.

The solution is to close out all connections before emitting DROP TABLE:

connection = engine.connect()
result = connection.execute(mytable.select())

fully read result sets
result.fetchall()

close connections
connection.close()

now locks are removed
mytable.drop(engine)

Does SQLAlchemy support ALTER TABLE, CREATE VIEW, CREATE TRIGGER, Schema Upgrade Functionality?

General ALTER support isn’t present in SQLAlchemy directly. For special DDL
on an ad-hoc basis, the DDL and related constructs can be used.
See core/ddl for a discussion on this subject.

A more comprehensive option is to use schema migration tools, such as Alembic
or SQLAlchemy-Migrate; see Altering Schemas through Migrations for discussion on this.

How can I sort Table objects in order of their dependency?

This is available via the MetaData.sorted_tables function:

metadata = MetaData()
... add Table objects to metadata
ti = metadata.sorted_tables:
for t in ti:
 print(t)

How can I get the CREATE TABLE/ DROP TABLE output as a string?

Modern SQLAlchemy has clause constructs which represent DDL operations. These
can be rendered to strings like any other SQL expression:

from sqlalchemy.schema import CreateTable

print(CreateTable(mytable))

To get the string specific to a certain engine:

print(CreateTable(mytable).compile(engine))

There’s also a special form of Engine that can let you dump an entire
metadata creation sequence, using this recipe:

def dump(sql, *multiparams, **params):
 print(sql.compile(dialect=engine.dialect))
engine = create_engine('postgresql://', strategy='mock', executor=dump)
metadata.create_all(engine, checkfirst=False)

The Alembic tool also supports
an “offline” SQL generation mode that renders database migrations as SQL scripts.

How can I subclass Table/Column to provide certain behaviors/configurations?

Table and Column are not good targets for direct subclassing.
However, there are simple ways to get on-construction behaviors using creation
functions, and behaviors related to the linkages between schema objects such as
constraint conventions or naming conventions using attachment events.
An example of many of these
techniques can be seen at Naming Conventions.

SQL Expressions

	How do I render SQL expressions as strings, possibly with bound parameters inlined?

	Why does .col.in_([]) Produce col != col? Why not 1=0?

How do I render SQL expressions as strings, possibly with bound parameters inlined?

The “stringification” of a SQLAlchemy statement or Query in the vast majority
of cases is as simple as:

print(str(statement))

this applies both to an ORM Query as well as any select() or other
statement. Additionally, to get the statement as compiled to a
specific dialect or engine, if the statement itself is not already
bound to one you can pass this in to ClauseElement.compile():

print(statement.compile(someengine))

or without an Engine:

from sqlalchemy.dialects import postgresql
print(statement.compile(dialect=postgresql.dialect()))

When given an ORM Query object, in order to get at the
ClauseElement.compile()
method we only need access the statement
accessor first:

statement = query.statement
print(statement.compile(someengine))

The above forms will render the SQL statement as it is passed to the Python
DBAPI, which includes that bound parameters are not rendered inline.
SQLAlchemy normally does not stringify bound parameters, as this is handled
appropriately by the Python DBAPI, not to mention bypassing bound
parameters is probably the most widely exploited security hole in
modern web applications. SQLAlchemy has limited ability to do this
stringification in certain circumstances such as that of emitting DDL.
In order to access this functionality one can use the literal_binds
flag, passed to compile_kwargs:

from sqlalchemy.sql import table, column, select

t = table('t', column('x'))

s = select([t]).where(t.c.x == 5)

print(s.compile(compile_kwargs={"literal_binds": True}))

the above approach has the caveats that it is only supported for basic
types, such as ints and strings, and furthermore if a bindparam()
without a pre-set value is used directly, it won’t be able to
stringify that either.

To support inline literal rendering for types not supported, implement
a TypeDecorator for the target type which includes a
TypeDecorator.process_literal_param() method:

from sqlalchemy import TypeDecorator, Integer

class MyFancyType(TypeDecorator):
 impl = Integer

 def process_literal_param(self, value, dialect):
 return "my_fancy_formatting(%s)" % value

from sqlalchemy import Table, Column, MetaData

tab = Table('mytable', MetaData(), Column('x', MyFancyType()))

print(
 tab.select().where(tab.c.x > 5).compile(
 compile_kwargs={"literal_binds": True})
)

producing output like:

SELECT mytable.x
FROM mytable
WHERE mytable.x > my_fancy_formatting(5)

Why does .col.in_([]) Produce col != col? Why not 1=0?

A little introduction to the issue. The IN operator in SQL, given a list of
elements to compare against a column, generally does not accept an empty list,
that is while it is valid to say:

column IN (1, 2, 3)

it’s not valid to say:

column IN ()

SQLAlchemy’s Operators.in_() operator, when given an empty list, produces this
expression:

column != column

As of version 0.6, it also produces a warning stating that a less efficient
comparison operation will be rendered. This expression is the only one that is
both database agnostic and produces correct results.

For example, the naive approach of “just evaluate to false, by comparing 1=0
or 1!=1”, does not handle nulls properly. An expression like:

NOT column != column

will not return a row when “column” is null, but an expression which does not
take the column into account:

NOT 1=0

will.

Closer to the mark is the following CASE expression:

CASE WHEN column IS NOT NULL THEN 1=0 ELSE NULL END

We don’t use this expression due to its verbosity, and its also not
typically accepted by Oracle within a WHERE clause - depending
on how you phrase it, you’ll either get “ORA-00905: missing keyword” or
“ORA-00920: invalid relational operator”. It’s also still less efficient than
just rendering SQL without the clause altogether (or not issuing the SQL at
all, if the statement is just a simple search).

The best approach therefore is to avoid the usage of IN given an argument list
of zero length. Instead, don’t emit the Query in the first place, if no rows
should be returned. The warning is best promoted to a full error condition
using the Python warnings filter (see http://docs.python.org/library/warnings.html).

ORM Configuration

	How do I map a table that has no primary key?

	How do I configure a Column that is a Python reserved word or similar?

	How do I get a list of all columns, relationships, mapped attributes, etc. given a mapped class?

	I’m getting a warning or error about “Implicitly combining column X under attribute Y”

	I’m using Declarative and setting primaryjoin/secondaryjoin using an and_() or or_(), and I am getting an error message about foreign keys.

	Why is ORDER BY required with LIMIT (especially with subqueryload())?

How do I map a table that has no primary key?

The SQLAlchemy ORM, in order to map to a particular table, needs there to be
at least one column denoted as a primary key column; multiple-column,
i.e. composite, primary keys are of course entirely feasible as well. These
columns do not need to be actually known to the database as primary key
columns, though it’s a good idea that they are. It’s only necessary that the columns
behave as a primary key does, e.g. as a unique and not nullable identifier
for a row.

Most ORMs require that objects have some kind of primary key defined
because the object in memory must correspond to a uniquely identifiable
row in the database table; at the very least, this allows the
object can be targeted for UPDATE and DELETE statements which will affect only
that object’s row and no other. However, the importance of the primary key
goes far beyond that. In SQLAlchemy, all ORM-mapped objects are at all times
linked uniquely within a Session
to their specific database row using a pattern called the identity map,
a pattern that’s central to the unit of work system employed by SQLAlchemy,
and is also key to the most common (and not-so-common) patterns of ORM usage.

Note

It’s important to note that we’re only talking about the SQLAlchemy ORM; an
application which builds on Core and deals only with Table objects,
select() constructs and the like, does not need any primary key
to be present on or associated with a table in any way (though again, in SQL, all tables
should really have some kind of primary key, lest you need to actually
update or delete specific rows).

In almost all cases, a table does have a so-called candidate key, which is a column or series
of columns that uniquely identify a row. If a table truly doesn’t have this, and has actual
fully duplicate rows, the table is not corresponding to first normal form and cannot be mapped. Otherwise, whatever columns comprise the best candidate key can be
applied directly to the mapper:

class SomeClass(Base):
 __table__ = some_table_with_no_pk
 __mapper_args__ = {
 'primary_key':[some_table_with_no_pk.c.uid, some_table_with_no_pk.c.bar]
 }

Better yet is when using fully declared table metadata, use the primary_key=True
flag on those columns:

class SomeClass(Base):
 __tablename__ = "some_table_with_no_pk"

 uid = Column(Integer, primary_key=True)
 bar = Column(String, primary_key=True)

All tables in a relational database should have primary keys. Even a many-to-many
association table - the primary key would be the composite of the two association
columns:

CREATE TABLE my_association (
 user_id INTEGER REFERENCES user(id),
 account_id INTEGER REFERENCES account(id),
 PRIMARY KEY (user_id, account_id)
)

How do I configure a Column that is a Python reserved word or similar?

Column-based attributes can be given any name desired in the mapping. See
Naming Columns Distinctly from Attribute Names.

How do I get a list of all columns, relationships, mapped attributes, etc. given a mapped class?

This information is all available from the Mapper object.

To get at the Mapper for a particular mapped class, call the
inspect() function on it:

from sqlalchemy import inspect

mapper = inspect(MyClass)

From there, all information about the class can be accessed through properties
such as:

	Mapper.attrs - a namespace of all mapped attributes. The attributes
themselves are instances of MapperProperty, which contain additional
attributes that can lead to the mapped SQL expression or column, if applicable.

	Mapper.column_attrs - the mapped attribute namespace
limited to column and SQL expression attributes. You might want to use
Mapper.columns to get at the Column objects directly.

	Mapper.relationships - namespace of all RelationshipProperty attributes.

	Mapper.all_orm_descriptors - namespace of all mapped attributes, plus user-defined
attributes defined using systems such as hybrid_property, AssociationProxy and others.

	Mapper.columns - A namespace of Column objects and other named
SQL expressions associated with the mapping.

	Mapper.mapped_table - The Table or other selectable to which
this mapper is mapped.

	Mapper.local_table - The Table that is “local” to this mapper;
this differs from Mapper.mapped_table in the case of a mapper mapped
using inheritance to a composed selectable.

I’m getting a warning or error about “Implicitly combining column X under attribute Y”

This condition refers to when a mapping contains two columns that are being
mapped under the same attribute name due to their name, but there’s no indication
that this is intentional. A mapped class needs to have explicit names for
every attribute that is to store an independent value; when two columns have the
same name and aren’t disambiguated, they fall under the same attribute and
the effect is that the value from one column is copied into the other, based
on which column was assigned to the attribute first.

This behavior is often desirable and is allowed without warning in the case
where the two columns are linked together via a foreign key relationship
within an inheritance mapping. When the warning or exception occurs, the
issue can be resolved by either assigning the columns to differently-named
attributes, or if combining them together is desired, by using
column_property() to make this explicit.

Given the example as follows:

from sqlalchemy import Integer, Column, ForeignKey
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)

class B(A):
 __tablename__ = 'b'

 id = Column(Integer, primary_key=True)
 a_id = Column(Integer, ForeignKey('a.id'))

As of SQLAlchemy version 0.9.5, the above condition is detected, and will
warn that the id column of A and B is being combined under
the same-named attribute id, which above is a serious issue since it means
that a B object’s primary key will always mirror that of its A.

A mapping which resolves this is as follows:

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)

class B(A):
 __tablename__ = 'b'

 b_id = Column('id', Integer, primary_key=True)
 a_id = Column(Integer, ForeignKey('a.id'))

Suppose we did want A.id and B.id to be mirrors of each other, despite
the fact that B.a_id is where A.id is related. We could combine
them together using column_property():

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)

class B(A):
 __tablename__ = 'b'

 # probably not what you want, but this is a demonstration
 id = column_property(Column(Integer, primary_key=True), A.id)
 a_id = Column(Integer, ForeignKey('a.id'))

I’m using Declarative and setting primaryjoin/secondaryjoin using an and_() or or_(), and I am getting an error message about foreign keys.

Are you doing this?:

class MyClass(Base):
 #

 foo = relationship("Dest", primaryjoin=and_("MyClass.id==Dest.foo_id", "MyClass.foo==Dest.bar"))

That’s an and_() of two string expressions, which SQLAlchemy cannot apply any mapping towards. Declarative allows relationship() arguments to be specified as strings, which are converted into expression objects using eval(). But this doesn’t occur inside of an and_() expression - it’s a special operation declarative applies only to the entirety of what’s passed to primaryjoin or other arguments as a string:

class MyClass(Base):
 #

 foo = relationship("Dest", primaryjoin="and_(MyClass.id==Dest.foo_id, MyClass.foo==Dest.bar)")

Or if the objects you need are already available, skip the strings:

class MyClass(Base):
 #

 foo = relationship(Dest, primaryjoin=and_(MyClass.id==Dest.foo_id, MyClass.foo==Dest.bar))

The same idea applies to all the other arguments, such as foreign_keys:

wrong !
foo = relationship(Dest, foreign_keys=["Dest.foo_id", "Dest.bar_id"])

correct !
foo = relationship(Dest, foreign_keys="[Dest.foo_id, Dest.bar_id]")

also correct !
foo = relationship(Dest, foreign_keys=[Dest.foo_id, Dest.bar_id])

if you're using columns from the class that you're inside of, just use the column objects !
class MyClass(Base):
 foo_id = Column(...)
 bar_id = Column(...)
 # ...

 foo = relationship(Dest, foreign_keys=[foo_id, bar_id])

Why is ORDER BY required with LIMIT (especially with subqueryload())?

A relational database can return rows in any
arbitrary order, when an explicit ordering is not set.
While this ordering very often corresponds to the natural
order of rows within a table, this is not the case for all databases and
all queries. The consequence of this is that any query that limits rows
using LIMIT or OFFSET should always specify an ORDER BY.
Otherwise, it is not deterministic which rows will actually be returned.

When we use a SQLAlchemy method like Query.first(), we are in fact
applying a LIMIT of one to the query, so without an explicit ordering
it is not deterministic what row we actually get back.
While we may not notice this for simple queries on databases that usually
returns rows in their natural
order, it becomes much more of an issue if we also use orm.subqueryload()
to load related collections, and we may not be loading the collections
as intended.

SQLAlchemy implements orm.subqueryload() by issuing a separate query,
the results of which are matched up to the results from the first query.
We see two queries emitted like this:

>>> session.query(User).options(subqueryload(User.addresses)).all()
-- the "main" query
SELECT users.id AS users_id
FROM users

-- the "load" query issued by subqueryload
SELECT addresses.id AS addresses_id,
 addresses.user_id AS addresses_user_id,
 anon_1.users_id AS anon_1_users_id
FROM (SELECT users.id AS users_id FROM users) AS anon_1
JOIN addresses ON anon_1.users_id = addresses.user_id
ORDER BY anon_1.users_id

The second query embeds the first query as a source of rows.
When the inner query uses OFFSET and/or LIMIT without ordering,
the two queries may not see the same results:

>>> user = session.query(User).options(subqueryload(User.addresses)).first()
-- the "main" query
SELECT users.id AS users_id
FROM users
 LIMIT 1

-- the "load" query issued by subqueryload
SELECT addresses.id AS addresses_id,
 addresses.user_id AS addresses_user_id,
 anon_1.users_id AS anon_1_users_id
FROM (SELECT users.id AS users_id FROM users LIMIT 1) AS anon_1
JOIN addresses ON anon_1.users_id = addresses.user_id
ORDER BY anon_1.users_id

Depending on database specifics, there is
a chance we may get a result like the following for the two queries:

-- query #1
+--------+
|users_id|
+--------+
| 1|
+--------+

-- query #2
+------------+-----------------+---------------+
|addresses_id|addresses_user_id|anon_1_users_id|
+------------+-----------------+---------------+
| 3| 2| 2|
+------------+-----------------+---------------+
| 4| 2| 2|
+------------+-----------------+---------------+

Above, we receive two addresses rows for user.id of 2, and none for
1. We’ve wasted two rows and failed to actually load the collection. This
is an insidious error because without looking at the SQL and the results, the
ORM will not show that there’s any issue; if we access the addresses
for the User we have, it will emit a lazy load for the collection and we
won’t see that anything actually went wrong.

The solution to this problem is to always specify a deterministic sort order,
so that the main query always returns the same set of rows. This generally
means that you should Query.order_by() on a unique column on the table.
The primary key is a good choice for this:

session.query(User).options(subqueryload(User.addresses)).order_by(User.id).first()

Note that joinedload() does not suffer from the same problem because
only one query is ever issued, so the load query cannot be different from the
main query.

See also

The Importance of Ordering

Performance

	How can I profile a SQLAlchemy powered application?
	Query Profiling

	Code Profiling

	Execution Slowness

	Result Fetching Slowness - Core

	Result Fetching Slowness - ORM

	I’m inserting 400,000 rows with the ORM and it’s really slow!

How can I profile a SQLAlchemy powered application?

Looking for performance issues typically involves two stratgies. One
is query profiling, and the other is code profiling.

Query Profiling

Sometimes just plain SQL logging (enabled via python’s logging module
or via the echo=True argument on create_engine()) can give an
idea how long things are taking. For example, if you log something
right after a SQL operation, you’d see something like this in your
log:

17:37:48,325 INFO [sqlalchemy.engine.base.Engine.0x...048c] SELECT ...
17:37:48,326 INFO [sqlalchemy.engine.base.Engine.0x...048c] {<params>}
17:37:48,660 DEBUG [myapp.somemessage]

if you logged myapp.somemessage right after the operation, you know
it took 334ms to complete the SQL part of things.

Logging SQL will also illustrate if dozens/hundreds of queries are
being issued which could be better organized into much fewer queries.
When using the SQLAlchemy ORM, the “eager loading”
feature is provided to partially (contains_eager()) or fully
(joinedload(), subqueryload())
automate this activity, but without
the ORM “eager loading” typically means to use joins so that results across multiple
tables can be loaded in one result set instead of multiplying numbers
of queries as more depth is added (i.e. r + r*r2 + r*r2*r3 ...)

For more long-term profiling of queries, or to implement an application-side
“slow query” monitor, events can be used to intercept cursor executions,
using a recipe like the following:

from sqlalchemy import event
from sqlalchemy.engine import Engine
import time
import logging

logging.basicConfig()
logger = logging.getLogger("myapp.sqltime")
logger.setLevel(logging.DEBUG)

@event.listens_for(Engine, "before_cursor_execute")
def before_cursor_execute(conn, cursor, statement,
 parameters, context, executemany):
 conn.info.setdefault('query_start_time', []).append(time.time())
 logger.debug("Start Query: %s", statement)

@event.listens_for(Engine, "after_cursor_execute")
def after_cursor_execute(conn, cursor, statement,
 parameters, context, executemany):
 total = time.time() - conn.info['query_start_time'].pop(-1)
 logger.debug("Query Complete!")
 logger.debug("Total Time: %f", total)

Above, we use the ConnectionEvents.before_cursor_execute() and
ConnectionEvents.after_cursor_execute() events to establish an interception
point around when a statement is executed. We attach a timer onto the
connection using the _ConnectionRecord.info dictionary; we use a
stack here for the occasional case where the cursor execute events may be nested.

Code Profiling

If logging reveals that individual queries are taking too long, you’d
need a breakdown of how much time was spent within the database
processing the query, sending results over the network, being handled
by the DBAPI, and finally being received by SQLAlchemy’s result set
and/or ORM layer. Each of these stages can present their own
individual bottlenecks, depending on specifics.

For that you need to use the
Python Profiling Module.
Below is a simple recipe which works profiling into a context manager:

import cProfile
import StringIO
import pstats
import contextlib

@contextlib.contextmanager
def profiled():
 pr = cProfile.Profile()
 pr.enable()
 yield
 pr.disable()
 s = StringIO.StringIO()
 ps = pstats.Stats(pr, stream=s).sort_stats('cumulative')
 ps.print_stats()
 # uncomment this to see who's calling what
 # ps.print_callers()
 print(s.getvalue())

To profile a section of code:

with profiled():
 Session.query(FooClass).filter(FooClass.somevalue==8).all()

The output of profiling can be used to give an idea where time is
being spent. A section of profiling output looks like this:

13726 function calls (13042 primitive calls) in 0.014 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
222/21 0.001 0.000 0.011 0.001 lib/sqlalchemy/orm/loading.py:26(instances)
220/20 0.002 0.000 0.010 0.001 lib/sqlalchemy/orm/loading.py:327(_instance)
220/20 0.000 0.000 0.010 0.000 lib/sqlalchemy/orm/loading.py:284(populate_state)
 20 0.000 0.000 0.010 0.000 lib/sqlalchemy/orm/strategies.py:987(load_collection_from_subq)
 20 0.000 0.000 0.009 0.000 lib/sqlalchemy/orm/strategies.py:935(get)
 1 0.000 0.000 0.009 0.009 lib/sqlalchemy/orm/strategies.py:940(_load)
 21 0.000 0.000 0.008 0.000 lib/sqlalchemy/orm/strategies.py:942(<genexpr>)
 2 0.000 0.000 0.004 0.002 lib/sqlalchemy/orm/query.py:2400(__iter__)
 2 0.000 0.000 0.002 0.001 lib/sqlalchemy/orm/query.py:2414(_execute_and_instances)
 2 0.000 0.000 0.002 0.001 lib/sqlalchemy/engine/base.py:659(execute)
 2 0.000 0.000 0.002 0.001 lib/sqlalchemy/sql/elements.py:321(_execute_on_connection)
 2 0.000 0.000 0.002 0.001 lib/sqlalchemy/engine/base.py:788(_execute_clauseelement)

...

Above, we can see that the instances() SQLAlchemy function was called 222
times (recursively, and 21 times from the outside), taking a total of .011
seconds for all calls combined.

Execution Slowness

The specifics of these calls can tell us where the time is being spent.
If for example, you see time being spent within cursor.execute(),
e.g. against the DBAPI:

2 0.102 0.102 0.204 0.102 {method 'execute' of 'sqlite3.Cursor' objects}

this would indicate that the database is taking a long time to start returning
results, and it means your query should be optimized, either by adding indexes
or restructuring the query and/or underlying schema. For that task,
analysis of the query plan is warranted, using a system such as EXPLAIN,
SHOW PLAN, etc. as is provided by the database backend.

Result Fetching Slowness - Core

If on the other hand you see many thousands of calls related to fetching rows,
or very long calls to fetchall(), it may
mean your query is returning more rows than expected, or that the fetching
of rows itself is slow. The ORM itself typically uses fetchall() to fetch
rows (or fetchmany() if the Query.yield_per() option is used).

An inordinately large number of rows would be indicated
by a very slow call to fetchall() at the DBAPI level:

2 0.300 0.600 0.300 0.600 {method 'fetchall' of 'sqlite3.Cursor' objects}

An unexpectedly large number of rows, even if the ultimate result doesn’t seem
to have many rows, can be the result of a cartesian product - when multiple
sets of rows are combined together without appropriately joining the tables
together. It’s often easy to produce this behavior with SQLAlchemy Core or
ORM query if the wrong Column objects are used in a complex query,
pulling in additional FROM clauses that are unexpected.

On the other hand, a fast call to fetchall() at the DBAPI level, but then
slowness when SQLAlchemy’s ResultProxy is asked to do a fetchall(),
may indicate slowness in processing of datatypes, such as unicode conversions
and similar:

the DBAPI cursor is fast...
2 0.020 0.040 0.020 0.040 {method 'fetchall' of 'sqlite3.Cursor' objects}

...

but SQLAlchemy's result proxy is slow, this is type-level processing
2 0.100 0.200 0.100 0.200 lib/sqlalchemy/engine/result.py:778(fetchall)

In some cases, a backend might be doing type-level processing that isn’t
needed. More specifically, seeing calls within the type API that are slow
are better indicators - below is what it looks like when we use a type like
this:

from sqlalchemy import TypeDecorator
import time

class Foo(TypeDecorator):
 impl = String

 def process_result_value(self, value, thing):
 # intentionally add slowness for illustration purposes
 time.sleep(.001)
 return value

the profiling output of this intentionally slow operation can be seen like this:

200 0.001 0.000 0.237 0.001 lib/sqlalchemy/sql/type_api.py:911(process)
200 0.001 0.000 0.236 0.001 test.py:28(process_result_value)
200 0.235 0.001 0.235 0.001 {time.sleep}

that is, we see many expensive calls within the type_api system, and the actual
time consuming thing is the time.sleep() call.

Make sure to check the Dialect documentation
for notes on known performance tuning suggestions at this level, especially for
databases like Oracle. There may be systems related to ensuring numeric accuracy
or string processing that may not be needed in all cases.

There also may be even more low-level points at which row-fetching performance is suffering;
for example, if time spent seems to focus on a call like socket.receive(),
that could indicate that everything is fast except for the actual network connection,
and too much time is spent with data moving over the network.

Result Fetching Slowness - ORM

To detect slowness in ORM fetching of rows (which is the most common area
of performance concern), calls like populate_state() and _instance() will
illustrate individual ORM object populations:

the ORM calls _instance for each ORM-loaded row it sees, and
populate_state for each ORM-loaded row that results in the population
of an object's attributes
220/20 0.001 0.000 0.010 0.000 lib/sqlalchemy/orm/loading.py:327(_instance)
220/20 0.000 0.000 0.009 0.000 lib/sqlalchemy/orm/loading.py:284(populate_state)

The ORM’s slowness in turning rows into ORM-mapped objects is a product
of the complexity of this operation combined with the overhead of cPython.
Common strategies to mitigate this include:

	fetch individual columns instead of full entities, that is:

session.query(User.id, User.name)

instead of:

session.query(User)

	Use Bundle objects to organize column-based results:

u_b = Bundle('user', User.id, User.name)
a_b = Bundle('address', Address.id, Address.email)

for user, address in session.query(u_b, a_b).join(User.addresses):
 # ...

	Use result caching - see Dogpile Caching for an in-depth example
of this.

	Consider a faster interpreter like that of Pypy.

The output of a profile can be a little daunting but after some
practice they are very easy to read.

See also

Performance - a suite of performance demonstrations
with bundled profiling capabilities.

I’m inserting 400,000 rows with the ORM and it’s really slow!

The SQLAlchemy ORM uses the unit of work pattern when synchronizing
changes to the database. This pattern goes far beyond simple “inserts”
of data. It includes that attributes which are assigned on objects are
received using an attribute instrumentation system which tracks
changes on objects as they are made, includes that all rows inserted
are tracked in an identity map which has the effect that for each row
SQLAlchemy must retrieve its “last inserted id” if not already given,
and also involves that rows to be inserted are scanned and sorted for
dependencies as needed. Objects are also subject to a fair degree of
bookkeeping in order to keep all of this running, which for a very
large number of rows at once can create an inordinate amount of time
spent with large data structures, hence it’s best to chunk these.

Basically, unit of work is a large degree of automation in order to
automate the task of persisting a complex object graph into a
relational database with no explicit persistence code, and this
automation has a price.

ORMs are basically not intended for high-performance bulk inserts -
this is the whole reason SQLAlchemy offers the Core in addition to the
ORM as a first-class component.

For the use case of fast bulk inserts, the
SQL generation and execution system that the ORM builds on top of
is part of the Core. Using this system directly, we can produce an INSERT that
is competitive with using the raw database API directly.

Alternatively, the SQLAlchemy ORM offers the Bulk Operations
suite of methods, which provide hooks into subsections of the unit of
work process in order to emit Core-level INSERT and UPDATE constructs with
a small degree of ORM-based automation.

The example below illustrates time-based tests for several different
methods of inserting rows, going from the most automated to the least.
With cPython 2.7, runtimes observed:

classics-MacBook-Pro:sqlalchemy classic$ python test.py
SQLAlchemy ORM: Total time for 100000 records 12.0471920967 secs
SQLAlchemy ORM pk given: Total time for 100000 records 7.06283402443 secs
SQLAlchemy ORM bulk_save_objects(): Total time for 100000 records 0.856323003769 secs
SQLAlchemy Core: Total time for 100000 records 0.485800027847 secs
sqlite3: Total time for 100000 records 0.487842082977 sec

We can reduce the time by a factor of three using recent versions of Pypy:

classics-MacBook-Pro:sqlalchemy classic$ /usr/local/src/pypy-2.1-beta2-osx64/bin/pypy test.py
SQLAlchemy ORM: Total time for 100000 records 5.88369488716 secs
SQLAlchemy ORM pk given: Total time for 100000 records 3.52294301987 secs
SQLAlchemy Core: Total time for 100000 records 0.613556146622 secs
sqlite3: Total time for 100000 records 0.442467927933 sec

Script:

import time
import sqlite3

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, create_engine
from sqlalchemy.orm import scoped_session, sessionmaker

Base = declarative_base()
DBSession = scoped_session(sessionmaker())
engine = None

class Customer(Base):
 __tablename__ = "customer"
 id = Column(Integer, primary_key=True)
 name = Column(String(255))

def init_sqlalchemy(dbname='sqlite:///sqlalchemy.db'):
 global engine
 engine = create_engine(dbname, echo=False)
 DBSession.remove()
 DBSession.configure(bind=engine, autoflush=False, expire_on_commit=False)
 Base.metadata.drop_all(engine)
 Base.metadata.create_all(engine)

def test_sqlalchemy_orm(n=100000):
 init_sqlalchemy()
 t0 = time.time()
 for i in xrange(n):
 customer = Customer()
 customer.name = 'NAME ' + str(i)
 DBSession.add(customer)
 if i % 1000 == 0:
 DBSession.flush()
 DBSession.commit()
 print(
 "SQLAlchemy ORM: Total time for " + str(n) +
 " records " + str(time.time() - t0) + " secs")

def test_sqlalchemy_orm_pk_given(n=100000):
 init_sqlalchemy()
 t0 = time.time()
 for i in xrange(n):
 customer = Customer(id=i+1, name="NAME " + str(i))
 DBSession.add(customer)
 if i % 1000 == 0:
 DBSession.flush()
 DBSession.commit()
 print(
 "SQLAlchemy ORM pk given: Total time for " + str(n) +
 " records " + str(time.time() - t0) + " secs")

def test_sqlalchemy_orm_bulk_insert(n=100000):
 init_sqlalchemy()
 t0 = time.time()
 n1 = n
 while n1 > 0:
 n1 = n1 - 10000
 DBSession.bulk_insert_mappings(
 Customer,
 [
 dict(name="NAME " + str(i))
 for i in xrange(min(10000, n1))
]
)
 DBSession.commit()
 print(
 "SQLAlchemy ORM bulk_save_objects(): Total time for " + str(n) +
 " records " + str(time.time() - t0) + " secs")

def test_sqlalchemy_core(n=100000):
 init_sqlalchemy()
 t0 = time.time()
 engine.execute(
 Customer.__table__.insert(),
 [{"name": 'NAME ' + str(i)} for i in xrange(n)]
)
 print(
 "SQLAlchemy Core: Total time for " + str(n) +
 " records " + str(time.time() - t0) + " secs")

def init_sqlite3(dbname):
 conn = sqlite3.connect(dbname)
 c = conn.cursor()
 c.execute("DROP TABLE IF EXISTS customer")
 c.execute(
 "CREATE TABLE customer (id INTEGER NOT NULL, "
 "name VARCHAR(255), PRIMARY KEY(id))")
 conn.commit()
 return conn

def test_sqlite3(n=100000, dbname='sqlite3.db'):
 conn = init_sqlite3(dbname)
 c = conn.cursor()
 t0 = time.time()
 for i in xrange(n):
 row = ('NAME ' + str(i),)
 c.execute("INSERT INTO customer (name) VALUES (?)", row)
 conn.commit()
 print(
 "sqlite3: Total time for " + str(n) +
 " records " + str(time.time() - t0) + " sec")

if __name__ == '__main__':
 test_sqlalchemy_orm(100000)
 test_sqlalchemy_orm_pk_given(100000)
 test_sqlalchemy_orm_bulk_insert(100000)
 test_sqlalchemy_core(100000)
 test_sqlite3(100000)

Sessions / Queries

	I’m re-loading data with my Session but it isn’t seeing changes that I committed elsewhere

	“This Session’s transaction has been rolled back due to a previous exception during flush.” (or similar)
	But why does flush() insist on issuing a ROLLBACK?

	But why isn’t the one automatic call to ROLLBACK enough? Why must I ROLLBACK again?

	How do I make a Query that always adds a certain filter to every query?

	I’ve created a mapping against an Outer Join, and while the query returns rows, no objects are returned. Why not?

	I’m using joinedload() or lazy=False to create a JOIN/OUTER JOIN and SQLAlchemy is not constructing the correct query when I try to add a WHERE, ORDER BY, LIMIT, etc. (which relies upon the (OUTER) JOIN)

	Query has no __len__(), why not?

	How Do I use Textual SQL with ORM Queries?

	I’m calling Session.delete(myobject) and it isn’t removed from the parent collection!

	why isn’t my __init__() called when I load objects?

	how do I use ON DELETE CASCADE with SA’s ORM?

	I set the “foo_id” attribute on my instance to “7”, but the “foo” attribute is still None - shouldn’t it have loaded Foo with id #7?

	How do I walk all objects that are related to a given object?

	Is there a way to automagically have only unique keywords (or other kinds of objects) without doing a query for the keyword and getting a reference to the row containing that keyword?

I’m re-loading data with my Session but it isn’t seeing changes that I committed elsewhere

The main issue regarding this behavior is that the session acts as though
the transaction is in the serializable isolation state, even if it’s not
(and it usually is not). In practical terms, this means that the session
does not alter any data that it’s already read within the scope of a transaction.

If the term “isolation level” is unfamiliar, then you first need to read this link:

Isolation Level

In short, serializable isolation level generally means
that once you SELECT a series of rows in a transaction, you will get
the identical data back each time you re-emit that SELECT. If you are in
the next-lower isolation level, “repeatable read”, you’ll
see newly added rows (and no longer see deleted rows), but for rows that
you’ve already loaded, you won’t see any change. Only if you are in a
lower isolation level, e.g. “read committed”, does it become possible to
see a row of data change its value.

For information on controlling the isolation level when using the
SQLAlchemy ORM, see Setting Transaction Isolation Levels.

To simplify things dramatically, the Session itself works in
terms of a completely isolated transaction, and doesn’t overwrite any mapped attributes
it’s already read unless you tell it to. The use case of trying to re-read
data you’ve already loaded in an ongoing transaction is an uncommon use
case that in many cases has no effect, so this is considered to be the
exception, not the norm; to work within this exception, several methods
are provided to allow specific data to be reloaded within the context
of an ongoing transaction.

To understand what we mean by “the transaction” when we talk about the
Session, your Session is intended to only work within
a transaction. An overview of this is at Managing Transactions.

Once we’ve figured out what our isolation level is, and we think that
our isolation level is set at a low enough level so that if we re-SELECT a row,
we should see new data in our Session, how do we see it?

Three ways, from most common to least:

	We simply end our transaction and start a new one on next access
with our Session by calling Session.commit() (note
that if the Session is in the lesser-used “autocommit”
mode, there would be a call to Session.begin() as well). The
vast majority of applications and use cases do not have any issues
with not being able to “see” data in other transactions because
they stick to this pattern, which is at the core of the best practice of
short lived transactions.
See When do I construct a Session, when do I commit it, and when do I close it? for some thoughts on this.

	We tell our Session to re-read rows that it has already read,
either when we next query for them using Session.expire_all()
or Session.expire(), or immediately on an object using
Session.refresh. See Refreshing / Expiring for detail on this.

	We can run whole queries while setting them to definitely overwrite
already-loaded objects as they read rows by using
Query.populate_existing().

But remember, the ORM cannot see changes in rows if our isolation
level is repeatable read or higher, unless we start a new transaction.

“This Session’s transaction has been rolled back due to a previous exception during flush.” (or similar)

This is an error that occurs when a Session.flush() raises an exception, rolls back
the transaction, but further commands upon the Session are called without an
explicit call to Session.rollback() or Session.close().

It usually corresponds to an application that catches an exception
upon Session.flush() or Session.commit() and
does not properly handle the exception. For example:

from sqlalchemy import create_engine, Column, Integer
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base(create_engine('sqlite://'))

class Foo(Base):
 __tablename__ = 'foo'
 id = Column(Integer, primary_key=True)

Base.metadata.create_all()

session = sessionmaker()()

constraint violation
session.add_all([Foo(id=1), Foo(id=1)])

try:
 session.commit()
except:
 # ignore error
 pass

continue using session without rolling back
session.commit()

The usage of the Session should fit within a structure similar to this:

try:
 <use session>
 session.commit()
except:
 session.rollback()
 raise
finally:
 session.close() # optional, depends on use case

Many things can cause a failure within the try/except besides flushes. You
should always have some kind of “framing” of your session operations so that
connection and transaction resources have a definitive boundary, otherwise
your application doesn’t really have its usage of resources under control.
This is not to say that you need to put try/except blocks all throughout your
application - on the contrary, this would be a terrible idea. You should
architect your application such that there is one (or few) point(s) of
“framing” around session operations.

For a detailed discussion on how to organize usage of the Session,
please see When do I construct a Session, when do I commit it, and when do I close it?.

But why does flush() insist on issuing a ROLLBACK?

It would be great if Session.flush() could partially complete and then not roll
back, however this is beyond its current capabilities since its internal
bookkeeping would have to be modified such that it can be halted at any time
and be exactly consistent with what’s been flushed to the database. While this
is theoretically possible, the usefulness of the enhancement is greatly
decreased by the fact that many database operations require a ROLLBACK in any
case. Postgres in particular has operations which, once failed, the
transaction is not allowed to continue:

test=> create table foo(id integer primary key);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "foo_pkey" for table "foo"
CREATE TABLE
test=> begin;
BEGIN
test=> insert into foo values(1);
INSERT 0 1
test=> commit;
COMMIT
test=> begin;
BEGIN
test=> insert into foo values(1);
ERROR: duplicate key value violates unique constraint "foo_pkey"
test=> insert into foo values(2);
ERROR: current transaction is aborted, commands ignored until end of transaction block

What SQLAlchemy offers that solves both issues is support of SAVEPOINT, via
Session.begin_nested(). Using Session.begin_nested(), you can frame an operation that may
potentially fail within a transaction, and then “roll back” to the point
before its failure while maintaining the enclosing transaction.

But why isn’t the one automatic call to ROLLBACK enough? Why must I ROLLBACK again?

This is again a matter of the Session providing a consistent interface and
refusing to guess about what context its being used. For example, the
Session supports “framing” above within multiple levels. Such as, suppose
you had a decorator @with_session(), which did this:

def with_session(fn):
 def go(*args, **kw):
 session.begin(subtransactions=True)
 try:
 ret = fn(*args, **kw)
 session.commit()
 return ret
 except:
 session.rollback()
 raise
 return go

The above decorator begins a transaction if one does not exist already, and
then commits it, if it were the creator. The “subtransactions” flag means that
if Session.begin() were already called by an enclosing function, nothing happens
except a counter is incremented - this counter is decremented when Session.commit()
is called and only when it goes back to zero does the actual COMMIT happen. It
allows this usage pattern:

@with_session
def one():
 # do stuff
 two()

@with_session
def two():
 # etc.

one()

two()

one() can call two(), or two() can be called by itself, and the
@with_session decorator ensures the appropriate “framing” - the transaction
boundaries stay on the outermost call level. As you can see, if two() calls
flush() which throws an exception and then issues a rollback(), there will
always be a second rollback() performed by the decorator, and possibly a
third corresponding to two levels of decorator. If the flush() pushed the
rollback() all the way out to the top of the stack, and then we said that
all remaining rollback() calls are moot, there is some silent behavior going
on there. A poorly written enclosing method might suppress the exception, and
then call commit() assuming nothing is wrong, and then you have a silent
failure condition. The main reason people get this error in fact is because
they didn’t write clean “framing” code and they would have had other problems
down the road.

If you think the above use case is a little exotic, the same kind of thing
comes into play if you want to SAVEPOINT- you might call begin_nested()
several times, and the commit()/rollback() calls each resolve the most
recent begin_nested(). The meaning of rollback() or commit() is
dependent upon which enclosing block it is called, and you might have any
sequence of rollback()/commit() in any order, and its the level of nesting
that determines their behavior.

In both of the above cases, if flush() broke the nesting of transaction
blocks, the behavior is, depending on scenario, anywhere from “magic” to
silent failure to blatant interruption of code flow.

flush() makes its own “subtransaction”, so that a transaction is started up
regardless of the external transactional state, and when complete it calls
commit(), or rollback() upon failure - but that rollback() corresponds
to its own subtransaction - it doesn’t want to guess how you’d like to handle
the external “framing” of the transaction, which could be nested many levels
with any combination of subtransactions and real SAVEPOINTs. The job of
starting/ending the “frame” is kept consistently with the code external to the
flush(), and we made a decision that this was the most consistent approach.

How do I make a Query that always adds a certain filter to every query?

See the recipe at PreFilteredQuery.

I’ve created a mapping against an Outer Join, and while the query returns rows, no objects are returned. Why not?

Rows returned by an outer join may contain NULL for part of the primary key,
as the primary key is the composite of both tables. The Query object ignores incoming rows
that don’t have an acceptable primary key. Based on the setting of the allow_partial_pks
flag on mapper(), a primary key is accepted if the value has at least one non-NULL
value, or alternatively if the value has no NULL values. See allow_partial_pks
at mapper().

I’m using joinedload() or lazy=False to create a JOIN/OUTER JOIN and SQLAlchemy is not constructing the correct query when I try to add a WHERE, ORDER BY, LIMIT, etc. (which relies upon the (OUTER) JOIN)

The joins generated by joined eager loading are only used to fully load related
collections, and are designed to have no impact on the primary results of the query.
Since they are anonymously aliased, they cannot be referenced directly.

For detail on this beahvior, see The Zen of Eager Loading.

Query has no __len__(), why not?

The Python __len__() magic method applied to an object allows the len()
builtin to be used to determine the length of the collection. It’s intuitive
that a SQL query object would link __len__() to the Query.count()
method, which emits a SELECT COUNT. The reason this is not possible is
because evaluating the query as a list would incur two SQL calls instead of
one:

class Iterates(object):
 def __len__(self):
 print("LEN!")
 return 5

 def __iter__(self):
 print("ITER!")
 return iter([1, 2, 3, 4, 5])

list(Iterates())

output:

ITER!
LEN!

How Do I use Textual SQL with ORM Queries?

See:

	Using Textual SQL - Ad-hoc textual blocks with Query

	Using SQL Expressions with Sessions - Using Session with textual SQL directly.

I’m calling Session.delete(myobject) and it isn’t removed from the parent collection!

See Deleting from Collections for a description of this behavior.

why isn’t my __init__() called when I load objects?

See Constructors and Object Initialization for a description of this behavior.

how do I use ON DELETE CASCADE with SA’s ORM?

SQLAlchemy will always issue UPDATE or DELETE statements for dependent
rows which are currently loaded in the Session. For rows which
are not loaded, it will by default issue SELECT statements to load
those rows and udpate/delete those as well; in other words it assumes
there is no ON DELETE CASCADE configured.
To configure SQLAlchemy to cooperate with ON DELETE CASCADE, see
Using Passive Deletes.

I set the “foo_id” attribute on my instance to “7”, but the “foo” attribute is still None - shouldn’t it have loaded Foo with id #7?

The ORM is not constructed in such a way as to support
immediate population of relationships driven from foreign
key attribute changes - instead, it is designed to work the
other way around - foreign key attributes are handled by the
ORM behind the scenes, the end user sets up object
relationships naturally. Therefore, the recommended way to
set o.foo is to do just that - set it!:

foo = Session.query(Foo).get(7)
o.foo = foo
Session.commit()

Manipulation of foreign key attributes is of course entirely legal. However,
setting a foreign-key attribute to a new value currently does not trigger
an “expire” event of the relationship() in which it’s involved. This means
that for the following sequence:

o = Session.query(SomeClass).first()
assert o.foo is None # accessing an un-set attribute sets it to None
o.foo_id = 7

o.foo is initialized to None when we first accessed it. Setting
o.foo_id = 7 will have the value of “7” as pending, but no flush
has occurred - so o.foo is still None:

attribute is already set to None, has not been
reconciled with o.foo_id = 7 yet
assert o.foo is None

For o.foo to load based on the foreign key mutation is usually achieved
naturally after the commit, which both flushes the new foreign key value
and expires all state:

Session.commit() # expires all attributes

foo_7 = Session.query(Foo).get(7)

assert o.foo is foo_7 # o.foo lazyloads on access

A more minimal operation is to expire the attribute individually - this can
be performed for any persistent object using Session.expire():

o = Session.query(SomeClass).first()
o.foo_id = 7
Session.expire(o, ['foo']) # object must be persistent for this

foo_7 = Session.query(Foo).get(7)

assert o.foo is foo_7 # o.foo lazyloads on access

Note that if the object is not persistent but present in the Session,
it’s known as pending. This means the row for the object has not been
INSERTed into the database yet. For such an object, setting foo_id does not
have meaning until the row is inserted; otherwise there is no row yet:

new_obj = SomeClass()
new_obj.foo_id = 7

Session.add(new_obj)

accessing an un-set attribute sets it to None
assert new_obj.foo is None

Session.flush() # emits INSERT

expire this because we already set .foo to None
Session.expire(o, ['foo'])

assert new_obj.foo is foo_7 # now it loads

Attribute loading for non-persistent objects

One variant on the “pending” behavior above is if we use the flag
load_on_pending on relationship(). When this flag is set, the
lazy loader will emit for new_obj.foo before the INSERT proceeds; another
variant of this is to use the Session.enable_relationship_loading()
method, which can “attach” an object to a Session in such a way that
many-to-one relationships load as according to foreign key attributes
regardless of the object being in any particular state.
Both techniques are not recommended for general use; they were added to suit
specific programming scenarios encountered by users which involve the repurposing
of the ORM’s usual object states.

The recipe ExpireRelationshipOnFKChange features an example using SQLAlchemy events
in order to coordinate the setting of foreign key attributes with many-to-one
relationships.

How do I walk all objects that are related to a given object?

An object that has other objects related to it will correspond to the
relationship() constructs set up between mappers. This code fragment will
iterate all the objects, correcting for cycles as well:

from sqlalchemy import inspect

def walk(obj):
 deque = [obj]

 seen = set()

 while deque:
 obj = deque.pop(0)
 if obj in seen:
 continue
 else:
 seen.add(obj)
 yield obj
 insp = inspect(obj)
 for relationship in insp.mapper.relationships:
 related = getattr(obj, relationship.key)
 if relationship.uselist:
 deque.extend(related)
 elif related is not None:
 deque.append(related)

The function can be demonstrated as follows:

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)
 bs = relationship("B", backref="a")

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)
 a_id = Column(ForeignKey('a.id'))
 c_id = Column(ForeignKey('c.id'))
 c = relationship("C", backref="bs")

class C(Base):
 __tablename__ = 'c'
 id = Column(Integer, primary_key=True)

a1 = A(bs=[B(), B(c=C())])

for obj in walk(a1):
 print(obj)

Output:

<__main__.A object at 0x10303b190>
<__main__.B object at 0x103025210>
<__main__.B object at 0x10303b0d0>
<__main__.C object at 0x103025490>

Is there a way to automagically have only unique keywords (or other kinds of objects) without doing a query for the keyword and getting a reference to the row containing that keyword?

When people read the many-to-many example in the docs, they get hit with the
fact that if you create the same Keyword twice, it gets put in the DB twice.
Which is somewhat inconvenient.

This UniqueObject recipe was created to address this issue.

Changes and Migration

SQLAlchemy changelogs and migration guides are now integrated
within the main documentation.

Current Migration Guide

	What’s New in SQLAlchemy 1.1?

Change logs

	1.1 Changelog

	1.0 Changelog

	0.9 Changelog

	0.8 Changelog

	0.7 Changelog

	0.6 Changelog

	0.5 Changelog

	0.4 Changelog

	0.3 Changelog

	0.2 Changelog

	0.1 Changelog

Older Migration Guides

	What’s New in SQLAlchemy 1.0?

	What’s New in SQLAlchemy 0.9?

	What’s New in SQLAlchemy 0.8?

	What’s New in SQLAlchemy 0.7?

	What’s New in SQLAlchemy 0.6?

	What’s new in SQLAlchemy 0.5?

	What’s new in SQLAlchemy 0.4?

What’s New in SQLAlchemy 1.1?

About this Document

This document describes changes between SQLAlchemy version 1.0
and SQLAlchemy version 1.1.

Introduction

This guide introduces what’s new in SQLAlchemy version 1.1,
and also documents changes which affect users migrating
their applications from the 1.0 series of SQLAlchemy to 1.1.

Please carefully review the sections on behavioral changes for
potentially backwards-incompatible changes in behavior.

Platform / Installer Changes

Setuptools is now required for install

SQLAlchemy’s setup.py file has for many years supported operation
both with Setuptools installed and without; supporting a “fallback” mode
that uses straight Distutils. As a Setuptools-less Python environment is
now unheard of, and in order to support the featureset of Setuptools
more fully, in particular to support py.test’s integration with it as well
as things like “extras”, setup.py now depends on Setuptools fully.

See also

Installation Guide

#3489

Enabling / Disabling C Extension builds is only via environment variable

The C Extensions build by default during install as long as it is possible.
To disable C extension builds, the DISABLE_SQLALCHEMY_CEXT environment
variable was made available as of SQLAlchemy 0.8.6 / 0.9.4. The previous
approach of using the --without-cextensions argument has been removed,
as it relies on deprecated features of setuptools.

See also

Installing the C Extensions

#3500

New Features and Improvements - ORM

New Session lifecycle events

The Session has long supported events that allow some degree
of tracking of state changes to objects, including
SessionEvents.before_attach(), SessionEvents.after_attach(),
and SessionEvents.before_flush(). The Session documentation also
documents major object states at Quickie Intro to Object States. However,
there has never been system of tracking objects specifically as they
pass through these transitions. Additionally, the status of “deleted” objects
has historically been murky as the objects act somewhere between
the “persistent” and “detached” states.

To clean up this area and allow the realm of session state transition
to be fully transparent, a new series of events have been added that
are intended to cover every possible way that an object might transition
between states, and additionally the “deleted” status has been given
its own official state name within the realm of session object states.

New State Transition Events

Transitions between all states of an object such as persistent,
pending and others can now be intercepted in terms of a
session-level event intended to cover a specific transition.
Transitions as objects move into a Session, move out of a
Session, and even all the transitions which occur when the
transaction is rolled back using Session.rollback()
are explicitly present in the interface of SessionEvents.

In total, there are ten new events. A summary of these events is in a
newly written documentation section Object Lifecycle Events.

New Object State “deleted” is added, deleted objects no longer “persistent”

The persistent state of an object in the Session has
always been documented as an object that has a valid database identity;
however in the case of objects that were deleted within a flush, they
have always been in a grey area where they are not really “detached”
from the Session yet, because they can still be restored
within a rollback, but are not really “persistent” because their database
identity has been deleted and they aren’t present in the identity map.

To resolve this grey area given the new events, a new object state
deleted is introduced. This state exists between the “persistent” and
“detached” states. An object that is marked for deletion via
Session.delete() remains in the “persistent” state until a flush
proceeds; at that point, it is removed from the identity map, moves
to the “deleted” state, and the SessionEvents.persistent_to_deleted()
hook is invoked. If the Session object’s transaction is rolled
back, the object is restored as persistent; the
SessionEvents.deleted_to_persistent() transition is called. Otherwise
if the Session object’s transaction is committed,
the SessionEvents.deleted_to_detached() transition is invoked.

Additionally, the InstanceState.persistent accessor no longer returns
True for an object that is in the new “deleted” state; instead, the
InstanceState.deleted accessor has been enhanced to reliably
report on this new state. When the object is detached, the InstanceState.deleted
returns False and the InstanceState.detached accessor is True
instead. To determine if an object was deleted either in the current
transaction or in a previous transaction, use the
InstanceState.was_deleted accessor.

Strong Identity Map is Deprecated

One of the inspirations for the new series of transition events was to enable
leak-proof tracking of objects as they move in and out of the identity map,
so that a “strong reference” may be maintained mirroring the object
moving in and out of this map. With this new capability, there is no longer
any need for the Session.weak_identity_map parameter and the
corresponding StrongIdentityMap object. This option has remained
in SQLAlchemy for many years as the “strong-referencing” behavior used to be
the only behavior available, and many applications were written to assume
this behavior. It has long been recommended that strong-reference tracking
of objects not be an intrinsic job of the Session and instead
be an application-level construct built as needed by the application; the
new event model allows even the exact behavior of the strong identity map
to be replicated. See Session Referencing Behavior for a new
recipe illustrating how to replace the strong identity map.

#2677

New init_scalar() event intercepts default values at ORM level

The ORM produces a value of None when an attribute that has not been
set is first accessed, for a non-persistent object:

>>> obj = MyObj()
>>> obj.some_value
None

There’s a use case for this in-Python value to correspond to that of a
Core-generated default value, even before the object is persisted.
To suit this use case a new event AttributeEvents.init_scalar()
is added. The new example active_column_defaults.py at
Attribute Instrumentation illustrates a sample use, so the effect
can instead be:

>>> obj = MyObj()
>>> obj.some_value
"my default"

#1311

Changes regarding “unhashable” types

The Query object has a well-known behavior of “deduping”
returned rows that contain at least one ORM-mapped entity (e.g., a
full mapped object, as opposed to individual column values). The
primary purpose of this is so that the handling of entities works
smoothly in conjunction with the identity map, including to
accommodate for the duplicate entities normally represented within
joined eager loading, as well as when joins are used for the purposes
of filtering on additional columns.

This deduplication relies upon the hashability of the elements within
the row. With the introduction of Postgresql’s special types like
postgresql.ARRAY, postgresql.HSTORE and
postgresql.JSON, the experience of types within rows being
unhashable and encountering problems here is more prevalent than
it was previously.

In fact, SQLAlchemy has since version 0.8 included a flag on datatypes that
are noted as “unhashable”, however this flag was not used consistently
on built in types. As described in ARRAY and JSON types now correctly specify “unhashable”, this
flag is now set consistently for all of Postgresql’s “structural” types.

The “unhashable” flag is also set on the NullType type,
as NullType is used to refer to any expression of unknown
type.

Additionally, the treatment of a so-called “unhashable” type is slightly
different than its been in previous releases; internally we are using
the id() function to get a “hash value” from these structures, just
as we would any ordinary mapped object. This replaces the previous
approach which applied a counter to the object.

#3499

Specific checks added for passing mapped classes, instances as SQL literals

The typing system now has specific checks for passing of SQLAlchemy
“inspectable” objects in contexts where they would otherwise be handled as
literal values. Any SQLAlchemy built-in object that is legal to pass as a
SQL value includes a method __clause_element__() which provides a
valid SQL expression for that object. For SQLAlchemy objects that
don’t provide this, such as mapped classes, mappers, and mapped
instances, a more informative error message is emitted rather than
allowing the DBAPI to receive the object and fail later. An example
is illustrated below, where a string-based attribute User.name is
compared to a full instance of User(), rather than against a
string value:

>>> some_user = User()
>>> q = s.query(User).filter(User.name == some_user)
...
sqlalchemy.exc.ArgumentError: Object <__main__.User object at 0x103167e90> is not legal as a SQL literal value

The exception is now immediate when the comparison is made between
User.name == some_user. Previously, a comparison like the above
would produce a SQL expression that would only fail once resolved
into a DBAPI execution call; the mapped User object would
ultimately become a bound parameter that would be rejected by the
DBAPI.

Note that in the above example, the expression fails because
User.name is a string-based (e.g. column oriented) attribute.
The change does not impact the usual case of comparing a many-to-one
relationship attribute to an object, which is handled distinctly:

>>> # Address.user refers to the User mapper, so
>>> # this is of course still OK!
>>> q = s.query(Address).filter(Address.user == some_user)

#3321

New Indexable ORM extension

The Indexable extension is an extension to the hybrid
attribute feature which allows the construction of attributes which
refer to specific elements of an “indexable” data type, such as an array
or JSON field:

class Person(Base):
 __tablename__ = 'person'

 id = Column(Integer, primary_key=True)
 data = Column(JSON)

 name = index_property('data', 'name')

Above, the name attribute will read/write the field "name"
from the JSON column data, after initializing it to an
empty dictionary:

>>> person = Person(name='foobar')
>>> person.name
foobar

The extension also triggers a change event when the attribute is modified,
so that there’s no need to use MutableDict in order
to track this change.

See also

Indexable

New options allowing explicit persistence of NULL over a default

Related to the new JSON-NULL support added to Postgresql as part of
JSON “null” is inserted as expected with ORM operations, regardless of column default present, the base TypeEngine class now supports
a method TypeEngine.evaluates_none() which allows a positive set
of the None value on an attribute to be persisted as NULL, rather than
omitting the column from the INSERT statement, which has the effect of using
the column-level default. This allows a mapper-level
configuration of the existing object-level technique of assigning
sql.null() to the attribute.

See also

Forcing NULL on a column with a default

#3250

Further Fixes to single-table inheritance querying

Continuing from 1.0’s Change to single-table-inheritance criteria when using from_self(), count(), the Query should
no longer inappropriately add the “single inheritance” criteria when the
query is against a subquery expression such as an exists:

class Widget(Base):
 __tablename__ = 'widget'
 id = Column(Integer, primary_key=True)
 type = Column(String)
 data = Column(String)
 __mapper_args__ = {'polymorphic_on': type}

class FooWidget(Widget):
 __mapper_args__ = {'polymorphic_identity': 'foo'}

q = session.query(FooWidget).filter(FooWidget.data == 'bar').exists()

session.query(q).all()

Produces:

SELECT EXISTS (SELECT 1
FROM widget
WHERE widget.data = :data_1 AND widget.type IN (:type_1)) AS anon_1

The IN clause on the inside is appropriate, in order to limit to FooWidget
objects, however previously the IN clause would also be generated a second
time on the outside of the subquery.

#3582

Improved Session state when a SAVEPOINT is cancelled by the database

A common case with MySQL is that a SAVEPOINT is cancelled when a deadlock
occurs within the transaction. The Session has been modfied
to deal with this failure mode slightly more gracefully, such that the
outer, non-savepoint transaction still remains usable:

s = Session()
s.begin_nested()

s.add(SomeObject())

try:
 # assume the flush fails, flush goes to rollback to the
 # savepoint and that also fails
 s.flush()
except Exception as err:
 print("Something broke, and our SAVEPOINT vanished too")

this is the SAVEPOINT transaction, marked as
DEACTIVE so the rollback() call succeeds
s.rollback()

this is the outermost transaction, remains ACTIVE
so rollback() or commit() can succeed
s.rollback()

This issue is a continuation of #2696 where we emit a warning
so that the original error can be seen when running on Python 2, even though
the SAVEPOINT exception takes precedence. On Python 3, exceptions are chained
so both failures are reported individually.

#3680

Erroneous “new instance X conflicts with persistent instance Y” flush errors fixed

The Session.rollback() method is responsible for removing objects
that were INSERTed into the database, e.g. moved from pending to persistent,
within that now rolled-back transaction. Objects that make this state
change are tracked in a weak-referencing collection, and if an object is
garbage collected from that collection, the Session no longer worries
about it (it would otherwise not scale for operations that insert many new
objects within a transaction). However, an issue arises if the application
re-loads that same garbage-collected row within the transaction, before the
rollback occurs; if a strong reference to this object remains into the next
transaction, the fact that this object was not inserted and should be
removed would be lost, and the flush would incorrectly raise an error:

from sqlalchemy import Column, create_engine
from sqlalchemy.orm import Session
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)

e = create_engine("sqlite://", echo=True)
Base.metadata.create_all(e)

s = Session(e)

persist an object
s.add(A(id=1))
s.flush()

rollback buffer loses reference to A

load it again, rollback buffer knows nothing
about it
a1 = s.query(A).first()

roll back the transaction; all state is expired but the
"a1" reference remains
s.rollback()

previous "a1" conflicts with the new one because we aren't
checking that it never got committed
s.add(A(id=1))
s.commit()

The above program would raise:

FlushError: New instance <User at 0x7f0287eca4d0> with identity key
(<class 'test.orm.test_transaction.User'>, ('u1',)) conflicts
with persistent instance <User at 0x7f02889c70d0>

The bug is that when the above exception is raised, the unit of work
is operating upon the original object assuming it’s a live row, when in
fact the object is expired and upon testing reveals that it’s gone. The
fix tests this condition now, so in the SQL log we see:

BEGIN (implicit)

INSERT INTO a (id) VALUES (?)
(1,)

SELECT a.id AS a_id FROM a LIMIT ? OFFSET ?
(1, 0)

ROLLBACK

BEGIN (implicit)

SELECT a.id AS a_id FROM a WHERE a.id = ?
(1,)

INSERT INTO a (id) VALUES (?)
(1,)

COMMIT

Above, the unit of work now does a SELECT for the row we’re about to report
as a conflict for, sees that it doesn’t exist, and proceeds normally.
The expense of this SELECT is only incurred in the case when we would have
erroneously raised an exception in any case.

#3677

passive_deletes feature for joined-inheritance mappings

A joined-table inheritance mapping may now allow a DELETE to proceed
as a result of Session.delete(), which only emits DELETE for the
base table, and not the subclass table, allowing configured ON DELETE CASCADE
to take place for the configured foreign keys. This is configured using
the orm.mapper.passive_deletes option:

from sqlalchemy import Column, Integer, String, ForeignKey, create_engine
from sqlalchemy.orm import Session
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class A(Base):
 __tablename__ = "a"
 id = Column('id', Integer, primary_key=True)
 type = Column(String)

 __mapper_args__ = {
 'polymorphic_on': type,
 'polymorphic_identity': 'a',
 'passive_deletes': True
 }

class B(A):
 __tablename__ = 'b'
 b_table_id = Column('b_table_id', Integer, primary_key=True)
 bid = Column('bid', Integer, ForeignKey('a.id', ondelete="CASCADE"))
 data = Column('data', String)

 __mapper_args__ = {
 'polymorphic_identity': 'b'
 }

With the above mapping, the orm.mapper.passive_deletes option
is configured on the base mapper; it takes effect for all non-base mappers
that are descendants of the mapper with the option set. A DELETE for
an object of type B no longer needs to retrieve the primary key value
of b_table_id if unloaded, nor does it need to emit a DELETE statement
for the table itself:

session.delete(some_b)
session.commit()

Will emit SQL as:

DELETE FROM a WHERE a.id = %(id)s
{'id': 1}
COMMIT

As always, the target database must have foreign key support with
ON DELETE CASCADE enabled.

#2349

Same-named backrefs will not raise an error when applied to concrete inheritance subclasses

The following mapping has always been possible without issue:

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)
 b = relationship("B", foreign_keys="B.a_id", backref="a")

class A1(A):
 __tablename__ = 'a1'
 id = Column(Integer, primary_key=True)
 b = relationship("B", foreign_keys="B.a1_id", backref="a1")
 __mapper_args__ = {'concrete': True}

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)

 a_id = Column(ForeignKey('a.id'))
 a1_id = Column(ForeignKey('a1.id'))

Above, even though class A and class A1 have a relationship
named b, no conflict warning or error occurs because class A1 is
marked as “concrete”.

However, if the relationships were configured the other way, an error
would occur:

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)

class A1(A):
 __tablename__ = 'a1'
 id = Column(Integer, primary_key=True)
 __mapper_args__ = {'concrete': True}

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)

 a_id = Column(ForeignKey('a.id'))
 a1_id = Column(ForeignKey('a1.id'))

 a = relationship("A", backref="b")
 a1 = relationship("A1", backref="b")

The fix enhances the backref feature so that an error is not emitted,
as well as an additional check within the mapper logic to bypass warning
for an attribute being replaced.

#3630

Hybrid properties and methods now propagate the docstring as well as .info

A hybrid method or property will now reflect the __doc__ value
present in the original docstring:

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)

 name = Column(String)

 @hybrid_property
 def some_name(self):
 """The name field"""
 return self.name

The above value of A.some_name.__doc__ is now honored:

>>> A.some_name.__doc__
The name field

However, to accomplish this, the mechanics of hybrid properties necessarily
becomes more complex. Previously, the class-level accessor for a hybrid
would be a simple pass-thru, that is, this test would succeed:

>>> assert A.name is A.some_name

With the change, the expression returned by A.some_name is wrapped inside
of its own QueryableAttribute wrapper:

>>> A.some_name
<sqlalchemy.orm.attributes.hybrid_propertyProxy object at 0x7fde03888230>

A lot of testing went into making sure this wrapper works correctly, including
for elaborate schemes like that of the
Custom Value Object
recipe, however we’ll be looking to see that no other regressions occur for
users.

As part of this change, the hybrid_property.info collection is now
also propagated from the hybrid descriptor itself, rather than from the underlying
expression. That is, accessing A.some_name.info now returns the same
dictionary that you’d get from inspect(A).all_orm_descriptors['some_name'].info:

>>> A.some_name.info['foo'] = 'bar'
>>> from sqlalchemy import inspect
>>> inspect(A).all_orm_descriptors['some_name'].info
{'foo': 'bar'}

Note that this .info dictionary is separate from that of a mapped attribute
which the hybrid descriptor may be proxying directly; this is a behavioral
change from 1.0. The wrapper will still proxy other useful attributes
of a mirrored attribute such as QueryableAttribute.property and
QueryableAttribute.class_.

#3653

Session.merge resolves pending conflicts the same as persistent

The Session.merge() method will now track the identities of objects given
within a graph to maintain primary key uniqueness before emitting an INSERT.
When duplicate objects of the same identity are encountered, non-primary-key
attributes are overwritten as the objects are encountered, which is
essentially non-deterministic. This behavior matches that of how persistent
objects, that is objects that are already located in the database via
primary key, are already treated, so this behavior is more internally
consistent.

Given:

u1 = User(id=7, name='x')
u1.orders = [
 Order(description='o1', address=Address(id=1, email_address='a')),
 Order(description='o2', address=Address(id=1, email_address='b')),
 Order(description='o3', address=Address(id=1, email_address='c'))
]

sess = Session()
sess.merge(u1)

Above, we merge a User object with three new Order objects, each referring to
a distinct Address object, however each is given the same primary key.
The current behavior of Session.merge() is to look in the identity
map for this Address object, and use that as the target. If the object
is present, meaning that the database already has a row for Address with
primary key “1”, we can see that the email_address field of the Address
will be overwritten three times, in this case with the values a, b and finally
c.

However, if the Address row for primary key “1” were not present, Session.merge()
would instead create three separate Address instances, and we’d then get
a primary key conflict upon INSERT. The new behavior is that the proposed
primary key for these Address objects are tracked in a separate dictionary
so that we merge the state of the three proposed Address objects onto
one Address object to be inserted.

It may have been preferable if the original case emitted some kind of warning
that conflicting data were present in a single merge-tree, however the
non-deterministic merging of values has been the behavior for many
years for the persistent case; it now matches for the pending case. A
feature that warns for conflicting values could still be feasible for both
cases but would add considerable performance overhead as each column value
would have to be compared during the merge.

#3601

Fix involving many-to-one object moves with user-initiated foriegn key manipulations

A bug has been fixed involving the mechanics of replacing a many-to-one
reference to an object with another object. During the attribute operation,
the location of the object tha was previouly referred to now makes use of the
database-committed foreign key value, rather than the current foreign key
value. The main effect of the fix is that a backref event towards a collection
will fire off more accurately when a many-to-one change is made, even if the
foreign key attribute was manually moved to the new value beforehand. Assume a
mapping of the classes Parent and SomeClass, where SomeClass.parent
refers to Parent and Parent.items refers to the collection of
SomeClass objects:

some_object = SomeClass()
session.add(some_object)
some_object.parent_id = some_parent.id
some_object.parent = some_parent

Above, we’ve made a pending object some_object, manipulated its foreign key
towards Parent to refer to it, then we actually set up the relationship.
Before the bug fix, the backref would not have fired off:

before the fix
assert some_object not in some_parent.items

The fix now is that when we seek to locate the previous value of
some_object.parent, we disregard the parent id that’s been manually set,
and we look for the database-committed value. In this case, it’s None because
the object is pending, so the event system logs some_object.parent
as a net change:

after the fix, backref fired off for some_object.parent = some_parent
assert some_object in some_parent.items

While it is discouraged to manipulate foreign key attributes that are managed
by relationships, there is limited support for this use case. Applications
that manipulate foreign keys in order to allow loads to proceed will often make
use of the Session.enable_relationship_loading() and
RelationshipProperty.load_on_pending features, which cause
relationships to emit lazy loads based on in-memory foreign key values that
aren’t persisted. Whether or not these features are in use, this behavioral
improvement will now be apparent.

#3708

Improvements to the Query.correlate method with polymoprhic entities

In recent SQLAlchemy versions, the SQL generated by many forms of
“polymorphic” queries has a more “flat” form than it used to, where
a JOIN of several tables is no longer bundled into a subquery unconditionally.
To accommodate this, the Query.correlate() method now extracts the
individual tables from such a polymorphic selectable and ensures that all
are part of the “correlate” for the subquery. Assuming the
Person/Manager/Engineer->Company setup from the mapping documentation,
using with_polymorphic:

sess.query(Person.name)
 .filter(
 sess.query(Company.name).
 filter(Company.company_id == Person.company_id).
 correlate(Person).as_scalar() == "Elbonia, Inc.")

The above query now produces:

SELECT people.name AS people_name
FROM people
LEFT OUTER JOIN engineers ON people.person_id = engineers.person_id
LEFT OUTER JOIN managers ON people.person_id = managers.person_id
WHERE (SELECT companies.name
FROM companies
WHERE companies.company_id = people.company_id) = ?

Before the fix, the call to correlate(Person) would inadvertently
attempt to correlate to the join of Person, Engineer and Manager
as a single unit, so Person wouldn’t be correlated:

-- old, incorrect query
SELECT people.name AS people_name
FROM people
LEFT OUTER JOIN engineers ON people.person_id = engineers.person_id
LEFT OUTER JOIN managers ON people.person_id = managers.person_id
WHERE (SELECT companies.name
FROM companies, people
WHERE companies.company_id = people.company_id) = ?

Using correlated subqueries against polymorphic mappings still has some
unpolished edges. If for example Person is polymorphically linked
to a so-called “concrete polymorphic union” query, the above subquery
may not correctly refer to this subquery. In all cases, a way to refer
to the “polyorphic” entity fully is to create an aliased() object
from it first:

works with all SQLAlchemy versions and all types of polymorphic
aliasing.

paliased = aliased(Person)
sess.query(paliased.name)
 .filter(
 sess.query(Company.name).
 filter(Company.company_id == paliased.company_id).
 correlate(paliased).as_scalar() == "Elbonia, Inc.")

The aliased() construct guarantees that the “polymorphic selectable”
is wrapped in a subquery. By referring to it explicitly in the correlated
subquery, the polymorphic form is correctly used.

#3662

Stringify of Query will consult the Session for the correct dialect

Calling str() on a Query object will consult the Session
for the correct “bind” to use, in order to render the SQL that would be
passed to the database. In particular this allows a Query that
refers to dialect-specific SQL constructs to be renderable, assuming the
Query is associated with an appropriate Session.
Previously, this behavior would only take effect if the MetaData
to which the mappings were associated were itself bound to the target
Engine.

If neither the underlying MetaData nor the Session are
associated with any bound Engine, then the fallback to the
“default” dialect is used to generate the SQL string.

See also

“Friendly” stringification of Core SQL constructs without a dialect

#3081

Joined eager loading where the same entity is present multiple times in one row

A fix has been made to the case has been made whereby an attribute will be
loaded via joined eager loading, even if the entity was already loaded from the
row on a different “path” that doesn’t include the attribute. This is a
deep use case that’s hard to reproduce, but the general idea is as follows:

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)
 b_id = Column(ForeignKey('b.id'))
 c_id = Column(ForeignKey('c.id'))

 b = relationship("B")
 c = relationship("C")

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)
 c_id = Column(ForeignKey('c.id'))

 c = relationship("C")

class C(Base):
 __tablename__ = 'c'
 id = Column(Integer, primary_key=True)
 d_id = Column(ForeignKey('d.id'))
 d = relationship("D")

class D(Base):
 __tablename__ = 'd'
 id = Column(Integer, primary_key=True)

c_alias_1 = aliased(C)
c_alias_2 = aliased(C)

q = s.query(A)
q = q.join(A.b).join(c_alias_1, B.c).join(c_alias_1.d)
q = q.options(contains_eager(A.b).contains_eager(B.c, alias=c_alias_1).contains_eager(C.d))
q = q.join(c_alias_2, A.c)
q = q.options(contains_eager(A.c, alias=c_alias_2))

The above query emits SQL like this:

SELECT
 d.id AS d_id,
 c_1.id AS c_1_id, c_1.d_id AS c_1_d_id,
 b.id AS b_id, b.c_id AS b_c_id,
 c_2.id AS c_2_id, c_2.d_id AS c_2_d_id,
 a.id AS a_id, a.b_id AS a_b_id, a.c_id AS a_c_id
FROM
 a
 JOIN b ON b.id = a.b_id
 JOIN c AS c_1 ON c_1.id = b.c_id
 JOIN d ON d.id = c_1.d_id
 JOIN c AS c_2 ON c_2.id = a.c_id

We can see that the c table is selected from twice; once in the context
of A.b.c -> c_alias_1 and another in the context of A.c -> c_alias_2.
Also, we can see that it is quite possible that the C identity for a
single row is the same for both c_alias_1 and c_alias_2, meaning
two sets of columns in one row result in only one new object being added
to the identity map.

The query options above only call for the attribute C.d to be loaded
in the context of c_alias_1, and not c_alias_2. So whether or not
the final C object we get in the identity map has the C.d attribute
loaded depends on how the mappings are traversed, which while not completely
random, is essentially non-deterministic. The fix is that even if the
loader for c_alias_1 is processed after that of c_alias_2 for a
single row where they both refer to the same identity, the C.d
element will still be loaded. Previously, the loader did not seek to
modify the load of an entity that was already loaded via a different path.
The loader that reaches the entity first has always been non-deterministic,
so this fix may be detectable as a behavioral change in some situations and
not others.

The fix includes tests for two variants of the “multiple paths to one entity”
case, and the fix should hopefully cover all other scenarios of this nature.

#3431

Columns no longer added redundantly with DISTINCT + ORDER BY

A query such as the following will now augment only those columns
that are missing from the SELECT list, without duplicates:

q = session.query(User.id, User.name.label('name')).\
 distinct().\
 order_by(User.id, User.name, User.fullname)

Produces:

SELECT DISTINCT user.id AS a_id, user.name AS name,
 user.fullname AS a_fullname
FROM a ORDER BY user.id, user.name, user.fullname

Previously, it would produce:

SELECT DISTINCT user.id AS a_id, user.name AS name, user.name AS a_name,
 user.fullname AS a_fullname
FROM a ORDER BY user.id, user.name, user.fullname

Where above, the user.name column is added unnecessarily. The results
would not be affected, as the additional columns are not included in the
result in any case, but the columns are unnecessary.

Additionally, when the Postgresql DISTINCT ON format is used by passing
expressions to Query.distinct(), the above “column adding” logic
is disabled entirely.

When the query is being bundled into a subquery for the purposes of
joined eager loading, the “augment column list” rules are are necessarily
more aggressive so that the ORDER BY can still be satisifed, so this case
remains unchanged.

#3641

New MutableList and MutableSet helpers added to the mutation tracking extension

New helper classes MutableList and MutableSet have been
added to the Mutation Tracking extension, to complement the existing
MutableDict helper.

#3297

New “raise” loader strategy

To assist with the use case of preventing unwanted lazy loads from occurring
after a series of objects are loaded, the new “lazy=’raise’” strategy and
corresponding loader option orm.raiseload() may be applied to a
relationship attribute which will cause it to raise InvalidRequestError
when a non-eagerly-loaded attribute is accessed for read:

>>> from sqlalchemy.orm import raiseload
>>> a1 = s.query(A).options(raiseload(A.bs)).first()
>>> a1.bs
Traceback (most recent call last):
...
sqlalchemy.exc.InvalidRequestError: 'A.bs' is not available due to lazy='raise'

#3512

Mapper.order_by is deprecated

This old parameter from the very first versions of SQLAlchemy was part of
the original design of the ORM which featured the Mapper object
as a public-facing query structure. This role has long since been replaced
by the Query object, where we use Query.order_by() to
indicate the ordering of results in a way that works consistently for any
combination of SELECT statements, entities and SQL expressions. There are
many areas in which Mapper.order_by doesn’t work as expected
(or what would be expected is not clear), such as when queries are combined
into unions; these cases are not supported.

#3394

New Features and Improvements - Core

CTE Support for INSERT, UPDATE, DELETE

One of the most widely requested features is support for common table
expressions (CTE) that work with INSERT, UPDATE, DELETE, and is now implemented.
An INSERT/UPDATE/DELETE can both draw from a WITH clause that’s stated at the
top of the SQL, as well as can be used as a CTE itself in the context of
a larger statement.

As part of this change, an INSERT from SELECT that includes a CTE will now
render the CTE at the top of the entire statement, rather than nested
in the SELECT statement as was the case in 1.0.

Below is an example that renders UPDATE, INSERT and SELECT all in one
statement:

>>> from sqlalchemy import table, column, select, literal, exists
>>> orders = table(
... 'orders',
... column('region'),
... column('amount'),
... column('product'),
... column('quantity')
...)
>>>
>>> upsert = (
... orders.update()
... .where(orders.c.region == 'Region1')
... .values(amount=1.0, product='Product1', quantity=1)
... .returning(*(orders.c._all_columns)).cte('upsert'))
>>>
>>> insert = orders.insert().from_select(
... orders.c.keys(),
... select([
... literal('Region1'), literal(1.0),
... literal('Product1'), literal(1)
...]).where(~exists(upsert.select()))
...)
>>>
>>> print(insert) # note formatting added for clarity
WITH upsert AS
(UPDATE orders SET amount=:amount, product=:product, quantity=:quantity
 WHERE orders.region = :region_1
 RETURNING orders.region, orders.amount, orders.product, orders.quantity
)
INSERT INTO orders (region, amount, product, quantity)
SELECT
 :param_1 AS anon_1, :param_2 AS anon_2,
 :param_3 AS anon_3, :param_4 AS anon_4
WHERE NOT (
 EXISTS (
 SELECT upsert.region, upsert.amount,
 upsert.product, upsert.quantity
 FROM upsert))

#2551

Support for RANGE and ROWS specification within window functions

New expression.over.range_ and expression.over.rows parameters allow
RANGE and ROWS expressions for window functions:

>>> from sqlalchemy import func

>>> print func.row_number().over(order_by='x', range_=(-5, 10))
row_number() OVER (ORDER BY x RANGE BETWEEN :param_1 PRECEDING AND :param_2 FOLLOWING)

>>> print func.row_number().over(order_by='x', rows=(None, 0))
row_number() OVER (ORDER BY x ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

>>> print func.row_number().over(order_by='x', range_=(-2, None))
row_number() OVER (ORDER BY x RANGE BETWEEN :param_1 PRECEDING AND UNBOUNDED FOLLOWING)

expression.over.range_ and expression.over.rows are specified as
2-tuples and indicate negative and positive values for specific ranges,
0 for “CURRENT ROW”, and None for UNBOUNDED.

See also

Window Functions

#3049

Support for the SQL LATERAL keyword

The LATERAL keyword is currently known to only be supported by Postgresql 9.3
and greater, however as it is part of the SQL standard support for this keyword
is added to Core. The implementation of Select.lateral() employs
special logic beyond just rendering the LATERAL keyword to allow for
correlation of tables that are derived from the same FROM clause as the
selectable, e.g. lateral correlation:

>>> from sqlalchemy import table, column, select, true
>>> people = table('people', column('people_id'), column('age'), column('name'))
>>> books = table('books', column('book_id'), column('owner_id'))
>>> subq = select([books.c.book_id]).\
... where(books.c.owner_id == people.c.people_id).lateral("book_subq")
>>> print(select([people]).select_from(people.join(subq, true())))
SELECT people.people_id, people.age, people.name
FROM people JOIN LATERAL (SELECT books.book_id AS book_id
FROM books WHERE books.owner_id = people.people_id)
AS book_subq ON true

See also

LATERAL correlation

Lateral

Select.lateral()

#2857

Support for TABLESAMPLE

The SQL standard TABLESAMPLE can be rendered using the
FromClause.tablesample() method, which returns a TableSample
construct similar to an alias:

from sqlalchemy import func

selectable = people.tablesample(
 func.bernoulli(1),
 name='alias',
 seed=func.random())
stmt = select([selectable.c.people_id])

Assuming people with a column people_id, the above
statement would render as:

SELECT alias.people_id FROM
people AS alias TABLESAMPLE bernoulli(:bernoulli_1)
REPEATABLE (random())

#3718

The .autoincrement directive is no longer implicitly enabled for a composite primary key column

SQLAlchemy has always had the convenience feature of enabling the backend database’s
“autoincrement” feature for a single-column integer primary key; by “autoincrement”
we mean that the database column will include whatever DDL directives the
database provides in order to indicate an auto-incrementing integer identifier,
such as the SERIAL keyword on Postgresql or AUTO_INCREMENT on MySQL, and additionally
that the dialect will recieve these generated values from the execution
of a Table.insert() construct using techniques appropriate to that
backend.

What’s changed is that this feature no longer turns on automatically for a
composite primary key; previously, a table definition such as:

Table(
 'some_table', metadata,
 Column('x', Integer, primary_key=True),
 Column('y', Integer, primary_key=True)
)

Would have “autoincrement” semantics applied to the 'x' column, only
because it’s first in the list of primary key columns. In order to
disable this, one would have to turn off autoincrement on all columns:

old way
Table(
 'some_table', metadata,
 Column('x', Integer, primary_key=True, autoincrement=False),
 Column('y', Integer, primary_key=True, autoincrement=False)
)

With the new behavior, the composite primary key will not have autoincrement
semantics unless a column is marked explcitly with autoincrement=True:

column 'y' will be SERIAL/AUTO_INCREMENT/ auto-generating
Table(
 'some_table', metadata,
 Column('x', Integer, primary_key=True),
 Column('y', Integer, primary_key=True, autoincrement=True)
)

In order to anticipate some potential backwards-incompatible scenarios,
the Table.insert() construct will perform more thorough checks
for missing primary key values on composite primary key columns that don’t
have autoincrement set up; given a table such as:

Table(
 'b', metadata,
 Column('x', Integer, primary_key=True),
 Column('y', Integer, primary_key=True)
)

An INSERT emitted with no values for this table will produce the exception:

CompileError: Column 'b.x' is marked as a member of the primary
key for table 'b', but has no Python-side or server-side default
generator indicated, nor does it indicate 'autoincrement=True',
and no explicit value is passed. Primary key columns may not
store NULL. Note that as of SQLAlchemy 1.1, 'autoincrement=True'
must be indicated explicitly for composite (e.g. multicolumn)
primary keys if AUTO_INCREMENT/SERIAL/IDENTITY behavior is
expected for one of the columns in the primary key. CREATE TABLE
statements are impacted by this change as well on most backends.

For a column that is receiving primary key values from a server-side
default or something less common such as a trigger, the presence of a
value generator can be indicated using FetchedValue:

Table(
 'b', metadata,
 Column('x', Integer, primary_key=True, server_default=FetchedValue()),
 Column('y', Integer, primary_key=True, server_default=FetchedValue())
)

For the very unlikely case where a composite primary key is actually intended
to store NULL in one or more of its columns (only supported on SQLite and MySQL),
specify the column with nullable=True:

Table(
 'b', metadata,
 Column('x', Integer, primary_key=True),
 Column('y', Integer, primary_key=True, nullable=True)
)

In a related change, the autoincrement flag may be set to True
on a column that has a client-side or server-side default. This typically
will not have much impact on the behavior of the column during an INSERT.

See also

No more generation of an implicit KEY for composite primary key w/ AUTO_INCREMENT

#3216

Support for IS DISTINCT FROM and IS NOT DISTINCT FROM

New operators ColumnOperators.is_distinct_from() and
ColumnOperators.isnot_distinct_from() allow the IS DISTINCT
FROM and IS NOT DISTINCT FROM sql operation:

>>> print column('x').is_distinct_from(None)
x IS DISTINCT FROM NULL

Handling is provided for NULL, True and False:

>>> print column('x').isnot_distinct_from(False)
x IS NOT DISTINCT FROM false

For SQLite, which doesn’t have this operator, “IS” / “IS NOT” is rendered,
which on SQLite works for NULL unlike other backends:

>>> from sqlalchemy.dialects import sqlite
>>> print column('x').is_distinct_from(None).compile(dialect=sqlite.dialect())
x IS NOT NULL

Core and ORM support for FULL OUTER JOIN

The new flag FromClause.outerjoin.full, available at the Core
and ORM level, instructs the compiler to render FULL OUTER JOIN
where it would normally render LEFT OUTER JOIN:

stmt = select([t1]).select_from(t1.outerjoin(t2, full=True))

The flag also works at the ORM level:

q = session.query(MyClass).outerjoin(MyOtherClass, full=True)

#1957

ResultSet column matching enhancements; positional column setup for textual SQL

A series of improvements were made to the ResultProxy system
in the 1.0 series as part of #918, which reorganizes the internals
to match cursor-bound result columns with table/ORM metadata positionally,
rather than by matching names, for compiled SQL constructs that contain full
information about the result rows to be returned. This allows a dramatic savings
on Python overhead as well as much greater accuracy in linking ORM and Core
SQL expressions to result rows. In 1.1, this reorganization has been taken
further internally, and also has been made available to pure-text SQL
constructs via the use of the recently added TextClause.columns() method.

TextAsFrom.columns() now works positionally

The TextClause.columns() method, added in 0.9, accepts column-based arguments
positionally; in 1.1, when all columns are passed positionally, the correlation
of these columns to the ultimate result set is also performed positionally.
The key advantage here is that textual SQL can now be linked to an ORM-
level result set without the need to deal with ambiguous or duplicate column
names, or with having to match labeling schemes to ORM-level labeling schemes. All
that’s needed now is the same ordering of columns within the textual SQL
and the column arguments passed to TextClause.columns():

from sqlalchemy import text
stmt = text("SELECT users.id, addresses.id, users.id, "
 "users.name, addresses.email_address AS email "
 "FROM users JOIN addresses ON users.id=addresses.user_id "
 "WHERE users.id = 1").columns(
 User.id,
 Address.id,
 Address.user_id,
 User.name,
 Address.email_address
)

query = session.query(User).from_statement(text).\
 options(contains_eager(User.addresses))
result = query.all()

Above, the textual SQL contains the column “id” three times, which would
normally be ambiguous. Using the new feature, we can apply the mapped
columns from the User and Address class directly, even linking
the Address.user_id column to the users.id column in textual SQL
for fun, and the Query object will receive rows that are correctly
targetable as needed, including for an eager load.

This change is backwards incompatible with code that passes the columns
to the method with a different ordering than is present in the textual statement.
It is hoped that this impact will be low due to the fact that this
method has always been documented illustrating the columns being passed in the same order as that of the
textual SQL statement, as would seem intuitive, even though the internals
weren’t checking for this. The method itself was only added as of 0.9 in
any case and may not yet have widespread use. Notes on exactly how to handle
this behavioral change for applications using it are at TextClause.columns() will match columns positionally, not by name, when passed positionally.

See also

Specifying Result-Column Behaviors - in the Core tutorial

TextClause.columns() will match columns positionally, not by name, when passed positionally - backwards compatibility remarks

Positional matching is trusted over name-based matching for Core/ORM SQL constructs

Another aspect of this change is that the rules for matching columns have also been modified
to rely upon “positional” matching more fully for compiled SQL constructs
as well. Given a statement like the following:

ua = users.alias('ua')
stmt = select([users.c.user_id, ua.c.user_id])

The above statement will compile to:

SELECT users.user_id, ua.user_id FROM users, users AS ua

In 1.0, the above statement when executed would be matched to its original
compiled construct using positional matching, however because the statement
contains the 'user_id' label duplicated, the “ambiguous column” rule
would still get involved and prevent the columns from being fetched from a row.
As of 1.1, the “ambiguous column” rule does not affect an exact match from
a column construct to the SQL column, which is what the ORM uses to
fetch columns:

result = conn.execute(stmt)
row = result.first()

these both match positionally, so no error
user_id = row[users.c.user_id]
ua_id = row[ua.c.user_id]

this still raises, however
user_id = row['user_id']

Much less likely to get an “ambiguous column” error message

As part of this change, the wording of the error message Ambiguous column
name '<name>' in result set! try 'use_labels' option on select statement.
has been dialed back; as this message should now be extremely rare when using
the ORM or Core compiled SQL constructs, it merely states
Ambiguous column name '<name>' in result set column descriptions, and
only when a result column is retrieved using the string name that is actually
ambiguous, e.g. row['user_id'] in the above example. It also now refers
to the actual ambiguous name from the rendered SQL statement itself,
rather than indicating the key or name that was local to the construct being
used for the fetch.

#3501

Support for Python’s native enum type and compatible forms

The Enum type can now be constructed using any
PEP-435 compliant enumerated type. When using this mode, input values
and return values are the actual enumerated objects, not the
string values:

import enum
from sqlalchemy import Table, MetaData, Column, Enum, create_engine

class MyEnum(enum.Enum):
 one = "one"
 two = "two"
 three = "three"

t = Table(
 'data', MetaData(),
 Column('value', Enum(MyEnum))
)

e = create_engine("sqlite://")
t.create(e)

e.execute(t.insert(), {"value": MyEnum.two})
assert e.scalar(t.select()) is MyEnum.two

#3292

Negative integer indexes accommodated by Core result rows

The RowProxy object now accomodates single negative integer indexes
like a regular Python sequence, both in the pure Python and C-extension
version. Previously, negative values would only work in slices:

>>> from sqlalchemy import create_engine
>>> e = create_engine("sqlite://")
>>> row = e.execute("select 1, 2, 3").first()
>>> row[-1], row[-2], row[1], row[-2:2]
3 2 2 (2,)

The Enum type now does in-Python validation of values

To accomodate for Python native enumerated objects, as well as for edge
cases such as that of where a non-native ENUM type is used within an ARRAY
and a CHECK contraint is infeasible, the Enum datatype now adds
in-Python validation of input values when the Enum.validate_strings
flag is used (1.1.0b2):

>>> from sqlalchemy import Table, MetaData, Column, Enum, create_engine
>>> t = Table(
... 'data', MetaData(),
... Column('value', Enum("one", "two", "three", validate_strings=True))
...)
>>> e = create_engine("sqlite://")
>>> t.create(e)
>>> e.execute(t.insert(), {"value": "four"})
Traceback (most recent call last):
 ...
sqlalchemy.exc.StatementError: (exceptions.LookupError)
"four" is not among the defined enum values
[SQL: u'INSERT INTO data (value) VALUES (?)']
[parameters: [{'value': 'four'}]]

This validation is turned off by default as there are already use cases
identified where users don’t want such validation (such as string comparisons).
For non-string types, it necessarily takes place in all cases. The
check also occurs unconditionally on the result-handling side as well, when
values coming from the database are returned.

This validation is in addition to the existing behavior of creating a
CHECK constraint when a non-native enumerated type is used. The creation of
this CHECK constraint can now be disabled using the new
Enum.create_constraint flag.

#3095

Non-native boolean integer values coerced to zero/one/None in all cases

The Boolean datatype coerces Python booleans to integer values
for backends that don’t have a native boolean type, such as SQLite and
MySQL. On these backends, a CHECK constraint is normally set up which
ensures the values in the database are in fact one of these two values.
However, MySQL ignores CHECK constraints, the constraint is optional, and
an existing database might not have this constraint. The Boolean
datatype has been repaired such that an incoming Python-side value that is
already an integer value is coerced to zero or one, not just passed as-is;
additionally, the C-extension version of the int-to-boolean processor for
results now uses the same Python boolean interpretation of the value,
rather than asserting an exact one or zero value. This is now consistent
with the pure-Python int-to-boolean processor and is more forgiving of
existing data already within the database. Values of None/NULL are as before
retained as None/NULL.

#3730

Large parameter and row values are now truncated in logging and exception displays

A large value present as a bound parameter for a SQL statement, as well as a
large value present in a result row, will now be truncated during display
within logging, exception reporting, as well as repr() of the row itself:

>>> from sqlalchemy import create_engine
>>> import random
>>> e = create_engine("sqlite://", echo='debug')
>>> some_value = ''.join(chr(random.randint(52, 85)) for i in range(5000))
>>> row = e.execute("select ?", [some_value]).first()
... (lines are wrapped for clarity) ...
2016-02-17 13:23:03,027 INFO sqlalchemy.engine.base.Engine select ?
2016-02-17 13:23:03,027 INFO sqlalchemy.engine.base.Engine
('E6@?>9HPOJB<<BHR:@=TS:5ILU=;JLM<4?B9<S48PTNG9>:=TSTLA;9K;9FPM4M8M@;NM6GU
LUAEBT9QGHNHTHR5EP75@OER4?SKC;D:TFUMD:M>;C6U:JLM6R67GEK<A6@S@C@J7>4=4:P
GJ7HQ6 ... (4702 characters truncated) ... J6IK546AJMB4N6S9L;;9AKI;=RJP
HDSSOTNBUEEC9@Q:RCL:I@5?FO<9K>KJAGAO@E6@A7JI8O:J7B69T6<8;F:S;4BEIJS9HM
K:;5OLPM@JR;R:J6<SOTTT=>Q>7T@I::OTDC:CC<=NGP6C>BC8N',)
2016-02-17 13:23:03,027 DEBUG sqlalchemy.engine.base.Engine Col ('?',)
2016-02-17 13:23:03,027 DEBUG sqlalchemy.engine.base.Engine
Row (u'E6@?>9HPOJB<<BHR:@=TS:5ILU=;JLM<4?B9<S48PTNG9>:=TSTLA;9K;9FPM4M8M@;
NM6GULUAEBT9QGHNHTHR5EP75@OER4?SKC;D:TFUMD:M>;C6U:JLM6R67GEK<A6@S@C@J7
>4=4:PGJ7HQ ... (4703 characters truncated) ... J6IK546AJMB4N6S9L;;9AKI;=
RJPHDSSOTNBUEEC9@Q:RCL:I@5?FO<9K>KJAGAO@E6@A7JI8O:J7B69T6<8;F:S;4BEIJS9HM
K:;5OLPM@JR;R:J6<SOTTT=>Q>7T@I::OTDC:CC<=NGP6C>BC8N',)
>>> print(row)
(u'E6@?>9HPOJB<<BHR:@=TS:5ILU=;JLM<4?B9<S48PTNG9>:=TSTLA;9K;9FPM4M8M@;NM6
GULUAEBT9QGHNHTHR5EP75@OER4?SKC;D:TFUMD:M>;C6U:JLM6R67GEK<A6@S@C@J7>4
=4:PGJ7HQ ... (4703 characters truncated) ... J6IK546AJMB4N6S9L;;9AKI;
=RJPHDSSOTNBUEEC9@Q:RCL:I@5?FO<9K>KJAGAO@E6@A7JI8O:J7B69T6<8;F:S;4BEIJS9H
MK:;5OLPM@JR;R:J6<SOTTT=>Q>7T@I::OTDC:CC<=NGP6C>BC8N',)

#2837

A UNION or similar of SELECTs with LIMIT/OFFSET/ORDER BY now parenthesizes the embedded selects

An issue that, like others, was long driven by SQLite’s lack of capabilities
has now been enhanced to work on all supporting backends. We refer to a query that
is a UNION of SELECT statements that themselves contain row-limiting or ordering
features which include LIMIT, OFFSET, and/or ORDER BY:

(SELECT x FROM table1 ORDER BY y LIMIT 1) UNION
(SELECT x FROM table2 ORDER BY y LIMIT 2)

The above query requires parenthesis within each sub-select in order to
group the sub-results correctly. Production of the above statement in
SQLAlchemy Core looks like:

stmt1 = select([table1.c.x]).order_by(table1.c.y).limit(1)
stmt2 = select([table1.c.x]).order_by(table2.c.y).limit(2)

stmt = union(stmt1, stmt2)

Previously, the above construct would not produce parenthesization for the
inner SELECT statements, producing a query that fails on all backends.

The above formats will continue to fail on SQLite; additionally, the format
that includes ORDER BY but no LIMIT/SELECT will continue to fail on Oracle.
This is not a backwards-incompatible change, because the queries fail without
the parentheses as well; with the fix, the queries at least work on all other
databases.

In all cases, in order to produce a UNION of limited SELECT statements that
also works on SQLite and in all cases on Oracle, the
subqueries must be a SELECT of an ALIAS:

stmt1 = select([table1.c.x]).order_by(table1.c.y).limit(1).alias().select()
stmt2 = select([table2.c.x]).order_by(table2.c.y).limit(2).alias().select()

stmt = union(stmt1, stmt2)

This workaround works on all SQLAlchemy versions. In the ORM, it looks like:

stmt1 = session.query(Model1).order_by(Model1.y).limit(1).subquery().select()
stmt2 = session.query(Model2).order_by(Model2.y).limit(1).subquery().select()

stmt = session.query(Model1).from_statement(stmt1.union(stmt2))

The behavior here has many parallels to the “join rewriting” behavior
introduced in SQLAlchemy 0.9 in Many JOIN and LEFT OUTER JOIN expressions will no longer be wrapped in (SELECT * FROM ..) AS ANON_1; however in this case
we have opted not to add new rewriting behavior to accommodate this
case for SQLite.
The existing rewriting behavior is very complicated already, and the case of
UNIONs with parenthesized SELECT statements is much less common than the
“right-nested-join” use case of that feature.

#2528

JSON support added to Core

As MySQL now has a JSON datatype in addition to the Postgresql JSON datatype,
the core now gains a sqlalchemy.types.JSON datatype that is the basis
for both of these. Using this type allows access to the “getitem” operator
as well as the “getpath” operator in a way that is agnostic across Postgresql
and MySQL.

The new datatype also has a series of improvements to the handling of
NULL values as well as expression handling.

See also

MySQL JSON Support

types.JSON

postgresql.JSON

mysql.JSON

#3619

JSON “null” is inserted as expected with ORM operations, regardless of column default present

The types.JSON type and its descendant types postgresql.JSON
and mysql.JSON have a flag types.JSON.none_as_null which
when set to True indicates that the Python value None should translate
into a SQL NULL rather than a JSON NULL value. This flag defaults to False,
which means that the column should never insert SQL NULL or fall back
to a default unless the null() constant were used. However, this would
fail in the ORM under two circumstances; one is when the column also contained
a default or server_default value, a positive value of None on the mapped
attribute would still result in the column-level default being triggered,
replacing the None value:

obj = MyObject(json_value=None)
session.add(obj)
session.commit() # would fire off default / server_default, not encode "'none'"

The other is when the Session.bulk_insert_mappings()
method were used, None would be ignored in all cases:

session.bulk_insert_mappings(
 MyObject,
 [{"json_value": None}]) # would insert SQL NULL and/or trigger defaults

The types.JSON type now implements the
TypeEngine.should_evaluate_none flag,
indicating that None should not be ignored here; it is configured
automatically based on the value of types.JSON.none_as_null.
Thanks to #3061, we can differentiate when the value None is actively
set by the user versus when it was never set at all.

If the attribute is not set at all, then column level defaults will
fire off and/or SQL NULL will be inserted as expected, as was the behavior
previously. Below, the two variants are illustrated:

obj = MyObject(json_value=None)
session.add(obj)
session.commit() # *will not* fire off column defaults, will insert JSON 'null'

obj = MyObject()
session.add(obj)
session.commit() # *will* fire off column defaults, and/or insert SQL NULL

The feature applies as well to the new base types.JSON type
and its descendant types.

#3514

New JSON.NULL Constant Added

To ensure that an application can always have full control at the value level
of whether a types.JSON, postgresql.JSON, mysql.JSON,
or postgresql.JSONB column
should receive a SQL NULL or JSON "null" value, the constant
types.JSON.NULL has been added, which in conjunction with
null() can be used to determine fully between SQL NULL and
JSON "null", regardless of what types.JSON.none_as_null is set
to:

from sqlalchemy import null
from sqlalchemy.dialects.postgresql import JSON

obj1 = MyObject(json_value=null()) # will *always* insert SQL NULL
obj2 = MyObject(json_value=JSON.NULL) # will *always* insert JSON string "null"

session.add_all([obj1, obj2])
session.commit()

The feature applies as well to the new base types.JSON type
and its descendant types.

#3514

Array support added to Core; new ANY and ALL operators

Along with the enhancements made to the Postgresql postgresql.ARRAY
type described in Correct SQL Types are Established from Indexed Access of ARRAY, JSON, HSTORE, the base class of postgresql.ARRAY
itself has been moved to Core in a new class types.ARRAY.

Arrays are part of the SQL standard, as are several array-oriented functions
such as array_agg() and unnest(). In support of these constructs
for not just PostgreSQL but also potentially for other array-capable backends
in the future such as DB2, the majority of array logic for SQL expressions
is now in Core. The types.ARRAY type still only works on
Postgresql, however it can be used directly, supporting special array
use cases such as indexed access, as well as support for the ANY and ALL:

mytable = Table("mytable", metadata,
 Column("data", ARRAY(Integer, dimensions=2))
)

expr = mytable.c.data[5][6]

expr = mytable.c.data[5].any(12)

In support of ANY and ALL, the types.ARRAY type retains the same
types.ARRAY.Comparator.any() and types.ARRAY.Comparator.all() methods
from the PostgreSQL type, but also exports these operations to new
standalone operator functions sql.expression.any_() and
sql.expression.all_(). These two functions work in more
of the traditional SQL way, allowing a right-side expression form such
as:

from sqlalchemy import any_, all_

select([mytable]).where(12 == any_(mytable.c.data[5]))

For the PostgreSQL-specific operators “contains”, “contained_by”, and
“overlaps”, one should continue to use the postgresql.ARRAY
type directly, which provides all functionality of the types.ARRAY
type as well.

The sql.expression.any_() and sql.expression.all_() operators
are open-ended at the Core level, however their interpretation by backend
databases is limited. On the Postgresql backend, the two operators
only accept array values. Whereas on the MySQL backend, they
only accept subquery values. On MySQL, one can use an expression
such as:

from sqlalchemy import any_, all_

subq = select([mytable.c.value])
select([mytable]).where(12 > any_(subq))

#3516

New Function features, “WITHIN GROUP”, array_agg and set aggregate functions

With the new types.ARRAY type we can also implement a pre-typed
function for the array_agg() SQL function that returns an array,
which is now available using array_agg:

from sqlalchemy import func
stmt = select([func.array_agg(table.c.value)])

A Postgresql element for an aggregate ORDER BY is also added via
postgresql.aggregate_order_by:

from sqlalchemy.dialects.postgresql import aggregate_order_by
expr = func.array_agg(aggregate_order_by(table.c.a, table.c.b.desc()))
stmt = select([expr])

Producing:

SELECT array_agg(table1.a ORDER BY table1.b DESC) AS array_agg_1 FROM table1

The PG dialect itself also provides an postgresql.array_agg() wrapper to
ensure the postgresql.ARRAY type:

from sqlalchemy.dialects.postgresql import array_agg
stmt = select([array_agg(table.c.value).contains('foo')])

Additionally, functions like percentile_cont(), percentile_disc(),
rank(), dense_rank() and others that require an ordering via
WITHIN GROUP (ORDER BY <expr>) are now available via the
FunctionElement.within_group() modifier:

from sqlalchemy import func
stmt = select([
 department.c.id,
 func.percentile_cont(0.5).within_group(
 department.c.salary.desc()
)
])

The above statement would produce SQL similar to:

SELECT department.id, percentile_cont(0.5)
WITHIN GROUP (ORDER BY department.salary DESC)

Placeholders with correct return types are now provided for these functions,
and include percentile_cont, percentile_disc,
rank, dense_rank, mode, percent_rank,
and cume_dist.

#3132 #1370

TypeDecorator now works with Enum, Boolean, “schema” types automatically

The SchemaType types include types such as Enum
and Boolean which, in addition to corresponding to a database
type, also generate either a CHECK constraint or in the case of Postgresql
ENUM a new CREATE TYPE statement, will now work automatically with
TypeDecorator recipes. Previously, a TypeDecorator for
an postgresql.ENUM had to look like this:

old way
class MyEnum(TypeDecorator, SchemaType):
 impl = postgresql.ENUM('one', 'two', 'three', name='myenum')

 def _set_table(self, table):
 self.impl._set_table(table)

The TypeDecorator now propagates those additional events so it
can be done like any other type:

new way
class MyEnum(TypeDecorator):
 impl = postgresql.ENUM('one', 'two', 'three', name='myenum')

#2919

Multi-Tenancy Schema Translation for Table objects

To support the use case of an application that uses the same set of
Table objects in many schemas, such as schema-per-user, a new
execution option Connection.execution_options.schema_translate_map
is added. Using this mapping, a set of Table
objects can be made on a per-connection basis to refer to any set of schemas
instead of the Table.schema to which they were assigned. The
translation works for DDL and SQL generation, as well as with the ORM.

For example, if the User class were assigned the schema “per_user”:

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)

 __table_args__ = {'schema': 'per_user'}

On each request, the Session can be set up to refer to a
different schema each time:

session = Session()
session.connection(execution_options={
 "schema_translate_map": {"per_user": "account_one"}})

will query from the ``account_one.user`` table
session.query(User).get(5)

See also

Translation of Schema Names

#2685

“Friendly” stringification of Core SQL constructs without a dialect

Calling str() on a Core SQL construct will now produce a string
in more cases than before, supporting various SQL constructs not normally
present in default SQL such as RETURNING, array indexes, and non-standard
datatypes:

>>> from sqlalchemy import table, column
t>>> t = table('x', column('a'), column('b'))
>>> print(t.insert().returning(t.c.a, t.c.b))
INSERT INTO x (a, b) VALUES (:a, :b) RETURNING x.a, x.b

The str() function now calls upon an entirely separate dialect / compiler
intended just for plain string printing without a specific dialect set up,
so as more “just show me a string!” cases come up, these can be added
to this dialect/compiler without impacting behaviors on real dialects.

See also

Stringify of Query will consult the Session for the correct dialect

#3631

The type_coerce function is now a persistent SQL element

The expression.type_coerce() function previously would return
an object either of type BindParameter or Label, depending
on the input. An effect this would have was that in the case where expression
transformations were used, such as the conversion of an element from a
Column to a BindParameter that’s critical to ORM-level
lazy loading, the type coercion information would not be used since it would
have been lost already.

To improve this behavior, the function now returns a persistent
TypeCoerce container around the given expression, which itself
remains unaffected; this construct is evaluated explicitly by the
SQL compiler. This allows for the coercion of the inner expression
to be maintained no matter how the statement is modified, including if
the contained element is replaced with a different one, as is common
within the ORM’s lazy loading feature.

The test case illustrating the effect makes use of a heterogeneous
primaryjoin condition in conjunction with custom types and lazy loading.
Given a custom type that applies a CAST as a “bind expression”:

class StringAsInt(TypeDecorator):
 impl = String

 def column_expression(self, col):
 return cast(col, Integer)

 def bind_expression(self, value):
 return cast(value, String)

Then, a mapping where we are equating a string “id” column on one
table to an integer “id” column on the other:

class Person(Base):
 __tablename__ = 'person'
 id = Column(StringAsInt, primary_key=True)

 pets = relationship(
 'Pets',
 primaryjoin=(
 'foreign(Pets.person_id)'
 '==cast(type_coerce(Person.id, Integer), Integer)'
)
)

class Pets(Base):
 __tablename__ = 'pets'
 id = Column('id', Integer, primary_key=True)
 person_id = Column('person_id', Integer)

Above, in the relationship.primaryjoin expression, we are
using type_coerce() to handle bound parameters passed via
lazyloading as integers, since we already know these will come from
our StringAsInt type which maintains the value as an integer in
Python. We are then using cast() so that as a SQL expression,
the VARCHAR “id” column will be CAST to an integer for a regular non-
converted join as with Query.join() or orm.joinedload().
That is, a joinedload of .pets looks like:

SELECT person.id AS person_id, pets_1.id AS pets_1_id,
 pets_1.person_id AS pets_1_person_id
FROM person
LEFT OUTER JOIN pets AS pets_1
ON pets_1.person_id = CAST(person.id AS INTEGER)

Without the CAST in the ON clause of the join, strongly-typed databases
such as Postgresql will refuse to implicitly compare the integer and fail.

The lazyload case of .pets relies upon replacing
the Person.id column at load time with a bound parameter, which receives
a Python-loaded value. This replacement is specifically where the intent
of our type_coerce() function would be lost. Prior to the change,
this lazy load comes out as:

SELECT pets.id AS pets_id, pets.person_id AS pets_person_id
FROM pets
WHERE pets.person_id = CAST(CAST(%(param_1)s AS VARCHAR) AS INTEGER)
{'param_1': 5}

Where above, we see that our in-Python value of 5 is CAST first
to a VARCHAR, then back to an INTEGER in SQL; a double CAST which works,
but is nevertheless not what we asked for.

With the change, the type_coerce() function maintains a wrapper
even after the column is swapped out for a bound parameter, and the query now
looks like:

SELECT pets.id AS pets_id, pets.person_id AS pets_person_id
FROM pets
WHERE pets.person_id = CAST(%(param_1)s AS INTEGER)
{'param_1': 5}

Where our outer CAST that’s in our primaryjoin still takes effect, but the
needless CAST that’s in part of the StringAsInt custom type is removed
as intended by the type_coerce() function.

#3531

Key Behavioral Changes - ORM

Key Behavioral Changes - Core

TextClause.columns() will match columns positionally, not by name, when passed positionally

The new behavior of the TextClause.columns() method, which itself
was recently added as of the 0.9 series, is that when
columns are passed positionally without any additional keyword arguments,
they are linked to the ultimate result set
columns positionally, and no longer on name. It is hoped that the impact
of this change will be low due to the fact that the method has always been documented
illustrating the columns being passed in the same order as that of the
textual SQL statement, as would seem intuitive, even though the internals
weren’t checking for this.

An application that is using this method by passing Column objects
to it positionally must ensure that the position of those Column
objects matches the position in which these columns are stated in the
textual SQL.

E.g., code like the following:

stmt = text("SELECT id, name, description FROM table")

no longer matches by name
stmt = stmt.columns(my_table.c.name, my_table.c.description, my_table.c.id)

Would no longer work as expected; the order of the columns given is now
significant:

correct version
stmt = stmt.columns(my_table.c.id, my_table.c.name, my_table.c.description)

Possibly more likely, a statement that worked like this:

stmt = text("SELECT * FROM table")
stmt = stmt.columns(my_table.c.id, my_table.c.name, my_table.c.description)

is now slightly risky, as the “*” specification will generally deliver columns
in the order in which they are present in the table itself. If the structure
of the table changes due to schema changes, this ordering may no longer be the same.
Therefore when using TextClause.columns(), it’s advised to list out
the desired columns explicitly in the textual SQL, though it’s no longer
necessary to worry about the names themselves in the textual SQL.

See also

ResultSet column matching enhancements; positional column setup for textual SQL

Dialect Improvements and Changes - Postgresql

Support for INSERT..ON CONFLICT (DO UPDATE | DO NOTHING)

The ON CONFLICT clause of INSERT added to Postgresql as of
version 9.5 is now supported using a Postgresql-specific version of the
Insert object, via sqlalchemy.dialects.postgresql.dml.insert().
This Insert subclass adds two new methods Insert.on_conflict_do_update()
and Insert.on_conflict_do_nothing() which implement the full syntax
supported by Posgresql 9.5 in this area:

from sqlalchemy.dialects.postgresql import insert

insert_stmt = insert(my_table). \\
 values(id='some_id', data='some data to insert')

do_update_stmt = insert_stmt.on_conflict_do_update(
 index_elements=[my_table.c.id],
 set_=dict(data='some data to update')
)

conn.execute(do_update_stmt)

The above will render:

INSERT INTO my_table (id, data)
VALUES (:id, :data)
ON CONFLICT id DO UPDATE SET data=:data_2

See also

INSERT...ON CONFLICT (Upsert)

#3529

ARRAY and JSON types now correctly specify “unhashable”

As described in Changes regarding “unhashable” types, the ORM relies upon being able to
produce a hash function for column values when a query’s selected entities
mixes full ORM entities with column expressions. The hashable=False
flag is now correctly set on all of PG’s “data structure” types, including
postgresql.ARRAY and postgresql.JSON.
The JSONB and HSTORE
types already included this flag. For postgresql.ARRAY,
this is conditional based on the postgresql.ARRAY.as_tuple
flag, however it should no longer be necessary to set this flag
in order to have an array value present in a composed ORM row.

See also

Changes regarding “unhashable” types

Correct SQL Types are Established from Indexed Access of ARRAY, JSON, HSTORE

#3499

Correct SQL Types are Established from Indexed Access of ARRAY, JSON, HSTORE

For all three of ARRAY, JSON and HSTORE,
the SQL type assigned to the expression returned by indexed access, e.g.
col[someindex], should be correct in all cases.

This includes:

	The SQL type assigned to indexed access of an ARRAY takes into
account the number of dimensions configured. An ARRAY with three
dimensions will return a SQL expression with a type of ARRAY of
one less dimension. Given a column with type ARRAY(Integer, dimensions=3),
we can now perform this expression:

int_expr = col[5][6][7] # returns an Integer expression object

Previously, the indexed access to col[5] would return an expression of
type Integer where we could no longer perform indexed access
for the remaining dimensions, unless we used cast() or type_coerce().

	The JSON and JSONB types now mirror what Postgresql
itself does for indexed access. This means that all indexed access for
a JSON or JSONB type returns an expression that itself
is always JSON or JSONB itself, unless the
astext modifier is used. This means that whether
the indexed access of the JSON structure ultimately refers to a string,
list, number, or other JSON structure, Postgresql always considers it
to be JSON itself unless it is explicitly cast differently. Like
the ARRAY type, this means that it is now straightforward
to produce JSON expressions with multiple levels of indexed access:

json_expr = json_col['key1']['attr1'][5]

	The “textual” type that is returned by indexed access of HSTORE
as well as the “textual” type that is returned by indexed access of
JSON and JSONB in conjunction with the
astext modifier is now configurable; it defaults
to Text in both cases but can be set to a user-defined
type using the postgresql.JSON.astext_type or
postgresql.HSTORE.text_type parameters.

See also

The JSON cast() operation now requires .astext is called explicitly

#3499
#3487

The JSON cast() operation now requires .astext is called explicitly

As part of the changes in Correct SQL Types are Established from Indexed Access of ARRAY, JSON, HSTORE, the workings of the
ColumnElement.cast() operator on postgresql.JSON and
postgresql.JSONB no longer implictly invoke the
postgresql.JSON.Comparator.astext modifier; Postgresql’s JSON/JSONB types
support CAST operations to each other without the “astext” aspect.

This means that in most cases, an application that was doing this:

expr = json_col['somekey'].cast(Integer)

Will now need to change to this:

expr = json_col['somekey'].astext.cast(Integer)

ARRAY with ENUM will now emit CREATE TYPE for the ENUM

A table definition like the following will now emit CREATE TYPE
as expected:

enum = Enum(
 'manager', 'place_admin', 'carwash_admin',
 'parking_admin', 'service_admin', 'tire_admin',
 'mechanic', 'carwasher', 'tire_mechanic', name="work_place_roles")

class WorkPlacement(Base):
 __tablename__ = 'work_placement'
 id = Column(Integer, primary_key=True)
 roles = Column(ARRAY(enum))

e = create_engine("postgresql://scott:tiger@localhost/test", echo=True)
Base.metadata.create_all(e)

emits:

CREATE TYPE work_place_roles AS ENUM (
 'manager', 'place_admin', 'carwash_admin', 'parking_admin',
 'service_admin', 'tire_admin', 'mechanic', 'carwasher',
 'tire_mechanic')

CREATE TABLE work_placement (
 id SERIAL NOT NULL,
 roles work_place_roles[],
 PRIMARY KEY (id)
)

#2729

Check constraints now reflect

The Postgresql dialect now supports reflection of CHECK constraints
both within the method Inspector.get_check_constraints() as well
as within Table reflection within the Table.constraints
collection.

“Plain” and “Materialized” views can be inspected separately

The new argument PGInspector.get_view_names.include
allows specification of which sub-types of views should be returned:

from sqlalchemy import inspect
insp = inspect(engine)

plain_views = insp.get_view_names(include='plain')
all_views = insp.get_view_names(include=('plain', 'materialized'))

#3588

Added tablespace option to Index

The Index object now accepts the argument postgresql_tablespace
in order to specify TABLESPACE, the same way as accepted by the
Table object.

See also

Index Storage Parameters

#3720

Support for PyGreSQL

The PyGreSQL DBAPI is now supported.

See also

pygresql

The “postgres” module is removed

The sqlalchemy.dialects.postgres module, long deprecated, is
removed; this has emitted a warning for many years and projects
should be calling upon sqlalchemy.dialects.postgresql.
Engine URLs of the form postgres:// will still continue to function,
however.

Support for FOR UPDATE SKIP LOCKED / FOR NO KEY UPDATE / FOR KEY SHARE

The new parameters GenerativeSelect.with_for_update.skip_locked
and GenerativeSelect.with_for_update.key_share
in both Core and ORM apply a modification to a “SELECT...FOR UPDATE”
or “SELECT...FOR SHARE” query on the Postgresql backend:

	SELECT FOR NO KEY UPDATE:

stmt = select([table]).with_for_update(key_share=True)

	SELECT FOR UPDATE SKIP LOCKED:

stmt = select([table]).with_for_update(skip_locked=True)

	SELECT FOR KEY SHARE:

stmt = select([table]).with_for_update(read=True, key_share=True)

Dialect Improvements and Changes - MySQL

MySQL JSON Support

A new type mysql.JSON is added to the MySQL dialect supporting
the JSON type newly added to MySQL 5.7. This type provides both persistence
of JSON as well as rudimentary indexed-access using the JSON_EXTRACT
function internally. An indexable JSON column that works across MySQL
and Postgresql can be achieved by using the types.JSON datatype
common to both MySQL and Postgresql.

See also

JSON support added to Core

#3547

Added support for AUTOCOMMIT “isolation level”

The MySQL dialect now accepts the value “AUTOCOMMIT” for the
create_engine.isolation_level and
Connection.execution_options.isolation_level
parameters:

connection = engine.connect()
connection = connection.execution_options(
 isolation_level="AUTOCOMMIT"
)

The isolation level makes use of the various “autocommit” attributes
provided by most MySQL DBAPIs.

#3332

No more generation of an implicit KEY for composite primary key w/ AUTO_INCREMENT

The MySQL dialect had the behavior such that if a composite primary key
on an InnoDB table featured AUTO_INCREMENT on one of its columns which was
not the first column, e.g.:

t = Table(
 'some_table', metadata,
 Column('x', Integer, primary_key=True, autoincrement=False),
 Column('y', Integer, primary_key=True, autoincrement=True),
 mysql_engine='InnoDB'
)

DDL such as the following would be generated:

CREATE TABLE some_table (
 x INTEGER NOT NULL,
 y INTEGER NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (x, y),
 KEY idx_autoinc_y (y)
)ENGINE=InnoDB

Note the above “KEY” with an auto-generated name; this is a change that
found its way into the dialect many years ago in response to the issue that
the AUTO_INCREMENT would otherwise fail on InnoDB without this additional KEY.

This workaround has been removed and replaced with the much better system
of just stating the AUTO_INCREMENT column first within the primary key:

CREATE TABLE some_table (
 x INTEGER NOT NULL,
 y INTEGER NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (y, x)
)ENGINE=InnoDB

To maintain explicit control of the ordering of primary key columns,
use the PrimaryKeyConstraint construct explicitly (1.1.0b2)
(along with a KEY for the autoincrement column as required by MySQL), e.g.:

t = Table(
 'some_table', metadata,
 Column('x', Integer, primary_key=True),
 Column('y', Integer, primary_key=True, autoincrement=True),
 PrimaryKeyConstraint('x', 'y'),
 UniqueConstraint('y'),
 mysql_engine='InnoDB'
)

Along with the change The .autoincrement directive is no longer implicitly enabled for a composite primary key column, composite primary keys with
or without auto increment are now easier to specify;
Column.autoincrement
now defaults to the value "auto" and the autoincrement=False
directives are no longer needed:

t = Table(
 'some_table', metadata,
 Column('x', Integer, primary_key=True),
 Column('y', Integer, primary_key=True, autoincrement=True),
 mysql_engine='InnoDB'
)

Dialect Improvements and Changes - SQLite

Right-nested join workaround lifted for SQLite version 3.7.16

In version 0.9, the feature introduced by Many JOIN and LEFT OUTER JOIN expressions will no longer be wrapped in (SELECT * FROM ..) AS ANON_1 went
through lots of effort to support rewriting of joins on SQLite to always
use subqueries in order to achieve a “right-nested-join” effect, as
SQLite has not supported this syntax for many years. Ironically,
the version of SQLite noted in that migration note, 3.7.15.2, was the last
version of SQLite to actually have this limitation! The next release was
3.7.16 and support for right nested joins was quietly added. In 1.1, the work
to identify the specific SQLite version and source commit where this change
was made was done (SQlite’s changelog refers to it with the cryptic phrase “Enhance
the query optimizer to exploit transitive join constraints” without linking
to any issue number, change number, or further explanation), and the workarounds
present in this change are now lifted for SQLite when the DBAPI reports
that version 3.7.16 or greater is in effect.

#3634

Dotted column names workaround lifted for SQLite version 3.10.0

The SQLite dialect has long had a workaround for an issue where the database
driver does not report the correct column names for some SQL result sets, in
particular when UNION is used. The workaround is detailed at
Dotted Column Names, and requires that SQLAlchemy assume that any
column name with a dot in it is actually a tablename.columnname combination
delivered via this buggy behavior, with an option to turn it off via the
sqlite_raw_colnames execution option.

As of SQLite version 3.10.0, the bug in UNION and other queries has been fixed;
like the change described in Right-nested join workaround lifted for SQLite version 3.7.16, SQLite’s changelog only
identifies it cryptically as “Added the colUsed field to sqlite3_index_info for
use by the sqlite3_module.xBestIndex method”, however SQLAlchemy’s translation
of these dotted column names is no longer required with this version, so is
turned off when version 3.10.0 or greater is detected.

Overall, the SQLAlchemy ResultProxy as of the 1.0 series relies much
less on column names in result sets when delivering results for Core and ORM
SQL constructs, so the importance of this issue was already lessened in any
case.

#3633

Improved Support for Remote Schemas

The SQLite dialect now implements Inspector.get_schema_names()
and additionally has improved support for tables and indexes that are
created and reflected from a remote schema, which in SQLite is a
dataase that is assigned a name via the ATTACH statement; previously,
the``CREATE INDEX`` DDL didn’t work correctly for a schema-bound table
and the Inspector.get_foreign_keys() method will now indicate the
given schema in the results. Cross-schema foreign keys aren’t supported.

Reflection of the name of PRIMARY KEY constraints

The SQLite backend now takes advantage of the “sqlite_master” view
of SQLite in order to extract the name of the primary key constraint
of a table from the original DDL, in the same way that is achieved for
foreign key constraints in recent SQLAlchemy versions.

#3629

Check constraints now reflect

The SQLite dialect now supports reflection of CHECK constraints
both within the method Inspector.get_check_constraints() as well
as within Table reflection within the Table.constraints
collection.

ON DELETE and ON UPDATE foreign key phrases now reflect

The Inspector will now include ON DELETE and ON UPDATE
phrases from foreign key constraints on the SQLite dialect, and the
ForeignKeyConstraint object as reflected as part of a
Table will also indicate these phrases.

Dialect Improvements and Changes - SQL Server

Added transaction isolation level support for SQL Server

All SQL Server dialects support transaction isolation level settings
via the create_engine.isolation_level and
Connection.execution_options.isolation_level
parameters. The four standard levels are supported as well as
SNAPSHOT:

engine = create_engine(
 "mssql+pyodbc://scott:tiger@ms_2008",
 isolation_level="REPEATABLE READ"
)

See also

Transaction Isolation Level

#3534

String / varlength types no longer represent “max” explicitly on reflection

When reflecting a type such as String, Text, etc.
which includes a length, an “un-lengthed” type under SQL Server would
copy the “length” parameter as the value "max":

>>> from sqlalchemy import create_engine, inspect
>>> engine = create_engine('mssql+pyodbc://scott:tiger@ms_2008', echo=True)
>>> engine.execute("create table s (x varchar(max), y varbinary(max))")
>>> insp = inspect(engine)
>>> for col in insp.get_columns("s"):
... print(col['type'].__class__, col['type'].length)
...
<class 'sqlalchemy.sql.sqltypes.VARCHAR'> max
<class 'sqlalchemy.dialects.mssql.base.VARBINARY'> max

The “length” parameter in the base types is expected to be an integer value
or None only; None indicates unbounded length which the SQL Server dialect
interprets as “max”. The fix then is so that these lengths come
out as None, so that the type objects work in non-SQL Server contexts:

>>> for col in insp.get_columns("s"):
... print(col['type'].__class__, col['type'].length)
...
<class 'sqlalchemy.sql.sqltypes.VARCHAR'> None
<class 'sqlalchemy.dialects.mssql.base.VARBINARY'> None

Applications which may have been relying on a direct comparison of the “length”
value to the string “max” should consider the value of None to mean
the same thing.

#3504

Support for “non clustered” on primary key to allow clustered elsewhere

The mssql_clustered flag available on UniqueConstraint,
PrimaryKeyConstraint, Index now defaults to None, and
can be set to False which will render the NONCLUSTERED keyword in particular
for a primary key, allowing a different index to be used as “clustered”.

See also

Clustered Index Support

The legacy_schema_aliasing flag is now set to False

SQLAlchemy 1.0.5 introduced the legacy_schema_aliasing flag to the
MSSQL dialect, allowing so-called “legacy mode” aliasing to be turned off.
This aliasing attempts to turn schema-qualified tables into aliases;
given a table such as:

account_table = Table(
 'account', metadata,
 Column('id', Integer, primary_key=True),
 Column('info', String(100)),
 schema="customer_schema"
)

The legacy mode of behavior will attempt to turn a schema-qualified table
name into an alias:

>>> eng = create_engine("mssql+pymssql://mydsn", legacy_schema_aliasing=True)
>>> print(account_table.select().compile(eng))
SELECT account_1.id, account_1.info
FROM customer_schema.account AS account_1

However, this aliasing has been shown to be unnecessary and in many cases
produces incorrect SQL.

In SQLAlchemy 1.1, the legacy_schema_aliasing flag now defaults to
False, disabling this mode of behavior and allowing the MSSQL dialect to behave
normally with schema-qualified tables. For applications which may rely
on this behavior, set the flag back to True.

#3434

Dialect Improvements and Changes - Oracle

Support for SKIP LOCKED

The new parameter GenerativeSelect.with_for_update.skip_locked
in both Core and ORM will generate the “SKIP LOCKED” suffix for a
“SELECT...FOR UPDATE” or “SELECT.. FOR SHARE” query.

1.1 Changelog

1.1.0b2

Released: July 1, 2016
sql

	[sql] [bug] Fixed issue in SQL math negation operator where the type of the
expression would no longer be the numeric type of the original.
This would cause issues where the type determined result set
behaviors.¶
This change is also backported to: 1.0.14

References: #3735

	[sql] [bug] Fixed bug whereby the __getstate__ / __setstate__
methods for sqlalchemy.util.Properties were
non-working due to the transition in the 1.0 series to __slots__.
The issue potentially impacted some third-party applications.
Pull request courtesy Pieter Mulder.¶
This change is also backported to: 1.0.14

References: #3728

	[sql] [bug] The processing performed by the Boolean datatype for backends
that only feature integer types has been made consistent between the
pure Python and C-extension versions, in that the C-extension version
will accept any integer value from the database as a boolean, not just
zero and one; additionally, non-boolean integer values being sent to
the database are coerced to exactly zero or one, instead of being
passed as the original integer value.

See also

Non-native boolean integer values coerced to zero/one/None in all cases

¶
References: #3730

	[sql] [bug] Rolled back the validation rules a bit in Enum to allow
unknown string values to pass through, unless the flag
validate_string=True is passed to the Enum; any other kind of object is
still of course rejected. While the immediate use
is to allow comparisons to enums with LIKE, the fact that this
use exists indicates there may be more unknown-string-comparsion use
cases than we expected, which hints that perhaps there are some
unknown string-INSERT cases too.¶
References: #3725

postgresql

	[postgresql] [bug] [ext] Made a slight behavioral change in the sqlalchemy.ext.compiler
extension, whereby the existing compilation schemes for an established
construct would be removed if that construct was itself didn’t already
have its own dedicated __visit_name__. This was a
rare occurrence in 1.0, however in 1.1 postgresql.ARRAY
subclasses sqltypes.ARRAY and has this behavior.
As a result, setting up a compilation handler for another dialect
such as SQLite would render the main postgresql.ARRAY
object no longer compilable.¶
References: #3732

mysql

	[mysql] [bug] Dialed back the “order the primary key columns per auto-increment”
described in No more generation of an implicit KEY for composite primary key w/ AUTO_INCREMENT a bit, so that if the
PrimaryKeyConstraint is explicitly defined, the order
of columns is maintained exactly, allowing control of this behavior
when necessary.¶
References: #3726

1.1.0b1

Released: June 16, 2016
orm

	[orm] [feature] [ext] A new ORM extension Indexable is added, which allows
construction of Python attributes which refer to specific elements
of “indexed” structures such as arrays and JSON fields. Pull request
courtesy Jeong YunWon.

See also

New Indexable ORM extension

¶

	[orm] [feature] Added new flag Session.bulk_insert_mappings.render_nulls
which allows an ORM bulk INSERT to occur with NULL values rendered;
this bypasses server side defaults, however allows all statements
to be formed with the same set of columns, allowing them to be
batched. Pull request courtesy Tobias Sauerwein.¶

	[orm] [feature] Added new event AttributeEvents.init_scalar(), as well
as a new example suite illustrating its use. This event can be used
to provide a Core-generated default value to a Python-side attribute
before the object is persisted.

See also

New init_scalar() event intercepts default values at ORM level

¶
References: #1311

	[orm] [feature] Added AutomapBase.prepare.schema to the
AutomapBase.prepare() method, to indicate which schema
tables should be reflected from if not the default schema.
Pull request courtesy Josh Marlow.¶
References: pull request github:237

	[orm] [feature] Added new parameter orm.mapper.passive_deletes to
available mapper options. This allows a DELETE to proceed
for a joined-table inheritance mapping against the base table only,
while allowing for ON DELETE CASCADE to handle deleting the row
from the subclass tables.

See also

passive_deletes feature for joined-inheritance mappings

¶
References: #2349

	[orm] [feature] Calling str() on a core SQL construct has been made more “friendly”,
when the construct contains non-standard SQL elements such as
RETURNING, array index operations, or dialect-specific or custom
datatypes. A string is now returned in these cases rendering an
approximation of the construct (typically the Postgresql-style
version of it) rather than raising an error.

See also

“Friendly” stringification of Core SQL constructs without a dialect

¶
References: #3631

	[orm] [feature] The str() call for Query will now take into account
the Engine to which the Session is bound, when
generating the string form of the SQL, so that the actual SQL
that would be emitted to the database is shown, if possible. Previously,
only the engine associated with the MetaData to which the
mappings are associated would be used, if present. If
no bind can be located either on the Session or on
the MetaData to which the mappings are associated, then
the “default” dialect is used to render the SQL, as was the case
previously.

See also

Stringify of Query will consult the Session for the correct dialect

¶
References: #3081

	[orm] [feature] The SessionEvents suite now includes events to allow
unambiguous tracking of all object lifecycle state transitions
in terms of the Session itself, e.g. pending,
transient, persistent, detached. The state of the object
within each event is also defined.

See also

New Session lifecycle events

¶
References: #2677

	[orm] [feature] Added a new session lifecycle state deleted. This new state
represents an object that has been deleted from the persistent
state and will move to the detached state once the transaction
is committed. This resolves the long-standing issue that objects
which were deleted existed in a gray area between persistent and
detached. The InstanceState.persistent accessor will
no longer report on a deleted object as persistent; the
InstanceState.deleted accessor will instead be True for
these objects, until they become detached.

See also

New Session lifecycle events

¶
References: #2677

	[orm] [feature] Added new checks for the common error case of passing mapped classes
or mapped instances into contexts where they are interpreted as
SQL bound parameters; a new exception is raised for this.

See also

Specific checks added for passing mapped classes, instances as SQL literals

¶
References: #3321

	[orm] [feature] Added new relationship loading strategy orm.raiseload() (also
accessible via lazy='raise'). This strategy behaves almost like
orm.noload() but instead of returning None it raises an
InvalidRequestError. Pull request courtesy Adrian Moennich.

See also

New “raise” loader strategy

¶
References: #3512, pull request github:193

	[orm] [bug] Fixed an issue where a many-to-one change of an object from one
parent to another could work inconsistently when combined with
an un-flushed modication of the foreign key attribute. The attribute
move now considers the database-committed value of the foreign key
in order to locate the “previous” parent of the object being
moved. This allows events to fire off correctly including
backref events. Previously, these events would not always fire.
Applications which may have relied on the previously broken
behavior may be affected.

See also

Fix involving many-to-one object moves with user-initiated foriegn key manipulations

¶
References: #3708

	[orm] [bug] Fixed bug where deferred columns would inadvertently be set up
for database load on the next object-wide unexpire, when the object
were merged into the session with session.merge(obj, load=False).¶
References: #3488

	[orm] [bug] [mysql] Further continuing on the common MySQL exception case of
a savepoint being cancelled first covered in #2696,
the failure mode in which the Session is placed when a
SAVEPOINT vanishes before rollback has been improved to allow the
Session to still function outside of that savepoint.
It is assumed that the savepoint operation failed and was cancelled.

See also

Improved Session state when a SAVEPOINT is cancelled by the database

¶
References: #3680

	[orm] [bug] Fixed bug where a newly inserted instance that is rolled back
would still potentially cause persistence conflicts on the next
transaction, because the instance would not be checked that it
was expired. This fix will resolve a large class of cases that
erronously cause the “New instance with identity X conflicts with
persistent instance Y” error.

See also

Erroneous “new instance X conflicts with persistent instance Y” flush errors fixed

¶
References: #3677

	[orm] [bug] An improvement to the workings of Query.correlate() such
that when a “polymorphic” entity is used which represents a straight
join of several tables, the statement will ensure that all the
tables within the join are part of what’s correlating.

See also

Improvements to the Query.correlate method with polymoprhic entities

¶
References: #3662

	[orm] [bug] Fixed bug which would cause an eagerly loaded many-to-one attribute
to not be loaded, if the joined eager load were from a row where the
same entity were present multiple times, some calling for the attribute
to be eagerly loaded and others not. The logic here is revised to
take in the attribute even though a different loader path has
handled the parent entity already.

See also

Joined eager loading where the same entity is present multiple times in one row

¶
References: #3431

	[orm] [bug] A refinement to the logic which adds columns to the resulting SQL when
Query.distinct() is combined with Query.order_by() such
that columns which are already present will not be added
a second time, even if they are labeled with a different name.
Regardless of this change, the extra columns added to the SQL have
never been returned in the final result, so this change only impacts
the string form of the statement as well as its behavior when used in
a Core execution context. Additionally, columns are no longer added
when the DISTINCT ON format is used, provided the query is not
wrapped inside a subquery due to joined eager loading.

See also

Columns no longer added redundantly with DISTINCT + ORDER BY

¶
References: #3641

	[orm] [bug] Fixed issue where two same-named relationships that refer to
a base class and a concrete-inherited subclass would raise an error
if those relationships were set up using “backref”, while setting up the
identical configuration using relationship() instead with the conflicting
names would succeed, as is allowed in the case of a concrete mapping.

See also

Same-named backrefs will not raise an error when applied to concrete inheritance subclasses

¶
References: #3630

	[orm] [bug] The Session.merge() method now tracks pending objects by
primary key before emitting an INSERT, and merges distinct objects with
duplicate primary keys together as they are encountered, which is
essentially semi-deterministic at best. This behavior
matches what happens already with persistent objects.

See also

Session.merge resolves pending conflicts the same as persistent

¶
References: #3601

	[orm] [bug] Fixed bug where the “single table inheritance” criteria would be
added onto the end of a query in some inappropriate situations, such
as when querying from an exists() of a single-inheritance subclass.

See also

Further Fixes to single-table inheritance querying

¶
References: #3582

	[orm] [bug] Added a new type-level modifier TypeEngine.evaluates_none()
which indicates to the ORM that a positive set of None should be
persisted as the value NULL, instead of omitting the column from
the INSERT statement. This feature is used both as part of the
implementation for #3514 as well as a standalone feature
available on any type.

See also

New options allowing explicit persistence of NULL over a default

¶
References: #3250

	[orm] [bug] Internal calls to “bookkeeping” functions within
Session.bulk_save_objects() and related bulk methods have
been scaled back to the extent that this functionality is not
currently used, e.g. checks for column default values to be
fetched after an INSERT or UPDATE statement.¶
References: #3526

	[orm] [bug] [postgresql] Additional fixes have been made regarding the value of None
in conjunction with the Postgresql postgresql.JSON type. When
the JSON.none_as_null flag is left at its default
value of False, the ORM will now correctly insert the Json
“‘null’” string into the column whenever the value on the ORM
object is set to the value None or when the value None
is used with Session.bulk_insert_mappings(),
including if the column has a default or server default on it.

See also

JSON “null” is inserted as expected with ORM operations, regardless of column default present

New options allowing explicit persistence of NULL over a default

¶
References: #3514

	[orm] [change] The Mapper.order_by parameter is deprecated.
This is an old parameter no longer relevant to how SQLAlchemy
works, once the Query object was introduced. By deprecating it
we establish that we aren’t supporting non-working use cases
and that we encourage applications to move off of the use of this
parameter.

See also

Mapper.order_by is deprecated

¶
References: #3394

	[orm] [change] The Session.weak_identity_map parameter is deprecated.
See the new recipe at Session Referencing Behavior for
an event-based approach to maintaining strong identity map behavior.

See also

New Session lifecycle events

¶
References: #2677

engine

	[engine] [feature] Added connection pool events ConnectionEvents.close(),
ConnectionEvents.detach(),
ConnectionEvents.close_detached().¶

	[engine] [feature] All string formatting of bound parameter sets and result rows for
logging, exception, and repr() purposes now truncate very large
scalar values within each collection, including an
“N characters truncated”
notation, similar to how the display for large multiple-parameter sets
are themselves truncated.

See also

Large parameter and row values are now truncated in logging and exception displays

¶
References: #2837

	[engine] [feature] Multi-tenancy schema translation for Table objects is added.
This supports the use case of an application that uses the same set of
Table objects in many schemas, such as schema-per-user.
A new execution option
Connection.execution_options.schema_translate_map is
added.

See also

Multi-Tenancy Schema Translation for Table objects

¶
References: #2685

	[engine] [feature] Added a new entrypoint system to the engine to allow “plugins” to
be stated in the query string for a URL. Custom plugins can
be written which will be given the chance up front to alter and/or
consume the engine’s URL and keyword arguments, and then at engine
create time will be given the engine itself to allow additional
modifications or event registration. Plugins are written as a
subclass of CreateEnginePlugin; see that class for
details.¶
References: #3536

sql

	[sql] [feature] Added TABLESAMPLE support via the new FromClause.tablesample()
method and standalone function. Pull request courtesy Ilja Everilä.

See also

Support for TABLESAMPLE

¶
References: #3718

	[sql] [feature] Added support for ranges in window functions, using the
expression.over.range_ and
expression.over.rows parameters.

See also

Support for RANGE and ROWS specification within window functions

¶
References: #3049

	[sql] [feature] Implemented reflection of CHECK constraints for SQLite and Postgresql.
This is available via the new inspector method
Inspector.get_check_constraints() as well as when reflecting
Table objects in the form of CheckConstraint
objects present in the constraints collection. Pull request courtesy
Alex Grönholm.¶
References: pull request bitbucket:80

	[sql] [feature] New ColumnOperators.is_distinct_from() and
ColumnOperators.isnot_distinct_from() operators; pull request
courtesy Sebastian Bank.

See also

Support for IS DISTINCT FROM and IS NOT DISTINCT FROM

¶

	[sql] [feature] Added a hook in DDLCompiler.visit_create_table() called
DDLCompiler.create_table_suffix(), allowing custom dialects
to add keywords after the “CREATE TABLE” clause. Pull request
courtesy Mark Sandan.¶
References: pull request github:275

	[sql] [feature] Negative integer indexes are now accommodated by rows
returned from a ResultProxy. Pull request courtesy
Emanuele Gaifas.

See also

Negative integer indexes accommodated by Core result rows

¶
References: pull request github:231

	[sql] [feature] Added Select.lateral() and related constructs to allow
for the SQL standard LATERAL keyword, currently only supported
by Postgresql.

See also

Support for the SQL LATERAL keyword

¶
References: #2857

	[sql] [feature] Added support for rendering “FULL OUTER JOIN” to both Core and ORM.
Pull request courtesy Stefan Urbanek.

See also

Core and ORM support for FULL OUTER JOIN

¶
References: #1957, pull request github:209

	[sql] [feature] CTE functionality has been expanded to support all DML, allowing
INSERT, UPDATE, and DELETE statements to both specify their own
WITH clause, as well as for these statements themselves to be
CTE expressions when they include a RETURNING clause.

See also

CTE Support for INSERT, UPDATE, DELETE

¶
References: #2551

	[sql] [feature] Added support for PEP-435-style enumerated classes, namely
Python 3’s enum.Enum class but also including compatible
enumeration libraries, to the types.Enum datatype.
The types.Enum datatype now also performs in-Python validation
of incoming values, and adds an option to forego creating the
CHECK constraint Enum.create_constraint.
Pull request courtesy Alex Grönholm.

See also

Support for Python’s native enum type and compatible forms

The Enum type now does in-Python validation of values

¶
References: #3292, #3095

	[sql] [feature] A deep improvement to the recently added TextClause.columns()
method, and its interaction with result-row processing, now allows
the columns passed to the method to be positionally matched with the
result columns in the statement, rather than matching on name alone.
The advantage to this includes that when linking a textual SQL statement
to an ORM or Core table model, no system of labeling or de-duping of
common column names needs to occur, which also means there’s no need
to worry about how label names match to ORM columns and so-forth. In
addition, the ResultProxy has been further enhanced to
map column and string keys to a row with greater precision in some
cases.

See also

ResultSet column matching enhancements; positional column setup for textual SQL - feature overview

TextClause.columns() will match columns positionally, not by name, when passed positionally - backwards compatibility remarks

¶
References: #3501

	[sql] [feature] Added a new type to core types.JSON. This is the
base of the PostgreSQL postgresql.JSON type as well as that
of the new mysql.JSON type, so that a PG/MySQL-agnostic
JSON column may be used. The type features basic index and path
searching support.

See also

JSON support added to Core

¶
References: #3619

	[sql] [feature] Added support for “set-aggregate” functions of the form
<function> WITHIN GROUP (ORDER BY <criteria>), using the
method FunctionElement.within_group(). A series of common
set-aggregate functions with return types derived from the set have
been added. This includes functions like percentile_cont,
dense_rank and others.

See also

New Function features, “WITHIN GROUP”, array_agg and set aggregate functions

¶
References: #1370

	[sql] [feature] [postgresql] Added support for the SQL-standard function array_agg,
which automatically returns an postgresql.ARRAY of the correct type
and supports index / slice operations, as well as
postgresql.array_agg(), which returns a postgresql.ARRAY
with additional comparison features. As arrays are only
supported on Postgresql at the moment, only actually works on
Postgresql. Also added a new construct
postgresql.aggregate_order_by in support of PG’s
“ORDER BY” extension.

See also

New Function features, “WITHIN GROUP”, array_agg and set aggregate functions

¶
References: #3132

	[sql] [feature] Added a new type to core types.ARRAY. This is the
base of the PostgreSQL postgresql.ARRAY type, and is now part of Core
to begin supporting various SQL-standard array-supporting features
including some functions and eventual support for native arrays
on other databases that have an “array” concept, such as DB2 or Oracle.
Additionally, new operators expression.any_() and
expression.all_() have been added. These support not just
array constructs on Postgresql, but also subqueries that are usable
on MySQL (but sadly not on Postgresql).

See also

Array support added to Core; new ANY and ALL operators

¶
References: #3516

	[sql] [bug] FromClause.count() is deprecated. This function makes use of
an arbitrary column in the table and is not reliable; for Core use,
func.count() should be preferred.¶
References: #3724

	[sql] [bug] Fixed an assertion that would raise somewhat inappropriately
if a Index were associated with a Column that
is associated with a lower-case-t TableClause; the
association should be ignored for the purposes of associating
the index with a Table.¶
References: #3616

	[sql] [bug] The type_coerce() construct is now a fully fledged Core
expression element which is late-evaluated at compile time. Previously,
the function was only a conversion function which would handle different
expression inputs by returning either a Label of a column-oriented
expression or a copy of a given BindParameter object,
which in particular prevented the operation from being logically
maintained when an ORM-level expression transformation would convert
a column to a bound parameter (e.g. for lazy loading).

See also

The type_coerce function is now a persistent SQL element

¶
References: #3531

	[sql] [bug] The TypeDecorator type extender will now work in conjunction
with a SchemaType implementation, typically Enum
or Boolean with regards to ensuring that the per-table
events are propagated from the implementation type to the outer type.
These events are used
to ensure that the constraints or Postgresql types (e.g. ENUM)
are correctly created (and possibly dropped) along with the parent
table.

See also

TypeDecorator now works with Enum, Boolean, “schema” types automatically

¶
References: #2919

	[sql] [bug] The behavior of the union() construct and related constructs
such as Query.union() now handle the case where the embedded
SELECT statements need to be parenthesized due to the fact that they
include LIMIT, OFFSET and/or ORDER BY. These queries do not work
on SQLite, and will fail on that backend as they did before, but
should now work on all other backends.

See also

A UNION or similar of SELECTs with LIMIT/OFFSET/ORDER BY now parenthesizes the embedded selects

¶
References: #2528

	[sql] [mysql] [change] The system by which a Column considers itself to be an
“auto increment” column has been changed, such that autoincrement
is no longer implicitly enabled for a Table that has a
composite primary key. In order to accommodate being able to enable
autoincrement for a composite PK member column while at the same time
maintaining SQLAlchemy’s long standing behavior of enabling
implicit autoincrement for a single integer primary key, a third
state has been added to the Column.autoincrement parameter
"auto", which is now the default.

See also

The .autoincrement directive is no longer implicitly enabled for a composite primary key column

No more generation of an implicit KEY for composite primary key w/ AUTO_INCREMENT

¶
References: #3216

schema

	[schema] [enhancement] The default generation functions passed to Column objects
are now run through “update_wrapper”, or an equivalent function
if a callable non-function is passed, so that introspection tools
preserve the name and docstring of the wrapped function. Pull
request courtesy hsum.¶
References: pull request github:204

postgresql

	[postgresql] [feature] Added support for Postgresql’s INSERT..ON CONFLICT using a new
Postgresql-specific postgresql.dml.Insert object.
Pull request and extensive efforts here by Robin Thomas.

See also

Support for INSERT..ON CONFLICT (DO UPDATE | DO NOTHING)

¶
References: #3529

	[postgresql] [feature] The DDL for DROP INDEX will emit “CONCURRENTLY” if the
postgresql_concurrently flag is set upon the
Index and if the database in use is detected as
Postgresql version 9.2 or greater. For CREATE INDEX, database
version detection is also added which will omit the clause if
PG version is less than 8.2. Pull request courtesy Iuri de Silvio.¶
References: pull request bitbucket:84

	[postgresql] [feature] Added new parameter PGInspector.get_view_names.include,
allowing specification for what kinds of views should be returned.
Currently “plain” and “materialized” views are included. Pull
request courtesy Sebastian Bank.¶
References: #3588

	[postgresql] [feature] Added postgresql_tablespace as an argument to Index
to allow specification of TABLESPACE for an index in Postgresql.
Complements the same-named parameter on Table. Pull
request courtesy Benjamin Bertrand.¶
References: #3720

	[postgresql] [feature] Added new parameter
GenerativeSelect.with_for_update.key_share, which
will render the FOR NO KEY UPDATE version of FOR UPDATE
and FOR KEY SHARE instead of FOR SHARE
on the Postgresql backend. Pull request courtesy Sergey Skopin.¶
References: pull request github:297

	[postgresql] [feature] [oracle] Added new parameter
GenerativeSelect.with_for_update.skip_locked, which
will render the SKIP LOCKED phrase for a FOR UPDATE or
FOR SHARE lock on the Postgresql and Oracle backends. Pull
request courtesy Jack Zhou.¶
References: pull request bitbucket:86

	[postgresql] [feature] Added a new dialect for the PyGreSQL Postgresql dialect. Thanks
to Christoph Zwerschke and Kaolin Imago Fire for their efforts.¶

	[postgresql] [feature] Added a new constant postgresql.JSON.NULL, indicating
that the JSON NULL value should be used for a value
regardless of other settings.

See also

New JSON.NULL Constant Added

¶
References: #3514

	[postgresql] [bug] Added support for reflecting the source of materialized views
to the Postgresql version of the Inspector.get_view_definition()
method.¶
References: #3587

	[postgresql] [bug] The use of a postgresql.ARRAY object that refers
to a types.Enum or postgresql.ENUM subtype
will now emit the expected “CREATE TYPE” and “DROP TYPE” DDL when
the type is used within a “CREATE TABLE” or “DROP TABLE”.

See also

ARRAY with ENUM will now emit CREATE TYPE for the ENUM

¶
References: #2729

	[postgresql] [bug] The “hashable” flag on special datatypes such as postgresql.ARRAY,
postgresql.JSON and postgresql.HSTORE is now
set to False, which allows these types to be fetchable in ORM
queries that include entities within the row.

See also

Changes regarding “unhashable” types

ARRAY and JSON types now correctly specify “unhashable”

¶
References: #3499

	[postgresql] [bug] The Postgresql postgresql.ARRAY type now supports multidimensional
indexed access, e.g. expressions such as somecol[5][6] without
any need for explicit casts or type coercions, provided
that the postgresql.ARRAY.dimensions parameter is set to the
desired number of dimensions.

See also

Correct SQL Types are Established from Indexed Access of ARRAY, JSON, HSTORE

¶
References: #3487

	[postgresql] [bug] The return type for the postgresql.JSON and postgresql.JSONB
when using indexed access has been fixed to work like Postgresql itself,
and returns an expression that itself is of type postgresql.JSON
or postgresql.JSONB. Previously, the accessor would return
NullType which disallowed subsequent JSON-like operators to be
used.

See also

Correct SQL Types are Established from Indexed Access of ARRAY, JSON, HSTORE

¶
References: #3503

	[postgresql] [bug] The postgresql.JSON, postgresql.JSONB and
postgresql.HSTORE datatypes now allow full control over the
return type from an indexed textual access operation, either column[someindex].astext
for a JSON type or column[someindex] for an HSTORE type,
via the postgresql.JSON.astext_type and
postgresql.HSTORE.text_type parameters.

See also

Correct SQL Types are Established from Indexed Access of ARRAY, JSON, HSTORE

¶
References: #3503

	[postgresql] [bug] The postgresql.JSON.Comparator.astext modifier no longer
calls upon ColumnElement.cast() implicitly, as PG’s JSON/JSONB
types allow cross-casting between each other as well. Code that
makes use of ColumnElement.cast() on JSON indexed access,
e.g. col[someindex].cast(Integer), will need to be changed
to call postgresql.JSON.Comparator.astext explicitly.

See also

The JSON cast() operation now requires .astext is called explicitly

¶
References: #3503

	[postgresql] [change] The sqlalchemy.dialects.postgres module, long deprecated, is
removed; this has emitted a warning for many years and projects
should be calling upon sqlalchemy.dialects.postgresql.
Engine URLs of the form postgres:// will still continue to function,
however.¶

mysql

	[mysql] [feature] Added support for “autocommit” on MySQL drivers, via the
AUTOCOMMIT isolation level setting. Pull request courtesy
Roman Podoliaka.

See also

Added support for AUTOCOMMIT “isolation level”

¶
References: #3332

	[mysql] [feature] Added mysql.JSON for MySQL 5.7. The JSON type provides
persistence of JSON values in MySQL as well as basic operator support
of “getitem” and “getpath”, making use of the JSON_EXTRACT
function in order to refer to individual paths in a JSON structure.

See also

MySQL JSON Support

¶
References: #3547

	[mysql] [change] The MySQL dialect no longer generates an extra “KEY” directive when
generating CREATE TABLE DDL for a table using InnoDB with a
composite primary key with AUTO_INCREMENT on a column that isn’t the
first column; to overcome InnoDB’s limitation here, the PRIMARY KEY
constraint is now generated with the AUTO_INCREMENT column placed
first in the list of columns.

See also

No more generation of an implicit KEY for composite primary key w/ AUTO_INCREMENT

The .autoincrement directive is no longer implicitly enabled for a composite primary key column

¶
References: #3216

sqlite

	[sqlite] [feature] The SQLite dialect now reflects ON UPDATE and ON DELETE phrases
within foreign key constraints. Pull request courtesy
Michal Petrucha.¶
References: pull request github:244

	[sqlite] [feature] The SQLite dialect now reflects the names of primary key constraints.
Pull request courtesy Diana Clarke.

See also

Reflection of the name of PRIMARY KEY constraints

¶
References: #3629

	[sqlite] [bug] The workaround for right-nested joins on SQLite, where they are rewritten
as subqueries in order to work around SQLite’s lack of support for this
syntax, is lifted when SQLite version 3.7.16 or greater is detected.

See also

Right-nested join workaround lifted for SQLite version 3.7.16

¶
References: #3634

	[sqlite] [bug] The workaround for SQLite’s unexpected delivery of column names as
tablename.columnname for some kinds of queries is now disabled
when SQLite version 3.10.0 or greater is detected.

See also

Dotted column names workaround lifted for SQLite version 3.10.0

¶
References: #3633

	[sqlite] [change] Added support to the SQLite dialect for the
Inspector.get_schema_names() method to work with SQLite;
pull request courtesy Brian Van Klaveren. Also repaired support
for creation of indexes with schemas as well as reflection of
foreign key constraints in schema-bound tables.

See also

Improved Support for Remote Schemas

¶
References: pull request github:198

mssql

	[mssql] [feature] The mssql_clustered flag available on UniqueConstraint,
PrimaryKeyConstraint, Index now defaults to
None, and can be set to False which will render the NONCLUSTERED
keyword in particular for a primary key, allowing a different index to
be used as “clustered”. Pull request courtesy Saulius Žemaitaitis.¶

	[mssql] [feature] Added basic isolation level support to the SQL Server dialects
via create_engine.isolation_level and
Connection.execution_options.isolation_level
parameters.

See also

Added transaction isolation level support for SQL Server

¶
References: #3534

	[mssql] [bug] Adjustments to the mxODBC dialect to make use of the BinaryNull
symbol when appropriate in conjunction with the VARBINARY
data type. Pull request courtesy Sheila Allen.¶
References: pull request bitbucket:58

	[mssql] [bug] Fixed issue where the SQL Server dialect would reflect a string-
or other variable-length column type with unbounded length
by assigning the token "max" to the
length attribute of the string. While using the "max" token
explicitly is supported by the SQL Server dialect, it isn’t part
of the normal contract of the base string types, and instead the
length should just be left as None. The dialect now assigns the
length to None on reflection of the type so that the type behaves
normally in other contexts.

See also

String / varlength types no longer represent “max” explicitly on reflection

¶
References: #3504

	[mssql] [change] The legacy_schema_aliasing flag, introduced in version 1.0.5
as part of #3424 to allow disabling of the MSSQL dialect’s
attempts to create aliases for schema-qualified tables, now defaults
to False; the old behavior is now disabled unless explicitly turned on.

See also

The legacy_schema_aliasing flag is now set to False

¶
References: #3434

misc

	[feature] [ext] Added MutableSet and MutableList helper classes
to the Mutation Tracking extension. Pull request courtesy
Jeong YunWon.¶
References: #3297

	[bug] [ext] The docstring specified on a hybrid property or method is now honored
at the class level, allowing it to work with tools like Sphinx
autodoc. The mechanics here necessarily involve some wrapping of
expressions to occur for hybrid properties, which may cause them
to appear differently using introspection.

See also

Hybrid properties and methods now propagate the docstring as well as .info

¶
References: #3653

	[bug] [sybase] The unsupported Sybase dialect now raises NotImplementedError
when attempting to compile a query that includes “offset”; Sybase
has no straightforward “offset” feature.¶
References: #2278

1.0 Changelog

1.0.14

no release date
engine

	[engine] [bug] [postgresql] Fixed bug in cross-schema foreign key reflection in conjunction
with the MetaData.schema argument, where a referenced
table that is present in the “default” schema would fail since there
would be no way to indicate a Table that has “blank” for
a schema. The special symbol schema.BLANK_SCHEMA has been
added as an available value for Table.schema and
Sequence.schema, indicating that the schema name
should be forced to be None even if MetaData.schema
is specified.¶
References: #3716

sql

	[sql] [bug] Fixed issue in SQL math negation operator where the type of the
expression would no longer be the numeric type of the original.
This would cause issues where the type determined result set
behaviors.¶
References: #3735

	[sql] [bug] Fixed bug whereby the __getstate__ / __setstate__
methods for sqlalchemy.util.Properties were
non-working due to the transition in the 1.0 series to __slots__.
The issue potentially impacted some third-party applications.
Pull request courtesy Pieter Mulder.¶
References: #3728

	[sql] [bug] FromClause.count() is pending deprecation for 1.1. This function
makes use of an arbitrary column in the table and is not reliable;
for Core use, func.count() should be preferred.¶
References: #3724

	[sql] [bug] Fixed bug in CTE structure which would cause it to not
clone properly when a union was used, as is common in a recursive
CTE. The improper cloning would cause errors when the CTE is used
in various ORM contexts such as that of a column_property().¶
References: #3722

	[sql] [bug] Fixed bug whereby Table.tometadata() would make a duplicate
UniqueConstraint for each Column object that
featured the unique=True parameter.¶
References: #3721

misc

	[bug] [examples] Fixed a regression that occurred in the
examples/vertical/dictlike-polymorphic.py example which prevented it
from running.¶
References: #3704

1.0.13

Released: May 16, 2016
orm

	[orm] [bug] Fixed bug in “evaluate” strategy of Query.update() and
Query.delete() which would fail to accommodate a bound
parameter with a “callable” value, as which occurs when filtering
by a many-to-one equality expression along a relationship.¶
References: #3700

	[orm] [bug] Fixed bug whereby the event listeners used for backrefs could
be inadvertently applied multiple times, when using a deep class
inheritance hierarchy in conjunction with mutiple mapper configuration
steps.¶
References: #3710

	[orm] [bug] Fixed bug whereby passing a text() construct to the
Query.group_by() method would raise an error, instead
of intepreting the object as a SQL fragment.¶
References: #3706

	[orm] [bug] Anonymous labeling is applied to a func construct that is
passed to column_property(), so that if the same attribute
is referred to as a column expression twice the names are de-duped,
thus avoiding “ambiguous column” errors. Previously, the
.label(None) would need to be applied in order for the name
to be de-anonymized.¶
References: #3663

	[orm] [bug] Fixed regression appearing in the 1.0 series in ORM loading where the
exception raised for an expected column missing would incorrectly
be a NoneType error, rather than the expected
NoSuchColumnError.¶
References: #3658

sql

	[sql] [bug] Fixed bug where when using case_sensitive=False with an
Engine, the result set would fail to correctly accomodate
for duplicate column names in the result set, causing an error
when the statement is executed in 1.0, and preventing the
“ambiguous column” exception from functioning in 1.1.¶
References: #3690

	[sql] [bug] Fixed bug where the negation of an EXISTS expression would not
be properly typed as boolean in the result, and also would fail to be
anonymously aliased in a SELECT list as is the case with a
non-negated EXISTS construct.¶
References: #3682

	[sql] [bug] Fixed bug where “unconsumed column names” exception would fail to
be raised in the case where Insert.values() were called
with a list of parameter mappings, instead of a single mapping
of parameters. Pull request courtesy Athena Yao.¶
References: #3666

postgresql

	[postgresql] [bug] Added disconnect detection support for the error string
“SSL error: decryption failed or bad record mac”. Pull
request courtesy Iuri de Silvio.¶
References: #3715

mssql

	[mssql] [bug] Fixed bug where by ROW_NUMBER OVER clause applied for OFFSET
selects in SQL Server would inappropriately substitute a plain column
from the local statement that overlaps with a label name used by
the ORDER BY criteria of the statement.¶
References: #3711

	[mssql] [bug] [oracle] Fixed regression appearing in the 1.0 series which would cause the Oracle
and SQL Server dialects to incorrectly account for result set columns
when these dialects would wrap a SELECT in a subquery in order to
provide LIMIT/OFFSET behavior, and the original SELECT statement
referred to the same column multiple times, such as a column and
a label of that same column. This issue is related
to #3658 in that when the error occurred, it would also
cause a NoneType error, rather than reporting that it couldn’t
locate a column.¶
References: #3657

oracle

	[oracle] [bug] Fixed a bug in the cx_Oracle connect process that caused a TypeError
when the either the user, password or dsn was empty. This prevented
external authentication to Oracle databases, and prevented connecting
to the default dsn. The connect string oracle:// now logs into the
default dsn using the Operating System username, equivalent to
connecting using ‘/’ with sqlplus.¶
References: #3705

	[oracle] [bug] Fixed a bug in the result proxy used mainly by Oracle when binary and
other LOB types are in play, such that when query / statement caching
were used, the type-level result processors, notably that required by
the binary type itself but also any other processor, would become lost
after the first run of the statement due to it being removed from the
cached result metadata.¶
References: #3699

misc

	[bug] [examples] Changed the “directed graph” example to no longer consider
integer identifiers of nodes as significant; the “higher” / “lower”
references now allow mutual edges in both directions.¶
References: #3698

	[bug] [py3k] Fixed bug in “to_list” conversion where a single bytes object
would be turned into a list of individual characters. This would
impact among other things using the Query.get() method
on a primary key that’s a bytes object.¶
References: #3660

1.0.12

Released: February 15, 2016
orm

	[orm] [bug] Fixed bug in Session.merge() where an object with a composite
primary key that has values for some but not all of the PK fields
would emit a SELECT statement leaking the internal NEVER_SET symbol
into the query, rather than detecting that this object does not have
a searchable primary key and no SELECT should be emitted.¶
References: #3647

	[orm] [bug] Fixed regression since 0.9 where the 0.9 style loader options
system failed to accommodate for multiple undefer_group()
loader options in a single query. Multiple undefer_group()
options will now be taken into account even against the same
entity.¶
References: #3623

engine

	[engine] [bug] [mysql] Revisiting #2696, first released in 1.0.10, which attempts to
work around Python 2’s lack of exception context reporting by emitting
a warning for an exception that was interrupted by a second exception
when attempting to roll back the already-failed transaction; this
issue continues to occur for MySQL backends in conjunction with a
savepoint that gets unexpectedly lost, which then causes a
“no such savepoint” error when the rollback is attempted, obscuring
what the original condition was.
The approach has been generalized to the Core “safe
reraise” function which takes place across the ORM and Core in any
place that a transaction is being rolled back in response to an error
which occurred trying to commit, including the context managers
provided by Session and Connection, and taking
place for operations such as a failure on “RELEASE SAVEPOINT”.
Previously, the fix was only in place for a specific path within
the ORM flush/commit process; it now takes place for all transational
context managers as well.

¶References: #2696

sql

	[sql] [bug] Fixed issue where the “literal_binds” flag was not propagated
for expression.insert(), expression.update() or
expression.delete() constructs when compiled to string
SQL. Pull request courtesy Tim Tate.¶
References: #3643, pull request github:232

	[sql] [bug] Fixed issue where inadvertent use of the Python __contains__
override with a column expression (e.g. by using 'x' in col)
would cause an endless loop in the case of an ARRAY type, as Python
defers this to __getitem__ access which never raises for this
type. Overall, all use of __contains__ now raises
NotImplementedError.¶
References: #3642

	[sql] [bug] Fixed bug in Table metadata construct which appeared
around the 0.9 series where adding columns to a Table
that was unpickled would fail to correctly establish the
Column within the ‘c’ collection, leading to issues in
areas such as ORM configuration. This could impact use cases such
as extend_existing and others.¶
References: #3632

postgresql

	[postgresql] [bug] Fixed bug in expression.text() construct where a double-colon
expression would not escape properly, e.g. some\:\:expr, as is most
commonly required when rendering Postgresql-style CAST expressions.¶
References: #3644

mssql

	[mssql] [bug] Fixed the syntax of the extract() function when used on
MSSQL against a datetime value; the quotes around the keyword
are removed. Pull request courtesy Guillaume Doumenc.¶
References: #3624, pull request bitbucket:70

	[mssql] [bug] [firebird] Fixed 1.0 regression where the eager fetch of cursor.rowcount was
no longer called for an UPDATE or DELETE statement emitted via plain
text or via the text() construct, affecting those drivers
that erase cursor.rowcount once the cursor is closed such as SQL
Server ODBC and Firebird drivers.¶
References: #3622

oracle

	[oracle] [bug] [jython] Fixed a small issue in the Jython Oracle compiler involving the
rendering of “RETURNING” which allows this currently
unsupported/untested dialect to work rudimentally with the 1.0 series.
Pull request courtesy Carlos Rivas.¶
References: #3621

misc

	[bug] [py3k] Fixed bug where some exception re-raise scenarios would attach
the exception to itself as the “cause”; while the Python 3 interpreter
is OK with this, it could cause endless loops in iPython.¶
References: #3625

1.0.11

Released: December 22, 2015
orm

	[orm] [bug] Fixed regression caused in 1.0.10 by the fix for #3593 where
the check added for a polymorphic joinedload from a
poly_subclass->class->poly_baseclass connection would fail for the
scenario of class->poly_subclass->class.¶
References: #3611

	[orm] [bug] Fixed bug where Session.bulk_update_mappings() and related
would not bump a version id counter when in use. The experience
here is still a little rough as the original version id is required
in the given dictionaries and there’s not clean error reporting
on that yet.¶
References: #3610

	[orm] [bug] Major fixes to the Mapper.eager_defaults flag, this
flag would not be honored correctly in the case that multiple
UPDATE statements were to be emitted, either as part of a flush
or a bulk update operation. Additionally, RETURNING
would be emitted unnecessarily within update statements.¶
References: #3609

	[orm] [bug] Fixed bug where use of the Query.select_from() method would
cause a subsequent call to the Query.with_parent() method to
fail.¶
References: #3606

sql

	[sql] [bug] Fixed bug in Update.return_defaults() which would cause all
insert-default holding columns not otherwise included in the SET
clause (such as primary key cols) to get rendered into the RETURNING
even though this is an UPDATE.¶
References: #3609

mysql

	[mysql] [bug] An adjustment to the regular expression used to parse MySQL views,
such that we no longer assume the “ALGORITHM” keyword is present in
the reflected view source, as some users have reported this not being
present in some Amazon RDS environments.¶
References: #3613

	[mysql] [bug] Added new reserved words for MySQL 5.7 to the MySQL dialect,
including ‘generated’, ‘optimizer_costs’, ‘stored’, ‘virtual’.
Pull request courtesy Hanno Schlichting.¶
References: pull request github:222

misc

	[bug] [ext] Further fixes to #3605, pop method on MutableDict,
where the “default” argument was not included.¶
References: #3605

	[bug] [ext] Fixed bug in baked loader system where the systemwide monkeypatch
for setting up baked lazy loaders would interfere with other
loader strategies that rely on lazy loading as a fallback, e.g.
joined and subquery eager loaders, leading to IndexError
exceptions at mapper configuration time.¶
References: #3612

1.0.10

Released: December 11, 2015
orm

	[orm] [bug] Fixed issue where post_update on a many-to-one relationship would
fail to emit an UPDATE in the case where the attribute were set to
None and not previously loaded.¶
References: #3599

	[orm] [bug] Fixed bug which is actually a regression that occurred between
versions 0.8.0 and 0.8.1, due #2714. The case where
joined eager loading needs to join out over a subclass-bound
relationship when “with_polymorphic” were also used would fail
to join from the correct entity.¶
References: #3593

	[orm] [bug] Fixed joinedload bug which would occur when a. the query includes
limit/offset criteria that forces a subquery b. the relationship
uses “secondary” c. the primaryjoin of the relationship refers to
a column that is either not part of the primary key, or is a PK
col in a joined-inheritance subclass table that is under a different
attribute name than the parent table’s primary key column d. the
query defers the columns that are present in the primaryjoin, typically
via not being included in load_only(); the necessary column(s) would
not be present in the subquery and produce invalid SQL.¶
References: #3592

	[orm] [bug] A rare case which occurs when a Session.rollback() fails in the
scope of a Session.flush() operation that’s raising an
exception, as has been observed in some MySQL SAVEPOINT cases, prevents
the original database exception from being observed when it was
emitted during flush, but only on Py2K because Py2K does not support
exception chaining; on Py3K the originating exception is chained. As
a workaround, a warning is emitted in this specific case showing at
least the string message of the original database error before we
proceed to raise the rollback-originating exception.¶
References: #2696

orm declarative

	[bug] [orm] [declarative] Fixed bug where in Py2K a unicode literal would not be accepted as the
string name of a class or other argument within declarative using
backref() on relationship(). Pull request courtesy
Nils Philippsen.¶
References: pull request github:212

sql

	[sql] [feature] Added support for parameter-ordered SET clauses in an UPDATE
statement. This feature is available by passing the
preserve_parameter_order
flag either to the core Update construct or alternatively
adding it to the Query.update.update_args dictionary at
the ORM-level, also passing the parameters themselves as a list of 2-tuples.
Thanks to Gorka Eguileor for implementation and tests.

See also

Parameter-Ordered Updates

¶
References: pull request github:200

	[sql] [bug] Fixed issue within the Insert.from_select() construct whereby
the Select construct would have its ._raw_columns
collection mutated in-place when compiling the Insert
construct, when the target Table has Python-side defaults.
The Select construct would compile standalone with the
erroneous column present subsequent to compilation of the
Insert, and the the Insert statement itself would
fail on a second compile attempt due to duplicate bound parameters.¶
References: #3603

	[sql] [bug] [postgresql] Fixed bug where CREATE TABLE with a no-column table, but a constraint
such as a CHECK constraint would render an erroneous comma in the
definition; this scenario can occur such as with a Postgresql
INHERITS table that has no columns of its own.¶
References: #3598

postgresql

	[postgresql] [bug] Fixed issue where the “FOR UPDATE OF” Postgresql-specific SELECT
modifier would fail if the referred table had a schema qualifier;
PG needs the schema name to be omitted. Pull request courtesy
Diana Clarke.¶
References: #3573, pull request github:216

	[postgresql] [bug] Fixed bug where some varieties of SQL expression passed to the
“where” clause of postgresql.ExcludeConstraint would fail
to be accepted correctly. Pull request courtesy aisch.¶
References: pull request github:215

	[postgresql] [bug] Fixed the .python_type attribute of postgresql.INTERVAL
to return datetime.timedelta in the same way as that of
types.Interval.python_type, rather than raising
NotImplementedError.¶
References: #3571

mysql

	[mysql] [bug] Fixed bug in MySQL reflection where the “fractional sections portion”
of the mysql.DATETIME, mysql.TIMESTAMP and
mysql.TIME types would be incorrectly placed into the
timezone attribute, which is unused by MySQL, instead of the
fsp attribute.¶
References: #3602

mssql

	[mssql] [bug] Added the error “20006: Write to the server failed” to the list
of disconnect errors for the pymssql driver, as this has been observed
to render a connection unusable.¶
References: #3585

	[mssql] [bug] A descriptive ValueError is now raised in the event that SQL server
returns an invalid date or time format from a DATE or TIME
column, rather than failing with a NoneType error. Pull request
courtesy Ed Avis.¶
References: pull request github:206

	[mssql] [bug] Fixed issue where DDL generated for the MSSQL types DATETIME2,
TIME and DATETIMEOFFSET with a precision of “zero” would not generate
the precision field. Pull request courtesy Jacobo de Vera.¶
References: pull request github:213

misc

	[bug] [ext] Added support for the dict.pop() and dict.popitem() methods
to the mutable.MutableDict class.¶
References: #3605

	[bug] [py3k] Updates to internal getargspec() calls, some py36-related
fixture updates, and alterations to two iterators to “return” instead
of raising StopIteration, to allow tests to pass without
errors or warnings on Py3.5, Py3.6, pull requests courtesy
Jacob MacDonald, Luri de Silvio, and Phil Jones.¶
References: pull request github:210, pull request github:218, pull request github:211

	[bug] [ext] Fixed an issue in baked queries where the .get() method, used either
directly or within lazy loads, didn’t consider the mapper’s “get clause”
as part of the cache key, causing bound parameter mismatches if the
clause got re-generated. This clause is cached by mappers
on the fly but in highly concurrent scenarios may be generated more
than once when first accessed.¶
References: #3597

	[tests] [change] The ORM and Core tutorials, which have always been in doctest format,
are now exercised within the normal unit test suite in both Python
2 and Python 3.¶

1.0.9

Released: October 20, 2015
orm

	[orm] [feature] Added new method Query.one_or_none(); same as
Query.one() but returns None if no row found. Pull request
courtesy esiegerman.¶
References: pull request github:201

	[orm] [bug] [postgresql] Fixed regression in 1.0 where new feature of using “executemany”
for UPDATE statements in the ORM (e.g. UPDATE statements are now batched with executemany() in a flush)
would break on Postgresql and other RETURNING backends
when using server-side version generation
schemes, as the server side value is retrieved via RETURNING which
is not supported with executemany.¶
References: #3556

	[orm] [bug] Fixed rare TypeError which could occur when stringifying certain
kinds of internal column loader options within internal logging.¶
References: #3539

	[orm] [bug] Fixed bug in Session.bulk_save_objects() where a mapped
column that had some kind of “fetch on update” value and was not
locally present in the given object would cause an AttributeError
within the operation.¶
References: #3525

	[orm] [bug] Fixed 1.0 regression where the “noload” loader strategy would fail
to function for a many-to-one relationship. The loader used an
API to place “None” into the dictionary which no longer actually
writes a value; this is a side effect of #3061.¶
References: #3510

sql

	[sql] [bug] Fixed regression in 1.0-released default-processor for multi-VALUES
insert statement, #3288, where the column type for the
default-holding column would not be propagated to the compiled
statement in the case where the default was being used,
leading to bind-level type handlers not being invoked.¶
References: #3520

postgresql

	[postgresql] [bug] An adjustment to the new Postgresql feature of reflecting storage
options and USING of #3455 released in 1.0.6,
to disable the feature for Postgresql versions < 8.2 where the
reloptions column is not provided; this allows Amazon Redshift
to again work as it is based on an 8.0.x version of Postgresql.
Fix courtesy Pete Hollobon.¶
References: pull request github:190

oracle

	[oracle] [bug] [py3k] Fixed support for cx_Oracle version 5.2, which was tripping
up SQLAlchemy’s version detection under Python 3 and inadvertently
not using the correct unicode mode for Python 3. This would cause
issues such as bound variables mis-interpreted as NULL and rows
silently not being returned.¶
This change is also backported to: 0.9.11

References: #3491

	[oracle] [bug] Fixed bug in Oracle dialect where reflection of tables and other
symbols with names quoted to force all-lower-case would not be
identified properly in reflection queries. The quoted_name
construct is now applied to incoming symbol names that detect as
forced into all-lower-case within the “name normalize” process.¶
References: #3548

misc

	[feature] [ext] Added the AssociationProxy.info parameter to the
AssociationProxy constructor, to suit the
AssociationProxy.info accessor that was added in
#2971. This is possible because AssociationProxy
is constructed explicitly, unlike a hybrid which is constructed
implicitly via the decorator syntax.¶
References: #3551

	[bug] [examples] Fixed two issues in the “history_meta” example where history tracking
could encounter empty history, and where a column keyed to an alternate
attribute name would fail to track properly. Fixes courtesy
Alex Fraser.¶

	[bug] [sybase] Fixed two issues regarding Sybase reflection, allowing tables
without primary keys to be reflected as well as ensured that
a SQL statement involved in foreign key detection is pre-fetched up
front to avoid driver issues upon nested queries. Fixes here
courtesy Eugene Zapolsky; note that we cannot currently test
Sybase to locally verify these changes.¶
References: #3508, #3509

1.0.8

Released: July 22, 2015
engine

	[engine] [bug] Fixed critical issue whereby the pool “checkout” event handler
may be called against a stale connection without the “connect”
event handler having been called, in the case where the pool
attempted to reconnect after being invalidated and failed; the stale
connection would remain present and would be used on a subsequent
attempt. This issue has a greater impact in the 1.0 series subsequent
to 1.0.2, as it also delivers a blanked-out .info dictionary to
the event handler; prior to 1.0.2 the .info dictionary is still
the previous one.¶
This change is also backported to: 0.9.11

References: #3497

sqlite

	[sqlite] [bug] Fixed bug in SQLite dialect where reflection of UNIQUE constraints
that included non-alphabetic characters in the names, like dots or
spaces, would not be reflected with their name.¶
This change is also backported to: 0.9.10

References: #3495

misc

	[misc] [bug] Fixed an issue where a particular base class within utils
didn’t implement __slots__, and therefore meant all subclasses
of that class didn’t either, negating the rationale for __slots__
to be in use. Didn’t cause any issue except on IronPython
which apparently does not implement __slots__ behavior compatibly
with cPython.¶
References: #3494

1.0.7

Released: July 20, 2015
orm

	[orm] [bug] Fixed 1.0 regression where value objects that override
__eq__() to return a non-boolean-capable object, such as
some geoalchemy types as well as numpy types, were being tested
for bool() during a unit of work update operation, where in
0.9 the return value of __eq__() was tested against “is True”
to guard against this.¶
References: #3469

	[orm] [bug] Fixed 1.0 regression where a “deferred” attribute would not populate
correctly if it were loaded within the “optimized inheritance load”,
which is a special SELECT emitted in the case of joined table
inheritance used to populate expired or unloaded attributes against
a joined table without loading the base table. This is related to
the fact that SQLA 1.0 no longer guesses about loading deferred
columns and must be directed explicitly.¶
References: #3468

	[orm] [bug] Fixed 1.0 regression where the “parent entity” of a synonym-
mapped attribute on top of an aliased() object would
resolve to the original mapper, not the aliased()
version of it, thereby causing problems for a Query
that relies on this attribute (e.g. it’s the only representative
attribute given in the constructor) to figure out the correct FROM
clause for the query.¶
References: #3466

orm declarative

	[bug] [orm] [declarative] Fixed bug in AbstractConcreteBase extension where
a column setup on the ABC base which had a different attribute
name vs. column name would not be correctly mapped on the final
base class. The failure on 0.9 would be silent whereas on
1.0 it raised an ArgumentError, so may not have been noticed
prior to 1.0.¶
References: #3480

engine

	[engine] [bug] Fixed regression where new methods on ResultProxy used
by the ORM Query object (part of the performance
enhancements of #3175) would not raise the “this result
does not return rows” exception in the case where the driver
(typically MySQL) fails to generate cursor.description correctly;
an AttributeError against NoneType would be raised instead.¶
References: #3481

	[engine] [bug] Fixed regression where ResultProxy.keys() would return
un-adjusted internal symbol names for “anonymous” labels, which
are the “foo_1” types of labels we see generated for SQL functions
without labels and similar. This was a side effect of the
performance enhancements implemented as part of #918.¶
References: #3483

sql

	[sql] [feature] Added a ColumnElement.cast() method which performs the same
purpose as the standalone cast() function. Pull request
courtesy Sebastian Bank.¶
References: #3459, pull request bitbucket:56

	[sql] [bug] Fixed bug where coersion of literal True or False constant
in conjunction with and_() or or_() would fail
with an AttributeError.¶
References: #3490

	[sql] [bug] Fixed potential issue where a custom subclass
of FunctionElement or other column element that incorrectly
states ‘None’ or any other invalid object as the .type
attribute will report this exception instead of recursion overflow.¶
References: #3485

	[sql] [bug] Fixed bug where the modulus SQL operator wouldn’t work in reverse
due to a missing __rmod__ method. Pull request courtesy
dan-gittik.¶
References: pull request github:188

schema

	[schema] [feature] Added support for the MINVALUE, MAXVALUE, NO MINVALUE, NO MAXVALUE,
and CYCLE arguments for CREATE SEQUENCE as supported by Postgresql
and Oracle. Pull request courtesy jakeogh.¶
References: pull request github:186

1.0.6

Released: June 25, 2015
orm

	[orm] [bug] Fixed a major regression in the 1.0 series where the version_id_counter
feature would cause an object’s version counter to be incremented
when there was no net change to the object’s row, but instead an object
related to it via relationship (e.g. typically many-to-one)
were associated or de-associated with it, resulting in an UPDATE
statement that updates the object’s version counter and nothing else.
In the use case where the relatively recent “server side” and/or
“programmatic/conditional” version counter feature were used
(e.g. setting version_id_generator to False), the bug could cause an
UPDATE without a valid SET clause to be emitted.¶
References: #3465

	[orm] [bug] Fixed 1.0 regression where the enhanced behavior of single-inheritance
joins of #3222 takes place inappropriately
for a JOIN along explicit join criteria with a single-inheritance
subclass that does not make use of any discriminator, resulting
in an additional “AND NULL” clause.¶
References: #3462

	[orm] [bug] Fixed bug in new Session.bulk_update_mappings() feature where
the primary key columns used in the WHERE clause to locate the row
would also be included in the SET clause, setting their value to
themselves unnecessarily. Pull request courtesy Patrick Hayes.¶
References: #3451, pull request github:181

	[orm] [bug] Fixed an unexpected-use regression whereby custom Comparator
objects that made use of the __clause_element__() method and
returned an object that was an ORM-mapped
InstrumentedAttribute and not explicitly a
ColumnElement would fail to be correctly
handled when passed as an expression to Session.query().
The logic in 0.9 happened to succeed on this, so this use case is now
supported.¶
References: #3448

sql

	[sql] [bug] Fixed a bug where clause adaption as applied to a Label
object would fail to accommodate the labeled SQL expression
in all cases, such that any SQL operation that made use of
Label.self_group() would use the original unadapted
expression. One effect of this would be that an ORM aliased()
construct would not fully accommodate attributes mapped by
column_property, such that the un-aliased table could
leak out when the property were used in some kinds of SQL
comparisons.¶
References: #3445

postgresql

	[postgresql] [feature] Added support for storage parameters under CREATE INDEX, using
a new keyword argument postgresql_with. Also added support for
reflection to support both the postgresql_with flag as well
as the postgresql_using flag, which will now be set on
Index objects that are reflected, as well present
in a new “dialect_options” dictionary in the result of
Inspector.get_indexes(). Pull request courtesy Pete Hollobon.

See also

Index Storage Parameters

¶
References: #3455, pull request github:179

	[postgresql] [feature] Added new execution option max_row_buffer which is interpreted
by the psycopg2 dialect when the stream_results option is
used, which sets a limit on the size of the row buffer that may be
allocated. This value is also provided based on the integer
value sent to Query.yield_per(). Pull request courtesy
mcclurem.¶
References: pull request github:182

	[postgresql] [bug] [pypy] Re-fixed this issue first released in 1.0.5 to fix psycopg2cffi
JSONB support once again, as they suddenly
switched on unconditional decoding of JSONB types in version 2.7.1.
Version detection now specifies 2.7.1 as where we should expect
the DBAPI to do json encoding for us.¶
References: #3439

	[postgresql] [bug] Repaired the ExcludeConstraint construct to support common
features that other objects like Index now do, that
the column expression may be specified as an arbitrary SQL
expression such as cast or text.¶
References: #3454

mssql

	[mssql] [bug] Fixed issue when using VARBINARY type in conjunction with
an INSERT of NULL + pyodbc; pyodbc requires a special
object be passed in order to persist NULL. As the VARBINARY
type is now usually the default for LargeBinary due to
#3039, this issue is partially a regression in 1.0.
The pymssql driver appears to be unaffected.¶
References: #3464

misc

	[bug] [documentation] Fixed an internal “memoization” routine for method types such
that a Python descriptor is no longer used; repairs inspectability
of these methods including support for Sphinx documentation.¶
References: #2077

1.0.5

Released: June 7, 2015
orm

	[orm] [feature] Added new event InstanceEvents.refresh_flush(), invoked
when an INSERT or UPDATE level default value fetched via RETURNING
or Python-side default is invoked within the flush process. This
is to provide a hook that is no longer present as a result of
#3167, where attribute and validation events are no longer
called within the flush process.¶
References: #3427

	[orm] [bug] The “lightweight named tuple” used when a Query returns
rows failed to implement __slots__ correctly such that it still
had a __dict__. This is resolved, but in the extremely
unlikely case someone was assigning values to the returned tuples,
that will no longer work.¶
References: #3420

engine

	[engine] [feature] Added new engine event ConnectionEvents.engine_disposed().
Called after the Engine.dispose() method is called.¶

	[engine] [feature] Adjustments to the engine plugin hook, such that the
URL.get_dialect() method will continue to return the
ultimate Dialect object when a dialect plugin is used,
without the need for the caller to be aware of the
Dialect.get_dialect_cls() method.¶
References: #3379

	[engine] [bug] Fixed bug where known boolean values used by
engine_from_config() were not being parsed correctly;
these included pool_threadlocal and the psycopg2 argument
use_native_unicode.¶
References: #3435

	[engine] [bug] Added support for the case of the misbehaving DBAPI that has
pep-249 exception names linked to exception classes of an entirely
different name, preventing SQLAlchemy’s own exception wrapping from
wrapping the error appropriately.
The SQLAlchemy dialect in use needs to implement a new
accessor DefaultDialect.dbapi_exception_translation_map
to support this feature; this is implemented now for the py-postgresql
dialect.¶
References: #3421

	[engine] [bug] Fixed bug involving the case when pool checkout event handlers are used
and connection attempts are made in the handler itself which fail,
the owning connection record would not be freed until the stack trace
of the connect error itself were freed. For the case where a test
pool of only a single connection were used, this means the pool would
be fully checked out until that stack trace were freed. This mostly
impacts very specific debugging scenarios and is unlikely to have been
noticable in any production application. The fix applies an
explicit checkin of the record before re-raising the caught exception.¶
References: #3419

sql

	[sql] [feature] Added official support for a CTE used by the SELECT present
inside of Insert.from_select(). This behavior worked
accidentally up until 0.9.9, when it no longer worked due to
unrelated changes as part of #3248. Note that this
is the rendering of the WITH clause after the INSERT, before the
SELECT; the full functionality of CTEs rendered at the top
level of INSERT, UPDATE, DELETE is a new feature targeted for a
later release.¶
This change is also backported to: 0.9.10

References: #3418

postgresql

	[postgresql] [bug] [pypy] Repaired some typing and test issues related to the pypy
psycopg2cffi dialect, in particular that the current 2.7.0 version
does not have native support for the JSONB type. The version detection
for psycopg2 features has been tuned into a specific sub-version
for psycopg2cffi. Additionally, test coverage has been enabled
for the full series of psycopg2 features under psycopg2cffi.¶
References: #3439

mssql

	[mssql] [bug] Added a new dialect flag to the MSSQL dialect
legacy_schema_aliasing which when set to False will disable a
very old and obsolete behavior, that of the compiler’s
attempt to turn all schema-qualified table names into alias names,
to work around old and no longer locatable issues where SQL
server could not parse a multi-part identifier name in all
circumstances. The behavior prevented more
sophisticated statements from working correctly, including those which
use hints, as well as CRUD statements that embed correlated SELECT
statements. Rather than continue to repair the feature to work
with more complex statements, it’s better to just disable it
as it should no longer be needed for any modern SQL server
version. The flag defaults to True for the 1.0.x series, leaving
current behavior unchanged for this version series. In the 1.1
series, it will default to False. For the 1.0 series,
when not set to either value explicitly, a warning is emitted
when a schema-qualified table is first used in a statement, which
suggests that the flag be set to False for all modern SQL Server
versions.

See also

Legacy Schema Mode

¶
References: #3430, #3424

misc

	[feature] [ext] Added support for *args to be passed to the baked query
initial callable, in the same way that *args are supported
for the BakedQuery.add_criteria() and
BakedQuery.with_criteria() methods. Initial PR courtesy
Naoki INADA.¶
References: pull request bitbucket:54

	[feature] [ext] Added a new semi-public method to MutableBase
MutableBase._get_listen_keys(). Overriding this method
is needed in the case where a MutableBase subclass needs
events to propagate for attribute keys other than the key to which
the mutable type is associated with, when intercepting the
InstanceEvents.refresh() or
InstanceEvents.refresh_flush() events. The current example of
this is composites using MutableComposite.¶
References: #3427

	[bug] [ext] Fixed regression in the sqlalchemy.ext.mutable extension
as a result of the bugfix for #3167,
where attribute and validation events are no longer
called within the flush process. The mutable
extension was relying upon this behavior in the case where a column
level Python-side default were responsible for generating the new value
on INSERT or UPDATE, or when a value were fetched from the RETURNING
clause for “eager defaults” mode. The new value would not be subject
to any event when populated and the mutable extension could not
establish proper coercion or history listening. A new event
InstanceEvents.refresh_flush() is added which the mutable
extension now makes use of for this use case.¶
References: #3427

1.0.4

Released: May 7, 2015
orm

	[orm] [bug] Fixed unexpected-use regression where in the odd case that the
primaryjoin of a relationship involved comparison to an unhashable
type such as an HSTORE, lazy loads would fail due to a hash-oriented
check on the statement parameters, modified in 1.0 as a result of
#3061 to use hashing and modified in #3368
to occur in cases more common than “load on pending”.
The values are now checked for the __hash__ attribute beforehand.¶
References: #3416

	[orm] [bug] Liberalized an assertion that was added as part of #3347
to protect against unknown conditions when splicing inner joins
together within joined eager loads with innerjoin=True; if
some of the joins use a “secondary” table, the assertion needs to
unwrap further joins in order to pass.¶
References: #3412, #3347

	[orm] [bug] Repaired / added to tests yet more expressions that were reported
as failing with the new ‘entity’ key value added to
Query.column_descriptions, the logic to discover the “from”
clause is again reworked to accommodate columns from aliased classes,
as well as to report the correct value for the “aliased” flag in these
cases.¶
References: #3409, #3320

schema

	[schema] [bug] Fixed bug in enhanced constraint-attachment logic introduced in
#3341 where in the unusual case of a constraint that refers
to a mixture of Column objects and string column names
at the same time, the auto-attach-on-column-attach logic will be
skipped; for the constraint to be auto-attached in this case,
all columns must be assembled on the target table up front.
Added a new section to the migration document regarding the
original feature as well as this change.

See also

Constraints referring to unattached Columns can auto-attach to the Table when their referred columns are attached

¶
References: #3411

misc

	[bug] [ext] Fixed bug where when using extended attribute instrumentation system,
the correct exception would not be raised when class_mapper()
were called with an invalid input that also happened to not
be weak referencable, such as an integer.¶
This change is also backported to: 0.9.10

References: #3408

	[bug] [tests] [pypy] Fixed an import that prevented “pypy setup.py test” from working
correctly.¶
This change is also backported to: 0.9.10

References: #3406

1.0.3

Released: April 30, 2015
orm

	[orm] [bug] [pypy] Fixed regression from 0.9.10 prior to release due to #3349
where the check for query state on Query.update() or
Query.delete() compared the empty tuple to itself using is,
which fails on Pypy to produce True in this case; this would
erronously emit a warning in 0.9 and raise an exception in 1.0.¶
References: #3405

	[orm] [bug] Fixed regression from 0.9.10 prior to release where the new addition
of entity to the Query.column_descriptions accessor
would fail if the target entity was produced from a core selectable
such as a Table or CTE object.¶
References: #3320, #3403

	[orm] [bug] Fixed regression within the flush process when an attribute were
set to a SQL expression for an UPDATE, and the SQL expression when
compared to the previous value of the attribute would produce a SQL
comparison other than == or !=, the exception “Boolean value
of this clause is not defined” would raise. The fix ensures that
the unit of work will not interpret the SQL expression in this way.¶
References: #3402

	[orm] [bug] Fixed unexpected use regression due to #2992 where
textual elements placed
into the Query.order_by() clause in conjunction with joined
eager loading would be added to the columns clause of the inner query
in such a way that they were assumed to be table-bound column names,
in the case where the joined eager load needs to wrap the query
in a subquery to accommodate for a limit/offset.
Originally, the behavior here was intentional, in that a query such
as query(User).order_by('name').limit(1)
would order by user.name even if the query was modified by
joined eager loading to be within a subquery, as 'name' would
be interpreted as a symbol to be located within the FROM clauses,
in this case User.name, which would then be copied into the
columns clause to ensure it were present for ORDER BY. However, the
feature fails to anticipate the case where order_by("name") refers
to a specific label name present in the local columns clause already
and not a name bound to a selectable in the FROM clause.

Beyond that, the feature also fails for deprecated cases such as
order_by("name desc"), which, while it emits a
warning that text() should be used here (note that the issue
does not impact cases where text() is used explicitly),
still produces a different query than previously where the “name desc”
expression is copied into the columns clause inappropriately. The
resolution is such that the “joined eager loading” aspect of the
feature will skip over these so-called “label reference” expressions
when augmenting the inner columns clause, as though they were
text() constructs already.

¶References: #3392

	[orm] [bug] Fixed a regression regarding the MapperEvents.instrument_class()
event where its invocation was moved to be after the class manager’s
instrumentation of the class, which is the opposite of what the
documentation for the event explicitly states. The rationale for the
switch was due to Declarative taking the step of setting up
the full “instrumentation manager” for a class before it was mapped
for the purpose of the new @declared_attr features
described in Improvements to declarative mixins, @declared_attr and related features, but the change was also made
against the classical use of mapper() for consistency.
However, SQLSoup relies upon the instrumentation event happening
before any instrumentation under classical mapping.
The behavior is reverted in the case of classical and declarative
mapping, the latter implemented by using a simple memoization
without using class manager.¶
References: #3388

	[orm] [bug] Fixed issue in new QueryEvents.before_compile() event where
changes made to the Query object’s collection of entities
to load within the event would render in the SQL, but would not
be reflected during the loading process.¶
References: #3387

engine

	[engine] [feature] New features added to support engine/pool plugins with advanced
functionality. Added a new “soft invalidate” feature to the
connection pool at the level of the checked out connection wrapper
as well as the _ConnectionRecord. This works similarly
to a modern pool invalidation in that connections aren’t actively
closed, but are recycled only on next checkout; this is essentially
a per-connection version of that feature. A new event
PoolEvents.soft_invalidate is added to complement it.
Also added new flag
ExceptionContext.invalidate_pool_on_disconnect.
Allows an error handler within ConnectionEvents.handle_error()
to maintain a “disconnect” condition, but to handle calling invalidate
on individual connections in a specific manner within the event.

¶References: #3379

	[engine] [feature] Added new event DialectEvents.do_connect, which allows
interception / replacement of when the Dialect.connect()
hook is called to create a DBAPI connection. Also added
dialect plugin hooks Dialect.get_dialect_cls() and
Dialect.engine_created() which allow external plugins to
add events to existing dialects using entry points.¶
References: #3355

sql

	[sql] [feature] Added a placeholder method TypeEngine.compare_against_backend()
which is now consumed by Alembic migrations as of 0.7.6. User-defined
types can implement this method to assist in the comparison of
a type against one reflected from the database.¶

	[sql] [bug] Fixed bug where the truncation of long labels in SQL could produce
a label that overlapped another label that is not truncated; this
because the length threshhold for truncation was greater than
the portion of the label that remains after truncation. These
two values have now been made the same; label_length - 6.
The effect here is that shorter column labels will be “truncated”
where they would not have been truncated before.¶
References: #3396

	[sql] [bug] Fixed regression due to #3282 where the tables collection
passed as a keyword argument to the DDLEvents.before_create(),
DDLEvents.after_create(), DDLEvents.before_drop(), and
DDLEvents.after_drop() events would no longer be a list
of tables, but instead a list of tuples which contained a second
entry with foreign keys to be added or dropped. As the tables
collection, while documented as not necessarily stable, has come
to be relied upon, this change is considered a regression.
Additionally, in some cases for “drop”, this collection would
be an iterator that would cause the operation to fail if
prematurely iterated. The collection is now a list of table
objects in all cases and test coverage for the format of this
collection is now added.¶
References: #3391

misc

	[bug] [ext] Fixed bug in association proxy where an any()/has()
on an relationship->scalar non-object attribute comparison would fail,
e.g.
filter(Parent.some_collection_to_attribute.any(Child.attr == 'foo'))¶
References: #3397

1.0.2

Released: April 24, 2015
orm declarative

	[bug] [orm] [declarative] Fixed unexpected use regression regarding the declarative
__declare_first__ and __declare_last__ accessors where these
would no longer be called on the superclass of the declarative base.¶
References: #3383

sql

	[sql] [bug] Fixed a regression that was incorrectly fixed in 1.0.0b4
(hence becoming two regressions); reports that
SELECT statements would GROUP BY a label name and fail was misconstrued
that certain backends such as SQL Server should not be emitting
ORDER BY or GROUP BY on a simple label name at all; when in fact,
we had forgotten that 0.9 was already emitting ORDER BY on a simple
label name for all backends, as described in Label constructs can now render as their name alone in an ORDER BY,
even though 1.0 includes a rewrite of this logic as part of
#2992. As far
as emitting GROUP BY against a simple label, even Postgresql has
cases where it will raise an error even though the label to group
on should be apparent, so it is clear that GROUP BY should never
be rendered in this way automatically.
In 1.0.2, SQL Server, Firebird and others will again emit ORDER BY on
a simple label name when passed a
Label construct that is also present in the columns clause.
Additionally, no backend will emit GROUP BY against the simple label
name only when passed a Label construct.

¶References: #3338, #3385

1.0.1

Released: April 23, 2015
orm

	[orm] [bug] Fixed issue where a query of the form
query(B).filter(B.a != A(id=7)) would render the NEVER_SET
symbol, when
given a transient object. For a persistent object, it would
always use the persisted database value and not the currently
set value. Assuming autoflush is turned on, this usually would
not be apparent for persistent values, as any pending changes
would be flushed first in any case. However, this is inconsistent
vs. the logic used for the non-negated comparison,
query(B).filter(B.a == A(id=7)), which does use the
current value and additionally allows comparisons to transient
objects. The comparison now uses the current value and not
the database-persisted value.
Unlike the other NEVER_SET issues that are repaired as regressions
caused by #3061 in this release, this particular issue is
present at least as far back as 0.8 and possibly earlier, however it
was discovered as a result of repairing the related NEVER_SET
issues.

See also

A “negated contains or equals” relationship comparison will use the current value of attributes, not the database value

¶References: #3374

	[orm] [bug] Fixed unexpected use regression cause by #3061 where
the NEVER_SET
symbol could leak into relationship-oriented queries, including
filter() and with_parent() queries. The None symbol
is returned in all cases, however many of these queries have never
been correctly supported in any case, and produce comparisons
to NULL without using the IS operator. For this reason, a warning
is also added to that subset of relationship queries that don’t
currently provide for IS NULL.

See also

Warnings emitted when comparing objects with None values to relationships

¶
References: #3371

	[orm] [bug] Fixed a regression caused by #3061 where the
NEVER_SET symbol could leak into a lazyload query, subsequent
to the flush of a pending object. This would occur typically
for a many-to-one relationship that does not use a simple
“get” strategy. The good news is that the fix improves efficiency
vs. 0.9, because we can now skip the SELECT statement entirely
when we detect NEVER_SET symbols present in the parameters; prior to
#3061, we couldn’t discern if the None here were set or not.¶
References: #3368

engine

	[engine] [bug] Added the string value "none" to those accepted by the
Pool.reset_on_return parameter as a synonym for None,
so that string values can be used for all settings, allowing
utilities like engine_from_config() to be usable without
issue.¶
This change is also backported to: 0.9.10

References: #3375

sql

	[sql] [bug] Fixed issue where a straight SELECT EXISTS query would fail to
assign the proper result type of Boolean to the result mapping, and
instead would leak column types from within the query into the
result map. This issue exists in 0.9 and earlier as well, however
has less of an impact in those versions. In 1.0, due to #918
this becomes a regression in that we now rely upon the result mapping
to be very accurate, else we can assign result-type processors to
the wrong column. In all versions, this issue also has the effect
that a simple EXISTS will not apply the Boolean type handler, leading
to simple 1/0 values for backends without native boolean instead of
True/False. The fix includes that an EXISTS columns argument
will be anon-labeled like other column expressions; a similar fix is
implemented for pure-boolean expressions like not_(True()).¶
References: #3372

sqlite

	[sqlite] [bug] Fixed a regression due to #3282, where due to the fact that
we attempt to assume the availability of ALTER when creating/dropping
schemas, in the case of SQLite we simply said to not worry about
foreign keys at all, since ALTER is not available, when creating
and dropping tables. This meant that the sorting of tables was
basically skipped in the case of SQLite, and for the vast majority
of SQLite use cases, this is not an issue.
However, users who were doing DROPs on SQLite
with tables that contained data and with referential integrity
turned on would then experience errors, as the
dependency sorting does matter in the case of DROP with
enforced constraints, when those tables have data (SQLite will still
happily let you create foreign keys to nonexistent tables and drop
tables referring to existing ones with constraints enabled, as long as
there’s no data being referenced).

In order to maintain the new feature of #3282 while still
allowing a SQLite DROP operation to maintain ordering, we now
do the sort with full FKs taken under consideration, and if we encounter
an unresolvable cycle, only then do we forego attempting to sort
the tables; we instead emit a warning and go with the unsorted list.
If an environment needs both ordered DROPs and has foreign key
cycles, then the warning notes they will need to restore the
use_alter flag to their ForeignKey and
ForeignKeyConstraint objects so that just those objects will
be omitted from the dependency sort.

See also

The use_alter flag on ForeignKeyConstraint is (usually) no longer needed - contains an updated note about SQLite.

¶References: #3378

firebird

	[firebird] [bug] Fixed a regression due to #3034 where limit/offset
clauses were not properly interpreted by the Firebird dialect.
Pull request courtesy effem-git.¶
References: #3380, pull request github:168

	[firebird] [bug] Fixed support for “literal_binds” mode when using limit/offset
with Firebird, so that the values are again rendered inline when
this is selected. Related to #3034.¶
References: #3381

1.0.0

Released: April 16, 2015
orm

	[orm] [feature] Added new argument Query.update.update_args which allows
kw arguments such as mysql_limit to be passed to the underlying
Update construct. Pull request courtesy Amir Sadoughi.¶
References: pull request github:164

	[orm] [bug] Identified an inconsistency when handling Query.join() to the
same target more than once; it implicitly dedupes only in the case of
a relationship join, and due to #3233, in 1.0 a join
to the same table twice behaves differently than 0.9 in that it no
longer erroneously aliases. To help document this change,
the verbiage regarding #3233 in the migration notes has
been generalized, and a warning has been added when Query.join()
is called against the same target relationship more than once.¶
References: #3367

	[orm] [bug] Made a small improvement to the heuristics of relationship when
determining remote side with semi-self-referential (e.g. two joined
inh subclasses referring to each other), non-simple join conditions
such that the parententity is taken into account and can reduce the
need for using the remote() annotation; this can restore some
cases that might have worked without the annotation prior to 0.9.4
via #2948.¶
References: #3364

sql

	[sql] [feature] The topological sorting used to sort Table objects
and available via the MetaData.sorted_tables collection
will now produce a deterministic ordering; that is, the same
ordering each time given a set of tables with particular names
and dependencies. This is to help with comparison of DDL scripts
and other use cases. The tables are sent to the topological sort
sorted by name, and the topological sort itself will process
the incoming data in an ordered fashion. Pull request
courtesy Sebastian Bank.

See also

MetaData.sorted_tables accessor is “deterministic”

¶
References: #3084, pull request bitbucket:47

	[sql] [bug] Fixed issue where a MetaData object that used a naming
convention would not properly work with pickle. The attribute was
skipped leading to inconsistencies and failures if the unpickled
MetaData object were used to base additional tables
from.¶
This change is also backported to: 0.9.10

References: #3362

postgresql

	[postgresql] [bug] Fixed a long-standing bug where the Enum type as used
with the psycopg2 dialect in conjunction with non-ascii values
and native_enum=False would fail to decode return results properly.
This stemmed from when the PG postgresql.ENUM type used
to be a standalone type without a “non native” option.¶
This change is also backported to: 0.9.10

References: #3354

mssql

	[mssql] [bug] Fixed a regression where the “last inserted id” mechanics would
fail to store the correct value for MSSQL on an INSERT where the
primary key value was present in the insert params before execution,
as well as in the case where an INSERT from SELECT would state the
target columns as column objects, instead of string keys.¶
References: #3360

	[mssql] [bug] Using the Binary constructor now present in pymssql rather than
patching one in. Pull request courtesy Ramiro Morales.¶
References: pull request github:166

misc

	[bug] [tests] Fixed the pathing used when tests run; for sqla_nose.py and py.test,
the ”./lib” prefix is again inserted at the head of sys.path but
only if sys.flags.no_user_site isn’t set; this makes it act just
like the way Python puts ”.” in the current path by default.
For tox, we are setting the PYTHONNOUSERSITE flag now.¶
References: #3356

1.0.0b5

Released: April 3, 2015
orm

	[orm] [bug] Fixed bug where the state tracking within multiple, nested
Session.begin_nested() operations would fail to propagate
the “dirty” flag for an object that had been updated within
the inner savepoint, such that if the enclosing savepoint were
rolled back, the object would not be part of the state that was
expired and therefore reverted to its database state.¶
This change is also backported to: 0.9.10

References: #3352

	[orm] [bug] Query doesn’t support joins, subselects, or special
FROM clauses when using the Query.update() or
Query.delete() methods; instead of silently ignoring these
fields if methods like Query.join() or
Query.select_from() has been called, an error is raised.
In 0.9.10 this only emits a warning.¶
References: #3349

	[orm] [bug] Added a list() call around a weak dictionary used within the
commit phase of the session, which without it could cause
a “dictionary changed size during iter” error if garbage collection
interacted within the process. Change was introduced by
#3139.¶

	[orm] [bug] Fixed a bug related to “nested” inner join eager loading, which
exists in 0.9 as well but is more of a regression in 1.0 due to
#3008 which turns on “nested” by default, such that
a joined eager load that travels across sibling paths from a common
ancestor using innerjoin=True will correctly splice each “innerjoin”
sibling into the appropriate part of the join, when a series of
inner/outer joins are mixed together.¶
References: #3347

sql

	[sql] [bug] The warning emitted by the unicode type for a non-unicode type
has been liberalized to warn for values that aren’t even string
values, such as integers; previously, the updated warning system
of 1.0 made use of string formatting operations which
would raise an internal TypeError. While these cases should ideally
raise totally, some backends like SQLite and MySQL do accept them
and are potentially in use by legacy code, not to mention that they
will always pass through if unicode conversion is turned off
for the target backend.¶
References: #3346

postgresql

	[postgresql] [bug] Fixed bug where updated PG index reflection as a result of
#3184 would cause index operations to fail on Postgresql
versions 8.4 and earlier. The enhancements are now
disabled when using an older version of Postgresql.¶
References: #3343

1.0.0b4

Released: March 29, 2015
sql

	[sql] [bug] Fixed bug in new “label resolution” feature of #2992 where
a label that was anonymous, then labeled again with a name, would
fail to be locatable via a textual label. This situation occurs
naturally when a mapped column_property() is given an
explicit label in a query.¶
References: #3340

	[sql] [bug] Fixed bug in new “label resolution” feature of #2992 where
the string label placed in the order_by() or group_by() of a statement
would place higher priority on the name as found
inside the FROM clause instead of a more locally available name
inside the columns clause.¶
References: #3335

schema

	[schema] [feature] The “auto-attach” feature of constraints such as UniqueConstraint
and CheckConstraint has been further enhanced such that
when the constraint is associated with non-table-bound Column
objects, the constraint will set up event listeners with the
columns themselves such that the constraint auto attaches at the
same time the columns are associated with the table. This in particular
helps in some edge cases in declarative but is also of general use.

See also

Constraints referring to unattached Columns can auto-attach to the Table when their referred columns are attached

¶
References: #3341

mysql

	[mysql] [bug] [pymysql] Fixed unicode support for PyMySQL when using an “executemany”
operation with unicode parameters. SQLAlchemy now passes both
the statement as well as the bound parameters as unicode
objects, as PyMySQL generally uses string interpolation
internally to produce the final statement, and in the case of
executemany does the “encode” step only on the final statement.¶
This change is also backported to: 0.9.10

References: #3337

mssql

	[mssql] [bug] [sybase] [firebird] [oracle] Turned off the “simple order by” flag on the MSSQL, Oracle dialects;
this is the flag that per #2992 causes an order by or group by
an expression that’s also in the columns clause to be copied by
label, even if referenced as the expression object. The behavior
for MSSQL is now the old behavior that copies the whole expression
in by default, as MSSQL can be picky on these particularly in
GROUP BY expressions. The flag is also turned off defensively
for the Firebird and Sybase dialects.

Note

this resolution was incorrect, please see version 1.0.2
for a rework of this resolution.

¶
References: #3338

1.0.0b3

Released: March 20, 2015
mysql

	[mysql] [bug] Repaired the commit for issue #2771 which was inadvertently commented
out.¶
References: #2771

1.0.0b2

Released: March 20, 2015
orm

	[orm] [bug] Fixed unexpected use regression from pullreq github:137 where
Py2K unicode literals (e.g. u"") would not be accepted by the
relationship.cascade option.
Pull request courtesy Julien Castets.¶
References: #3327, pull request github:160

orm declarative

	[orm] [declarative] [change] Loosened some restrictions that were added to @declared_attr
objects, such that they were prevented from being called outside
of the declarative process; this is related to the enhancements
of #3150 which allow @declared_attr to return a value that is
cached based on the current class as it’s being configured.
The exception raise has been removed, and the behavior changed
so that outside of the declarative process, the function decorated by
@declared_attr is called every time just like a regular
@property, without using any caching, as none is available
at this stage.¶
References: #3331

engine

	[engine] [bug] The “auto close” for ResultProxy is now a “soft” close.
That is, after exhausing all rows using the fetch methods, the
DBAPI cursor is released as before and the object may be safely
discarded, but the fetch methods may continue to be called for which
they will return an end-of-result object (None for fetchone, empty list
for fetchmany and fetchall). Only if ResultProxy.close()
is called explicitly will these methods raise the “result is closed”
error.

See also

ResultProxy “auto close” is now a “soft” close

¶
References: #3329, #3330

mysql

	[mysql] [bug] [py3k] Fixed the mysql.BIT type on Py3K which was not using the
ord() function correctly. Pull request courtesy David Marin.¶
This change is also backported to: 0.9.10

References: #3333, pull request github:158

	[mysql] [bug] Fixes to fully support using the 'utf8mb4' MySQL-specific charset
with MySQL dialects, in particular MySQL-Python and PyMySQL. In
addition, MySQL databases that report more unusual charsets such as
‘koi8u’ or ‘eucjpms’ will also work correctly. Pull request
courtesy Thomas Grainger.¶
References: #2771, pull request bitbucket:49

1.0.0b1

Released: March 13, 2015Version 1.0.0b1 is the first release of the 1.0 series. Many changes
described here are also present in the 0.9 and sometimes the 0.8
series as well. For changes that are specific to 1.0 with an emphasis
on compatibility concerns, see What’s New in SQLAlchemy 1.0?.

general

	[general] [feature] Structural memory use has been improved via much more significant use
of __slots__ for many internal objects. This optimization is
particularly geared towards the base memory size of large applications
that have lots of tables and columns, and greatly reduces memory
size for a variety of high-volume objects including event listening
internals, comparator objects and parts of the ORM attribute and
loader strategy system.

See also

Significant Improvements in Structural Memory Use

¶

	[general] [bug] The __module__ attribute is now set for all those SQL and
ORM functions that are derived as “public factory” symbols, which
should assist with documentation tools being able to report on the
target module.¶
References: #3218

orm

	[orm] [feature] Added a new entry "entity" to the dictionaries returned by
Query.column_descriptions. This refers to the primary ORM
mapped class or aliased class that is referred to by the expression.
Compared to the existing entry for "type", it will always be
a mapped entity, even if extracted from a column expression, or
None if the given expression is a pure core expression.
See also #3403 which repaired a regression in this feature
which was unreleased in 0.9.10 but was released in the 1.0 version.¶
This change is also backported to: 0.9.10

References: #3320

	[orm] [feature] Added new parameter Session.connection.execution_options
which may be used to set up execution options on a Connection
when it is first checked out, before the transaction has begun.
This is used to set up options such as isolation level on the
connection before the transaction starts.

See also

Setting Transaction Isolation Levels - new documentation section
detailing best practices for setting transaction isolation with
sessions.

¶
This change is also backported to: 0.9.9

References: #3296

	[orm] [feature] Added new method Session.invalidate(), functions similarly
to Session.close(), except also calls
Connection.invalidate()
on all connections, guaranteeing that they will not be returned to
the connection pool. This is useful in situations e.g. dealing
with gevent timeouts when it is not safe to use the connection further,
even for rollbacks.¶
This change is also backported to: 0.9.9

	[orm] [feature] The “primaryjoin” model has been stretched a bit further to allow
a join condition that is strictly from a single column to itself,
translated through some kind of SQL function or expression. This
is kind of experimental, but the first proof of concept is a
“materialized path” join condition where a path string is compared
to itself using “like”. The ColumnOperators.like() operator has
also been added to the list of valid operators to use in a primaryjoin
condition.¶
This change is also backported to: 0.9.5

References: #3029

	[orm] [feature] Added new utility function make_transient_to_detached() which can
be used to manufacture objects that behave as though they were loaded
from a session, then detached. Attributes that aren’t present
are marked as expired, and the object can be added to a Session
where it will act like a persistent one.¶
This change is also backported to: 0.9.5

References: #3017

	[orm] [feature] Added a new event suite QueryEvents. The
QueryEvents.before_compile() event allows the creation
of functions which may place additional modifications to
Query objects before the construction of the SELECT
statement. It is hoped that this event be made much more
useful via the advent of a new inspection system that will
allow for detailed modifications to be made against
Query objects in an automated fashion.

See also

QueryEvents

¶
References: #3317

	[orm] [feature] The subquery wrapping which occurs when joined eager loading
is used with a one-to-many query that also features LIMIT,
OFFSET, or DISTINCT has been disabled in the case of a one-to-one
relationship, that is a one-to-many with
relationship.uselist set to False. This will produce
more efficient queries in these cases.

See also

Subqueries no longer applied to uselist=False joined eager loads

¶
References: #3249

	[orm] [feature] Mapped state internals have been reworked to allow for a 50% reduction
in callcounts specific to the “expiration” of objects, as in
the “auto expire” feature of Session.commit() and
for Session.expire_all(), as well as in the “cleanup” step
which occurs when object states are garbage collected.¶
References: #3307

	[orm] [feature] A warning is emitted when the same polymorphic identity is assigned
to two different mappers in the same hierarchy. This is typically a
user error and means that the two different mapping types cannot be
correctly distinguished at load time. Pull request courtesy
Sebastian Bank.¶
References: #3262, pull request bitbucket:38

	[orm] [feature] A new series of Session methods which provide hooks
directly into the unit of work’s facility for emitting INSERT
and UPDATE statements has been created. When used correctly,
this expert-oriented system can allow ORM-mappings to be used
to generate bulk insert and update statements batched into
executemany groups, allowing the statements to proceed at
speeds that rival direct use of the Core.

See also

Bulk Operations

¶
References: #3100

	[orm] [feature] Added a parameter Query.join.isouter which is synonymous
with calling Query.outerjoin(); this flag is to provide a more
consistent interface compared to Core FromClause.join().
Pull request courtesy Jonathan Vanasco.¶
References: #3217

	[orm] [feature] Added new event handlers AttributeEvents.init_collection()
and AttributeEvents.dispose_collection(), which track when
a collection is first associated with an instance and when it is
replaced. These handlers supersede the collection.linker()
annotation. The old hook remains supported through an event adapter.¶

	[orm] [feature] The Query will raise an exception when Query.yield_per()
is used with mappings or options where either
subquery eager loading, or joined eager loading with collections,
would take place. These loading strategies are
not currently compatible with yield_per, so by raising this error,
the method is safer to use. Eager loads can be disabled with
the lazyload('*') option or Query.enable_eagerloads().

See also

Joined/Subquery eager loading explicitly disallowed with yield_per

¶

	[orm] [feature] A new implementation for KeyedTuple used by the
Query object offers dramatic speed improvements when
fetching large numbers of column-oriented rows.

See also

New KeyedTuple implementation dramatically faster

¶
References: #3176

	[orm] [feature] The behavior of joinedload.innerjoin as well as
relationship.innerjoin is now to use “nested”
inner joins, that is, right-nested, as the default behavior when an
inner join joined eager load is chained to an outer join eager load.

See also

Right inner join nesting now the default for joinedload with innerjoin=True

¶
References: #3008

	[orm] [feature] UPDATE statements can now be batched within an ORM flush
into more performant executemany() call, similarly to how INSERT
statements can be batched; this will be invoked within flush
to the degree that subsequent UPDATE statements for the
same mapping and table involve the identical columns within the
VALUES clause, that no SET-level SQL expressions
are embedded, and that the versioning requirements for the mapping
are compatible with the backend dialect’s ability to return
a correct rowcount for an executemany operation.¶

	[orm] [feature] The info parameter has been added to the constructor for
SynonymProperty and ComparableProperty.¶
References: #2963

	[orm] [feature] The InspectionAttr.info collection is now moved down to
InspectionAttr, where in addition to being available
on all MapperProperty objects, it is also now available
on hybrid properties, association proxies, when accessed via
Mapper.all_orm_descriptors.¶
References: #2971

	[orm] [changed] The proc() callable passed to the create_row_processor()
method of custom Bundle classes now accepts only a single
“row” argument.

See also

API Change for new Bundle feature when custom row loaders are used

¶

	[orm] [changed] Deprecated event hooks removed: populate_instance,
create_instance, translate_row, append_result

See also

Deprecated ORM Event Hooks Removed

¶

	[orm] [bug] Fixed bugs in ORM object comparisons where comparison of
many-to-one != None would fail if the source were an aliased
class, or if the query needed to apply special aliasing to the
expression due to aliased joins or polymorphic querying; also fixed
bug in the case where comparing a many-to-one to an object state
would fail if the query needed to apply special aliasing
due to aliased joins or polymorphic querying.¶
This change is also backported to: 0.9.9

References: #3310

	[orm] [bug] Fixed bug where internal assertion would fail in the case where
an after_rollback() handler for a Session incorrectly
adds state to that Session within the handler, and the task
to warn and remove this state (established by #2389) attempts
to proceed.¶
This change is also backported to: 0.9.9

References: #3309

	[orm] [bug] Fixed bug where TypeError raised when Query.join() called
with unknown kw arguments would raise its own TypeError due
to broken formatting. Pull request courtesy Malthe Borch.¶
This change is also backported to: 0.9.9

References: pull request github:147

	[orm] [bug] Fixed bug in lazy loading SQL construction whereby a complex
primaryjoin that referred to the same “local” column multiple
times in the “column that points to itself” style of self-referential
join would not be substituted in all cases. The logic to determine
substitutions here has been reworked to be more open-ended.¶
This change is also backported to: 0.9.9

References: #3300

	[orm] [bug] The “wildcard” loader options, in particular the one set up by
the orm.load_only() option to cover all attributes not
explicitly mentioned, now takes into account the superclasses
of a given entity, if that entity is mapped with inheritance mapping,
so that attribute names within the superclasses are also omitted
from the load. Additionally, the polymorphic discriminator column
is unconditionally included in the list, just in the same way that
primary key columns are, so that even with load_only() set up,
polymorphic loading of subtypes continues to function correctly.¶
This change is also backported to: 0.9.9

References: #3287

	[orm] [bug] [pypy] Fixed bug where if an exception were thrown at the start of a
Query before it fetched results, particularly when
row processors can’t be formed, the cursor would stay open with
results pending and not actually be closed. This is typically only
an issue on an interpreter like Pypy where the cursor isn’t
immediately GC’ed, and can in some circumstances lead to transactions/
locks being open longer than is desirable.¶
This change is also backported to: 0.9.9

References: #3285

	[orm] [bug] Fixed a leak which would occur in the unsupported and highly
non-recommended use case of replacing a relationship on a fixed
mapped class many times, referring to an arbitrarily growing number of
target mappers. A warning is emitted when the old relationship is
replaced, however if the mapping were already used for querying, the
old relationship would still be referenced within some registries.¶
This change is also backported to: 0.9.9

References: #3251

	[orm] [bug] [sqlite] Fixed bug regarding expression mutations which could express
itself as a “Could not locate column” error when using
Query to select from multiple, anonymous column
entities when querying against SQLite, as a side effect of the
“join rewriting” feature used by the SQLite dialect.¶
This change is also backported to: 0.9.9

References: #3241

	[orm] [bug] Fixed bug where the ON clause for Query.join(),
and Query.outerjoin() to a single-inheritance subclass
using of_type() would not render the “single table criteria” in
the ON clause if the from_joinpoint=True flag were set.¶
This change is also backported to: 0.9.9

References: #3232

	[orm] [bug] [engine] Fixed bug that affected generally the same classes of event
as that of #3199, when the named=True parameter
would be used. Some events would fail to register, and others
would not invoke the event arguments correctly, generally in the
case of when an event was “wrapped” for adaption in some other way.
The “named” mechanics have been rearranged to not interfere with
the argument signature expected by internal wrapper functions.¶
This change is also backported to: 0.9.8

References: #3197

	[orm] [bug] Fixed bug that affected many classes of event, particularly
ORM events but also engine events, where the usual logic of
“de duplicating” a redundant call to event.listen()
with the same arguments would fail, for those events where the
listener function is wrapped. An assertion would be hit within
registry.py. This assertion has now been integrated into the
deduplication check, with the added bonus of a simpler means
of checking deduplication across the board.¶
This change is also backported to: 0.9.8

References: #3199

	[orm] [bug] Fixed warning that would emit when a complex self-referential
primaryjoin contained functions, while at the same time remote_side
was specified; the warning would suggest setting “remote side”.
It now only emits if remote_side isn’t present.¶
This change is also backported to: 0.9.8

References: #3194

	[orm] [bug] [eagerloading] Fixed a regression caused by #2976 released in 0.9.4 where
the “outer join” propagation along a chain of joined eager loads
would incorrectly convert an “inner join” along a sibling join path
into an outer join as well, when only descendant paths should be
receiving the “outer join” propagation; additionally, fixed related
issue where “nested” join propagation would take place inappropriately
between two sibling join paths.¶
This change is also backported to: 0.9.7

References: #3131

	[orm] [bug] Fixed a regression from 0.9.0 due to #2736 where the
Query.select_from() method no longer set up the “from
entity” of the Query object correctly, so that
subsequent Query.filter_by() or Query.join()
calls would fail to check the appropriate “from” entity when
searching for attributes by string name.¶
This change is also backported to: 0.9.7

References: #2736, #3083

	[orm] [bug] Fixed bug where items that were persisted, deleted, or had a
primary key change within a savepoint block would not
participate in being restored to their former state (not in
session, in session, previous PK) after the outer transaction
were rolled back.¶
This change is also backported to: 0.9.7

References: #3108

	[orm] [bug] Fixed bug in subquery eager loading in conjunction with
with_polymorphic(), the targeting of entities and columns
in the subquery load has been made more accurate with respect
to this type of entity and others.¶
This change is also backported to: 0.9.7

References: #3106

	[orm] [bug] Additional checks have been added for the case where an inheriting
mapper is implicitly combining one of its column-based attributes
with that of the parent, where those columns normally don’t necessarily
share the same value. This is an extension of an existing check that
was added via #1892; however this new check emits only a
warning, instead of an exception, to allow for applications that may
be relying upon the existing behavior.

See also

I’m getting a warning or error about “Implicitly combining column X under attribute Y”

¶
This change is also backported to: 0.9.5

References: #3042

	[orm] [bug] Modified the behavior of orm.load_only() such that primary key
columns are always added to the list of columns to be “undeferred”;
otherwise, the ORM can’t load the row’s identity. Apparently,
one can defer the mapped primary keys and the ORM will fail, that
hasn’t been changed. But as load_only is essentially saying
“defer all but X”, it’s more critical that PK cols not be part of this
deferral.¶
This change is also backported to: 0.9.5

References: #3080

	[orm] [bug] Fixed a few edge cases which arise in the so-called “row switch”
scenario, where an INSERT/DELETE can be turned into an UPDATE.
In this situation, a many-to-one relationship set to None, or
in some cases a scalar attribute set to None, may not be detected
as a net change in value, and therefore the UPDATE would not reset
what was on the previous row. This is due to some as-yet
unresovled side effects of the way attribute history works in terms
of implicitly assuming None isn’t really a “change” for a previously
un-set attribute. See also #3061.

Note

This change has been REVERTED in 0.9.6. The full fix
will be in version 1.0 of SQLAlchemy.

¶
This change is also backported to: 0.9.5

References: #3060

	[orm] [bug] Related to #3060, an adjustment has been made to the unit
of work such that loading for related many-to-one objects is slightly
more aggressive, in the case of a graph of self-referential objects
that are to be deleted; the load of related objects is to help
determine the correct order for deletion if passive_deletes is
not set.¶
This change is also backported to: 0.9.5

	[orm] [bug] Fixed bug in SQLite join rewriting where anonymized column names
due to repeats would not correctly be rewritten in subqueries.
This would affect SELECT queries with any kind of subquery + join.¶
This change is also backported to: 0.9.5

References: #3057

	[orm] [bug] [sql] Fixes to the newly enhanced boolean coercion in #2804 where
the new rules for “where” and “having” woudn’t take effect for the
“whereclause” and “having” kw arguments of the select() construct,
which is also what Query uses so wasn’t working in the
ORM either.¶
This change is also backported to: 0.9.5

References: #3013

	[orm] [bug] Fixed bug in subquery eager loading where a long chain of
eager loads across a polymorphic-subclass boundary in conjunction
with polymorphic loading would fail to locate the subclass-link in the
chain, erroring out with a missing property name on an
AliasedClass.¶
This change is also backported to: 0.9.5, 0.8.7

References: #3055

	[orm] [bug] Fixed ORM bug where the class_mapper() function would mask
AttributeErrors or KeyErrors that should raise during mapper
configuration due to user errors. The catch for attribute/keyerror
has been made more specific to not include the configuration step.¶
This change is also backported to: 0.9.5, 0.8.7

References: #3047

	[orm] [bug] Fixed bug where the session attachment error “object is already
attached to session X” would fail to prevent the object from
also being attached to the new session, in the case that execution
continued after the error raise occurred.¶
References: #3301

	[orm] [bug] The primary Mapper of a Query is now passed to the
Session.get_bind() method when calling upon
Query.count(), Query.update(), Query.delete(),
as well as queries against mapped columns,
column_property objects, and SQL functions and expressions
derived from mapped columns. This allows sessions that rely upon
either customized Session.get_bind() schemes or “bound” metadata
to work in all relevant cases.

See also

Session.get_bind() will receive the Mapper in all relevant Query cases

¶
References: #3242, #3227, #1326

	[orm] [bug] The PropComparator.of_type() modifier has been
improved in conjunction with loader directives such as
joinedload() and contains_eager() such that if
two PropComparator.of_type() modifiers of the same
base type/path are encountered, they will be joined together
into a single “polymorphic” entity, rather than replacing
the entity of type A with the one of type B. E.g.
a joinedload of A.b.of_type(BSub1)->BSub1.c combined with
joinedload of A.b.of_type(BSub2)->BSub2.c will create a
single joinedload of A.b.of_type((BSub1, BSub2)) -> BSub1.c, BSub2.c,
without the need for the with_polymorphic to be explicit
in the query.

See also

Eager Loading of Specific or Polymorphic Subtypes - contains an updated
example illustrating the new format.

¶
References: #3256

	[orm] [bug] Repaired support of the copy.deepcopy() call when used by the
orm.util.CascadeOptions argument, which occurs
if copy.deepcopy() is being used with relationship()
(not an officially supported use case). Pull request courtesy
duesenfranz.¶
References: pull request github:137

	[orm] [bug] Fixed bug where Session.expunge() would not fully detach
the given object if the object had been subject to a delete
operation that was flushed, but not committed. This would also
affect related operations like make_transient().

See also

session.expunge() will fully detach an object that’s been deleted

¶
References: #3139

	[orm] [bug] A warning is emitted in the case of multiple relationships that
ultimately will populate a foreign key column in conflict with
another, where the relationships are attempting to copy values
from different source columns. This occurs in the case where
composite foreign keys with overlapping columns are mapped to
relationships that each refer to a different referenced column.
A new documentation section illustrates the example as well as how
to overcome the issue by specifying “foreign” columns specifically
on a per-relationship basis.

See also

Overlapping Foreign Keys

¶
References: #3230

	[orm] [bug] The Query.update() method will now convert string key
names in the given dictionary of values into mapped attribute names
against the mapped class being updated. Previously, string names
were taken in directly and passed to the core update statement without
any means to resolve against the mapped entity. Support for synonyms
and hybrid attributes as the subject attributes of
Query.update() are also supported.

See also

query.update() now resolves string names into mapped attribute names

¶
References: #3228

	[orm] [bug] Improvements to the mechanism used by Session to locate
“binds” (e.g. engines to use), such engines can be associated with
mixin classes, concrete subclasses, as well as a wider variety
of table metadata such as joined inheritance tables.

See also

Session.get_bind() handles a wider variety of inheritance scenarios

¶
References: #3035

	[orm] [bug] Fixed bug in single table inheritance where a chain of joins
that included the same single inh entity more than once
(normally this should raise an error) could, in some cases
depending on what was being joined “from”, implicitly alias the
second case of the single inh entity, producing
a query that “worked”. But as this implicit aliasing is not
intended in the case of single table inheritance, it didn’t
really “work” fully and was very misleading, since it wouldn’t
always appear.

See also

Changes and fixes in handling of duplicate join targets

¶
References: #3233

	[orm] [bug] The ON clause rendered when using Query.join(),
Query.outerjoin(), or the standalone orm.join() /
orm.outerjoin() functions to a single-inheritance subclass will
now include the “single table criteria” in the ON clause even
if the ON clause is otherwise hand-rolled; it is now added to the
criteria using AND, the same way as if joining to a single-table
target using relationship or similar.
This is sort of in-between feature and bug.

See also

single-table-inheritance criteria added to all ON clauses unconditionally

¶References: #3222

	[orm] [bug] A major rework to the behavior of expression labels, most
specifically when used with ColumnProperty constructs with
custom SQL expressions and in conjunction with the “order by
labels” logic first introduced in 0.9. Fixes include that an
order_by(Entity.some_col_prop) will now make use of “order by
label” rules even if Entity has been subject to aliasing,
either via inheritance rendering or via the use of the
aliased() construct; rendering of the same column property
multiple times with aliasing (e.g. query(Entity.some_prop,
entity_alias.some_prop)) will label each occurrence of the
entity with a distinct label, and additionally “order by
label” rules will work for both (e.g.
order_by(Entity.some_prop, entity_alias.some_prop)).
Additional issues that could prevent the “order by label”
logic from working in 0.9, most notably that the state of a
Label could change such that “order by label” would stop
working depending on how things were called, has been fixed.

See also

ColumnProperty constructs work a lot better with aliases, order_by

¶
References: #3148, #3188

	[orm] [bug] Changed the approach by which the “single inheritance criterion”
is applied, when using Query.from_self(), or its common
user Query.count(). The criteria to limit rows to those
with a certain type is now indicated on the inside subquery,
not the outside one, so that even if the “type” column is not
available in the columns clause, we can filter on it on the “inner”
query.

See also

Change to single-table-inheritance criteria when using from_self(), count()

¶
References: #3177

	[orm] [bug] Made a small adjustment to the mechanics of lazy loading,
such that it has less chance of interfering with a joinload() in the
very rare circumstance that an object points to itself; in this
scenario, the object refers to itself while loading its attributes
which can cause a mixup between loaders. The use case of
“object points to itself” is not fully supported, but the fix also
removes some overhead so for now is part of testing.¶
References: #3145

	[orm] [bug] The “resurrect” ORM event has been removed. This event hook had
no purpose since the old “mutable attribute” system was removed
in 0.8.¶
References: #3171

	[orm] [bug] Fixed bug where attribute “set” events or columns with
@validates would have events triggered within the flush process,
when those columns were the targets of a “fetch and populate”
operation, such as an autoincremented primary key, a Python side
default, or a server-side default “eagerly” fetched via RETURNING.¶
References: #3167

	[orm] [bug] [py3k] The IdentityMap exposed from Session.identity_map
now returns lists for items() and values() in Py3K.
Early porting to Py3K here had these returning iterators, when
they technically should be “iterable views”..for now, lists are OK.¶

	[orm] [bug] The “evaluator” for query.update()/delete() won’t work with multi-table
updates, and needs to be set to synchronize_session=False or
synchronize_session=’fetch’; this now raises an exception, with a
message to change the synchronize setting.
This is upgraded from a warning emitted as of 0.9.7.¶
References: #3117

	[orm] [change] Mapped attributes marked as deferred without explicit undeferral
will now remain “deferred” even if their column is otherwise
present in the result set in some way. This is a performance
enhancement in that an ORM load no longer spends time searching
for each deferred column when the result set is obtained. However,
for an application that has been relying upon this, an explicit
undefer() or similar option should now be used.¶

	[orm] [enhancement] Adjustment to attribute mechanics concerning when a value is
implicitly initialized to None via first access; this action,
which has always resulted in a population of the attribute,
no longer does so; the None value is returned but the underlying
attribute receives no set event. This is consistent with how collections
work and allows attribute mechanics to behave more consistently;
in particular, getting an attribute with no value does not squash
the event that should proceed if the value is actually set to None.

See also

Changes to attribute events and other operations regarding attributes that have no pre-existing value

where bound parameters are rendered inline as strings based on
a compile-time option.
Work on this feature is courtesy of Dobes Vandermeer.

See also

Select/Query LIMIT / OFFSET may be specified as an arbitrary SQL expression.

¶References: #3061

orm declarative

	[feature] [orm] [declarative] The declared_attr construct has newly improved
behaviors and features in conjunction with declarative. The
decorated function will now have access to the final column
copies present on the local mixin when invoked, and will also
be invoked exactly once for each mapped class, the returned result
being memoized. A new modifier declared_attr.cascading
is added as well.

See also

Improvements to declarative mixins, @declared_attr and related features

¶
References: #3150

	[bug] [declarative] [orm] Fixed “‘NoneType’ object has no attribute ‘concrete’” error
when using AbstractConcreteBase in conjunction with
a subclass that declares __abstract__.¶
This change is also backported to: 0.9.8

References: #3185

	[bug] [orm] [declarative] Fixed bug where using an __abstract__ mixin in the middle
of a declarative inheritance hierarchy would prevent attributes
and configuration being correctly propagated from the base class
to the inheriting class.¶
References: #3240, #3219

	[bug] [orm] [declarative] A relationship set up with declared_attr on
a AbstractConcreteBase base class will now be configured
on the abstract base mapping automatically, in addition to being
set up on descendant concrete classes as usual.

See also

Improvements to declarative mixins, @declared_attr and related features

¶
References: #2670

engine

	[engine] [feature] Added new user-space accessors for viewing transaction isolation
levels; Connection.get_isolation_level(),
Connection.default_isolation_level.¶
This change is also backported to: 0.9.9

	[engine] [feature] Added new event ConnectionEvents.handle_error(), a more
fully featured and comprehensive replacement for
ConnectionEvents.dbapi_error().¶
This change is also backported to: 0.9.7

References: #3076

	[engine] [feature] A new style of warning can be emitted which will “filter” up to
N occurrences of a parameterized string. This allows parameterized
warnings that can refer to their arguments to be delivered a fixed
number of times until allowing Python warning filters to squelch them,
and prevents memory from growing unbounded within Python’s
warning registries.

See also

Session.get_bind() handles a wider variety of inheritance scenarios

¶
References: #3178

	[engine] [bug] Fixed bug in Connection and pool where the
Connection.invalidate() method, or an invalidation due
to a database disconnect, would fail if the
isolation_level parameter had been used with
Connection.execution_options(); the “finalizer” that resets
the isolation level would be called on the no longer opened connection.¶
This change is also backported to: 0.9.9

References: #3302

	[engine] [bug] A warning is emitted if the isolation_level parameter is used
with Connection.execution_options() when a Transaction
is in play; DBAPIs and/or SQLAlchemy dialects such as psycopg2,
MySQLdb may implicitly rollback or commit the transaction, or
not change the setting til next transaction, so this is never safe.¶
This change is also backported to: 0.9.9

References: #3296

	[engine] [bug] The execution options passed to an Engine either via
create_engine.execution_options or
Engine.update_execution_options() are not passed to the
special Connection used to initialize the dialect
within the “first connect” event; dialects will usually
perform their own queries in this phase, and none of the
current available options should be applied here. In
particular, the “autocommit” option was causing an attempt to
autocommit within this initial connect which would fail with
an AttributeError due to the non-standard state of the
Connection.¶
This change is also backported to: 0.9.8

References: #3200

	[engine] [bug] The string keys that are used to determine the columns impacted
for an INSERT or UPDATE are now sorted when they contribute towards
the “compiled cache” cache key. These keys were previously not
deterministically ordered, meaning the same statement could be
cached multiple times on equivalent keys, costing both in terms of
memory as well as performance.¶
This change is also backported to: 0.9.8

References: #3165

	[engine] [bug] Fixed bug which would occur if a DBAPI exception
occurs when the engine first connects and does its initial checks,
and the exception is not a disconnect exception, yet the cursor
raises an error when we try to close it. In this case the real
exception would be quashed as we tried to log the cursor close
exception via the connection pool and failed, as we were trying
to access the pool’s logger in a way that is inappropriate
in this very specific scenario.¶
This change is also backported to: 0.9.5

References: #3063

	[engine] [bug] Fixed some “double invalidate” situations were detected where
a connection invalidation could occur within an already critical section
like a connection.close(); ultimately, these conditions are caused
by the change in #2907, in that the “reset on return” feature
calls out to the Connection/Transaction in order to handle it, where
“disconnect detection” might be caught. However, it’s possible that
the more recent change in #2985 made it more likely for this
to be seen as the “connection invalidate” operation is much quicker,
as the issue is more reproducible on 0.9.4 than 0.9.3.
Checks are now added within any section that
an invalidate might occur to halt further disallowed operations
on the invalidated connection. This includes two fixes both at the
engine level and at the pool level. While the issue was observed
with highly concurrent gevent cases, it could in theory occur in
any kind of scenario where a disconnect occurs within the connection
close operation.

¶This change is also backported to: 0.9.5

References: #3043

	[engine] [bug] The engine-level error handling and wrapping routines will now
take effect in all engine connection use cases, including
when user-custom connect routines are used via the
create_engine.creator parameter, as well as when
the Connection encounters a connection error on
revalidation.

See also

DBAPI exception wrapping and handle_error() event improvements

¶
References: #3266

	[engine] [bug] Removing (or adding) an event listener at the same time that the event
is being run itself, either from inside the listener or from a
concurrent thread, now raises a RuntimeError, as the collection used is
now an instance of colletions.deque() and does not support changes
while being iterated. Previously, a plain Python list was used where
removal from inside the event itself would produce silent failures.¶
References: #3163

sql

	[sql] [feature] Liberalized the contract for Index a bit in that you can
specify a text() expression as the target; the index no longer
needs to have a table-bound column present if the index is to be
manually added to the table, either via inline declaration or via
Table.append_constraint().¶
This change is also backported to: 0.9.5

References: #3028

	[sql] [feature] Added new flag expression.between.symmetric, when set to True
renders “BETWEEN SYMMETRIC”. Also added a new negation operator
“notbetween_op”, which now allows an expression like ~col.between(x, y)
to render as “col NOT BETWEEN x AND y”, rather than a parentheiszed NOT
string.¶
This change is also backported to: 0.9.5

References: #2990

	[sql] [feature] The SQL compiler now generates the mapping of expected columns
such that they are matched to the received result set positionally,
rather than by name. Originally, this was seen as a way to handle
cases where we had columns returned with difficult-to-predict names,
though in modern use that issue has been overcome by anonymous
labeling. In this version, the approach basically reduces function
call count per-result by a few dozen calls, or more for larger
sets of result columns. The approach still degrades into a modern
version of the old approach if any discrepancy in size exists between
the compiled set of columns versus what was received, so there’s no
issue for partially or fully textual compilation scenarios where these
lists might not line up.¶
References: #918

	[sql] [feature] Literal values within a DefaultClause, which is invoked
when using the Column.server_default parameter, will
now be rendered using the “inline” compiler, so that they are rendered
as-is, rather than as bound parameters.

See also

Column server defaults now render literal values

¶
References: #3087

	[sql] [feature] The type of expression is reported when an object passed to a
SQL expression unit can’t be interpreted as a SQL fragment;
pull request courtesy Ryan P. Kelly.¶
References: pull request github:150

	[sql] [feature] Added a new parameter Table.tometadata.name to
the Table.tometadata() method. Similar to
Table.tometadata.schema, this argument causes the newly
copied Table to take on the new name instead of
the existing one. An interesting capability this adds is that of
copying a Table object to the same MetaData
target with a new name. Pull request courtesy n.d. parker.¶
References: pull request github:139

	[sql] [feature] Exception messages have been spiffed up a bit. The SQL statement
and parameters are not displayed if None, reducing confusion for
error messages that weren’t related to a statement. The full
module and classname for the DBAPI-level exception is displayed,
making it clear that this is a wrapped DBAPI exception. The
statement and parameters themselves are bounded within a bracketed
sections to better isolate them from the error message and from
each other.¶
References: #3172

	[sql] [feature] Insert.from_select() now includes Python and SQL-expression
defaults if otherwise unspecified; the limitation where non-
server column defaults aren’t included in an INSERT FROM
SELECT is now lifted and these expressions are rendered as
constants into the SELECT statement.

See also

INSERT FROM SELECT now includes Python and SQL-expression defaults

¶

	[sql] [feature] The UniqueConstraint construct is now included when
reflecting a Table object, for databases where this
is applicable. In order to achieve this
with sufficient accuracy, MySQL and Postgresql now contain features
that correct for the duplication of indexes and unique constraints
when reflecting tables, indexes, and constraints.
In the case of MySQL, there is not actually a “unique constraint”
concept independent of a “unique index”, so for this backend
UniqueConstraint continues to remain non-present for a
reflected Table. For Postgresql, the query used to
detect indexes against pg_index has been improved to check for
the same construct in pg_constraint, and the implicitly
constructed unique index is not included with a
reflected Table.
In both cases, the Inspector.get_indexes() and the
Inspector.get_unique_constraints() methods return both
constructs individually, but include a new token
duplicates_constraint in the case of Postgresql or
duplicates_index in the case
of MySQL to indicate when this condition is detected.
Pull request courtesy Johannes Erdfelt.

See also

UniqueConstraint is now part of the Table reflection process

¶References: #3184, pull request bitbucket:30

	[sql] [feature] Added new method Select.with_statement_hint() and ORM
method Query.with_statement_hint() to support statement-level
hints that are not specific to a table.¶
References: #3206

	[sql] [feature] The info parameter has been added as a constructor argument
to all schema constructs including MetaData,
Index, ForeignKey, ForeignKeyConstraint,
UniqueConstraint, PrimaryKeyConstraint,
CheckConstraint.¶
References: #2963

	[sql] [feature] The Table.autoload_with flag now implies that
Table.autoload should be True. Pull request
courtesy Malik Diarra.¶
References: #3027

	[sql] [feature] The Select.limit() and Select.offset() methods
now accept any SQL expression, in addition to integer values, as
arguments. Typically this is used to allow a bound parameter to be
passed, which can be substituted with a value later thus allowing
Python-side caching of the SQL query. The implementation
here is fully backwards compatible with existing third party dialects,
however those dialects which implement special LIMIT/OFFSET systems
will need modification in order to take advantage of the new
capabilities. Limit and offset also support “literal_binds” mode,¶
References: #3034

	[sql] [changed] The column() and table()
constructs are now importable from the “from sqlalchemy” namespace,
just like every other Core construct.¶

	[sql] [changed] The implicit conversion of strings to text() constructs
when passed to most builder methods of select() as
well as Query now emits a warning with just the
plain string sent. The textual conversion still proceeds normally,
however. The only method that accepts a string without a warning
are the “label reference” methods like order_by(), group_by();
these functions will now at compile time attempt to resolve a single
string argument to a column or label expression present in the
selectable; if none is located, the expression still renders, but
you get the warning again. The rationale here is that the implicit
conversion from string to text is more unexpected than not these days,
and it is better that the user send more direction to the Core / ORM
when passing a raw string as to what direction should be taken.
Core/ORM tutorials have been updated to go more in depth as to how text
is handled.

See also

Warnings emitted when coercing full SQL fragments into text()

¶
References: #2992

	[sql] [bug] Added the native_enum flag to the __repr__() output
of Enum, which is mostly important when using it with
Alembic autogenerate. Pull request courtesy Dimitris Theodorou.¶
This change is also backported to: 0.9.9

References: pull request bitbucket:41

	[sql] [bug] Fixed bug where using a TypeDecorator that implemented
a type that was also a TypeDecorator would fail with
Python’s “Cannot create a consistent method resolution order (MRO)”
error, when any kind of SQL comparison expression were used against
an object using this type.¶
This change is also backported to: 0.9.9

References: #3278

	[sql] [bug] Fixed issue where the columns from a SELECT embedded in an
INSERT, either through the values clause or as a “from select”,
would pollute the column types used in the result set produced by
the RETURNING clause when columns from both statements shared the
same name, leading to potential errors or mis-adaptation when
retrieving the returning rows.¶
This change is also backported to: 0.9.9

References: #3248

	[sql] [bug] Fixed bug where a fair number of SQL elements within
the sql package would fail to __repr__() successfully,
due to a missing description attribute that would then invoke
a recursion overflow when an internal AttributeError would then
re-invoke __repr__().¶
This change is also backported to: 0.9.8

References: #3195

	[sql] [bug] An adjustment to table/index reflection such that if an index
reports a column that isn’t found to be present in the table,
a warning is emitted and the column is skipped. This can occur
for some special system column situations as has been observed
with Oracle.¶
This change is also backported to: 0.9.8

References: #3180

	[sql] [bug] Fixed bug in CTE where literal_binds compiler argument would not
be always be correctly propagated when one CTE referred to another
aliased CTE in a statement.¶
This change is also backported to: 0.9.8

References: #3154

	[sql] [bug] Fixed 0.9.7 regression caused by #3067 in conjunction with
a mis-named unit test such that so-called “schema” types like
Boolean and Enum could no longer be pickled.¶
This change is also backported to: 0.9.8

References: #3144, #3067

	[sql] [bug] Fix bug in naming convention feature where using a check
constraint convention that includes constraint_name would
then force all Boolean and Enum types to
require names as well, as these implicitly create a
constraint, even if the ultimate target backend were one that does
not require generation of the constraint such as Postgresql.
The mechanics of naming conventions for these particular
constraints has been reorganized such that the naming
determination is done at DDL compile time, rather than at
constraint/table construction time.¶
This change is also backported to: 0.9.7

References: #3067

	[sql] [bug] Fixed bug in common table expressions whereby positional bound
parameters could be expressed in the wrong final order
when CTEs were nested in certain ways.¶
This change is also backported to: 0.9.7

References: #3090

	[sql] [bug] Fixed bug where multi-valued Insert construct would fail
to check subsequent values entries beyond the first one given
for literal SQL expressions.¶
This change is also backported to: 0.9.7

References: #3069

	[sql] [bug] Added a “str()” step to the dialect_kwargs iteration for
Python version < 2.6.5, working around the
“no unicode keyword arg” bug as these args are passed along as
keyword args within some reflection processes.¶
This change is also backported to: 0.9.7

References: #3123

	[sql] [bug] The TypeEngine.with_variant() method will now accept a
type class as an argument which is internally converted to an
instance, using the same convention long established by other
constructs such as Column.¶
This change is also backported to: 0.9.7

References: #3122

	[sql] [bug] The Column.nullable flag is implicitly set to False
when that Column is referred to in an explicit
PrimaryKeyConstraint for that table. This behavior now
matches that of when the Column itself has the
Column.primary_key flag set to True, which is
intended to be an exactly equivalent case.¶
This change is also backported to: 0.9.5

References: #3023

	[sql] [bug] Fixed bug where the Operators.__and__(),
Operators.__or__() and Operators.__invert__()
operator overload methods could not be overridden within a custom
TypeEngine.Comparator implementation.¶
This change is also backported to: 0.9.5

References: #3012

	[sql] [bug] Fixed bug in new DialectKWArgs.argument_for() method where
adding an argument for a construct not previously included for any
special arguments would fail.¶
This change is also backported to: 0.9.5

References: #3024

	[sql] [bug] Fixed regression introduced in 0.9 where new “ORDER BY <labelname>”
feature from #1068 would not apply quoting rules to the
label name as rendered in the ORDER BY.¶
This change is also backported to: 0.9.5

References: #1068, #3020

	[sql] [bug] Restored the import for Function to the sqlalchemy.sql.expression
import namespace, which was removed at the beginning of 0.9.¶
This change is also backported to: 0.9.5

	[sql] [bug] Fixed bug in Enum and other SchemaType
subclasses where direct association of the type with a
MetaData would lead to a hang when events
(like create events) were emitted on the MetaData.¶
This change is also backported to: 0.9.7, 0.8.7

References: #3124

	[sql] [bug] Fixed a bug within the custom operator plus TypeEngine.with_variant()
system, whereby using a TypeDecorator in conjunction with
variant would fail with an MRO error when a comparison operator was used.¶
This change is also backported to: 0.9.7, 0.8.7

References: #3102

	[sql] [bug] Fixed bug in INSERT..FROM SELECT construct where selecting from a
UNION would wrap the union in an anonymous (e.g. unlabled) subquery.¶
This change is also backported to: 0.9.5, 0.8.7

References: #3044

	[sql] [bug] Fixed bug where Table.update() and Table.delete()
would produce an empty WHERE clause when an empty and_()
or or_() or other blank expression were applied. This is
now consistent with that of select().¶
This change is also backported to: 0.9.5, 0.8.7

References: #3045

	[sql] [bug] The multi-values version of Insert.values() has been
repaired to work more usefully with tables that have Python-
side default values and/or functions, as well as server-side
defaults. The feature will now work with a dialect that uses
“positional” parameters; a Python callable will also be
invoked individually for each row just as is the case with an
“executemany” style invocation; a server- side default column
will no longer implicitly receive the value explicitly
specified for the first row, instead refusing to invoke
without an explicit value.

See also

Python-side defaults invoked for each row invidually when using a multivalued insert

¶
References: #3288

	[sql] [bug] Fixed bug in Table.tometadata() method where the
CheckConstraint associated with a Boolean
or Enum type object would be doubled in the target table.
The copy process now tracks the production of this constraint object
as local to a type object.¶
References: #3260

	[sql] [bug] The behavioral contract of the ForeignKeyConstraint.columns
collection has been made consistent; this attribute is now a
ColumnCollection like that of all other constraints and
is initialized at the point when the constraint is associated with
a Table.

See also

ForeignKeyConstraint.columns is now a ColumnCollection

¶
References: #3243

	[sql] [bug] The Column.key attribute is now used as the source of
anonymous bound parameter names within expressions, to match the
existing use of this value as the key when rendered in an INSERT
or UPDATE statement. This allows Column.key to be used
as a “substitute” string to work around a difficult column name
that doesn’t translate well into a bound parameter name. Note that
the paramstyle is configurable on create_engine() in any case,
and most DBAPIs today support a named and positional style.¶
References: #3245

	[sql] [bug] Fixed the name of the PoolEvents.reset.dbapi_connection
parameter as passed to this event; in particular this affects
usage of the “named” argument style for this event. Pull request
courtesy Jason Goldberger.¶
References: pull request github:146

	[sql] [bug] Reversing a change that was made in 0.9, the “singleton” nature
of the “constants” null(), true(), and false()
has been reverted. These functions returning a “singleton” object
had the effect that different instances would be treated as the
same regardless of lexical use, which in particular would impact
the rendering of the columns clause of a SELECT statement.

See also

null(), false() and true() constants are no longer singletons

¶
References: #3170

	[sql] [bug] [engine] Fixed bug where a “branched” connection, that is the kind you get
when you call Connection.connect(), would not share invalidation
status with the parent. The architecture of branching has been tweaked
a bit so that the branched connection defers to the parent for
all invalidation status and operations.¶
References: #3215

	[sql] [bug] [engine] Fixed bug where a “branched” connection, that is the kind you get
when you call Connection.connect(), would not share transaction
status with the parent. The architecture of branching has been tweaked
a bit so that the branched connection defers to the parent for
all transactional status and operations.¶
References: #3190

	[sql] [bug] Using Insert.from_select() now implies inline=True
on insert(). This helps to fix a bug where an
INSERT...FROM SELECT construct would inadvertently be compiled
as “implicit returning” on supporting backends, which would
cause breakage in the case of an INSERT that inserts zero rows
(as implicit returning expects a row), as well as arbitrary
return data in the case of an INSERT that inserts multiple
rows (e.g. only the first row of many).
A similar change is also applied to an INSERT..VALUES
with multiple parameter sets; implicit RETURNING will no longer emit
for this statement either. As both of these constructs deal
with varible numbers of rows, the
ResultProxy.inserted_primary_key accessor does not
apply. Previously, there was a documentation note that one
may prefer inline=True with INSERT..FROM SELECT as some databases
don’t support returning and therefore can’t do “implicit” returning,
but there’s no reason an INSERT...FROM SELECT needs implicit returning
in any case. Regular explicit Insert.returning() should
be used to return variable numbers of result rows if inserted
data is needed.¶
References: #3169

	[sql] [enhancement] Custom dialects that implement GenericTypeCompiler can
now be constructed such that the visit methods receive an indication
of the owning expression object, if any. Any visit method that
accepts keyword arguments (e.g. **kw) will in most cases
receive a keyword argument type_expression, referring to the
expression object that the type is contained within. For columns
in DDL, the dialect’s compiler class may need to alter its
get_column_specification() method to support this as well.
The UserDefinedType.get_col_spec() method will also receive
type_expression if it provides **kw in its argument
signature.¶
References: #3074

schema

	[schema] [feature] The DDL generation system of MetaData.create_all()
and MetaData.drop_all() has been enhanced to in most
cases automatically handle the case of mutually dependent
foreign key constraints; the need for the
ForeignKeyConstraint.use_alter flag is greatly
reduced. The system also works for constraints which aren’t given
a name up front; only in the case of DROP is a name required for
at least one of the constraints involved in the cycle.

See also

The use_alter flag on ForeignKeyConstraint is (usually) no longer needed

¶
References: #3282

	[schema] [feature] Added a new accessor Table.foreign_key_constraints
to complement the Table.foreign_keys collection,
as well as ForeignKeyConstraint.referred_table.¶

	[schema] [bug] The CheckConstraint construct now supports naming
conventions that include the token %(column_0_name)s; the
constraint expression is scanned for columns. Additionally,
naming conventions for check constraints that don’t include the
%(constraint_name)s token will now work for SchemaType-
generated constraints, such as those of Boolean and
Enum; this stopped working in 0.9.7 due to #3067.

See also

Naming CHECK Constraints

Configuring Naming for Boolean, Enum, and other schema types

¶
References: #3067, #3299

postgresql

	[postgresql] [feature] Added support for the CONCURRENTLY keyword with Postgresql
indexes, established using postgresql_concurrently. Pull
request courtesy Iuri de Silvio.

See also

Indexes with CONCURRENTLY

¶
This change is also backported to: 0.9.9

References: pull request bitbucket:45

	[postgresql] [feature] [pg8000] Support is added for “sane multi row count” with the pg8000 driver,
which applies mostly to when using versioning with the ORM.
The feature is version-detected based on pg8000 1.9.14 or greater
in use. Pull request courtesy Tony Locke.¶
This change is also backported to: 0.9.8

References: pull request github:125

	[postgresql] [feature] Added kw argument postgresql_regconfig to the
ColumnOperators.match() operator, allows the “reg config” argument
to be specified to the to_tsquery() function emitted.
Pull request courtesy Jonathan Vanasco.¶
This change is also backported to: 0.9.7

References: #3078, pull request bitbucket:22

	[postgresql] [feature] Added support for Postgresql JSONB via JSONB. Pull request
courtesy Damian Dimmich.¶
This change is also backported to: 0.9.7

References: pull request github:101

	[postgresql] [feature] Added support for AUTOCOMMIT isolation level when using the pg8000
DBAPI. Pull request courtesy Tony Locke.¶
This change is also backported to: 0.9.5

References: pull request github:88

	[postgresql] [feature] Added a new flag ARRAY.zero_indexes to the Postgresql
ARRAY type. When set to True, a value of one will be
added to all array index values before passing to the database, allowing
better interoperability between Python style zero-based indexes and
Postgresql one-based indexes. Pull request courtesy Alexey Terentev.¶
This change is also backported to: 0.9.5

References: #2785, pull request bitbucket:18

	[postgresql] [feature] The PG8000 dialect now supports the
create_engine.encoding parameter, by setting up
the client encoding on the connection which is then intercepted
by pg8000. Pull request courtesy Tony Locke.¶
References: pull request github:132

	[postgresql] [feature] Added support for PG8000’s native JSONB feature. Pull request
courtesy Tony Locke.¶
References: pull request github:132

	[postgresql] [feature] [pypy] Added support for the psycopg2cffi DBAPI on pypy. Pull request
courtesy shauns.

See also

sqlalchemy.dialects.postgresql.psycopg2cffi

¶
References: #3052, pull request bitbucket:34

	[postgresql] [feature] Added support for the FILTER keyword as applied to aggregate
functions, supported by Postgresql 9.4. Pull request
courtesy Ilja Everilä.

See also

Postgresql FILTER keyword

¶
References: pull request github:134

	[postgresql] [feature] Support has been added for reflection of materialized views
and foreign tables, as well as support for materialized views
within Inspector.get_view_names(), and a new method
PGInspector.get_foreign_table_names() available on the
Postgresql version of Inspector. Pull request courtesy
Rodrigo Menezes.

See also

Postgresql Dialect reflects Materialized Views, Foreign Tables

¶
References: #2891, pull request github:128

	[postgresql] [feature] Added support for PG table options TABLESPACE, ON COMMIT,
WITH(OUT) OIDS, and INHERITS, when rendering DDL via
the Table construct. Pull request courtesy
malikdiarra.

See also

PostgreSQL Table Options

¶
References: #2051

	[postgresql] [feature] Added new method PGInspector.get_enums(), when using the
inspector for Postgresql will provide a list of ENUM types.
Pull request courtesy Ilya Pekelny.¶
References: pull request github:126

	[postgresql] [bug] Repaired support for Postgresql UUID types in conjunction with
the ARRAY type when using psycopg2. The psycopg2 dialect now
employs use of the psycopg2.extras.register_uuid() hook
so that UUID values are always passed to/from the DBAPI as
UUID() objects. The UUID.as_uuid flag is still
honored, except with psycopg2 we need to convert returned
UUID objects back into strings when this is disabled.¶
This change is also backported to: 0.9.9

References: #2940

	[postgresql] [bug] Added support for the postgresql.JSONB datatype when
using psycopg2 2.5.4 or greater, which features native conversion
of JSONB data so that SQLAlchemy’s converters must be disabled;
additionally, the newly added psycopg2 extension
extras.register_default_jsonb is used to establish a JSON
deserializer passed to the dialect via the json_deserializer
argument. Also repaired the Postgresql integration tests which
weren’t actually round-tripping the JSONB type as opposed to the
JSON type. Pull request courtesy Mateusz Susik.¶
This change is also backported to: 0.9.9

References: pull request github:145

	[postgresql] [bug] Repaired the use of the “array_oid” flag when registering the
HSTORE type with older psycopg2 versions < 2.4.3, which does not
support this flag, as well as use of the native json serializer
hook “register_default_json” with user-defined json_deserializer
on psycopg2 versions < 2.5, which does not include native json.¶
This change is also backported to: 0.9.9

	[postgresql] [bug] Fixed bug where Postgresql dialect would fail to render an
expression in an Index that did not correspond directly
to a table-bound column; typically when a text() construct
was one of the expressions within the index; or could misinterpret the
list of expressions if one or more of them were such an expression.¶
This change is also backported to: 0.9.9

References: #3174

	[postgresql] [bug] A revisit to this issue first patched in 0.9.5, apparently
psycopg2’s .closed accessor is not as reliable as we assumed,
so we have added an explicit check for the exception messages
“SSL SYSCALL error: Bad file descriptor” and
“SSL SYSCALL error: EOF detected” when detecting an
is-disconnect scenario. We will continue to consult psycopg2’s
connection.closed as a first check.¶
This change is also backported to: 0.9.8

References: #3021

	[postgresql] [bug] Fixed bug where Postgresql JSON type was not able to persist or
otherwise render a SQL NULL column value, rather than a JSON-encoded
'null'. To support this case, changes are as follows:

	The value null() can now be specified, which will always
result in a NULL value resulting in the statement.

	A new parameter JSON.none_as_null is added, which
when True indicates that the Python None value should be
peristed as SQL NULL, rather than JSON-encoded 'null'.

Retrival of NULL as None is also repaired for DBAPIs other than
psycopg2, namely pg8000.

¶This change is also backported to: 0.9.8

References: #3159

	[postgresql] [bug] The exception wrapping system for DBAPI errors can now accommodate
non-standard DBAPI exceptions, such as the psycopg2
TransactionRollbackError. These exceptions will now be raised
using the closest available subclass in sqlalchemy.exc, in the
case of TransactionRollbackError, sqlalchemy.exc.OperationalError.¶
This change is also backported to: 0.9.8

References: #3075

	[postgresql] [bug] Fixed bug in postgresql.array object where comparison
to a plain Python list would fail to use the correct array constructor.
Pull request courtesy Andrew.¶
This change is also backported to: 0.9.8

References: #3141, pull request github:124

	[postgresql] [bug] Added a supported FunctionElement.alias() method to functions,
e.g. the func construct. Previously, behavior for this method
was undefined. The current behavior mimics that of pre-0.9.4,
which is that the function is turned into a single-column FROM
clause with the given alias name, where the column itself is
anonymously named.¶
This change is also backported to: 0.9.8

References: #3137

	[postgresql] [bug] [pg8000] Fixed bug introduced in 0.9.5 by new pg8000 isolation level feature
where engine-level isolation level parameter would raise an error
on connect.¶
This change is also backported to: 0.9.7

References: #3134

	[postgresql] [bug] The psycopg2 .closed accessor is now consulted when determining
if an exception is a “disconnect” error; ideally, this should remove
the need for any other inspection of the exception message to detect
disconnect, however we will leave those existing messages in place
as a fallback. This should be able to handle newer cases like
“SSL EOF” conditions. Pull request courtesy Dirk Mueller.¶
This change is also backported to: 0.9.5

References: #3021, pull request github:87

	[postgresql] [bug] Added the hashable=False flag to the PG HSTORE type, which
is needed to allow the ORM to skip over trying to “hash” an ORM-mapped
HSTORE column when requesting it in a mixed column/entity list.
Patch courtesy Gunnlaugur Þór Briem.¶
This change is also backported to: 0.9.5, 0.8.7

References: #3053

	[postgresql] [bug] Added a new “disconnect” message “connection has been closed unexpectedly”.
This appears to be related to newer versions of SSL.
Pull request courtesy Antti Haapala.¶
This change is also backported to: 0.9.5, 0.8.7

References: pull request bitbucket:13

	[postgresql] [bug] The Postgresql postgresql.ENUM type will emit a
DROP TYPE instruction when a plain table.drop() is called,
assuming the object is not associated directly with a
MetaData object. In order to accomodate the use case of
an enumerated type shared between multiple tables, the type should
be associated directly with the MetaData object; in this
case the type will only be created at the metadata level, or if
created directly. The rules for create/drop of
Postgresql enumerated types have been highly reworked in general.

See also

Overhaul of ENUM type create/drop rules

¶
References: #3319

	[postgresql] [bug] The PGDialect.has_table() method will now query against
pg_catalog.pg_table_is_visible(c.oid), rather than testing
for an exact schema match, when the schema name is None; this
so that the method will also illustrate that temporary tables
are present. Note that this is a behavioral change, as Postgresql
allows a non-temporary table to silently overwrite an existing
temporary table of the same name, so this changes the behavior
of checkfirst in that unusual scenario.

See also

Postgresql has_table() now works for temporary tables

¶
References: #3264

	[postgresql] [enhancement] Added a new type postgresql.OID to the Postgresql dialect.
While “oid” is generally a private type within PG that is not exposed
in modern versions, there are some PG use cases such as large object
support where these types might be exposed, as well as within some
user-reported schema reflection use cases.¶
This change is also backported to: 0.9.5

References: #3002

mysql

	[mysql] [feature] The MySQL dialect now renders TIMESTAMP with NULL / NOT NULL in
all cases, so that MySQL 5.6.6 with the
explicit_defaults_for_timestamp flag enabled will
will allow TIMESTAMP to continue to work as expected when
nullable=False. Existing applications are unaffected as
SQLAlchemy has always emitted NULL for a TIMESTAMP column that
is nullable=True.

See also

MySQL TIMESTAMP Type now renders NULL / NOT NULL in all cases

TIMESTAMP Columns and NULL

¶
References: #3155

	[mysql] [feature] Updated the “supports_unicode_statements” flag to True for MySQLdb
and Pymysql under Python 2. This refers to the SQL statements
themselves, not the parameters, and affects issues such as table
and column names using non-ASCII characters. These drivers both
appear to support Python 2 Unicode objects without issue in modern
versions.¶
References: #3121

	[mysql] [bug] Added a version check to the MySQLdb dialect surrounding the
check for ‘utf8_bin’ collation, as this fails on MySQL server < 5.0.¶
This change is also backported to: 0.9.9

References: #3274

	[mysql] [bug] [mysqlconnector] Mysqlconnector as of version 2.0, probably as a side effect of
the python 3 merge, now does not expect percent signs (e.g.
as used as the modulus operator and others) to be doubled,
even when using the “pyformat” bound parameter format (this
change is not documented by Mysqlconnector). The dialect now
checks for py2k and for mysqlconnector less than version 2.0
when detecting if the modulus operator should be rendered as
%% or %.¶
This change is also backported to: 0.9.8

	[mysql] [bug] [mysqlconnector] Unicode SQL is now passed for MySQLconnector version 2.0 and above;
for Py2k and MySQL < 2.0, strings are encoded.¶
This change is also backported to: 0.9.8

	[mysql] [bug] MySQL error 2014 “commands out of sync” appears to be raised as a
ProgrammingError, not OperationalError, in modern MySQL-Python versions;
all MySQL error codes that are tested for “is disconnect” are now
checked within OperationalError and ProgrammingError regardless.¶
This change is also backported to: 0.9.7, 0.8.7

References: #3101

	[mysql] [bug] Fixed bug where column names added to mysql_length parameter
on an index needed to have the same quoting for quoted names in
order to be recognized. The fix makes the quotes optional but
also provides the old behavior for backwards compatibility with those
using the workaround.¶
This change is also backported to: 0.9.5, 0.8.7

References: #3085

	[mysql] [bug] Added support for reflecting tables where an index includes
KEY_BLOCK_SIZE using an equal sign. Pull request courtesy
Sean McGivern.¶
This change is also backported to: 0.9.5, 0.8.7

References: pull request bitbucket:15

	[mysql] [bug] The MySQL dialect now supports CAST on types that are constructed
as TypeDecorator objects.¶

	[mysql] [bug] A warning is emitted when cast() is used with the MySQL
dialect on a type where MySQL does not support CAST; MySQL only
supports CAST on a subset of datatypes. SQLAlchemy has for a long
time just omitted the CAST for unsupported types in the case of
MySQL. While we don’t want to change this now, we emit a warning
to show that it’s taken place. A warning is also emitted when
a CAST is used with an older MySQL version (< 4) that doesn’t support
CAST at all, it’s skipped in this case as well.¶
References: #3237

	[mysql] [bug] The mysql.SET type has been overhauled to no longer
assume that the empty string, or a set with a single empty string
value, is in fact a set with a single empty string; instead, this
is by default treated as the empty set. In order to handle persistence
of a mysql.SET that actually wants to include the blank
value '' as a legitimate value, a new bitwise operational mode
is added which is enabled by the
mysql.SET.retrieve_as_bitwise flag, which will persist
and retrieve values unambiguously using their bitflag positioning.
Storage and retrieval of unicode values for driver configurations
that aren’t converting unicode natively is also repaired.

See also

MySQL SET Type Overhauled to support empty sets, unicode, blank value handling

¶
References: #3283

	[mysql] [bug] The ColumnOperators.match() operator is now handled such that the
return type is not strictly assumed to be boolean; it now
returns a Boolean subclass called MatchType.
The type will still produce boolean behavior when used in Python
expressions, however the dialect can override its behavior at
result time. In the case of MySQL, while the MATCH operator
is typically used in a boolean context within an expression,
if one actually queries for the value of a match expression, a
floating point value is returned; this value is not compatible
with SQLAlchemy’s C-based boolean processor, so MySQL’s result-set
behavior now follows that of the Float type.
A new operator object notmatch_op is also added to better allow
dialects to define the negation of a match operation.

See also

The match() operator now returns an agnostic MatchType compatible with MySQL’s floating point return value

¶
References: #3263

	[mysql] [bug] MySQL boolean symbols “true”, “false” work again. 0.9’s change
in #2682 disallowed the MySQL dialect from making use of the
“true” and “false” symbols in the context of “IS” / “IS NOT”, but
MySQL supports this syntax even though it has no boolean type.
MySQL remains “non native boolean”, but the true()
and false() symbols again produce the
keywords “true” and “false”, so that an expression like
column.is_(true()) again works on MySQL.

See also

MySQL boolean symbols “true”, “false” work again

¶
References: #3186

	[mysql] [bug] The MySQL dialect will now disable ConnectionEvents.handle_error()
events from firing for those statements which it uses internally
to detect if a table exists or not. This is achieved using an
execution option skip_user_error_events that disables the handle
error event for the scope of that execution. In this way, user code
that rewrites exceptions doesn’t need to worry about the MySQL
dialect or other dialects that occasionally need to catch
SQLAlchemy specific exceptions.¶

	[mysql] [bug] Changed the default value of “raise_on_warnings” to False for
MySQLconnector. This was set at True for some reason. The “buffered”
flag unfortunately must stay at True as MySQLconnector does not allow
a cursor to be closed unless all results are fully fetched.¶
References: #2515

	[mysql] [change] The gaerdbms dialect is no longer necessary, and emits a
deprecation warning. Google now recommends using the MySQLdb
dialect directly.¶
This change is also backported to: 0.9.9

References: #3275

sqlite

	[sqlite] [feature] Added support for partial indexes (e.g. with a WHERE clause) on
SQLite. Pull request courtesy Kai Groner.

See also

Partial Indexes

¶
This change is also backported to: 0.9.9

References: pull request bitbucket:42

	[sqlite] [feature] Added a new SQLite backend for the SQLCipher backend. This backend
provides for encrypted SQLite databases using the pysqlcipher Python
driver, which is very similar to the pysqlite driver.

See also

pysqlcipher

¶
This change is also backported to: 0.9.9

	[sqlite] [bug] When selecting from a UNION using an attached database file,
the pysqlite driver reports column names in cursor.description
as ‘dbname.tablename.colname’, instead of ‘tablename.colname’ as
it normally does for a UNION (note that it’s supposed to just be
‘colname’ for both, but we work around it). The column translation
logic here has been adjusted to retrieve the rightmost token, rather
than the second token, so it works in both cases. Workaround
courtesy Tony Roberts.¶
This change is also backported to: 0.9.8

References: #3211

	[sqlite] [bug] Fixed a SQLite join rewriting issue where a subquery that is embedded
as a scalar subquery such as within an IN would receive inappropriate
substitutions from the enclosing query, if the same table were present
inside the subquery as were in the enclosing query such as in a
joined inheritance scenario.¶
This change is also backported to: 0.9.7

References: #3130

	[sqlite] [bug] UNIQUE and FOREIGN KEY constraints are now fully reflected on
SQLite both with and without names. Previously, foreign key
names were ignored and unnamed unique constraints were skipped.
Thanks to Jon Nelson for assistance with this.¶
References: #3261, #3244

	[sqlite] [bug] The SQLite dialect, when using the sqlite.DATE,
sqlite.TIME,
or sqlite.DATETIME types, and given a storage_format that
only renders numbers, will render the types in DDL as
DATE_CHAR, TIME_CHAR, and DATETIME_CHAR, so that despite the
lack of alpha characters in the values, the column will still
deliver the “text affinity”. Normally this is not needed, as the
textual values within the default storage formats already
imply text.

See also

Date and Time Types

¶
References: #3257

	[sqlite] [bug] SQLite now supports reflection of unique constraints from
temp tables; previously, this would fail with a TypeError.
Pull request courtesy Johannes Erdfelt.

See also

SQLite/Oracle have distinct methods for temporary table/view name reporting - changes regarding SQLite temporary
table and view reflection.

¶
References: #3203, pull request bitbucket:31

	[sqlite] [bug] Added Inspector.get_temp_table_names() and
Inspector.get_temp_view_names(); currently, only the
SQLite and Oracle dialects support these methods. The return of
temporary table and view names has been removed from SQLite and
Oracle’s version of Inspector.get_table_names() and
Inspector.get_view_names(); other database backends cannot
support this information (such as MySQL), and the scope of operation
is different in that the tables can be local to a session and
typically aren’t supported in remote schemas.

See also

SQLite/Oracle have distinct methods for temporary table/view name reporting

¶
References: #3204

mssql

	[mssql] [feature] Enabled “multivalues insert” for SQL Server 2008. Pull request
courtesy Albert Cervin. Also expanded the checks for “IDENTITY INSERT”
mode to include when the identity key is present in the
VALUEs clause of the statement.¶
This change is also backported to: 0.9.7

References: pull request github:98

	[mssql] [feature] SQL Server 2012 now recommends VARCHAR(max), NVARCHAR(max),
VARBINARY(max) for large text/binary types. The MSSQL dialect will
now respect this based on version detection, as well as the new
deprecate_large_types flag.

See also

Large Text/Binary Type Deprecation

¶
References: #3039

	[mssql] [changed] The hostname-based connection format for SQL Server when using
pyodbc will no longer specify a default “driver name”, and a warning
is emitted if this is missing. The optimal driver name for SQL Server
changes frequently and is per-platform, so hostname based connections
need to specify this. DSN-based connections are preferred.

See also

PyODBC driver name is required with hostname-based SQL Server connections

¶
References: #3182

	[mssql] [bug] Fixed the version string detection in the pymssql dialect to
work with Microsoft SQL Azure, which changes the word “SQL Server”
to “SQL Azure”.¶
This change is also backported to: 0.9.8

References: #3151

	[mssql] [bug] Revised the query used to determine the current default schema name
to use the database_principal_id() function in conjunction with
the sys.database_principals view so that we can determine
the default schema independently of the type of login in progress
(e.g., SQL Server, Windows, etc).¶
This change is also backported to: 0.9.5

References: #3025

	[mssql] [bug] Added statement encoding to the “SET IDENTITY_INSERT”
statements which operate when an explicit INSERT is being
interjected into an IDENTITY column, to support non-ascii table
identifiers on drivers such as pyodbc + unix + py2k that don’t
support unicode statements.¶
This change is also backported to: 0.9.7, 0.8.7

	[mssql] [bug] In the SQL Server pyodbc dialect, repaired the implementation
for the description_encoding dialect parameter, which when
not explicitly set was preventing cursor.description from
being parsed correctly in the case of result sets that
contained names in alternate encodings. This parameter
shouldn’t be needed going forward.¶
This change is also backported to: 0.9.7, 0.8.7

References: #3091

oracle

	[oracle] [feature] Added support for cx_oracle connections to a specific service
name, as opposed to a tns name, by passing ?service_name=<name>
to the URL. Pull request courtesy Sławomir Ehlert.¶
References: pull request github:152

	[oracle] [feature] New Oracle DDL features for tables, indexes: COMPRESS, BITMAP.
Patch courtesy Gabor Gombas.¶

	[oracle] [feature] Added support for CTEs under Oracle. This includes some tweaks
to the aliasing syntax, as well as a new CTE feature
CTE.suffix_with(), which is useful for adding in special
Oracle-specific directives to the CTE.

See also

Improved support for CTEs in Oracle

¶
References: #3220

	[oracle] [feature] Added support for the Oracle table option ON COMMIT.¶

	[oracle] [bug] Fixed long-standing bug in Oracle dialect where bound parameter
names that started with numbers would not be quoted, as Oracle
doesn’t like numerics in bound parameter names.¶
This change is also backported to: 0.9.8

References: #2138

	[oracle] [bug] [tests] Fixed bug in oracle dialect test suite where in one test,
‘username’ was assumed to be in the database URL, even though
this might not be the case.¶
This change is also backported to: 0.9.7

References: #3128

	[oracle] [bug] An alias name will be properly quoted when referred to using the
%(name)s token inside the Select.with_hint() method.
Previously, the Oracle backend hadn’t implemented this quoting.¶

misc

	[feature] [examples] Added a new example illustrating materialized paths, using the
latest relationship features. Example courtesy Jack Zhou.¶
This change is also backported to: 0.9.5

References: pull request bitbucket:21

	[feature] [ext] Added a new extension suite sqlalchemy.ext.baked. This
simple but unusual system allows for a dramatic savings in Python
overhead for the construction and processing of orm Query
objects, from query construction up through rendering of a string
SQL statement.

See also

Baked Queries

¶
References: #3054

	[feature] [examples] A new suite of examples dedicated to providing a detailed study
into performance of SQLAlchemy ORM and Core, as well as the DBAPI,
from multiple perspectives. The suite runs within a container
that provides built in profiling displays both through console
output as well as graphically via the RunSnake tool.

See also

Performance

¶

	[feature] [ext] The sqlalchemy.ext.automap extension will now set
cascade="all, delete-orphan" automatically on a one-to-many
relationship/backref where the foreign key is detected as containing
one or more non-nullable columns. This argument is present in the
keywords passed to automap.generate_relationship() in this
case and can still be overridden. Additionally, if the
ForeignKeyConstraint specifies ondelete="CASCADE"
for a non-nullable or ondelete="SET NULL" for a nullable set
of columns, the argument passive_deletes=True is also added to the
relationship. Note that not all backends support reflection of
ondelete, but backends that do include Postgresql and MySQL.¶
References: #3210

	[removed] The Drizzle dialect has been removed from the Core; it is now
available as sqlalchemy-drizzle,
an independent, third party dialect. The dialect is still based
almost entirely off of the MySQL dialect present in SQLAlchemy.

See also

Drizzle Dialect is now an External Dialect

¶

	[bug] [ext] [py3k] Fixed bug where the association proxy list class would not interpret
slices correctly under Py3K. Pull request courtesy
Gilles Dartiguelongue.¶
This change is also backported to: 0.9.9

References: pull request github:154

	[bug] [examples] Updated the Versioning with a History Table example such that
mapped columns are re-mapped to
match column names as well as grouping of columns; in particular,
this allows columns that are explicitly grouped in a same-column-named
joined inheritance scenario to be mapped in the same way in the
history mappings, avoiding warnings added in the 0.9 series
regarding this pattern and allowing the same view of attribute
keys.¶
This change is also backported to: 0.9.9

	[bug] [examples] Fixed a bug in the examples/generic_assocaitions/discriminator_on_association.py
example, where the subclasses of AddressAssociation were not being
mapped as “single table inheritance”, leading to problems when trying
to use the mappings further.¶
This change is also backported to: 0.9.9

	[bug] [declarative] Fixed an unlikely race condition observed in some exotic end-user
setups, where the attempt to check for “duplicate class name” in
declarative would hit upon a not-totally-cleaned-up weak reference
related to some other class being removed; the check here now ensures
the weakref still references an object before calling upon it further.¶
This change is also backported to: 0.9.8

References: #3208

	[bug] [ext] Fixed bug in ordering list where the order of items would be
thrown off during a collection replace event, if the
reorder_on_append flag were set to True. The fix ensures that the
ordering list only impacts the list that is explicitly associated
with the object.¶
This change is also backported to: 0.9.8

References: #3191

	[bug] [ext] Fixed bug where ext.mutable.MutableDict
failed to implement the update() dictionary method, thus
not catching changes. Pull request courtesy Matt Chisholm.¶
This change is also backported to: 0.9.8

	[bug] [ext] Fixed bug where a custom subclass of ext.mutable.MutableDict
would not show up in a “coerce” operation, and would instead
return a plain ext.mutable.MutableDict. Pull request
courtesy Matt Chisholm.¶
This change is also backported to: 0.9.8

	[bug] [pool] Fixed bug in connection pool logging where the “connection checked out”
debug logging message would not emit if the logging were set up using
logging.setLevel(), rather than using the echo_pool flag.
Tests to assert this logging have been added. This is a
regression that was introduced in 0.9.0.¶
This change is also backported to: 0.9.8

References: #3168

	[bug] [tests] Fixed bug where “python setup.py test” wasn’t calling into
distutils appropriately, and errors would be emitted at the end
of the test suite.¶
This change is also backported to: 0.9.7

	[bug] [declarative] Fixed bug when the declarative __abstract__ flag was not being
distinguished for when it was actually the value False.
The __abstract__ flag needs to acutally evaluate to a True
value at the level being tested.¶
This change is also backported to: 0.9.7

References: #3097

	[bug] [testsuite] In public test suite, shanged to use of String(40) from
less-supported Text in StringTest.test_literal_backslashes.
Pullreq courtesy Jan.¶
This change is also backported to: 0.9.5

References: pull request github:95

	[bug] [tests] [py3k] Corrected for some deprecation warnings involving the imp
module and Python 3.3 or greater, when running tests. Pull
request courtesy Matt Chisholm.¶
This change is also backported to: 0.9.5

References: #2830, pull request bitbucket:2830

	[bug] [declarative] The __mapper_args__ dictionary is copied from a declarative
mixin or abstract class when accessed, so that modifications made
to this dictionary by declarative itself won’t conflict with that
of other mappings. The dictionary is modified regarding the
version_id_col and polymorphic_on arguments, replacing the
column within with the one that is officially mapped to the local
class/table.¶
This change is also backported to: 0.9.5, 0.8.7

References: #3062

	[bug] [ext] Fixed bug in mutable extension where MutableDict did not
report change events for the setdefault() dictionary operation.¶
This change is also backported to: 0.9.5, 0.8.7

References: #3093, #3051

	[bug] [ext] Fixed bug where MutableDict.setdefault() didn’t return the
existing or new value (this bug was not released in any 0.8 version).
Pull request courtesy Thomas Hervé.¶
This change is also backported to: 0.9.5, 0.8.7

References: #3093, #3051, pull request bitbucket:24

0.9 Changelog

0.9.11

no release date
engine

	[engine] [bug] Fixed critical issue whereby the pool “checkout” event handler
may be called against a stale connection without the “connect”
event handler having been called, in the case where the pool
attempted to reconnect after being invalidated and failed; the stale
connection would remain present and would be used on a subsequent
attempt. This issue has a greater impact in the 1.0 series subsequent
to 1.0.2, as it also delivers a blanked-out .info dictionary to
the event handler; prior to 1.0.2 the .info dictionary is still
the previous one.¶
References: #3497

oracle

	[oracle] [bug] [py3k] Fixed support for cx_Oracle version 5.2, which was tripping
up SQLAlchemy’s version detection under Python 3 and inadvertently
not using the correct unicode mode for Python 3. This would cause
issues such as bound variables mis-interpreted as NULL and rows
silently not being returned.¶
References: #3491

0.9.10

Released: July 22, 2015
orm

	[orm] [feature] Added a new entry "entity" to the dictionaries returned by
Query.column_descriptions. This refers to the primary ORM
mapped class or aliased class that is referred to by the expression.
Compared to the existing entry for "type", it will always be
a mapped entity, even if extracted from a column expression, or
None if the given expression is a pure core expression.
See also #3403 which repaired a regression in this feature
which was unreleased in 0.9.10 but was released in the 1.0 version.¶
References: #3320

	[orm] [bug] Query doesn’t support joins, subselects, or special
FROM clauses when using the Query.update() or
Query.delete() methods; instead of silently ignoring these
fields if methods like Query.join() or
Query.select_from() has been called, a warning is emitted.
As of 1.0.0b5 this will raise an error.¶
References: #3349

	[orm] [bug] Fixed bug where the state tracking within multiple, nested
Session.begin_nested() operations would fail to propagate
the “dirty” flag for an object that had been updated within
the inner savepoint, such that if the enclosing savepoint were
rolled back, the object would not be part of the state that was
expired and therefore reverted to its database state.¶
References: #3352

engine

	[engine] [bug] Added the string value "none" to those accepted by the
Pool.reset_on_return parameter as a synonym for None,
so that string values can be used for all settings, allowing
utilities like engine_from_config() to be usable without
issue.¶
References: #3375

sql

	[sql] [feature] Added official support for a CTE used by the SELECT present
inside of Insert.from_select(). This behavior worked
accidentally up until 0.9.9, when it no longer worked due to
unrelated changes as part of #3248. Note that this
is the rendering of the WITH clause after the INSERT, before the
SELECT; the full functionality of CTEs rendered at the top
level of INSERT, UPDATE, DELETE is a new feature targeted for a
later release.¶
References: #3418

	[sql] [bug] Fixed issue where a MetaData object that used a naming
convention would not properly work with pickle. The attribute was
skipped leading to inconsistencies and failures if the unpickled
MetaData object were used to base additional tables
from.¶
References: #3362

postgresql

	[postgresql] [bug] Fixed a long-standing bug where the Enum type as used
with the psycopg2 dialect in conjunction with non-ascii values
and native_enum=False would fail to decode return results properly.
This stemmed from when the PG postgresql.ENUM type used
to be a standalone type without a “non native” option.¶
References: #3354

mysql

	[mysql] [bug] [pymysql] Fixed unicode support for PyMySQL when using an “executemany”
operation with unicode parameters. SQLAlchemy now passes both
the statement as well as the bound parameters as unicode
objects, as PyMySQL generally uses string interpolation
internally to produce the final statement, and in the case of
executemany does the “encode” step only on the final statement.¶
References: #3337

	[mysql] [bug] [py3k] Fixed the mysql.BIT type on Py3K which was not using the
ord() function correctly. Pull request courtesy David Marin.¶
References: #3333, pull request github:158

sqlite

	[sqlite] [bug] Fixed bug in SQLite dialect where reflection of UNIQUE constraints
that included non-alphabetic characters in the names, like dots or
spaces, would not be reflected with their name.¶
References: #3495

misc

	[bug] [ext] Fixed bug where when using extended attribute instrumentation system,
the correct exception would not be raised when class_mapper()
were called with an invalid input that also happened to not
be weak referencable, such as an integer.¶
References: #3408

	[bug] [tests] [pypy] Fixed an import that prevented “pypy setup.py test” from working
correctly.¶
References: #3406

	[bug] [ext] Fixed regression from 0.9.9 where the as_declarative()
symbol was removed from the sqlalchemy.ext.declarative
namespace.¶
References: #3324

0.9.9

Released: March 10, 2015
orm

	[orm] [feature] Added new parameter Session.connection.execution_options
which may be used to set up execution options on a Connection
when it is first checked out, before the transaction has begun.
This is used to set up options such as isolation level on the
connection before the transaction starts.

See also

Setting Transaction Isolation Levels - new documentation section
detailing best practices for setting transaction isolation with
sessions.

¶
References: #3296

	[orm] [feature] Added new method Session.invalidate(), functions similarly
to Session.close(), except also calls
Connection.invalidate()
on all connections, guaranteeing that they will not be returned to
the connection pool. This is useful in situations e.g. dealing
with gevent timeouts when it is not safe to use the connection further,
even for rollbacks.¶

	[orm] [bug] Fixed bugs in ORM object comparisons where comparison of
many-to-one != None would fail if the source were an aliased
class, or if the query needed to apply special aliasing to the
expression due to aliased joins or polymorphic querying; also fixed
bug in the case where comparing a many-to-one to an object state
would fail if the query needed to apply special aliasing
due to aliased joins or polymorphic querying.¶
References: #3310

	[orm] [bug] Fixed bug where internal assertion would fail in the case where
an after_rollback() handler for a Session incorrectly
adds state to that Session within the handler, and the task
to warn and remove this state (established by #2389) attempts
to proceed.¶
References: #3309

	[orm] [bug] Fixed bug where TypeError raised when Query.join() called
with unknown kw arguments would raise its own TypeError due
to broken formatting. Pull request courtesy Malthe Borch.¶
References: pull request github:147

	[orm] [bug] Fixed bug in lazy loading SQL construction whereby a complex
primaryjoin that referred to the same “local” column multiple
times in the “column that points to itself” style of self-referential
join would not be substituted in all cases. The logic to determine
substitutions here has been reworked to be more open-ended.¶
References: #3300

	[orm] [bug] The “wildcard” loader options, in particular the one set up by
the orm.load_only() option to cover all attributes not
explicitly mentioned, now takes into account the superclasses
of a given entity, if that entity is mapped with inheritance mapping,
so that attribute names within the superclasses are also omitted
from the load. Additionally, the polymorphic discriminator column
is unconditionally included in the list, just in the same way that
primary key columns are, so that even with load_only() set up,
polymorphic loading of subtypes continues to function correctly.¶
References: #3287

	[orm] [bug] [pypy] Fixed bug where if an exception were thrown at the start of a
Query before it fetched results, particularly when
row processors can’t be formed, the cursor would stay open with
results pending and not actually be closed. This is typically only
an issue on an interpreter like Pypy where the cursor isn’t
immediately GC’ed, and can in some circumstances lead to transactions/
locks being open longer than is desirable.¶
References: #3285

	[orm] [bug] Fixed a leak which would occur in the unsupported and highly
non-recommended use case of replacing a relationship on a fixed
mapped class many times, referring to an arbitrarily growing number of
target mappers. A warning is emitted when the old relationship is
replaced, however if the mapping were already used for querying, the
old relationship would still be referenced within some registries.¶
References: #3251

	[orm] [bug] [sqlite] Fixed bug regarding expression mutations which could express
itself as a “Could not locate column” error when using
Query to select from multiple, anonymous column
entities when querying against SQLite, as a side effect of the
“join rewriting” feature used by the SQLite dialect.¶
References: #3241

	[orm] [bug] Fixed bug where the ON clause for Query.join(),
and Query.outerjoin() to a single-inheritance subclass
using of_type() would not render the “single table criteria” in
the ON clause if the from_joinpoint=True flag were set.¶
References: #3232

engine

	[engine] [feature] Added new user-space accessors for viewing transaction isolation
levels; Connection.get_isolation_level(),
Connection.default_isolation_level.¶

	[engine] [bug] Fixed bug in Connection and pool where the
Connection.invalidate() method, or an invalidation due
to a database disconnect, would fail if the
isolation_level parameter had been used with
Connection.execution_options(); the “finalizer” that resets
the isolation level would be called on the no longer opened connection.¶
References: #3302

	[engine] [bug] A warning is emitted if the isolation_level parameter is used
with Connection.execution_options() when a Transaction
is in play; DBAPIs and/or SQLAlchemy dialects such as psycopg2,
MySQLdb may implicitly rollback or commit the transaction, or
not change the setting til next transaction, so this is never safe.¶
References: #3296

sql

	[sql] [bug] Added the native_enum flag to the __repr__() output
of Enum, which is mostly important when using it with
Alembic autogenerate. Pull request courtesy Dimitris Theodorou.¶
References: pull request bitbucket:41

	[sql] [bug] Fixed bug where using a TypeDecorator that implemented
a type that was also a TypeDecorator would fail with
Python’s “Cannot create a consistent method resolution order (MRO)”
error, when any kind of SQL comparison expression were used against
an object using this type.¶
References: #3278

	[sql] [bug] Fixed issue where the columns from a SELECT embedded in an
INSERT, either through the values clause or as a “from select”,
would pollute the column types used in the result set produced by
the RETURNING clause when columns from both statements shared the
same name, leading to potential errors or mis-adaptation when
retrieving the returning rows.¶
References: #3248

schema

	[schema] [bug] Fixed bug in 0.9’s foreign key setup system, such that
the logic used to link a ForeignKey to its parent could fail
when the foreign key used “link_to_name=True” in conjunction with
a target Table that would not receive its parent column until
later, such as within a reflection + “useexisting” scenario,
if the target column in fact had a key value different from its name,
as would occur in reflection if column reflect events were used to
alter the .key of reflected Column objects so that the
link_to_name becomes significant. Also repaired support for column
type via FK transmission in a similar way when target columns had a
different key and were referenced using link_to_name.¶
References: #3298, #1765

postgresql

	[postgresql] [feature] Added support for the CONCURRENTLY keyword with Postgresql
indexes, established using postgresql_concurrently. Pull
request courtesy Iuri de Silvio.

See also

Indexes with CONCURRENTLY

¶
References: pull request bitbucket:45

	[postgresql] [bug] Repaired support for Postgresql UUID types in conjunction with
the ARRAY type when using psycopg2. The psycopg2 dialect now
employs use of the psycopg2.extras.register_uuid() hook
so that UUID values are always passed to/from the DBAPI as
UUID() objects. The UUID.as_uuid flag is still
honored, except with psycopg2 we need to convert returned
UUID objects back into strings when this is disabled.¶
References: #2940

	[postgresql] [bug] Added support for the postgresql.JSONB datatype when
using psycopg2 2.5.4 or greater, which features native conversion
of JSONB data so that SQLAlchemy’s converters must be disabled;
additionally, the newly added psycopg2 extension
extras.register_default_jsonb is used to establish a JSON
deserializer passed to the dialect via the json_deserializer
argument. Also repaired the Postgresql integration tests which
weren’t actually round-tripping the JSONB type as opposed to the
JSON type. Pull request courtesy Mateusz Susik.¶
References: pull request github:145

	[postgresql] [bug] Repaired the use of the “array_oid” flag when registering the
HSTORE type with older psycopg2 versions < 2.4.3, which does not
support this flag, as well as use of the native json serializer
hook “register_default_json” with user-defined json_deserializer
on psycopg2 versions < 2.5, which does not include native json.¶

	[postgresql] [bug] Fixed bug where Postgresql dialect would fail to render an
expression in an Index that did not correspond directly
to a table-bound column; typically when a text() construct
was one of the expressions within the index; or could misinterpret the
list of expressions if one or more of them were such an expression.¶
References: #3174

mysql

	[mysql] [bug] Added a version check to the MySQLdb dialect surrounding the
check for ‘utf8_bin’ collation, as this fails on MySQL server < 5.0.¶
References: #3274

	[mysql] [change] The gaerdbms dialect is no longer necessary, and emits a
deprecation warning. Google now recommends using the MySQLdb
dialect directly.¶
References: #3275

sqlite

	[sqlite] [feature] Added support for partial indexes (e.g. with a WHERE clause) on
SQLite. Pull request courtesy Kai Groner.

See also

Partial Indexes

¶
References: pull request bitbucket:42

	[sqlite] [feature] Added a new SQLite backend for the SQLCipher backend. This backend
provides for encrypted SQLite databases using the pysqlcipher Python
driver, which is very similar to the pysqlite driver.

See also

pysqlcipher

¶

misc

	[bug] [ext] [py3k] Fixed bug where the association proxy list class would not interpret
slices correctly under Py3K. Pull request courtesy
Gilles Dartiguelongue.¶
References: pull request github:154

	[bug] [examples] Updated the Versioning with a History Table example such that
mapped columns are re-mapped to
match column names as well as grouping of columns; in particular,
this allows columns that are explicitly grouped in a same-column-named
joined inheritance scenario to be mapped in the same way in the
history mappings, avoiding warnings added in the 0.9 series
regarding this pattern and allowing the same view of attribute
keys.¶

	[bug] [examples] Fixed a bug in the examples/generic_assocaitions/discriminator_on_association.py
example, where the subclasses of AddressAssociation were not being
mapped as “single table inheritance”, leading to problems when trying
to use the mappings further.¶

0.9.8

Released: October 13, 2014
orm

	[orm] [bug] [engine] Fixed bug that affected generally the same classes of event
as that of #3199, when the named=True parameter
would be used. Some events would fail to register, and others
would not invoke the event arguments correctly, generally in the
case of when an event was “wrapped” for adaption in some other way.
The “named” mechanics have been rearranged to not interfere with
the argument signature expected by internal wrapper functions.¶
References: #3197

	[orm] [bug] Fixed bug that affected many classes of event, particularly
ORM events but also engine events, where the usual logic of
“de duplicating” a redundant call to event.listen()
with the same arguments would fail, for those events where the
listener function is wrapped. An assertion would be hit within
registry.py. This assertion has now been integrated into the
deduplication check, with the added bonus of a simpler means
of checking deduplication across the board.¶
References: #3199

	[orm] [bug] Fixed warning that would emit when a complex self-referential
primaryjoin contained functions, while at the same time remote_side
was specified; the warning would suggest setting “remote side”.
It now only emits if remote_side isn’t present.¶
References: #3194

orm declarative

	[bug] [declarative] [orm] Fixed “‘NoneType’ object has no attribute ‘concrete’” error
when using AbstractConcreteBase in conjunction with
a subclass that declares __abstract__.¶
References: #3185

engine

	[engine] [bug] The execution options passed to an Engine either via
create_engine.execution_options or
Engine.update_execution_options() are not passed to the
special Connection used to initialize the dialect
within the “first connect” event; dialects will usually
perform their own queries in this phase, and none of the
current available options should be applied here. In
particular, the “autocommit” option was causing an attempt to
autocommit within this initial connect which would fail with
an AttributeError due to the non-standard state of the
Connection.¶
References: #3200

	[engine] [bug] The string keys that are used to determine the columns impacted
for an INSERT or UPDATE are now sorted when they contribute towards
the “compiled cache” cache key. These keys were previously not
deterministically ordered, meaning the same statement could be
cached multiple times on equivalent keys, costing both in terms of
memory as well as performance.¶
References: #3165

sql

	[sql] [bug] Fixed bug where a fair number of SQL elements within
the sql package would fail to __repr__() successfully,
due to a missing description attribute that would then invoke
a recursion overflow when an internal AttributeError would then
re-invoke __repr__().¶
References: #3195

	[sql] [bug] An adjustment to table/index reflection such that if an index
reports a column that isn’t found to be present in the table,
a warning is emitted and the column is skipped. This can occur
for some special system column situations as has been observed
with Oracle.¶
References: #3180

	[sql] [bug] Fixed bug in CTE where literal_binds compiler argument would not
be always be correctly propagated when one CTE referred to another
aliased CTE in a statement.¶
References: #3154

	[sql] [bug] Fixed 0.9.7 regression caused by #3067 in conjunction with
a mis-named unit test such that so-called “schema” types like
Boolean and Enum could no longer be pickled.¶
References: #3144, #3067

postgresql

	[postgresql] [feature] [pg8000] Support is added for “sane multi row count” with the pg8000 driver,
which applies mostly to when using versioning with the ORM.
The feature is version-detected based on pg8000 1.9.14 or greater
in use. Pull request courtesy Tony Locke.¶
References: pull request github:125

	[postgresql] [bug] A revisit to this issue first patched in 0.9.5, apparently
psycopg2’s .closed accessor is not as reliable as we assumed,
so we have added an explicit check for the exception messages
“SSL SYSCALL error: Bad file descriptor” and
“SSL SYSCALL error: EOF detected” when detecting an
is-disconnect scenario. We will continue to consult psycopg2’s
connection.closed as a first check.¶
References: #3021

	[postgresql] [bug] Fixed bug where Postgresql JSON type was not able to persist or
otherwise render a SQL NULL column value, rather than a JSON-encoded
'null'. To support this case, changes are as follows:

	The value null() can now be specified, which will always
result in a NULL value resulting in the statement.

	A new parameter JSON.none_as_null is added, which
when True indicates that the Python None value should be
peristed as SQL NULL, rather than JSON-encoded 'null'.

Retrival of NULL as None is also repaired for DBAPIs other than
psycopg2, namely pg8000.

¶References: #3159

	[postgresql] [bug] The exception wrapping system for DBAPI errors can now accommodate
non-standard DBAPI exceptions, such as the psycopg2
TransactionRollbackError. These exceptions will now be raised
using the closest available subclass in sqlalchemy.exc, in the
case of TransactionRollbackError, sqlalchemy.exc.OperationalError.¶
References: #3075

	[postgresql] [bug] Fixed bug in postgresql.array object where comparison
to a plain Python list would fail to use the correct array constructor.
Pull request courtesy Andrew.¶
References: #3141, pull request github:124

	[postgresql] [bug] Added a supported FunctionElement.alias() method to functions,
e.g. the func construct. Previously, behavior for this method
was undefined. The current behavior mimics that of pre-0.9.4,
which is that the function is turned into a single-column FROM
clause with the given alias name, where the column itself is
anonymously named.¶
References: #3137

mysql

	[mysql] [bug] [mysqlconnector] Mysqlconnector as of version 2.0, probably as a side effect of
the python 3 merge, now does not expect percent signs (e.g.
as used as the modulus operator and others) to be doubled,
even when using the “pyformat” bound parameter format (this
change is not documented by Mysqlconnector). The dialect now
checks for py2k and for mysqlconnector less than version 2.0
when detecting if the modulus operator should be rendered as
%% or %.¶

	[mysql] [bug] [mysqlconnector] Unicode SQL is now passed for MySQLconnector version 2.0 and above;
for Py2k and MySQL < 2.0, strings are encoded.¶

sqlite

	[sqlite] [bug] When selecting from a UNION using an attached database file,
the pysqlite driver reports column names in cursor.description
as ‘dbname.tablename.colname’, instead of ‘tablename.colname’ as
it normally does for a UNION (note that it’s supposed to just be
‘colname’ for both, but we work around it). The column translation
logic here has been adjusted to retrieve the rightmost token, rather
than the second token, so it works in both cases. Workaround
courtesy Tony Roberts.¶
References: #3211

mssql

	[mssql] [bug] Fixed the version string detection in the pymssql dialect to
work with Microsoft SQL Azure, which changes the word “SQL Server”
to “SQL Azure”.¶
References: #3151

oracle

	[oracle] [bug] Fixed long-standing bug in Oracle dialect where bound parameter
names that started with numbers would not be quoted, as Oracle
doesn’t like numerics in bound parameter names.¶
References: #2138

misc

	[bug] [declarative] Fixed an unlikely race condition observed in some exotic end-user
setups, where the attempt to check for “duplicate class name” in
declarative would hit upon a not-totally-cleaned-up weak reference
related to some other class being removed; the check here now ensures
the weakref still references an object before calling upon it further.¶
References: #3208

	[bug] [ext] Fixed bug in ordering list where the order of items would be
thrown off during a collection replace event, if the
reorder_on_append flag were set to True. The fix ensures that the
ordering list only impacts the list that is explicitly associated
with the object.¶
References: #3191

	[bug] [ext] Fixed bug where ext.mutable.MutableDict
failed to implement the update() dictionary method, thus
not catching changes. Pull request courtesy Matt Chisholm.¶

	[bug] [ext] Fixed bug where a custom subclass of ext.mutable.MutableDict
would not show up in a “coerce” operation, and would instead
return a plain ext.mutable.MutableDict. Pull request
courtesy Matt Chisholm.¶

	[bug] [pool] Fixed bug in connection pool logging where the “connection checked out”
debug logging message would not emit if the logging were set up using
logging.setLevel(), rather than using the echo_pool flag.
Tests to assert this logging have been added. This is a
regression that was introduced in 0.9.0.¶
References: #3168

0.9.7

Released: July 22, 2014
orm

	[orm] [bug] [eagerloading] Fixed a regression caused by #2976 released in 0.9.4 where
the “outer join” propagation along a chain of joined eager loads
would incorrectly convert an “inner join” along a sibling join path
into an outer join as well, when only descendant paths should be
receiving the “outer join” propagation; additionally, fixed related
issue where “nested” join propagation would take place inappropriately
between two sibling join paths.¶
References: #3131

	[orm] [bug] Fixed a regression from 0.9.0 due to #2736 where the
Query.select_from() method no longer set up the “from
entity” of the Query object correctly, so that
subsequent Query.filter_by() or Query.join()
calls would fail to check the appropriate “from” entity when
searching for attributes by string name.¶
References: #2736, #3083

	[orm] [bug] The “evaluator” for query.update()/delete() won’t work with multi-table
updates, and needs to be set to synchronize_session=False or
synchronize_session=’fetch’; a warning is now emitted. In
1.0 this will be promoted to a full exception.¶
References: #3117

	[orm] [bug] Fixed bug where items that were persisted, deleted, or had a
primary key change within a savepoint block would not
participate in being restored to their former state (not in
session, in session, previous PK) after the outer transaction
were rolled back.¶
References: #3108

	[orm] [bug] Fixed bug in subquery eager loading in conjunction with
with_polymorphic(), the targeting of entities and columns
in the subquery load has been made more accurate with respect
to this type of entity and others.¶
References: #3106

	[orm] [bug] Fixed bug involving dynamic attributes, that was again a regression
of #3060 from version 0.9.5. A self-referential relationship
with lazy=’dynamic’ would raise a TypeError within a flush operation.¶
References: #3099

engine

	[engine] [feature] Added new event ConnectionEvents.handle_error(), a more
fully featured and comprehensive replacement for
ConnectionEvents.dbapi_error().¶
References: #3076

sql

	[sql] [bug] Fixed bug in Enum and other SchemaType
subclasses where direct association of the type with a
MetaData would lead to a hang when events
(like create events) were emitted on the MetaData.¶
This change is also backported to: 0.8.7

References: #3124

	[sql] [bug] Fixed a bug within the custom operator plus TypeEngine.with_variant()
system, whereby using a TypeDecorator in conjunction with
variant would fail with an MRO error when a comparison operator was used.¶
This change is also backported to: 0.8.7

References: #3102

	[sql] [bug] Fix bug in naming convention feature where using a check
constraint convention that includes constraint_name would
then force all Boolean and Enum types to
require names as well, as these implicitly create a
constraint, even if the ultimate target backend were one that does
not require generation of the constraint such as Postgresql.
The mechanics of naming conventions for these particular
constraints has been reorganized such that the naming
determination is done at DDL compile time, rather than at
constraint/table construction time.¶
References: #3067

	[sql] [bug] Fixed bug in common table expressions whereby positional bound
parameters could be expressed in the wrong final order
when CTEs were nested in certain ways.¶
References: #3090

	[sql] [bug] Fixed bug where multi-valued Insert construct would fail
to check subsequent values entries beyond the first one given
for literal SQL expressions.¶
References: #3069

	[sql] [bug] Added a “str()” step to the dialect_kwargs iteration for
Python version < 2.6.5, working around the
“no unicode keyword arg” bug as these args are passed along as
keyword args within some reflection processes.¶
References: #3123

	[sql] [bug] The TypeEngine.with_variant() method will now accept a
type class as an argument which is internally converted to an
instance, using the same convention long established by other
constructs such as Column.¶
References: #3122

postgresql

	[postgresql] [feature] Added kw argument postgresql_regconfig to the
ColumnOperators.match() operator, allows the “reg config” argument
to be specified to the to_tsquery() function emitted.
Pull request courtesy Jonathan Vanasco.¶
References: #3078, pull request bitbucket:22

	[postgresql] [feature] Added support for Postgresql JSONB via JSONB. Pull request
courtesy Damian Dimmich.¶
References: pull request github:101

	[postgresql] [bug] [pg8000] Fixed bug introduced in 0.9.5 by new pg8000 isolation level feature
where engine-level isolation level parameter would raise an error
on connect.¶
References: #3134

mysql

	[mysql] [bug] MySQL error 2014 “commands out of sync” appears to be raised as a
ProgrammingError, not OperationalError, in modern MySQL-Python versions;
all MySQL error codes that are tested for “is disconnect” are now
checked within OperationalError and ProgrammingError regardless.¶
This change is also backported to: 0.8.7

References: #3101

sqlite

	[sqlite] [bug] Fixed a SQLite join rewriting issue where a subquery that is embedded
as a scalar subquery such as within an IN would receive inappropriate
substitutions from the enclosing query, if the same table were present
inside the subquery as were in the enclosing query such as in a
joined inheritance scenario.¶
References: #3130

mssql

	[mssql] [feature] Enabled “multivalues insert” for SQL Server 2008. Pull request
courtesy Albert Cervin. Also expanded the checks for “IDENTITY INSERT”
mode to include when the identity key is present in the
VALUEs clause of the statement.¶
References: pull request github:98

	[mssql] [bug] Added statement encoding to the “SET IDENTITY_INSERT”
statements which operate when an explicit INSERT is being
interjected into an IDENTITY column, to support non-ascii table
identifiers on drivers such as pyodbc + unix + py2k that don’t
support unicode statements.¶
This change is also backported to: 0.8.7

	[mssql] [bug] In the SQL Server pyodbc dialect, repaired the implementation
for the description_encoding dialect parameter, which when
not explicitly set was preventing cursor.description from
being parsed correctly in the case of result sets that
contained names in alternate encodings. This parameter
shouldn’t be needed going forward.¶
This change is also backported to: 0.8.7

References: #3091

	[mssql] [bug] Fixed a regression from 0.9.5 caused by #3025 where the
query used to determine “default schema” is invalid in SQL Server 2000.
For SQL Server 2000 we go back to defaulting to the “schema name”
parameter of the dialect, which is configurable but defaults
to ‘dbo’.¶
References: #3025

oracle

	[oracle] [bug] [tests] Fixed bug in oracle dialect test suite where in one test,
‘username’ was assumed to be in the database URL, even though
this might not be the case.¶
References: #3128

misc

	[bug] [tests] Fixed bug where “python setup.py test” wasn’t calling into
distutils appropriately, and errors would be emitted at the end
of the test suite.¶

	[bug] [declarative] Fixed bug when the declarative __abstract__ flag was not being
distinguished for when it was actually the value False.
The __abstract__ flag needs to acutally evaluate to a True
value at the level being tested.¶
References: #3097

0.9.6

Released: June 23, 2014
orm

	[orm] [bug] Reverted the change for #3060 - this is a unit of work
fix that is updated more comprehensively in 1.0 via #3061.
The fix in #3060 unfortunately produces a new issue whereby
an eager load of a many-to-one attribute can produce an event
that is interpreted into an attribute change.¶
References: #3060

0.9.5

Released: June 23, 2014
orm

	[orm] [feature] The “primaryjoin” model has been stretched a bit further to allow
a join condition that is strictly from a single column to itself,
translated through some kind of SQL function or expression. This
is kind of experimental, but the first proof of concept is a
“materialized path” join condition where a path string is compared
to itself using “like”. The ColumnOperators.like() operator has
also been added to the list of valid operators to use in a primaryjoin
condition.¶
References: #3029

	[orm] [feature] Added new utility function make_transient_to_detached() which can
be used to manufacture objects that behave as though they were loaded
from a session, then detached. Attributes that aren’t present
are marked as expired, and the object can be added to a Session
where it will act like a persistent one.¶
References: #3017

	[orm] [bug] Fixed bug in subquery eager loading where a long chain of
eager loads across a polymorphic-subclass boundary in conjunction
with polymorphic loading would fail to locate the subclass-link in the
chain, erroring out with a missing property name on an
AliasedClass.¶
This change is also backported to: 0.8.7

References: #3055

	[orm] [bug] Fixed ORM bug where the class_mapper() function would mask
AttributeErrors or KeyErrors that should raise during mapper
configuration due to user errors. The catch for attribute/keyerror
has been made more specific to not include the configuration step.¶
This change is also backported to: 0.8.7

References: #3047

	[orm] [bug] Additional checks have been added for the case where an inheriting
mapper is implicitly combining one of its column-based attributes
with that of the parent, where those columns normally don’t necessarily
share the same value. This is an extension of an existing check that
was added via #1892; however this new check emits only a
warning, instead of an exception, to allow for applications that may
be relying upon the existing behavior.

See also

I’m getting a warning or error about “Implicitly combining column X under attribute Y”

¶
References: #3042

	[orm] [bug] Modified the behavior of orm.load_only() such that primary key
columns are always added to the list of columns to be “undeferred”;
otherwise, the ORM can’t load the row’s identity. Apparently,
one can defer the mapped primary keys and the ORM will fail, that
hasn’t been changed. But as load_only is essentially saying
“defer all but X”, it’s more critical that PK cols not be part of this
deferral.¶
References: #3080

	[orm] [bug] Fixed a few edge cases which arise in the so-called “row switch”
scenario, where an INSERT/DELETE can be turned into an UPDATE.
In this situation, a many-to-one relationship set to None, or
in some cases a scalar attribute set to None, may not be detected
as a net change in value, and therefore the UPDATE would not reset
what was on the previous row. This is due to some as-yet
unresovled side effects of the way attribute history works in terms
of implicitly assuming None isn’t really a “change” for a previously
un-set attribute. See also #3061.

Note

This change has been REVERTED in 0.9.6. The full fix
will be in version 1.0 of SQLAlchemy.

¶
References: #3060

	[orm] [bug] Related to #3060, an adjustment has been made to the unit
of work such that loading for related many-to-one objects is slightly
more aggressive, in the case of a graph of self-referential objects
that are to be deleted; the load of related objects is to help
determine the correct order for deletion if passive_deletes is
not set.¶

	[orm] [bug] Fixed bug in SQLite join rewriting where anonymized column names
due to repeats would not correctly be rewritten in subqueries.
This would affect SELECT queries with any kind of subquery + join.¶
References: #3057

	[orm] [bug] [sql] Fixes to the newly enhanced boolean coercion in #2804 where
the new rules for “where” and “having” woudn’t take effect for the
“whereclause” and “having” kw arguments of the select() construct,
which is also what Query uses so wasn’t working in the
ORM either.¶
References: #3013

engine

	[engine] [bug] Fixed bug which would occur if a DBAPI exception
occurs when the engine first connects and does its initial checks,
and the exception is not a disconnect exception, yet the cursor
raises an error when we try to close it. In this case the real
exception would be quashed as we tried to log the cursor close
exception via the connection pool and failed, as we were trying
to access the pool’s logger in a way that is inappropriate
in this very specific scenario.¶
References: #3063

	[engine] [bug] Fixed some “double invalidate” situations were detected where
a connection invalidation could occur within an already critical section
like a connection.close(); ultimately, these conditions are caused
by the change in #2907, in that the “reset on return” feature
calls out to the Connection/Transaction in order to handle it, where
“disconnect detection” might be caught. However, it’s possible that
the more recent change in #2985 made it more likely for this
to be seen as the “connection invalidate” operation is much quicker,
as the issue is more reproducible on 0.9.4 than 0.9.3.
Checks are now added within any section that
an invalidate might occur to halt further disallowed operations
on the invalidated connection. This includes two fixes both at the
engine level and at the pool level. While the issue was observed
with highly concurrent gevent cases, it could in theory occur in
any kind of scenario where a disconnect occurs within the connection
close operation.

¶References: #3043

sql

	[sql] [feature] Liberalized the contract for Index a bit in that you can
specify a text() expression as the target; the index no longer
needs to have a table-bound column present if the index is to be
manually added to the table, either via inline declaration or via
Table.append_constraint().¶
References: #3028

	[sql] [feature] Added new flag expression.between.symmetric, when set to True
renders “BETWEEN SYMMETRIC”. Also added a new negation operator
“notbetween_op”, which now allows an expression like ~col.between(x, y)
to render as “col NOT BETWEEN x AND y”, rather than a parentheiszed NOT
string.¶
References: #2990

	[sql] [bug] Fixed bug in INSERT..FROM SELECT construct where selecting from a
UNION would wrap the union in an anonymous (e.g. unlabled) subquery.¶
This change is also backported to: 0.8.7

References: #3044

	[sql] [bug] Fixed bug where Table.update() and Table.delete()
would produce an empty WHERE clause when an empty and_()
or or_() or other blank expression were applied. This is
now consistent with that of select().¶
This change is also backported to: 0.8.7

References: #3045

	[sql] [bug] The Column.nullable flag is implicitly set to False
when that Column is referred to in an explicit
PrimaryKeyConstraint for that table. This behavior now
matches that of when the Column itself has the
Column.primary_key flag set to True, which is
intended to be an exactly equivalent case.¶
References: #3023

	[sql] [bug] Fixed bug where the Operators.__and__(),
Operators.__or__() and Operators.__invert__()
operator overload methods could not be overridden within a custom
TypeEngine.Comparator implementation.¶
References: #3012

	[sql] [bug] Fixed bug in new DialectKWArgs.argument_for() method where
adding an argument for a construct not previously included for any
special arguments would fail.¶
References: #3024

	[sql] [bug] Fixed regression introduced in 0.9 where new “ORDER BY <labelname>”
feature from #1068 would not apply quoting rules to the
label name as rendered in the ORDER BY.¶
References: #1068, #3020

	[sql] [bug] Restored the import for Function to the sqlalchemy.sql.expression
import namespace, which was removed at the beginning of 0.9.¶

postgresql

	[postgresql] [feature] Added support for AUTOCOMMIT isolation level when using the pg8000
DBAPI. Pull request courtesy Tony Locke.¶
References: pull request github:88

	[postgresql] [feature] Added a new flag ARRAY.zero_indexes to the Postgresql
ARRAY type. When set to True, a value of one will be
added to all array index values before passing to the database, allowing
better interoperability between Python style zero-based indexes and
Postgresql one-based indexes. Pull request courtesy Alexey Terentev.¶
References: #2785, pull request bitbucket:18

	[postgresql] [bug] Added the hashable=False flag to the PG HSTORE type, which
is needed to allow the ORM to skip over trying to “hash” an ORM-mapped
HSTORE column when requesting it in a mixed column/entity list.
Patch courtesy Gunnlaugur Þór Briem.¶
This change is also backported to: 0.8.7

References: #3053

	[postgresql] [bug] Added a new “disconnect” message “connection has been closed unexpectedly”.
This appears to be related to newer versions of SSL.
Pull request courtesy Antti Haapala.¶
This change is also backported to: 0.8.7

References: pull request bitbucket:13

	[postgresql] [bug] The psycopg2 .closed accessor is now consulted when determining
if an exception is a “disconnect” error; ideally, this should remove
the need for any other inspection of the exception message to detect
disconnect, however we will leave those existing messages in place
as a fallback. This should be able to handle newer cases like
“SSL EOF” conditions. Pull request courtesy Dirk Mueller.¶
References: #3021, pull request github:87

	[postgresql] [enhancement] Added a new type postgresql.OID to the Postgresql dialect.
While “oid” is generally a private type within PG that is not exposed
in modern versions, there are some PG use cases such as large object
support where these types might be exposed, as well as within some
user-reported schema reflection use cases.¶
References: #3002

mysql

	[mysql] [bug] Fixed bug where column names added to mysql_length parameter
on an index needed to have the same quoting for quoted names in
order to be recognized. The fix makes the quotes optional but
also provides the old behavior for backwards compatibility with those
using the workaround.¶
This change is also backported to: 0.8.7

References: #3085

	[mysql] [bug] Added support for reflecting tables where an index includes
KEY_BLOCK_SIZE using an equal sign. Pull request courtesy
Sean McGivern.¶
This change is also backported to: 0.8.7

References: pull request bitbucket:15

mssql

	[mssql] [bug] Revised the query used to determine the current default schema name
to use the database_principal_id() function in conjunction with
the sys.database_principals view so that we can determine
the default schema independently of the type of login in progress
(e.g., SQL Server, Windows, etc).¶
References: #3025

firebird

	[firebird] [bug] Fixed bug where the combination of “limit” rendering as
“SELECT FIRST n ROWS” using a bound parameter (only firebird has both),
combined with column-level subqueries
which also feature “limit” as well as “positional” bound parameters
(e.g. qmark style) would erroneously assign the subquery-level positions
before that of the enclosing SELECT, thus returning parameters which
are out of order.¶
References: #3038

misc

	[feature] [examples] Added a new example illustrating materialized paths, using the
latest relationship features. Example courtesy Jack Zhou.¶
References: pull request bitbucket:21

	[bug] [declarative] The __mapper_args__ dictionary is copied from a declarative
mixin or abstract class when accessed, so that modifications made
to this dictionary by declarative itself won’t conflict with that
of other mappings. The dictionary is modified regarding the
version_id_col and polymorphic_on arguments, replacing the
column within with the one that is officially mapped to the local
class/table.¶
This change is also backported to: 0.8.7

References: #3062

	[bug] [ext] Fixed bug in mutable extension where MutableDict did not
report change events for the setdefault() dictionary operation.¶
This change is also backported to: 0.8.7

References: #3093, #3051

	[bug] [ext] Fixed bug where MutableDict.setdefault() didn’t return the
existing or new value (this bug was not released in any 0.8 version).
Pull request courtesy Thomas Hervé.¶
This change is also backported to: 0.8.7

References: #3093, #3051, pull request bitbucket:24

	[bug] [testsuite] In public test suite, shanged to use of String(40) from
less-supported Text in StringTest.test_literal_backslashes.
Pullreq courtesy Jan.¶
References: pull request github:95

	[bug] [tests] [py3k] Corrected for some deprecation warnings involving the imp
module and Python 3.3 or greater, when running tests. Pull
request courtesy Matt Chisholm.¶
References: #2830, pull request bitbucket:2830

0.9.4

Released: March 28, 2014
general

	[general] [feature] Support has been added for pytest to run tests. This runner
is currently being supported in addition to nose, and will likely
be preferred to nose going forward. The nose plugin system used
by SQLAlchemy has been split out so that it works under pytest as
well. There are no plans to drop support for nose at the moment
and we hope that the test suite itself can continue to remain as
agnostic of testing platform as possible. See the file
README.unittests.rst for updated information on running tests
with pytest.
The test plugin system has also been enhanced to support running
tests against multiple database URLs at once, by specifying the --db
and/or --dburi flags multiple times. This does not run the entire test
suite for each database, but instead allows test cases that are specific
to certain backends make use of that backend as the test is run.
When using pytest as the test runner, the system will also run
specific test suites multiple times, once for each database, particularly
those tests within the “dialect suite”. The plan is that the enhanced
system will also be used by Alembic, and allow Alembic to run
migration operation tests against multiple backends in one run, including
third-party backends not included within Alembic itself.
Third party dialects and extensions are also encouraged to standardize
on SQLAlchemy’s test suite as a basis; see the file README.dialects.rst
for background on building out from SQLAlchemy’s test platform.

¶

	[general] [bug] Adjusted setup.py file to support the possible future
removal of the setuptools.Feature extension from setuptools.
If this keyword isn’t present, the setup will still succeed
with setuptools rather than falling back to distutils. C extension
building can be disabled now also by setting the
DISABLE_SQLALCHEMY_CEXT environment variable. This variable works
whether or not setuptools is even available.¶
This change is also backported to: 0.8.6

References: #2986

	[general] [bug] Fixed some test/feature failures occurring in Python 3.4,
in particular the logic used to wrap “column default” callables
wouldn’t work properly for Python built-ins.¶
References: #2979

orm

	[orm] [feature] Added new parameter orm.mapper.confirm_deleted_rows. Defaults
to True, indicates that a series of DELETE statements should confirm
that the cursor rowcount matches the number of primary keys that should
have matched; this behavior had been taken off in most cases
(except when version_id is used) to support the unusual edge case of
self-referential ON DELETE CASCADE; to accommodate this, the message
is now just a warning, not an exception, and the flag can be used
to indicate a mapping that expects self-refererntial cascaded
deletes of this nature. See also #2403 for background on the
original change.¶
References: #3007

	[orm] [feature] A warning is emitted if the MapperEvents.before_configured()
or MapperEvents.after_configured() events are applied to a
specific mapper or mapped class, as the events are only invoked
for the Mapper target at the general level.¶

	[orm] [feature] Added a new keyword argument once=True to event.listen()
and event.listens_for(). This is a convenience feature which
will wrap the given listener such that it is only invoked once.¶

	[orm] [feature] Added a new option to relationship.innerjoin which is
to specify the string "nested". When set to "nested" as opposed
to True, the “chaining” of joins will parenthesize the inner join on the
right side of an existing outer join, instead of chaining as a string
of outer joins. This possibly should have been the default behavior
when 0.9 was released, as we introduced the feature of right-nested
joins in the ORM, however we are keeping it as a non-default for now
to avoid further surprises.

See also

Right-nested inner joins available in joined eager loads

¶
References: #2976

	[orm] [bug] Fixed ORM bug where changing the primary key of an object, then marking
it for DELETE would fail to target the correct row for DELETE.¶
This change is also backported to: 0.8.6

References: #3006

	[orm] [bug] Fixed regression from 0.8.3 as a result of #2818
where Query.exists() wouldn’t work on a query that only
had a Query.select_from() entry but no other entities.¶
This change is also backported to: 0.8.6

References: #2995

	[orm] [bug] Improved an error message which would occur if a query() were made
against a non-selectable, such as a literal_column(), and then
an attempt was made to use Query.join() such that the “left”
side would be determined as None and then fail. This condition
is now detected explicitly.¶
This change is also backported to: 0.8.6

	[orm] [bug] Removed stale names from sqlalchemy.orm.interfaces.__all__ and
refreshed with current names, so that an import * from this
module again works.¶
This change is also backported to: 0.8.6

References: #2975

	[orm] [bug] Fixed a very old behavior where the lazy load emitted for a one-to-many
could inappropriately pull in the parent table, and also return results
inconsistent based on what’s in the parent table, when the primaryjoin
includes some kind of discriminator against the parent table, such
as and_(parent.id == child.parent_id, parent.deleted == False).
While this primaryjoin doesn’t make that much sense for a one-to-many,
it is slightly more common when applied to the many-to-one side, and
the one-to-many comes as a result of a backref.
Loading rows from child in this case would keep parent.deleted == False
as is within the query, thereby yanking it into the FROM clause
and doing a cartesian product. The new behavior will now substitute
the value of the local “parent.deleted” for that parameter as is
appropriate. Though typically, a real-world app probably wants to use a
different primaryjoin for the o2m side in any case.¶
References: #2948

	[orm] [bug] Improved the check for “how to join from A to B” such that when
a table has multiple, composite foreign keys targeting a parent table,
the relationship.foreign_keys argument will be properly
interpreted in order to resolve the ambiguity; previously this condition
would raise that there were multiple FK paths when in fact the
foreign_keys argument should be establishing which one is expected.¶
References: #2965

	[orm] [bug] Added support for the not-quite-yet-documented insert=True
flag for event.listen() to work with mapper / instance events.¶

	[orm] [bug] [engine] Fixed bug where events set to listen at the class
level (e.g. on the Mapper or ClassManager
level, as opposed to on an individual mapped class, and also on
Connection) that also made use of internal argument conversion
(which is most within those categories) would fail to be removable.¶
References: #2973

	[orm] [bug] Fixed regression from 0.8 where using an option like
orm.lazyload() with the “wildcard” expression, e.g. "*",
would raise an assertion error in the case where the query didn’t
contain any actual entities. This assertion is meant for other cases
and was catching this one inadvertently.¶

	[orm] [bug] [sqlite] More fixes to SQLite “join rewriting”; the fix from #2967
implemented right before the release of 0.9.3 affected the case where
a UNION contained nested joins in it. “Join rewriting” is a feature
with a wide range of possibilities and is the first intricate
“SQL rewriting” feature we’ve introduced in years, so we’re sort of
going through a lot of iterations with it (not unlike eager loading
back in the 0.2/0.3 series, polymorphic loading in 0.4/0.5). We should
be there soon so thanks for bearing with us :).¶
References: #2969

engine

	[engine] [feature] Added some new event mechanics for dialect-level events; the initial
implementation allows an event handler to redefine the specific mechanics
by which an arbitrary dialect invokes execute() or executemany() on a
DBAPI cursor. The new events, at this point semi-public and experimental,
are in support of some upcoming transaction-related extensions.¶

	[engine] [feature] An event listener can now be associated with a Engine,
after one or more Connection objects have been created
(such as by an orm Session or via explicit connect)
and the listener will pick up events from those connections.
Previously, performance concerns pushed the event transfer from
Engine to Connection at init-time only, but
we’ve inlined a bunch of conditional checks to make this possible
without any additional function calls.¶
References: #2978

	[engine] [bug] A major improvement made to the mechanics by which the Engine
recycles the connection pool when a “disconnect” condition is detected;
instead of discarding the pool and explicitly closing out connections,
the pool is retained and a “generational” timestamp is updated to
reflect the current time, thereby causing all existing connections
to be recycled when they are next checked out. This greatly simplifies
the recycle process, removes the need for “waking up” connect attempts
waiting on the old pool and eliminates the race condition that many
immediately-discarded “pool” objects could be created during the
recycle operation.¶
References: #2985

	[engine] [bug] The ConnectionEvents.after_cursor_execute() event is now
emitted for the “_cursor_execute()” method of Connection;
this is the “quick” executor that is used for things like
when a sequence is executed ahead of an INSERT statement, as well as
for dialect startup checks like unicode returns, charset, etc.
the ConnectionEvents.before_cursor_execute() event was already
invoked here. The “executemany” flag is now always set to False
here, as this event always corresponds to a single execution.
Previously the flag could be True if we were acting on behalf of
an executemany INSERT statement.¶

sql

	[sql] [feature] Added support for literal rendering of boolean values, e.g.
“true” / “false” or “1” / “0”.¶

	[sql] [feature] Added a new feature schema.conv(), the purpose of which is to
mark a constraint name as already having had a naming convention applied.
This token will be used by Alembic migrations as of Alembic 0.6.4
in order to render constraints in migration scripts with names marked
as already having been subject to a naming convention.¶

	[sql] [feature] The new dialect-level keyword argument system for schema-level
constructs has been enhanced in order to assist with existing
schemes that rely upon addition of ad-hoc keyword arguments to
constructs.
E.g., a construct such as Index will again accept
ad-hoc keyword arguments within the Index.kwargs collection,
after construction:

idx = Index('a', 'b')
idx.kwargs['mysql_someargument'] = True

To suit the use case of allowing custom arguments at construction time,
the DialectKWArgs.argument_for() method now allows this registration:

Index.argument_for('mysql', 'someargument', False)

idx = Index('a', 'b', mysql_someargument=True)

See also

DialectKWArgs.argument_for()

¶References: #2866, #2962

	[sql] [bug] Fixed bug in tuple_() construct where the “type” of essentially
the first SQL expression would be applied as the “comparison type”
to a compared tuple value; this has the effect in some cases of an
inappropriate “type coersion” occurring, such as when a tuple that
has a mix of String and Binary values improperly coerces target
values to Binary even though that’s not what they are on the left
side. tuple_() now expects heterogeneous types within its
list of values.¶
This change is also backported to: 0.8.6

References: #2977

	[sql] [bug] Fixed an 0.9 regression where a Table that failed to
reflect correctly wouldn’t be removed from the parent
MetaData, even though in an invalid state. Pullreq
courtesy Roman Podoliaka.¶
References: #2988, pull request github:78

	[sql] [bug] MetaData.naming_convention feature will now also
apply to CheckConstraint objects that are associated
directly with a Column instead of just on the
Table.¶

	[sql] [bug] Fixed bug in new MetaData.naming_convention feature
where the name of a check constraint making use of the
“%(constraint_name)s” token would get doubled up for the
constraint generated by a boolean or enum type, and overall
duplicate events would cause the “%(constraint_name)s” token
to keep compounding itself.¶
References: #2991

	[sql] [bug] Adjusted the logic which applies names to the .c collection when
a no-name BindParameter is received, e.g. via sql.literal()
or similar; the “key” of the bind param is used as the key within
.c. rather than the rendered name. Since these binds have “anonymous”
names in any case, this allows individual bound parameters to
have their own name within a selectable if they are otherwise unlabeled.¶
References: #2974

	[sql] [bug] Some changes to how the FromClause.c collection behaves
when presented with duplicate columns. The behavior of emitting a
warning and replacing the old column with the same name still
remains to some degree; the replacement in particular is to maintain
backwards compatibility. However, the replaced column still remains
associated with the c collection now in a collection ._all_columns,
which is used by constructs such as aliases and unions, to deal with
the set of columns in c more towards what is actually in the
list of columns rather than the unique set of key names. This helps
with situations where SELECT statements with same-named columns
are used in unions and such, so that the union can match the columns
up positionally and also there’s some chance of FromClause.corresponding_column()
still being usable here (it can now return a column that is only
in selectable.c._all_columns and not otherwise named).
The new collection is underscored as we still need to decide where this
list might end up. Theoretically it
would become the result of iter(selectable.c), however this would mean
that the length of the iteration would no longer match the length of
keys(), and that behavior needs to be checked out.¶
References: #2974

	[sql] [bug] Fixed issue in new TextClause.columns() method where the ordering
of columns given positionally would not be preserved. This could
have potential impact in positional situations such as applying the
resulting TextAsFrom object to a union.¶

postgresql

	[postgresql] [feature] Enabled “sane multi-row count” checking for the psycopg2 DBAPI, as
this seems to be supported as of psycopg2 2.0.9.¶
This change is also backported to: 0.8.6

	[postgresql] [bug] Fixed regression caused by release 0.8.5 / 0.9.3’s compatibility
enhancements where index reflection on Postgresql versions specific
to only the 8.1, 8.2 series again
broke, surrounding the ever problematic int2vector type. While
int2vector supports array operations as of 8.1, apparently it only
supports CAST to a varchar as of 8.3.¶
This change is also backported to: 0.8.6

References: #3000

mysql

	[mysql] [bug] Tweaked the settings for mysql-connector-python; in Py2K, the
“supports unicode statements” flag is now False, so that SQLAlchemy
will encode the SQL string (note: not the parameters)
to bytes before sending to the database. This seems to allow
all unicode-related tests to pass for mysql-connector, including those
that use non-ascii table/column names, as well as some tests for the
TEXT type using unicode under cursor.executemany().¶

oracle

	[oracle] [feature] Added a new engine option coerce_to_unicode=True to the
cx_Oracle dialect, which restores the cx_Oracle outputtypehandler
approach to Python unicode conversion under Python 2, which was
removed in 0.9.2 as a result of #2911. Some use cases would
prefer that unicode coersion is unconditional for all string values,
despite performance concerns. Pull request courtesy
Christoph Zwerschke.¶
References: #2911, pull request github:74

	[oracle] [bug] Added new datatype oracle.DATE, which is a subclass of
DateTime. As Oracle has no “datetime” type per se,
it instead has only DATE, it is appropriate here that the
DATE type as present in the Oracle dialect be an instance of
DateTime. This issue doesn’t change anything as far as
the behavior of the type, as data conversion is handled by the
DBAPI in any case, however the improved subclass layout will help
the use cases of inspecting types for cross-database compatibility.
Also removed uppercase DATETIME from the Oracle dialect as this
type isn’t functional in that context.¶
References: #2987

misc

	[bug] [ext] Fixed bug in mutable extension as well as
attributes.flag_modified() where the change event would not be
propagated if the attribute had been reassigned to itself.¶
This change is also backported to: 0.8.6

References: #2997

	[bug] [automap] [ext] Added support to automap for the case where a relationship should
not be created between two classes that are in a joined inheritance
relationship, for those foreign keys that link the subclass back to
the superclass.¶
References: #3004

	[bug] [tests] Fixed a few errant u'' strings that would prevent tests from passing
in Py3.2. Patch courtesy Arfrever Frehtes Taifersar Arahesis.¶
References: #2980

	[bug] [pool] Fixed small issue in SingletonThreadPool where the current
connection to be returned might get inadvertently cleaned out during
the “cleanup” process. Patch courtesy jd23.¶

	[bug] [ext] [py3k] Fixed bug in association proxy where assigning an empty slice
(e.g. x[:] = [...]) would fail on Py3k.¶

	[bug] [ext] Fixed a regression in association proxy caused by #2810 which
caused a user-provided “getter” to no longer receive values of None
when fetching scalar values from a target that is non-present. The
check for None introduced by this change is now moved into the default
getter, so a user-provided getter will also again receive values of
None.¶
References: #2810

	[bug] [examples] Fixed bug in the versioned_history example where column-level INSERT
defaults would prevent history values of NULL from being written.¶

0.9.3

Released: February 19, 2014
orm

	[orm] [feature] Added new MapperEvents.before_configured() event which allows
an event at the start of configure_mappers(), as well
as __declare_first__() hook within declarative to complement
__declare_last__().¶

	[orm] [bug] Fixed bug where Query.get() would fail to consistently
raise the InvalidRequestError that invokes when called
on a query with existing criterion, when the given identity is
already present in the identity map.¶
This change is also backported to: 0.8.5

References: #2951

	[orm] [bug] [sqlite] Fixed bug in SQLite “join rewriting” where usage of an exists() construct
would fail to be rewritten properly, such as when the exists is
mapped to a column_property in an intricate nested-join scenario.
Also fixed a somewhat related issue where join rewriting would fail
on the columns clause of the SELECT statement if the targets were
aliased tables, as opposed to individual aliased columns.¶
References: #2967

	[orm] [bug] Fixed an 0.9 regression where ORM instance or mapper events applied
to a base class such as a declarative base with the propagate=True
flag would fail to apply to existing mapped classes which also
used inheritance due to an assertion. Addtionally, repaired an
attribute error which could occur during removal of such an event,
depending on how it was first assigned.¶
References: #2949

	[orm] [bug] Improved the initialization logic of composite attributes such that
calling MyClass.attribute will not require that the configure
mappers step has occurred, e.g. it will just work without throwing
any error.¶
References: #2935

	[orm] [bug] More issues with [ticket:2932] first resolved in 0.9.2 where
using a column key of the form <tablename>_<columnname>
matching that of an aliased column in the text would still not
match at the ORM level, which is ultimately due to a core
column-matching issue. Additional rules have been added so that the
column _label is taken into account when working with a
TextAsFrom construct or with literal columns.¶
References: #2932

orm declarative

	[bug] [orm] [declarative] Fixed bug where AbstractConcreteBase would fail to be
fully usable within declarative relationship configuration, as its
string classname would not be available in the registry of classnames
at mapper configuration time. The class now explicitly adds itself
to the class regsitry, and additionally both AbstractConcreteBase
as well as ConcreteBase set themselves up before mappers
are configured within the configure_mappers() setup, using
the new MapperEvents.before_configured() event.¶
References: #2950

engine

	[engine] [bug] [pool] Fixed a critical regression caused by #2880 where the newly
concurrent ability to return connections from the pool means that the
“first_connect” event is now no longer synchronized either, thus leading
to dialect mis-configurations under even minimal concurrency situations.¶
This change is also backported to: 0.8.5

References: #2964, #2880

sql

	[sql] [bug] Fixed bug where calling Insert.values() with an empty list
or tuple would raise an IndexError. It now produces an empty
insert construct as would be the case with an empty dictionary.¶
This change is also backported to: 0.8.5

References: #2944

	[sql] [bug] Fixed bug where in_() would go into an endless loop if
erroneously passed a column expression whose comparator included
the __getitem__() method, such as a column that uses the
postgresql.ARRAY type.¶
This change is also backported to: 0.8.5

References: #2957

	[sql] [bug] Fixed regression in new “naming convention” feature where conventions
would fail if the referred table in a foreign key contained a schema
name. Pull request courtesy Thomas Farvour.¶
References: pull request github:67

	[sql] [bug] Fixed bug where so-called “literal render” of bindparam()
constructs would fail if the bind were constructed with a callable,
rather than a direct value. This prevented ORM expressions
from being rendered with the “literal_binds” compiler flag.¶

postgresql

	[postgresql] [feature] Added the TypeEngine.python_type convenience accessor onto the
postgresql.ARRAY type. Pull request courtesy Alexey Terentev.¶
References: pull request github:64

	[postgresql] [bug] Added an additional message to psycopg2 disconnect detection,
“could not send data to server”, which complements the existing
“could not receive data from server” and has been observed by users.¶
This change is also backported to: 0.8.5

References: #2936

	[postgresql] [bug]

Support has been improved for Postgresql reflection behavior on very old
(pre 8.1) versions of Postgresql, and potentially other PG engines
such as Redshift (assuming Redshift reports the version as < 8.1).
The query for “indexes” as well as “primary keys” relies upon inspecting
a so-called “int2vector” datatype, which refuses to coerce to an array
prior to 8.1 causing failures regarding the “ANY()” operator used
in the query. Extensive googling has located the very hacky, but
recommended-by-PG-core-developer query to use when PG version < 8.1
is in use, so index and primary key constraint reflection now work
on these versions.

¶
This change is also backported to: 0.8.5

	[postgresql] [bug] Revised this very old issue where the Postgresql “get primary key”
reflection query were updated to take into account primary key constraints
that were renamed; the newer query fails on very old versions of
Postgresql such as version 7, so the old query is restored in those cases
when server_version_info < (8, 0) is detected.¶
This change is also backported to: 0.8.5

References: #2291

	[postgresql] [bug] Added server version detection to the newly added dialect startup
query for “show standard_conforming_strings”; as this variable was
added as of PG 8.2, we skip the query for PG versions who report a
version string earlier than that.¶
References: #2946

mysql

	[mysql] [feature] Added new MySQL-specific mysql.DATETIME which includes
fractional seconds support; also added fractional seconds support
to mysql.TIMESTAMP. DBAPI support is limited, though
fractional seconds are known to be supported by MySQL Connector/Python.
Patch courtesy Geert JM Vanderkelen.¶
This change is also backported to: 0.8.5

References: #2941

	[mysql] [bug] Added support for the PARTITION BY and PARTITIONS
MySQL table keywords, specified as mysql_partition_by='value' and
mysql_partitions='value' to Table. Pull request
courtesy Marcus McCurdy.¶
This change is also backported to: 0.8.5

References: #2966, pull request bitbucket:12

	[mysql] [bug] Fixed bug which prevented MySQLdb-based dialects (e.g.
pymysql) from working in Py3K, where a check for “connection
charset” would fail due to Py3K’s more strict value comparison
rules. The call in question wasn’t taking the database
version into account in any case as the server version was
still None at that point, so the method overall has been
simplified to rely upon connection.character_set_name().¶
This change is also backported to: 0.8.5

References: #2933

	[mysql] [bug] [cymysql] Fixed bug in cymysql dialect where a version string such as
'33a-MariaDB' would fail to parse properly. Pull request
courtesy Matt Schmidt.¶
References: #2934, pull request github:69

sqlite

	[sqlite] [bug] The SQLite dialect will now skip unsupported arguments when reflecting
types; such as if it encounters a string like INTEGER(5), the
INTEGER type will be instantiated without the “5” being included,
based on detecting a TypeError on the first attempt.¶

	[sqlite] [bug] Support has been added to SQLite type reflection to fully support
the “type affinity” contract specified at http://www.sqlite.org/datatype3.html.
In this scheme, keywords like INT, CHAR, BLOB or
REAL located in the type name generically associate the type with
one of five affinities. Pull request courtesy Erich Blume.

See also

Type Reflection

¶
References: pull request github:65

misc

	[feature] [examples] Added optional “changed” column to the versioned rows example, as well
as support for when the versioned Table has an explicit
schema argument. Pull request
courtesy jplaverdure.¶
References: pull request github:41

	[bug] [ext] Fixed bug where the AutomapBase class of the
new automap extension would fail if classes
were pre-arranged in single or potentially joined inheritance patterns.
The repaired joined inheritance issue could also potentially apply when
using DeferredReflection as well.¶

0.9.2

Released: February 2, 2014
orm

	[orm] [feature] Added a new parameter Operators.op.is_comparison. This
flag allows a custom op from Operators.op() to be considered
as a “comparison” operator, thus usable for custom
relationship.primaryjoin conditions.

See also

Using custom operators in join conditions

¶

	[orm] [feature] Support is improved for supplying a join() construct as the
target of relationship.secondary for the purposes
of creating very complex relationship() join conditions.
The change includes adjustments to query joining, joined eager loading
to not render a SELECT subquery, changes to lazy loading such that
the “secondary” target is properly included in the SELECT, and
changes to declarative to better support specification of a
join() object with classes as targets.
The new use case is somewhat experimental, but a new documentation section
has been added.

See also

Composite “Secondary” Joins

¶

	[orm] [bug] Fixed error message when an iterator object is passed to
class_mapper() or similar, where the error would fail to
render on string formatting. Pullreq courtesy Kyle Stark.¶
This change is also backported to: 0.8.5

References: pull request github:58

	[orm] [bug] Fixed bug in new TextAsFrom construct where Column-
oriented row lookups were not matching up to the ad-hoc ColumnClause
objects that TextAsFrom generates, thereby making it not
usable as a target in Query.from_statement(). Also fixed
Query.from_statement() mechanics to not mistake a TextAsFrom
for a Select construct. This bug is also an 0.9 regression
as the Text.columns() method is called to accommodate the
text.typemap argument.¶
References: #2932

	[orm] [bug] Added a new directive used within the scope of an attribute “set” operation
to disable autoflush, in the case that the attribute needs to lazy-load
the “old” value, as in when replacing one-to-one values or some
kinds of many-to-one. A flush at this point otherwise occurs
at the point that the attribute is None and can cause NULL violations.¶
References: #2921

	[orm] [bug] Fixed an 0.9 regression where the automatic aliasing applied by
Query and in other situations where selects or joins
were aliased (such as joined table inheritance) could fail if a
user-defined Column subclass were used in the expression.
In this case, the subclass would fail to propagate ORM-specific
“annotations” along needed by the adaptation. The “expression
annotations” system has been corrected to account for this case.¶
References: #2918

	[orm] [bug] Fixed a bug involving the new flattened JOIN structures which
are used with joinedload() (thereby causing a regression
in joined eager loading) as well as aliased()
in conjunction with the flat=True flag and joined-table inheritance;
basically multiple joins across a “parent JOIN sub” entity using different
paths to get to a target class wouldn’t form the correct ON conditions.
An adjustment / simplification made in the mechanics of figuring
out the “left side” of the join in the case of an aliased, joined-inh
class repairs the issue.¶
References: #2908

engine

	[engine] [feature] [pool] Added a new pool event PoolEvents.invalidate(). Called when
a DBAPI connection is to be marked as “invaldated” and discarded
from the pool.¶

sql

	[sql] [feature] Added MetaData.reflect.**dialect_kwargs
to support dialect-level reflection options for all Table
objects reflected.¶

	[sql] [feature] Added a new feature which allows automated naming conventions to be
applied to Constraint and Index objects. Based
on a recipe in the wiki, the new feature uses schema-events to set up
names as various schema objects are associated with each other. The
events then expose a configuration system through a new argument
MetaData.naming_convention. This system allows production
of both simple and custom naming schemes for constraints and indexes
on a per-MetaData basis.

See also

Configuring Constraint Naming Conventions

¶
References: #2923

	[sql] [feature] Options can now be specified on a PrimaryKeyConstraint object
independently of the specification of columns in the table with
the primary_key=True flag; use a PrimaryKeyConstraint
object with no columns in it to achieve this result.
Previously, an explicit PrimaryKeyConstraint would have the
effect of those columns marked as primary_key=True being ignored;
since this is no longer the case, the PrimaryKeyConstraint
will now assert that either one style or the other is used to specify
the columns, or if both are present, that the column lists match
exactly. If an inconsistent set of columns in the
PrimaryKeyConstraint
and within the Table marked as primary_key=True are
present, a warning is emitted, and the list of columns is taken
only from the PrimaryKeyConstraint alone as was the case
in previous releases.

See also

PrimaryKeyConstraint

¶References: #2910

	[sql] [feature] The system by which schema constructs and certain SQL constructs
accept dialect-specific keyword arguments has been enhanced. This
system includes commonly the Table and Index constructs,
which accept a wide variety of dialect-specific arguments such as
mysql_engine and postgresql_where, as well as the constructs
PrimaryKeyConstraint, UniqueConstraint,
Update, Insert and Delete, and also
newly added kwarg capability to ForeignKeyConstraint
and ForeignKey. The change is that participating dialects
can now specify acceptable argument lists for these constructs, allowing
an argument error to be raised if an invalid keyword is specified for
a particular dialect. If the dialect portion of the keyword is unrecognized,
a warning is emitted only; while the system will actually make use
of setuptools entrypoints in order to locate non-local dialects,
the use case where certain dialect-specific arguments are used
in an environment where that third-party dialect is uninstalled remains
supported. Dialects also have to explicitly opt-in to this system,
so that external dialects which aren’t making use of this system
will remain unaffected.¶
References: #2866

	[sql] [bug] The behavior of Table.tometadata() has been adjusted such that
the schema target of a ForeignKey will not be changed unless
that schema matches that of the parent table. That is, if
a table “schema_a.user” has a foreign key to “schema_b.order.id”,
the “schema_b” target will be maintained whether or not the
“schema” argument is passed to Table.tometadata(). However
if a table “schema_a.user” refers to “schema_a.order.id”, the presence
of “schema_a” will be updated on both the parent and referred tables.
This is a behavioral change hence isn’t likely to be backported to
0.8; it is assumed that the previous behavior is pretty buggy
however and that it’s unlikely anyone was relying upon it.
Additionally, a new parameter has been added
Table.tometadata.referred_schema_fn. This refers to a
callable function which will be used to determine the new referred
schema for any ForeignKeyConstraint encountered in the
tometadata operation. This callable can be used to revert to the
previous behavior or to customize how referred schemas are treated
on a per-constraint basis.

¶References: #2913

	[sql] [bug] Fixed bug whereby binary type would fail in some cases
if used with a “test” dialect, such as a DefaultDialect or other
dialect with no DBAPI.¶

	[sql] [bug] [py3k] Fixed bug where “literal binds” wouldn’t work with a bound parameter
that’s a binary type. A similar, but different, issue is fixed
in 0.8.¶

	[sql] [bug] Fixed regression whereby the “annotation” system used by the ORM was leaking
into the names used by standard functions in sqlalchemy.sql.functions,
such as func.coalesce() and func.max(). Using these functions
in ORM attributes and thus producing annotated versions of them could
corrupt the actual function name rendered in the SQL.¶
References: #2927

	[sql] [bug] Fixed 0.9 regression where the new sortable support for RowProxy
would lead to TypeError when compared to non-tuple types as it attempted
to apply tuple() to the “other” object unconditionally. The
full range of Python comparison operators have now been implemented on
RowProxy, using an approach that guarantees a comparison
system that is equivalent to that of a tuple, and the “other” object
is only coerced if it’s an instance of RowProxy.¶
References: #2924, #2848

	[sql] [bug] A UniqueConstraint created inline with a Table
that has no columns within it will be skipped. Pullreq courtesy
Derek Harland.¶
References: pull request bitbucket:11

	[sql] [bug] [orm] Fixed the multiple-table “UPDATE..FROM” construct, only usable on
MySQL, to correctly render the SET clause among multiple columns
with the same name across tables. This also changes the name used for
the bound parameter in the SET clause to “<tablename>_<colname>” for
the non-primary table only; as this parameter is typically specified
using the Column object directly this should not have an
impact on applications. The fix takes effect for both
Table.update() as well as Query.update() in the ORM.¶
References: #2912

schema

	[schema] [bug] Restored sqlalchemy.schema.SchemaVisitor to the .schema
module. Pullreq courtesy Sean Dague.¶
References: pull request github:57

postgresql

	[postgresql] [feature] Added a new dialect-level argument postgresql_ignore_search_path;
this argument is accepted by both the Table constructor
as well as by the MetaData.reflect() method. When in use
against Postgresql, a foreign-key referenced table which specifies
a remote schema name will retain that schema name even if the name
is present in the search_path; the default behavior since 0.7.3
has been that schemas present in search_path would not be copied
to reflected ForeignKey objects. The documentation has been
updated to describe in detail the behavior of the pg_get_constraintdef()
function and how the postgresql_ignore_search_path feature essentially
determines if we will honor the schema qualification reported by
this function or not.

See also

Remote-Schema Table Introspection and Postgresql search_path

¶
References: #2922

mysql

	[mysql] [bug] Some missing methods added to the cymysql dialect, including
_get_server_version_info() and _detect_charset(). Pullreq
courtesy Hajime Nakagami.¶
This change is also backported to: 0.8.5

References: pull request github:61

	[mysql] [bug] [sql] Added new test coverage for so-called “down adaptions” of SQL types,
where a more specific type is adapted to a more generic one - this
use case is needed by some third party tools such as sqlacodegen.
The specific cases that needed repair within this test suite were that
of mysql.ENUM being downcast into a types.Enum,
and that of SQLite date types being cast into generic date types.
The adapt() method needed to become more specific here to counteract
the removal of a “catch all” **kwargs collection on the base
TypeEngine class that was removed in 0.9.¶
References: #2917

	[mysql] [bug] The MySQL CAST compilation now takes into account aspects of a string
type such as “charset” and “collation”. While MySQL wants all character-
based CAST calls to use the CHAR type, we now create a real CHAR
object at CAST time and copy over all the parameters it has, so that
an expression like cast(x, mysql.TEXT(charset='utf8')) will
render CAST(t.col AS CHAR CHARACTER SET utf8).¶

	[mysql] [bug] Added new “unicode returns” detection to the MySQL dialect and
to the default dialect system overall, such that any dialect
can add extra “tests” to the on-first-connect “does this DBAPI
return unicode directly?” detection. In this case, we are
adding a check specifically against the “utf8” encoding with
an explicit “utf8_bin” collation type (after checking that
this collation is available) to test for some buggy unicode
behavior observed with MySQLdb version 1.2.3. While MySQLdb
has resolved this issue as of 1.2.4, the check here should
guard against regressions. The change also allows the “unicode”
checks to log in the engine logs, which was not previously
the case.¶
References: #2906

	[mysql] [bug] [engine] [pool] Connection now associates a new
RootTransaction or TwoPhaseTransaction
with its immediate _ConnectionFairy as a “reset handler”
for the span of that transaction, which takes over the task
of calling commit() or rollback() for the “reset on return” behavior
of Pool if the transaction was not otherwise completed.
This resolves the issue that a picky transaction
like that of MySQL two-phase will be
properly closed out when the connection is closed without an
explicit rollback or commit (e.g. no longer raises “XAER_RMFAIL”
in this case - note this only shows up in logging as the exception
is not propagated within pool reset).
This issue would arise e.g. when using an orm
Session with twophase set, and then
Session.close() is called without an explicit rollback or
commit. The change also has the effect that you will now see
an explicit “ROLLBACK” in the logs when using a Session
object in non-autocommit mode regardless of how that session was
discarded. Thanks to Jeff Dairiki and Laurence Rowe for isolating
the issue here.¶
References: #2907

sqlite

	[sqlite] [bug] Fixed bug whereby SQLite compiler failed to propagate compiler arguments
such as “literal binds” into a CAST expression.¶

mssql

	[mssql] [feature] Added an option mssql_clustered to the UniqueConstraint
and PrimaryKeyConstraint constructs; on SQL Server, this adds
the CLUSTERED keyword to the constraint construct within DDL.
Pullreq courtesy Derek Harland.¶
References: pull request bitbucket:11

oracle

	[oracle] [bug] It’s been observed that the usage of a cx_Oracle “outputtypehandler”
in Python 2.xx in order to coerce string values to Unicode is inordinately
expensive; even though cx_Oracle is written in C, when you pass the
Python unicode primitive to cursor.var() and associate with an output
handler, the library counts every conversion as a Python function call
with all the requisite overhead being recorded; this despite the fact
when running in Python 3, all strings are also unconditionally coerced
to unicode but it does not incur this overhead,
meaning that cx_Oracle is failing to use performant techniques in Py2K.
As SQLAlchemy cannot easily select for this style of type handler on a
per-column basis, the handler was assembled unconditionally thereby
adding the overhead to all string access.
So this logic has been replaced with SQLAlchemy’s own unicode
conversion system, which now
only takes effect in Py2K for columns that are requested as unicode.
When C extensions are used, SQLAlchemy’s system appears to be 2-3x faster than
cx_Oracle’s. Additionally, SQLAlchemy’s unicode conversion has been
enhanced such that when the “conditional” converter is required
(now needed for the Oracle backend), the check for “already unicode” is now
performed in C and no longer introduces significant overhead.

This change has two impacts on the cx_Oracle backend. One is that
string values in Py2K which aren’t specifically requested with the
Unicode type or convert_unicode=True will now come back as str,
not unicode - this behavior is similar to a backend such as
MySQL. Additionally, when unicode values are requested with the cx_Oracle
backend, if the C extensions are not used, there is now an additional
overhead of an isinstance() check per column. This tradeoff has been
made as it can be worked around and no longer places a performance burden
on the likely majority of Oracle result columns that are non-unicode
strings.

¶References: #2911

misc

	[bug] [examples] Added a tweak to the “history_meta” example where the check for
“history” on a relationship-bound attribute will now no longer emit
any SQL if the relationship is unloaded.¶

	[bug] [pool] The argument names for the PoolEvents.reset() event have been
renamed to dbapi_connection and connection_record in order
to maintain consistency with all the other pool events. It is expected
that any existing listeners for this relatively new and
seldom-used event are using positional style to receive arguments in
any case.¶

	[bug] [cextensions] [py3k] Fixed an issue where the C extensions in Py3K are using the wrong API
to specify the top-level module function, which breaks
in Python 3.4b2. Py3.4b2 changes PyMODINIT_FUNC to return
“void” instead of PyObject *, so we now make sure to use
“PyMODINIT_FUNC” instead of PyObject * directly. Pull request
courtesy cgohlke.¶
References: pull request github:55

0.9.1

Released: January 5, 2014
orm

	[orm] [feature] [extensions] A new, experimental extension sqlalchemy.ext.automap is added.
This extension expands upon the functionality of Declarative as well as
the DeferredReflection class to produce a base class which
automatically generates mapped classes and relationships based on
table metadata.

See also

Automap Extension

Automap

¶

	[orm] [bug] [events] Fixed regression where using a functools.partial() with the event
system would cause a recursion overflow due to usage of inspect.getargspec()
on it in order to detect a legacy calling signature for certain events,
and apparently there’s no way to do this with a partial object. Instead
we skip the legacy check and assume the modern style; the check itself
now only occurs for the SessionEvents.after_bulk_update and
SessionEvents.after_bulk_delete events. Those two events will require
the new signature style if assigned to a “partial” event listener.¶
References: #2905

	[orm] [bug] Fixed bug where using new Session.info attribute would fail
if the .info argument were only passed to the sessionmaker
creation call but not to the object itself. Courtesy Robin Schoonover.¶
References: pull request bitbucket:9

	[orm] [bug] Fixed regression where we don’t check the given name against the
correct string class when setting up a backref based on a name,
therefore causing the error “too many values to unpack”. This was
related to the Py3k conversion.¶
References: #2901

	[orm] [bug] Fixed regression where we apparently still create an implicit
alias when saying query(B).join(B.cs), where “C” is a joined inh
class; however, this implicit alias was created only considering
the immediate left side, and not a longer chain of joins along different
joined-inh subclasses of the same base. As long as we’re still
implicitly aliasing in this case, the behavior is dialed back a bit
so that it will alias the right side in a wider variety of cases.¶
References: #2903

orm declarative

	[bug] [orm] [declarative] Fixed an extremely unlikely memory issue where when using
DeferredReflection
to define classes pending for reflection, if some subset of those
classes were discarded before the DeferredReflection.prepare()
method were called to reflect and map the class, a strong reference
to the class would remain held within the declarative internals.
This internal collection of “classes to map” now uses weak
references against the classes themselves.¶

	[bug] [orm] [declarative] A quasi-regression where apparently in 0.8 you can set a class-level
attribute on declarative to simply refer directly to an InstrumentedAttribute
on a superclass or on the class itself, and it
acts more or less like a synonym; in 0.9, this fails to set up enough
bookkeeping to keep up with the more liberalized backref logic
from #2789. Even though this use case was never directly
considered, it is now detected by declarative at the “setattr()” level
as well as when setting up a subclass, and the mirrored/renamed attribute
is now set up as a synonym() instead.¶
References: #2900

sql

	[sql] [feature] Conjunctions like and_() and or_() can now accept
Python generators as a single argument, e.g.:
and_(x == y for x, y in tuples)

The logic here looks for a single argument *args where the first
element is an instance of types.GeneratorType.

¶

schema

	[schema] [feature] The Table.extend_existing and Table.autoload_replace
parameters are now available on the MetaData.reflect()
method.¶

0.9.0

Released: December 30, 2013
orm

	[orm] [feature] The exc.StatementError or DBAPI-related subclass
now can accommodate additional information about the “reason” for
the exception; the Session now adds some detail to it
when the exception occurs within an autoflush. This approach
is taken as opposed to combining FlushError with
a Python 3 style “chained exception” approach so as to maintain
compatibility both with Py2K code as well as code that already
catches IntegrityError or similar.¶

	[orm] [feature] [backrefs] Added new argument include_backrefs=True to the
validates() function; when set to False, a validation event
will not be triggered if the event was initated as a backref to
an attribute operation from the other side.

See also

include_backrefs=False option for @validates

¶
References: #1535

	[orm] [feature] A new API for specifying the FOR UPDATE clause of a SELECT
is added with the new Query.with_for_update() method,
to complement the new GenerativeSelect.with_for_update() method.
Pull request courtesy Mario Lassnig.

See also

New FOR UPDATE support on select(), Query()

¶
References: pull request github:42

	[orm] [bug] An adjustment to the subqueryload() strategy which ensures that
the query runs after the loading process has begun; this is so that
the subqueryload takes precedence over other loaders that may be
hitting the same attribute due to other eager/noload situations
at the wrong time.¶
This change is also backported to: 0.8.5

References: #2887

	[orm] [bug] Fixed bug when using joined table inheritance from a table to a
select/alias on the base, where the PK columns were also not same
named; the persistence system would fail to copy primary key values
from the base table to the inherited table upon INSERT.¶
This change is also backported to: 0.8.5

References: #2885

	[orm] [bug] composite() will raise an informative error message when the
columns/attribute (names) passed don’t resolve to a Column or mapped
attribute (such as an erroneous tuple); previously raised an unbound
local.¶
This change is also backported to: 0.8.5

References: #2889

	[orm] [bug] Fixed a regression introduced by #2818 where the EXISTS
query being generated would produce a “columns being replaced”
warning for a statement with two same-named columns,
as the internal SELECT wouldn’t have use_labels set.¶
This change is also backported to: 0.8.4

References: #2818

	[orm] [bug] [collections] [py3k] Added support for the Python 3 method list.clear() within
the ORM collection instrumentation system; pull request
courtesy Eduardo Schettino.¶
References: pull request github:40

	[orm] [bug] Some refinements to the AliasedClass construct with regards
to descriptors, like hybrids, synonyms, composites, user-defined
descriptors, etc. The attribute
adaptation which goes on has been made more robust, such that if a descriptor
returns another instrumented attribute, rather than a compound SQL
expression element, the operation will still proceed.
Addtionally, the “adapted” operator will retain its class; previously,
a change in class from InstrumentedAttribute to QueryableAttribute
(a superclass) would interact with Python’s operator system such that
an expression like aliased(MyClass.x) > MyClass.x would reverse itself
to read myclass.x < myclass_1.x. The adapted attribute will also
refer to the new AliasedClass as its parent which was not
always the case before.¶
References: #2872

	[orm] [bug] The viewonly flag on relationship() will now prevent
attribute history from being written on behalf of the target attribute.
This has the effect of the object not being written to the
Session.dirty list if it is mutated. Previously, the object would
be present in Session.dirty, but no change would take place on behalf
of the modified attribute during flush. The attribute still emits
events such as backref events and user-defined events and will still
receive mutations from backrefs.

See also

viewonly=True on relationship() prevents history from taking effect

¶
References: #2833

	[orm] [bug] Added support for new Session.info attribute to
scoped_session.¶

	[orm] [bug] Fixed bug where usage of new Bundle object would cause
the Query.column_descriptions attribute to fail.¶

	[orm] [bug] [sqlite] [sql] Fixed a regression introduced by the join rewriting feature of
#2369 and #2587 where a nested join with one side
already an aliased select would fail to translate the ON clause on the
outside correctly; in the ORM this could be seen when using a
SELECT statement as a “secondary” table.¶
References: #2858

orm declarative

	[bug] [orm] [declarative] Declarative does an extra check to detect if the same
Column is mapped multiple times under different properties
(which typically should be a synonym() instead) or if two
or more Column objects are given the same name, raising
a warning if this condition is detected.¶
References: #2828

	[bug] [orm] [declarative] The DeferredReflection class has been enhanced to provide
automatic reflection support for the “secondary” table referred
to by a relationship(). “secondary”, when specified
either as a string table name, or as a Table object with
only a name and MetaData object will also be included
in the reflection process when DeferredReflection.prepare()
is called.¶
References: #2865

	[bug] [orm] [declarative] Fixed bug where in Py2K a unicode literal would not be accepted
as the string name of a class or other argument within
declarative using relationship().¶

engine

	[engine] [feature] The engine_from_config() function has been improved so that
we will be able to parse dialect-specific arguments from string
configuration dictionaries. Dialect classes can now provide their
own list of parameter types and string-conversion routines.
The feature is not yet used by the built-in dialects, however.¶
References: #2875

	[engine] [bug] A DBAPI that raises an error on connect() which is not a subclass
of dbapi.Error (such as TypeError, NotImplementedError, etc.)
will propagate the exception unchanged. Previously,
the error handling specific to the connect() routine would both
inappropriately run the exception through the dialect’s
Dialect.is_disconnect() routine as well as wrap it in
a sqlalchemy.exc.DBAPIError. It is now propagated unchanged
in the same way as occurs within the execute process.¶
This change is also backported to: 0.8.4

References: #2881

	[engine] [bug] [pool] The QueuePool has been enhanced to not block new connection
attempts when an existing connection attempt is blocking. Previously,
the production of new connections was serialized within the block
that monitored overflow; the overflow counter is now altered within
its own critical section outside of the connection process itself.¶
This change is also backported to: 0.8.4

References: #2880

	[engine] [bug] [pool] Made a slight adjustment to the logic which waits for a pooled
connection to be available, such that for a connection pool
with no timeout specified, it will every half a second break out of
the wait to check for the so-called “abort” flag, which allows the
waiter to break out in case the whole connection pool was dumped;
normally the waiter should break out due to a notify_all() but it’s
possible this notify_all() is missed in very slim cases.
This is an extension of logic first introduced in 0.8.0, and the
issue has only been observed occasionally in stress tests.¶
This change is also backported to: 0.8.4

References: #2522

	[engine] [bug] Fixed bug where SQL statement would be improperly ASCII-encoded
when a pre-DBAPI StatementError were raised within
Connection.execute(), causing encoding errors for
non-ASCII statements. The stringification now remains within
Python unicode thus avoiding encoding errors.¶
This change is also backported to: 0.8.4

References: #2871

	[engine] [bug] The create_engine() routine and the related
make_url() function no longer considers the + sign
to be a space within the password field. The parsing has been
adjuted to match RFC 1738 exactly, in that both username
and password expect only :, @, and / to be
encoded.

See also

The “password” portion of a create_engine() no longer considers the + sign as an encoded space

¶
References: #2873

	[engine] [bug] The RowProxy object is now sortable in Python as a regular
tuple is; this is accomplished via ensuring tuple() conversion on
both sides within the __eq__() method as well as
the addition of a __lt__() method.

See also

RowProxy now has tuple-sorting behavior

¶
References: #2848

sql

	[sql] [feature] New improvements to the text() construct, including
more flexible ways to set up bound parameters and return types;
in particular, a text() can now be turned into a full
FROM-object, embeddable in other statements as an alias or CTE
using the new method TextClause.columns(). The text()
construct can also render “inline” bound parameters when the construct
is compiled in a “literal bound” context.

See also

New text() Capabilities

¶
References: #2882, #2877

	[sql] [feature] A new API for specifying the FOR UPDATE clause of a SELECT
is added with the new GenerativeSelect.with_for_update() method.
This method supports a more straightforward system of setting
dialect-specific options compared to the for_update keyword
argument of select(), and also includes support for the
SQL standard FOR UPDATE OF clause. The ORM also includes
a new corresponding method Query.with_for_update().
Pull request courtesy Mario Lassnig.

See also

New FOR UPDATE support on select(), Query()

¶
References: pull request github:42

	[sql] [feature] The precision used when coercing a returned floating point value to
Python Decimal via string is now configurable. The
flag decimal_return_scale is now supported by all Numeric
and Float types, which will ensure this many digits are taken
from the native floating point value when it is converted to string.
If not present, the type will make use of the value of .scale, if
the type supports this setting and it is non-None. Otherwise the original
default length of 10 is used.

See also

Floating Point String-Conversion Precision Configurable for Native Floating Point Types

¶
References: #2867

	[sql] [bug] Fixed issue where a primary key column that has a Sequence on it,
yet the column is not the “auto increment” column, either because
it has a foreign key constraint or autoincrement=False set,
would attempt to fire the Sequence on INSERT for backends that don’t
support sequences, when presented with an INSERT missing the primary
key value. This would take place on non-sequence backends like
SQLite, MySQL.¶
This change is also backported to: 0.8.5

References: #2896

	[sql] [bug] Fixed bug with Insert.from_select() method where the order
of the given names would not be taken into account when generating
the INSERT statement, thus producing a mismatch versus the column
names in the given SELECT statement. Also noted that
Insert.from_select() implies that Python-side insert defaults
cannot be used, since the statement has no VALUES clause.¶
This change is also backported to: 0.8.5

References: #2895

	[sql] [bug] The cast() function, when given a plain literal value,
will now apply the given type to the given literal value on the
bind parameter side according to the type given to the cast,
in the same manner as that of the type_coerce() function.
However unlike type_coerce(), this only takes effect if a
non-clauseelement value is passed to cast(); an existing typed
construct will retain its type.¶

	[sql] [bug] The ForeignKey class more aggressively checks the given
column argument. If not a string, it checks that the object is
at least a ColumnClause, or an object that resolves to one,
and that the .table attribute, if present, refers to a
TableClause or subclass, and not something like an
Alias. Otherwise, a ArgumentError is raised.¶
References: #2883

	[sql] [bug] The precedence rules for the ColumnOperators.collate() operator
have been modified, such that the COLLATE operator is now of lower
precedence than the comparison operators. This has the effect that
a COLLATE applied to a comparison will not render parenthesis
around the comparison, which is not parsed by backends such as
MSSQL. The change is backwards incompatible for those setups that
were working around the issue by applying Operators.collate()
to an individual element of the comparison expression,
rather than the comparison expression as a whole.

See also

The precedence rules for COLLATE have been changed

¶
References: #2879

	[sql] [enhancement] The exception raised when a BindParameter is present
in a compiled statement without a value now includes the key name
of the bound parameter in the error message.¶
This change is also backported to: 0.8.5

schema

	[schema] [bug] Fixed a regression caused by #2812 where the repr() for
table and column names would fail if the name contained non-ascii
characters.¶
References: #2868

postgresql

	[postgresql] [feature] Support for Postgresql JSON has been added, using the new
JSON type. Huge thanks to Nathan Rice for
implementing and testing this.¶
References: #2581, pull request github:50

	[postgresql] [feature] Added support for Postgresql TSVECTOR via the
postgresql.TSVECTOR type. Pull request courtesy
Noufal Ibrahim.¶
References: pull request bitbucket:8

	[postgresql] [bug] Fixed bug where index reflection would mis-interpret indkey values
when using the pypostgresql adapter, which returns these values
as lists vs. psycopg2’s return type of string.¶
This change is also backported to: 0.8.4

References: #2855

	[postgresql] [bug] Now using psycopg2 UNICODEARRAY extension for handling unicode arrays
with psycopg2 + normal “native unicode” mode, in the same way the
UNICODE extension is used.¶

	[postgresql] [bug] Fixed bug where values within an ENUM weren’t escaped for single
quote signs. Note that this is backwards-incompatible for existing
workarounds that manually escape the single quotes.

See also

Postgresql CREATE TYPE <x> AS ENUM now applies quoting to values

¶
References: #2878

mysql

	[mysql] [bug] Improvements to the system by which SQL types generate within
__repr__(), particularly with regards to the MySQL integer/numeric/
character types which feature a wide variety of keyword arguments.
The __repr__() is important for use with Alembic autogenerate
for when Python code is rendered in a migration script.¶
References: #2893

mssql

	[mssql] [bug] [firebird] The “asdecimal” flag used with the Float type will now
work with Firebird as well as the mssql+pyodbc dialects; previously the
decimal conversion was not occurring.¶
This change is also backported to: 0.8.5

	[mssql] [bug] [pymssql] Added “Net-Lib error during Connection reset by peer” message
to the list of messages checked for “disconnect” within the
pymssql dialect. Courtesy John Anderson.¶
This change is also backported to: 0.8.5

References: pull request github:51

	[mssql] [bug] Fixed bug introduced in 0.8.0 where the DROP INDEX
statement for an index in MSSQL would render incorrectly if the
index were in an alternate schema; the schemaname/tablename
would be reversed. The format has been also been revised to
match current MSSQL documentation. Courtesy Derek Harland.¶
This change is also backported to: 0.8.4

References: pull request bitbucket:7

oracle

	[oracle] [bug] Added ORA-02396 “maximum idle time” error code to list of
“is disconnect” codes with cx_oracle.¶
This change is also backported to: 0.8.4

References: #2864

	[oracle] [bug] Fixed bug where Oracle VARCHAR types given with no length
(e.g. for a CAST or similar) would incorrectly render None CHAR
or similar.¶
This change is also backported to: 0.8.4

References: #2870

firebird

	[firebird] [bug] The firebird dialect will quote identifiers which begin with an
underscore. Courtesy Treeve Jelbert.¶
This change is also backported to: 0.8.5

References: #2897

	[firebird] [bug] Fixed bug in Firebird index reflection where the columns within the
index were not sorted correctly; they are now sorted
in order of RDB$FIELD_POSITION.¶
This change is also backported to: 0.8.5

	[firebird] [bug] Changed the queries used by Firebird to list table and view names
to query from the rdb$relations view instead of the
rdb$relation_fields and rdb$view_relations views.
Variants of both the old and new queries are mentioned on many
FAQ and blogs, however the new queries are taken straight from
the “Firebird FAQ” which appears to be the most official source
of info.¶
References: #2898

misc

	[removed] The “informix” and “informixdb” dialects have been removed; the code
is now available as a separate repository on Bitbucket. The IBM-DB
project has provided production-level Informix support since the
informixdb dialect was first added.¶

	[bug] [declarative] Error message when a string arg sent to relationship() which
doesn’t resolve to a class or mapper has been corrected to work
the same way as when a non-string arg is received, which indicates
the name of the relationship which had the configurational error.¶
This change is also backported to: 0.8.5

References: #2888

	[bug] [ext] Fixed bug which prevented the serializer extension from working
correctly with table or column names that contain non-ASCII
characters.¶
This change is also backported to: 0.8.4

References: #2869

	[bug] [examples] Fixed bug which prevented history_meta recipe from working with
joined inheritance schemes more than one level deep.¶

0.9.0b1

Released: October 26, 2013
general

	[general] [feature] [py3k] The C extensions are ported to Python 3 and will build under
any supported CPython 2 or 3 environment.¶
References: #2161

	[general] [feature] [py3k] The codebase is now “in-place” for Python
2 and 3, the need to run 2to3 has been removed.
Compatibility is now against Python 2.6 on forward.¶
References: #2671

	[general] A large refactoring of packages has reorganized
the import structure of many Core modules as well as some aspects
of the ORM modules. In particular sqlalchemy.sql has been broken
out into several more modules than before so that the very large size
of sqlalchemy.sql.expression is now pared down. The effort
has focused on a large reduction in import cycles. Additionally,
the system of API functions in sqlalchemy.sql.expression and
sqlalchemy.orm has been reorganized to eliminate redundancy
in documentation between the functions vs. the objects they produce.¶

orm

	[orm] [feature] Added new option to relationship() distinct_target_key.
This enables the subquery eager loader strategy to apply a DISTINCT
to the innermost SELECT subquery, to assist in the case where
duplicate rows are generated by the innermost query which corresponds
to this relationship (there’s not yet a general solution to the issue
of dupe rows within subquery eager loading, however, when joins outside
of the innermost subquery produce dupes). When the flag
is set to True, the DISTINCT is rendered unconditionally, and when
it is set to None, DISTINCT is rendered if the innermost relationship
targets columns that do not comprise a full primary key.
The option defaults to False in 0.8 (e.g. off by default in all cases),
None in 0.9 (e.g. automatic by default). Thanks to Alexander Koval
for help with this.

See also

Subquery Eager Loading will apply DISTINCT to the innermost SELECT for some queries

¶
This change is also backported to: 0.8.3

References: #2836

	[orm] [feature] The association proxy now returns None when fetching a scalar
attribute off of a scalar relationship, where the scalar relationship
itself points to None, instead of raising an AttributeError.

See also

Association Proxy Missing Scalar returns None

¶
References: #2810

	[orm] [feature] Added new method AttributeState.load_history(), works like
AttributeState.history but also fires loader callables.

See also

attributes.get_history() will query from the DB by default if value not present

¶
References: #2787

	[orm] [feature] Added a new load option orm.load_only(). This allows a series
of column names to be specified as loading “only” those attributes,
deferring the rest.¶
References: #1418

	[orm] [feature] The system of loader options has been entirely rearchitected to build
upon a much more comprehensive base, the Load object. This
base allows any common loader option like joinedload(),
defer(), etc. to be used in a “chained” style for the purpose
of specifying options down a path, such as joinedload("foo").subqueryload("bar").
The new system supersedes the usage of dot-separated path names,
multiple attributes within options, and the usage of _all() options.

See also

New Query Options API; load_only() option

¶
References: #1418

	[orm] [feature] The composite() construct now maintains the return object
when used in a column-oriented Query, rather than expanding
out into individual columns. This makes use of the new Bundle
feature internally. This behavior is backwards incompatible; to
select from a composite column which will expand out, use
MyClass.some_composite.clauses.

See also

Composite attributes are now returned as their object form when queried on a per-attribute basis

¶
References: #2824

	[orm] [feature] A new construct Bundle is added, which allows for specification
of groups of column expressions to a Query construct.
The group of columns are returned as a single tuple by default. The
behavior of Bundle can be overridden however to provide
any sort of result processing to the returned row. The behavior
of Bundle is also embedded into composite attributes now
when they are used in a column-oriented Query.

See also

Column Bundles for ORM queries

Composite attributes are now returned as their object form when queried on a per-attribute basis

¶
References: #2824

	[orm] [feature] The version_id_generator parameter of Mapper can now be specified
to rely upon server generated version identifiers, using triggers
or other database-provided versioning features, or via an optional programmatic
value, by setting version_id_generator=False.
When using a server-generated version identfier, the ORM will use RETURNING when
available to immediately
load the new version value, else it will emit a second SELECT.¶
References: #2793

	[orm] [feature] The eager_defaults flag of Mapper will now allow the
newly generated default values to be fetched using an inline
RETURNING clause, rather than a second SELECT statement, for backends
that support RETURNING.¶
References: #2793

	[orm] [feature] Added a new attribute Session.info to Session;
this is a dictionary where applications can store arbitrary
data local to a Session.
The contents of Session.info can be also be initialized
using the info argument of Session or
sessionmaker.¶

	[orm] [feature] Removal of event listeners is now implemented. The feature is
provided via the event.remove() function.

See also

Event Removal API

¶
References: #2268

	[orm] [feature] The mechanism by which attribute events pass along an
AttributeImpl as an “initiator” token has been changed;
the object is now an event-specific object called attributes.Event.
Additionally, the attribute system no longer halts events based
on a matching “initiator” token; this logic has been moved to be
specific to ORM backref event handlers, which are the typical source
of the re-propagation of an attribute event onto subsequent append/set/remove
operations. End user code which emulates the behavior of backrefs
must now ensure that recursive event propagation schemes are halted,
if the scheme does not use the backref handlers. Using this new system,
backref handlers can now perform a
“two-hop” operation when an object is appended to a collection,
associated with a new many-to-one, de-associated with the previous
many-to-one, and then removed from a previous collection. Before this
change, the last step of removal from the previous collection would
not occur.

See also

Backref handlers can now propagate more than one level deep

¶
References: #2789

	[orm] [feature] A major change regarding how the ORM constructs joins where
the right side is itself a join or left outer join. The ORM
is now configured to allow simple nesting of joins of
the form a JOIN (b JOIN c ON b.id=c.id) ON a.id=b.id,
rather than forcing the right side into a SELECT subquery.
This should allow significant performance improvements on most
backends, most particularly MySQL. The one database backend
that has for many years held back this change, SQLite, is now addressed by
moving the production of the SELECT subquery from the
ORM to the SQL compiler; so that a right-nested join on SQLite will still
ultimately render with a SELECT, while all other backends
are no longer impacted by this workaround.
As part of this change, a new argument flat=True has been added
to the orm.aliased(), Join.alias(), and
orm.with_polymorphic() functions, which allows an “alias” of a
JOIN to be produced which applies an anonymous alias to each component
table within the join, rather than producing a subquery.

See also

Many JOIN and LEFT OUTER JOIN expressions will no longer be wrapped in (SELECT * FROM ..) AS ANON_1

¶References: #2587

	[orm] [bug] Fixed bug where using an annotation such as remote() or
foreign() on a Column before association with a parent
Table could produce issues related to the parent table not
rendering within joins, due to the inherent copy operation performed
by an annotation.¶
This change is also backported to: 0.8.3

References: #2813

	[orm] [bug] Fixed bug where Query.exists() failed to work correctly
without any WHERE criterion. Courtesy Vladimir Magamedov.¶
This change is also backported to: 0.8.3

References: #2818

	[orm] [bug] Fixed a potential issue in an ordered sequence implementation used
by the ORM to iterate mapper hierarchies; under the Jython interpreter
this implementation wasn’t ordered, even though cPython and Pypy
maintained ordering.¶
This change is also backported to: 0.8.3

References: #2794

	[orm] [bug] Fixed bug in ORM-level event registration where the “raw” or
“propagate” flags could potentially be mis-configured in some
“unmapped base class” configurations.¶
This change is also backported to: 0.8.3

References: #2786

	[orm] [bug] A performance fix related to the usage of the defer() option
when loading mapped entities. The function overhead of applying
a per-object deferred callable to an instance at load time was
significantly higher than that of just loading the data from the row
(note that defer() is meant to reduce DB/network overhead, not
necessarily function call count); the function call overhead is now
less than that of loading data from the column in all cases. There
is also a reduction in the number of “lazy callable” objects created
per load from N (total deferred values in the result) to 1 (total
number of deferred cols).¶
This change is also backported to: 0.8.3

References: #2778

	[orm] [bug] Fixed bug whereby attribute history functions would fail
when an object we moved from “persistent” to “pending”
using the make_transient() function, for operations
involving collection-based backrefs.¶
This change is also backported to: 0.8.3

References: #2773

	[orm] [bug] A warning is emitted when trying to flush an object of an inherited
class where the polymorphic discriminator has been assigned
to a value that is invalid for the class.¶
This change is also backported to: 0.8.2

References: #2750

	[orm] [bug] Fixed bug in polymorphic SQL generation where multiple joined-inheritance
entities against the same base class joined to each other as well
would not track columns on the base table independently of each other if
the string of joins were more than two entities long.¶
This change is also backported to: 0.8.2

References: #2759

	[orm] [bug] Fixed bug where sending a composite attribute into Query.order_by()
would produce a parenthesized expression not accepted by some databases.¶
This change is also backported to: 0.8.2

References: #2754

	[orm] [bug] Fixed the interaction between composite attributes and
the aliased() function. Previously, composite attributes
wouldn’t work correctly in comparison operations when aliasing
was applied.¶
This change is also backported to: 0.8.2

References: #2755

	[orm] [bug] [ext] Fixed bug where MutableDict didn’t report a change event
when clear() was called.¶
This change is also backported to: 0.8.2

References: #2730

	[orm] [bug] Fixed bug where list instrumentation would fail to represent a
setslice of [0:0] correctly, which in particular could occur
when using insert(0, item) with the association proxy. Due
to some quirk in Python collections, the issue was much more likely
with Python 3 rather than 2.¶
This change is also backported to: 0.8.3, 0.7.11

References: #2807

	[orm] [bug] attributes.get_history() when used with a scalar column-mapped
attribute will now honor the “passive” flag
passed to it; as this defaults to PASSIVE_OFF, the function will
by default query the database if the value is not present.
This is a behavioral change vs. 0.8.

See also

attributes.get_history() will query from the DB by default if value not present

¶
References: #2787

	[orm] [bug] [associationproxy] Added additional criterion to the ==, != comparators, used with
scalar values, for comparisons to None to also take into account
the association record itself being non-present, in addition to the
existing test for the scalar endpoint on the association record
being NULL. Previously, comparing Cls.scalar == None would return
records for which Cls.associated were present and
Cls.associated.scalar is None, but not rows for which
Cls.associated is non-present. More significantly, the
inverse operation Cls.scalar != None would return Cls
rows for which Cls.associated was non-present.
The case for Cls.scalar != 'somevalue' is also modified
to act more like a direct SQL comparison; only rows for
which Cls.associated is present and Associated.scalar
is non-NULL and not equal to 'somevalue' are returned.
Previously, this would be a simple NOT EXISTS.

Also added a special use case where you
can call Cls.scalar.has() with no arguments,
when Cls.scalar is a column-based value - this returns whether or
not Cls.associated has any rows present, regardless of whether
or not Cls.associated.scalar is NULL or not.

See also

Association Proxy SQL Expression Improvements and Fixes

¶References: #2751

	[orm] [bug] Fixed an obscure bug where the wrong results would be
fetched when joining/joinedloading across a many-to-many
relationship to a single-table-inheriting
subclass with a specific discriminator value, due to “secondary”
rows that would come back. The “secondary” and right-side
tables are now inner joined inside of parenthesis for all
ORM joins on many-to-many relationships so that the left->right
join can accurately filtered. This change was made possible
by finally addressing the issue with right-nested joins
outlined in #2587.

See also

Many JOIN and LEFT OUTER JOIN expressions will no longer be wrapped in (SELECT * FROM ..) AS ANON_1

¶
References: #2369

	[orm] [bug] The “auto-aliasing” behavior of the Query.select_from()
method has been turned off. The specific behavior is now
available via a new method Query.select_entity_from().
The auto-aliasing behavior here was never well documented and
is generally not what’s desired, as Query.select_from()
has become more oriented towards controlling how a JOIN is
rendered. Query.select_entity_from() will also be made
available in 0.8 so that applications which rely on the auto-aliasing
can shift their applications to use this method.

See also

Query.select_from() no longer applies the clause to corresponding entities

¶
References: #2736

orm declarative

	[feature] [orm] [declarative] Added a convenience class decorator as_declarative(), is
a wrapper for declarative_base() which allows an existing base
class to be applied using a nifty class-decorated approach.¶
This change is also backported to: 0.8.3

	[feature] [orm] [declarative] ORM descriptors such as hybrid properties can now be referenced
by name in a string argument used with order_by,
primaryjoin, or similar in relationship(),
in addition to column-bound attributes.¶
This change is also backported to: 0.8.2

References: #2761

engine

	[engine] [feature] repr() for the URL of an Engine
will now conceal the password using asterisks.
Courtesy Gunnlaugur Þór Briem.¶
This change is also backported to: 0.8.3

References: #2821

	[engine] [feature] New events added to ConnectionEvents:

	ConnectionEvents.engine_connect()

	ConnectionEvents.set_connection_execution_options()

	ConnectionEvents.set_engine_execution_options()

¶
References: #2770

	[engine] [bug] [oracle] Dialect.initialize() is not called a second time if an Engine
is recreated, due to a disconnect error. This fixes a particular
issue in the Oracle 8 dialect, but in general the dialect.initialize()
phase should only be once per dialect.¶
This change is also backported to: 0.8.3

References: #2776

	[engine] [bug] [pool] Fixed bug where QueuePool would lose the correct
checked out count if an existing pooled connection failed to reconnect
after an invalidate or recycle event.¶
This change is also backported to: 0.8.3

References: #2772

	[engine] [bug] Fixed bug where the reset_on_return argument to various Pool
implementations would not be propagated when the pool was regenerated.
Courtesy Eevee.¶
This change is also backported to: 0.8.2

References: pull request github:6

	[engine] [bug] The regexp used by the make_url() function now parses
ipv6 addresses, e.g. surrounded by brackets.¶
This change is also backported to: 0.8.3, 0.7.11

References: #2851

	[engine] [bug] The method signature of Dialect.reflecttable(), which in
all known cases is provided by DefaultDialect, has been
tightened to expect include_columns and exclude_columns
arguments without any kw option, reducing ambiguity - previously
exclude_columns was missing.¶
References: #2748

sql

	[sql] [feature] Added support for “unique constraint” reflection, via the
Inspector.get_unique_constraints() method.
Thanks for Roman Podolyaka for the patch.¶
This change is also backported to: 0.8.4

References: #1443

	[sql] [feature] The update(), insert(), and delete() constructs
will now interpret ORM entities as target tables to be operated upon,
e.g.:
from sqlalchemy import insert, update, delete

ins = insert(SomeMappedClass).values(x=5)

del_ = delete(SomeMappedClass).where(SomeMappedClass.id == 5)

upd = update(SomeMappedClass).where(SomeMappedClass.id == 5).values(name='ed')

¶
This change is also backported to: 0.8.3

	[sql] [feature] [postgresql] [mysql] The Postgresql and MySQL dialects now support reflection/inspection
of foreign key options, including ON UPDATE, ON DELETE. Postgresql
also reflects MATCH, DEFERRABLE, and INITIALLY. Coutesy ijl.¶
References: #2183

	[sql] [feature] A bindparam() construct with a “null” type (e.g. no type
specified) is now copied when used in a typed expression, and the
new copy is assigned the actual type of the compared column. Previously,
this logic would occur on the given bindparam() in place.
Additionally, a similar process now occurs for bindparam() constructs
passed to ValuesBase.values() for an Insert or
Update construct, within the compilation phase of the
construct.
These are both subtle behavioral changes which may impact some
usages.

See also

A bindparam() construct with no type gets upgraded via copy when a type is available

¶References: #2850

	[sql] [feature] An overhaul of expression handling for special symbols particularly
with conjunctions, e.g.
None expression.null() expression.true()
expression.false(), including consistency in rendering NULL
in conjunctions, “short-circuiting” of and_() and or_()
expressions which contain boolean constants, and rendering of
boolean constants and expressions as compared to “1” or “0” for backends
that don’t feature true/false constants.

See also

Improved rendering of Boolean constants, NULL constants, conjunctions

¶
References: #2734, #2804, #2823

	[sql] [feature] The typing system now handles the task of rendering “literal bind” values,
e.g. values that are normally bound parameters but due to context must
be rendered as strings, typically within DDL constructs such as
CHECK constraints and indexes (note that “literal bind” values
become used by DDL as of #2742). A new method
TypeEngine.literal_processor() serves as the base, and
TypeDecorator.process_literal_param() is added to allow wrapping
of a native literal rendering method.

See also

The typing system now handles the task of rendering “literal bind” values

¶
References: #2838

	[sql] [feature] The Table.tometadata() method now produces copies of
all SchemaItem.info dictionaries from all SchemaItem
objects within the structure including columns, constraints,
foreign keys, etc. As these dictionaries
are copies, they are independent of the original dictionary.
Previously, only the .info dictionary of Column was transferred
within this operation, and it was only linked in place, not copied.¶
References: #2716

	[sql] [feature] The default argument of Column now accepts a class
or object method as an argument, in addition to a standalone function;
will properly detect if the “context” argument is accepted or not.¶

	[sql] [feature] Added new method to the insert() construct
Insert.from_select(). Given a list of columns and
a selectable, renders INSERT INTO (table) (columns) SELECT ...
While this feature is highlighted as part of 0.9 it is also
backported to 0.8.3.

See also

INSERT from SELECT

¶
References: #722

	[sql] [feature] Provided a new attribute for TypeDecorator
called TypeDecorator.coerce_to_is_types,
to make it easier to control how comparisons using
== or != to None and boolean types goes
about producing an IS expression, or a plain
equality expression with a bound parameter.¶
References: #2734, #2744

	[sql] [feature] A label() construct will now render as its name alone
in an ORDER BY clause, if that label is also referred to
in the columns clause of the select, instead of rewriting the
full expression. This gives the database a better chance to
optimize the evaluation of the same expression in two different
contexts.

See also

Label constructs can now render as their name alone in an ORDER BY

¶
References: #1068

	[sql] [bug] Fixed bug where type_coerce() would not interpret ORM
elements with a __clause_element__() method properly.¶
This change is also backported to: 0.8.3

References: #2849

	[sql] [bug] The Enum and Boolean types now bypass
any custom (e.g. TypeDecorator) type in use when producing the
CHECK constraint for the “non native” type. This so that the custom type
isn’t involved in the expression within the CHECK, since this
expression is against the “impl” value and not the “decorated” value.¶
This change is also backported to: 0.8.3

References: #2842

	[sql] [bug] The .unique flag on Index could be produced as None
if it was generated from a Column that didn’t specify unique
(where it defaults to None). The flag will now always be True or
False.¶
This change is also backported to: 0.8.3

References: #2825

	[sql] [bug] Fixed bug in default compiler plus those of postgresql, mysql, and
mssql to ensure that any literal SQL expression values are
rendered directly as literals, instead of as bound parameters,
within a CREATE INDEX statement. This also changes the rendering
scheme for other DDL such as constraints.¶
This change is also backported to: 0.8.3

References: #2742

	[sql] [bug] A select() that is made to refer to itself in its FROM clause,
typically via in-place mutation, will raise an informative error
message rather than causing a recursion overflow.¶
This change is also backported to: 0.8.3

References: #2815

	[sql] [bug] Fixed bug where using the column_reflect event to change the .key
of the incoming Column would prevent primary key constraints,
indexes, and foreign key constraints from being correctly reflected.¶
This change is also backported to: 0.8.3

References: #2811

	[sql] [bug] The ColumnOperators.notin_() operator added in 0.8 now properly
produces the negation of the expression “IN” returns
when used against an empty collection.¶
This change is also backported to: 0.8.3

	[sql] [bug] [postgresql] Fixed bug where the expression system relied upon the str()
form of a some expressions when referring to the .c collection
on a select() construct, but the str() form isn’t available
since the element relies on dialect-specific compilation constructs,
notably the __getitem__() operator as used with a Postgresql
ARRAY element. The fix also adds a new exception class
UnsupportedCompilationError which is raised in those cases
where a compiler is asked to compile something it doesn’t know
how to.¶
This change is also backported to: 0.8.3

References: #2780

	[sql] [bug] Multiple fixes to the correlation behavior of
Select constructs, first introduced in 0.8.0:

	To satisfy the use case where FROM entries should be
correlated outwards to a SELECT that encloses another,
which then encloses this one, correlation now works
across multiple levels when explicit correlation is
established via Select.correlate(), provided
that the target select is somewhere along the chain
contained by a WHERE/ORDER BY/columns clause, not
just nested FROM clauses. This makes
Select.correlate() act more compatibly to
that of 0.7 again while still maintaining the new
“smart” correlation.

	When explicit correlation is not used, the usual
“implicit” correlation limits its behavior to just
the immediate enclosing SELECT, to maximize compatibility
with 0.7 applications, and also prevents correlation
across nested FROMs in this case, maintaining compatibility
with 0.8.0/0.8.1.

	The Select.correlate_except() method was not
preventing the given FROM clauses from correlation in
all cases, and also would cause FROM clauses to be incorrectly
omitted entirely (more like what 0.7 would do),
this has been fixed.

	Calling select.correlate_except(None) will enter
all FROM clauses into correlation as would be expected.

¶
This change is also backported to: 0.8.2

References: #2668, #2746

	[sql] [bug] Fixed bug whereby joining a select() of a table “A” with multiple
foreign key paths to a table “B”, to that table “B”, would fail
to produce the “ambiguous join condition” error that would be
reported if you join table “A” directly to “B”; it would instead
produce a join condition with multiple criteria.¶
This change is also backported to: 0.8.2

References: #2738

	[sql] [bug] [reflection] Fixed bug whereby using MetaData.reflect() across a remote
schema as well as a local schema could produce wrong results
in the case where both schemas had a table of the same name.¶
This change is also backported to: 0.8.2

References: #2728

	[sql] [bug] Removed the “not implemented” __iter__() call from the base
ColumnOperators class, while this was introduced
in 0.8.0 to prevent an endless, memory-growing loop when one also
implements a __getitem__() method on a custom
operator and then calls erroneously list() on that object,
it had the effect of causing column elements to report that they
were in fact iterable types which then throw an error when you try
to iterate. There’s no real way to have both sides here so we
stick with Python best practices. Careful with implementing
__getitem__() on your custom operators!¶
This change is also backported to: 0.8.2

References: #2726

	[sql] [bug] Fixed regression dating back to 0.7.9 whereby the name of a CTE might
not be properly quoted if it was referred to in multiple FROM clauses.¶
This change is also backported to: 0.8.3, 0.7.11

References: #2801

	[sql] [bug] [cte] Fixed bug in common table expression system where if the CTE were
used only as an alias() construct, it would not render using the
WITH keyword.¶
This change is also backported to: 0.8.3, 0.7.11

References: #2783

	[sql] [bug] Fixed bug in CheckConstraint DDL where the “quote” flag from a
Column object would not be propagated.¶
This change is also backported to: 0.8.3, 0.7.11

References: #2784

	[sql] [bug] The “name” attribute is set on Index before the “attach”
events are called, so that attachment events can be used to dynamically
generate a name for the index based on the parent table and/or
columns.¶
References: #2835

	[sql] [bug] The erroneous kw arg “schema” has been removed from the ForeignKey
object. this was an accidental commit that did nothing; a warning is raised
in 0.8.3 when this kw arg is used.¶
References: #2831

	[sql] [bug] A rework to the way that “quoted” identifiers are handled, in that
instead of relying upon various quote=True flags being passed around,
these flags are converted into rich string objects with quoting information
included at the point at which they are passed to common schema constructs
like Table, Column, etc. This solves the issue
of various methods that don’t correctly honor the “quote” flag such
as Engine.has_table() and related methods. The quoted_name
object is a string subclass that can also be used explicitly if needed;
the object will hold onto the quoting preferences passed and will
also bypass the “name normalization” performed by dialects that
standardize on uppercase symbols, such as Oracle, Firebird and DB2.
The upshot is that the “uppercase” backends can now work with force-quoted
names, such as lowercase-quoted names and new reserved words.

See also

Schema identifiers now carry along their own quoting information

¶
References: #2812

	[sql] [bug] The resolution of ForeignKey objects to their
target Column has been reworked to be as
immediate as possible, based on the moment that the
target Column is associated with the same
MetaData as this ForeignKey, rather
than waiting for the first time a join is constructed,
or similar. This along with other improvements allows
earlier detection of some foreign key configuration
issues. Also included here is a rework of the
type-propagation system, so that
it should be reliable now to set the type as None
on any Column that refers to another via
ForeignKey - the type will be copied from the
target column as soon as that other column is associated,
and now works for composite foreign keys as well.

See also

Columns can reliably get their type from a column referred to via ForeignKey

¶
References: #1765

postgresql

	[postgresql] [feature] Support for Postgresql 9.2 range types has been added.
Currently, no type translation is provided, so works
directly with strings or psycopg2 2.5 range extension types
at the moment. Patch courtesy Chris Withers.¶
This change is also backported to: 0.8.2

	[postgresql] [feature] Added support for “AUTOCOMMIT” isolation when using the psycopg2
DBAPI. The keyword is available via the isolation_level
execution option. Patch courtesy Roman Podolyaka.¶
This change is also backported to: 0.8.2

References: #2072

	[postgresql] [feature] Added support for rendering SMALLSERIAL when a SmallInteger
type is used on a primary key autoincrement column, based on server
version detection of Postgresql version 9.2 or greater.¶
References: #2840

	[postgresql] [bug] Removed a 128-character truncation from the reflection of the
server default for a column; this code was original from
PG system views which truncated the string for readability.¶
This change is also backported to: 0.8.3

References: #2844

	[postgresql] [bug] Parenthesis will be applied to a compound SQL expression as
rendered in the column list of a CREATE INDEX statement.¶
This change is also backported to: 0.8.3

References: #2742

	[postgresql] [bug] Fixed bug where Postgresql version strings that had a prefix preceding
the words “Postgresql” or “EnterpriseDB” would not parse.
Courtesy Scott Schaefer.¶
This change is also backported to: 0.8.3

References: #2819

	[postgresql] [bug] The behavior of extract() has been simplified on the
Postgresql dialect to no longer inject a hardcoded ::timestamp
or similar cast into the given expression, as this interfered
with types such as timezone-aware datetimes, but also
does not appear to be at all necessary with modern versions
of psycopg2.¶
This change is also backported to: 0.8.2

References: #2740

	[postgresql] [bug] Fixed bug in HSTORE type where keys/values that contained
backslashed quotes would not be escaped correctly when
using the “non native” (i.e. non-psycopg2) means
of translating HSTORE data. Patch courtesy Ryan Kelly.¶
This change is also backported to: 0.8.2

References: #2766

	[postgresql] [bug] Fixed bug where the order of columns in a multi-column
Postgresql index would be reflected in the wrong order.
Courtesy Roman Podolyaka.¶
This change is also backported to: 0.8.2

References: #2767

mysql

	[mysql] [feature] The mysql_length parameter used with Index can now
be passed as a dictionary of column names/lengths, for use
with composite indexes. Big thanks to Roman Podolyaka for the
patch.¶
This change is also backported to: 0.8.2

References: #2704

	[mysql] [feature] The MySQL mysql.SET type now features the same auto-quoting
behavior as that of mysql.ENUM. Quotes are not required when
setting up the value, but quotes that are present will be auto-detected
along with a warning. This also helps with Alembic where
the SET type doesn’t render with quotes.¶
References: #2817

	[mysql] [bug] The change in #2721, which is that the deferrable keyword
of ForeignKeyConstraint is silently ignored on the MySQL
backend, will be reverted as of 0.9; this keyword will now render again, raising
errors on MySQL as it is not understood - the same behavior will also
apply to the initially keyword. In 0.8, the keywords will remain
ignored but a warning is emitted. Additionally, the match keyword
now raises a CompileError on 0.9 and emits a warning on 0.8;
this keyword is not only silently ignored by MySQL but also breaks
the ON UPDATE/ON DELETE options.
To use a ForeignKeyConstraint
that does not render or renders differently on MySQL, use a custom
compilation option. An example of this usage has been added to the
documentation, see MySQL Foreign Keys.

¶This change is also backported to: 0.8.3

References: #2721, #2839

	[mysql] [bug] MySQL-connector dialect now allows options in the create_engine
query string to override those defaults set up in the connect,
including “buffered” and “raise_on_warnings”.¶
This change is also backported to: 0.8.3

References: #2515

	[mysql] [bug] Fixed bug when using multi-table UPDATE where a supplemental
table is a SELECT with its own bound parameters, where the positioning
of the bound parameters would be reversed versus the statement
itself when using MySQL’s special syntax.¶
This change is also backported to: 0.8.2

References: #2768

	[mysql] [bug] Added another conditional to the mysql+gaerdbms dialect to
detect so-called “development” mode, where we should use the
rdbms_mysqldb DBAPI. Patch courtesy Brett Slatkin.¶
This change is also backported to: 0.8.2

References: #2715

	[mysql] [bug] The deferrable keyword argument on ForeignKey and
ForeignKeyConstraint will not render the DEFERRABLE keyword
on the MySQL dialect. For a long time we left this in place because
a non-deferrable foreign key would act very differently than a deferrable
one, but some environments just disable FKs on MySQL, so we’ll be less
opinionated here.¶
This change is also backported to: 0.8.2

References: #2721

	[mysql] [bug] Updates to MySQL reserved words for versions 5.5, 5.6, courtesy
Hanno Schlichting.¶
This change is also backported to: 0.8.3, 0.7.11

References: #2791

	[mysql] [bug] Fix and test parsing of MySQL foreign key options within reflection;
this complements the work in #2183 where we begin to support
reflection of foreign key options such as ON UPDATE/ON DELETE
cascade.¶
References: #2839

	[mysql] [bug] Improved support for the cymysql driver, supporting version 0.6.5,
courtesy Hajime Nakagami.¶

sqlite

	[sqlite] [bug] The newly added SQLite DATETIME arguments storage_format and
regexp apparently were not fully implemented correctly; while the
arguments were accepted, in practice they would have no effect;
this has been fixed.¶
This change is also backported to: 0.8.3

References: #2781

	[sqlite] [bug] Added sqlalchemy.types.BIGINT to the list of type names that can be
reflected by the SQLite dialect; courtesy Russell Stuart.¶
This change is also backported to: 0.8.2

References: #2764

mssql

	[mssql] [bug] When querying the information schema on SQL Server 2000, removed
a CAST call that was added in 0.8.1 to help with driver issues,
which apparently is not compatible on 2000.
The CAST remains in place for SQL Server 2005 and greater.¶
This change is also backported to: 0.8.2

References: #2747

	[mssql] [bug] [pyodbc] Fixes to MSSQL with Python 3 + pyodbc, including that statements
are passed correctly.¶
References: #2355

oracle

	[oracle] [feature] [py3k] The Oracle unit tests with cx_oracle now pass
fully under Python 3.¶

	[oracle] [bug] Fixed bug where Oracle table reflection using synonyms would fail
if the synonym and the table were in different remote schemas.
Patch to fix courtesy Kyle Derr.¶
This change is also backported to: 0.8.3

References: #2853

firebird

	[firebird] [feature] Added new flag retaining=True to the kinterbasdb and fdb dialects.
This controls the value of the retaining flag sent to the
commit() and rollback() methods of the DBAPI connection.
Due to historical concerns, this flag defaults to True in 0.8.2,
however in 0.9.0b1 this flag defaults to False.¶
This change is also backported to: 0.8.2

References: #2763

	[firebird] [feature] The fdb dialect is now the default dialect when
specified without a dialect qualifier, i.e. firebird://,
per the Firebird project publishing fdb as their
official Python driver.¶
References: #2504

	[firebird] [bug] Type lookup when reflecting the Firebird types LONG and
INT64 has been fixed so that LONG is treated as INTEGER,
INT64 treated as BIGINT, unless the type has a “precision”
in which case it’s treated as NUMERIC. Patch courtesy
Russell Stuart.¶
This change is also backported to: 0.8.2

References: #2757

misc

	[feature] Added a new flag system=True to Column, which marks
the column as a “system” column which is automatically made present
by the database (such as Postgresql oid or xmin). The
column will be omitted from the CREATE TABLE statement but will
otherwise be available for querying. In addition, the
CreateColumn construct can be appled to a custom
compilation rule which allows skipping of columns, by producing
a rule that returns None.¶
This change is also backported to: 0.8.3

	[feature] [examples] Improved the examples in examples/generic_associations, including
that discriminator_on_association.py makes use of single table
inheritance do the work with the “discriminator”. Also
added a true “generic foreign key” example, which works similarly
to other popular frameworks in that it uses an open-ended integer
to point to any other table, foregoing traditional referential
integrity. While we don’t recommend this pattern, information wants
to be free.¶
This change is also backported to: 0.8.3

	[feature] [core] Added a new variant to UpdateBase.returning() called
ValuesBase.return_defaults(); this allows arbitrary columns
to be added to the RETURNING clause of the statement without interfering
with the compilers usual “implicit returning” feature, which is used to
efficiently fetch newly generated primary key values. For supporting
backends, a dictionary of all fetched values is present at
ResultProxy.returned_defaults.¶
References: #2793

	[feature] [pool] Added pool logging for “rollback-on-return” and the less used
“commit-on-return”. This is enabled with the rest of pool
“debug” logging.¶
References: #2752

	[bug] [examples] Added “autoincrement=False” to the history table created in the
versioning example, as this table shouldn’t have autoinc on it
in any case, courtesy Patrick Schmid.¶
This change is also backported to: 0.8.3

	[bug] [ext] Fixed bug whereby if a composite type were set up
with a function instead of a class, the mutable extension
would trip up when it tried to check that column
for being a MutableComposite (which it isn’t).
Courtesy asldevi.¶
This change is also backported to: 0.8.2

	[bug] [examples] Fixed an issue with the “versioning” recipe whereby a many-to-one
reference could produce a meaningless version for the target,
even though it was not changed, when backrefs were present.
Patch courtesy Matt Chisholm.¶
This change is also backported to: 0.8.2

	[requirements] The Python mock library
is now required in order to run the unit test suite. While part
of the standard library as of Python 3.3, previous Python installations
will need to install this in order to run unit tests or to
use the sqlalchemy.testing package for external dialects.¶
This change is also backported to: 0.8.2

0.8 Changelog

0.8.7

Released: July 22, 2014
orm

	[orm] [bug] Fixed bug in subquery eager loading where a long chain of
eager loads across a polymorphic-subclass boundary in conjunction
with polymorphic loading would fail to locate the subclass-link in the
chain, erroring out with a missing property name on an
AliasedClass.¶
References: #3055

	[orm] [bug] Fixed ORM bug where the class_mapper() function would mask
AttributeErrors or KeyErrors that should raise during mapper
configuration due to user errors. The catch for attribute/keyerror
has been made more specific to not include the configuration step.¶
References: #3047

sql

	[sql] [bug] Fixed bug in Enum and other SchemaType
subclasses where direct association of the type with a
MetaData would lead to a hang when events
(like create events) were emitted on the MetaData.¶
References: #3124

	[sql] [bug] Fixed a bug within the custom operator plus TypeEngine.with_variant()
system, whereby using a TypeDecorator in conjunction with
variant would fail with an MRO error when a comparison operator was used.¶
References: #3102

	[sql] [bug] Fixed bug in INSERT..FROM SELECT construct where selecting from a
UNION would wrap the union in an anonymous (e.g. unlabled) subquery.¶
References: #3044

	[sql] [bug] Fixed bug where Table.update() and Table.delete()
would produce an empty WHERE clause when an empty and_()
or or_() or other blank expression were applied. This is
now consistent with that of select().¶
References: #3045

postgresql

	[postgresql] [bug] Added the hashable=False flag to the PG HSTORE type, which
is needed to allow the ORM to skip over trying to “hash” an ORM-mapped
HSTORE column when requesting it in a mixed column/entity list.
Patch courtesy Gunnlaugur Þór Briem.¶
References: #3053

	[postgresql] [bug] Added a new “disconnect” message “connection has been closed unexpectedly”.
This appears to be related to newer versions of SSL.
Pull request courtesy Antti Haapala.¶
References: pull request bitbucket:13

mysql

	[mysql] [bug] MySQL error 2014 “commands out of sync” appears to be raised as a
ProgrammingError, not OperationalError, in modern MySQL-Python versions;
all MySQL error codes that are tested for “is disconnect” are now
checked within OperationalError and ProgrammingError regardless.¶
References: #3101

	[mysql] [bug] Fixed bug where column names added to mysql_length parameter
on an index needed to have the same quoting for quoted names in
order to be recognized. The fix makes the quotes optional but
also provides the old behavior for backwards compatibility with those
using the workaround.¶
References: #3085

	[mysql] [bug] Added support for reflecting tables where an index includes
KEY_BLOCK_SIZE using an equal sign. Pull request courtesy
Sean McGivern.¶
References: pull request bitbucket:15

mssql

	[mssql] [bug] Added statement encoding to the “SET IDENTITY_INSERT”
statements which operate when an explicit INSERT is being
interjected into an IDENTITY column, to support non-ascii table
identifiers on drivers such as pyodbc + unix + py2k that don’t
support unicode statements.¶

	[mssql] [bug] In the SQL Server pyodbc dialect, repaired the implementation
for the description_encoding dialect parameter, which when
not explicitly set was preventing cursor.description from
being parsed correctly in the case of result sets that
contained names in alternate encodings. This parameter
shouldn’t be needed going forward.¶
References: #3091

misc

	[bug] [declarative] The __mapper_args__ dictionary is copied from a declarative
mixin or abstract class when accessed, so that modifications made
to this dictionary by declarative itself won’t conflict with that
of other mappings. The dictionary is modified regarding the
version_id_col and polymorphic_on arguments, replacing the
column within with the one that is officially mapped to the local
class/table.¶
References: #3062

	[bug] [ext] Fixed bug in mutable extension where MutableDict did not
report change events for the setdefault() dictionary operation.¶
References: #3093, #3051

	[bug] [ext] Fixed bug where MutableDict.setdefault() didn’t return the
existing or new value (this bug was not released in any 0.8 version).
Pull request courtesy Thomas Hervé.¶
References: #3093, #3051, pull request bitbucket:24

0.8.6

Released: March 28, 2014
general

	[general] [bug] Adjusted setup.py file to support the possible future
removal of the setuptools.Feature extension from setuptools.
If this keyword isn’t present, the setup will still succeed
with setuptools rather than falling back to distutils. C extension
building can be disabled now also by setting the
DISABLE_SQLALCHEMY_CEXT environment variable. This variable works
whether or not setuptools is even available.¶
References: #2986

orm

	[orm] [bug] Fixed ORM bug where changing the primary key of an object, then marking
it for DELETE would fail to target the correct row for DELETE.¶
References: #3006

	[orm] [bug] Fixed regression from 0.8.3 as a result of #2818
where Query.exists() wouldn’t work on a query that only
had a Query.select_from() entry but no other entities.¶
References: #2995

	[orm] [bug] Improved an error message which would occur if a query() were made
against a non-selectable, such as a literal_column(), and then
an attempt was made to use Query.join() such that the “left”
side would be determined as None and then fail. This condition
is now detected explicitly.¶

	[orm] [bug] Removed stale names from sqlalchemy.orm.interfaces.__all__ and
refreshed with current names, so that an import * from this
module again works.¶
References: #2975

sql

	[sql] [bug] Fixed bug in tuple_() construct where the “type” of essentially
the first SQL expression would be applied as the “comparison type”
to a compared tuple value; this has the effect in some cases of an
inappropriate “type coersion” occurring, such as when a tuple that
has a mix of String and Binary values improperly coerces target
values to Binary even though that’s not what they are on the left
side. tuple_() now expects heterogeneous types within its
list of values.¶
References: #2977

postgresql

	[postgresql] [feature] Enabled “sane multi-row count” checking for the psycopg2 DBAPI, as
this seems to be supported as of psycopg2 2.0.9.¶

	[postgresql] [bug] Fixed regression caused by release 0.8.5 / 0.9.3’s compatibility
enhancements where index reflection on Postgresql versions specific
to only the 8.1, 8.2 series again
broke, surrounding the ever problematic int2vector type. While
int2vector supports array operations as of 8.1, apparently it only
supports CAST to a varchar as of 8.3.¶
References: #3000

misc

	[bug] [ext] Fixed bug in mutable extension as well as
attributes.flag_modified() where the change event would not be
propagated if the attribute had been reassigned to itself.¶
References: #2997

0.8.5

Released: February 19, 2014
orm

	[orm] [bug] Fixed bug where Query.get() would fail to consistently
raise the InvalidRequestError that invokes when called
on a query with existing criterion, when the given identity is
already present in the identity map.¶
References: #2951

	[orm] [bug] Fixed error message when an iterator object is passed to
class_mapper() or similar, where the error would fail to
render on string formatting. Pullreq courtesy Kyle Stark.¶
References: pull request github:58

	[orm] [bug] An adjustment to the subqueryload() strategy which ensures that
the query runs after the loading process has begun; this is so that
the subqueryload takes precedence over other loaders that may be
hitting the same attribute due to other eager/noload situations
at the wrong time.¶
References: #2887

	[orm] [bug] Fixed bug when using joined table inheritance from a table to a
select/alias on the base, where the PK columns were also not same
named; the persistence system would fail to copy primary key values
from the base table to the inherited table upon INSERT.¶
References: #2885

	[orm] [bug] composite() will raise an informative error message when the
columns/attribute (names) passed don’t resolve to a Column or mapped
attribute (such as an erroneous tuple); previously raised an unbound
local.¶
References: #2889

engine

	[engine] [bug] [pool] Fixed a critical regression caused by #2880 where the newly
concurrent ability to return connections from the pool means that the
“first_connect” event is now no longer synchronized either, thus leading
to dialect mis-configurations under even minimal concurrency situations.¶
References: #2964, #2880

sql

	[sql] [bug] Fixed bug where calling Insert.values() with an empty list
or tuple would raise an IndexError. It now produces an empty
insert construct as would be the case with an empty dictionary.¶
References: #2944

	[sql] [bug] Fixed bug where in_() would go into an endless loop if
erroneously passed a column expression whose comparator included
the __getitem__() method, such as a column that uses the
postgresql.ARRAY type.¶
References: #2957

	[sql] [bug] Fixed issue where a primary key column that has a Sequence on it,
yet the column is not the “auto increment” column, either because
it has a foreign key constraint or autoincrement=False set,
would attempt to fire the Sequence on INSERT for backends that don’t
support sequences, when presented with an INSERT missing the primary
key value. This would take place on non-sequence backends like
SQLite, MySQL.¶
References: #2896

	[sql] [bug] Fixed bug with Insert.from_select() method where the order
of the given names would not be taken into account when generating
the INSERT statement, thus producing a mismatch versus the column
names in the given SELECT statement. Also noted that
Insert.from_select() implies that Python-side insert defaults
cannot be used, since the statement has no VALUES clause.¶
References: #2895

	[sql] [enhancement] The exception raised when a BindParameter is present
in a compiled statement without a value now includes the key name
of the bound parameter in the error message.¶

postgresql

	[postgresql] [bug] Added an additional message to psycopg2 disconnect detection,
“could not send data to server”, which complements the existing
“could not receive data from server” and has been observed by users.¶
References: #2936

	[postgresql] [bug]

Support has been improved for Postgresql reflection behavior on very old
(pre 8.1) versions of Postgresql, and potentially other PG engines
such as Redshift (assuming Redshift reports the version as < 8.1).
The query for “indexes” as well as “primary keys” relies upon inspecting
a so-called “int2vector” datatype, which refuses to coerce to an array
prior to 8.1 causing failures regarding the “ANY()” operator used
in the query. Extensive googling has located the very hacky, but
recommended-by-PG-core-developer query to use when PG version < 8.1
is in use, so index and primary key constraint reflection now work
on these versions.

¶

	[postgresql] [bug] Revised this very old issue where the Postgresql “get primary key”
reflection query were updated to take into account primary key constraints
that were renamed; the newer query fails on very old versions of
Postgresql such as version 7, so the old query is restored in those cases
when server_version_info < (8, 0) is detected.¶
References: #2291

mysql

	[mysql] [feature] Added new MySQL-specific mysql.DATETIME which includes
fractional seconds support; also added fractional seconds support
to mysql.TIMESTAMP. DBAPI support is limited, though
fractional seconds are known to be supported by MySQL Connector/Python.
Patch courtesy Geert JM Vanderkelen.¶
References: #2941

	[mysql] [bug] Added support for the PARTITION BY and PARTITIONS
MySQL table keywords, specified as mysql_partition_by='value' and
mysql_partitions='value' to Table. Pull request
courtesy Marcus McCurdy.¶
References: #2966, pull request bitbucket:12

	[mysql] [bug] Fixed bug which prevented MySQLdb-based dialects (e.g.
pymysql) from working in Py3K, where a check for “connection
charset” would fail due to Py3K’s more strict value comparison
rules. The call in question wasn’t taking the database
version into account in any case as the server version was
still None at that point, so the method overall has been
simplified to rely upon connection.character_set_name().¶
References: #2933

	[mysql] [bug] Some missing methods added to the cymysql dialect, including
_get_server_version_info() and _detect_charset(). Pullreq
courtesy Hajime Nakagami.¶
References: pull request github:61

sqlite

	[sqlite] [bug] Restored a change that was missed in the backport of unique
constraint reflection to 0.8, where UniqueConstraint
with SQLite would fail if reserved keywords were included in the
names of columns. Pull request courtesy Roman Podolyaka.¶
References: pull request github:72

mssql

	[mssql] [bug] [firebird] The “asdecimal” flag used with the Float type will now
work with Firebird as well as the mssql+pyodbc dialects; previously the
decimal conversion was not occurring.¶

	[mssql] [bug] [pymssql] Added “Net-Lib error during Connection reset by peer” message
to the list of messages checked for “disconnect” within the
pymssql dialect. Courtesy John Anderson.¶
References: pull request github:51

firebird

	[firebird] [bug] The firebird dialect will quote identifiers which begin with an
underscore. Courtesy Treeve Jelbert.¶
References: #2897

	[firebird] [bug] Fixed bug in Firebird index reflection where the columns within the
index were not sorted correctly; they are now sorted
in order of RDB$FIELD_POSITION.¶

misc

	[bug] [py3k] Fixed Py3K bug where a missing import would cause “literal binary”
mode to fail to import “util.binary_type” when rendering a bound
parameter. 0.9 handles this differently. Pull request courtesy
Andreas Zeidler.¶
References: pull request github:63

	[bug] [declarative] Error message when a string arg sent to relationship() which
doesn’t resolve to a class or mapper has been corrected to work
the same way as when a non-string arg is received, which indicates
the name of the relationship which had the configurational error.¶
References: #2888

0.8.4

Released: December 8, 2013
orm

	[orm] [bug] Fixed a regression introduced by #2818 where the EXISTS
query being generated would produce a “columns being replaced”
warning for a statement with two same-named columns,
as the internal SELECT wouldn’t have use_labels set.¶
References: #2818

engine

	[engine] [bug] A DBAPI that raises an error on connect() which is not a subclass
of dbapi.Error (such as TypeError, NotImplementedError, etc.)
will propagate the exception unchanged. Previously,
the error handling specific to the connect() routine would both
inappropriately run the exception through the dialect’s
Dialect.is_disconnect() routine as well as wrap it in
a sqlalchemy.exc.DBAPIError. It is now propagated unchanged
in the same way as occurs within the execute process.¶
References: #2881

	[engine] [bug] [pool] The QueuePool has been enhanced to not block new connection
attempts when an existing connection attempt is blocking. Previously,
the production of new connections was serialized within the block
that monitored overflow; the overflow counter is now altered within
its own critical section outside of the connection process itself.¶
References: #2880

	[engine] [bug] [pool] Made a slight adjustment to the logic which waits for a pooled
connection to be available, such that for a connection pool
with no timeout specified, it will every half a second break out of
the wait to check for the so-called “abort” flag, which allows the
waiter to break out in case the whole connection pool was dumped;
normally the waiter should break out due to a notify_all() but it’s
possible this notify_all() is missed in very slim cases.
This is an extension of logic first introduced in 0.8.0, and the
issue has only been observed occasionally in stress tests.¶
References: #2522

	[engine] [bug] Fixed bug where SQL statement would be improperly ASCII-encoded
when a pre-DBAPI StatementError were raised within
Connection.execute(), causing encoding errors for
non-ASCII statements. The stringification now remains within
Python unicode thus avoiding encoding errors.¶
References: #2871

sql

	[sql] [feature] Added support for “unique constraint” reflection, via the
Inspector.get_unique_constraints() method.
Thanks for Roman Podolyaka for the patch.¶
References: #1443

postgresql

	[postgresql] [bug] Fixed bug where index reflection would mis-interpret indkey values
when using the pypostgresql adapter, which returns these values
as lists vs. psycopg2’s return type of string.¶
References: #2855

mssql

	[mssql] [bug] Fixed bug introduced in 0.8.0 where the DROP INDEX
statement for an index in MSSQL would render incorrectly if the
index were in an alternate schema; the schemaname/tablename
would be reversed. The format has been also been revised to
match current MSSQL documentation. Courtesy Derek Harland.¶
References: pull request bitbucket:7

oracle

	[oracle] [bug] Added ORA-02396 “maximum idle time” error code to list of
“is disconnect” codes with cx_oracle.¶
References: #2864

	[oracle] [bug] Fixed bug where Oracle VARCHAR types given with no length
(e.g. for a CAST or similar) would incorrectly render None CHAR
or similar.¶
References: #2870

misc

	[bug] [ext] Fixed bug which prevented the serializer extension from working
correctly with table or column names that contain non-ASCII
characters.¶
References: #2869

0.8.3

Released: October 26, 2013
orm

	[orm] [feature] Added new option to relationship() distinct_target_key.
This enables the subquery eager loader strategy to apply a DISTINCT
to the innermost SELECT subquery, to assist in the case where
duplicate rows are generated by the innermost query which corresponds
to this relationship (there’s not yet a general solution to the issue
of dupe rows within subquery eager loading, however, when joins outside
of the innermost subquery produce dupes). When the flag
is set to True, the DISTINCT is rendered unconditionally, and when
it is set to None, DISTINCT is rendered if the innermost relationship
targets columns that do not comprise a full primary key.
The option defaults to False in 0.8 (e.g. off by default in all cases),
None in 0.9 (e.g. automatic by default). Thanks to Alexander Koval
for help with this.

See also

Subquery Eager Loading will apply DISTINCT to the innermost SELECT for some queries

¶
References: #2836

	[orm] [bug] Fixed bug where list instrumentation would fail to represent a
setslice of [0:0] correctly, which in particular could occur
when using insert(0, item) with the association proxy. Due
to some quirk in Python collections, the issue was much more likely
with Python 3 rather than 2.¶
This change is also backported to: 0.7.11

References: #2807

	[orm] [bug] Fixed bug where using an annotation such as remote() or
foreign() on a Column before association with a parent
Table could produce issues related to the parent table not
rendering within joins, due to the inherent copy operation performed
by an annotation.¶
References: #2813

	[orm] [bug] Fixed bug where Query.exists() failed to work correctly
without any WHERE criterion. Courtesy Vladimir Magamedov.¶
References: #2818

	[orm] [bug] Backported a change from 0.9 whereby the iteration of a hierarchy
of mappers used in polymorphic inheritance loads is sorted,
which allows the SELECT statements generated for polymorphic queries
to have deterministic rendering, which in turn helps with caching
schemes that cache on the SQL string itself.¶
References: #2779

	[orm] [bug] Fixed a potential issue in an ordered sequence implementation used
by the ORM to iterate mapper hierarchies; under the Jython interpreter
this implementation wasn’t ordered, even though cPython and Pypy
maintained ordering.¶
References: #2794

	[orm] [bug] Fixed bug in ORM-level event registration where the “raw” or
“propagate” flags could potentially be mis-configured in some
“unmapped base class” configurations.¶
References: #2786

	[orm] [bug] A performance fix related to the usage of the defer() option
when loading mapped entities. The function overhead of applying
a per-object deferred callable to an instance at load time was
significantly higher than that of just loading the data from the row
(note that defer() is meant to reduce DB/network overhead, not
necessarily function call count); the function call overhead is now
less than that of loading data from the column in all cases. There
is also a reduction in the number of “lazy callable” objects created
per load from N (total deferred values in the result) to 1 (total
number of deferred cols).¶
References: #2778

	[orm] [bug] Fixed bug whereby attribute history functions would fail
when an object we moved from “persistent” to “pending”
using the make_transient() function, for operations
involving collection-based backrefs.¶
References: #2773

orm declarative

	[feature] [orm] [declarative] Added a convenience class decorator as_declarative(), is
a wrapper for declarative_base() which allows an existing base
class to be applied using a nifty class-decorated approach.¶

engine

	[engine] [feature] repr() for the URL of an Engine
will now conceal the password using asterisks.
Courtesy Gunnlaugur Þór Briem.¶
References: #2821

	[engine] [bug] The regexp used by the make_url() function now parses
ipv6 addresses, e.g. surrounded by brackets.¶
This change is also backported to: 0.7.11

References: #2851

	[engine] [bug] [oracle] Dialect.initialize() is not called a second time if an Engine
is recreated, due to a disconnect error. This fixes a particular
issue in the Oracle 8 dialect, but in general the dialect.initialize()
phase should only be once per dialect.¶
References: #2776

	[engine] [bug] [pool] Fixed bug where QueuePool would lose the correct
checked out count if an existing pooled connection failed to reconnect
after an invalidate or recycle event.¶
References: #2772

sql

	[sql] [feature] Added new method to the insert() construct
Insert.from_select(). Given a list of columns and
a selectable, renders INSERT INTO (table) (columns) SELECT ...¶
References: #722

	[sql] [feature] The update(), insert(), and delete() constructs
will now interpret ORM entities as target tables to be operated upon,
e.g.:
from sqlalchemy import insert, update, delete

ins = insert(SomeMappedClass).values(x=5)

del_ = delete(SomeMappedClass).where(SomeMappedClass.id == 5)

upd = update(SomeMappedClass).where(SomeMappedClass.id == 5).values(name='ed')

¶

	[sql] [bug] Fixed regression dating back to 0.7.9 whereby the name of a CTE might
not be properly quoted if it was referred to in multiple FROM clauses.¶
This change is also backported to: 0.7.11

References: #2801

	[sql] [bug] [cte] Fixed bug in common table expression system where if the CTE were
used only as an alias() construct, it would not render using the
WITH keyword.¶
This change is also backported to: 0.7.11

References: #2783

	[sql] [bug] Fixed bug in CheckConstraint DDL where the “quote” flag from a
Column object would not be propagated.¶
This change is also backported to: 0.7.11

References: #2784

	[sql] [bug] Fixed bug where type_coerce() would not interpret ORM
elements with a __clause_element__() method properly.¶
References: #2849

	[sql] [bug] The Enum and Boolean types now bypass
any custom (e.g. TypeDecorator) type in use when producing the
CHECK constraint for the “non native” type. This so that the custom type
isn’t involved in the expression within the CHECK, since this
expression is against the “impl” value and not the “decorated” value.¶
References: #2842

	[sql] [bug] The .unique flag on Index could be produced as None
if it was generated from a Column that didn’t specify unique
(where it defaults to None). The flag will now always be True or
False.¶
References: #2825

	[sql] [bug] Fixed bug in default compiler plus those of postgresql, mysql, and
mssql to ensure that any literal SQL expression values are
rendered directly as literals, instead of as bound parameters,
within a CREATE INDEX statement. This also changes the rendering
scheme for other DDL such as constraints.¶
References: #2742

	[sql] [bug] A select() that is made to refer to itself in its FROM clause,
typically via in-place mutation, will raise an informative error
message rather than causing a recursion overflow.¶
References: #2815

	[sql] [bug] Non-working “schema” argument on ForeignKey is deprecated;
raises a warning. Removed in 0.9.¶
References: #2831

	[sql] [bug] Fixed bug where using the column_reflect event to change the .key
of the incoming Column would prevent primary key constraints,
indexes, and foreign key constraints from being correctly reflected.¶
References: #2811

	[sql] [bug] The ColumnOperators.notin_() operator added in 0.8 now properly
produces the negation of the expression “IN” returns
when used against an empty collection.¶

	[sql] [bug] [postgresql] Fixed bug where the expression system relied upon the str()
form of a some expressions when referring to the .c collection
on a select() construct, but the str() form isn’t available
since the element relies on dialect-specific compilation constructs,
notably the __getitem__() operator as used with a Postgresql
ARRAY element. The fix also adds a new exception class
UnsupportedCompilationError which is raised in those cases
where a compiler is asked to compile something it doesn’t know
how to.¶
References: #2780

postgresql

	[postgresql] [bug] Removed a 128-character truncation from the reflection of the
server default for a column; this code was original from
PG system views which truncated the string for readability.¶
References: #2844

	[postgresql] [bug] Parenthesis will be applied to a compound SQL expression as
rendered in the column list of a CREATE INDEX statement.¶
References: #2742

	[postgresql] [bug] Fixed bug where Postgresql version strings that had a prefix preceding
the words “Postgresql” or “EnterpriseDB” would not parse.
Courtesy Scott Schaefer.¶
References: #2819

mysql

	[mysql] [bug] Updates to MySQL reserved words for versions 5.5, 5.6, courtesy
Hanno Schlichting.¶
This change is also backported to: 0.7.11

References: #2791

	[mysql] [bug] The change in #2721, which is that the deferrable keyword
of ForeignKeyConstraint is silently ignored on the MySQL
backend, will be reverted as of 0.9; this keyword will now render again, raising
errors on MySQL as it is not understood - the same behavior will also
apply to the initially keyword. In 0.8, the keywords will remain
ignored but a warning is emitted. Additionally, the match keyword
now raises a CompileError on 0.9 and emits a warning on 0.8;
this keyword is not only silently ignored by MySQL but also breaks
the ON UPDATE/ON DELETE options.
To use a ForeignKeyConstraint
that does not render or renders differently on MySQL, use a custom
compilation option. An example of this usage has been added to the
documentation, see MySQL Foreign Keys.

¶References: #2721, #2839

	[mysql] [bug] MySQL-connector dialect now allows options in the create_engine
query string to override those defaults set up in the connect,
including “buffered” and “raise_on_warnings”.¶
References: #2515

sqlite

	[sqlite] [bug] The newly added SQLite DATETIME arguments storage_format and
regexp apparently were not fully implemented correctly; while the
arguments were accepted, in practice they would have no effect;
this has been fixed.¶
References: #2781

oracle

	[oracle] [bug] Fixed bug where Oracle table reflection using synonyms would fail
if the synonym and the table were in different remote schemas.
Patch to fix courtesy Kyle Derr.¶
References: #2853

misc

	[feature] Added a new flag system=True to Column, which marks
the column as a “system” column which is automatically made present
by the database (such as Postgresql oid or xmin). The
column will be omitted from the CREATE TABLE statement but will
otherwise be available for querying. In addition, the
CreateColumn construct can be appled to a custom
compilation rule which allows skipping of columns, by producing
a rule that returns None.¶

	[feature] [examples] Improved the examples in examples/generic_associations, including
that discriminator_on_association.py makes use of single table
inheritance do the work with the “discriminator”. Also
added a true “generic foreign key” example, which works similarly
to other popular frameworks in that it uses an open-ended integer
to point to any other table, foregoing traditional referential
integrity. While we don’t recommend this pattern, information wants
to be free.¶

	[bug] [examples] Added “autoincrement=False” to the history table created in the
versioning example, as this table shouldn’t have autoinc on it
in any case, courtesy Patrick Schmid.¶

0.8.2

Released: July 3, 2013
orm

	[orm] [feature] Added a new method Query.select_entity_from() which
will in 0.9 replace part of the functionality of
Query.select_from(). In 0.8, the two methods perform
the same function, so that code can be migrated to use the
Query.select_entity_from() method as appropriate.
See the 0.9 migration guide for details.¶
References: #2736

	[orm] [bug] A warning is emitted when trying to flush an object of an inherited
class where the polymorphic discriminator has been assigned
to a value that is invalid for the class.¶
References: #2750

	[orm] [bug] Fixed bug in polymorphic SQL generation where multiple joined-inheritance
entities against the same base class joined to each other as well
would not track columns on the base table independently of each other if
the string of joins were more than two entities long.¶
References: #2759

	[orm] [bug] Fixed bug where sending a composite attribute into Query.order_by()
would produce a parenthesized expression not accepted by some databases.¶
References: #2754

	[orm] [bug] Fixed the interaction between composite attributes and
the aliased() function. Previously, composite attributes
wouldn’t work correctly in comparison operations when aliasing
was applied.¶
References: #2755

	[orm] [bug] [ext] Fixed bug where MutableDict didn’t report a change event
when clear() was called.¶
References: #2730

	[orm] [bug] Fixed a regression caused by #2682 whereby the
evaluation invoked by Query.update() and Query.delete()
would hit upon unsupported True and False symbols
which now appear due to the usage of IS.¶
References: #2737

	[orm] [bug] Fixed a regression from 0.7 caused by this ticket, which
made the check for recursion overflow in self-referential
eager joining too loose, missing a particular circumstance
where a subclass had lazy=”joined” or “subquery” configured
and the load was a “with_polymorphic” against the base.¶
References: #2481

	[orm] [bug] Fixed a regression from 0.7 where the contextmanager feature
of Session.begin_nested() would fail to correctly
roll back the transaction when a flush error occurred, instead
raising its own exception while leaving the session still
pending a rollback.¶
References: #2718

orm declarative

	[feature] [orm] [declarative] ORM descriptors such as hybrid properties can now be referenced
by name in a string argument used with order_by,
primaryjoin, or similar in relationship(),
in addition to column-bound attributes.¶
References: #2761

engine

	[engine] [bug] Fixed bug where the reset_on_return argument to various Pool
implementations would not be propagated when the pool was regenerated.
Courtesy Eevee.¶
References: pull request github:6

	[engine] [bug] [sybase] Fixed a bug where the routine to detect the correct kwargs
being sent to create_engine() would fail in some cases,
such as with the Sybase dialect.¶
References: #2732

sql

	[sql] [feature] Provided a new attribute for TypeDecorator
called TypeDecorator.coerce_to_is_types,
to make it easier to control how comparisons using
== or != to None and boolean types goes
about producing an IS expression, or a plain
equality expression with a bound parameter.¶
References: #2734, #2744

	[sql] [bug] Multiple fixes to the correlation behavior of
Select constructs, first introduced in 0.8.0:

	To satisfy the use case where FROM entries should be
correlated outwards to a SELECT that encloses another,
which then encloses this one, correlation now works
across multiple levels when explicit correlation is
established via Select.correlate(), provided
that the target select is somewhere along the chain
contained by a WHERE/ORDER BY/columns clause, not
just nested FROM clauses. This makes
Select.correlate() act more compatibly to
that of 0.7 again while still maintaining the new
“smart” correlation.

	When explicit correlation is not used, the usual
“implicit” correlation limits its behavior to just
the immediate enclosing SELECT, to maximize compatibility
with 0.7 applications, and also prevents correlation
across nested FROMs in this case, maintaining compatibility
with 0.8.0/0.8.1.

	The Select.correlate_except() method was not
preventing the given FROM clauses from correlation in
all cases, and also would cause FROM clauses to be incorrectly
omitted entirely (more like what 0.7 would do),
this has been fixed.

	Calling select.correlate_except(None) will enter
all FROM clauses into correlation as would be expected.

¶
References: #2668, #2746

	[sql] [bug] Fixed bug whereby joining a select() of a table “A” with multiple
foreign key paths to a table “B”, to that table “B”, would fail
to produce the “ambiguous join condition” error that would be
reported if you join table “A” directly to “B”; it would instead
produce a join condition with multiple criteria.¶
References: #2738

	[sql] [bug] [reflection] Fixed bug whereby using MetaData.reflect() across a remote
schema as well as a local schema could produce wrong results
in the case where both schemas had a table of the same name.¶
References: #2728

	[sql] [bug] Removed the “not implemented” __iter__() call from the base
ColumnOperators class, while this was introduced
in 0.8.0 to prevent an endless, memory-growing loop when one also
implements a __getitem__() method on a custom
operator and then calls erroneously list() on that object,
it had the effect of causing column elements to report that they
were in fact iterable types which then throw an error when you try
to iterate. There’s no real way to have both sides here so we
stick with Python best practices. Careful with implementing
__getitem__() on your custom operators!¶
References: #2726

	[sql] [bug] [mssql] Regression from this ticket caused the unsupported keyword
“true” to render, added logic to convert this to 1/0
for SQL server.¶
References: #2682

postgresql

	[postgresql] [feature] Support for Postgresql 9.2 range types has been added.
Currently, no type translation is provided, so works
directly with strings or psycopg2 2.5 range extension types
at the moment. Patch courtesy Chris Withers.¶

	[postgresql] [feature] Added support for “AUTOCOMMIT” isolation when using the psycopg2
DBAPI. The keyword is available via the isolation_level
execution option. Patch courtesy Roman Podolyaka.¶
References: #2072

	[postgresql] [bug] The behavior of extract() has been simplified on the
Postgresql dialect to no longer inject a hardcoded ::timestamp
or similar cast into the given expression, as this interfered
with types such as timezone-aware datetimes, but also
does not appear to be at all necessary with modern versions
of psycopg2.¶
References: #2740

	[postgresql] [bug] Fixed bug in HSTORE type where keys/values that contained
backslashed quotes would not be escaped correctly when
using the “non native” (i.e. non-psycopg2) means
of translating HSTORE data. Patch courtesy Ryan Kelly.¶
References: #2766

	[postgresql] [bug] Fixed bug where the order of columns in a multi-column
Postgresql index would be reflected in the wrong order.
Courtesy Roman Podolyaka.¶
References: #2767

	[postgresql] [bug] Fixed the HSTORE type to correctly encode/decode for unicode.
This is always on, as the hstore is a textual type, and
matches the behavior of psycopg2 when using Python 3.
Courtesy Dmitry Mugtasimov.¶
References: #2735, pull request github:2

mysql

	[mysql] [feature] The mysql_length parameter used with Index can now
be passed as a dictionary of column names/lengths, for use
with composite indexes. Big thanks to Roman Podolyaka for the
patch.¶
References: #2704

	[mysql] [bug] Fixed bug when using multi-table UPDATE where a supplemental
table is a SELECT with its own bound parameters, where the positioning
of the bound parameters would be reversed versus the statement
itself when using MySQL’s special syntax.¶
References: #2768

	[mysql] [bug] Added another conditional to the mysql+gaerdbms dialect to
detect so-called “development” mode, where we should use the
rdbms_mysqldb DBAPI. Patch courtesy Brett Slatkin.¶
References: #2715

	[mysql] [bug] The deferrable keyword argument on ForeignKey and
ForeignKeyConstraint will not render the DEFERRABLE keyword
on the MySQL dialect. For a long time we left this in place because
a non-deferrable foreign key would act very differently than a deferrable
one, but some environments just disable FKs on MySQL, so we’ll be less
opinionated here.¶
References: #2721

	[mysql] [bug] Updated mysqlconnector dialect to check for disconnect based
on the apparent string message sent in the exception; tested
against mysqlconnector 1.0.9.¶

sqlite

	[sqlite] [bug] Added sqlalchemy.types.BIGINT to the list of type names that can be
reflected by the SQLite dialect; courtesy Russell Stuart.¶
References: #2764

mssql

	[mssql] [bug] When querying the information schema on SQL Server 2000, removed
a CAST call that was added in 0.8.1 to help with driver issues,
which apparently is not compatible on 2000.
The CAST remains in place for SQL Server 2005 and greater.¶
References: #2747

firebird

	[firebird] [feature] Added new flag retaining=True to the kinterbasdb and fdb dialects.
This controls the value of the retaining flag sent to the
commit() and rollback() methods of the DBAPI connection.
Due to historical concerns, this flag defaults to True in 0.8.2,
however in 0.9.0b1 this flag defaults to False.¶
References: #2763

	[firebird] [bug] Type lookup when reflecting the Firebird types LONG and
INT64 has been fixed so that LONG is treated as INTEGER,
INT64 treated as BIGINT, unless the type has a “precision”
in which case it’s treated as NUMERIC. Patch courtesy
Russell Stuart.¶
References: #2757

misc

	[bug] [ext] Fixed bug whereby if a composite type were set up
with a function instead of a class, the mutable extension
would trip up when it tried to check that column
for being a MutableComposite (which it isn’t).
Courtesy asldevi.¶

	[bug] [examples] Fixed an issue with the “versioning” recipe whereby a many-to-one
reference could produce a meaningless version for the target,
even though it was not changed, when backrefs were present.
Patch courtesy Matt Chisholm.¶

	[bug] [examples] Fixed a small bug in the dogpile example where the generation
of SQL cache keys wasn’t applying deduping labels to the
statement the same way Query normally does.¶

	[requirements] The Python mock library
is now required in order to run the unit test suite. While part
of the standard library as of Python 3.3, previous Python installations
will need to install this in order to run unit tests or to
use the sqlalchemy.testing package for external dialects.¶

0.8.1

Released: April 27, 2013
orm

	[orm] [feature] Added a convenience method to Query that turns a query into an
EXISTS subquery of the form
EXISTS (SELECT 1 FROM ... WHERE ...).¶
References: #2673

	[orm] [bug] Fixed bug when a query of the form:
query(SubClass).options(subqueryload(Baseclass.attrname)),
where SubClass is a joined inh of BaseClass,
would fail to apply the JOIN inside the subquery
on the attribute load, producing a cartesian product.
The populated results still tended to be correct as additional
rows are just ignored, so this issue may be present as a
performance degradation in applications that are
otherwise working correctly.¶
This change is also backported to: 0.7.11

References: #2699

	[orm] [bug] Fixed bug in unit of work whereby a joined-inheritance
subclass could insert the row for the “sub” table
before the parent table, if the two tables had no
ForeignKey constraints set up between them.¶
This change is also backported to: 0.7.11

References: #2689

	[orm] [bug] Fixes to the sqlalchemy.ext.serializer extension, including
that the “id” passed from the pickler is turned into a string
to prevent against bytes being parsed on Py3K, as well as that
relationship() and orm.join() constructs are now properly
serialized.¶
References: #2698

	[orm] [bug] A significant improvement to the inner workings of query.join(),
such that the decisionmaking involved on how to join has been
dramatically simplified. New test cases now pass such as
multiple joins extending from the middle of an already complex
series of joins involving inheritance and such. Joining from
deeply nested subquery structures is still complicated and
not without caveats, but with these improvements the edge
cases are hopefully pushed even farther out to the edges.¶
References: #2714

	[orm] [bug] Added a conditional to the unpickling process for ORM
mapped objects, such that if the reference to the object
were lost when the object was pickled, we don’t
erroneously try to set up _sa_instance_state - fixes
a NoneType error.¶

	[orm] [bug] Fixed bug where many-to-many relationship with uselist=False
would fail to delete the association row and raise an error
if the scalar attribute were set to None. This was a
regression introduced by the changes for #2229.¶
References: #2710

	[orm] [bug] Improved the behavior of instance management regarding
the creation of strong references within the Session;
an object will no longer have an internal reference cycle
created if it’s in the transient state or moves into the
detached state - the strong ref is created only when the
object is attached to a Session and is removed when the
object is detached. This makes it somewhat safer for an
object to have a __del__() method, even though this is
not recommended, as relationships with backrefs produce
cycles too. A warning has been added when a class with
a __del__() method is mapped.¶
References: #2708

	[orm] [bug] Fixed bug whereby ORM would run the wrong kind of
query when refreshing an inheritance-mapped class
where the superclass was mapped to a non-Table
object, like a custom join() or a select(),
running a query that assumed a hierarchy that’s
mapped to individual Table-per-class.¶
References: #2697

	[orm] [bug] Fixed __repr__() on mapper property constructs
to work before the object is initialized, so
that Sphinx builds with recent Sphinx versions
can read them.¶

orm declarative

	[bug] [orm] [declarative] Fixed indirect regression regarding has_inherited_table(),
where since it considers the current class’ __table__, was
sensitive to when it was called. This is 0.7’s behavior also,
but in 0.7 things tended to “work out” within events like
__mapper_args__(). has_inherited_table() now only
considers superclasses, so should return the same answer
regarding the current class no matter when it’s called
(obviously assuming the state of the superclass).¶
References: #2656

sql

	[sql] [feature] Loosened the check on dialect-specific argument names
passed to Table(); since we want to support external dialects
and also want to support args without a certain dialect
being installed, it only checks the format of the arg now,
rather than looking for that dialect in sqlalchemy.dialects.¶

	[sql] [bug] [mysql] Fully implemented the IS and IS NOT operators with
regards to the True/False constants. An expression like
col.is_(True) will now render col IS true
on the target platform, rather than converting the True/
False constant to an integer bound parameter.
This allows the is_() operator to work on MySQL when
given True/False constants.¶
References: #2682

	[sql] [bug] A major fix to the way in which a select() object produces
labeled columns when apply_labels() is used; this mode
produces a SELECT where each column is labeled as in
<tablename>_<columnname>, to remove column name collisions
for a multiple table select. The fix is that if two labels
collide when combined with the table name, i.e.
“foo.bar_id” and “foo_bar.id”, anonymous aliasing will be
applied to one of the dupes. This allows the ORM to handle
both columns independently; previously, 0.7
would in some cases silently emit a second SELECT for the
column that was “duped”, and in 0.8 an ambiguous column error
would be emitted. The “keys” applied to the .c. collection
of the select() will also be deduped, so that the “column
being replaced” warning will no longer emit for any select()
that specifies use_labels, though the dupe key will be given
an anonymous label which isn’t generally user-friendly.¶
References: #2702

	[sql] [bug] Fixed bug where disconnect detect on error would
raise an attribute error if the error were being
raised after the Connection object had already
been closed.¶
References: #2691

	[sql] [bug] Reworked internal exception raises that emit
a rollback() before re-raising, so that the stack
trace is preserved from sys.exc_info() before entering
the rollback. This so that the traceback is preserved
when using coroutine frameworks which may have switched
contexts before the rollback function returns.¶
References: #2703

	[sql] [bug] [postgresql] The _Binary base type now converts values through
the bytes() callable when run on Python 3; in particular
psycopg2 2.5 with Python 3.3 seems to now be returning
the “memoryview” type, so this is converted to bytes
before return.¶

	[sql] [bug] Improvements to Connection auto-invalidation
handling. If a non-disconnect error occurs,
but leads to a delayed disconnect error within error
handling (happens with MySQL), the disconnect condition
is detected. The Connection can now also be closed
when in an invalid state, meaning it will raise “closed”
on next usage, and additionally the “close with result”
feature will work even if the autorollback in an error
handling routine fails and regardless of whether the
condition is a disconnect or not.¶
References: #2695

	[sql] [bug] Fixed bug whereby a DBAPI that can return “0”
for cursor.lastrowid would not function correctly
in conjunction with ResultProxy.inserted_primary_key.¶

postgresql

	[postgresql] [bug] Opened up the checking for “disconnect” with psycopg2/libpq
to check for all the various “disconnect” messages within
the full exception hierarchy. Specifically the
“closed the connection unexpectedly” message has now been
seen in at least three different exception types.
Courtesy Eli Collins.¶
References: #2712

	[postgresql] [bug] The operators for the Postgresql ARRAY type supports
input types of sets, generators, etc. even when
a dimension is not specified, by turning the given
iterable into a collection unconditionally.¶
References: #2681

	[postgresql] [bug] Added missing HSTORE type to postgresql type names
so that the type can be reflected.¶
References: #2680

mysql

	[mysql] [bug] Fixes to support the latest cymysql DBAPI, courtesy
Hajime Nakagami.¶

	[mysql] [bug] Improvements to the operation of the pymysql dialect on
Python 3, including some important decode/bytes steps.
Issues remain with BLOB types due to driver issues.
Courtesy Ben Trofatter.¶
References: #2663

	[mysql] [bug] Updated a regexp to correctly extract error code on
google app engine v1.7.5 and newer. Courtesy
Dan Ring.¶

mssql

	[mssql] [bug] Part of a longer series of fixes needed for pyodbc+
mssql, a CAST to NVARCHAR(max) has been added to the bound
parameter for the table name and schema name in all information schema
queries to avoid the issue of comparing NVARCHAR to NTEXT,
which seems to be rejected by the ODBC driver in some cases,
such as FreeTDS (0.91 only?) plus unicode bound parameters being passed.
The issue seems to be specific to the SQL Server information
schema tables and the workaround is harmless for those cases
where the problem doesn’t exist in the first place.¶
References: #2355

	[mssql] [bug] Added support for additional “disconnect” messages
to the pymssql dialect. Courtesy John Anderson.¶

	[mssql] [bug] Fixed Py3K bug regarding “binary” types and
pymssql. Courtesy Marc Abramowitz.¶
References: #2683

misc

	[bug] [examples] Fixed a long-standing bug in the caching example, where
the limit/offset parameter values wouldn’t be taken into
account when computing the cache key. The
_key_from_query() function has been simplified to work
directly from the final compiled statement in order to get
at both the full statement as well as the fully processed
parameter list.¶

0.8.0

Released: March 9, 2013

Note

There are some new behavioral changes as of 0.8.0
not present in 0.8.0b2. They are present in the
migration document as follows:

	The consideration of a “pending” object as an “orphan” has been made more aggressive

	create_all() and drop_all() will now honor an empty list as such

	Correlation is now always context-specific

orm

	[orm] [feature] A meaningful QueryableAttribute.info attribute is
added, which proxies down to the .info attribute on either
the schema.Column object if directly present, or
the MapperProperty otherwise. The full behavior
is documented and ensured by tests to remain stable.¶
References: #2675

	[orm] [feature] Can set/change the “cascade” attribute on a relationship()
construct after it’s been constructed already. This is not
a pattern for normal use but we like to change the setting
for demonstration purposes in tutorials.¶

	[orm] [feature] Added new helper function was_deleted(), returns True
if the given object was the subject of a Session.delete()
operation.¶
References: #2658

	[orm] [feature] Extended the Runtime Inspection API system so that all Python descriptors
associated with the ORM or its extensions can be retrieved.
This fulfills the common request of being able to inspect
all QueryableAttribute descriptors in addition to
extension types such as hybrid_property and
AssociationProxy. See Mapper.all_orm_descriptors.¶

	[orm] [removed] The undocumented (and hopefully unused) system of producing
custom collections using an __instrumentation__ datastructure
associated with the collection has been removed, as this was a complex
and untested feature which was also essentially redundant versus the
decorator approach. Other internal simplifcations to the
orm.collections module have been made as well.¶

	[orm] [bug] Improved checking for an existing backref name conflict during
mapper configuration; will now test for name conflicts on
superclasses and subclasses, in addition to the current mapper,
as these conflicts break things just as much. This is new for
0.8, but see below for a warning that will also be triggered
in 0.7.11.¶
References: #2674

	[orm] [bug] Improved the error message emitted when a “backref loop” is detected,
that is when an attribute event triggers a bidirectional
assignment between two other attributes with no end.
This condition can occur not just when an object of the wrong
type is assigned, but also when an attribute is mis-configured
to backref into an existing backref pair. Also in 0.7.11.¶
References: #2674

	[orm] [bug] A warning is emitted when a MapperProperty is assigned to a mapper
that replaces an existing property, if the properties in question
aren’t plain column-based properties. Replacement of relationship
properties is rarely (ever?) what is intended and usually refers to a
mapper mis-configuration. Also in 0.7.11.¶
References: #2674

	[orm] [bug] A clear error message is emitted if an event handler
attempts to emit SQL on a Session within the after_commit()
handler, where there is not a viable transaction in progress.¶
References: #2662

	[orm] [bug] Detection of a primary key change within the process
of cascading a natural primary key update will succeed
even if the key is composite and only some of the
attributes have changed.¶
References: #2665

	[orm] [bug] An object that’s deleted from a session will be de-associated with
that session fully after the transaction is committed, that is
the object_session() function will return None.¶
References: #2658

	[orm] [bug] Fixed bug whereby Query.yield_per() would set the execution
options incorrectly, thereby breaking subsequent usage of the
Query.execution_options() method. Courtesy Ryan Kelly.¶
References: #2661

	[orm] [bug] Fixed the consideration of the between() operator
so that it works correctly with the new relationship local/remote
system.¶
References: #1768

	[orm] [bug] the consideration of a pending object as
an “orphan” has been modified to more closely match the
behavior as that of persistent objects, which is that the object
is expunged from the Session as soon as it is
de-associated from any of its orphan-enabled parents. Previously,
the pending object would be expunged only if de-associated
from all of its orphan-enabled parents. The new flag legacy_is_orphan
is added to orm.mapper() which re-establishes the
legacy behavior.
See the change note and example case at The consideration of a “pending” object as an “orphan” has been made more aggressive
for a detailed discussion of this change.

¶References: #2655

	[orm] [bug] Fixed the (most likely never used) “@collection.link” collection
method, which fires off each time the collection is associated
or de-associated with a mapped object - the decorator
was not tested or functional. The decorator method
is now named collection.linker() though the name “link”
remains for backwards compatibility. Courtesy Luca Wehrstedt.¶
References: #2653

	[orm] [bug] Made some fixes to the system of producing custom instrumented
collections, mainly that the usage of the @collection decorators
will now honor the __mro__ of the given class, applying the
logic of the sub-most classes’ version of a particular collection
method. Previously, it wasn’t predictable when subclassing
an existing instrumented class such as MappedCollection
whether or not custom methods would resolve correctly.¶
References: #2654

	[orm] [bug] Fixed potential memory leak which could occur if an
arbitrary number of sessionmaker objects
were created. The anonymous subclass created by
the sessionmaker, when dereferenced, would not be garbage
collected due to remaining class-level references from the
event package. This issue also applies to any custom system
that made use of ad-hoc subclasses in conjunction with
an event dispatcher. Also in 0.7.10.¶
References: #2650

	[orm] [bug] Query.merge_result() can now load rows from an outer join
where an entity may be None without throwing an error.
Also in 0.7.10.¶
References: #2640

	[orm] [bug] Fixes to the “dynamic” loader on relationship(), includes
that backrefs will work properly even when autoflush is disabled,
history events are more accurate in scenarios where multiple add/remove
of the same object occurs.¶
References: #2637

sql

	[sql] [feature] Added a new argument to Enum and its base
SchemaType inherit_schema. When set to True,
the type will set its schema attribute of that of the
Table to which it is associated. This also occurs
during a Table.tometadata() operation; the SchemaType
is now copied in all cases when Table.tometadata() happens,
and if inherit_schema=True, the type will take on the new
schema name passed to the method. The schema is important
when used with the Postgresql backend, as the type results in
a CREATE TYPE statement.¶
References: #2657

	[sql] [feature] Index now supports arbitrary SQL expressions and/or
functions, in addition to straight columns. Common modifiers
include using somecolumn.desc() for a descending index and
func.lower(somecolumn) for a case-insensitive index, depending on the
capabilities of the target backend.¶
References: #695

	[sql] [bug] The behavior of SELECT correlation has been improved such that
the Select.correlate() and Select.correlate_except()
methods, as well as their ORM analogues, will still retain
“auto-correlation” behavior in that the FROM clause is modified
only if the output would be legal SQL; that is, the FROM clause
is left intact if the correlated SELECT is not used in the context
of an enclosing SELECT inside of the WHERE, columns, or HAVING clause.
The two methods now only specify conditions to the default
“auto correlation”, rather than absolute FROM lists.¶
References: #2668

	[sql] [bug] Fixed a bug regarding column annotations which in particular
could impact some usages of the new orm.remote() and
orm.local() annotation functions, where annotations
could be lost when the column were used in a subsequent
expression.¶
References: #1768, #2660

	[sql] [bug] The ColumnOperators.in_() operator will now coerce
values of None to null().¶
References: #2496

	[sql] [bug] Fixed bug where Table.tometadata() would fail if a
Column had both a foreign key as well as an
alternate ”.key” name for the column. Also in 0.7.10.¶
References: #2643

	[sql] [bug] insert().returning() raises an informative CompileError if attempted
to compile on a dialect that doesn’t support RETURNING.¶
References: #2629

	[sql] [bug] Tweaked the “REQUIRED” symbol used by the compiler to identify
INSERT/UPDATE bound parameters that need to be passed, so that
it’s more easily identifiable when writing custom bind-handling
code.¶
References: #2648

schema

	[schema] [bug] MetaData.create_all() and MetaData.drop_all() will
now accommodate an empty list as an instruction to not create/drop
any items, rather than ignoring the collection.¶
References: #2664

postgresql

	[postgresql] [feature] Added support for Postgresql’s traditional SUBSTRING
function syntax, renders as “SUBSTRING(x FROM y FOR z)”
when regular func.substring() is used.
Courtesy Gunnlaugur Þór Briem.¶
This change is also backported to: 0.7.11

References: #2676

	[postgresql] [feature] Added postgresql.ARRAY.Comparator.any() and
postgresql.ARRAY.Comparator.all()
methods, as well as standalone expression constructs. Big thanks
to Audrius Kažukauskas for the terrific work here.¶

	[postgresql] [bug] Fixed bug in array() construct whereby using it
inside of an expression.insert() construct would produce an
error regarding a parameter issue in the self_group() method.¶

mysql

	[mysql] [feature] New dialect for CyMySQL added, courtesy Hajime Nakagami.¶

	[mysql] [feature] GAE dialect now accepts username/password arguments in the URL,
courtesy Owen Nelson.¶

	[mysql] [bug] [gae] Added a conditional import to the gaerdbms dialect which attempts
to import rdbms_apiproxy vs. rdbms_googleapi to work
on both dev and production platforms. Also now honors the
instance attribute. Courtesy Sean Lynch.
Also in 0.7.10.¶
References: #2649

	[mysql] [bug] GAE dialect won’t fail on None match if the error code can’t be extracted
from the exception throw; courtesy Owen Nelson.¶

mssql

	[mssql] [feature] Added mssql_include and mssql_clustered options to
Index, renders the INCLUDE and CLUSTERED keywords,
respectively. Courtesy Derek Harland.¶

	[mssql] [feature] DDL for IDENTITY columns is now supported on
non-primary key columns, by establishing a
Sequence construct on any
integer column. Courtesy Derek Harland.¶
References: #2644

	[mssql] [bug] Added a py3K conditional around unnecessary .decode()
call in mssql information schema, fixes reflection
in Py3K. Also in 0.7.10.¶
References: #2638

	[mssql] [bug] Fixed a regression whereby the “collation” parameter
of the character types CHAR, NCHAR, etc. stopped working,
as “collation” is now supported by the base string types.
The TEXT, NCHAR, CHAR, VARCHAR types within the
MSSQL dialect are now synonyms for the base types.¶

oracle

	[oracle] [bug] The cx_oracle dialect will no longer run the bind parameter names
through encode(), as this is not valid on Python 3, and prevented
statements from functioning correctly on Python 3. We now
encode only if supports_unicode_binds is False, which is not
the case for cx_oracle when at least version 5 of cx_oracle is used.¶

misc

	[bug] [tests] Fixed an import of “logging” in test_execute which was not
working on some linux platforms. Also in 0.7.11.¶
References: #2669

	[bug] [examples] Fixed a regression in the examples/dogpile_caching example
which was due to the change in #2614.¶

0.8.0b2

Released: December 14, 2012
orm

	[orm] [feature] Added KeyedTuple._asdict() and KeyedTuple._fields
to the KeyedTuple class to provide some degree of compatibility
with the Python standard library collections.namedtuple().¶
References: #2601

	[orm] [feature] Allow synonyms to be used when defining primary and secondary
joins for relationships.¶

	[orm] [feature] [extensions] The sqlalchemy.ext.mutable extension now includes the
example MutableDict class as part of the extension.¶

	[orm] [bug] The Query.select_from() method can now be used with a
aliased() construct without it interfering with the entities
being selected. Basically, a statement like this:
ua = aliased(User)
session.query(User.name).select_from(ua).join(User, User.name > ua.name)

Will maintain the columns clause of the SELECT as coming from the
unaliased “user”, as specified; the select_from only takes place in the
FROM clause:

SELECT users.name AS users_name FROM users AS users_1
JOIN users ON users.name < users_1.name

Note that this behavior is in contrast
to the original, older use case for Query.select_from(), which is that
of restating the mapped entity in terms of a different selectable:

session.query(User.name).\
 select_from(user_table.select().where(user_table.c.id > 5))

Which produces:

SELECT anon_1.name AS anon_1_name FROM (SELECT users.id AS id,
users.name AS name FROM users WHERE users.id > :id_1) AS anon_1

It was the “aliasing” behavior of the latter use case that was
getting in the way of the former use case. The method now
specifically considers a SQL expression like
expression.select() or expression.alias()
separately from a mapped entity like a aliased()
construct.

¶References: #2635

	[orm] [bug] The MutableComposite type did not allow for the
MutableBase.coerce() method to be used, even though
the code seemed to indicate this intent, so this now works
and a brief example is added. As a side-effect,
the mechanics of this event handler have been changed so that
new MutableComposite types no longer add per-type
global event handlers. Also in 0.7.10.¶
References: #2624

	[orm] [bug] A second overhaul of aliasing/internal pathing mechanics
now allows two subclasses to have different relationships
of the same name, supported with subquery or joined eager
loading on both simultaneously when a full polymorphic
load is used.¶
References: #2614

	[orm] [bug] Fixed bug whereby a multi-hop subqueryload within
a particular with_polymorphic load would produce a KeyError.
Takes advantage of the same internal pathing overhaul
as #2614.¶
References: #2617

	[orm] [bug] Fixed regression where query.update() would produce
an error if an object matched by the “fetch”
synchronization strategy wasn’t locally present.
Courtesy Scott Torborg.¶
References: #2602

engine

	[engine] [feature] The Connection.connect() and Connection.contextual_connect()
methods now return a “branched” version so that the Connection.close()
method can be called on the returned connection without affecting the
original. Allows symmetry when using Engine and
Connection objects as context managers:
with conn.connect() as c: # leaves the Connection open
 c.execute("...")

with engine.connect() as c: # closes the Connection
 c.execute("...")

¶

	[engine] [bug] Fixed MetaData.reflect() to correctly use
the given Connection, if given, without
opening a second connection from that connection’s
Engine.¶
This change is also backported to: 0.7.10

References: #2604

	[engine] The “reflect=True” argument to MetaData is deprecated.
Please use the MetaData.reflect() method.¶

sql

	[sql] [feature] The Insert construct now supports multi-valued inserts,
that is, an INSERT that renders like
“INSERT INTO table VALUES (...), (...), ...”.
Supported by Postgresql, SQLite, and MySQL.
Big thanks to Idan Kamara for doing the legwork on this one.

See also

Multiple-VALUES support for Insert

¶
References: #2623

	[sql] [bug] Fixed bug where using server_onupdate=<FetchedValue|DefaultClause>
without passing the “for_update=True” flag would apply the default
object to the server_default, blowing away whatever was there.
The explicit for_update=True argument shouldn’t be needed with this usage
(especially since the documentation shows an example without it being
used) so it is now arranged internally using a copy of the given default
object, if the flag isn’t set to what corresponds to that argument.¶
This change is also backported to: 0.7.10

References: #2631

	[sql] [bug] Fixed a regression caused by #2410 whereby a
CheckConstraint would apply itself back to the
original table during a Table.tometadata() operation, as
it would parse the SQL expression for a parent table. The
operation now copies the given expression to correspond to the
new table.¶
References: #2633

	[sql] [bug] Fixed bug whereby using a label_length on dialect that was smaller
than the size of actual column identifiers would fail to render
the columns correctly in a SELECT statement.¶
References: #2610

	[sql] [bug] The DECIMAL type now honors the “precision” and
“scale” arguments when rendering DDL.¶
References: #2618

	[sql] [bug] Made an adjustment to the “boolean”, (i.e. __nonzero__)
evaluation of binary expressions, i.e. x1 == x2, such
that the “auto-grouping” applied by BinaryExpression
in some cases won’t get in the way of this comparison.
Previously, an expression like:
expr1 = mycolumn > 2
bool(expr1 == expr1)

Would evaluate as False, even though this is an identity
comparison, because mycolumn > 2 would be “grouped” before
being placed into the BinaryExpression, thus changing
its identity. BinaryExpression now keeps track
of the “original” objects passed in.
Additionally the __nonzero__ method now only returns if
the operator is == or != - all others raise TypeError.

¶References: #2621

	[sql] [bug] Fixed a gotcha where inadvertently calling list() on a
ColumnElement would go into an endless loop, if
ColumnOperators.__getitem__() were implemented.
A new NotImplementedError is emitted via __iter__().¶

	[sql] [bug] Fixed bug in type_coerce() whereby typing information
could be lost if the statement were used as a subquery
inside of another statement, as well as other similar
situations. Among other things, would cause
typing information to be lost when the Oracle/mssql dialects
would apply limit/offset wrappings.¶
References: #2603

	[sql] [bug] Fixed bug whereby the ”.key” of a Column wasn’t being
used when producing a “proxy” of the column against
a selectable. This probably didn’t occur in 0.7
since 0.7 doesn’t respect the ”.key” in a wider
range of scenarios.¶
References: #2597

postgresql

	[postgresql] [feature] HSTORE is now available in the Postgresql dialect.
Will also use psycopg2’s extensions if available. Courtesy
Audrius Kažukauskas.¶
References: #2606

sqlite

	[sqlite] [bug] More adjustment to this SQLite related issue which was released in
0.7.9, to intercept legacy SQLite quoting characters when reflecting
foreign keys. In addition to intercepting double quotes, other
quoting characters such as brackets, backticks, and single quotes
are now also intercepted.¶
This change is also backported to: 0.7.10

References: #2568

mssql

	[mssql] [feature] Support for reflection of the “name” of primary key
constraints added, courtesy Dave Moore.¶
References: #2600

	[mssql] [bug] Fixed bug whereby using “key” with Column
in conjunction with “schema” for the owning
Table would fail to locate result rows due
to the MSSQL dialect’s “schema rendering”
logic’s failure to take .key into account.¶
This change is also backported to: 0.7.10

oracle

	[oracle] [bug] Fixed table reflection for Oracle when accessing a synonym that refers
to a DBLINK remote database; while the syntax has been present in the
Oracle dialect for some time, up until now it has never been tested.
The syntax has been tested against a sample database linking to itself,
however there’s still some uncertainty as to what should be used for the
“owner” when querying the remote database for table information.
Currently, the value of “username” from user_db_links is used to
match the “owner”.¶
References: #2619

	[oracle] [bug] The Oracle LONG type, while an unbounded text type, does not appear
to use the cx_Oracle.LOB type when result rows are returned,
so the dialect has been repaired to exclude LONG from
having cx_Oracle.LOB filtering applied. Also in 0.7.10.¶
References: #2620

	[oracle] [bug] Repaired the usage of .prepare() in conjunction with
cx_Oracle so that a return value of False will result
in no call to connection.commit(), hence avoiding
“no transaction” errors. Two-phase transactions have
now been shown to work in a rudimental fashion with
SQLAlchemy and cx_oracle, however are subject to caveats
observed with the driver; check the documentation
for details. Also in 0.7.10.¶
References: #2611

firebird

	[firebird] [bug] Added missing import for “fdb” to the experimental
“firebird+fdb” dialect.¶
References: #2622

misc

	[feature] [sybase] Reflection support has been added to the Sybase dialect.
Big thanks to Ben Trofatter for all the work developing and
testing this.¶
References: #1753

	[feature] [pool] The Pool will now log all connection.close()
operations equally, including closes which occur for
invalidated connections, detached connections, and connections
beyond the pool capacity.¶

	[feature] [pool] The Pool now consults the Dialect for
functionality regarding how the connection should be
“auto rolled back”, as well as closed. This grants more
control of transaction scope to the dialect, so that we
will be better able to implement transactional workarounds
like those potentially needed for pysqlite and cx_oracle.¶
References: #2611

	[feature] [pool] Added new PoolEvents.reset() hook to capture
the event before a connection is auto-rolled back, upon
return to the pool. Together with
ConnectionEvents.rollback() this allows all rollback
events to be intercepted.¶

	[informix] Some cruft regarding informix transaction handling has been
removed, including a feature that would skip calling
commit()/rollback() as well as some hardcoded isolation level
assumptions on begin().. The status of this dialect is not
well understood as we don’t have any users working with it,
nor any access to an Informix database. If someone with
access to Informix wants to help test this dialect, please
let us know.¶

0.8.0b1

Released: October 30, 2012
general

	[general] [removed] The “sqlalchemy.exceptions”
synonym for “sqlalchemy.exc” is removed
fully.¶
References: #2433

	[general] SQLAlchemy 0.8 now targets Python 2.5 and
above. Python 2.4 is no longer supported.¶

orm

	[orm] [feature] Major rewrite of relationship()
internals now allow join conditions which
include columns pointing to themselves
within composite foreign keys. A new
API for very specialized primaryjoin conditions
is added, allowing conditions based on
SQL functions, CAST, etc. to be handled
by placing the annotation functions
remote() and foreign() inline within the
expression when necessary. Previous recipes
using the semi-private _local_remote_pairs
approach can be upgraded to this new
approach.

See also

Rewritten relationship() mechanics

¶
References: #1401

	[orm] [feature] New standalone function with_polymorphic()
provides the functionality of query.with_polymorphic()
in a standalone form. It can be applied to any
entity within a query, including as the target
of a join in place of the “of_type()” modifier.¶
References: #2333

	[orm] [feature] The of_type() construct on attributes
now accepts aliased() class constructs as well
as with_polymorphic constructs, and works with
query.join(), any(), has(), and also
eager loaders subqueryload(), joinedload(),
contains_eager()¶
References: #1106, #2438

	[orm] [feature] Improvements to event listening for
mapped classes allows that unmapped classes
can be specified for instance- and mapper-events.
The established events will be automatically
set up on subclasses of that class when the
propagate=True flag is passed, and the
events will be set up for that class itself
if and when it is ultimately mapped.¶
References: #2585

	[orm] [feature] The “deferred declarative
reflection” system has been moved into the
declarative extension itself, using the
new DeferredReflection class. This
class is now tested with both single
and joined table inheritance use cases.¶
References: #2485

	[orm] [feature] Added new core function “inspect()”,
which serves as a generic gateway to
introspection into mappers, objects,
others. The Mapper and InstanceState
objects have been enhanced with a public
API that allows inspection of mapped
attributes, including filters for column-bound
or relationship-bound properties, inspection
of current object state, history of
attributes, etc.¶
References: #2208

	[orm] [feature] Calling rollback() within a
session.begin_nested() will now only expire
those objects that had net changes within the
scope of that transaction, that is objects which
were dirty or were modified on a flush. This
allows the typical use case for begin_nested(),
that of altering a small subset of objects, to
leave in place the data from the larger enclosing
set of objects that weren’t modified in
that sub-transaction.¶
References: #2452

	[orm] [feature] Added utility feature
Session.enable_relationship_loading(),
supersedes relationship.load_on_pending.
Both features should be avoided, however.¶
References: #2372

	[orm] [feature] Added support for .info dictionary argument to
column_property(), relationship(), composite().
All MapperProperty classes have an auto-creating .info
dict available overall.¶

	[orm] [feature] Adding/removing None from a mapped collection
now generates attribute events. Previously, a None
append would be ignored in some cases. Related
to.¶
References: #2229

	[orm] [feature] The presence of None in a mapped collection
now raises an error during flush. Previously,
None values in collections would be silently ignored.¶
References: #2229

	[orm] [feature] The Query.update() method is now
more lenient as to the table
being updated. Plain Table objects are better
supported now, and additional a joined-inheritance
subclass may be used with update(); the subclass
table will be the target of the update,
and if the parent table is referenced in the
WHERE clause, the compiler will call upon
UPDATE..FROM syntax as allowed by the dialect
to satisfy the WHERE clause. MySQL’s multi-table
update feature is also supported if columns
are specified by object in the “values” dicitionary.
PG’s DELETE..USING is also not available
in Core yet.¶

	[orm] [feature] New session events after_transaction_create
and after_transaction_end
allows tracking of new SessionTransaction objects.
If the object is inspected, can be used to determine
when a session first becomes active and when
it deactivates.¶

	[orm] [feature] The Query can now load entity/scalar-mixed
“tuple” rows that contain
types which aren’t hashable, by setting the flag
“hashable=False” on the corresponding TypeEngine object
in use. Custom types that return unhashable types
(typically lists) can set this flag to False.¶
References: #2592

	[orm] [feature] Query now “auto correlates” by
default in the same way as select() does.
Previously, a Query used as a subquery
in another would require the correlate()
method be called explicitly in order to
correlate a table on the inside to the
outside. As always, correlate(None)
disables correlation.¶
References: #2179

	[orm] [feature] The after_attach event is now
emitted after the object is established
in Session.new or Session.identity_map
upon Session.add(), Session.merge(),
etc., so that the object is represented
in these collections when the event
is called. Added before_attach
event to accommodate use cases that
need autoflush w pre-attached object.¶
References: #2464

	[orm] [feature] The Session will produce warnings
when unsupported methods are used inside the
“execute” portion of the flush. These are
the familiar methods add(), delete(), etc.
as well as collection and related-object
manipulations, as called within mapper-level
flush events
like after_insert(), after_update(), etc.
It’s been prominently documented for a long
time that SQLAlchemy cannot guarantee
results when the Session is manipulated within
the execution of the flush plan,
however users are still doing it, so now
there’s a warning. Maybe someday the Session
will be enhanced to support these operations
inside of the flush, but for now, results
can’t be guaranteed.¶

	[orm] [feature] ORM entities can be passed
to the core select() construct as well
as to the select_from(),
correlate(), and correlate_except()
methods of select(), where they will be unwrapped
into selectables.¶
References: #2245

	[orm] [feature] Some support for auto-rendering of a
relationship join condition based on the mapped
attribute, with usage of core SQL constructs.
E.g. select([SomeClass]).where(SomeClass.somerelationship)
would render SELECT from “someclass” and use the
primaryjoin of “somerelationship” as the WHERE
clause. This changes the previous meaning
of “SomeClass.somerelationship” when used in a
core SQL context; previously, it would “resolve”
to the parent selectable, which wasn’t generally
useful. Also works with query.filter().
Related to.¶
References: #2245

	[orm] [feature] The registry of classes
in declarative_base() is now a
WeakValueDictionary. So subclasses of
“Base” that are dereferenced will be
garbage collected, if they are not
referred to by any other mappers/superclass
mappers. See the next note for this ticket.¶
References: #2526

	[orm] [feature] Conflicts between columns on
single-inheritance declarative subclasses,
with or without using a mixin, can be resolved
using a new @declared_attr usage described
in the documentation.¶
References: #2472

	[orm] [feature] declared_attr can now be used
on non-mixin classes, even though this is generally
only useful for single-inheritance subclass
column conflict resolution.¶
References: #2472

	[orm] [feature] declared_attr can now be used with
attributes that are not Column or MapperProperty;
including any user-defined value as well
as association proxy objects.¶
References: #2517

	[orm] [feature] Very limited support for
inheriting mappers to be GC’ed when the
class itself is deferenced. The mapper
must not have its own table (i.e.
single table inh only) without polymorphic
attributes in place.
This allows for the use case of
creating a temporary subclass of a declarative
mapped class, with no table or mapping
directives of its own, to be garbage collected
when dereferenced by a unit test.¶
References: #2526

	[orm] [feature] Declarative now maintains a registry
of classes by string name as well as by full
module-qualified name. Multiple classes with the
same name can now be looked up based on a module-qualified
string within relationship(). Simple class name
lookups where more than one class shares the same
name now raises an informative error message.¶
References: #2338

	[orm] [feature] Can now provide class-bound attributes
that override columns which are of any
non-ORM type, not just descriptors.¶
References: #2535

	[orm] [feature] Added with_labels and
reduce_columns keyword arguments to
Query.subquery(), to provide two alternate
strategies for producing queries with uniquely-
named columns. .¶
References: #1729

	[orm] [feature] A warning is emitted when a reference
to an instrumented collection is no longer
associated with the parent class due to
expiration/attribute refresh/collection
replacement, but an append
or remove operation is received on the
now-detached collection.¶
References: #2476

	[orm] [removed] The legacy “mutable” system of the
ORM, including the MutableType class as well
as the mutable=True flag on PickleType
and postgresql.ARRAY has been removed.
In-place mutations are detected by the ORM
using the sqlalchemy.ext.mutable extension,
introduced in 0.7. The removal of MutableType
and associated constructs removes a great
deal of complexity from SQLAlchemy’s internals.
The approach performed poorly as it would incur
a scan of the full contents of the Session
when in use.¶
References: #2442

	[orm] [removed] Deprecated identifiers removed:

	allow_null_pks mapper() argument
(use allow_partial_pks)

	_get_col_to_prop() mapper method
(use get_property_by_column())

	dont_load argument to Session.merge()
(use load=True)

	sqlalchemy.orm.shard module
(use sqlalchemy.ext.horizontal_shard)

¶

	[orm] [bug] ORM will perform extra effort to determine
that an FK dependency between two tables is
not significant during flush if the tables
are related via joined inheritance and the FK
dependency is not part of the inherit_condition,
saves the user a use_alter directive.¶
References: #2527

	[orm] [bug] The instrumentation events class_instrument(),
class_uninstrument(), and attribute_instrument()
will now fire off only for descendant classes
of the class assigned to listen(). Previously,
an event listener would be assigned to listen
for all classes in all cases regardless of the
“target” argument passed.¶
References: #2590

	[orm] [bug] with_polymorphic() produces JOINs
in the correct order and with correct inheriting
tables in the case of sending multi-level
subclasses in an arbitrary order or with
intermediary classes missing.¶
References: #1900

	[orm] [bug] Improvements to joined/subquery eager
loading dealing with chains of subclass entities
sharing a common base, with no specific “join depth”
provided. Will chain out to
each subclass mapper individually before detecting
a “cycle”, rather than considering the base class
to be the source of the “cycle”.¶
References: #2481

	[orm] [bug] The “passive” flag on Session.is_modified()
no longer has any effect. is_modified() in
all cases looks only at local in-memory
modified flags and will not emit any
SQL or invoke loader callables/initializers.¶
References: #2320

	[orm] [bug] The warning emitted when using
delete-orphan cascade with one-to-many
or many-to-many without single-parent=True
is now an error. The ORM
would fail to function subsequent to this
warning in any case.¶
References: #2405

	[orm] [bug] Lazy loads emitted within flush events
such as before_flush(), before_update(),
etc. will now function as they would
within non-event code, regarding consideration
of the PK/FK values used in the lazy-emitted
query. Previously,
special flags would be established that
would cause lazy loads to load related items
based on the “previous” value of the
parent PK/FK values specifically when called
upon within a flush; the signal to load
in this way is now localized to where the
unit of work actually needs to load that
way. Note that the UOW does
sometimes load these collections before
the before_update() event is called,
so the usage of “passive_updates” or not
can affect whether or not a collection will
represent the “old” or “new” data, when
accessed within a flush event, based
on when the lazy load was emitted.
The change is backwards incompatible in
the exceedingly small chance that
user event code depended on the old
behavior.¶
References: #2350

	[orm] [bug] Continuing regarding extra
state post-flush due to event listeners;
any states that are marked as “dirty” from an
attribute perspective, usually via column-attribute
set events within after_insert(), after_update(),
etc., will get the “history” flag reset
in all cases, instead of only those instances
that were part of the flush. This has the effect
that this “dirty” state doesn’t carry over
after the flush and won’t result in UPDATE
statements. A warning is emitted to this
effect; the set_committed_state()
method can be used to assign attributes on objects
without producing history events.¶
References: #2582, #2566

	[orm] [bug] Fixed a disconnect that slowly evolved
between a @declared_attr Column and a
directly-defined Column on a mixin. In both
cases, the Column will be applied to the
declared class’ table, but not to that of a
joined inheritance subclass. Previously,
the directly-defined Column would be placed
on both the base and the sub table, which isn’t
typically what’s desired.¶
References: #2565

	[orm] [bug] Declarative can now propagate a column
declared on a single-table inheritance subclass
up to the parent class’ table, when the parent
class is itself mapped to a join() or select()
statement, directly or via joined inheritance,
and not just a Table.¶
References: #2549

	[orm] [bug] An error is emitted when uselist=False
is combined with a “dynamic” loader.
This is a warning in 0.7.9.¶

	[orm] [moved] The InstrumentationManager interface
and the entire related system of alternate
class implementation is now moved out
to sqlalchemy.ext.instrumentation. This is
a seldom used system that adds significant
complexity and overhead to the mechanics of
class instrumentation. The new architecture
allows it to remain unused until
InstrumentationManager is actually imported,
at which point it is bootstrapped into
the core.¶

engine

	[engine] [feature] Connection event listeners can
now be associated with individual
Connection objects, not just Engine
objects.¶
References: #2511

	[engine] [feature] The before_cursor_execute event
fires off for so-called “_cursor_execute”
events, which are usually special-case
executions of primary-key bound sequences
and default-generation SQL
phrases that invoke separately when RETURNING
is not used with INSERT.¶
References: #2459

	[engine] [feature] The libraries used by the test suite
have been moved around a bit so that they are
part of the SQLAlchemy install again. In addition,
a new suite of tests is present in the
new sqlalchemy.testing.suite package. This is
an under-development system that hopes to provide
a universal testing suite for external dialects.
Dialects which are maintained outside of SQLAlchemy
can use the new test fixture as the framework
for their own tests, and will get for free a
“compliance” suite of dialect-focused tests,
including an improved “requirements” system
where specific capabilities and features can
be enabled or disabled for testing.¶

	[engine] [feature] Added a new system
for registration of new dialects in-process
without using an entrypoint. See the
docs for “Registering New Dialects”.¶
References: #2462

	[engine] [feature] The “required” flag is set to
True by default, if not passed explicitly,
on bindparam() if the “value” or “callable”
parameters are not passed.
This will cause statement execution to check
for the parameter being present in the final
collection of bound parameters, rather than
implicitly assigning None.¶
References: #2556

	[engine] [feature] Various API tweaks to the “dialect”
API to better support highly specialized
systems such as the Akiban database, including
more hooks to allow an execution context to
access type processors.¶

	[engine] [feature] Inspector.get_primary_keys() is
deprecated; use Inspector.get_pk_constraint().
Courtesy Diana Clarke.¶
References: #2422

	[engine] [feature] New C extension module “utils” has
been added for additional function speedups
as we have time to implement.¶

	[engine] [bug] The Inspector.get_table_names()
order_by=”foreign_key” feature now sorts
tables by dependee first, to be consistent
with util.sort_tables and metadata.sorted_tables.¶

	[engine] [bug] Fixed bug whereby if a database restart
affected multiple connections, each
connection would individually invoke a new
disposal of the pool, even though only
one disposal is needed.¶
References: #2522

	[engine] [bug] The names of the columns on the
.c. attribute of a select().apply_labels()
is now based on <tablename>_<colkey> instead
of <tablename>_<colname>, for those columns
that have a distinctly named .key.¶
References: #2397

	[engine] [bug] The autoload_replace flag on Table,
when False, will cause any reflected foreign key
constraints which refer to already-declared
columns to be skipped, assuming that the
in-Python declared column will take over
the task of specifying in-Python ForeignKey
or ForeignKeyConstraint declarations.¶

	[engine] [bug] The ResultProxy methods inserted_primary_key,
last_updated_params(), last_inserted_params(),
postfetch_cols(), prefetch_cols() all
assert that the given statement is a compiled
construct, and is an insert() or update()
statement as is appropriate, else
raise InvalidRequestError.¶
References: #2498

	[engine] ResultProxy.last_inserted_ids is removed,
replaced by inserted_primary_key.¶

sql

	[sql] [feature] Added a new method Engine.execution_options()
to Engine. This method works similarly to
Connection.execution_options() in that it creates
a copy of the parent object which will refer to the new
set of options. The method can be used to build
sharding schemes where each engine shares the same
underlying pool of connections. The method
has been tested against the horizontal shard
recipe in the ORM as well.

See also

Engine.execution_options()

¶

	[sql] [feature] Major rework of operator system
in Core, to allow redefinition of existing
operators as well as addition of new operators
at the type level. New types can be created
from existing ones which add or redefine
operations that are exported out to column
expressions, in a similar manner to how the
ORM has allowed comparator_factory. The new
architecture moves this capability into the
Core so that it is consistently usable in
all cases, propagating cleanly using existing
type propagation behavior.¶
References: #2547

	[sql] [feature] To complement, types
can now provide “bind expressions” and
“column expressions” which allow compile-time
injection of SQL expressions into statements
on a per-column or per-bind level. This is
to suit the use case of a type which needs
to augment bind- and result- behavior at the
SQL level, as opposed to in the Python level.
Allows for schemes like transparent encryption/
decryption, usage of Postgis functions, etc.¶
References: #1534, #2547

	[sql] [feature] The Core oeprator system now includes
the getitem operator, i.e. the bracket
operator in Python. This is used at first
to provide index and slice behavior to the
Postgresql ARRAY type, and also provides a hook
for end-user definition of custom __getitem__
schemes which can be applied at the type
level as well as within ORM-level custom
operator schemes. lshift (<<)
and rshift (>>) are also supported as
optional operators.
Note that this change has the effect that
descriptor-based __getitem__ schemes used by
the ORM in conjunction with synonym() or other
“descriptor-wrapped” schemes will need
to start using a custom comparator in order
to maintain this behavior.

¶

	[sql] [feature] Revised the rules used to determine
the operator precedence for the user-defined
operator, i.e. that granted using the op()
method. Previously, the smallest precedence
was applied in all cases, now the default
precedence is zero, lower than all operators
except “comma” (such as, used in the argument
list of a func call) and “AS”, and is
also customizable via the “precedence” argument
on the op() method.¶
References: #2537

	[sql] [feature] Added “collation” parameter to all
String types. When present, renders as
COLLATE <collation>. This to support the
COLLATE keyword now supported by several
databases including MySQL, SQLite, and Postgresql.¶
References: #2276

	[sql] [feature] Custom unary operators can now be
used by combining operators.custom_op() with
UnaryExpression().¶

	[sql] [feature] Enhanced GenericFunction and func.*
to allow for user-defined GenericFunction
subclasses to be available via the func.*
namespace automatically by classname,
optionally using a package name, as well
as with the ability to have the rendered
name different from the identified name
in func.*.¶

	[sql] [feature] The cast() and extract() constructs
will now be produced via the func.* accessor
as well, as users naturally try to access these
names from func.* they might as well do
what’s expected, even though the returned
object is not a FunctionElement.¶
References: #2562

	[sql] [feature] The Inspector object can now be
acquired using the new inspect() service,
part of¶
References: #2208

	[sql] [feature] The column_reflect event now
accepts the Inspector object as the first
argument, preceding “table”. Code which
uses the 0.7 version of this very new
event will need modification to add the
“inspector” object as the first argument.¶
References: #2418

	[sql] [feature] The behavior of column targeting
in result sets is now case sensitive by
default. SQLAlchemy for many years would
run a case-insensitive conversion on these values,
probably to alleviate early case sensitivity
issues with dialects like Oracle and
Firebird. These issues have been more cleanly
solved in more modern versions so the performance
hit of calling lower() on identifiers is removed.
The case insensitive comparisons can be re-enabled
by setting “case_insensitive=False” on
create_engine().¶
References: #2423

	[sql] [feature] The “unconsumed column names” warning emitted
when keys are present in insert.values() or update.values()
that aren’t in the target table is now an exception.¶
References: #2415

	[sql] [feature] Added “MATCH” clause to ForeignKey,
ForeignKeyConstraint, courtesy Ryan Kelly.¶
References: #2502

	[sql] [feature] Added support for DELETE and UPDATE from
an alias of a table, which would assumedly
be related to itself elsewhere in the query,
courtesy Ryan Kelly.¶
References: #2507

	[sql] [feature] select() features a correlate_except()
method, auto correlates all selectables except those
passed.¶

	[sql] [feature] The prefix_with() method is now available
on each of select(), insert(), update(), delete(),
all with the same API, accepting multiple
prefix calls, as well as a “dialect name” so that
the prefix can be limited to one kind of dialect.¶
References: #2431

	[sql] [feature] Added reduce_columns() method
to select() construct, replaces columns inline
using the util.reduce_columns utility function
to remove equivalent columns. reduce_columns()
also adds “with_only_synonyms” to limit the
reduction just to those columns which have the same
name. The deprecated fold_equivalents() feature is
removed.¶
References: #1729

	[sql] [feature] Reworked the startswith(), endswith(),
contains() operators to do a better job with
negation (NOT LIKE), and also to assemble them
at compilation time so that their rendered SQL
can be altered, such as in the case for Firebird
STARTING WITH¶
References: #2470

	[sql] [feature] Added a hook to the system of rendering
CREATE TABLE that provides access to the render for each
Column individually, by constructing a @compiles
function against the new schema.CreateColumn
construct.¶
References: #2463

	[sql] [feature] “scalar” selects now have a WHERE method
to help with generative building. Also slight adjustment
regarding how SS “correlates” columns; the new methodology
no longer applies meaning to the underlying
Table column being selected. This improves
some fairly esoteric situations, and the logic
that was there didn’t seem to have any purpose.¶

	[sql] [feature] An explicit error is raised when
a ForeignKeyConstraint() that was
constructed to refer to multiple remote tables
is first used.¶
References: #2455

	[sql] [feature] Added ColumnOperators.notin_(),
ColumnOperators.notlike(),
ColumnOperators.notilike() to ColumnOperators.¶
References: #2580

	[sql] [changed] Most classes in expression.sql
are no longer preceded with an underscore,
i.e. Label, SelectBase, Generative, CompareMixin.
_BindParamClause is also renamed to
BindParameter. The old underscore names for
these classes will remain available as synonyms
for the foreseeable future.¶

	[sql] [removed] The long-deprecated and non-functional assert_unicode flag on
create_engine() as well as String is removed.¶

	[sql] [bug] Fixed bug where keyword arguments passed to
Compiler.process() wouldn’t get propagated
to the column expressions present in the columns
clause of a SELECT statement. In particular this would
come up when used by custom compilation schemes that
relied upon special flags.¶
References: #2593

	[sql] [bug] [orm] The auto-correlation feature of select(), and
by proxy that of Query, will not
take effect for a SELECT statement that is being
rendered directly in the FROM list of the enclosing
SELECT. Correlation in SQL only applies to column
expressions such as those in the WHERE, ORDER BY,
columns clause.¶
References: #2595

	[sql] [bug] A tweak to column precedence which moves the
“concat” and “match” operators to be the same as
that of “is”, “like”, and others; this helps with
parenthesization rendering when used in conjunction
with “IS”.¶
References: #2564

	[sql] [bug] Applying a column expression to a select
statement using a label with or without other
modifying constructs will no longer “target” that
expression to the underlying Column; this affects
ORM operations that rely upon Column targeting
in order to retrieve results. That is, a query
like query(User.id, User.id.label(‘foo’)) will now
track the value of each “User.id” expression separately
instead of munging them together. It is not expected
that any users will be impacted by this; however,
a usage that uses select() in conjunction with
query.from_statement() and attempts to load fully
composed ORM entities may not function as expected
if the select() named Column objects with arbitrary
.label() names, as these will no longer target to
the Column objects mapped by that entity.¶
References: #2591

	[sql] [bug] Fixes to the interpretation of the
Column “default” parameter as a callable
to not pass ExecutionContext into a keyword
argument parameter.¶
References: #2520

	[sql] [bug] All of UniqueConstraint, ForeignKeyConstraint,
CheckConstraint, and PrimaryKeyConstraint will
attach themselves to their parent table automatically
when they refer to a Table-bound Column object directly
(i.e. not just string column name), and refer to
one and only one Table. Prior to 0.8 this behavior
occurred for UniqueConstraint and PrimaryKeyConstraint,
but not ForeignKeyConstraint or CheckConstraint.¶
References: #2410

	[sql] [bug] TypeDecorator now includes a generic repr()
that works in terms of the “impl” type by default.
This is a behavioral change for those TypeDecorator
classes that specify a custom __init__ method; those
types will need to re-define __repr__() if they need
__repr__() to provide a faithful constructor representation.¶
References: #2594

	[sql] [bug] column.label(None) now produces an
anonymous label, instead of returning the
column object itself, consistent with the behavior
of label(column, None).¶
References: #2168

	[sql] [change] The Text() type renders the length
given to it, if a length was specified.¶

postgresql

	[postgresql] [feature] postgresql.ARRAY features an optional
“dimension” argument, will assign a specific
number of dimensions to the array which will
render in DDL as ARRAY[][]..., also improves
performance of bind/result processing.¶
References: #2441

	[postgresql] [feature] postgresql.ARRAY now supports
indexing and slicing. The Python [] operator
is available on all SQL expressions that are
of type ARRAY; integer or simple slices can be
passed. The slices can also be used on the
assignment side in the SET clause of an UPDATE
statement by passing them into Update.values();
see the docs for examples.¶

	[postgresql] [feature] Added new “array literal” construct
postgresql.array(). Basically a “tuple” that
renders as ARRAY[1,2,3].¶

	[postgresql] [feature] Added support for the Postgresql ONLY
keyword, which can appear corresponding to a
table in a SELECT, UPDATE, or DELETE statement.
The phrase is established using with_hint().
Courtesy Ryan Kelly¶
References: #2506

	[postgresql] [feature] The “ischema_names” dictionary of the
Postgresql dialect is “unofficially” customizable.
Meaning, new types such as PostGIS types can
be added into this dictionary, and the PG type
reflection code should be able to handle simple
types with variable numbers of arguments.
The functionality here is “unofficial” for
three reasons:

	this is not an “official” API. Ideally
an “official” API would allow custom type-handling
callables at the dialect or global level
in a generic way.

	This is only implemented for the PG dialect,
in particular because PG has broad support
for custom types vs. other database backends.
A real API would be implemented at the
default dialect level.

	The reflection code here is only tested against
simple types and probably has issues with more
compositional types.

patch courtesy Éric Lemoine.

¶

mysql

	[mysql] [feature] Added TIME type to mysql dialect,
accepts “fst” argument which is the new
“fractional seconds” specifier for recent
MySQL versions. The datatype will interpret
a microseconds portion received from the driver,
however note that at this time most/all MySQL
DBAPIs do not support returning this value.¶
References: #2534

	[mysql] [bug] Dialect no longer emits expensive server
collations query, as well as server casing,
on first connect. These functions are still
available as semi-private.¶
References: #2404

sqlite

	[sqlite] [feature] the SQLite date and time types
have been overhauled to support a more open
ended format for input and output, using
name based format strings and regexps. A
new argument “microseconds” also provides
the option to omit the “microseconds”
portion of timestamps. Thanks to
Nathan Wright for the work and tests on
this.¶
References: #2363

	[sqlite] Added types.NCHAR, types.NVARCHAR
to the SQLite dialect’s list of recognized type names
for reflection. SQLite returns the name given
to a type as the name returned.¶
References: rc3addcc9ffad

mssql

	[mssql] [feature] SQL Server dialect can be given
database-qualified schema names,
i.e. “schema=’mydatabase.dbo’”; reflection
operations will detect this, split the schema
among the ”.” to get the owner separately,
and emit a “USE mydatabase” statement before
reflecting targets within the “dbo” owner;
the existing database returned from
DB_NAME() is then restored.¶

	[mssql] [feature] updated support for the mxodbc
driver; mxodbc 3.2.1 is recommended for full
compatibility.¶

	[mssql] [bug] removed legacy behavior whereby
a column comparison to a scalar SELECT via
== would coerce to an IN with the SQL server
dialect. This is implicit
behavior which fails in other scenarios
so is removed. Code which relies on this
needs to be modified to use column.in_(select)
explicitly.¶
References: #2277

oracle

	[oracle] [feature] The types of columns excluded from the
setinputsizes() set can be customized by sending
a list of string DBAPI type names to exclude,
using the exclude_setinputsizes dialect parameter.
This list was previously fixed. The list also
now defaults to STRING, UNICODE, removing
CLOB, NCLOB from the list.¶
References: #2561

	[oracle] [bug] Quoting information is now passed along
from a Column with quote=True when generating
a same-named bound parameter to the bindparam()
object, as is the case in generated INSERT and UPDATE
statements, so that unknown reserved names can
be fully supported.¶
References: #2437

	[oracle] [bug] The CreateIndex construct in Oracle
will now schema-qualify the name of the index
to be that of the parent table. Previously this
name was omitted which apparently creates the
index in the default schema, rather than that
of the table.¶

firebird

	[firebird] [feature] The “startswith()” operator renders
as “STARTING WITH”, “~startswith()” renders
as “NOT STARTING WITH”, using FB’s more efficient
operator.¶
References: #2470

	[firebird] [feature] An experimental dialect for the fdb
driver is added, but is untested as I cannot
get the fdb package to build.¶
References: #2504

	[firebird] [bug] CompileError is raised when VARCHAR with
no length is attempted to be emitted, same
way as MySQL.¶
References: #2505

	[firebird] [bug] Firebird now uses strict “ansi bind rules”
so that bound parameters don’t render in the
columns clause of a statement - they render
literally instead.¶

	[firebird] [bug] Support for passing datetime as date when
using the DateTime type with Firebird; other
dialects support this.¶

misc

	[feature] [access] the MS Access dialect has been
moved to its own project on Bitbucket,
taking advantage of the new SQLAlchemy
dialect compliance suite. The dialect is
still in very rough shape and probably not
ready for general use yet, however
it does have extremely rudimental
functionality now.
https://bitbucket.org/zzzeek/sqlalchemy-access¶

	[moved] [maxdb] The MaxDB dialect, which hasn’t been
functional for several years, is
moved out to a pending bitbucket project,
https://bitbucket.org/zzzeek/sqlalchemy-maxdb.¶

	[examples] The Beaker caching example has been converted
to use dogpile.cache.
This is a new caching library written by the same
creator of Beaker’s caching internals, and represents a
vastly improved, simplified, and modernized system of caching.

See also

Dogpile Caching

¶
References: #2589

0.7 Changelog

0.7.11

no release date
orm

	[orm] [bug] Fixed bug where list instrumentation would fail to represent a
setslice of [0:0] correctly, which in particular could occur
when using insert(0, item) with the association proxy. Due
to some quirk in Python collections, the issue was much more likely
with Python 3 rather than 2.¶
References: #2807

	[orm] [bug] Fixed bug when a query of the form:
query(SubClass).options(subqueryload(Baseclass.attrname)),
where SubClass is a joined inh of BaseClass,
would fail to apply the JOIN inside the subquery
on the attribute load, producing a cartesian product.
The populated results still tended to be correct as additional
rows are just ignored, so this issue may be present as a
performance degradation in applications that are
otherwise working correctly.¶
References: #2699

	[orm] [bug] Fixed bug in unit of work whereby a joined-inheritance
subclass could insert the row for the “sub” table
before the parent table, if the two tables had no
ForeignKey constraints set up between them.¶
References: #2689

	[orm] [bug] Improved the error message emitted when a “backref loop” is detected,
that is when an attribute event triggers a bidirectional
assignment between two other attributes with no end.
This condition can occur not just when an object of the wrong
type is assigned, but also when an attribute is mis-configured
to backref into an existing backref pair.¶
References: #2674

	[orm] [bug] A warning is emitted when a MapperProperty is assigned to a mapper
that replaces an existing property, if the properties in question
aren’t plain column-based properties. Replacement of relationship
properties is rarely (ever?) what is intended and usually refers to a
mapper mis-configuration. This will also warn if a backref configures
itself on top of an existing one in an inheritance relationship
(which is an error in 0.8).¶
References: #2674

engine

	[engine] [bug] The regexp used by the make_url() function now parses
ipv6 addresses, e.g. surrounded by brackets.¶
References: #2851

sql

	[sql] [bug] Fixed regression dating back to 0.7.9 whereby the name of a CTE might
not be properly quoted if it was referred to in multiple FROM clauses.¶
References: #2801

	[sql] [bug] [cte] Fixed bug in common table expression system where if the CTE were
used only as an alias() construct, it would not render using the
WITH keyword.¶
References: #2783

	[sql] [bug] Fixed bug in CheckConstraint DDL where the “quote” flag from a
Column object would not be propagated.¶
References: #2784

postgresql

	[postgresql] [feature] Added support for Postgresql’s traditional SUBSTRING
function syntax, renders as “SUBSTRING(x FROM y FOR z)”
when regular func.substring() is used.
Courtesy Gunnlaugur Þór Briem.¶
References: #2676

mysql

	[mysql] [bug] Updates to MySQL reserved words for versions 5.5, 5.6, courtesy
Hanno Schlichting.¶
References: #2791

misc

	[bug] [tests] Fixed an import of “logging” in test_execute which was not
working on some linux platforms.¶
References: #2669, pull request 41

0.7.10

Released: Thu Feb 7 2013
orm

	[orm] [bug] Fixed potential memory leak which could occur if an
arbitrary number of sessionmaker objects
were created. The anonymous subclass created by
the sessionmaker, when dereferenced, would not be garbage
collected due to remaining class-level references from the
event package. This issue also applies to any custom system
that made use of ad-hoc subclasses in conjunction with
an event dispatcher.¶
References: #2650

	[orm] [bug] Query.merge_result() can now load rows from an outer join
where an entity may be None without throwing an error.¶
References: #2640

	[orm] [bug] The MutableComposite type did not allow for the
MutableBase.coerce() method to be used, even though
the code seemed to indicate this intent, so this now works
and a brief example is added. As a side-effect,
the mechanics of this event handler have been changed so that
new MutableComposite types no longer add per-type
global event handlers. Also in 0.8.0b2.¶
References: #2624

	[orm] [bug] Fixed Session accounting bug whereby replacing
a deleted object in the identity map with another
object of the same primary key would raise a
“conflicting state” error on rollback(),
if the replaced primary key were established either
via non-unitofwork-established INSERT statement
or by primary key switch of another instance.¶
References: #2583

engine

	[engine] [bug] Fixed MetaData.reflect() to correctly use
the given Connection, if given, without
opening a second connection from that connection’s
Engine.¶
References: #2604

sql

	[sql] [bug] Backported adjustment to __repr__ for
TypeDecorator to 0.7, allows PickleType
to produce a clean repr() to help with Alembic.¶
References: #2594, #2584

	[sql] [bug] Fixed bug where Table.tometadata() would fail if a
Column had both a foreign key as well as an
alternate ”.key” name for the column.¶
References: #2643

	[sql] [bug] Fixed bug where using server_onupdate=<FetchedValue|DefaultClause>
without passing the “for_update=True” flag would apply the default
object to the server_default, blowing away whatever was there.
The explicit for_update=True argument shouldn’t be needed with this usage
(especially since the documentation shows an example without it being
used) so it is now arranged internally using a copy of the given default
object, if the flag isn’t set to what corresponds to that argument.¶
References: #2631

	[sql] [gae] [mysql] Added a conditional import to the gaerdbms dialect which attempts
to import rdbms_apiproxy vs. rdbms_googleapi to work
on both dev and production platforms. Also now honors the
instance attribute. Courtesy Sean Lynch. Also backported
enhancements to allow username/password as well as
fixing error code interpretation from 0.8.¶
References: #2649

mysql

	[mysql] [feature] Added “raise_on_warnings” flag to OurSQL
dialect.¶
References: #2523

	[mysql] [feature] Added “read_timeout” flag to MySQLdb
dialect.¶
References: #2554

sqlite

	[sqlite] [bug] More adjustment to this SQLite related issue which was released in
0.7.9, to intercept legacy SQLite quoting characters when reflecting
foreign keys. In addition to intercepting double quotes, other
quoting characters such as brackets, backticks, and single quotes
are now also intercepted.¶
References: #2568

mssql

	[mssql] [bug] Fixed bug whereby using “key” with Column
in conjunction with “schema” for the owning
Table would fail to locate result rows due
to the MSSQL dialect’s “schema rendering”
logic’s failure to take .key into account.¶

	[mssql] [bug] Added a Py3K conditional around unnecessary .decode()
call in mssql information schema, fixes reflection
in Py3k.¶
References: #2638

oracle

	[oracle] [bug] The Oracle LONG type, while an unbounded text type, does not appear
to use the cx_Oracle.LOB type when result rows are returned,
so the dialect has been repaired to exclude LONG from
having cx_Oracle.LOB filtering applied.¶
References: #2620

	[oracle] [bug] Repaired the usage of .prepare() in conjunction with
cx_Oracle so that a return value of False will result
in no call to connection.commit(), hence avoiding
“no transaction” errors. Two-phase transactions have
now been shown to work in a rudimental fashion with
SQLAlchemy and cx_oracle, however are subject to caveats
observed with the driver; check the documentation
for details.¶
References: #2611

	[oracle] [bug] changed the list of cx_oracle types that are
excluded from the setinputsizes() step to only include
STRING and UNICODE; CLOB and NCLOB are removed. This
is to work around cx_oracle behavior which is broken
for the executemany() call. In 0.8, this same change
is applied however it is also configurable via the
exclude_setinputsizes argument.¶
References: #2561

0.7.9

Released: Mon Oct 01 2012
orm

	[orm] [bug] Fixed bug mostly local to new
AbstractConcreteBase helper where the “type”
attribute from the superclass would not
be overridden on the subclass to produce the
“reserved for base” error message, instead placing
a do-nothing attribute there. This was inconsistent
vs. using ConcreteBase as well as all the behavior
of classical concrete mappings, where the “type”
column from the polymorphic base would be explicitly
disabled on subclasses, unless overridden
explicitly.¶

	[orm] [bug] A warning is emitted when lazy=’dynamic’
is combined with uselist=False. This is an
exception raise in 0.8.¶

	[orm] [bug] Fixed bug whereby user error in related-object
assignment could cause recursion overflow if the
assignment triggered a backref of the same name
as a bi-directional attribute on the incorrect
class to the same target. An informative
error is raised now.¶

	[orm] [bug] Fixed bug where incorrect type information
would be passed when the ORM would bind the
“version” column, when using the “version” feature.
Tests courtesy Daniel Miller.¶
References: #2539

	[orm] [bug] Extra logic has been added to the “flush”
that occurs within Session.commit(), such that the
extra state added by an after_flush() or
after_flush_postexec() hook is also flushed in a
subsequent flush, before the “commit” completes.
Subsequent calls to flush() will continue until
the after_flush hooks stop adding new state.
An “overflow” counter of 100 is also in place,
in the event of a broken after_flush() hook
adding new content each time.¶
References: #2566

engine

	[engine] [feature] Dramatic improvement in memory
usage of the event system; instance-level
collections are no longer created for a
particular type of event until
instance-level listeners are established
for that event.¶
References: #2516

	[engine] [bug] Fixed bug whereby
a disconnect detect + dispose that occurs
when the QueuePool has threads waiting
for connections would leave those
threads waiting for the duration of
the timeout on the old pool (or indefinitely
if timeout was disabled). The fix
now notifies those waiters with a special
exception case and has them move onto
the new pool.¶
References: #2522

	[engine] [bug] Added gaerdbms import to mysql/__init__.py,
the absence of which was preventing the new
GAE dialect from being loaded.¶
References: #2529

	[engine] [bug] Fixed cextension bug whereby the
“ambiguous column error” would fail to
function properly if the given index were
a Column object and not a string.
Note there are still some column-targeting
issues here which are fixed in 0.8.¶
References: #2553

	[engine] [bug] Fixed the repr() of Enum to include
the “name” and “native_enum” flags. Helps
Alembic autogenerate.¶

sql

	[sql] [bug] Fixed the DropIndex construct to support
an Index associated with a Table in a remote
schema.¶
References: #2571

	[sql] [bug] Fixed bug in over() construct whereby
passing an empty list for either partition_by
or order_by, as opposed to None, would fail
to generate correctly.
Courtesy Gunnlaugur Þór Briem.¶
References: #2574

	[sql] [bug] Fixed CTE bug whereby positional
bound parameters present in the CTEs themselves
would corrupt the overall ordering of
bound parameters. This primarily
affected SQL Server as the platform with
positional binds + CTE support.¶
References: #2521

	[sql] [bug] Fixed more un-intuitivenesses in CTEs
which prevented referring to a CTE in a union
of itself without it being aliased.
CTEs now render uniquely
on name, rendering the outermost CTE of a given
name only - all other references are rendered
just as the name. This even includes other
CTE/SELECTs that refer to different versions
of the same CTE object, such as a SELECT
or a UNION ALL of that SELECT. We are
somewhat loosening the usual link between object
identity and lexical identity in this case.
A true name conflict between two unrelated
CTEs now raises an error.¶

	[sql] [bug] quoting is applied to the column names
inside the WITH RECURSIVE clause of a
common table expression according to the
quoting rules for the originating Column.¶
References: #2512

	[sql] [bug] Fixed regression introduced in 0.7.6
whereby the FROM list of a SELECT statement
could be incorrect in certain “clone+replace”
scenarios.¶
References: #2518

	[sql] [bug] Fixed bug whereby usage of a UNION
or similar inside of an embedded subquery
would interfere with result-column targeting,
in the case that a result-column had the same
ultimate name as a name inside the embedded
UNION.¶
References: #2552

	[sql] [bug] Fixed a regression since 0.6 regarding
result-row targeting. It should be possible
to use a select() statement with string
based columns in it, that is
select([‘id’, ‘name’]).select_from(‘mytable’),
and have this statement be targetable by
Column objects with those names; this is the
mechanism by which
query(MyClass).from_statement(some_statement)
works. At some point the specific case of
using select([‘id’]), which is equivalent to
select([literal_column(‘id’)]), stopped working
here, so this has been re-instated and of
course tested.¶
References: #2558

	[sql] [bug] Added missing operators is_(), isnot()
to the ColumnOperators base, so that these long-available
operators are present as methods like all
the other operators.¶
References: #2544

postgresql

	[postgresql] [bug] Columns in reflected primary key constraint
are now returned in the order in which the constraint
itself defines them, rather than how the table
orders them. Courtesy Gunnlaugur Þór Briem..¶
References: #2531

	[postgresql] [bug] Added ‘terminating connection’ to the list
of messages we use to detect a disconnect with PG, which
appears to be present in some versions when the server
is restarted.¶
References: #2570

mysql

	[mysql] [bug] Updated mysqlconnector interface to use
updated “client flag” and “charset” APIs,
courtesy David McNelis.¶

sqlite

	[sqlite] [feature] Added support for the localtimestamp()
SQL function implemented in SQLite, courtesy
Richard Mitchell.¶

	[sqlite] [bug] Adjusted a very old bugfix which attempted
to work around a SQLite issue that itself was
“fixed” as of sqlite 3.6.14, regarding quotes
surrounding a table name when using
the “foreign_key_list” pragma. The fix has been
adjusted to not interfere with quotes that
are actually in the name of a column or table,
to as much a degree as possible; sqlite still
doesn’t return the correct result for foreign_key_list()
if the target table actually has quotes surrounding
its name, as part of its name (i.e. “”“mytable”“”).¶
References: #2568

	[sqlite] [bug] Adjusted column default reflection code to
convert non-string values to string, to accommodate
old SQLite versions that don’t deliver
default info as a string.¶
References: #2265

mssql

	[mssql] [bug] Fixed compiler bug whereby using a correlated
subquery within an ORDER BY would fail to render correctly
if the stament also used LIMIT/OFFSET, due to mis-rendering
within the ROW_NUMBER() OVER clause. Fix courtesy
sayap¶
References: #2538

	[mssql] [bug] Fixed compiler bug whereby a given
select() would be modified if it had an “offset”
attribute, causing the construct to not compile
correctly a second time.¶
References: #2545

	[mssql] [bug] Fixed bug where reflection of primary key constraint
would double up columns if the same constraint/table
existed in multiple schemas.¶

0.7.8

Released: Sat Jun 16 2012
orm

	[orm] [feature] The ‘objects’ argument to
flush() is no longer deprecated, as some
valid use cases have been identified.¶

	[orm] [bug] Fixed bug whereby subqueryload() from
a polymorphic mapping to a target would incur
a new invocation of the query for each
distinct class encountered in the polymorphic
result.¶
References: #2480

	[orm] [bug] Fixed bug in declarative
whereby the precedence of columns
in a joined-table, composite
column (typically for id) would fail to
be correct if the columns contained
names distinct from their attribute
names. This would cause things like
primaryjoin conditions made against the
entity attributes to be incorrect. Related
to as this was supposed
to be part of that, this is.¶
References: #2491, #1892

	[orm] [bug] Fixed identity_key() function which
was not accepting a scalar argument
for the identity. .¶
References: #2508

	[orm] [bug] Fixed bug whereby populate_existing
option would not propagate to subquery
eager loaders. .¶
References: #2497

engine

	[engine] [bug] Fixed memory leak in C version of
result proxy whereby DBAPIs which don’t deliver
pure Python tuples for result rows would
fail to decrement refcounts correctly.
The most prominently affected DBAPI
is pyodbc.¶
References: #2489

	[engine] [bug] Fixed bug affecting Py3K whereby
string positional parameters passed to
engine/connection execute() would fail to be
interpreted correctly, due to __iter__
being present on Py3K string..¶
References: #2503

sql

	[sql] [bug] added BIGINT to types.__all__,
BIGINT, BINARY, VARBINARY to sqlalchemy
module namespace, plus test to ensure
this breakage doesn’t occur again.¶
References: #2499

	[sql] [bug] Repaired common table expression
rendering to function correctly when the
SELECT statement contains UNION or other
compound expressions, courtesy btbuilder.¶
References: #2490

	[sql] [bug] Fixed bug whereby append_column()
wouldn’t function correctly on a cloned
select() construct, courtesy
Gunnlaugur Þór Briem.¶
References: #2482

postgresql

	[postgresql] [bug] removed unnecessary table clause when
reflecting enums,. Courtesy
Gunnlaugur Þór Briem.¶
References: #2510

mysql

	[mysql] [feature] Added a new dialect for Google App
Engine. Courtesy Richie Foreman.¶
References: #2484

oracle

	[oracle] [bug] Added ROWID to oracle.*.¶
References: #2483

0.7.7

Released: Sat May 05 2012
orm

	[orm] [feature] Added prefix_with() method
to Query, calls upon select().prefix_with()
to allow placement of MySQL SELECT
directives in statements. Courtesy
Diana Clarke¶
References: #2443

	[orm] [feature] Added new flag to @validates
include_removes. When True, collection
remove and attribute del events
will also be sent to the validation function,
which accepts an additional argument
“is_remove” when this flag is used.¶

	[orm] [bug] Fixed issue in unit of work
whereby setting a non-None self-referential
many-to-one relationship to None
would fail to persist the change if the
former value was not already loaded..¶
References: #2477

	[orm] [bug] Fixed bug in 0.7.6 introduced by whereby column_mapped_collection
used against columns that were mapped as
joins or other indirect selectables
would fail to function.¶
References: #2409

	[orm] [bug] Fixed bug whereby polymorphic_on
column that’s not otherwise mapped on the
class would be incorrectly included
in a merge() operation, raising an error.¶
References: #2449

	[orm] [bug] Fixed bug in expression annotation
mechanics which could lead to incorrect
rendering of SELECT statements with aliases
and joins, particularly when using
column_property().¶
References: #2453

	[orm] [bug] Fixed bug which would prevent
OrderingList from being pickleable. Courtesy Jeff Dairiki¶
References: #2454

	[orm] [bug] Fixed bug in relationship comparisons
whereby calling unimplemented methods like
SomeClass.somerelationship.like() would
produce a recursion overflow, instead
of NotImplementedError.¶

sql

	[sql] [feature] Added new connection event
dbapi_error(). Is called for all DBAPI-level
errors passing the original DBAPI exception
before SQLAlchemy modifies the state
of the cursor.¶

	[sql] [bug] Removed warning when Index is created
with no columns; while this might not be what
the user intended, it is a valid use case
as an Index could be a placeholder for just an
index of a certain name.¶

	[sql] [bug] If conn.begin() fails when calling
“with engine.begin()”, the newly acquired
Connection is closed explicitly before
propagating the exception onward normally.¶

	[sql] [bug] Add BINARY, VARBINARY to types.__all__.¶
References: #2474

postgresql

	[postgresql] [feature] Added new for_update/with_lockmode()
options for Postgresql: for_update=”read”/
with_lockmode(“read”),
for_update=”read_nowait”/
with_lockmode(“read_nowait”).
These emit “FOR SHARE” and “FOR SHARE NOWAIT”,
respectively. Courtesy Diana Clarke¶
References: #2445

	[postgresql] [bug] removed unnecessary table clause
when reflecting domains.¶
References: #2473

mysql

	[mysql] [bug] Fixed bug whereby column name inside
of “KEY” clause for autoincrement composite
column with InnoDB would double quote a
name that’s a reserved word. Courtesy Jeff
Dairiki.¶
References: #2460

	[mysql] [bug] Fixed bug whereby get_view_names() for
“information_schema” schema would fail
to retrieve views marked as “SYSTEM VIEW”.
courtesy Matthew Turland.¶

	[mysql] [bug] Fixed bug whereby if cast() is used
on a SQL expression whose type is not supported
by cast() and therefore CAST isn’t rendered by
the dialect, the order of evaluation could change
if the casted expression required that it be
grouped; grouping is now applied to those
expressions.¶
References: #2467

sqlite

	[sqlite] [feature] Added SQLite execution option
“sqlite_raw_colnames=True”, will bypass
attempts to remove ”.” from column names
returned by SQLite cursor.description.¶
References: #2475

	[sqlite] [bug] When the primary key column of a Table
is replaced, such as via extend_existing,
the “auto increment” column used by insert()
constructs is reset. Previously it would
remain referring to the previous primary
key column.¶
References: #2525

mssql

	[mssql] [feature] Added interim create_engine flag
supports_unicode_binds to PyODBC dialect,
to force whether or not the dialect
passes Python unicode literals to PyODBC
or not.¶

	[mssql] [bug] Repaired the use_scope_identity
create_engine() flag when using the pyodbc
dialect. Previously this flag would be
ignored if set to False. When set to False,
you’ll get “SELECT @@identity” after each
INSERT to get at the last inserted ID,
for those tables which have “implicit_returning”
set to False.¶

	[mssql] [bug] UPDATE..FROM syntax with SQL Server
requires that the updated table be present
in the FROM clause when an alias of that
table is also present in the FROM clause.
The updated table is now always present
in the FROM, when FROM is present
in the first place. Courtesy sayap.¶
References: #2468

0.7.6

Released: Wed Mar 14 2012
orm

	[orm] [feature] Added “no_autoflush” context
manager to Session, used with with:
will temporarily disable autoflush.¶

	[orm] [feature] Added cte() method to Query,
invokes common table expression support
from the Core (see below).¶
References: #1859

	[orm] [feature] Added the ability to query for
Table-bound column names when using
query(sometable).filter_by(colname=value).¶
References: #2400

	[orm] [bug] Fixed event registration bug
which would primarily show up as
events not being registered with
sessionmaker() instances created
after the event was associated
with the Session class.¶
References: #2424

	[orm] [bug] Fixed bug whereby a primaryjoin
condition with a “literal” in it would
raise an error on compile with certain
kinds of deeply nested expressions
which also needed to render the same
bound parameter name more than once.¶
References: #2425

	[orm] [bug] Removed the check for number of
rows affected when doing a multi-delete
against mapped objects. If an ON DELETE
CASCADE exists between two rows, we can’t
get an accurate rowcount from the DBAPI;
this particular count is not supported
on most DBAPIs in any case, MySQLdb
is the notable case where it is.¶
References: #2403

	[orm] [bug] Fixed bug whereby objects using
attribute_mapped_collection or
column_mapped_collection could not be
pickled.¶
References: #2409

	[orm] [bug] Fixed bug whereby MappedCollection
would not get the appropriate collection
instrumentation if it were only used
in a custom subclass that used
@collection.internally_instrumented.¶
References: #2406

	[orm] [bug] Fixed bug whereby SQL adaption mechanics
would fail in a very nested scenario involving
joined-inheritance, joinedload(), limit(), and a
derived function in the columns clause.¶
References: #2419

	[orm] [bug] Fixed the repr() for CascadeOptions to
include refresh-expire. Also reworked
CascadeOptions to be a <frozenset>.¶
References: #2417

	[orm] [bug] Improved the “declarative reflection”
example to support single-table inheritance,
multiple calls to prepare(), tables that
are present in alternate schemas,
establishing only a subset of classes
as reflected.¶

	[orm] [bug] Scaled back the test applied within
flush() to check for UPDATE against partially
NULL PK within one table to only actually
happen if there’s really an UPDATE to occur.¶
References: #2390

	[orm] [bug] Fixed bug whereby if a method name
conflicted with a column name, a
TypeError would be raised when the mapper
tried to inspect the __get__() method
on the method object.¶
References: #2352

engine

	[engine] [feature] Added “no_parameters=True” execution
option for connections. If no parameters
are present, will pass the statement
as cursor.execute(statement), thereby invoking
the DBAPIs behavior when no parameter collection
is present; for psycopg2 and mysql-python, this
means not interpreting % signs in the string.
This only occurs with this option, and not
just if the param list is blank, as otherwise
this would produce inconsistent behavior
of SQL expressions that normally escape percent
signs (and while compiling, can’t know ahead of
time if parameters will be present in
some cases).¶
References: #2407

	[engine] [feature] Added pool_reset_on_return argument
to create_engine, allows control over
“connection return” behavior. Also added
new arguments ‘rollback’, ‘commit’, None
to pool.reset_on_return to allow more control
over connection return activity.¶
References: #2378

	[engine] [feature] Added some decent context managers
to Engine, Connection:
with engine.begin() as conn:
 <work with conn in a transaction>

and:

with engine.connect() as conn:
 <work with conn>

Both close out the connection when done,
commit or rollback transaction with errors
on engine.begin().

¶

	[engine] [bug] Added execution_options() call to
MockConnection (i.e., that used with
strategy=”mock”) which acts as a pass through
for arguments.¶

sql

	[sql] [feature] Added support for SQL standard
common table expressions (CTE), allowing
SELECT objects as the CTE source (DML
not yet supported). This is invoked via
the cte() method on any select() construct.¶
References: #1859

	[sql] [bug] Fixed memory leak in core which would
occur when C extensions were used with
particular types of result fetches,
in particular when orm query.count()
were called.¶
References: #2427

	[sql] [bug] Fixed issue whereby attribute-based
column access on a row would raise
AttributeError with non-C version,
NoSuchColumnError with C version. Now
raises AttributeError in both cases.¶
References: #2398

	[sql] [bug] Added support for using the .key
of a Column as a string identifier in a
result set row. The .key is currently
listed as an “alternate” name for a column,
and is superseded by the name of a column
which has that key value as its regular name.
For the next major release
of SQLAlchemy we may reverse this precedence
so that .key takes precedence, but this
is not decided on yet.¶
References: #2392

	[sql] [bug] A warning is emitted when a not-present
column is stated in the values() clause
of an insert() or update() construct.
Will move to an exception in 0.8.¶
References: #2413

	[sql] [bug] A significant change to how labeling
is applied to columns in SELECT statements
allows “truncated” labels, that is label names
that are generated in Python which exceed
the maximum identifier length (note this is
configurable via label_length on create_engine()),
to be properly referenced when rendered inside
of a subquery, as well as to be present
in a result set row using their original
in-Python names.¶
References: #2396

	[sql] [bug] Fixed bug in new “autoload_replace” flag
which would fail to preserve the primary
key constraint of the reflected table.¶
References: #2402

	[sql] [bug] Index will raise when arguments passed
cannot be interpreted as columns or expressions.
Will warn when Index is created
with no columns at all.¶
References: #2380

mysql

	[mysql] [feature] Added support for MySQL index and
primary key constraint types
(i.e. USING) via new mysql_using parameter
to Index and PrimaryKeyConstraint,
courtesy Diana Clarke.¶
References: #2386

	[mysql] [feature] Added support for the “isolation_level”
parameter to all MySQL dialects. Thanks
to mu_mind for the patch here.¶
References: #2394

sqlite

	[sqlite] [bug] Fixed bug in C extensions whereby
string format would not be applied to a
Numeric value returned as integer; this
affected primarily SQLite which does
not maintain numeric scale settings.¶
References: #2432

mssql

	[mssql] [feature] Added support for MSSQL INSERT,
UPDATE, and DELETE table hints, using
new with_hint() method on UpdateBase.¶
References: #2430

oracle

	[oracle] [feature] Added a new create_engine() flag
coerce_to_decimal=False, disables the precision
numeric handling which can add lots of overhead
by converting all numeric values to
Decimal.¶
References: #2399

	[oracle] [bug] Added missing compilation support for
LONG¶
References: #2401

	[oracle] [bug] Added ‘LEVEL’ to the list of reserved
words for Oracle.¶
References: #2435

misc

	[bug] [examples] Altered _params_from_query() function
in Beaker example to pull bindparams from the
fully compiled statement, as a quick means
to get everything including subqueries in the
columns clause, etc.¶

0.7.5

Released: Sat Jan 28 2012
orm

	[orm] [feature] Added “class_registry” argument to
declarative_base(). Allows two or more declarative
bases to share the same registry of class names.¶

	[orm] [feature] query.filter() accepts multiple
criteria which will join via AND, i.e.
query.filter(x==y, z>q, ...)¶

	[orm] [feature] Added new capability to relationship
loader options to allow “default” loader strategies.
Pass ‘*’ to any of joinedload(), lazyload(),
subqueryload(), or noload() and that becomes the
loader strategy used for all relationships,
except for those explicitly stated in the
Query. Thanks to up-and-coming contributor
Kent Bower for an exhaustive and well
written test suite !¶
References: #2351

	[orm] [feature] New declarative reflection example
added, illustrates how best to mix table reflection
with declarative as well as uses some new features
from.¶
References: #2356

	[orm] [bug] Fixed issue where modified session state
established after a failed flush would be committed
as part of the subsequent transaction that
begins automatically after manual call
to rollback(). The state of the session is
checked within rollback(), and if new state
is present, a warning is emitted and
restore_snapshot() is called a second time,
discarding those changes.¶
References: #2389

	[orm] [bug] Fixed regression from 0.7.4 whereby
using an already instrumented column from a
superclass as “polymorphic_on” failed to resolve
the underlying Column.¶
References: #2345

	[orm] [bug] Raise an exception if xyzload_all() is
used inappropriately with two non-connected
relationships.¶
References: #2370

	[orm] [bug] Fixed bug whereby event.listen(SomeClass)
forced an entirely unnecessary compile of the
mapper, making events very hard to set up
at module import time (nobody noticed this ??)¶
References: #2367

	[orm] [bug] Fixed bug whereby hybrid_property didn’t
work as a kw arg in any(), has().¶

	[orm] [bug] ensure pickleability of all ORM exceptions
for multiprocessing compatibility.¶
References: #2371

	[orm] [bug] implemented standard “can’t set attribute” /
“can’t delete attribute” AttributeError when
setattr/delattr used on a hybrid that doesn’t
define fset or fdel.¶
References: #2353

	[orm] [bug] Fixed bug where unpickled object didn’t
have enough of its state set up to work
correctly within the unpickle() event established
by the mutable object extension, if the object
needed ORM attribute access within
__eq__() or similar.¶
References: #2362

	[orm] [bug] Fixed bug where “merge” cascade could
mis-interpret an unloaded attribute, if the
load_on_pending flag were used with
relationship(). Thanks to Kent Bower
for tests.¶
References: #2374

	[orm] Fixed regression from 0.6 whereby if
“load_on_pending” relationship() flag were used
where a non-“get()” lazy clause needed to be
emitted on a pending object, it would fail
to load.¶

engine

	[engine] [bug] Added __reduce__ to StatementError,
DBAPIError, column errors so that exceptions
are pickleable, as when using multiprocessing.
However, not
all DBAPIs support this yet, such as
psycopg2.¶
References: #2371

	[engine] [bug] Improved error messages when a non-string
or invalid string is passed to any of the
date/time processors used by SQLite, including
C and Python versions.¶
References: #2382

	[engine] [bug] Fixed bug whereby a table-bound Column
object named “<a>_” which matched a column
labeled as “<tablename>_<colname>” could match
inappropriately when targeting in a result
set row.¶
References: #2377

	[engine] [bug] Fixed bug in “mock” strategy whereby
correct DDL visit method wasn’t called, resulting
in “CREATE/DROP SEQUENCE” statements being
duplicated¶
References: #2384

sql

	[sql] [feature] New reflection feature “autoload_replace”;
when set to False on Table, the Table can be autoloaded
without existing columns being replaced. Allows
more flexible chains of Table construction/reflection
to be constructed, including that it helps with
combining Declarative with table reflection.
See the new example on the wiki.¶
References: #2356

	[sql] [feature] Added “false()” and “true()” expression
constructs to sqlalchemy.sql namespace, though
not part of __all__ as of yet.¶

	[sql] [feature] Dialect-specific compilers now raise
CompileError for all type/statement compilation
issues, instead of InvalidRequestError or ArgumentError.
The DDL for CREATE TABLE will re-raise
CompileError to include table/column information
for the problematic column.¶
References: #2361

	[sql] [bug] Improved the API for add_column() such that
if the same column is added to its own table,
an error is not raised and the constraints
don’t get doubled up. Also helps with some
reflection/declarative patterns.¶
References: #2356

	[sql] [bug] Fixed issue where the “required” exception
would not be raised for bindparam() with required=True,
if the statement were given no parameters at all.¶
References: #2381

mysql

	[mysql] [bug] fixed regexp that filters out warnings
for non-reflected “PARTITION” directives,
thanks to George Reilly¶
References: #2376

sqlite

	[sqlite] [bug] the “name” of an FK constraint in SQLite
is reflected as “None”, not “0” or other
integer value.
SQLite does not appear to support constraint
naming in any case.¶
References: #2364

	[sqlite] [bug] sql.false() and sql.true() compile to
0 and 1, respectively in sqlite¶
References: #2368

	[sqlite] [bug] removed an erroneous “raise” in the
SQLite dialect when getting table names
and view names, where logic is in place
to fall back to an older version of
SQLite that doesn’t have the
“sqlite_temp_master” table.¶

mssql

	[mssql] [bug] Adjusted the regexp used in the
mssql.TIME type to ensure only six digits
are received for the “microseconds” portion
of the value, which is expected by
Python’s datetime.time(). Note that
support for sending microseconds doesn’t
seem to be possible yet with pyodbc
at least.¶
References: #2340

	[mssql] [bug] Dropped the “30 char” limit on pymssql,
based on reports that it’s doing things
better these days. pymssql hasn’t been
well tested and as the DBAPI is in flux
it’s still not clear what the status
is on this driver and how SQLAlchemy’s
implementation should adapt.¶
References: #2347

oracle

	[oracle] [bug] Added ORA-03135 to the never ending
list of oracle “connection lost” errors¶
References: #2388

misc

	[feature] [examples] Simplified the versioning example
a bit to use a declarative mixin as well
as an event listener, instead of a metaclass +
SessionExtension.¶
References: #2313

	[bug] [core] Changed LRUCache, used by the mapper
to cache INSERT/UPDATE/DELETE statements,
to use an incrementing counter instead
of a timestamp to track entries, for greater
reliability versus using time.time(), which
can cause test failures on some platforms.¶
References: #2379

	[bug] [core] Added a boolean check for the “finalize”
function within the pool connection proxy’s
weakref callback before calling it, so that a
warning isn’t emitted that this function is None
when the application is exiting and gc has
removed the function from the module before the
weakref callback was invoked.¶
References: #2383

	[bug] [py3k] Fixed inappropriate usage of util.py3k
flag and renamed it to util.py3k_warning, since
this flag is intended to detect the -3 flag
series of import restrictions only.¶
References: #2348

	[bug] [examples] Fixed large_collection.py to close the
session before dropping tables.¶
References: #2346

0.7.4

Released: Fri Dec 09 2011
orm

	[orm] [feature] polymorphic_on now accepts many
new kinds of values:

	standalone expressions that aren’t
otherwise mapped

	column_property() objects

	string names of any column_property()
or attribute name of a mapped Column

The docs include an example using
the case() construct, which is likely to be
a common constructed used here. and part of

Standalone expressions in polymorphic_on
propagate to single-table inheritance
subclasses so that they are used in the
WHERE /JOIN clause to limit rows to that
subclass as is the usual behavior.

¶References: #2345, #2238

	[orm] [feature] IdentitySet supports the - operator
as the same as difference(), handy when dealing
with Session.dirty etc.¶
References: #2301

	[orm] [feature] Added new value for Column autoincrement
called “ignore_fk”, can be used to force autoincrement
on a column that’s still part of a ForeignKeyConstraint.
New example in the relationship docs illustrates
its use.¶

	[orm] [bug] Fixed backref behavior when “popping” the
value off of a many-to-one in response to
a removal from a stale one-to-many - the operation
is skipped, since the many-to-one has since
been updated.¶
References: #2315

	[orm] [bug] After some years of not doing this, added
more granularity to the “is X a parent of Y”
functionality, which is used when determining
if the FK on “Y” needs to be “nulled out” as well
as if “Y” should be deleted with delete-orphan
cascade. The test now takes into account the
Python identity of the parent as well its identity
key, to see if the last known parent of Y is
definitely X. If a decision
can’t be made, a StaleDataError is raised. The
conditions where this error is raised are fairly
rare, requiring that the previous parent was
garbage collected, and previously
could very well inappropriately update/delete
a record that’s since moved onto a new parent,
though there may be some cases where
“silent success” occurred previously that will now
raise in the face of ambiguity.
Expiring “Y” resets the “parent” tracker, meaning
X.remove(Y) could then end up deleting Y even
if X is stale, but this is the same behavior
as before; it’s advised to expire X also in that
case.¶
References: #2264

	[orm] [bug] fixed inappropriate evaluation of user-mapped
object in a boolean context within query.get(). Also in 0.6.9.¶
References: #2310

	[orm] [bug] Added missing comma to PASSIVE_RETURN_NEVER_SET
symbol¶
References: #2304

	[orm] [bug] Cls.column.collate(“some collation”) now
works. Also in 0.6.9¶
References: #1776

	[orm] [bug] the value of a composite attribute is now
expired after an insert or update operation, instead
of regenerated in place. This ensures that a
column value which is expired within a flush
will be loaded first, before the composite
is regenerated using that value.¶
References: #2309

	[orm] [bug] The fix in also emits the
“refresh” event when the composite value is
loaded on access, even if all column
values were already present, as is appropriate.
This fixes the “mutable” extension which relies
upon the “load” event to ensure the _parents
dictionary is up to date, fixes.
Thanks to Scott Torborg for the test case here.¶
References: #2309, #2308

	[orm] [bug] Fixed bug whereby a subclass of a subclass
using concrete inheritance in conjunction with
the new ConcreteBase or AbstractConcreteBase
would fail to apply the subclasses deeper than
one level to the “polymorphic loader” of each
base¶
References: #2312

	[orm] [bug] Fixed bug whereby a subclass of a subclass
using the new AbstractConcreteBase would fail
to acquire the correct “base_mapper” attribute
when the “base” mapper was generated, thereby
causing failures later on.¶
References: #2312

	[orm] [bug] Fixed bug whereby column_property() created
against ORM-level column could be treated as
a distinct entity when producing certain
kinds of joined-inh joins.¶
References: #2316

	[orm] [bug] Fixed the error formatting raised when
a tuple is inadvertently passed to session.query(). Also in 0.6.9.¶
References: #2297

	[orm] [bug] Calls to query.join() to a single-table
inheritance subclass are now tracked, and
are used to eliminate the additional WHERE..
IN criterion normally tacked on with single
table inheritance, since the join should
accommodate it. This allows OUTER JOIN
to a single table subclass to produce
the correct results, and overall will produce
fewer WHERE criterion when dealing with
single table inheritance joins.¶
References: #2328

	[orm] [bug] __table_args__ can now be passed as
an empty tuple as well as an empty dict.. Thanks to Fayaz Yusuf Khan
for the patch.¶
References: #2339

	[orm] [bug] Updated warning message when setting
delete-orphan without delete to no longer
refer to 0.6, as we never got around to
upgrading this to an exception. Ideally
this might be better as an exception but
it’s not critical either way.¶
References: #2325

	[orm] [bug] Fixed bug in get_history() when referring
to a composite attribute that has no value;
added coverage for get_history() regarding
composites which is otherwise just a userland
function.¶

engine

	[engine] [bug] Fixed bug whereby transaction.rollback()
would throw an error on an invalidated
connection if the transaction were a
two-phase or savepoint transaction.
For plain transactions, rollback() is a no-op
if the connection is invalidated, so while
it wasn’t 100% clear if it should be a no-op,
at least now the interface is consistent.¶
References: #2317

sql

	[sql] [feature] The update() construct can now accommodate
multiple tables in the WHERE clause, which will
render an “UPDATE..FROM” construct, recognized by
Postgresql and MSSQL. When compiled on MySQL,
will instead generate “UPDATE t1, t2, ..”. MySQL
additionally can render against multiple tables in the
SET clause, if Column objects are used as keys
in the “values” parameter or generative method.¶
References: #2166, #1944

	[sql] [feature] Added accessor to types called “python_type”,
returns the rudimentary Python type object
for a particular TypeEngine instance, if known,
else raises NotImplementedError.¶
References: #77

	[sql] [bug] related to, made some
adjustments to the change from
regarding the “from” list on a select(). The
_froms collection is no longer memoized, as this
simplifies various use cases and removes the
need for a “warning” if a column is attached
to a table after it was already used in an
expression - the select() construct will now
always produce the correct expression.
There’s probably no real-world
performance hit here; select() objects are
almost always made ad-hoc, and systems that
wish to optimize the re-use of a select()
would be using the “compiled_cache” feature.
A hit which would occur when calling select.bind
has been reduced, but the vast majority
of users shouldn’t be using “bound metadata”
anyway :).¶
References: #2316, #2261

	[sql] [bug] further tweak to the fix from,
so that generative methods work a bit better
off of cloned (this is almost a non-use case though).
In particular this allows with_only_columns()
to behave more consistently. Added additional
documentation to with_only_columns() to clarify
expected behavior, which changed as a result
of.¶
References: #2261, #2319

schema

	[schema] [feature] Added new support for remote “schemas”:¶

	[schema] [feature] The “extend_existing” flag on Table
now allows for the reflection process to take
effect for a Table object that’s already been
defined; when autoload=True and extend_existing=True
are both set, the full set of columns will be
reflected from the Table which will then
overwrite those columns already present,
rather than no activity occurring. Columns that
are present directly in the autoload run
will be used as always, however.¶
References: #1410

	[schema] [bug] Fixed bug whereby TypeDecorator would
return a stale value for _type_affinity, when
using a TypeDecorator that “switches” types,
like the CHAR/UUID type.¶

	[schema] [bug] Fixed bug whereby “order_by=’foreign_key’”
option to Inspector.get_table_names
wasn’t implementing the sort properly, replaced
with the existing sort algorithm¶

	[schema] [bug] the “name” of a column-level CHECK constraint,
if present, is now rendered in the CREATE TABLE
statement using “CONSTRAINT <name> CHECK <expression>”.¶
References: #2305

	[schema] MetaData() accepts “schema” and “quote_schema”
arguments, which will be applied to the same-named
arguments of a Table
or Sequence which leaves these at their default
of None.¶

	[schema] Sequence accepts “quote_schema” argument¶

	[schema] tometadata() for Table will use the “schema”
of the incoming MetaData for the new Table
if the schema argument is explicitly “None”¶

	[schema] Added CreateSchema and DropSchema DDL
constructs - these accept just the string
name of a schema and a “quote” flag.¶

	[schema] When using default “schema” with MetaData,
ForeignKey will also assume the “default” schema
when locating remote table. This allows the “schema”
argument on MetaData to be applied to any
set of Table objects that otherwise don’t have
a “schema”.¶

	[schema] a “has_schema” method has been implemented
on dialect, but only works on Postgresql so far.
Courtesy Manlio Perillo.¶
References: #1679

postgresql

	[postgresql] [feature] Added create_type constructor argument
to pg.ENUM. When False, no CREATE/DROP or
checking for the type will be performed as part
of a table create/drop event; only the
create()/drop)() methods called directly
will do this. Helps with Alembic “offline”
scripts.¶

	[postgresql] [bug] Postgresql dialect memoizes that an ENUM of a
particular name was processed
during a create/drop sequence. This allows
a create/drop sequence to work without any
calls to “checkfirst”, and also means with
“checkfirst” turned on it only needs to
check for the ENUM once.¶
References: #2311

mysql

	[mysql] [bug] Unicode adjustments allow latest pymysql
(post 0.4) to pass 100% on Python 2.¶

mssql

	[mssql] [feature] lifted the restriction on SAVEPOINT
for SQL Server. All tests pass using it,
it’s not known if there are deeper issues
however.¶
References: #822

	[mssql] [bug] repaired the with_hint() feature which
wasn’t implemented correctly on MSSQL -
usually used for the “WITH (NOLOCK)” hint
(which you shouldn’t be using anyway !
use snapshot isolation instead :))¶
References: #2336

	[mssql] [bug] use new pyodbc version detection for
_need_decimal_fix option.¶
References: #2318

	[mssql] [bug] don’t cast “table name” as NVARCHAR
on SQL Server 2000. Still mostly in the dark
what incantations are needed to make PyODBC
work fully with FreeTDS 0.91 here, however.¶
References: #2343

	[mssql] [bug] Decode incoming values when retrieving
list of index names and the names of columns
within those indexes.¶
References: #2269

misc

	[feature] [ext] Added an example to the hybrid docs
of a “transformer” - a hybrid that returns a
query-transforming callable in combination
with a custom comparator. Uses a new method
on Query called with_transformation(). The use
case here is fairly experimental, but only
adds one line of code to Query.¶

	[bug] [pyodbc] pyodbc-based dialects now parse the
pyodbc accurately as far as observed
pyodbc strings, including such gems
as “py3-3.0.1-beta4”¶
References: #2318

	[bug] [ext] the @compiles decorator raises an
informative error message when no “default”
compilation handler is present, rather
than KeyError.¶

	[bug] [examples] Fixed bug in history_meta.py example where
the “unique” flag was not removed from a
single-table-inheritance subclass which
generates columns to put up onto the base.¶

0.7.3

Released: Sun Oct 16 2011
general

	[general] Adjusted the “importlater” mechanism, which is
used internally to resolve import cycles,
such that the usage of __import__ is completed
when the import of sqlalchemy or sqlalchemy.orm
is done, thereby avoiding any usage of __import__
after the application starts new threads,
fixes. Also in 0.6.9.¶
References: #2279

orm

	[orm] Improved query.join() such that the “left” side
can more flexibly be a non-ORM selectable,
such as a subquery. A selectable placed
in select_from() will now be used as the left
side, favored over implicit usage
of a mapped entity.
If the join still fails based on lack of
foreign keys, the error message includes
this detail. Thanks to brianrhude
on IRC for the test case.¶
References: #2298

	[orm] Added after_soft_rollback() Session event. This
event fires unconditionally whenever rollback()
is called, regardless of if an actual DBAPI
level rollback occurred. This event
is specifically designed to allow operations
with the Session to proceed after a rollback
when the Session.is_active is True.¶
References: #2241

	[orm] added “adapt_on_names” boolean flag to orm.aliased()
construct. Allows an aliased() construct
to link the ORM entity to a selectable that contains
aggregates or other derived forms of a particular
attribute, provided the name is the same as that
of the entity mapped column.¶

	[orm] Added new flag expire_on_flush=False to column_property(),
marks those properties that would otherwise be considered
to be “readonly”, i.e. derived from SQL expressions,
to retain their value after a flush has occurred, including
if the parent object itself was involved in an update.¶

	[orm] Enhanced the instrumentation in the ORM to support
Py3K’s new argument style of “required kw arguments”,
i.e. fn(a, b, *, c, d), fn(a, b, *args, c, d).
Argument signatures of mapped object’s __init__
method will be preserved, including required kw rules.¶
References: #2237

	[orm] Fixed bug in unit of work whereby detection of
“cycles” among classes in highly interlinked patterns
would not produce a deterministic
result; thereby sometimes missing some nodes that
should be considered cycles and causing further
issues down the road. Note this bug is in 0.6
also; not backported at the moment.¶
References: #2282

	[orm] Fixed a variety of synonym()-related regressions
from 0.6:

	making a synonym against a synonym now works.

	synonyms made against a relationship() can
be passed to query.join(), options sent
to query.options(), passed by name
to query.with_parent().

¶

	[orm] Fixed bug whereby mapper.order_by attribute would
be ignored in the “inner” query within a
subquery eager load. .
Also in 0.6.9.¶
References: #2287

	[orm] Identity map .discard() uses dict.pop(,None)
internally instead of “del” to avoid KeyError/warning
during a non-determinate gc teardown¶
References: #2267

	[orm] Fixed regression in new composite rewrite where
deferred=True option failed due to missing
import¶
References: #2253

	[orm] Reinstated “comparator_factory” argument to
composite(), removed when 0.7 was released.¶
References: #2248

	[orm] Fixed bug in query.join() which would occur
in a complex multiple-overlapping path scenario,
where the same table could be joined to
twice. Thanks much to Dave Vitek
for the excellent fix here.¶
References: #2247

	[orm] Query will convert an OFFSET of zero when
slicing into None, so that needless OFFSET
clauses are not invoked.¶

	[orm] Repaired edge case where mapper would fail
to fully update internal state when a relationship
on a new mapper would establish a backref on the
first mapper.¶

	[orm] Fixed bug whereby if __eq__() was
redefined, a relationship many-to-one lazyload
would hit the __eq__() and fail.
Does not apply to 0.6.9.¶
References: #2260

	[orm] Calling class_mapper() and passing in an object
that is not a “type” (i.e. a class that could
potentially be mapped) now raises an informative
ArgumentError, rather than UnmappedClassError.¶
References: #2196

	[orm] New event hook, MapperEvents.after_configured().
Called after a configure() step has completed and
mappers were in fact affected. Theoretically this
event is called once per application, unless new mappings
are constructed after existing ones have been used
already.¶

	[orm] When an open Session is garbage collected, the objects
within it which remain are considered detached again
when they are add()-ed to a new Session.
This is accomplished by an extra check that the previous
“session_key” doesn’t actually exist among the pool
of Sessions.¶
References: #2281

	[orm] New declarative features:

	__declare_last__() method, establishes an event
listener for the class method that will be called
when mappers are completed with the final “configure”
step.

	__abstract__ flag. The class will not be mapped
at all when this flag is present on the class.

	New helper classes ConcreteBase, AbstractConcreteBase.
Allow concrete mappings using declarative which automatically
set up the “polymorphic_union” when the “configure”
mapper step is invoked.

	The mapper itself has semi-private methods that allow
the “with_polymorphic” selectable to be assigned
to the mapper after it has already been configured.

¶
References: #2239

	[orm] Declarative will warn when a subclass’ base uses
@declared_attr for a regular column - this attribute
does not propagate to subclasses.¶
References: #2283

	[orm] The integer “id” used to link a mapped instance with
its owning Session is now generated by a sequence
generation function rather than id(Session), to
eliminate the possibility of recycled id() values
causing an incorrect result, no need to check that
object actually in the session.¶
References: #2280

	[orm] Behavioral improvement: empty
conjunctions such as and_() and or_() will be
flattened in the context of an enclosing conjunction,
i.e. and_(x, or_()) will produce ‘X’ and not ‘X AND
()’..¶
References: #2257

	[orm] Fixed bug regarding calculation of “from” list
for a select() element. The “from” calc is now
delayed, so that if the construct uses a Column
object that is not yet attached to a Table,
but is later associated with a Table, it generates
SQL using the table as a FROM. This change
impacted fairly deeply the mechanics of how
the FROM list as well as the “correlates” collection
is calculated, as some “clause adaption” schemes
(these are used very heavily in the ORM)
were relying upon the fact that the “froms”
collection would typically be cached before the
adaption completed. The rework allows it
such that the “froms” collection can be cleared
and re-generated at any time.¶
References: #2261

	[orm] Fixed bug whereby with_only_columns() method of
Select would fail if a selectable were passed.. Also in 0.6.9.¶
References: #2270

engine

	[engine] The recreate() method in all pool classes uses
self.__class__ to get at the type of pool
to produce, in the case of subclassing. Note
there’s no usual need to subclass pools.¶
References: #2254

	[engine] Improvement to multi-param statement logging,
long lists of bound parameter sets will be
compressed with an informative indicator
of the compression taking place. Exception
messages use the same improved formatting.¶
References: #2243

	[engine] Added optional “sa_pool_key” argument to
pool.manage(dbapi).connect() so that serialization
of args is not necessary.¶

	[engine] The entry point resolution supported by
create_engine() now supports resolution of
individual DBAPI drivers on top of a built-in
or entry point-resolved dialect, using the
standard ‘+’ notation - it’s converted to
a ‘.’ before being resolved as an entry
point.¶
References: #2286

	[engine] Added an exception catch + warning for the
“return unicode detection” step within connect,
allows databases that crash on NVARCHAR to
continue initializing, assuming no NVARCHAR
type implemented.¶
References: #2299

schema

	[schema] Modified Column.copy() to use _constructor(),
which defaults to self.__class__, in order to
create the new object. This allows easier support
of subclassing Column.¶
References: #2284

	[schema] Added a slightly nicer __repr__() to SchemaItem
classes. Note the repr here can’t fully support
the “repr is the constructor” idea since schema
items can be very deeply nested/cyclical, have
late initialization of some things, etc.¶
References: #2223

postgresql

	[postgresql] Added “postgresql_using” argument to Index(), produces
USING clause to specify index implementation for
PG. . Thanks to Ryan P. Kelly for
the patch.¶
References: #2290

	[postgresql] Added client_encoding parameter to create_engine()
when the postgresql+psycopg2 dialect is used;
calls the psycopg2 set_client_encoding() method
with the value upon connect.¶
References: #1839

	[postgresql] Fixed bug related to whereby the
same modified index behavior in PG 9 affected
primary key reflection on a renamed column.. Also in 0.6.9.¶
References: #2291, #2141

	[postgresql] Reflection functions for Table, Sequence no longer
case insensitive. Names can be differ only in case
and will be correctly distinguished.¶
References: #2256

	[postgresql] Use an atomic counter as the “random number”
source for server side cursor names;
conflicts have been reported in rare cases.¶

	[postgresql] Narrowed the assumption made when reflecting
a foreign-key referenced table with schema in
the current search path; an explicit schema will
be applied to the referenced table only if
it actually matches that of the referencing table,
which also has an explicit schema. Previously
it was assumed that “current” schema was synonymous
with the full search_path.¶
References: #2249

mysql

	[mysql] a CREATE TABLE will put the COLLATE option
after CHARSET, which appears to be part of
MySQL’s arbitrary rules regarding if it will actually
work or not. Also in 0.6.9.¶
References: #2225

	[mysql] Added mysql_length parameter to Index construct,
specifies “length” for indexes.¶
References: #2293

sqlite

	[sqlite] Ensured that the same ValueError is raised for
illegal date/time/datetime string parsed from
the database regardless of whether C
extensions are in use or not.¶

mssql

	[mssql] Changes to attempt support of FreeTDS 0.91 with
Pyodbc. This includes that string binds are sent as
Python unicode objects when FreeTDS 0.91 is detected,
and a CAST(? AS NVARCHAR) is used when we detect
for a table. However, I’d continue
to characterize Pyodbc + FreeTDS 0.91 behavior as
pretty crappy, there are still many queries such
as used in reflection which cause a core dump on
Linux, and it is not really usable at all
on OSX, MemoryErrors abound and just plain broken
unicode support.¶
References: #2273

	[mssql] The behavior of =/!= when comparing a scalar select
to a value will no longer produce IN/NOT IN as of 0.8;
this behavior is a little too heavy handed (use in_() if
you want to emit IN) and now emits a deprecation warning.
To get the 0.8 behavior immediately and remove the warning,
a compiler recipe is given at
http://www.sqlalchemy.org/docs/07/dialects/mssql.html#scalar-select-comparisons
to override the behavior of visit_binary().¶
References: #2277

	[mssql] “0” is accepted as an argument for limit() which
will produce “TOP 0”.¶
References: #2222

oracle

	[oracle] Fixed ReturningResultProxy for zxjdbc dialect.. Regression from 0.6.¶
References: #2272

	[oracle] The String type now generates VARCHAR2 on Oracle
which is recommended as the default VARCHAR.
Added an explicit VARCHAR2 and NVARCHAR2 to the Oracle
dialect as well. Using NVARCHAR still generates
“NVARCHAR2” - there is no “NVARCHAR” on Oracle -
this remains a slight breakage of the “uppercase types
always give exactly that” policy. VARCHAR still
generates “VARCHAR”, keeping with the policy. If
Oracle were to ever define “VARCHAR” as something
different as they claim (IMHO this will never happen),
the type would be available.¶
References: #2252

misc

	[types] Extra keyword arguments to the base Float
type beyond “precision” and “asdecimal” are ignored;
added a deprecation warning here and additional
docs, related to¶
References: #2258

	[ext] SQLSoup will not be included in version 0.8
of SQLAlchemy; while useful, we would like to
keep SQLAlchemy itself focused on one ORM
usage paradigm. SQLSoup will hopefully
soon be superseded by a third party
project.¶
References: #2262

	[ext] Added local_attr, remote_attr, attr accessors
to AssociationProxy, providing quick access
to the proxied attributes at the class
level.¶
References: #2236

	[ext] Changed the update() method on association proxy
dictionary to use a duck typing approach, i.e.
checks for “keys”, to discern between update({})
and update((a, b)). Previously, passing a
dictionary that had tuples as keys would be misinterpreted
as a sequence.¶
References: #2275

	[examples] Adjusted dictlike-polymorphic.py example
to apply the CAST such that it works on
PG, other databases.
Also in 0.6.9.¶
References: #2266

0.7.2

Released: Sun Jul 31 2011
orm

	[orm] Feature enhancement: joined and subquery
loading will now traverse already-present related
objects and collections in search of unpopulated
attributes throughout the scope of the eager load
being defined, so that the eager loading that is
specified via mappings or query options
unconditionally takes place for the full depth,
populating whatever is not already populated.
Previously, this traversal would stop if a related
object or collection were already present leading
to inconsistent behavior (though would save on
loads/cycles for an already-loaded graph). For a
subqueryload, this means that the additional
SELECT statements emitted by subqueryload will
invoke unconditionally, no matter how much of the
existing graph is already present (hence the
controversy). The previous behavior of “stopping”
is still in effect when a query is the result of
an attribute-initiated lazyload, as otherwise an
“N+1” style of collection iteration can become
needlessly expensive when the same related object
is encountered repeatedly. There’s also an
as-yet-not-public generative Query method
_with_invoke_all_eagers()
which selects old/new behavior¶
References: #2213

	[orm] A rework of “replacement traversal” within
the ORM as it alters selectables to be against
aliases of things (i.e. clause adaption) includes
a fix for multiply-nested any()/has() constructs
against a joined table structure.¶
References: #2195

	[orm] Fixed bug where query.join() + aliased=True
from a joined-inh structure to itself on
relationship() with join condition on the child
table would convert the lead entity into the
joined one inappropriately.
Also in 0.6.9.¶
References: #2234

	[orm] Fixed regression from 0.6 where Session.add()
against an object which contained None in a
collection would raise an internal exception.
Reverted this to 0.6’s behavior which is to
accept the None but obviously nothing is
persisted. Ideally, collections with None
present or on append() should at least emit a
warning, which is being considered for 0.8.¶
References: #2205

	[orm] Load of a deferred() attribute on an object
where row can’t be located raises
ObjectDeletedError instead of failing later
on; improved the message in ObjectDeletedError
to include other conditions besides a simple
“delete”.¶
References: #2191

	[orm] Fixed regression from 0.6 where a get history
operation on some relationship() based attributes
would fail when a lazyload would emit; this could
trigger within a flush() under certain conditions. Thanks to the user who submitted
the great test for this.¶
References: #2224

	[orm] Fixed bug apparent only in Python 3 whereby
sorting of persistent + pending objects during
flush would produce an illegal comparison,
if the persistent object primary key
is not a single integer.
Also in 0.6.9¶
References: #2228

	[orm] Fixed bug whereby the source clause
used by query.join() would be inconsistent
if against a column expression that combined
multiple entities together.
Also in 0.6.9¶
References: #2197

	[orm] Fixed bug whereby if a mapped class
redefined __hash__() or __eq__() to something
non-standard, which is a supported use case
as SQLA should never consult these,
the methods would be consulted if the class
was part of a “composite” (i.e. non-single-entity)
result set.
Also in 0.6.9.¶
References: #2215

	[orm] Added public attribute ”.validators” to
Mapper, an immutable dictionary view of
all attributes that have been decorated
with the @validates decorator. courtesy Stefano Fontanelli¶
References: #2240

	[orm] Fixed subtle bug that caused SQL to blow
up if: column_property() against subquery +
joinedload + LIMIT + order by the column
property() occurred. .
Also in 0.6.9¶
References: #2188

	[orm] The join condition produced by with_parent
as well as when using a “dynamic” relationship
against a parent will generate unique
bindparams, rather than incorrectly repeating
the same bindparam. .
Also in 0.6.9.¶
References: #2207

	[orm] Added the same “columns-only” check to
mapper.polymorphic_on as used when
receiving user arguments to
relationship.order_by, foreign_keys,
remote_side, etc.¶

	[orm] Fixed bug whereby comparison of column
expression to a Query() would not call
as_scalar() on the underlying SELECT
statement to produce a scalar subquery,
in the way that occurs if you called
it on Query().subquery().¶
References: #2190

	[orm] Fixed declarative bug where a class inheriting
from a superclass of the same name would fail
due to an unnecessary lookup of the name
in the _decl_class_registry.¶
References: #2194

	[orm] Repaired the “no statement condition”
assertion in Query which would attempt
to raise if a generative method were called
after from_statement() were called.. Also in 0.6.9.¶
References: #2199

engine

	[engine] Context manager provided by Connection.begin()
will issue rollback() if the commit() fails,
not just if an exception occurs.¶

	[engine] Use urllib.parse_qsl() in Python 2.6 and above,
no deprecation warning about cgi.parse_qsl()¶
References: #1682

	[engine] Added mixin class sqlalchemy.ext.DontWrapMixin.
User-defined exceptions of this type are never
wrapped in StatementException when they
occur in the context of a statement
execution.¶

	[engine] StatementException wrapping will display the
original exception class in the message.¶

	[engine] Failures on connect which raise dbapi.Error
will forward the error to dialect.is_disconnect()
and set the “connection_invalidated” flag if
the dialect knows this to be a potentially
“retryable” condition. Only Oracle ORA-01033
implemented for now.¶
References: #2201

sql

	[sql] Fixed two subtle bugs involving column
correspondence in a selectable,
one with the same labeled subquery repeated, the other
when the label has been “grouped” and
loses itself. Affects.¶
References: #2188

schema

	[schema] New feature: with_variant() method on
all types. Produces an instance of Variant(),
a special TypeDecorator which will select
the usage of a different type based on the
dialect in use.¶
References: #2187

	[schema] Added an informative error message when
ForeignKeyConstraint refers to a column name in
the parent that is not found. Also in 0.6.9.¶

	[schema] Fixed bug whereby adaptation of old append_ddl_listener()
function was passing unexpected **kw through
to the Table event. Table gets no kws, the MetaData
event in 0.6 would get “tables=somecollection”,
this behavior is preserved.¶
References: #2206

	[schema] Fixed bug where “autoincrement” detection on
Table would fail if the type had no “affinity”
value, in particular this would occur when using
the UUID example on the site that uses TypeEngine
as the “impl”.¶

	[schema] Added an improved repr() to TypeEngine objects
that will only display constructor args which
are positional or kwargs that deviate
from the default.¶
References: #2209

postgresql

	[postgresql] Added new “postgresql_ops” argument to
Index, allows specification of PostgreSQL
operator classes for indexed columns. Courtesy Filip Zyzniewski.¶
References: #2198

mysql

	[mysql] Fixed OurSQL dialect to use ansi-neutral
quote symbol “’” for XA commands instead
of ‘”’. . Also in 0.6.9.¶
References: #2186

sqlite

	[sqlite] SQLite dialect no longer strips quotes
off of reflected default value, allowing
a round trip CREATE TABLE to work.
This is consistent with other dialects
that also maintain the exact form of
the default.¶
References: #2189

mssql

	[mssql] Adjusted the pyodbc dialect such that bound
values are passed as bytes and not unicode
if the “Easysoft” unix drivers are detected.
This is the same behavior as occurs with
FreeTDS. Easysoft appears to segfault
if Python unicodes are passed under
certain circumstances.¶

oracle

	[oracle] Added ORA-00028 to disconnect codes, use
cx_oracle _Error.code to get at the code,. Also in 0.6.9.¶
References: #2200

	[oracle] Added ORA-01033 to disconnect codes, which
can be caught during a connection
event.¶
References: #2201

	[oracle] repaired the oracle.RAW type which did not
generate the correct DDL.
Also in 0.6.9.¶
References: #2220

	[oracle] added CURRENT to reserved word list. Also in 0.6.9.¶
References: #2212

	[oracle] Fixed bug in the mutable extension whereby
if the same type were used twice in one
mapping, the attributes beyond the first
would not get instrumented.¶

	[oracle] Fixed bug in the mutable extension whereby
if None or a non-corresponding type were set,
an error would be raised. None is now accepted
which assigns None to all attributes,
illegal values raise ValueError.¶

misc

	[examples] Repaired the examples/versioning test runner
to not rely upon SQLAlchemy test libs,
nosetests must be run from within
examples/versioning to get around setup.cfg
breaking it.¶

	[examples] Tweak to examples/versioning to pick the
correct foreign key in a multi-level
inheritance situation.¶

	[examples] Fixed the attribute shard example to check
for bind param callable correctly in 0.7
style.¶

0.7.1

Released: Sun Jun 05 2011
general

	[general] Added a workaround for Python bug 7511 where
failure of C extension build does not
raise an appropriate exception on Windows 64
bit + VC express¶
References: #2184

orm

	[orm] “delete-orphan” cascade is now allowed on
self-referential relationships - this since
SQLA 0.7 no longer enforces “parent with no
child” at the ORM level; this check is left
up to foreign key nullability.
Related to¶
References: #1912

	[orm] Repaired new “mutable” extension to propagate
events to subclasses correctly; don’t
create multiple event listeners for
subclasses either.¶
References: #2180

	[orm] Modify the text of the message which occurs
when the “identity” key isn’t detected on
flush, to include the common cause that
the Column isn’t set up to detect
auto-increment correctly;.
Also in 0.6.8.¶
References: #2170

	[orm] Fixed bug where transaction-level “deleted”
collection wouldn’t be cleared of expunged
states, raising an error if they later
became transient.
Also in 0.6.8.¶
References: #2182

engine

	[engine] Deprecate schema/SQL-oriented methods on
Connection/Engine that were never well known
and are redundant: reflecttable(), create(),
drop(), text(), engine.func¶

	[engine] Adjusted the __contains__() method of
a RowProxy result row such that no exception
throw is generated internally;
NoSuchColumnError() also will generate its
message regardless of whether or not the column
construct can be coerced to a string.. Also in 0.6.8.¶
References: #2178

sql

	[sql] Fixed bug whereby metadata.reflect(bind)
would close a Connection passed as a
bind argument. Regression from 0.6.¶

	[sql] Streamlined the process by which a Select
determines what’s in its ‘.c’ collection.
Behaves identically, except that a
raw ClauseList() passed to select([])
(which is not a documented case anyway) will
now be expanded into its individual column
elements instead of being ignored.¶

postgresql

	[postgresql] Some unit test fixes regarding numeric arrays,
MATCH operator. A potential floating-point
inaccuracy issue was fixed, and certain tests
of the MATCH operator only execute within an
EN-oriented locale for now. .
Also in 0.6.8.¶
References: #2175

mysql

	[mysql] Unit tests pass 100% on MySQL installed
on windows.¶

	[mysql] Removed the “adjust casing” step that would
fail when reflecting a table on MySQL
on windows with a mixed case name. After some
experimenting with a windows MySQL server, it’s
been determined that this step wasn’t really
helping the situation much; MySQL does not return
FK names with proper casing on non-windows
platforms either, and removing the step at
least allows the reflection to act more like
it does on other OSes. A warning here
has been considered but its difficult to
determine under what conditions such a warning
can be raised, so punted on that for now -
added some docs instead.¶
References: #2181

	[mysql] supports_sane_rowcount will be set to False
if using MySQLdb and the DBAPI doesn’t provide
the constants.CLIENT module.¶

sqlite

	[sqlite] Accept None from cursor.fetchone() when
“PRAGMA read_uncommitted” is called to determine
current isolation mode at connect time and
default to SERIALIZABLE; this to support SQLite
versions pre-3.3.0 that did not have this
feature.¶
References: #2173

0.7.0

Released: Fri May 20 2011
orm

	[orm] Fixed regression introduced in 0.7b4 (!) whereby
query.options(someoption(“nonexistent name”)) would
fail to raise an error. Also added additional
error catching for cases where the option would
try to build off a column-based element, further
fixed up some of the error messages tailored
in¶
References: #2069

	[orm] query.count() emits “count(*)” instead of
“count(1)”.¶
References: #2162

	[orm] Fine tuning of Query clause adaptation when
from_self(), union(), or other “select from
myself” operation, such that plain SQL expression
elements added to filter(), order_by() etc.
which are present in the nested “from myself”
query will be adapted in the same way an ORM
expression element will, since these
elements are otherwise not easily accessible.¶
References: #2155

	[orm] Fixed bug where determination of “self referential”
relationship would fail with no workaround
for joined-inh subclass related to itself,
or joined-inh subclass related to a subclass
of that with no cols in the sub-sub class
in the join condition.
Also in 0.6.8.¶
References: #2149

	[orm] mapper() will ignore non-configured foreign keys
to unrelated tables when determining inherit
condition between parent and child class,
but will raise as usual for unresolved
columns and table names regarding the inherited
table. This is an enhanced generalization of
behavior that was already applied to declarative
previously. 0.6.8 has a more
conservative version of this which doesn’t
fundamentally alter how join conditions
are determined.¶
References: #2153

	[orm] It is an error to call query.get() when the
given entity is not a single, full class
entity or mapper (i.e. a column). This is
a deprecation warning in 0.6.8.¶
References: #2144

	[orm] Fixed a potential KeyError which under some
circumstances could occur with the identity
map, part of¶
References: #2148

	[orm] added Query.with_session() method, switches
Query to use a different session.¶

	[orm] horizontal shard query should use execution
options per connection as per¶
References: #2131

	[orm] a non_primary mapper will inherit the _identity_class
of the primary mapper. This so that a non_primary
established against a class that’s normally in an
inheritance mapping will produce results that are
identity-map compatible with that of the primary
mapper (also in 0.6.8)¶
References: #2151

	[orm] Fixed the error message emitted for “can’t
execute syncrule for destination column ‘q’;
mapper ‘X’ does not map this column” to
reference the correct mapper. .
Also in 0.6.8.¶
References: #2163

	[orm] polymorphic_union() gets a “cast_nulls” option,
disables the usage of CAST when it renders
the labeled NULL columns.¶
References: #1502

	[orm] polymorphic_union() renders the columns in their
original table order, as according to the first
table/selectable in the list of polymorphic
unions in which they appear. (which is itself
an unordered mapping unless you pass an OrderedDict).¶

	[orm] Fixed bug whereby mapper mapped to an anonymous
alias would fail if logging were used, due to
unescaped % sign in the alias name.
Also in 0.6.8.¶
References: #2171

sql

	[sql] Fixed bug whereby nesting a label of a select()
with another label in it would produce incorrect
exported columns. Among other things this would
break an ORM column_property() mapping against
another column_property(). .
Also in 0.6.8¶
References: #2167

	[sql] Changed the handling in determination of join
conditions such that foreign key errors are
only considered between the two given tables.
That is, t1.join(t2) will report FK errors
that involve ‘t1’ or ‘t2’, but anything
involving ‘t3’ will be skipped. This affects
join(), as well as ORM relationship and
inherit condition logic.¶

	[sql] Some improvements to error handling inside
of the execute procedure to ensure auto-close
connections are really closed when very
unusual DBAPI errors occur.¶

	[sql] metadata.reflect() and reflection.Inspector()
had some reliance on GC to close connections
which were internally procured, fixed this.¶

	[sql] Added explicit check for when Column .name
is assigned as blank string¶
References: #2140

	[sql] Fixed bug whereby if FetchedValue was passed
to column server_onupdate, it would not
have its parent “column” assigned, added
test coverage for all column default assignment
patterns. also in 0.6.8¶
References: #2147

postgresql

	[postgresql] Fixed the psycopg2_version parsing in the
psycopg2 dialect.¶

	[postgresql] Fixed bug affecting PG 9 whereby index reflection
would fail if against a column whose name
had changed. . Also in 0.6.8.¶
References: #2141

mssql

	[mssql] Fixed bug in MSSQL dialect whereby the aliasing
applied to a schema-qualified table would leak
into enclosing select statements.
Also in 0.6.8.¶
References: #2169

misc

	This section documents those changes from 0.7b4
to 0.7.0. For an overview of what’s new in
SQLAlchemy 0.7, see
http://docs.sqlalchemy.org/en/latest/changelog/migration_07.html¶

	[documentation] Removed the usage of the “collections.MutableMapping”
abc from the ext.mutable docs as it was being used
incorrectly and makes the example more difficult
to understand in any case.¶
References: #2152

	[examples] removed the ancient “polymorphic association”
examples and replaced with an updated set of
examples that use declarative mixins,
“generic_associations”. Each presents an alternative
table layout.¶

	[ext] Fixed bugs in sqlalchemy.ext.mutable extension where
None was not appropriately handled, replacement
events were not appropriately handled.¶
References: #2143

0.7.0b4

Released: Sun Apr 17 2011
general

	[general] Changes to the format of CHANGES, this file.
The format changes have been applied to
the 0.7 releases.¶

	[general] The “-declarative” changes will now be listed
directly under the “-orm” section, as these
are closely related.¶

	[general] The 0.5 series changes have been moved to
the file CHANGES_PRE_06 which replaces
CHANGES_PRE_05.¶

	[general] The changelog for 0.6.7 and subsequent within
the 0.6 series is now listed only in the
CHANGES file within the 0.6 branch.
In the 0.7 CHANGES file (i.e. this file), all the
0.6 changes are listed inline within the 0.7
section in which they were also applied
(since all 0.6 changes are in 0.7 as well).
Changes that apply to an 0.6 version here
are noted as are if any differences in
implementation/behavior are present.¶

orm

	[orm] Some fixes to “evaluate” and “fetch” evaluation
when query.update(), query.delete() are called.
The retrieval of records is done after autoflush
in all cases, and before update/delete is
emitted, guarding against unflushed data present
as well as expired objects failing during
the evaluation.¶
References: #2122

	[orm] Reworded the exception raised when a flush
is attempted of a subclass that is not polymorphic
against the supertype.¶
References: #2063

	[orm] Still more wording adjustments when a query option
can’t find the target entity. Explain that the
path must be from one of the root entities.¶

	[orm] Some fixes to the state handling regarding
backrefs, typically when autoflush=False, where
the back-referenced collection wouldn’t
properly handle add/removes with no net
change. Thanks to Richard Murri for the
test case + patch.
(also in 0.6.7).¶
References: #2123

	[orm] Added checks inside the UOW to detect the unusual
condition of being asked to UPDATE or DELETE
on a primary key value that contains NULL
in it.¶
References: #2127

	[orm] Some refinements to attribute history. More
changes are pending possibly in 0.8, but
for now history has been modified such that
scalar history doesn’t have a “side effect”
of populating None for a non-present value.
This allows a slightly better ability to
distinguish between a None set and no actual
change, affects as well.¶
References: #2127

	[orm] a “having” clause would be copied from the
inside to the outside query if from_self()
were used; in particular this would break
an 0.7 style count() query.
(also in 0.6.7)¶
References: #2130

	[orm] the Query.execution_options() method now passes
those options to the Connection rather than
the SELECT statement, so that all available
options including isolation level and
compiled cache may be used.¶
References: #2131

engine

	[engine] The C extension is now enabled by default on CPython
2.x with a fallback to pure python if it fails to
compile.¶
References: #2129

sql

	[sql] The “compiled_cache” execution option now raises
an error when passed to a SELECT statement
rather than a Connection. Previously it was
being ignored entirely. We may look into
having this option work on a per-statement
level at some point.¶
References: #2131

	[sql] Restored the “catchall” constructor on the base
TypeEngine class, with a deprecation warning.
This so that code which does something like
Integer(11) still succeeds.¶

	[sql] Fixed regression whereby MetaData() coming
back from unpickling did not keep track of
new things it keeps track of now, i.e.
collection of Sequence objects, list
of schema names.¶
References: #2104

	[sql] The limit/offset keywords to select() as well
as the value passed to select.limit()/offset()
will be coerced to integer.
(also in 0.6.7)¶
References: #2116

	[sql] fixed bug where “from” clause gathering from an
over() clause would be an itertools.chain() and
not a list, causing “can only concatenate list”
TypeError when combined with other clauses.¶

	[sql] Fixed incorrect usage of ”,” in over() clause
being placed between the “partition” and “order by”
clauses.¶
References: #2134

	[sql] Before/after attach events for PrimaryKeyConstraint
now function, tests added for before/after events
on all constraint types.¶
References: #2105

	[sql] Added explicit true()/false() constructs to expression
lib - coercion rules will intercept “False”/”True”
into these constructs. In 0.6, the constructs were
typically converted straight to string, which was
no longer accepted in 0.7.¶
References: #2117

schema

	[schema] The ‘useexisting’ flag on Table has been superseded
by a new pair of flags ‘keep_existing’ and
‘extend_existing’. ‘extend_existing’ is equivalent
to ‘useexisting’ - the existing Table is returned,
and additional constructor elements are added.
With ‘keep_existing’, the existing Table is returned,
but additional constructor elements are not added -
these elements are only applied when the Table
is newly created.¶
References: #2109

postgresql

	[postgresql] Psycopg2 for Python 3 is now supported.¶

	[postgresql] Fixed support for precision numerics when using
pg8000.¶
References: #2132

sqlite

	[sqlite] Fixed bug where reflection of foreign key
created as “REFERENCES <tablename>” without
col name would fail.
(also in 0.6.7)¶
References: #2115

oracle

	[oracle] Using column names that would require quotes
for the column itself or for a name-generated
bind parameter, such as names with special
characters, underscores, non-ascii characters,
now properly translate bind parameter keys when
talking to cx_oracle. (Also
in 0.6.7)¶
References: #2100

	[oracle] Oracle dialect adds use_binds_for_limits=False
create_engine() flag, will render the LIMIT/OFFSET
values inline instead of as binds, reported to
modify the execution plan used by Oracle. (Also in 0.6.7)¶
References: #2116

misc

	[types] REAL has been added to the core types. Supported
by Postgresql, SQL Server, MySQL, SQLite. Note
that the SQL Server and MySQL versions, which
add extra arguments, are also still available
from those dialects.¶
References: #2081

	[types] Added @event.listens_for() decorator, given
target + event name, applies the decorated
function as a listener.¶
References: #2106

	[pool] AssertionPool now stores the traceback indicating
where the currently checked out connection was
acquired; this traceback is reported within
the assertion raised upon a second concurrent
checkout; courtesy Gunnlaugur Briem¶
References: #2103

	[pool] The “pool.manage” feature doesn’t use pickle
anymore to hash the arguments for each pool.¶

	[documentation] Documented SQLite DATE/TIME/DATETIME types. (also in 0.6.7)¶
References: #2029

	[documentation] Fixed mutable extension docs to show the
correct type-association methods.¶
References: #2118

0.7.0b3

Released: Sun Mar 20 2011
general

	[general] Lots of fixes to unit tests when run under Pypy
(courtesy Alex Gaynor).¶

orm

	[orm] Changed the underlying approach to query.count().
query.count() is now in all cases exactly:

	query.

	from_self(func.count(literal_column(‘1’))).
scalar()

That is, “select count(1) from (<full query>)”.
This produces a subquery in all cases, but
vastly simplifies all the guessing count()
tried to do previously, which would still
fail in many scenarios particularly when
joined table inheritance and other joins
were involved. If the subquery produced
for an otherwise very simple count is really
an issue, use query(func.count()) as an
optimization.

¶References: #2093

	[orm] some changes to the identity map regarding
rare weakref callbacks during iterations.
The mutex has been removed as it apparently
can cause a reentrant (i.e. in one thread) deadlock,
perhaps when gc collects objects at the point of
iteration in order to gain more memory. It is hoped
that “dictionary changed during iteration” will
be exceedingly rare as iteration methods internally
acquire the full list of objects in a single values()
call. Note 0.6.7 has a more conservative fix here
which still keeps the mutex in place.¶
References: #2087

	[orm] A tweak to the unit of work causes it to order
the flush along relationship() dependencies even if
the given objects don’t have any inter-attribute
references in memory, which was the behavior in
0.5 and earlier, so a flush of Parent/Child with
only foreign key/primary key set will succeed.
This while still maintaining 0.6 and above’s not
generating a ton of useless internal dependency
structures within the flush that don’t correspond
to state actually within the current flush.¶
References: #2082

	[orm] Improvements to the error messages emitted when
querying against column-only entities in conjunction
with (typically incorrectly) using loader options,
where the parent entity is not fully present.¶
References: #2069

	[orm] Fixed bug in query.options() whereby a path
applied to a lazyload using string keys could
overlap a same named attribute on the wrong
entity. Note 0.6.7 has a more conservative fix
to this.¶
References: #2098

engine

	[engine] Fixed AssertionPool regression bug.¶
References: #2097

	[engine] Changed exception raised to ArgumentError when an
invalid dialect is specified.¶
References: #2060

sql

	[sql] Added a fully descriptive error message for the
case where Column is subclassed and _make_proxy()
fails to make a copy due to TypeError on the
constructor. The method _constructor should
be implemented in this case.¶

	[sql] Added new event “column_reflect” for Table objects.
Receives the info dictionary about a Column before
the object is generated within reflection, and allows
modification to the dictionary for control over
most aspects of the resulting Column including
key, name, type, info dictionary.¶
References: #2095

	[sql] To help with the “column_reflect” event being used
with specific Table objects instead of all instances
of Table, listeners can be added to a Table object
inline with its construction using a new argument
“listeners”, a list of tuples of the form
(<eventname>, <fn>), which are applied to the Table
before the reflection process begins.¶

	[sql] Added new generic function “next_value()”, accepts
a Sequence object as its argument and renders the
appropriate “next value” generation string on the
target platform, if supported. Also provides
”.next_value()” method on Sequence itself.¶
References: #2085

	[sql] func.next_value() or other SQL expression can
be embedded directly into an insert() construct,
and if implicit or explicit “returning” is used
in conjunction with a primary key column,
the newly generated value will be present in
result.inserted_primary_key.¶
References: #2084

	[sql] Added accessors to ResultProxy “returns_rows”,
“is_insert” (also in 0.6.7)¶
References: #2089

postgresql

	[postgresql] Added RESERVED_WORDS for postgresql dialect.
(also in 0.6.7)¶
References: #2092

	[postgresql] Fixed the BIT type to allow a “length” parameter, “varying”
parameter. Reflection also fixed.
(also in 0.6.7)¶
References: #2073

mssql

	[mssql] Rewrote the query used to get the definition of a view,
typically when using the Inspector interface, to
use sys.sql_modules instead of the information schema,
thereby allowing views definitions longer than 4000
characters to be fully returned.
(also in 0.6.7)¶
References: #2071

firebird

	[firebird] The “implicit_returning” flag on create_engine() is
honored if set to False. (also in 0.6.7)¶
References: #2083

misc

	[declarative] Arguments in __mapper_args__ that aren’t “hashable”
aren’t mistaken for always-hashable, possibly-column
arguments. (also in 0.6.7)¶
References: #2091

	[informix] Added RESERVED_WORDS informix dialect.
(also in 0.6.7)¶
References: #2092

	[ext] The horizontal_shard ShardedSession class accepts the common
Session argument “query_cls” as a constructor argument,
to enable further subclassing of ShardedQuery. (also in 0.6.7)¶
References: #2090

	[examples] Updated the association, association proxy examples
to use declarative, added a new example
dict_of_sets_with_default.py, a “pushing the envelope”
example of association proxy.¶

	[examples] The Beaker caching example allows a “query_cls” argument
to the query_callable() function.
(also in 0.6.7)¶
References: #2090

0.7.0b2

Released: Sat Feb 19 2011
orm

	[orm] Fixed bug whereby Session.merge() would call the
load() event with one too few arguments.¶
References: #2053

	[orm] Added logic which prevents the generation of
events from a MapperExtension or SessionExtension
from generating do-nothing events for all the methods
not overridden.¶
References: #2052

sql

	[sql] Renamed the EngineEvents event class to
ConnectionEvents. As these classes are never
accessed directly by end-user code, this strictly
is a documentation change for end users. Also
simplified how events get linked to engines
and connections internally.¶
References: #2059

	[sql] The Sequence() construct, when passed a MetaData()
object via its ‘metadata’ argument, will be
included in CREATE/DROP statements within
metadata.create_all() and metadata.drop_all(),
including “checkfirst” logic.¶
References: #2055

	[sql] The Column.references() method now returns True
if it has a foreign key referencing the
given column exactly, not just its parent
table.¶
References: #2064

postgresql

	[postgresql] Fixed regression from 0.6 where SMALLINT and
BIGINT types would both generate SERIAL
on an integer PK column, instead of
SMALLINT and BIGSERIAL¶
References: #2065

misc

	[declarative] Fixed regression whereby composite() with
Column objects placed inline would fail
to initialize. The Column objects can now
be inline with the composite() or external
and pulled in via name or object ref.¶
References: #2058

	[declarative] Fix error message referencing old @classproperty
name to reference @declared_attr
(also in 0.6.7)¶
References: #2061

	[declarative] the dictionary at the end of the __table_args__
tuple is now optional.¶
References: #1468

	[ext] Association proxy now has correct behavior for
any(), has(), and contains() when proxying
a many-to-one scalar attribute to a one-to-many
collection (i.e. the reverse of the ‘typical’
association proxy use case)¶
References: #2054

	[examples] Beaker example now takes into account ‘limit’
and ‘offset’, bind params within embedded
FROM clauses (like when you use union() or
from_self()) when generating a cache key.¶

0.7.0b1

Released: Sat Feb 12 2011
general

	[general] New event system, supersedes all extensions, listeners,
etc.¶
References: #1902

	[general] Logging enhancements¶
References: #1926

	[general] Setup no longer installs a Nose plugin¶
References: #1949

	[general] The “sqlalchemy.exceptions” alias in sys.modules
has been removed. Base SQLA exceptions are
available via “from sqlalchemy import exc”.
The “exceptions” alias for “exc” remains in
“sqlalchemy” for now, it’s just not patched into
sys.modules.¶

orm

	[orm] More succinct form of query.join(target, onclause)¶
References: #1923

	[orm] Hybrid Attributes, implements/supersedes synonym()¶
References: #1903

	[orm] Rewrite of composites¶
References: #2008

	[orm] Mutation Event Extension, supersedes “mutable=True”

See also

Mutation event extension, supersedes “mutable=True”

¶

	[orm] PickleType and ARRAY mutability turned off by default¶
References: #1980

	[orm] Simplified polymorphic_on assignment¶
References: #1895

	[orm] Flushing of Orphans that have no parent is allowed¶
References: #1912

	[orm] Adjusted flush accounting step to occur before
the commit in the case of autocommit=True. This allows
autocommit=True to work appropriately with
expire_on_commit=True, and also allows post-flush session
hooks to operate in the same transactional context
as when autocommit=False.¶
References: #2041

	[orm] Warnings generated when collection members, scalar referents
not part of the flush¶
References: #1973

	[orm] Non-Table-derived constructs can be mapped¶
References: #1876

	[orm] Tuple label names in Query Improved¶
References: #1942

	[orm] Mapped column attributes reference the most specific
column first¶
References: #1892

	[orm] Mapping to joins with two or more same-named columns
requires explicit declaration¶
References: #1896

	[orm] Mapper requires that polymorphic_on column be present
in the mapped selectable¶
References: #1875

	[orm] compile_mappers() renamed configure_mappers(), simplified
configuration internals¶
References: #1966

	[orm] the aliased() function, if passed a SQL FromClause element
(i.e. not a mapped class), will return element.alias()
instead of raising an error on AliasedClass.¶
References: #2018

	[orm] Session.merge() will check the version id of the incoming
state against that of the database, assuming the mapping
uses version ids and incoming state has a version_id
assigned, and raise StaleDataError if they don’t
match.¶
References: #2027

	[orm] Session.connection(), Session.execute() accept ‘bind’,
to allow execute/connection operations to participate
in the open transaction of an engine explicitly.¶
References: #1996

	[orm] Query.join(), Query.outerjoin(), eagerload(),
eagerload_all(), others no longer allow lists
of attributes as arguments (i.e. option([x, y, z])
form, deprecated since 0.5)¶

	[orm] ScopedSession.mapper is removed (deprecated since 0.5).¶

	[orm] Horizontal shard query places ‘shard_id’ in
context.attributes where it’s accessible by the
“load()” event.¶
References: #2031

	[orm] A single contains_eager() call across
multiple entities will indicate all collections
along that path should load, instead of requiring
distinct contains_eager() calls for each endpoint
(which was never correctly documented).¶
References: #2032

	[orm] The “name” field used in orm.aliased() now renders
in the resulting SQL statement.¶

	[orm] Session weak_instance_dict=False is deprecated.¶
References: #1473

	[orm] An exception is raised in the unusual case that an
append or similar event on a collection occurs after
the parent object has been dereferenced, which
prevents the parent from being marked as “dirty”
in the session. Was a warning in 0.6.6.¶
References: #2046

	[orm] Query.distinct() now accepts column expressions
as *args, interpreted by the Postgresql dialect
as DISTINCT ON (<expr>).¶
References: #1069

	[orm] Additional tuning to “many-to-one” relationship
loads during a flush(). A change in version 0.6.6
([ticket:2002]) required that more “unnecessary” m2o
loads during a flush could occur. Extra loading modes have
been added so that the SQL emitted in this
specific use case is trimmed back, while still
retrieving the information the flush needs in order
to not miss anything.¶
References: #2049

	[orm] the value of “passive” as passed to
attributes.get_history() should be one of the
constants defined in the attributes package. Sending
True or False is deprecated.¶

	[orm] Added a name argument to Query.subquery(), to allow
a fixed name to be assigned to the alias object. (also in 0.6.7)¶
References: #2030

	[orm] A warning is emitted when a joined-table inheriting mapper
has no primary keys on the locally mapped table
(but has pks on the superclass table).
(also in 0.6.7)¶
References: #2019

	[orm] Fixed bug where “middle” class in a polymorphic hierarchy
would have no ‘polymorphic_on’ column if it didn’t also
specify a ‘polymorphic_identity’, leading to strange
errors upon refresh, wrong class loaded when querying
from that target. Also emits the correct WHERE criterion
when using single table inheritance.
(also in 0.6.7)¶
References: #2038

	[orm] Fixed bug where a column with a SQL or server side default
that was excluded from a mapping with include_properties
or exclude_properties would result in UnmappedColumnError. (also in 0.6.7)¶
References: #1995

	[orm] A warning is emitted in the unusual case that an
append or similar event on a collection occurs after
the parent object has been dereferenced, which
prevents the parent from being marked as “dirty”
in the session. This will be an exception in 0.7. (also in 0.6.7)¶
References: #2046

sql

	[sql] Added over() function, method to FunctionElement
classes, produces the _Over() construct which
in turn generates “window functions”, i.e.
“<window function> OVER (PARTITION BY <partition by>,
ORDER BY <order by>)”.¶
References: #1844

	[sql] LIMIT/OFFSET clauses now use bind parameters¶
References: #805

	[sql] select.distinct() now accepts column expressions
as *args, interpreted by the Postgresql dialect
as DISTINCT ON (<expr>). Note this was already
available via passing a list to the distinct
keyword argument to select().¶
References: #1069

	[sql] select.prefix_with() accepts multiple expressions
(i.e. *expr), ‘prefix’ keyword argument to select()
accepts a list or tuple.¶

	[sql] Passing a string to the distinct keyword argument
of select() for the purpose of emitting special
MySQL keywords (DISTINCTROW etc.) is deprecated -
use prefix_with() for this.¶

	[sql] TypeDecorator works with primary key columns¶
References: #2006, #2005

	[sql] DDL() constructs now escape percent signs¶
References: #1897

	[sql] Table.c / MetaData.tables refined a bit, don’t allow direct
mutation¶
References: #1917, #1893

	[sql] Callables passed to bindparam() don’t get evaluated¶
References: #1950

	[sql] types.type_map is now private, types._type_map¶
References: #1870

	[sql] Non-public Pool methods underscored¶
References: #1982

	[sql] Added NULLS FIRST and NULLS LAST support. It’s implemented
as an extension to the asc() and desc() operators, called
nullsfirst() and nullslast().¶
References: #723

	[sql] The Index() construct can be created inline with a Table
definition, using strings as column names, as an alternative
to the creation of the index outside of the Table.¶

	[sql] execution_options() on Connection accepts
“isolation_level” argument, sets transaction isolation
level for that connection only until returned to the
connection pool, for those backends which support it
(SQLite, Postgresql)¶
References: #2001

	[sql] A TypeDecorator of Integer can be used with a primary key
column, and the “autoincrement” feature of various dialects
as well as the “sqlite_autoincrement” flag will honor
the underlying database type as being Integer-based.¶
References: #2005

	[sql] Established consistency when server_default is present
on an Integer PK column. SQLA doesn’t pre-fetch these,
nor do they come back in cursor.lastrowid (DBAPI).
Ensured all backends consistently return None
in result.inserted_primary_key for these. Regarding
reflection for this case, reflection of an int PK col
with a server_default sets the “autoincrement” flag to False,
except in the case of a PG SERIAL col where we detected a
sequence default.¶
References: #2020, #2021

	[sql] Result-row processors are applied to pre-executed SQL
defaults, as well as cursor.lastrowid, when determining
the contents of result.inserted_primary_key.¶
References: #2006

	[sql] Bind parameters present in the “columns clause” of a select
are now auto-labeled like other “anonymous” clauses,
which among other things allows their “type” to be meaningful
when the row is fetched, as in result row processors.¶

	[sql] TypeDecorator is present in the “sqlalchemy” import space.¶

	[sql] Non-DBAPI errors which occur in the scope of an execute()
call are now wrapped in sqlalchemy.exc.StatementError,
and the text of the SQL statement and repr() of params
is included. This makes it easier to identify statement
executions which fail before the DBAPI becomes
involved.¶
References: #2015

	[sql] The concept of associating a ”.bind” directly with a
ClauseElement has been explicitly moved to Executable,
i.e. the mixin that describes ClauseElements which represent
engine-executable constructs. This change is an improvement
to internal organization and is unlikely to affect any
real-world usage.¶
References: #2048

	[sql] Column.copy(), as used in table.tometadata(), copies the
‘doc’ attribute. (also in 0.6.7)¶
References: #2028

	[sql] Added some defs to the resultproxy.c extension so that
the extension compiles and runs on Python 2.4. (also in 0.6.7)¶
References: #2023

	[sql] The compiler extension now supports overriding the default
compilation of expression._BindParamClause including that
the auto-generated binds within the VALUES/SET clause
of an insert()/update() statement will also use the new
compilation rules. (also in 0.6.7)¶
References: #2042

	[sql] SQLite dialect now uses NullPool for file-based databases¶
References: #1921

	[sql] The path given as the location of a sqlite database is now
normalized via os.path.abspath(), so that directory changes
within the process don’t affect the ultimate location
of a relative file path.¶
References: #2036

postgresql

	[postgresql] When explicit sequence execution derives the name
of the auto-generated sequence of a SERIAL column,
which currently only occurs if implicit_returning=False,
now accommodates if the table + column name is greater
than 63 characters using the same logic Postgresql uses. (also in 0.6.7)¶
References: #1083

	[postgresql] Added an additional libpq message to the list of “disconnect”
exceptions, “could not receive data from server” (also in 0.6.7)¶
References: #2044

mysql

	[mysql] New DBAPI support for pymysql, a pure Python port
of MySQL-python.¶
References: #1991

	[mysql] oursql dialect accepts the same “ssl” arguments in
create_engine() as that of MySQLdb.
(also in 0.6.7)¶
References: #2047

mssql

	[mssql] the String/Unicode types, and their counterparts VARCHAR/
NVARCHAR, emit “max” as the length when no length is
specified, so that the default length, normally ‘1’
as per SQL server documentation, is instead
‘unbounded’. This also occurs for the VARBINARY type..
This behavior makes these types more closely compatible
with Postgresql’s VARCHAR type which is similarly unbounded
when no length is specified.

¶References: #1833

firebird

	[firebird] Some adjustments so that Interbase is supported as well.
FB/Interbase version idents are parsed into a structure
such as (8, 1, 1, ‘interbase’) or (2, 1, 588, ‘firebird’)
so they can be distinguished.¶
References: #1885

misc

	Detailed descriptions of each change below are
described at:
http://docs.sqlalchemy.org/en/latest/changelog/migration_07.html¶

	[declarative] Added an explicit check for the case that the name
‘metadata’ is used for a column attribute on a
declarative class. (also in 0.6.7)¶
References: #2050

0.6 Changelog

0.6.9

Released: Sat May 05 2012
general

	[general] Adjusted the “importlater” mechanism, which is
used internally to resolve import cycles,
such that the usage of __import__ is completed
when the import of sqlalchemy or sqlalchemy.orm
is done, thereby avoiding any usage of __import__
after the application starts new threads,
fixes.¶
References: #2279

orm

	[orm] [bug] fixed inappropriate evaluation of user-mapped
object in a boolean context within query.get().¶
References: #2310

	[orm] [bug] Fixed the error formatting raised when
a tuple is inadvertently passed to session.query().¶
References: #2297

	[orm] Fixed bug whereby the source clause
used by query.join() would be inconsistent
if against a column expression that combined
multiple entities together.¶
References: #2197

	[orm] Fixed bug apparent only in Python 3 whereby
sorting of persistent + pending objects during
flush would produce an illegal comparison,
if the persistent object primary key
is not a single integer.¶
References: #2228

	[orm] Fixed bug where query.join() + aliased=True
from a joined-inh structure to itself on
relationship() with join condition on the child
table would convert the lead entity into the
joined one inappropriately.¶
References: #2234

	[orm] Fixed bug whereby mapper.order_by attribute would
be ignored in the “inner” query within a
subquery eager load. .¶
References: #2287

	[orm] Fixed bug whereby if a mapped class
redefined __hash__() or __eq__() to something
non-standard, which is a supported use case
as SQLA should never consult these,
the methods would be consulted if the class
was part of a “composite” (i.e. non-single-entity)
result set.¶
References: #2215

	[orm] Fixed subtle bug that caused SQL to blow
up if: column_property() against subquery +
joinedload + LIMIT + order by the column
property() occurred. .¶
References: #2188

	[orm] The join condition produced by with_parent
as well as when using a “dynamic” relationship
against a parent will generate unique
bindparams, rather than incorrectly repeating
the same bindparam. .¶
References: #2207

	[orm] Repaired the “no statement condition”
assertion in Query which would attempt
to raise if a generative method were called
after from_statement() were called..¶
References: #2199

	[orm] Cls.column.collate(“some collation”) now
works.¶
References: #1776

engine

	[engine] Backported the fix for introduced
in 0.7.4, which ensures that the connection
is in a valid state before attempting to call
rollback()/prepare()/release() on savepoint
and two-phase transactions.¶
References: #2317

sql

	[sql] Fixed two subtle bugs involving column
correspondence in a selectable,
one with the same labeled subquery repeated, the other
when the label has been “grouped” and
loses itself. Affects.¶
References: #2188

	[sql] Fixed bug whereby “warn on unicode” flag
would get set for the String type
when used with certain dialects. This
bug is not in 0.7.¶

	[sql] Fixed bug whereby with_only_columns() method of
Select would fail if a selectable were passed.. However, the FROM behavior is
still incorrect here, so you need 0.7 in
any case for this use case to be usable.¶
References: #2270

schema

	[schema] Added an informative error message when
ForeignKeyConstraint refers to a column name in
the parent that is not found.¶

postgresql

	[postgresql] Fixed bug related to whereby the
same modified index behavior in PG 9 affected
primary key reflection on a renamed column..¶
References: #2291, #2141

mysql

	[mysql] Fixed OurSQL dialect to use ansi-neutral
quote symbol “’” for XA commands instead
of ‘”’. .¶
References: #2186

	[mysql] a CREATE TABLE will put the COLLATE option
after CHARSET, which appears to be part of
MySQL’s arbitrary rules regarding if it will actually
work or not.¶
References: #2225

mssql

	[mssql] [bug] Decode incoming values when retrieving
list of index names and the names of columns
within those indexes.¶
References: #2269

oracle

	[oracle] Added ORA-00028 to disconnect codes, use
cx_oracle _Error.code to get at the code,.¶
References: #2200

	[oracle] repaired the oracle.RAW type which did not
generate the correct DDL.¶
References: #2220

	[oracle] added CURRENT to reserved word list.¶
References: #2212

misc

	[examples] Adjusted dictlike-polymorphic.py example
to apply the CAST such that it works on
PG, other databases.¶
References: #2266

0.6.8

Released: Sun Jun 05 2011
orm

	[orm] Calling query.get() against a column-based entity is
invalid, this condition now raises a deprecation warning.¶
References: #2144

	[orm] a non_primary mapper will inherit the _identity_class
of the primary mapper. This so that a non_primary
established against a class that’s normally in an
inheritance mapping will produce results that are
identity-map compatible with that of the primary
mapper¶
References: #2151

	[orm] Backported 0.7’s identity map implementation, which
does not use a mutex around removal. This as some users
were still getting deadlocks despite the adjustments
in 0.6.7; the 0.7 approach that doesn’t use a mutex
does not appear to produce “dictionary changed size”
issues, the original rationale for the mutex.¶
References: #2148

	[orm] Fixed the error message emitted for “can’t
execute syncrule for destination column ‘q’;
mapper ‘X’ does not map this column” to
reference the correct mapper. .¶
References: #2163

	[orm] Fixed bug where determination of “self referential”
relationship would fail with no workaround
for joined-inh subclass related to itself,
or joined-inh subclass related to a subclass
of that with no cols in the sub-sub class
in the join condition.¶
References: #2149

	[orm] mapper() will ignore non-configured foreign keys
to unrelated tables when determining inherit
condition between parent and child class.
This is equivalent to behavior already
applied to declarative. Note that 0.7 has a
more comprehensive solution to this, altering
how join() itself determines an FK error.¶
References: #2153

	[orm] Fixed bug whereby mapper mapped to an anonymous
alias would fail if logging were used, due to
unescaped % sign in the alias name.¶
References: #2171

	[orm] Modify the text of the message which occurs
when the “identity” key isn’t detected on
flush, to include the common cause that
the Column isn’t set up to detect
auto-increment correctly;.¶
References: #2170

	[orm] Fixed bug where transaction-level “deleted”
collection wouldn’t be cleared of expunged
states, raising an error if they later
became transient.¶
References: #2182

engine

	[engine] Adjusted the __contains__() method of
a RowProxy result row such that no exception
throw is generated internally;
NoSuchColumnError() also will generate its
message regardless of whether or not the column
construct can be coerced to a string..¶
References: #2178

sql

	[sql] Fixed bug whereby if FetchedValue was passed
to column server_onupdate, it would not
have its parent “column” assigned, added
test coverage for all column default assignment
patterns.¶
References: #2147

	[sql] Fixed bug whereby nesting a label of a select()
with another label in it would produce incorrect
exported columns. Among other things this would
break an ORM column_property() mapping against
another column_property(). .¶
References: #2167

postgresql

	[postgresql] Fixed bug affecting PG 9 whereby index reflection
would fail if against a column whose name
had changed. .¶
References: #2141

	[postgresql] Some unit test fixes regarding numeric arrays,
MATCH operator. A potential floating-point
inaccuracy issue was fixed, and certain tests
of the MATCH operator only execute within an
EN-oriented locale for now. .¶
References: #2175

mssql

	[mssql] Fixed bug in MSSQL dialect whereby the aliasing
applied to a schema-qualified table would leak
into enclosing select statements.¶
References: #2169

	[mssql] Fixed bug whereby DATETIME2 type would fail on
the “adapt” step when used in result sets or
bound parameters. This issue is not in 0.7.¶
References: #2159

0.6.7

Released: Wed Apr 13 2011
orm

	[orm] Tightened the iterate vs. remove mutex around the
identity map iteration, attempting to reduce the
chance of an (extremely rare) reentrant gc operation
causing a deadlock. Might remove the mutex in
0.7.¶
References: #2087

	[orm] Added a name argument to Query.subquery(), to allow
a fixed name to be assigned to the alias object.¶
References: #2030

	[orm] A warning is emitted when a joined-table inheriting mapper
has no primary keys on the locally mapped table
(but has pks on the superclass table).¶
References: #2019

	[orm] Fixed bug where “middle” class in a polymorphic hierarchy
would have no ‘polymorphic_on’ column if it didn’t also
specify a ‘polymorphic_identity’, leading to strange
errors upon refresh, wrong class loaded when querying
from that target. Also emits the correct WHERE criterion
when using single table inheritance.¶
References: #2038

	[orm] Fixed bug where a column with a SQL or server side default
that was excluded from a mapping with include_properties
or exclude_properties would result in UnmappedColumnError.¶
References: #1995

	[orm] A warning is emitted in the unusual case that an
append or similar event on a collection occurs after
the parent object has been dereferenced, which
prevents the parent from being marked as “dirty”
in the session. This will be an exception in 0.7.¶
References: #2046

	[orm] Fixed bug in query.options() whereby a path
applied to a lazyload using string keys could
overlap a same named attribute on the wrong
entity. Note 0.7 has an updated version of this
fix.¶
References: #2098

	[orm] Reworded the exception raised when a flush
is attempted of a subclass that is not polymorphic
against the supertype.¶
References: #2063

	[orm] Some fixes to the state handling regarding
backrefs, typically when autoflush=False, where
the back-referenced collection wouldn’t
properly handle add/removes with no net
change. Thanks to Richard Murri for the
test case + patch.¶
References: #2123

	[orm] a “having” clause would be copied from the
inside to the outside query if from_self()
were used..¶
References: #2130

engine

	[engine] Fixed bug in QueuePool, SingletonThreadPool whereby
connections that were discarded via overflow or periodic
cleanup() were not explicitly closed, leaving garbage
collection to the task instead. This generally only
affects non-reference-counting backends like Jython
and Pypy. Thanks to Jaimy Azle for spotting
this.¶
References: #2102

sql

	[sql] Column.copy(), as used in table.tometadata(), copies the
‘doc’ attribute.¶
References: #2028

	[sql] Added some defs to the resultproxy.c extension so that
the extension compiles and runs on Python 2.4.¶
References: #2023

	[sql] The compiler extension now supports overriding the default
compilation of expression._BindParamClause including that
the auto-generated binds within the VALUES/SET clause
of an insert()/update() statement will also use the new
compilation rules.¶
References: #2042

	[sql] Added accessors to ResultProxy “returns_rows”, “is_insert”¶
References: #2089

	[sql] The limit/offset keywords to select() as well
as the value passed to select.limit()/offset()
will be coerced to integer.¶
References: #2116

postgresql

	[postgresql] When explicit sequence execution derives the name
of the auto-generated sequence of a SERIAL column,
which currently only occurs if implicit_returning=False,
now accommodates if the table + column name is greater
than 63 characters using the same logic Postgresql uses.¶
References: #1083

	[postgresql] Added an additional libpq message to the list of “disconnect”
exceptions, “could not receive data from server”¶
References: #2044

	[postgresql] Added RESERVED_WORDS for postgresql dialect.¶
References: #2092

	[postgresql] Fixed the BIT type to allow a “length” parameter, “varying”
parameter. Reflection also fixed.¶
References: #2073

mysql

	[mysql] oursql dialect accepts the same “ssl” arguments in
create_engine() as that of MySQLdb.¶
References: #2047

sqlite

	[sqlite] Fixed bug where reflection of foreign key
created as “REFERENCES <tablename>” without
col name would fail.¶
References: #2115

mssql

	[mssql] Rewrote the query used to get the definition of a view,
typically when using the Inspector interface, to
use sys.sql_modules instead of the information schema,
thereby allowing views definitions longer than 4000
characters to be fully returned.¶
References: #2071

oracle

	[oracle] Using column names that would require quotes
for the column itself or for a name-generated
bind parameter, such as names with special
characters, underscores, non-ascii characters,
now properly translate bind parameter keys when
talking to cx_oracle.¶
References: #2100

	[oracle] Oracle dialect adds use_binds_for_limits=False
create_engine() flag, will render the LIMIT/OFFSET
values inline instead of as binds, reported to
modify the execution plan used by Oracle.¶
References: #2116

firebird

	[firebird] The “implicit_returning” flag on create_engine() is
honored if set to False.¶
References: #2083

misc

	[informix] Added RESERVED_WORDS informix dialect.¶
References: #2092

	[ext] The horizontal_shard ShardedSession class accepts the common
Session argument “query_cls” as a constructor argument,
to enable further subclassing of ShardedQuery.¶
References: #2090

	[declarative] Added an explicit check for the case that the name
‘metadata’ is used for a column attribute on a
declarative class.¶
References: #2050

	[declarative] Fix error message referencing old @classproperty
name to reference @declared_attr¶
References: #2061

	[declarative] Arguments in __mapper_args__ that aren’t “hashable”
aren’t mistaken for always-hashable, possibly-column
arguments.¶
References: #2091

	[documentation] Documented SQLite DATE/TIME/DATETIME types.¶
References: #2029

	[examples] The Beaker caching example allows a “query_cls” argument
to the query_callable() function.¶
References: #2090

0.6.6

Released: Sat Jan 08 2011
orm

	[orm] Fixed bug whereby a non-“mutable” attribute modified event
which occurred on an object that was clean except for
preceding mutable attribute changes would fail to strongly
reference itself in the identity map. This would cause the
object to be garbage collected, losing track of any changes
that weren’t previously saved in the “mutable changes”
dictionary.¶

	[orm] Fixed bug whereby “passive_deletes=’all’” wasn’t passing
the correct symbols to lazy loaders during flush, thereby
causing an unwarranted load.¶
References: #2013

	[orm] Fixed bug which prevented composite mapped
attributes from being used on a mapped select statement.. Note the workings of composite are slated to
change significantly in 0.7.¶
References: #1997

	[orm] active_history flag also added to composite().
The flag has no effect in 0.6, but is instead
a placeholder flag for forwards compatibility,
as it applies in 0.7 for composites.¶
References: #1976

	[orm] Fixed uow bug whereby expired objects passed to
Session.delete() would not have unloaded references
or collections taken into account when deleting
objects, despite passive_deletes remaining at
its default of False.¶
References: #2002

	[orm] A warning is emitted when version_id_col is specified
on an inheriting mapper when the inherited mapper
already has one, if those column expressions are not
the same.¶
References: #1987

	[orm] “innerjoin” flag doesn’t take effect along the chain
of joinedload() joins if a previous join in that chain
is an outer join, thus allowing primary rows without
a referenced child row to be correctly returned
in results.¶
References: #1954

	[orm] Fixed bug regarding “subqueryload” strategy whereby
strategy would fail if the entity was an aliased()
construct.¶
References: #1964

	[orm] Fixed bug regarding “subqueryload” strategy whereby
the join would fail if using a multi-level load
of the form from A->joined-subclass->C¶
References: #2014

	[orm] Fixed indexing of Query objects by -1. It was erroneously
transformed to the empty slice -1:0 that resulted in
IndexError.¶
References: #1968

	[orm] The mapper argument “primary_key” can be passed as a
single column as well as a list or tuple.
The documentation examples that illustrated it as a
scalar value have been changed to lists.¶
References: #1971

	[orm] Added active_history flag to relationship()
and column_property(), forces attribute events to
always load the “old” value, so that it’s available to
attributes.get_history().¶
References: #1961

	[orm] Query.get() will raise if the number of params
in a composite key is too large, as well as too
small.¶
References: #1977

	[orm] Backport of “optimized get” fix from 0.7,
improves the generation of joined-inheritance
“load expired row” behavior.¶
References: #1992

	[orm] A little more verbiage to the “primaryjoin” error,
in an unusual condition that the join condition
“works” for viewonly but doesn’t work for non-viewonly,
and foreign_keys wasn’t used - adds “foreign_keys” to
the suggestion. Also add “foreign_keys” to the
suggestion for the generic “direction” error.¶

engine

	[engine] The “unicode warning” against non-unicode bind data
is now raised only when the
Unicode type is used explicitly; not when
convert_unicode=True is used on the engine
or String type.¶

	[engine] Fixed memory leak in C version of Decimal result
processor.¶
References: #1978

	[engine] Implemented sequence check capability for the C
version of RowProxy, as well as 2.7 style
“collections.Sequence” registration for RowProxy.¶
References: #1871

	[engine] Threadlocal engine methods rollback(), commit(),
prepare() won’t raise if no transaction is in progress;
this was a regression introduced in 0.6.¶
References: #1998

	[engine] Threadlocal engine returns itself upon begin(),
begin_nested(); engine then implements contextmanager
methods to allow the “with” statement.¶
References: #2004

sql

	[sql] Fixed operator precedence rules for multiple
chains of a single non-associative operator.
I.e. “x - (y - z)” will compile as “x - (y - z)”
and not “x - y - z”. Also works with labels,
i.e. “x - (y - z).label(‘foo’)”¶
References: #1984

	[sql] The ‘info’ attribute of Column is copied during
Column.copy(), i.e. as occurs when using columns
in declarative mixins.¶
References: #1967

	[sql] Added a bind processor for booleans which coerces
to int, for DBAPIs such as pymssql that naively call
str() on values.¶

	[sql] CheckConstraint will copy its ‘initially’, ‘deferrable’,
and ‘_create_rule’ attributes within a copy()/tometadata()¶
References: #2000

postgresql

	[postgresql] Single element tuple expressions inside an IN clause
parenthesize correctly, also from¶
References: #1984

	[postgresql] Ensured every numeric, float, int code, scalar + array,
are recognized by psycopg2 and pg8000’s “numeric”
base type.¶
References: #1955

	[postgresql] Added as_uuid=True flag to the UUID type, will receive
and return values as Python UUID() objects rather than
strings. Currently, the UUID type is only known to
work with psycopg2.¶
References: #1956

	[postgresql] Fixed bug whereby KeyError would occur with non-ENUM
supported PG versions after a pool dispose+recreate
would occur.¶
References: #1989

mysql

	[mysql] Fixed error handling for Jython + zxjdbc, such that
has_table() property works again. Regression from
0.6.3 (we don’t have a Jython buildbot, sorry)¶
References: #1960

sqlite

	[sqlite] The REFERENCES clause in a CREATE TABLE that includes
a remote schema to another table with the same schema
name now renders the remote name without
the schema clause, as required by SQLite.¶
References: #1851

	[sqlite] On the same theme, the REFERENCES clause in a CREATE TABLE
that includes a remote schema to a different schema
than that of the parent table doesn’t render at all,
as cross-schema references do not appear to be supported.¶

mssql

	[mssql] The rewrite of index reflection in was
unfortunately not tested correctly, and returned incorrect
results. This regression is now fixed.¶
References: #1770

oracle

	[oracle] The cx_oracle “decimal detection” logic, which takes place
for result set columns with ambiguous numeric characteristics,
now uses the decimal point character determined by the locale/
NLS_LANG setting, using an on-first-connect detection of
this character. cx_oracle 5.0.3 or greater is also required
when using a non-period-decimal-point NLS_LANG setting..¶
References: #1953

firebird

	[firebird] Firebird numeric type now checks for Decimal explicitly,
lets float() pass right through, thereby allowing
special values such as float(‘inf’).¶
References: #2012

misc

	[declarative] An error is raised if __table_args__ is not in tuple
or dict format, and is not None.¶
References: #1972

	[sqlsoup] Added “map_to()” method to SqlSoup, which is a “master”
method which accepts explicit arguments for each aspect of
the selectable and mapping, including a base class per
mapping.¶
References: #1975

	[sqlsoup] Mapped selectables used with the map(), with_labels(),
join() methods no longer put the given argument into the
internal “cache” dictionary. Particularly since the
join() and select() objects are created in the method
itself this was pretty much a pure memory leaking behavior.¶

	[examples] The versioning example now supports detection of changes
in an associated relationship().¶

0.6.5

Released: Sun Oct 24 2010
orm

	[orm] Added a new “lazyload” option “immediateload”.
Issues the usual “lazy” load operation automatically
as the object is populated. The use case
here is when loading objects to be placed in
an offline cache, or otherwise used after
the session isn’t available, and straight ‘select’
loading, not ‘joined’ or ‘subquery’, is desired.¶
References: #1914

	[orm] New Query methods: query.label(name), query.as_scalar(),
return the query’s statement as a scalar subquery
with /without label;
query.with_entities(*ent), replaces the SELECT list of
the query with new entities.
Roughly equivalent to a generative form of query.values()
which accepts mapped entities as well as column
expressions.¶
References: #1920

	[orm] Fixed recursion bug which could occur when moving
an object from one reference to another, with
backrefs involved, where the initiating parent
was a subclass (with its own mapper) of the
previous parent.¶

	[orm] Fixed a regression in 0.6.4 which occurred if you
passed an empty list to “include_properties” on
mapper()¶
References: #1918

	[orm] Fixed labeling bug in Query whereby the NamedTuple
would mis-apply labels if any of the column
expressions were un-labeled.¶

	[orm] Patched a case where query.join() would adapt the
right side to the right side of the left’s join
inappropriately¶
References: #1925

	[orm] Query.select_from() has been beefed up to help
ensure that a subsequent call to query.join()
will use the select_from() entity, assuming it’s
a mapped entity and not a plain selectable,
as the default “left” side, not the first entity
in the Query object’s list of entities.¶

	[orm] The exception raised by Session when it is used
subsequent to a subtransaction rollback (which is what
happens when a flush fails in autocommit=False mode) has
now been reworded (this is the “inactive due to a
rollback in a subtransaction” message). In particular,
if the rollback was due to an exception during flush(),
the message states this is the case, and reiterates the
string form of the original exception that occurred
during flush. If the session is closed due to explicit
usage of subtransactions (not very common), the message
just states this is the case.¶

	[orm] The exception raised by Mapper when repeated requests to
its initialization are made after initialization already
failed no longer assumes the “hasattr” case, since
there’s other scenarios in which this message gets
emitted, and the message also does not compound onto
itself multiple times - you get the same message for
each attempt at usage. The misnomer “compiles” is being
traded out for “initialize”.¶

	[orm] Fixed bug in query.update() where ‘evaluate’ or ‘fetch’
expiration would fail if the column expression key was
a class attribute with a different keyname as the
actual column name.¶
References: #1935

	[orm] Added an assertion during flush which ensures
that no NULL-holding identity keys were generated
on “newly persistent” objects.
This can occur when user defined code inadvertently
triggers flushes on not-fully-loaded objects.¶

	[orm] lazy loads for relationship attributes now use
the current state, not the “committed” state,
of foreign and primary key attributes
when issuing SQL, if a flush is not in process.
Previously, only the database-committed state would
be used. In particular, this would cause a many-to-one
get()-on-lazyload operation to fail, as autoflush
is not triggered on these loads when the attributes are
determined and the “committed” state may not be
available.¶
References: #1910

	[orm] A new flag on relationship(), load_on_pending, allows
the lazy loader to fire off on pending objects without a
flush taking place, as well as a transient object that’s
been manually “attached” to the session. Note that this
flag blocks attribute events from taking place when an
object is loaded, so backrefs aren’t available until
after a flush. The flag is only intended for very
specific use cases.¶

	[orm] Another new flag on relationship(), cascade_backrefs,
disables the “save-update” cascade when the event was
initiated on the “reverse” side of a bidirectional
relationship. This is a cleaner behavior so that
many-to-ones can be set on a transient object without
it getting sucked into the child object’s session,
while still allowing the forward collection to
cascade. We might default this to False in 0.7.¶

	[orm] Slight improvement to the behavior of
“passive_updates=False” when placed only on the
many-to-one side of a relationship; documentation has
been clarified that passive_updates=False should really
be on the one-to-many side.¶

	[orm] Placing passive_deletes=True on a many-to-one emits
a warning, since you probably intended to put it on
the one-to-many side.¶

	[orm] Fixed bug that would prevent “subqueryload” from
working correctly with single table inheritance
for a relationship from a subclass - the “where
type in (x, y, z)” only gets placed on the inside,
instead of repeatedly.¶

	[orm] When using from_self() with single table inheritance,
the “where type in (x, y, z)” is placed on the outside
of the query only, instead of repeatedly. May make
some more adjustments to this.¶

	[orm] scoped_session emits a warning when configure() is
called if a Session is already present (checks only the
current thread)¶
References: #1924

	[orm] reworked the internals of mapper.cascade_iterator() to
cut down method calls by about 9% in some circumstances.¶
References: #1932

engine

	[engine] Fixed a regression in 0.6.4 whereby the change that
allowed cursor errors to be raised consistently broke
the result.lastrowid accessor. Test coverage has
been added for result.lastrowid. Note that lastrowid
is only supported by Pysqlite and some MySQL drivers,
so isn’t super-useful in the general case.¶

	[engine] the logging message emitted by the engine when
a connection is first used is now “BEGIN (implicit)”
to emphasize that DBAPI has no explicit begin().¶

	[engine] added “views=True” option to metadata.reflect(),
will add the list of available views to those
being reflected.¶
References: #1936

	[engine] engine_from_config() now accepts ‘debug’ for
‘echo’, ‘echo_pool’, ‘force’ for ‘convert_unicode’,
boolean values for ‘use_native_unicode’.¶
References: #1899

sql

	[sql] Fixed bug in TypeDecorator whereby the dialect-specific
type was getting pulled in to generate the DDL for a
given type, which didn’t always return the correct result.¶

	[sql] TypeDecorator can now have a fully constructed type
specified as its “impl”, in addition to a type class.¶

	[sql] TypeDecorator will now place itself as the resulting
type for a binary expression where the type coercion
rules would normally return its impl type - previously,
a copy of the impl type would be returned which would
have the TypeDecorator embedded into it as the “dialect”
impl, this was probably an unintentional way of achieving
the desired effect.¶

	[sql] TypeDecorator.load_dialect_impl() returns “self.impl” by
default, i.e. not the dialect implementation type of
“self.impl”. This to support compilation correctly.
Behavior can be user-overridden in exactly the same way
as before to the same effect.¶

	[sql] Added type_coerce(expr, type_) expression element.
Treats the given expression as the given type when evaluating
expressions and processing result rows, but does not
affect the generation of SQL, other than an anonymous
label.¶

	[sql] Table.tometadata() now copies Index objects associated
with the Table as well.¶

	[sql] Table.tometadata() issues a warning if the given Table
is already present in the target MetaData - the existing
Table object is returned.¶

	[sql] An informative error message is raised if a Column
which has not yet been assigned a name, i.e. as in
declarative, is used in a context where it is
exported to the columns collection of an enclosing
select() construct, or if any construct involving
that column is compiled before its name is
assigned.¶

	[sql] as_scalar(), label() can be called on a selectable
which contains a Column that is not yet named.¶
References: #1862

	[sql] Fixed recursion overflow which could occur when operating
with two expressions both of type “NullType”, but
not the singleton NULLTYPE instance.¶
References: #1907

postgresql

	[postgresql] Added “as_tuple” flag to ARRAY type, returns results
as tuples instead of lists to allow hashing.¶

	[postgresql] Fixed bug which prevented “domain” built from a
custom type such as “enum” from being reflected.¶
References: #1933

mysql

	[mysql] Fixed bug involving reflection of CURRENT_TIMESTAMP
default used with ON UPDATE clause, thanks to
Taavi Burns¶
References: #1940

mssql

	[mssql] Fixed reflection bug which did not properly handle
reflection of unknown types.¶
References: #1946

	[mssql] Fixed bug where aliasing of tables with “schema” would
fail to compile properly.¶
References: #1943

	[mssql] Rewrote the reflection of indexes to use sys.
catalogs, so that column names of any configuration
(spaces, embedded commas, etc.) can be reflected.
Note that reflection of indexes requires SQL
Server 2005 or greater.¶
References: #1770

	[mssql] mssql+pymssql dialect now honors the “port” portion
of the URL instead of discarding it.¶
References: #1952

oracle

	[oracle] The implicit_retunring argument to create_engine()
is now honored regardless of detected version of
Oracle. Previously, the flag would be forced
to False if server version info was < 10.¶
References: #1878

misc

	[declarative] @classproperty (soon/now @declared_attr) takes effect for
__mapper_args__, __table_args__, __tablename__ on
a base class that is not a mixin, as well as mixins.¶
References: #1922

	[declarative] @classproperty ‘s official name/location for usage
with declarative is sqlalchemy.ext.declarative.declared_attr.
Same thing, but moving there since it is more of a
“marker” that’s specific to declararative,
not just an attribute technique.¶
References: #1915

	[declarative] Fixed bug whereby columns on a mixin wouldn’t propagate
correctly to a single-table, or joined-table,
inheritance scheme where the attribute name is
different than that of the column.,.¶
References: #1931, #1930

	[declarative] A mixin can now specify a column that overrides
a column of the same name associated with a superclass.
Thanks to Oystein Haaland.¶

	[informix] Major cleanup / modernization of the Informix
dialect for 0.6, courtesy Florian Apolloner.¶
References: #1906

	[tests] the NoseSQLAlchemyPlugin has been moved to a
new package “sqlalchemy_nose” which installs
along with “sqlalchemy”. This so that the “nosetests”
script works as always but also allows the
–with-coverage option to turn on coverage before
SQLAlchemy modules are imported, allowing coverage
to work correctly.¶

	[misc] CircularDependencyError now has .cycles and .edges
members, which are the set of elements involved in
one or more cycles, and the set of edges as 2-tuples.¶
References: #1890

0.6.4

Released: Tue Sep 07 2010
orm

	[orm] The name ConcurrentModificationError has been
changed to StaleDataError, and descriptive
error messages have been revised to reflect
exactly what the issue is. Both names will
remain available for the forseeable future
for schemes that may be specifying
ConcurrentModificationError in an “except:”
clause.¶

	[orm] Added a mutex to the identity map which mutexes
remove operations against iteration methods,
which now pre-buffer before returning an
iterable. This because asyncrhonous gc
can remove items via the gc thread at any time.¶
References: #1891

	[orm] The Session class is now present in sqlalchemy.orm.*.
We’re moving away from the usage of create_session(),
which has non-standard defaults, for those situations
where a one-step Session constructor is desired. Most
users should stick with sessionmaker() for general use,
however.¶

	[orm] query.with_parent() now accepts transient objects
and will use the non-persistent values of their pk/fk
attributes in order to formulate the criterion.
Docs are also clarified as to the purpose of with_parent().¶

	[orm] The include_properties and exclude_properties arguments
to mapper() now accept Column objects as members in
addition to strings. This so that same-named Column
objects, such as those within a join(), can be
disambiguated.¶

	[orm] A warning is now emitted if a mapper is created against a
join or other single selectable that includes multiple
columns with the same name in its .c. collection,
and those columns aren’t explicitly named as part of
the same or separate attributes (or excluded).
In 0.7 this warning will be an exception. Note that
this warning is not emitted when the combination occurs
as a result of inheritance, so that attributes
still allow being overridden naturally.. In 0.7 this will be improved further.¶
References: #1896

	[orm] The primary_key argument to mapper() can now specify
a series of columns that are only a subset of
the calculated “primary key” columns of the mapped
selectable, without an error being raised. This
helps for situations where a selectable’s effective
primary key is simpler than the number of columns
in the selectable that are actually marked as
“primary_key”, such as a join against two
tables on their primary key columns.¶
References: #1896

	[orm] An object that’s been deleted now gets a flag
‘deleted’, which prohibits the object from
being re-add()ed to the session, as previously
the object would live in the identity map
silently until its attributes were accessed.
The make_transient() function now resets this
flag along with the “key” flag.¶

	[orm] make_transient() can be safely called on an
already transient instance.¶

	[orm] a warning is emitted in mapper() if the polymorphic_on
column is not present either in direct or derived
form in the mapped selectable or in the
with_polymorphic selectable, instead of silently
ignoring it. Look for this to become an
exception in 0.7.¶

	[orm] Another pass through the series of error messages
emitted when relationship() is configured with
ambiguous arguments. The “foreign_keys”
setting is no longer mentioned, as it is almost
never needed and it is preferable users set up
correct ForeignKey metadata, which is now the
recommendation. If ‘foreign_keys’
is used and is incorrect, the message suggests
the attribute is probably unnecessary. Docs
for the attribute are beefed up. This
because all confused relationship() users on the
ML appear to be attempting to use foreign_keys
due to the message, which only confuses them
further since Table metadata is much clearer.¶

	[orm] If the “secondary” table has no ForeignKey metadata
and no foreign_keys is set, even though the
user is passing screwed up information, it is assumed
that primary/secondaryjoin expressions should
consider only and all cols in “secondary” to be
foreign. It’s not possible with “secondary” for
the foreign keys to be elsewhere in any case.
A warning is now emitted instead of an error,
and the mapping succeeds.¶
References: #1877

	[orm] Moving an o2m object from one collection to
another, or vice versa changing the referenced
object by an m2o, where the foreign key is also a
member of the primary key, will now be more
carefully checked during flush if the change in
value of the foreign key on the “many” side is the
result of a change in the primary key of the “one”
side, or if the “one” is just a different object.
In one case, a cascade-capable DB would have
cascaded the value already and we need to look at
the “new” PK value to do an UPDATE, in the other we
need to continue looking at the “old”. We now look
at the “old”, assuming passive_updates=True,
unless we know it was a PK switch that
triggered the change.¶
References: #1856

	[orm] The value of version_id_col can be changed
manually, and this will result in an UPDATE
of the row. Versioned UPDATEs and DELETEs
now use the “committed” value of the
version_id_col in the WHERE clause and
not the pending changed value. The
version generator is also bypassed if
manual changes are present on the attribute.¶
References: #1857

	[orm] Repaired the usage of merge() when used with
concrete inheriting mappers. Such mappers frequently
have so-called “concrete” attributes, which are
subclass attributes that “disable” propagation from
the parent - these needed to allow a merge()
operation to pass through without effect.¶

	[orm] Specifying a non-column based argument
for column_mapped_collection, including string,
text() etc., will raise an error message that
specifically asks for a column element, no longer
misleads with incorrect information about
text() or literal().¶
References: #1863

	[orm] Similarly, for relationship(), foreign_keys,
remote_side, order_by - all column-based
expressions are enforced - lists of strings
are explicitly disallowed since this is a
very common error¶

	[orm] Dynamic attributes don’t support collection
population - added an assertion for when
set_committed_value() is called, as well as
when joinedload() or subqueryload() options
are applied to a dynamic attribute, instead
of failure / silent failure.¶
References: #1864

	[orm] Fixed bug whereby generating a Query derived
from one which had the same column repeated
with different label names, typically
in some UNION situations, would fail to
propagate the inner columns completely to
the outer query.¶
References: #1852

	[orm] object_session() raises the proper
UnmappedInstanceError when presented with an
unmapped instance.¶
References: #1881

	[orm] Applied further memoizations to calculated Mapper
properties, with significant (~90%) runtime mapper.py
call count reduction in heavily polymorphic mapping
configurations.¶

	[orm] mapper _get_col_to_prop private method used
by the versioning example is deprecated;
now use mapper.get_property_by_column() which
will remain the public method for this.¶

	[orm] the versioning example works correctly now
if versioning on a col that was formerly
NULL.¶

engine

	[engine] Calling fetchone() or similar on a result that
has already been exhausted, has been closed,
or is not a result-returning result now
raises ResourceClosedError, a subclass of
InvalidRequestError, in all cases, regardless
of backend. Previously, some DBAPIs would
raise ProgrammingError (i.e. pysqlite), others
would return None leading to downstream breakages
(i.e. MySQL-python).¶

	[engine] Fixed bug in Connection whereby if a “disconnect”
event occurred in the “initialize” phase of the
first connection pool connect, an AttributeError
would be raised when the Connection would attempt
to invalidate the DBAPI connection.¶
References: #1894

	[engine] Connection, ResultProxy, as well as Session use
ResourceClosedError for all “this
connection/transaction/result is closed” types of
errors.¶

	[engine] Connection.invalidate() can be called more than
once and subsequent calls do nothing.¶

sql

	[sql] Calling execute() on an alias() construct is pending
deprecation for 0.7, as it is not itself an
“executable” construct. It currently “proxies” its
inner element and is conditionally “executable” but
this is not the kind of ambiguity we like these days.¶

	[sql] The execute() and scalar() methods of ClauseElement
are now moved appropriately to the Executable
subclass. ClauseElement.execute()/ scalar() are still
present and are pending deprecation in 0.7, but note
these would always raise an error anyway if you were
not an Executable (unless you were an alias(), see
previous note).¶

	[sql] Added basic math expression coercion for
Numeric->Integer,
so that resulting type is Numeric regardless
of the direction of the expression.¶

	[sql] Changed the scheme used to generate truncated
“auto” index names when using the “index=True”
flag on Column. The truncation only takes
place with the auto-generated name, not one
that is user-defined (an error would be
raised instead), and the truncation scheme
itself is now based on a fragment of an md5
hash of the identifier name, so that multiple
indexes on columns with similar names still
have unique names.¶
References: #1855

	[sql] The generated index name also is based on
a “max index name length” attribute which is
separate from the “max identifier length” -
this to appease MySQL who has a max length
of 64 for index names, separate from their
overall max length of 255.¶
References: #1412

	[sql] the text() construct, if placed in a column
oriented situation, will at least return NULLTYPE
for its type instead of None, allowing it to
be used a little more freely for ad-hoc column
expressions than before. literal_column()
is still the better choice, however.¶

	[sql] Added full description of parent table/column,
target table/column in error message raised when
ForeignKey can’t resolve target.¶

	[sql] Fixed bug whereby replacing composite foreign key
columns in a reflected table would cause an attempt
to remove the reflected constraint from the table
a second time, raising a KeyError.¶
References: #1865

	[sql] the _Label construct, i.e. the one that is produced
whenever you say somecol.label(), now counts itself
in its “proxy_set” unioned with that of its
contained column’s proxy set, instead of
directly returning that of the contained column.
This allows column correspondence
operations which depend on the identity of the
_Labels themselves to return the correct result¶

	[sql] fixes ORM bug.¶
References: #1852

postgresql

	[postgresql] Fixed the psycopg2 dialect to use its
set_isolation_level() method instead of relying
upon the base “SET SESSION ISOLATION” command,
as psycopg2 resets the isolation level on each new
transaction otherwise.¶

mssql

	[mssql] Fixed “default schema” query to work with
pymssql backend.¶

oracle

	[oracle] Added ROWID type to the Oracle dialect, for those
cases where an explicit CAST might be needed.¶
References: #1879

	[oracle] Oracle reflection of indexes has been tuned so
that indexes which include some or all primary
key columns, but not the same set of columns
as that of the primary key, are reflected.
Indexes which contain the identical columns
as that of the primary key are skipped within
reflection, as the index in that case is assumed
to be the auto-generated primary key index.
Previously, any index with PK columns present
would be skipped. Thanks to Kent Bower
for the patch.¶
References: #1867

	[oracle] Oracle now reflects the names of primary key
constraints - also thanks to Kent Bower.¶
References: #1868

firebird

	[firebird] Fixed bug whereby a column default would fail to
reflect if the “default” keyword were lower case.¶

misc

	[declarative] if @classproperty is used with a regular class-bound
mapper property attribute, it will be called to get the
actual attribute value during initialization. Currently,
there’s no advantage to using @classproperty on a column
or relationship attribute of a declarative class that
isn’t a mixin - evaluation is at the same time as if
@classproperty weren’t used. But here we at least allow
it to function as expected.¶

	[declarative] Fixed bug where “Can’t add additional column” message
would display the wrong name.¶

	[informix] Applied patches from to get
basic Informix functionality up again. We
rely upon end-user testing to ensure that
Informix is working to some degree.¶
References: #1904

	[documentation] The docs have been reorganized such that the “API
Reference” section is gone - all the docstrings from
there which were public API are moved into the
context of the main doc section that talks about it.
Main docs divided into “SQLAlchemy Core” and
“SQLAlchemy ORM” sections, mapper/relationship docs
have been broken out. Lots of sections rewritten
and/or reorganized.¶

	[examples] The beaker_caching example has been reorganized
such that the Session, cache manager,
declarative_base are part of environment, and
custom cache code is portable and now within
“caching_query.py”. This allows the example to
be easier to “drop in” to existing projects.¶

	[examples] the history_meta versioning recipe sets “unique=False”
when copying columns, so that the versioning
table handles multiple rows with repeating values.¶
References: #1887

0.6.3

Released: Thu Jul 15 2010
orm

	[orm] Removed errant many-to-many load in unitofwork
which triggered unnecessarily on expired/unloaded
collections. This load now takes place only if
passive_updates is False and the parent primary
key has changed, or if passive_deletes is False
and a delete of the parent has occurred.¶
References: #1845

	[orm] Column-entities (i.e. query(Foo.id)) copy their
state more fully when queries are derived from
themselves + a selectable (i.e. from_self(),
union(), etc.), so that join() and such have the
correct state to work from.¶
References: #1853

	[orm] Fixed bug where Query.join() would fail if
querying a non-ORM column then joining without
an on clause when a FROM clause is already
present, now raises a checked exception the
same way it does when the clause is not
present.¶
References: #1853

	[orm] Improved the check for an “unmapped class”,
including the case where the superclass is mapped
but the subclass is not. Any attempts to access
cls._sa_class_manager.mapper now raise
UnmappedClassError().¶
References: #1142

	[orm] Added “column_descriptions” accessor to Query,
returns a list of dictionaries containing
naming/typing information about the entities
the Query will return. Can be helpful for
building GUIs on top of ORM queries.¶

mysql

	[mysql] The _extract_error_code() method now works
correctly with each MySQL dialect (
MySQL-python, OurSQL, MySQL-Connector-Python,
PyODBC). Previously,
the reconnect logic would fail for OperationalError
conditions, however since MySQLdb and OurSQL
have their own reconnect feature, there was no
symptom for these drivers here unless one
watched the logs.¶
References: #1848

oracle

	[oracle] More tweaks to cx_oracle Decimal handling.
“Ambiguous” numerics with no decimal place
are coerced to int at the connection handler
level. The advantage here is that ints
come back as ints without SQLA type
objects being involved and without needless
conversion to Decimal first.
Unfortunately, some exotic subquery cases
can even see different types between
individual result rows, so the Numeric
handler, when instructed to return Decimal,
can’t take full advantage of “native decimal”
mode and must run isinstance() on every value
to check if its Decimal already. Reopen of

¶References: #1840

0.6.2

Released: Tue Jul 06 2010
orm

	[orm] Query.join() will check for a call of the
form query.join(target, clause_expression),
i.e. missing the tuple, and raise an informative
error message that this is the wrong calling form.¶

	[orm] Fixed bug regarding flushes on self-referential
bi-directional many-to-many relationships, where
two objects made to mutually reference each other
in one flush would fail to insert a row for both
sides. Regression from 0.5.¶
References: #1824

	[orm] the post_update feature of relationship() has been
reworked architecturally to integrate more closely
with the new 0.6 unit of work. The motivation
for the change is so that multiple “post update”
calls, each affecting different foreign key
columns of the same row, are executed in a single
UPDATE statement, rather than one UPDATE
statement per column per row. Multiple row
updates are also batched into executemany()s as
possible, while maintaining consistent row ordering.¶

	[orm] Query.statement, Query.subquery(), etc. now transfer
the values of bind parameters, i.e. those specified
by query.params(), into the resulting SQL expression.
Previously the values would not be transferred
and bind parameters would come out as None.¶

	[orm] Subquery-eager-loading now works with Query objects
which include params(), as well as get() Queries.¶

	[orm] Can now call make_transient() on an instance that
is referenced by parent objects via many-to-one,
without the parent’s foreign key value getting
temporarily set to None - this was a function
of the “detect primary key switch” flush handler.
It now ignores objects that are no longer
in the “persistent” state, and the parent’s
foreign key identifier is left unaffected.¶

	[orm] query.order_by() now accepts False, which cancels
any existing order_by() state on the Query, allowing
subsequent generative methods to be called which do
not support ORDER BY. This is not the same as the
already existing feature of passing None, which
suppresses any existing order_by() settings, including
those configured on the mapper. False will make it
as though order_by() was never called, while
None is an active setting.¶

	[orm] An instance which is moved to “transient”, has
an incomplete or missing set of primary key
attributes, and contains expired attributes, will
raise an InvalidRequestError if an expired attribute
is accessed, instead of getting a recursion overflow.¶

	[orm] The make_transient() function is now in the generated
documentation.¶

	[orm] make_transient() removes all “loader” callables from
the state being made transient, removing any
“expired” state - all unloaded attributes reset back
to undefined, None/empty on access.¶

sql

	[sql] The warning emitted by the Unicode and String types
with convert_unicode=True no longer embeds the actual
value passed. This so that the Python warning
registry does not continue to grow in size, the warning
is emitted once as per the warning filter settings,
and large string values don’t pollute the output.¶
References: #1822

	[sql] Fixed bug that would prevent overridden clause
compilation from working for “annotated” expression
elements, which are often generated by the ORM.¶

	[sql] The argument to “ESCAPE” of a LIKE operator or similar
is passed through render_literal_value(), which may
implement escaping of backslashes.¶
References: #1400

	[sql] Fixed bug in Enum type which blew away native_enum
flag when used with TypeDecorators or other adaption
scenarios.¶

	[sql] Inspector hits bind.connect() when invoked to ensure
initialize has been called. the internal name ”.conn”
is changed to ”.bind”, since that’s what it is.¶

	[sql] Modified the internals of “column annotation” such that
a custom Column subclass can safely override
_constructor to return Column, for the purposes of
making “configurational” column classes that aren’t
involved in proxying, etc.¶

	[sql] Column.copy() takes along the “unique” attribute
among others, fixes regarding declarative
mixins¶
References: #1829

postgresql

	[postgresql] render_literal_value() is overridden which escapes
backslashes, currently applies to the ESCAPE clause
of LIKE and similar expressions.
Ultimately this will have to detect the value of
“standard_conforming_strings” for full behavior.¶
References: #1400

	[postgresql] Won’t generate “CREATE TYPE” / “DROP TYPE” if
using types.Enum on a PG version prior to 8.3 -
the supports_native_enum flag is fully
honored.¶
References: #1836

mysql

	[mysql] MySQL dialect doesn’t emit CAST() for MySQL version
detected < 4.0.2. This allows the unicode
check on connect to proceed.¶
References: #1826

	[mysql] MySQL dialect now detects NO_BACKSLASH_ESCAPES sql
mode, in addition to ANSI_QUOTES.¶

	[mysql] render_literal_value() is overridden which escapes
backslashes, currently applies to the ESCAPE clause
of LIKE and similar expressions. This behavior
is derived from detecting the value of
NO_BACKSLASH_ESCAPES.¶
References: #1400

mssql

	[mssql] If server_version_info is outside the usual
range of (8,), (9,), (10,), a warning is emitted
which suggests checking that the FreeTDS version
configuration is using 7.0 or 8.0, not 4.2.¶
References: #1825

oracle

	[oracle] Fixed ora-8 compatibility flags such that they
don’t cache a stale value from before the first
database connection actually occurs.¶
References: #1819

	[oracle] Oracle’s “native decimal” metadata begins to return
ambiguous typing information about numerics
when columns are embedded in subqueries as well
as when ROWNUM is consulted with subqueries, as we
do for limit/offset. We’ve added these ambiguous
conditions to the cx_oracle “convert to Decimal()”
handler, so that we receive numerics as Decimal
in more cases instead of as floats. These are
then converted, if requested, into Integer
or Float, or otherwise kept as the lossless
Decimal.¶
References: #1840

firebird

	[firebird] Fixed incorrect signature in do_execute(), error
introduced in 0.6.1.¶
References: #1823

	[firebird] Firebird dialect adds CHAR, VARCHAR types which
accept a “charset” flag, to support Firebird
“CHARACTER SET” clause.¶
References: #1813

misc

	[declarative] Added support for @classproperty to provide
any kind of schema/mapping construct from a
declarative mixin, including columns with foreign
keys, relationships, column_property, deferred.
This solves all such issues on declarative mixins.
An error is raised if any MapperProperty subclass
is specified on a mixin without using @classproperty.¶
References: #1805, #1796, #1751

	[declarative] a mixin class can now define a column that matches
one which is present on a __table__ defined on a
subclass. It cannot, however, define one that is
not present in the __table__, and the error message
here now works.¶
References: #1821

	[extension] [compiler] The ‘default’ compiler is automatically copied over
when overriding the compilation of a built in
clause construct, so no KeyError is raised if the
user-defined compiler is specific to certain
backends and compilation for a different backend
is invoked.¶
References: #1838

	[documentation] Added documentation for the Inspector.¶
References: #1820

	[documentation] Fixed @memoized_property and @memoized_instancemethod
decorators so that Sphinx documentation picks up
these attributes and methods, such as
ResultProxy.inserted_primary_key.¶
References: #1830

0.6.1

Released: Mon May 31 2010
orm

	[orm] Fixed regression introduced in 0.6.0 involving improper
history accounting on mutable attributes.¶
References: #1782

	[orm] Fixed regression introduced in 0.6.0 unit of work refactor
that broke updates for bi-directional relationship()
with post_update=True.¶
References: #1807

	[orm] session.merge() will not expire attributes on the returned
instance if that instance is “pending”.¶
References: #1789

	[orm] fixed __setstate__ method of CollectionAdapter to not
fail during deserialize where parent InstanceState not
yet unserialized.¶
References: #1802

	[orm] Added internal warning in case an instance without a
full PK happened to be expired and then was asked
to refresh.¶
References: #1797

	[orm] Added more aggressive caching to the mapper’s usage of
UPDATE, INSERT, and DELETE expressions. Assuming the
statement has no per-object SQL expressions attached,
the expression objects are cached by the mapper after
the first create, and their compiled form is stored
persistently in a cache dictionary for the duration of
the related Engine. The cache is an LRUCache for the
rare case that a mapper receives an extremely
high number of different column patterns as UPDATEs.¶

sql

	[sql] expr.in_() now accepts a text() construct as the argument.
Grouping parenthesis are added automatically, i.e. usage
is like col.in_(text(“select id from table”)).¶
References: #1793

	[sql] Columns of _Binary type (i.e. LargeBinary, BLOB, etc.)
will coerce a “basestring” on the right side into a
_Binary as well so that required DBAPI processing
takes place.¶

	[sql] Added table.add_is_dependent_on(othertable), allows manual
placement of dependency rules between two Table objects
for use within create_all(), drop_all(), sorted_tables.¶
References: #1801

	[sql] Fixed bug that prevented implicit RETURNING from functioning
properly with composite primary key that contained zeroes.¶
References: #1778

	[sql] Fixed errant space character when generating ADD CONSTRAINT
for a named UNIQUE constraint.¶

	[sql] Fixed “table” argument on constructor of ForeginKeyConstraint¶
References: #1571

	[sql] Fixed bug in connection pool cursor wrapper whereby if a
cursor threw an exception on close(), the logging of the
message would fail.¶
References: #1786

	[sql] the _make_proxy() method of ColumnClause and Column now use
self.__class__ to determine the class of object to be returned
instead of hardcoding to ColumnClause/Column, making it slightly
easier to produce specific subclasses of these which work in
alias/subquery situations.¶

	[sql] func.XXX() doesn’t inadvertently resolve to non-Function
classes (e.g. fixes func.text()).¶
References: #1798

mysql

	[mysql] func.sysdate() emits “SYSDATE()”, i.e. with the ending
parenthesis, on MySQL.¶
References: #1794

sqlite

	[sqlite] Fixed concatenation of constraints when “PRIMARY KEY”
constraint gets moved to column level due to SQLite
AUTOINCREMENT keyword being rendered.¶
References: #1812

oracle

	[oracle] Added a check for cx_oracle versions lower than version 5,
in which case the incompatible “output type handler” won’t
be used. This will impact decimal accuracy and some
unicode handling issues.¶
References: #1775

	[oracle] Fixed use_ansi=False mode, which was producing broken
WHERE clauses in pretty much all cases.¶
References: #1790

	[oracle] Re-established support for Oracle 8 with cx_oracle,
including that use_ansi is set to False automatically,
NVARCHAR2 and NCLOB are not rendered for Unicode,
“native unicode” check doesn’t fail, cx_oracle
“native unicode” mode is disabled, VARCHAR() is emitted
with bytes count instead of char count.¶
References: #1808

	[oracle] oracle_xe 5 doesn’t accept a Python unicode object in
its connect string in normal Python 2.x mode - so we coerce
to str() directly. non-ascii characters aren’t supported
in connect strings here since we don’t know what encoding
we could use.¶
References: #1670

	[oracle] FOR UPDATE is emitted in the syntactically correct position
when limit/offset is used, i.e. the ROWNUM subquery.
However, Oracle can’t really handle FOR UPDATE with ORDER BY
or with subqueries, so its still not very usable, but at
least SQLA gets the SQL past the Oracle parser.¶
References: #1815

firebird

	[firebird] Added a label to the query used within has_table() and
has_sequence() to work with older versions of Firebird
that don’t provide labels for result columns.¶
References: #1521

	[firebird] Added integer coercion to the “type_conv” attribute when
passed via query string, so that it is properly interpreted
by Kinterbasdb.¶
References: #1779

	[firebird] Added ‘connection shutdown’ to the list of exception strings
which indicate a dropped connection.¶
References: #1646

misc

	[engines] Fixed building the C extensions on Python 2.4.¶
References: #1781

	[engines] Pool classes will reuse the same “pool_logging_name” setting
after a dispose() occurs.¶

	[engines] Engine gains an “execution_options” argument and
update_execution_options() method, which will apply to
all connections generated by this engine.¶

	[sqlsoup] the SqlSoup constructor accepts a base argument which specifies
the base class to use for mapped classes, the default being
object.¶
References: #1783

0.6.0

Released: Sun Apr 18 2010
orm

	[orm] Unit of work internals have been rewritten. Units of work
with large numbers of objects interdependent objects
can now be flushed without recursion overflows
as there is no longer reliance upon recursive calls. The number of internal structures now stays
constant for a particular session state, regardless of
how many relationships are present on mappings. The flow
of events now corresponds to a linear list of steps,
generated by the mappers and relationships based on actual
work to be done, filtered through a single topological sort
for correct ordering. Flush actions are assembled using
far fewer steps and less memory.¶
References: #1742, #1081

	[orm] Along with the UOW rewrite, this also removes an issue
introduced in 0.6beta3 regarding topological cycle detection
for units of work with long dependency cycles. We now use
an algorithm written by Guido (thanks Guido!).¶

	[orm] one-to-many relationships now maintain a list of positive
parent-child associations within the flush, preventing
previous parents marked as deleted from cascading a
delete or NULL foreign key set on those child objects,
despite the end-user not removing the child from the old
association.¶
References: #1764

	[orm] A collection lazy load will switch off default
eagerloading on the reverse many-to-one side, since
that loading is by definition unnecessary.¶
References: #1495

	[orm] Session.refresh() now does an equivalent expire()
on the given instance first, so that the “refresh-expire”
cascade is propagated. Previously, refresh() was
not affected in any way by the presence of “refresh-expire”
cascade. This is a change in behavior versus that
of 0.6beta2, where the “lockmode” flag passed to refresh()
would cause a version check to occur. Since the instance
is first expired, refresh() always upgrades the object
to the most recent version.¶

	[orm] The ‘refresh-expire’ cascade, when reaching a pending object,
will expunge the object if the cascade also includes
“delete-orphan”, or will simply detach it otherwise.¶
References: #1754

	[orm] id(obj) is no longer used internally within topological.py,
as the sorting functions now require hashable objects
only.¶
References: #1756

	[orm] The ORM will set the docstring of all generated descriptors
to None by default. This can be overridden using ‘doc’
(or if using Sphinx, attribute docstrings work too).¶

	[orm] Added kw argument ‘doc’ to all mapper property callables
as well as Column(). Will assemble the string ‘doc’ as
the ‘__doc__’ attribute on the descriptor.¶

	[orm] Usage of version_id_col on a backend that supports
cursor.rowcount for execute() but not executemany() now works
when a delete is issued (already worked for saves, since those
don’t use executemany()). For a backend that doesn’t support
cursor.rowcount at all, a warning is emitted the same
as with saves.¶
References: #1761

	[orm] The ORM now short-term caches the “compiled” form of
insert() and update() constructs when flushing lists of
objects of all the same class, thereby avoiding redundant
compilation per individual INSERT/UPDATE within an
individual flush() call.¶

	[orm] internal getattr(), setattr(), getcommitted() methods
on ColumnProperty, CompositeProperty, RelationshipProperty
have been underscored (i.e. are private), signature has
changed.¶

sql

	[sql] Restored some bind-labeling logic from 0.5 which ensures
that tables with column names that overlap another column
of the form “<tablename>_<columnname>” won’t produce
errors if column._label is used as a bind name during
an UPDATE. Test coverage which wasn’t present in 0.5
has been added.¶
References: #1755

	[sql] somejoin.select(fold_equivalents=True) is no longer
deprecated, and will eventually be rolled into a more
comprehensive version of the feature for.¶
References: #1729

	[sql] the Numeric type raises an enormous warning when expected
to convert floats to Decimal from a DBAPI that returns floats.
This includes SQLite, Sybase, MS-SQL.¶
References: #1759

	[sql] Fixed an error in expression typing which caused an endless
loop for expressions with two NULL types.¶

	[sql] Fixed bug in execution_options() feature whereby the existing
Transaction and other state information from the parent
connection would not be propagated to the sub-connection.¶

	[sql] Added new ‘compiled_cache’ execution option. A dictionary
where Compiled objects will be cached when the Connection
compiles a clause expression into a dialect- and parameter-
specific Compiled object. It is the user’s responsibility to
manage the size of this dictionary, which will have keys
corresponding to the dialect, clause element, the column
names within the VALUES or SET clause of an INSERT or UPDATE,
as well as the “batch” mode for an INSERT or UPDATE statement.¶

	[sql] Added get_pk_constraint() to reflection.Inspector, similar
to get_primary_keys() except returns a dict that includes the
name of the constraint, for supported backends (PG so far).¶
References: #1769

	[sql] Table.create() and Table.drop() no longer apply metadata-
level create/drop events.¶
References: #1771

postgresql

	[postgresql] Postgresql now reflects sequence names associated with
SERIAL columns correctly, after the name of the sequence
has been changed. Thanks to Kumar McMillan for the patch.¶
References: #1071

	[postgresql] Repaired missing import in psycopg2._PGNumeric type when
unknown numeric is received.¶

	[postgresql] psycopg2/pg8000 dialects now aware of REAL[], FLOAT[],
DOUBLE_PRECISION[], NUMERIC[] return types without
raising an exception.¶

	[postgresql] Postgresql reflects the name of primary key constraints,
if one exists.¶
References: #1769

oracle

	[oracle] Now using cx_oracle output converters so that the
DBAPI returns natively the kinds of values we prefer:¶

	[oracle] NUMBER values with positive precision + scale convert
to cx_oracle.STRING and then to Decimal. This
allows perfect precision for the Numeric type when
using cx_oracle.¶
References: #1759

	[oracle] STRING/FIXED_CHAR now convert to unicode natively.
SQLAlchemy’s String types then don’t need to
apply any kind of conversions.¶

firebird

	[firebird] The functionality of result.rowcount can be disabled on a
per-engine basis by setting ‘enable_rowcount=False’
on create_engine(). Normally, cursor.rowcount is called
after any UPDATE or DELETE statement unconditionally,
because the cursor is then closed and Firebird requires
an open cursor in order to get a rowcount. This
call is slightly expensive however so it can be disabled.
To re-enable on a per-execution basis, the
‘enable_rowcount=True’ execution option may be used.¶

misc

	[engines] The C extension now also works with DBAPIs which use custom
sequences as row (and not only tuples).¶
References: #1757

	[ext] the compiler extension now allows @compiles decorators
on base classes that extend to child classes, @compiles
decorators on child classes that aren’t broken by a
@compiles decorator on the base class.¶

	[ext] Declarative will raise an informative error message
if a non-mapped class attribute is referenced in the
string-based relationship() arguments.¶

	[ext] Further reworked the “mixin” logic in declarative to
additionally allow __mapper_args__ as a @classproperty
on a mixin, such as to dynamically assign polymorphic_identity.¶

	[examples] Updated attribute_shard.py example to use a more robust
method of searching a Query for binary expressions which
compare columns against literal values.¶

0.6beta3

Released: Sun Mar 28 2010
orm

	[orm] Major feature: Added new “subquery” loading capability to
relationship(). This is an eager loading option which
generates a second SELECT for each collection represented
in a query, across all parents at once. The query
re-issues the original end-user query wrapped in a subquery,
applies joins out to the target collection, and loads
all those collections fully in one result, similar to
“joined” eager loading but using all inner joins and not
re-fetching full parent rows repeatedly (as most DBAPIs seem
to do, even if columns are skipped). Subquery loading is
available at mapper config level using “lazy=’subquery’” and
at the query options level using “subqueryload(props..)”,
“subqueryload_all(props...)”.¶
References: #1675

	[orm] To accommodate the fact that there are now two kinds of eager
loading available, the new names for eagerload() and
eagerload_all() are joinedload() and joinedload_all(). The
old names will remain as synonyms for the foreseeable future.¶

	[orm] The “lazy” flag on the relationship() function now accepts
a string argument for all kinds of loading: “select”, “joined”,
“subquery”, “noload” and “dynamic”, where the default is now
“select”. The old values of True/
False/None still retain their usual meanings and will remain
as synonyms for the foreseeable future.¶

	[orm] Added with_hint() method to Query() construct. This calls
directly down to select().with_hint() and also accepts
entities as well as tables and aliases. See with_hint() in the
SQL section below.¶
References: #921

	[orm] Fixed bug in Query whereby calling q.join(prop).from_self(...).
join(prop) would fail to render the second join outside the
subquery, when joining on the same criterion as was on the
inside.¶

	[orm] Fixed bug in Query whereby the usage of aliased() constructs
would fail if the underlying table (but not the actual alias)
were referenced inside the subquery generated by
q.from_self() or q.select_from().¶

	[orm] Fixed bug which affected all eagerload() and similar options
such that “remote” eager loads, i.e. eagerloads off of a lazy
load such as query(A).options(eagerload(A.b, B.c))
wouldn’t eagerload anything, but using eagerload(“b.c”) would
work fine.¶

	[orm] Query gains an add_columns(*columns) method which is a multi-
version of add_column(col). add_column(col) is future
deprecated.¶

	[orm] Query.join() will detect if the end result will be
“FROM A JOIN A”, and will raise an error if so.¶

	[orm] Query.join(Cls.propname, from_joinpoint=True) will check more
carefully that “Cls” is compatible with the current joinpoint,
and act the same way as Query.join(“propname”, from_joinpoint=True)
in that regard.¶

sql

	[sql] Added with_hint() method to select() construct. Specify
a table/alias, hint text, and optional dialect name, and
“hints” will be rendered in the appropriate place in the
statement. Works for Oracle, Sybase, MySQL.¶
References: #921

	[sql] Fixed bug introduced in 0.6beta2 where column labels would
render inside of column expressions already assigned a label.¶
References: #1747

postgresql

	[postgresql] The psycopg2 dialect will log NOTICE messages via the
“sqlalchemy.dialects.postgresql” logger name.¶
References: #877

	[postgresql] the TIME and TIMESTAMP types are now available from the
postgresql dialect directly, which add the PG-specific
argument ‘precision’ to both. ‘precision’ and
‘timezone’ are correctly reflected for both TIME and
TIMEZONE types.¶
References: #997

mysql

	[mysql] No longer guessing that TINYINT(1) should be BOOLEAN
when reflecting - TINYINT(1) is returned. Use Boolean/
BOOLEAN in table definition to get boolean conversion
behavior.¶
References: #1752

oracle

	[oracle] The Oracle dialect will issue VARCHAR type definitions
using character counts, i.e. VARCHAR2(50 CHAR), so that
the column is sized in terms of characters and not bytes.
Column reflection of character types will also use
ALL_TAB_COLUMNS.CHAR_LENGTH instead of
ALL_TAB_COLUMNS.DATA_LENGTH. Both of these behaviors take
effect when the server version is 9 or higher - for
version 8, the old behaviors are used.¶
References: #1744

misc

	[declarative] Using a mixin won’t break if the mixin implements an
unpredictable __getattribute__(), i.e. Zope interfaces.¶
References: #1746

	[declarative] Using @classdecorator and similar on mixins to define
__tablename__, __table_args__, etc. now works if
the method references attributes on the ultimate
subclass.¶
References: #1749

	[declarative] relationships and columns with foreign keys aren’t
allowed on declarative mixins, sorry.¶
References: #1751

	[ext] The sqlalchemy.orm.shard module now becomes an extension,
sqlalchemy.ext.horizontal_shard. The old import
works with a deprecation warning.¶

0.6beta2

Released: Sat Mar 20 2010
orm

	[orm] The official name for the relation() function is now
relationship(), to eliminate confusion over the relational
algebra term. relation() however will remain available
in equal capacity for the foreseeable future.¶
References: #1740

	[orm] Added “version_id_generator” argument to Mapper, this is a
callable that, given the current value of the “version_id_col”,
returns the next version number. Can be used for alternate
versioning schemes such as uuid, timestamps.¶
References: #1692

	[orm] added “lockmode” kw argument to Session.refresh(), will
pass through the string value to Query the same as
in with_lockmode(), will also do version check for a
version_id_col-enabled mapping.¶

	[orm] Fixed bug whereby calling query(A).join(A.bs).add_entity(B)
in a joined inheritance scenario would double-add B as a
target and produce an invalid query.¶
References: #1188

	[orm] Fixed bug in session.rollback() which involved not removing
formerly “pending” objects from the session before
re-integrating “deleted” objects, typically occurred with
natural primary keys. If there was a primary key conflict
between them, the attach of the deleted would fail
internally. The formerly “pending” objects are now expunged
first.¶
References: #1674

	[orm] Removed a lot of logging that nobody really cares about,
logging that remains will respond to live changes in the
log level. No significant overhead is added.¶
References: #1719

	[orm] Fixed bug in session.merge() which prevented dict-like
collections from merging.¶

	[orm] session.merge() works with relations that specifically
don’t include “merge” in their cascade options - the target
is ignored completely.¶

	[orm] session.merge() will not expire existing scalar attributes
on an existing target if the target has a value for that
attribute, even if the incoming merged doesn’t have
a value for the attribute. This prevents unnecessary loads
on existing items. Will still mark the attr as expired
if the destination doesn’t have the attr, though, which
fulfills some contracts of deferred cols.¶
References: #1681

	[orm] The “allow_null_pks” flag is now called “allow_partial_pks”,
defaults to True, acts like it did in 0.5 again. Except,
it also is implemented within merge() such that a SELECT
won’t be issued for an incoming instance with partially
NULL primary key if the flag is False.¶
References: #1680

	[orm] Fixed bug in 0.6-reworked “many-to-one” optimizations
such that a many-to-one that is against a non-primary key
column on the remote table (i.e. foreign key against a
UNIQUE column) will pull the “old” value in from the
database during a change, since if it’s in the session
we will need it for proper history/backref accounting,
and we can’t pull from the local identity map on a
non-primary key column.¶
References: #1737

	[orm] fixed internal error which would occur if calling has()
or similar complex expression on a single-table inheritance
relation().¶
References: #1731

	[orm] query.one() no longer applies LIMIT to the query, this to
ensure that it fully counts all object identities present
in the result, even in the case where joins may conceal
multiple identities for two or more rows. As a bonus,
one() can now also be called with a query that issued
from_statement() to start with since it no longer modifies
the query.¶
References: #1688

	[orm] query.get() now returns None if queried for an identifier
that is present in the identity map with a different class
than the one requested, i.e. when using polymorphic loading.¶
References: #1727

	[orm] A major fix in query.join(), when the “on” clause is an
attribute of an aliased() construct, but there is already
an existing join made out to a compatible target, query properly
joins to the right aliased() construct instead of sticking
onto the right side of the existing join.¶
References: #1706

	[orm] Slight improvement to the fix for to not issue
needless updates of the primary key column during a so-called
“row switch” operation, i.e. add + delete of two objects
with the same PK.¶
References: #1362

	[orm] Now uses sqlalchemy.orm.exc.DetachedInstanceError when an
attribute load or refresh action fails due to object
being detached from any Session. UnboundExecutionError
is specific to engines bound to sessions and statements.¶

	[orm] Query called in the context of an expression will render
disambiguating labels in all cases. Note that this does
not apply to the existing .statement and .subquery()
accessor/method, which still honors the .with_labels()
setting that defaults to False.¶

	[orm] Query.union() retains disambiguating labels within the
returned statement, thus avoiding various SQL composition
errors which can result from column name conflicts.¶
References: #1676

	[orm] Fixed bug in attribute history that inadvertently invoked
__eq__ on mapped instances.¶

	[orm] Some internal streamlining of object loading grants a
small speedup for large results, estimates are around
10-15%. Gave the “state” internals a good solid
cleanup with less complexity, datamembers,
method calls, blank dictionary creates.¶

	[orm] Documentation clarification for query.delete()¶
References: #1689

	[orm] Fixed cascade bug in many-to-one relation() when attribute
was set to None, introduced in r6711 (cascade deleted
items into session during add()).¶

	[orm] Calling query.order_by() or query.distinct() before calling
query.select_from(), query.with_polymorphic(), or
query.from_statement() raises an exception now instead of
silently dropping those criterion.¶
References: #1736

	[orm] query.scalar() now raises an exception if more than one
row is returned. All other behavior remains the same.¶
References: #1735

	[orm] Fixed bug which caused “row switch” logic, that is an
INSERT and DELETE replaced by an UPDATE, to fail when
version_id_col was in use.¶
References: #1692

sql

	[sql] join() will now simulate a NATURAL JOIN by default. Meaning,
if the left side is a join, it will attempt to join the right
side to the rightmost side of the left first, and not raise
any exceptions about ambiguous join conditions if successful
even if there are further join targets across the rest of
the left.¶
References: #1714

	[sql] The most common result processors conversion function were
moved to the new “processors” module. Dialect authors are
encouraged to use those functions whenever they correspond
to their needs instead of implementing custom ones.¶

	[sql] SchemaType and subclasses Boolean, Enum are now serializable,
including their ddl listener and other event callables.¶
References: #1694, #1698

	[sql] Some platforms will now interpret certain literal values
as non-bind parameters, rendered literally into the SQL
statement. This to support strict SQL-92 rules that are
enforced by some platforms including MS-SQL and Sybase.
In this model, bind parameters aren’t allowed in the
columns clause of a SELECT, nor are certain ambiguous
expressions like ”?=?”. When this mode is enabled, the base
compiler will render the binds as inline literals, but only across
strings and numeric values. Other types such as dates
will raise an error, unless the dialect subclass defines
a literal rendering function for those. The bind parameter
must have an embedded literal value already or an error
is raised (i.e. won’t work with straight bindparam(‘x’)).
Dialects can also expand upon the areas where binds are not
accepted, such as within argument lists of functions
(which don’t work on MS-SQL when native SQL binding is used).¶

	[sql] Added “unicode_errors” parameter to String, Unicode, etc.
Behaves like the ‘errors’ keyword argument to
the standard library’s string.decode() functions. This flag
requires that convert_unicode is set to “force” - otherwise,
SQLAlchemy is not guaranteed to handle the task of unicode
conversion. Note that this flag adds significant performance
overhead to row-fetching operations for backends that already
return unicode objects natively (which most DBAPIs do). This
flag should only be used as an absolute last resort for reading
strings from a column with varied or corrupted encodings,
which only applies to databases that accept invalid encodings
in the first place (i.e. MySQL. not PG, Sqlite, etc.)¶

	[sql] Added math negation operator support, -x.¶

	[sql] FunctionElement subclasses are now directly executable the
same way any func.foo() construct is, with automatic
SELECT being applied when passed to execute().¶

	[sql] The “type” and “bind” keyword arguments of a func.foo()
construct are now local to “func.” constructs and are
not part of the FunctionElement base class, allowing
a “type” to be handled in a custom constructor or
class-level variable.¶

	[sql] Restored the keys() method to ResultProxy.¶

	[sql] The type/expression system now does a more complete job
of determining the return type from an expression
as well as the adaptation of the Python operator into
a SQL operator, based on the full left/right/operator
of the given expression. In particular
the date/time/interval system created for Postgresql
EXTRACT in has now been generalized into
the type system. The previous behavior which often
occurred of an expression “column + literal” forcing
the type of “literal” to be the same as that of “column”
will now usually not occur - the type of
“literal” is first derived from the Python type of the
literal, assuming standard native Python types + date
types, before falling back to that of the known type
on the other side of the expression. If the
“fallback” type is compatible (i.e. CHAR from String),
the literal side will use that. TypeDecorator
types override this by default to coerce the “literal”
side unconditionally, which can be changed by implementing
the coerce_compared_value() method. Also part of.¶
References: #1647, #1683

	[sql] Made sqlalchemy.sql.expressions.Executable part of public
API, used for any expression construct that can be sent to
execute(). FunctionElement now inherits Executable so that
it gains execution_options(), which are also propagated
to the select() that’s generated within execute().
Executable in turn subclasses _Generative which marks
any ClauseElement that supports the @_generative
decorator - these may also become “public” for the benefit
of the compiler extension at some point.¶

	[sql] A change to the solution for - an end-user
defined bind parameter name that directly conflicts with
a column-named bind generated directly from the SET or
VALUES clause of an update/insert generates a compile error.
This reduces call counts and eliminates some cases where
undesirable name conflicts could still occur.¶
References: #1579

	[sql] Column() requires a type if it has no foreign keys (this is
not new). An error is now raised if a Column() has no type
and no foreign keys.¶
References: #1705

	[sql] the “scale” argument of the Numeric() type is honored when
coercing a returned floating point value into a string
on its way to Decimal - this allows accuracy to function
on SQLite, MySQL.¶
References: #1717

	[sql] the copy() method of Column now copies over uninitialized
“on table attach” events. Helps with the new declarative
“mixin” capability.¶

mysql

	[mysql] Fixed reflection bug whereby when COLLATE was present,
nullable flag and server defaults would not be reflected.¶
References: #1655

	[mysql] Fixed reflection of TINYINT(1) “boolean” columns defined with
integer flags like UNSIGNED.¶

	[mysql] Further fixes for the mysql-connector dialect.¶
References: #1668

	[mysql] Composite PK table on InnoDB where the “autoincrement” column
isn’t first will emit an explicit “KEY” phrase within
CREATE TABLE thereby avoiding errors.¶
References: #1496

	[mysql] Added reflection/create table support for a wide range
of MySQL keywords.¶
References: #1634

	[mysql] Fixed import error which could occur reflecting tables on
a Windows host¶
References: #1580

sqlite

	[sqlite] Added “native_datetime=True” flag to create_engine().
This will cause the DATE and TIMESTAMP types to skip
all bind parameter and result row processing, under
the assumption that PARSE_DECLTYPES has been enabled
on the connection. Note that this is not entirely
compatible with the “func.current_date()”, which
will be returned as a string.¶
References: #1685

mssql

	[mssql] Re-established support for the pymssql dialect.¶

	[mssql] Various fixes for implicit returning, reflection,
etc. - the MS-SQL dialects aren’t quite complete
in 0.6 yet (but are close)¶

	[mssql] Added basic support for mxODBC.¶
References: #1710

	[mssql] Removed the text_as_varchar option.¶

oracle

	[oracle] “out” parameters require a type that is supported by
cx_oracle. An error will be raised if no cx_oracle
type can be found.¶

	[oracle] Oracle ‘DATE’ now does not perform any result processing,
as the DATE type in Oracle stores full date+time objects,
that’s what you’ll get. Note that the generic types.Date
type will still call value.date() on incoming values,
however. When reflecting a table, the reflected type
will be ‘DATE’.¶

	[oracle] Added preliminary support for Oracle’s WITH_UNICODE
mode. At the very least this establishes initial
support for cx_Oracle with Python 3. When WITH_UNICODE
mode is used in Python 2.xx, a large and scary warning
is emitted asking that the user seriously consider
the usage of this difficult mode of operation.¶
References: #1670

	[oracle] The except_() method now renders as MINUS on Oracle,
which is more or less equivalent on that platform.¶
References: #1712

	[oracle] Added support for rendering and reflecting
TIMESTAMP WITH TIME ZONE, i.e. TIMESTAMP(timezone=True).¶
References: #651

	[oracle] Oracle INTERVAL type can now be reflected.¶

misc

	[py3k] Improved the installation/test setup regarding Python 3,
now that Distribute runs on Py3k. distribute_setup.py
is now included. See README.py3k for Python 3 installation/
testing instructions.¶

	[engines] Added an optional C extension to speed up the sql layer by
reimplementing RowProxy and the most common result processors.
The actual speedups will depend heavily on your DBAPI and
the mix of datatypes used in your tables, and can vary from
a 30% improvement to more than 200%. It also provides a modest
(~15-20%) indirect improvement to ORM speed for large queries.
Note that it is not built/installed by default.
See README for installation instructions.¶

	[engines] the execution sequence pulls all rowcount/last inserted ID
info from the cursor before commit() is called on the
DBAPI connection in an “autocommit” scenario. This helps
mxodbc with rowcount and is probably a good idea overall.¶

	[engines] Opened up logging a bit such that isEnabledFor() is called
more often, so that changes to the log level for engine/pool
will be reflected on next connect. This adds a small
amount of method call overhead. It’s negligible and will make
life a lot easier for all those situations when logging
just happens to be configured after create_engine() is called.¶
References: #1719

	[engines] The assert_unicode flag is deprecated. SQLAlchemy will raise
a warning in all cases where it is asked to encode a non-unicode
Python string, as well as when a Unicode or UnicodeType type
is explicitly passed a bytestring. The String type will do nothing
for DBAPIs that already accept Python unicode objects.¶

	[engines] Bind parameters are sent as a tuple instead of a list. Some
backend drivers will not accept bind parameters as a list.¶

	[engines] threadlocal engine wasn’t properly closing the connection
upon close() - fixed that.¶

	[engines] Transaction object doesn’t rollback or commit if it isn’t
“active”, allows more accurate nesting of begin/rollback/commit.¶

	[engines] Python unicode objects as binds result in the Unicode type,
not string, thus eliminating a certain class of unicode errors
on drivers that don’t support unicode binds.¶

	[engines] Added “logging_name” argument to create_engine(), Pool() constructor
as well as “pool_logging_name” argument to create_engine() which
filters down to that of Pool. Issues the given string name
within the “name” field of logging messages instead of the default
hex identifier string.¶
References: #1555

	[engines] The visit_pool() method of Dialect is removed, and replaced with
on_connect(). This method returns a callable which receives
the raw DBAPI connection after each one is created. The callable
is assembled into a first_connect/connect pool listener by the
connection strategy if non-None. Provides a simpler interface
for dialects.¶

	[engines] StaticPool now initializes, disposes and recreates without
opening a new connection - the connection is only opened when
first requested. dispose() also works on AssertionPool now.¶
References: #1728

	[ticket: 1673] [metadata] Added the ability to strip schema information when using
“tometadata” by passing “schema=None” as an argument. If schema
is not specified then the table’s schema is retained.¶

	[declarative] DeclarativeMeta exclusively uses cls.__dict__ (not dict_)
as the source of class information; _as_declarative exclusively
uses the dict_ passed to it as the source of class information
(which when using DeclarativeMeta is cls.__dict__). This should
in theory make it easier for custom metaclasses to modify
the state passed into _as_declarative.¶

	[declarative] declarative now accepts mixin classes directly, as a means
to provide common functional and column-based elements on
all subclasses, as well as a means to propagate a fixed
set of __table_args__ or __mapper_args__ to subclasses.
For custom combinations of __table_args__/__mapper_args__ from
an inherited mixin to local, descriptors can now be used.
New details are all up in the Declarative documentation.
Thanks to Chris Withers for putting up with my strife
on this.¶
References: #1707

	[declarative] the __mapper_args__ dict is copied when propagating to a subclass,
and is taken straight off the class __dict__ to avoid any
propagation from the parent. mapper inheritance already
propagates the things you want from the parent mapper.¶
References: #1393

	[declarative] An exception is raised when a single-table subclass specifies
a column that is already present on the base class.¶
References: #1732

	[sybase] Implemented a preliminary working dialect for Sybase,
with sub-implementations for Python-Sybase as well
as Pyodbc. Handles table
creates/drops and basic round trip functionality.
Does not yet include reflection or comprehensive
support of unicode/special expressions/etc.¶

	[examples] Changed the beaker cache example a bit to have a separate
RelationCache option for lazyload caching. This object
does a lookup among any number of potential attributes
more efficiently by grouping several into a common structure.
Both FromCache and RelationCache are simpler individually.¶

	[documentation] Major cleanup work in the docs to link class, function, and
method names into the API docs.¶
References: #1700

0.6beta1

Released: Wed Feb 03 2010
orm

	[orm]

	Changes to query.update() and query.delete():

	
	the ‘expire’ option on query.update() has been renamed to
‘fetch’, thus matching that of query.delete().
‘expire’ is deprecated and issues a warning.

	query.update() and query.delete() both default to
‘evaluate’ for the synchronize strategy.

	the ‘synchronize’ strategy for update() and delete()
raises an error on failure. There is no implicit fallback
onto “fetch”. Failure of evaluation is based on the
structure of criteria, so success/failure is deterministic
based on code structure.

¶

	[orm]

	Enhancements on many-to-one relations:

	
	many-to-one relations now fire off a lazyload in fewer
cases, including in most cases will not fetch the “old”
value when a new one is replaced.

	many-to-one relation to a joined-table subclass now uses
get() for a simple load (known as the “use_get”
condition), i.e. Related->Sub(Base), without the need to
redefine the primaryjoin condition in terms of the base
table.

	specifying a foreign key with a declarative column, i.e.
ForeignKey(MyRelatedClass.id) doesn’t break the “use_get”
condition from taking place

	relation(), eagerload(), and eagerload_all() now feature
an option called “innerjoin”. Specify True or False to
control whether an eager join is constructed as an INNER
or OUTER join. Default is False as always. The mapper
options will override whichever setting is specified on
relation(). Should generally be set for many-to-one, not
nullable foreign key relations to allow improved join
performance.

	the behavior of eagerloading such that the main query is
wrapped in a subquery when LIMIT/OFFSET are present now
makes an exception for the case when all eager loads are
many-to-one joins. In those cases, the eager joins are
against the parent table directly along with the
limit/offset without the extra overhead of a subquery,
since a many-to-one join does not add rows to the result.

¶
References: #1186, #1492, #1544

	[orm] Enhancements / Changes on Session.merge():¶

	[orm] the “dont_load=True” flag on Session.merge() is deprecated
and is now “load=False”.¶

	[orm] Session.merge() is performance optimized, using half the
call counts for “load=False” mode compared to 0.5 and
significantly fewer SQL queries in the case of collections
for “load=True” mode.¶

	[orm] merge() will not issue a needless merge of attributes if the
given instance is the same instance which is already present.¶

	[orm] merge() now also merges the “options” associated with a given
state, i.e. those passed through query.options() which follow
along with an instance, such as options to eagerly- or
lazyily- load various attributes. This is essential for
the construction of highly integrated caching schemes. This
is a subtle behavioral change vs. 0.5.¶

	[orm] A bug was fixed regarding the serialization of the “loader
path” present on an instance’s state, which is also necessary
when combining the usage of merge() with serialized state
and associated options that should be preserved.¶

	[orm] The all new merge() is showcased in a new comprehensive
example of how to integrate Beaker with SQLAlchemy. See
the notes in the “examples” note below.¶

	[orm] Primary key values can now be changed on a joined-table inheritance
object, and ON UPDATE CASCADE will be taken into account when
the flush happens. Set the new “passive_updates” flag to False
on mapper() when using SQLite or MySQL/MyISAM.¶
References: #1362

	[orm] flush() now detects when a primary key column was updated by
an ON UPDATE CASCADE operation from another primary key, and
can then locate the row for a subsequent UPDATE on the new PK
value. This occurs when a relation() is there to establish
the relationship as well as passive_updates=True.¶
References: #1671

	[orm] the “save-update” cascade will now cascade the pending removed
values from a scalar or collection attribute into the new session
during an add() operation. This so that the flush() operation
will also delete or modify rows of those disconnected items.¶

	[orm] Using a “dynamic” loader with a “secondary” table now produces
a query where the “secondary” table is not aliased. This
allows the secondary Table object to be used in the “order_by”
attribute of the relation(), and also allows it to be used
in filter criterion against the dynamic relation.¶
References: #1531

	[orm] relation() with uselist=False will emit a warning when
an eager or lazy load locates more than one valid value for
the row. This may be due to primaryjoin/secondaryjoin
conditions which aren’t appropriate for an eager LEFT OUTER
JOIN or for other conditions.¶
References: #1643

	[orm] an explicit check occurs when a synonym() is used with
map_column=True, when a ColumnProperty (deferred or otherwise)
exists separately in the properties dictionary sent to mapper
with the same keyname. Instead of silently replacing
the existing property (and possible options on that property),
an error is raised.¶
References: #1633

	[orm] a “dynamic” loader sets up its query criterion at construction
time so that the actual query is returned from non-cloning
accessors like “statement”.¶

	[orm] the “named tuple” objects returned when iterating a
Query() are now pickleable.¶

	[orm] mapping to a select() construct now requires that you
make an alias() out of it distinctly. This to eliminate
confusion over such issues as¶
References: #1542

	[orm] query.join() has been reworked to provide more consistent
behavior and more flexibility (includes)¶
References: #1537

	[orm] query.select_from() accepts multiple clauses to produce
multiple comma separated entries within the FROM clause.
Useful when selecting from multiple-homed join() clauses.¶

	[orm] query.select_from() also accepts mapped classes, aliased()
constructs, and mappers as arguments. In particular this
helps when querying from multiple joined-table classes to ensure
the full join gets rendered.¶

	[orm] query.get() can be used with a mapping to an outer join
where one or more of the primary key values are None.¶
References: #1135

	[orm] query.from_self(), query.union(), others which do a
“SELECT * from (SELECT...)” type of nesting will do
a better job translating column expressions within the subquery
to the columns clause of the outer query. This is
potentially backwards incompatible with 0.5, in that this
may break queries with literal expressions that do not have labels
applied (i.e. literal(‘foo’), etc.)¶
References: #1568

	[orm] relation primaryjoin and secondaryjoin now check that they
are column-expressions, not just clause elements. this prohibits
things like FROM expressions being placed there directly.¶
References: #1622

	[orm] expression.null() is fully understood the same way
None is when comparing an object/collection-referencing
attribute within query.filter(), filter_by(), etc.¶
References: #1415

	[orm] added “make_transient()” helper function which transforms a
persistent/ detached instance into a transient one (i.e.
deletes the instance_key and removes from any session.)¶
References: #1052

	[orm] the allow_null_pks flag on mapper() is deprecated, and
the feature is turned “on” by default. This means that
a row which has a non-null value for any of its primary key
columns will be considered an identity. The need for this
scenario typically only occurs when mapping to an outer join.¶
References: #1339

	[orm] the mechanics of “backref” have been fully merged into the
finer grained “back_populates” system, and take place entirely
within the _generate_backref() method of RelationProperty. This
makes the initialization procedure of RelationProperty
simpler and allows easier propagation of settings (such as from
subclasses of RelationProperty) into the reverse reference.
The internal BackRef() is gone and backref() returns a plain
tuple that is understood by RelationProperty.¶

	[orm] The version_id_col feature on mapper() will raise a warning when
used with dialects that don’t support “rowcount” adequately.¶
References: #1569

	[orm] added “execution_options()” to Query, to so options can be
passed to the resulting statement. Currently only
Select-statements have these options, and the only option
used is “stream_results”, and the only dialect which knows
“stream_results” is psycopg2.¶

	[orm] Query.yield_per() will set the “stream_results” statement
option automatically.¶

	[orm]

	Deprecated or removed:

	
	‘allow_null_pks’ flag on mapper() is deprecated. It does
nothing now and the setting is “on” in all cases.

	‘transactional’ flag on sessionmaker() and others is
removed. Use ‘autocommit=True’ to indicate ‘transactional=False’.

	‘polymorphic_fetch’ argument on mapper() is removed.
Loading can be controlled using the ‘with_polymorphic’
option.

	‘select_table’ argument on mapper() is removed. Use
‘with_polymorphic=(“*”, <some selectable>)’ for this
functionality.

	‘proxy’ argument on synonym() is removed. This flag
did nothing throughout 0.5, as the “proxy generation”
behavior is now automatic.

	Passing a single list of elements to eagerload(),
eagerload_all(), contains_eager(), lazyload(),
defer(), and undefer() instead of multiple positional
*args is deprecated.

	Passing a single list of elements to query.order_by(),
query.group_by(), query.join(), or query.outerjoin()
instead of multiple positional *args is deprecated.

	query.iterate_instances() is removed. Use query.instances().

	Query.query_from_parent() is removed. Use the
sqlalchemy.orm.with_parent() function to produce a
“parent” clause, or alternatively query.with_parent().

	query._from_self() is removed, use query.from_self()
instead.

	the “comparator” argument to composite() is removed.
Use “comparator_factory”.

	RelationProperty._get_join() is removed.

	the ‘echo_uow’ flag on Session is removed. Use
logging on the “sqlalchemy.orm.unitofwork” name.

	session.clear() is removed. use session.expunge_all().

	session.save(), session.update(), session.save_or_update()
are removed. Use session.add() and session.add_all().

	the “objects” flag on session.flush() remains deprecated.

	the “dont_load=True” flag on session.merge() is deprecated
in favor of “load=False”.

	ScopedSession.mapper remains deprecated. See the
usage recipe at
http://www.sqlalchemy.org/trac/wiki/UsageRecipes/SessionAwareMapper

	passing an InstanceState (internal SQLAlchemy state object) to
attributes.init_collection() or attributes.get_history() is
deprecated. These functions are public API and normally
expect a regular mapped object instance.

	the ‘engine’ parameter to declarative_base() is removed.
Use the ‘bind’ keyword argument.

¶

sql

	[sql] the “autocommit” flag on select() and text() as well
as select().autocommit() are deprecated - now call
.execution_options(autocommit=True) on either of those
constructs, also available directly on Connection and orm.Query.¶

	[sql] the autoincrement flag on column now indicates the column
which should be linked to cursor.lastrowid, if that method
is used. See the API docs for details.¶

	[sql] an executemany() now requires that all bound parameter
sets require that all keys are present which are
present in the first bound parameter set. The structure
and behavior of an insert/update statement is very much
determined by the first parameter set, including which
defaults are going to fire off, and a minimum of
guesswork is performed with all the rest so that performance
is not impacted. For this reason defaults would otherwise
silently “fail” for missing parameters, so this is now guarded
against.¶
References: #1566

	[sql] returning() support is native to insert(), update(),
delete(). Implementations of varying levels of
functionality exist for Postgresql, Firebird, MSSQL and
Oracle. returning() can be called explicitly with column
expressions which are then returned in the resultset,
usually via fetchone() or first().
insert() constructs will also use RETURNING implicitly to
get newly generated primary key values, if the database
version in use supports it (a version number check is
performed). This occurs if no end-user returning() was
specified.

¶

	[sql] union(), intersect(), except() and other “compound” types
of statements have more consistent behavior w.r.t.
parenthesizing. Each compound element embedded within
another will now be grouped with parenthesis - previously,
the first compound element in the list would not be grouped,
as SQLite doesn’t like a statement to start with
parenthesis. However, Postgresql in particular has
precedence rules regarding INTERSECT, and it is
more consistent for parenthesis to be applied equally
to all sub-elements. So now, the workaround for SQLite
is also what the workaround for PG was previously -
when nesting compound elements, the first one usually needs
”.alias().select()” called on it to wrap it inside
of a subquery.¶
References: #1665

	[sql] insert() and update() constructs can now embed bindparam()
objects using names that match the keys of columns. These
bind parameters will circumvent the usual route to those
keys showing up in the VALUES or SET clause of the generated
SQL.¶
References: #1579

	[sql] the Binary type now returns data as a Python string
(or a “bytes” type in Python 3), instead of the built-
in “buffer” type. This allows symmetric round trips
of binary data.¶
References: #1524

	[sql] Added a tuple_() construct, allows sets of expressions
to be compared to another set, typically with IN against
composite primary keys or similar. Also accepts an
IN with multiple columns. The “scalar select can
have only one column” error message is removed - will
rely upon the database to report problems with
col mismatch.¶

	[sql] User-defined “default” and “onupdate” callables which
accept a context should now call upon
“context.current_parameters” to get at the dictionary
of bind parameters currently being processed. This
dict is available in the same way regardless of
single-execute or executemany-style statement execution.¶

	[sql] multi-part schema names, i.e. with dots such as
“dbo.master”, are now rendered in select() labels
with underscores for dots, i.e. “dbo_master_table_column”.
This is a “friendly” label that behaves better
in result sets.¶
References: #1428

	[sql] removed needless “counter” behavior with select()
labelnames that match a column name in the table,
i.e. generates “tablename_id” for “id”, instead of
“tablename_id_1” in an attempt to avoid naming
conflicts, when the table has a column actually
named “tablename_id” - this is because
the labeling logic is always applied to all columns
so a naming conflict will never occur.¶

	[sql] calling expr.in_([]), i.e. with an empty list, emits a warning
before issuing the usual “expr != expr” clause. The
“expr != expr” can be very expensive, and it’s preferred
that the user not issue in_() if the list is empty,
instead simply not querying, or modifying the criterion
as appropriate for more complex situations.¶
References: #1628

	[sql] Added “execution_options()” to select()/text(), which set the
default options for the Connection. See the note in “engines”.¶

	[sql]

	Deprecated or removed:

	
	“scalar” flag on select() is removed, use
select.as_scalar().

	“shortname” attribute on bindparam() is removed.

	postgres_returning, firebird_returning flags on
insert(), update(), delete() are deprecated, use
the new returning() method.

	fold_equivalents flag on join is deprecated (will remain
until is implemented)

¶
References: #1131

schema

	[schema] the __contains__() method of MetaData now accepts
strings or Table objects as arguments. If given
a Table, the argument is converted to table.key first,
i.e. “[schemaname.]<tablename>”¶
References: #1541

	[schema] deprecated MetaData.connect() and
ThreadLocalMetaData.connect() have been removed - send
the “bind” attribute to bind a metadata.¶

	[schema] deprecated metadata.table_iterator() method removed (use
sorted_tables)¶

	[schema] deprecated PassiveDefault - use DefaultClause.¶

	[schema] the “metadata” argument is removed from DefaultGenerator
and subclasses, but remains locally present on Sequence,
which is a standalone construct in DDL.¶

	[schema] Removed public mutability from Index and Constraint
objects:

	ForeignKeyConstraint.append_element()

	Index.append_column()

	UniqueConstraint.append_column()

	PrimaryKeyConstraint.add()

	PrimaryKeyConstraint.remove()

These should be constructed declaratively (i.e. in one
construction).

¶

	[schema] The “start” and “increment” attributes on Sequence now
generate “START WITH” and “INCREMENT BY” by default,
on Oracle and Postgresql. Firebird doesn’t support
these keywords right now.¶
References: #1545

	[schema] UniqueConstraint, Index, PrimaryKeyConstraint all accept
lists of column names or column objects as arguments.¶

	[schema]

	Other removed things:

	
	Table.key (no idea what this was for)

	Table.primary_key is not assignable - use
table.append_constraint(PrimaryKeyConstraint(...))

	Column.bind (get via column.table.bind)

	Column.metadata (get via column.table.metadata)

	Column.sequence (use column.default)

	ForeignKey(constraint=some_parent) (is now private _constraint)

¶

	[schema] The use_alter flag on ForeignKey is now a shortcut option
for operations that can be hand-constructed using the
DDL() event system. A side effect of this refactor is
that ForeignKeyConstraint objects with use_alter=True
will not be emitted on SQLite, which does not support
ALTER for foreign keys.¶

	[schema] ForeignKey and ForeignKeyConstraint objects now correctly
copy() all their public keyword arguments.¶
References: #1605

postgresql

	[postgresql] New dialects: pg8000, zxjdbc, and pypostgresql
on py3k.¶

	[postgresql] The “postgres” dialect is now named “postgresql” !
Connection strings look like:

postgresql://scott:tiger@localhost/test
postgresql+pg8000://scott:tiger@localhost/test

The “postgres” name remains for backwards compatibility
in the following ways:

	There is a “postgres.py” dummy dialect which
allows old URLs to work, i.e.
postgres://scott:tiger@localhost/test

	The “postgres” name can be imported from the old
“databases” module, i.e. “from
sqlalchemy.databases import postgres” as well as
“dialects”, “from sqlalchemy.dialects.postgres
import base as pg”, will send a deprecation
warning.

	Special expression arguments are now named
“postgresql_returning” and “postgresql_where”, but
the older “postgres_returning” and
“postgres_where” names still work with a
deprecation warning.

¶

	[postgresql] “postgresql_where” now accepts SQL expressions which
can also include literals, which will be quoted as needed.¶

	[postgresql] The psycopg2 dialect now uses psycopg2’s “unicode extension”
on all new connections, which allows all String/Text/etc.
types to skip the need to post-process bytestrings into
unicode (an expensive step due to its volume). Other
dialects which return unicode natively (pg8000, zxjdbc)
also skip unicode post-processing.¶

	[postgresql] Added new ENUM type, which exists as a schema-level
construct and extends the generic Enum type. Automatically
associates itself with tables and their parent metadata
to issue the appropriate CREATE TYPE/DROP TYPE
commands as needed, supports unicode labels, supports
reflection.¶
References: #1511

	[postgresql] INTERVAL supports an optional “precision” argument
corresponding to the argument that PG accepts.¶

	[postgresql] using new dialect.initialize() feature to set up
version-dependent behavior.¶

	[postgresql] somewhat better support for % signs in table/column names;
psycopg2 can’t handle a bind parameter name of
%(foobar)s however and SQLA doesn’t want to add overhead
just to treat that one non-existent use case.¶
References: #1279

	[postgresql] Inserting NULL into a primary key + foreign key column
will allow the “not null constraint” error to raise,
not an attempt to execute a nonexistent “col_id_seq”
sequence.¶
References: #1516

	[postgresql] autoincrement SELECT statements, i.e. those which
select from a procedure that modifies rows, now work
with server-side cursor mode (the named cursor isn’t
used for such statements.)¶

	[postgresql] postgresql dialect can properly detect pg “devel” version
strings, i.e. “8.5devel”¶
References: #1636

	[postgresql] The psycopg2 now respects the statement option
“stream_results”. This option overrides the connection setting
“server_side_cursors”. If true, server side cursors will be
used for the statement. If false, they will not be used, even
if “server_side_cursors” is true on the
connection.¶
References: #1619

mysql

	[mysql] New dialects: oursql, a new native dialect,
MySQL Connector/Python, a native Python port of MySQLdb,
and of course zxjdbc on Jython.¶

	[mysql] VARCHAR/NVARCHAR will not render without a length, raises
an error before passing to MySQL. Doesn’t impact
CAST since VARCHAR is not allowed in MySQL CAST anyway,
the dialect renders CHAR/NCHAR in those cases.¶

	[mysql] all the _detect_XXX() functions now run once underneath
dialect.initialize()¶

	[mysql] somewhat better support for % signs in table/column names;
MySQLdb can’t handle % signs in SQL when executemany() is used,
and SQLA doesn’t want to add overhead just to treat that one
non-existent use case.¶
References: #1279

	[mysql] the BINARY and MSBinary types now generate “BINARY” in all
cases. Omitting the “length” parameter will generate
“BINARY” with no length. Use BLOB to generate an unlengthed
binary column.¶

	[mysql] the “quoting=’quoted’” argument to MSEnum/ENUM is deprecated.
It’s best to rely upon the automatic quoting.¶

	[mysql] ENUM now subclasses the new generic Enum type, and also handles
unicode values implicitly, if the given labelnames are unicode
objects.¶

	[mysql] a column of type TIMESTAMP now defaults to NULL if
“nullable=False” is not passed to Column(), and no default
is present. This is now consistent with all other types,
and in the case of TIMESTAMP explicitly renders “NULL”
due to MySQL’s “switching” of default nullability
for TIMESTAMP columns.¶
References: #1539

sqlite

	[sqlite] DATE, TIME and DATETIME types can now take optional storage_format
and regexp argument. storage_format can be used to store those types
using a custom string format. regexp allows to use a custom regular
expression to match string values from the database.¶

	[sqlite] Time and DateTime types now use by a default a stricter regular
expression to match strings from the database. Use the regexp
argument if you are using data stored in a legacy format.¶

	[sqlite] __legacy_microseconds__ on SQLite Time and DateTime types is not
supported anymore. You should use the storage_format argument
instead.¶

	[sqlite] Date, Time and DateTime types are now stricter in what they accept as
bind parameters: Date type only accepts date objects (and datetime
ones, because they inherit from date), Time only accepts time
objects, and DateTime only accepts date and datetime objects.¶

	[sqlite] Table() supports a keyword argument “sqlite_autoincrement”, which
applies the SQLite keyword “AUTOINCREMENT” to the single integer
primary key column when generating DDL. Will prevent generation of
a separate PRIMARY KEY constraint.¶
References: #1016

mssql

	[mssql] MSSQL + Pyodbc + FreeTDS now works for the most part,
with possible exceptions regarding binary data as well as
unicode schema identifiers.¶

	[mssql] the “has_window_funcs” flag is removed. LIMIT/OFFSET
usage will use ROW NUMBER as always, and if on an older
version of SQL Server, the operation fails. The behavior
is exactly the same except the error is raised by SQL
server instead of the dialect, and no flag setting is
required to enable it.¶

	[mssql] the “auto_identity_insert” flag is removed. This feature
always takes effect when an INSERT statement overrides a
column that is known to have a sequence on it. As with
“has_window_funcs”, if the underlying driver doesn’t
support this, then you can’t do this operation in any
case, so there’s no point in having a flag.¶

	[mssql] using new dialect.initialize() feature to set up
version-dependent behavior.¶

	[mssql] removed references to sequence which is no longer used.
implicit identities in mssql work the same as implicit
sequences on any other dialects. Explicit sequences are
enabled through the use of “default=Sequence()”. See
the MSSQL dialect documentation for more information.¶

oracle

	[oracle] unit tests pass 100% with cx_oracle !¶

	[oracle] support for cx_Oracle’s “native unicode” mode which does
not require NLS_LANG to be set. Use the latest 5.0.2 or
later of cx_oracle.¶

	[oracle] an NCLOB type is added to the base types.¶

	[oracle] use_ansi=False won’t leak into the FROM/WHERE clause of
a statement that’s selecting from a subquery that also
uses JOIN/OUTERJOIN.¶

	[oracle] added native INTERVAL type to the dialect. This supports
only the DAY TO SECOND interval type so far due to lack
of support in cx_oracle for YEAR TO MONTH.¶
References: #1467

	[oracle] usage of the CHAR type results in cx_oracle’s
FIXED_CHAR dbapi type being bound to statements.¶

	[oracle] the Oracle dialect now features NUMBER which intends
to act justlike Oracle’s NUMBER type. It is the primary
numeric type returned by table reflection and attempts
to return Decimal()/float/int based on the precision/scale
parameters.¶
References: #885

	[oracle] func.char_length is a generic function for LENGTH¶

	[oracle] ForeignKey() which includes onupdate=<value> will emit a
warning, not emit ON UPDATE CASCADE which is unsupported
by oracle¶

	[oracle] the keys() method of RowProxy() now returns the result
column names normalized to be SQLAlchemy case
insensitive names. This means they will be lower case for
case insensitive names, whereas the DBAPI would normally
return them as UPPERCASE names. This allows row keys() to
be compatible with further SQLAlchemy operations.¶

	[oracle] using new dialect.initialize() feature to set up
version-dependent behavior.¶

	[oracle] using types.BigInteger with Oracle will generate
NUMBER(19)¶
References: #1125

	[oracle] “case sensitivity” feature will detect an all-lowercase
case-sensitive column name during reflect and add
“quote=True” to the generated Column, so that proper
quoting is maintained.¶

firebird

	[firebird] the keys() method of RowProxy() now returns the result
column names normalized to be SQLAlchemy case
insensitive names. This means they will be lower case for
case insensitive names, whereas the DBAPI would normally
return them as UPPERCASE names. This allows row keys() to
be compatible with further SQLAlchemy operations.¶

	[firebird] using new dialect.initialize() feature to set up
version-dependent behavior.¶

	[firebird] “case sensitivity” feature will detect an all-lowercase
case-sensitive column name during reflect and add
“quote=True” to the generated Column, so that proper
quoting is maintained.¶

misc

	[release] [major] For the full set of feature descriptions, see
http://docs.sqlalchemy.org/en/latest/changelog/migration_06.html .
This document is a work in progress.¶

	[release] [major] All bug fixes and feature enhancements from the most
recent 0.5 version and below are also included within 0.6.¶

	[release] [major] Platforms targeted now include Python 2.4/2.5/2.6, Python
3.1, Jython2.5.¶

	[engines] transaction isolation level may be specified with
create_engine(... isolation_level=”...”); available on
postgresql and sqlite.¶
References: #443

	[engines] Connection has execution_options(), generative method
which accepts keywords that affect how the statement
is executed w.r.t. the DBAPI. Currently supports
“stream_results”, causes psycopg2 to use a server
side cursor for that statement, as well as
“autocommit”, which is the new location for the “autocommit”
option from select() and text(). select() and
text() also have .execution_options() as well as
ORM Query().¶

	[engines] fixed the import for entrypoint-driven dialects to
not rely upon silly tb_info trick to determine import
error status.¶
References: #1630

	[engines] added first() method to ResultProxy, returns first row and
closes result set immediately.¶

	[engines] RowProxy objects are now pickleable, i.e. the object returned
by result.fetchone(), result.fetchall() etc.¶

	[engines] RowProxy no longer has a close() method, as the row no longer
maintains a reference to the parent. Call close() on
the parent ResultProxy instead, or use autoclose.¶

	[engines] ResultProxy internals have been overhauled to greatly reduce
method call counts when fetching columns. Can provide a large
speed improvement (up to more than 100%) when fetching large
result sets. The improvement is larger when fetching columns
that have no type-level processing applied and when using
results as tuples (instead of as dictionaries). Many
thanks to Elixir’s Gaëtan de Menten for this dramatic
improvement !¶
References: #1586

	[engines] Databases which rely upon postfetch of “last inserted id”
to get at a generated sequence value (i.e. MySQL, MS-SQL)
now work correctly when there is a composite primary key
where the “autoincrement” column is not the first primary
key column in the table.¶

	[engines] the last_inserted_ids() method has been renamed to the
descriptor “inserted_primary_key”.¶

	[engines] setting echo=False on create_engine() now sets the loglevel
to WARN instead of NOTSET. This so that logging can be
disabled for a particular engine even if logging
for “sqlalchemy.engine” is enabled overall. Note that the
default setting of “echo” is None.¶
References: #1554

	[engines] ConnectionProxy now has wrapper methods for all transaction
lifecycle events, including begin(), rollback(), commit()
begin_nested(), begin_prepared(), prepare(), release_savepoint(),
etc.¶

	[engines] Connection pool logging now uses both INFO and DEBUG
log levels for logging. INFO is for major events such
as invalidated connections, DEBUG for all the acquire/return
logging. echo_pool can be False, None, True or “debug”
the same way as echo works.¶

	[engines] All pyodbc-dialects now support extra pyodbc-specific
kw arguments ‘ansi’, ‘unicode_results’, ‘autocommit’.¶
References: #1621

	[engines] the “threadlocal” engine has been rewritten and simplified
and now supports SAVEPOINT operations.¶

	[engines]

	deprecated or removed

	
	result.last_inserted_ids() is deprecated. Use
result.inserted_primary_key

	dialect.get_default_schema_name(connection) is now
public via dialect.default_schema_name.

	the “connection” argument from engine.transaction() and
engine.run_callable() is removed - Connection itself
now has those methods. All four methods accept
*args and **kwargs which are passed to the given callable,
as well as the operating connection.

¶

	[reflection/inspection] Table reflection has been expanded and generalized into
a new API called “sqlalchemy.engine.reflection.Inspector”.
The Inspector object provides fine-grained information about
a wide variety of schema information, with room for expansion,
including table names, column names, view definitions, sequences,
indexes, etc.¶

	[reflection/inspection] Views are now reflectable as ordinary Table objects. The same
Table constructor is used, with the caveat that “effective”
primary and foreign key constraints aren’t part of the reflection
results; these have to be specified explicitly if desired.¶

	[reflection/inspection] The existing autoload=True system now uses Inspector underneath
so that each dialect need only return “raw” data about tables
and other objects - Inspector is the single place that information
is compiled into Table objects so that consistency is at a maximum.¶

	[ddl] the DDL system has been greatly expanded. the DDL() class
now extends the more generic DDLElement(), which forms the basis
of many new constructs:

	CreateTable()

	DropTable()

	AddConstraint()

	DropConstraint()

	CreateIndex()

	DropIndex()

	CreateSequence()

	DropSequence()

These support “on” and “execute-at()” just like plain DDL()
does. User-defined DDLElement subclasses can be created and
linked to a compiler using the sqlalchemy.ext.compiler extension.

¶

	[ddl] The signature of the “on” callable passed to DDL() and
DDLElement() is revised as follows:

	ddl

	the DDLElement object itself

	event

	the string event name.

	target

	previously “schema_item”, the Table or MetaData object triggering the event.

	connection

	the Connection object in use for the operation.

	**kw

	keyword arguments. In the case of MetaData before/after
create/drop, the list of Table objects for which
CREATE/DROP DDL is to be issued is passed as the kw
argument “tables”. This is necessary for metadata-level
DDL that is dependent on the presence of specific tables.

	The “schema_item” attribute of DDL has been renamed to

	“target”.

¶

	[dialect] [refactor] Dialect modules are now broken into database dialects
plus DBAPI implementations. Connect URLs are now
preferred to be specified using dialect+driver://...,
i.e. “mysql+mysqldb://scott:tiger@localhost/test”. See
the 0.6 documentation for examples.¶

	[dialect] [refactor] the setuptools entrypoint for external dialects is now
called “sqlalchemy.dialects”.¶

	[dialect] [refactor] the “owner” keyword argument is removed from Table. Use
“schema” to represent any namespaces to be prepended to
the table name.¶

	[dialect] [refactor] server_version_info becomes a static attribute.¶

	[dialect] [refactor] dialects receive an initialize() event on initial
connection to determine connection properties.¶

	[dialect] [refactor] dialects receive a visit_pool event have an opportunity
to establish pool listeners.¶

	[dialect] [refactor] cached TypeEngine classes are cached per-dialect class
instead of per-dialect.¶

	[dialect] [refactor] new UserDefinedType should be used as a base class for
new types, which preserves the 0.5 behavior of
get_col_spec().¶

	[dialect] [refactor] The result_processor() method of all type classes now
accepts a second argument “coltype”, which is the DBAPI
type argument from cursor.description. This argument
can help some types decide on the most efficient processing
of result values.¶

	[dialect] [refactor] Deprecated Dialect.get_params() removed.¶

	[dialect] [refactor] Dialect.get_rowcount() has been renamed to a descriptor
“rowcount”, and calls cursor.rowcount directly. Dialects
which need to hardwire a rowcount in for certain calls
should override the method to provide different behavior.¶

	[dialect] [refactor] DefaultRunner and subclasses have been removed. The job
of this object has been simplified and moved into
ExecutionContext. Dialects which support sequences should
add a fire_sequence() method to their execution context
implementation.¶
References: #1566

	[dialect] [refactor] Functions and operators generated by the compiler now use
(almost) regular dispatch functions of the form
“visit_<opname>” and “visit_<funcname>_fn” to provide
customed processing. This replaces the need to copy the
“functions” and “operators” dictionaries in compiler
subclasses with straightforward visitor methods, and also
allows compiler subclasses complete control over
rendering, as the full _Function or _BinaryExpression
object is passed in.¶

	[types] The construction of types within dialects has been totally
overhauled. Dialects now define publically available types
as UPPERCASE names exclusively, and internal implementation
types using underscore identifiers (i.e. are private).
The system by which types are expressed in SQL and DDL
has been moved to the compiler system. This has the
effect that there are much fewer type objects within
most dialects. A detailed document on this architecture
for dialect authors is in
lib/sqlalchemy/dialects/type_migration_guidelines.txt .¶

	[types] Types no longer make any guesses as to default
parameters. In particular, Numeric, Float, NUMERIC,
FLOAT, DECIMAL don’t generate any length or scale unless
specified.¶

	[types] types.Binary is renamed to types.LargeBinary, it only
produces BLOB, BYTEA, or a similar “long binary” type.
New base BINARY and VARBINARY
types have been added to access these MySQL/MS-SQL specific
types in an agnostic way.¶
References: #1664

	[types] String/Text/Unicode types now skip the unicode() check
on each result column value if the dialect has
detected the DBAPI as returning Python unicode objects
natively. This check is issued on first connect
using “SELECT CAST ‘some text’ AS VARCHAR(10)” or
equivalent, then checking if the returned object
is a Python unicode. This allows vast performance
increases for native-unicode DBAPIs, including
pysqlite/sqlite3, psycopg2, and pg8000.¶

	[types] Most types result processors have been checked for possible speed
improvements. Specifically, the following generic types have been
optimized, resulting in varying speed improvements:
Unicode, PickleType, Interval, TypeDecorator, Binary.
Also the following dbapi-specific implementations have been improved:
Time, Date and DateTime on Sqlite, ARRAY on Postgresql,
Time on MySQL, Numeric(as_decimal=False) on MySQL, oursql and
pypostgresql, DateTime on cx_oracle and LOB-based types on cx_oracle.¶

	[types] Reflection of types now returns the exact UPPERCASE
type within types.py, or the UPPERCASE type within
the dialect itself if the type is not a standard SQL
type. This means reflection now returns more accurate
information about reflected types.¶

	[types] Added a new Enum generic type. Enum is a schema-aware object
to support databases which require specific DDL in order to
use enum or equivalent; in the case of PG it handles the
details of CREATE TYPE, and on other databases without
native enum support will by generate VARCHAR + an inline CHECK
constraint to enforce the enum.¶
References: #1511, #1109

	[types] The Interval type includes a “native” flag which controls
if native INTERVAL types (postgresql + oracle) are selected
if available, or not. “day_precision” and “second_precision”
arguments are also added which propagate as appropriately
to these native types. Related to.¶
References: #1467

	[types] The Boolean type, when used on a backend that doesn’t
have native boolean support, will generate a CHECK
constraint “col IN (0, 1)” along with the int/smallint-
based column type. This can be switched off if
desired with create_constraint=False.
Note that MySQL has no native boolean or CHECK constraint
support so this feature isn’t available on that platform.¶
References: #1589

	[types] PickleType now uses == for comparison of values when
mutable=True, unless the “comparator” argument with a
comparsion function is specified to the type. Objects
being pickled will be compared based on identity (which
defeats the purpose of mutable=True) if __eq__() is not
overridden or a comparison function is not provided.¶

	[types] The default “precision” and “scale” arguments of Numeric
and Float have been removed and now default to None.
NUMERIC and FLOAT will be rendered with no numeric
arguments by default unless these values are provided.¶

	[types] AbstractType.get_search_list() is removed - the games
that was used for are no longer necessary.¶

	[types] Added a generic BigInteger type, compiles to
BIGINT or NUMBER(19).¶
References: #1125

	[types] sqlsoup has been overhauled to explicitly support an 0.5 style
session, using autocommit=False, autoflush=True. Default
behavior of SQLSoup now requires the usual usage of commit()
and rollback(), which have been added to its interface. An
explcit Session or scoped_session can be passed to the
constructor, allowing these arguments to be overridden.¶

	[types] sqlsoup db.<sometable>.update() and delete() now call
query(cls).update() and delete(), respectively.¶

	[types] sqlsoup now has execute() and connection(), which call upon
the Session methods of those names, ensuring that the bind is
in terms of the SqlSoup object’s bind.¶

	[types] sqlsoup objects no longer have the ‘query’ attribute - it’s
not needed for sqlsoup’s usage paradigm and it gets in the
way of a column that is actually named ‘query’.¶

	[types] The signature of the proxy_factory callable passed to
association_proxy is now (lazy_collection, creator,
value_attr, association_proxy), adding a fourth argument
that is the parent AssociationProxy argument. Allows
serializability and subclassing of the built in collections.¶
References: #1259

	[types] association_proxy now has basic comparator methods .any(),
.has(), .contains(), ==, !=, thanks to Scott Torborg.¶
References: #1372

0.5 Changelog

0.5.9

no release date
sql

	[sql] Fixed erroneous self_group() call in expression package.¶
References: #1661

0.5.8

Released: Sat Jan 16 2010
sql

	[sql] The copy() method on Column now supports uninitialized,
unnamed Column objects. This allows easy creation of
declarative helpers which place common columns on multiple
subclasses.¶

	[sql] Default generators like Sequence() translate correctly
across a copy() operation.¶

	[sql] Sequence() and other DefaultGenerator objects are accepted
as the value for the “default” and “onupdate” keyword
arguments of Column, in addition to being accepted
positionally.¶

	[sql] Fixed a column arithmetic bug that affected column
correspondence for cloned selectables which contain
free-standing column expressions. This bug is
generally only noticeable when exercising newer
ORM behavior only available in 0.6 via,
but is more correct at the SQL expression level
as well.¶
References: #1568, #1617

postgresql

	[postgresql] The extract() function, which was slightly improved in
0.5.7, needed a lot more work to generate the correct
typecast (the typecasts appear to be necessary in PG’s
EXTRACT quite a lot of the time). The typecast is
now generated using a rule dictionary based
on PG’s documentation for date/time/interval arithmetic.
It also accepts text() constructs again, which was broken
in 0.5.7.¶
References: #1647

firebird

	[firebird] Recognize more errors as disconnections.¶
References: #1646

0.5.7

Released: Sat Dec 26 2009
orm

	[orm] contains_eager() now works with the automatically
generated subquery that results when you say
“query(Parent).join(Parent.somejoinedsubclass)”, i.e.
when Parent joins to a joined-table-inheritance subclass.
Previously contains_eager() would erroneously add the
subclass table to the query separately producing a
cartesian product. An example is in the ticket
description.¶
References: #1543

	[orm] query.options() now only propagate to loaded objects
for potential further sub-loads only for options where
such behavior is relevant, keeping
various unserializable options like those generated
by contains_eager() out of individual instance states.¶
References: #1553

	[orm] Session.execute() now locates table- and
mapper-specific binds based on a passed
in expression which is an insert()/update()/delete()
construct.¶
References: #1054

	[orm] Session.merge() now properly overwrites a many-to-one or
uselist=False attribute to None if the attribute
is also None in the given object to be merged.¶

	[orm] Fixed a needless select which would occur when merging
transient objects that contained a null primary key
identifier.¶
References: #1618

	[orm] Mutable collection passed to the “extension” attribute
of relation(), column_property() etc. will not be mutated
or shared among multiple instrumentation calls, preventing
duplicate extensions, such as backref populators,
from being inserted into the list.¶
References: #1585

	[orm] Fixed the call to get_committed_value() on CompositeProperty.¶
References: #1504

	[orm] Fixed bug where Query would crash if a join() with no clear
“left” side were called when a non-mapped column entity
appeared in the columns list.¶
References: #1602

	[orm] Fixed bug whereby composite columns wouldn’t load properly
when configured on a joined-table subclass, introduced in
version 0.5.6 as a result of the fix for. thx to Scott Torborg.¶
References: #1616, #1480

	[orm] The “use get” behavior of many-to-one relations, i.e. that a
lazy load will fallback to the possibly cached query.get()
value, now works across join conditions where the two compared
types are not exactly the same class, but share the same
“affinity” - i.e. Integer and SmallInteger. Also allows
combinations of reflected and non-reflected types to work
with 0.5 style type reflection, such as PGText/Text (note 0.6
reflects types as their generic versions).¶
References: #1556

	[orm] Fixed bug in query.update() when passing Cls.attribute
as keys in the value dict and using synchronize_session=’expire’
(‘fetch’ in 0.6).¶
References: #1436

sql

	[sql] Fixed bug in two-phase transaction whereby commit() method
didn’t set the full state which allows subsequent close()
call to succeed.¶
References: #1603

	[sql] Fixed the “numeric” paramstyle, which apparently is the
default paramstyle used by Informixdb.¶

	[sql] Repeat expressions in the columns clause of a select
are deduped based on the identity of each clause element,
not the actual string. This allows positional
elements to render correctly even if they all render
identically, such as “qmark” style bind parameters.¶
References: #1574

	[sql] The cursor associated with connection pool connections
(i.e. _CursorFairy) now proxies __iter__() to the
underlying cursor correctly.¶
References: #1632

	[sql] types now support an “affinity comparison” operation, i.e.
that an Integer/SmallInteger are “compatible”, or
a Text/String, PickleType/Binary, etc. Part of.¶
References: #1556

	[sql] Fixed bug preventing alias() of an alias() from being
cloned or adapted (occurs frequently in ORM operations).¶
References: #1641

postgresql

	[postgresql] Added support for reflecting the DOUBLE PRECISION type,
via a new postgres.PGDoublePrecision object.
This is postgresql.DOUBLE_PRECISION in 0.6.¶
References: #1085

	[postgresql] Added support for reflecting the INTERVAL YEAR TO MONTH
and INTERVAL DAY TO SECOND syntaxes of the INTERVAL
type.¶
References: #460

	[postgresql] Corrected the “has_sequence” query to take current schema,
or explicit sequence-stated schema, into account.¶
References: #1576

	[postgresql] Fixed the behavior of extract() to apply operator
precedence rules to the ”::” operator when applying
the “timestamp” cast - ensures proper parenthesization.¶
References: #1611

sqlite

	[sqlite] sqlite dialect properly generates CREATE INDEX for a table
that is in an alternate schema.¶
References: #1439

mssql

	[mssql] Changed the name of TrustedConnection to
Trusted_Connection when constructing pyodbc connect
arguments¶
References: #1561

oracle

	[oracle] The “table_names” dialect function, used by MetaData
.reflect(), omits “index overflow tables”, a system
table generated by Oracle when “index only tables”
with overflow are used. These tables aren’t accessible
via SQL and can’t be reflected.¶
References: #1637

misc

	[ext] A column can be added to a joined-table declarative
superclass after the class has been constructed
(i.e. via class-level attribute assignment), and
the column will be propagated down to
subclasses. This is the reverse
situation as that of, fixed in 0.5.6.¶
References: #1570, #1523

	[ext] Fixed a slight inaccuracy in the sharding example.
Comparing equivalence of columns in the ORM is best
accomplished using col1.shares_lineage(col2).¶
References: #1491

	[ext] Removed unused load() method from ShardedQuery.¶
References: #1606

0.5.6

Released: Sat Sep 12 2009
orm

	[orm] Fixed bug whereby inheritance discriminator part of a
composite primary key would fail on updates.
Continuation of.¶
References: #1300

	[orm] Fixed bug which disallowed one side of a many-to-many
bidirectional reference to declare itself as “viewonly”¶
References: #1507

	[orm] Added an assertion that prevents a @validates function
or other AttributeExtension from loading an unloaded
collection such that internal state may be corrupted.¶
References: #1526

	[orm] Fixed bug which prevented two entities from mutually
replacing each other’s primary key values within a single
flush() for some orderings of operations.¶
References: #1519

	[orm] Fixed an obscure issue whereby a joined-table subclass
with a self-referential eager load on the base class
would populate the related object’s “subclass” table with
data from the “subclass” table of the parent.¶
References: #1485

	[orm] relations() now have greater ability to be “overridden”,
meaning a subclass that explicitly specifies a relation()
overriding that of the parent class will be honored
during a flush. This is currently to support
many-to-many relations from concrete inheritance setups.
Outside of that use case, YMMV.¶
References: #1477

	[orm] Squeezed a few more unnecessary “lazy loads” out of
relation(). When a collection is mutated, many-to-one
backrefs on the other side will not fire off to load
the “old” value, unless “single_parent=True” is set.
A direct assignment of a many-to-one still loads
the “old” value in order to update backref collections
on that value, which may be present in the session
already, thus maintaining the 0.5 behavioral contract.¶
References: #1483

	[orm] Fixed bug whereby a load/refresh of joined table
inheritance attributes which were based on
column_property() or similar would fail to evaluate.¶
References: #1480

	[orm] Improved support for MapperProperty objects overriding
that of an inherited mapper for non-concrete
inheritance setups - attribute extensions won’t randomly
collide with each other.¶
References: #1488

	[orm] UPDATE and DELETE do not support ORDER BY, LIMIT, OFFSET,
etc. in standard SQL. Query.update() and Query.delete()
now raise an exception if any of limit(), offset(),
order_by(), group_by(), or distinct() have been
called.¶
References: #1487

	[orm] Added AttributeExtension to sqlalchemy.orm.__all__¶

	[orm] Improved error message when query() is called with
a non-SQL /entity expression.¶
References: #1476

	[orm] Using False or 0 as a polymorphic discriminator now
works on the base class as well as a subclass.¶
References: #1440

	[orm] Added enable_assertions(False) to Query which disables
the usual assertions for expected state - used
by Query subclasses to engineer custom state.. See
http://www.sqlalchemy.org/trac/wiki/UsageRecipes/PreFilteredQuery
for an example.¶
References: #1424

	[orm] Fixed recursion issue which occurred if a mapped object’s
__len__() or __nonzero__() method resulted in state
changes.¶
References: #1501

	[orm] Fixed incorrect exception raise in
Weak/StrongIdentityMap.add()¶
References: #1506

	[orm] Fixed the error message for “could not find a FROM clause”
in query.join() which would fail to issue correctly
if the query was against a pure SQL construct.¶
References: #1522

	[orm] Fixed a somewhat hypothetical issue which would result
in the wrong primary key being calculated for a mapper
using the old polymorphic_union function - but this
is old stuff.¶
References: #1486

sql

	[sql] Fixed column.copy() to copy defaults and onupdates.¶
References: #1373

	[sql] Fixed a bug in extract() introduced in 0.5.4 whereby
the string “field” argument was getting treated as a
ClauseElement, causing various errors within more
complex SQL transformations.¶

	[sql] Unary expressions such as DISTINCT propagate their
type handling to result sets, allowing conversions like
unicode and such to take place.¶
References: #1420

	[sql] Fixed bug in Table and Column whereby passing empty
dict for “info” argument would raise an exception.¶
References: #1482

oracle

	[oracle] Backported 0.6 fix for Oracle alias names not getting
truncated.¶
References: #1309

misc

	[ext] The collection proxies produced by associationproxy are now
pickleable. A user-defined proxy_factory however
is still not pickleable unless it defines __getstate__
and __setstate__.¶
References: #1446

	[ext] Declarative will raise an informative exception if
__table_args__ is passed as a tuple with no dict argument.
Improved documentation.¶
References: #1468

	[ext] Table objects declared in the MetaData can now be used
in string expressions sent to primaryjoin/secondaryjoin/
secondary - the name is pulled from the MetaData of the
declarative base.¶
References: #1527

	[ext] A column can be added to a joined-table subclass after
the class has been constructed (i.e. via class-level
attribute assignment). The column is added to the underlying
Table as always, but now the mapper will rebuild its
“join” to include the new column, instead of raising
an error about “no such column, use column_property()
instead”.¶
References: #1523

	[test] Added examples into the test suite so they get exercised
regularly and cleaned up a couple deprecation warnings.¶

0.5.5

Released: Mon Jul 13 2009
general

	[general] unit tests have been migrated from unittest to nose. See
README.unittests for information on how to run the tests.¶
References: #970

orm

	[orm] The “foreign_keys” argument of relation() will now propagate
automatically to the backref in the same way that primaryjoin
and secondaryjoin do. For the extremely rare use case where
the backref of a relation() has intentionally different
“foreign_keys” configured, both sides now need to be
configured explicitly (if they do in fact require this setting,
see the next note...).¶

	[orm] ...the only known (and really, really rare) use case where a
different foreign_keys setting was used on the
forwards/backwards side, a composite foreign key that
partially points to its own columns, has been enhanced such
that the fk->itself aspect of the relation won’t be used to
determine relation direction.¶

	[orm] Session.mapper is now deprecated.
Call session.add() if you’d like a free-standing object to be
part of your session. Otherwise, a DIY version of
Session.mapper is now documented at
http://www.sqlalchemy.org/trac/wiki/UsageRecipes/SessionAwareMapper
The method will remain deprecated throughout 0.6.

¶

	[orm] Fixed Query being able to join() from individual columns of a
joined-table subclass entity, i.e. query(SubClass.foo,
SubcClass.bar).join(<anything>). In most cases, an error
“Could not find a FROM clause to join from” would be
raised. In a few others, the result would be returned in terms
of the base class rather than the subclass - so applications
which relied on this erroneous result need to be
adjusted.¶
References: #1431

	[orm] Fixed a bug involving contains_eager(), which would apply
itself to a secondary (i.e. lazy) load in a particular rare
case, producing cartesian products. improved the targeting of
query.options() on secondary loads overall.¶
References: #1461

	[orm] Fixed bug introduced in 0.5.4 whereby Composite types fail
when default-holding columns are flushed.¶

	[orm] Fixed another 0.5.4 bug whereby mutable attributes
(i.e. PickleType) wouldn’t be deserialized correctly when the
whole object was serialized.¶
References: #1426

	[orm] Fixed bug whereby session.is_modified() would raise an
exception if any synonyms were in use.¶

	[orm] Fixed potential memory leak whereby previously pickled objects
placed back in a session would not be fully garbage collected
unless the Session were explicitly closed out.¶

	[orm] Fixed bug whereby list-based attributes, like pickletype and
PGArray, failed to be merged() properly.¶

	[orm] Repaired non-working attributes.set_committed_value function.¶

	[orm] Trimmed the pickle format for InstanceState which should
further reduce the memory footprint of pickled instances. The
format should be backwards compatible with that of 0.5.4 and
previous.¶

	[orm] sqlalchemy.orm.join and sqlalchemy.orm.outerjoin are now
added to __all__ in sqlalchemy.orm.*.¶
References: #1463

	[orm] Fixed bug where Query exception raise would fail when
a too-short composite primary key value were passed to
get().¶
References: #1458

sql

	[sql] Removed an obscure feature of execute() (including connection,
engine, Session) whereby a bindparam() construct can be sent
as a key to the params dictionary. This usage is undocumented
and is at the core of an issue whereby the bindparam() object
created implicitly by a text() construct may have the same
hash value as a string placed in the params dictionary and may
result in an inappropriate match when computing the final bind
parameters. Internal checks for this condition would add
significant latency to the critical task of parameter
rendering, so the behavior is removed. This is a backwards
incompatible change for any application that may have been
using this feature, however the feature has never been
documented.¶

misc

	[engine/pool] Implemented recreate() for StaticPool.¶

0.5.4p2

Released: Tue May 26 2009
sql

	[sql] Repaired the printing of SQL exceptions which are not
based on parameters or are not executemany() style.¶

postgresql

	[postgresql] Deprecated the hardcoded TIMESTAMP function, which when
used as func.TIMESTAMP(value) would render “TIMESTAMP value”.
This breaks on some platforms as PostgreSQL doesn’t allow
bind parameters to be used in this context. The hard-coded
uppercase is also inappropriate and there’s lots of other
PG casts that we’d need to support. So instead, use
text constructs i.e. select([“timestamp ‘12/05/09’”]).¶

0.5.4p1

Released: Mon May 18 2009
orm

	[orm] Fixed an attribute error introduced in 0.5.4 which would
occur when merge() was used with an incomplete object.¶

0.5.4

Released: Sun May 17 2009
orm

	[orm] Significant performance enhancements regarding Sessions/flush()
in conjunction with large mapper graphs, large numbers of
objects:

	Removed all* O(N) scanning behavior from the flush() process,
i.e. operations that were scanning the full session,
including an extremely expensive one that was erroneously
assuming primary key values were changing when this
was not the case.
	one edge case remains which may invoke a full scan,
if an existing primary key attribute is modified
to a new value.

	The Session’s “weak referencing” behavior is now full -
no strong references whatsoever are made to a mapped object
or related items/collections in its __dict__. Backrefs and
other cycles in objects no longer affect the Session’s ability
to lose all references to unmodified objects. Objects with
pending changes still are maintained strongly until flush.The implementation also improves performance by moving
the “resurrection” process of garbage collected items
to only be relevant for mappings that map “mutable”
attributes (i.e. PickleType, composite attrs). This removes
overhead from the gc process and simplifies internal
behavior.

If a “mutable” attribute change is the sole change on an object
which is then dereferenced, the mapper will not have access to
other attribute state when the UPDATE is issued. This may present
itself differently to some MapperExtensions.

The change also affects the internal attribute API, but not
the AttributeExtension interface nor any of the publically
documented attribute functions.

	The unit of work no longer genererates a graph of “dependency”
processors for the full graph of mappers during flush(), instead
creating such processors only for those mappers which represent
objects with pending changes. This saves a tremendous number
of method calls in the context of a large interconnected
graph of mappers.

	Cached a wasteful “table sort” operation that previously
occurred multiple times per flush, also removing significant
method call count from flush().

	Other redundant behaviors have been simplified in
mapper._save_obj().

¶
References: #1398

	[orm] Modified query_cls on DynamicAttributeImpl to accept a full
mixin version of the AppenderQuery, which allows subclassing
the AppenderMixin.¶

	[orm] The “polymorphic discriminator” column may be part of a
primary key, and it will be populated with the correct
discriminator value.¶
References: #1300

	[orm] Fixed the evaluator not being able to evaluate IS NULL clauses.¶

	[orm] Fixed the “set collection” function on “dynamic” relations to
initiate events correctly. Previously a collection could only
be assigned to a pending parent instance, otherwise modified
events would not be fired correctly. Set collection is now
compatible with merge(), fixes.¶
References: #1352

	[orm] Allowed pickling of PropertyOption objects constructed with
instrumented descriptors; previously, pickle errors would occur
when pickling an object which was loaded with a descriptor-based
option, such as query.options(eagerload(MyClass.foo)).¶

	[orm] Lazy loader will not use get() if the “lazy load” SQL clause
matches the clause used by get(), but contains some parameters
hardcoded. Previously the lazy strategy would fail with the
get(). Ideally get() would be used with the hardcoded
parameters but this would require further development.¶
References: #1357

	[orm] MapperOptions and other state associated with query.options()
is no longer bundled within callables associated with each
lazy/deferred-loading attribute during a load.
The options are now associated with the instance’s
state object just once when it’s populated. This removes
the need in most cases for per-instance/attribute loader
objects, improving load speed and memory overhead for
individual instances.¶
References: #1391

	[orm] Fixed another location where autoflush was interfering
with session.merge(). autoflush is disabled completely
for the duration of merge() now.¶
References: #1360

	[orm] Fixed bug which prevented “mutable primary key” dependency
logic from functioning properly on a one-to-one
relation().¶
References: #1406

	[orm] Fixed bug in relation(), introduced in 0.5.3,
whereby a self referential relation
from a base class to a joined-table subclass would
not configure correctly.¶

	[orm] Fixed obscure mapper compilation issue when inheriting
mappers are used which would result in un-initialized
attributes.¶

	[orm] Fixed documentation for session weak_identity_map -
the default value is True, indicating a weak
referencing map in use.¶

	[orm] Fixed a unit of work issue whereby the foreign
key attribute on an item contained within a collection
owned by an object being deleted would not be set to
None if the relation() was self-referential.¶
References: #1376

	[orm] Fixed Query.update() and Query.delete() failures with eagerloaded
relations.¶
References: #1378

	[orm] It is now an error to specify both columns of a binary primaryjoin
condition in the foreign_keys or remote_side collection. Whereas
previously it was just nonsensical, but would succeed in a
non-deterministic way.¶

sql

	[sql] Back-ported the “compiler” extension from SQLA 0.6. This
is a standardized interface which allows the creation of custom
ClauseElement subclasses and compilers. In particular it’s
handy as an alternative to text() when you’d like to
build a construct that has database-specific compilations.
See the extension docs for details.¶

	[sql] Exception messages are truncated when the list of bound
parameters is larger than 10, preventing enormous
multi-page exceptions from filling up screens and logfiles
for large executemany() statements.¶
References: #1413

	[sql] sqlalchemy.extract() is now dialect sensitive and can
extract components of timestamps idiomatically across the
supported databases, including SQLite.¶

	[sql] Fixed __repr__() and other _get_colspec() methods on
ForeignKey constructed from __clause_element__() style
construct (i.e. declarative columns).¶
References: #1353

schema

	[schema] [1341] [ticket: 594] Added a quote_schema() method to the IdentifierPreparer class
so that dialects can override how schemas get handled. This
enables the MSSQL dialect to treat schemas as multipart
identifiers, such as ‘database.owner’.¶

mysql

	[mysql] Reflecting a FOREIGN KEY construct will take into account
a dotted schema.tablename combination, if the foreign key
references a table in a remote schema.¶
References: #1405

sqlite

	[sqlite] Corrected the SLBoolean type so that it properly treats only 1
as True.¶
References: #1402

	[sqlite] Corrected the float type so that it correctly maps to a
SLFloat type when being reflected.¶
References: #1273

mssql

	[mssql] Modified how savepoint logic works to prevent it from
stepping on non-savepoint oriented routines. Savepoint
support is still very experimental.¶

	[mssql] Added in reserved words for MSSQL that covers version 2008
and all prior versions.¶
References: #1310

	[mssql] Corrected problem with information schema not working with a
binary collation based database. Cleaned up information schema
since it is only used by mssql now.¶
References: #1343

misc

	[extensions] Fixed adding of deferred or other column properties to a
declarative class.¶
References: #1379

0.5.3

Released: Tue Mar 24 2009
orm

	[orm] The “objects” argument to session.flush() is deprecated.
State which represents the linkage between a parent and
child object does not support “flushed” status on
one side of the link and not the other, so supporting
this operation leads to misleading results.¶
References: #1315

	[orm] Query now implements __clause_element__() which produces
its selectable, which means a Query instance can be accepted
in many SQL expressions, including col.in_(query),
union(query1, query2), select([foo]).select_from(query),
etc.¶

	[orm] Query.join() can now construct multiple FROM clauses, if
needed. Such as, query(A, B).join(A.x).join(B.y)
might say SELECT A.*, B.* FROM A JOIN X, B JOIN Y.
Eager loading can also tack its joins onto those
multiple FROM clauses.¶
References: #1337

	[orm] Fixed bug in dynamic_loader() where append/remove events
after construction time were not being propagated to the
UOW to pick up on flush().¶
References: #1347

	[orm] Fixed bug where column_prefix wasn’t being checked before
not mapping an attribute that already had class-level
name present.¶

	[orm] a session.expire() on a particular collection attribute
will clear any pending backref additions as well, so that
the next access correctly returns only what was present
in the database. Presents some degree of a workaround for, although we are considering removing the
flush([objects]) feature altogether.¶
References: #1315

	[orm] Session.scalar() now converts raw SQL strings to text()
the same way Session.execute() does and accepts same
alternative **kw args.¶

	[orm] improvements to the “determine direction” logic of
relation() such that the direction of tricky situations
like mapper(A.join(B)) -> relation-> mapper(B) can be
determined.¶

	[orm] When flushing partial sets of objects using session.flush([somelist]),
pending objects which remain pending after the operation won’t
inadvertently be added as persistent.¶
References: #1306

	[orm] Added “post_configure_attribute” method to InstrumentationManager,
so that the “listen_for_events.py” example works again.¶
References: #1314

	[orm] a forward and complementing backwards reference which are both
of the same direction, i.e. ONETOMANY or MANYTOONE,
is now detected, and an error message is raised.
Saves crazy CircularDependencyErrors later on.¶

	[orm] Fixed bugs in Query regarding simultaneous selection of
multiple joined-table inheritance entities with common base
classes:

	previously the adaption applied to “B” on
“A JOIN B” would be erroneously partially applied
to “A”.

	comparisons on relations (i.e. A.related==someb)
were not getting adapted when they should.

	Other filterings, like
query(A).join(A.bs).filter(B.foo==’bar’), were erroneously
adapting “B.foo” as though it were an “A”.

¶

	[orm] Fixed adaptation of EXISTS clauses via any(), has(), etc.
in conjunction with an aliased object on the left and
of_type() on the right.¶
References: #1325

	[orm] Added an attribute helper method set_committed_value in
sqlalchemy.orm.attributes. Given an object, attribute name,
and value, will set the value on the object as part of its
“committed” state, i.e. state that is understood to have
been loaded from the database. Helps with the creation of
homegrown collection loaders and such.¶

	[orm] Query won’t fail with weakref error when a non-mapper/class
instrumented descriptor is passed, raises
“Invalid column expession”.¶

	[orm] Query.group_by() properly takes into account aliasing applied
to the FROM clause, such as with select_from(), using
with_polymorphic(), or using from_self().¶

sql

	[sql] An alias() of a select() will convert to a “scalar subquery”
when used in an unambiguously scalar context, i.e. it’s used
in a comparison operation. This applies to
the ORM when using query.subquery() as well.¶

	[sql] Fixed missing _label attribute on Function object, others
when used in a select() with use_labels (such as when used
in an ORM column_property()).¶
References: #1302

	[sql] anonymous alias names now truncate down to the max length
allowed by the dialect. More significant on DBs like
Oracle with very small character limits.¶
References: #1309

	[sql] the __selectable__() interface has been replaced entirely
by __clause_element__().¶

	[sql] The per-dialect cache used by TypeEngine to cache
dialect-specific types is now a WeakKeyDictionary.
This to prevent dialect objects from
being referenced forever for an application that
creates an arbitrarily large number of engines
or dialects. There is a small performance penalty
which will be resolved in 0.6.¶
References: #1299

postgresql

	[postgresql] Index reflection won’t fail when an index with
multiple expressions is encountered.¶

	[postgresql] Added PGUuid and PGBit types to
sqlalchemy.databases.postgres.¶
References: #1327

	[postgresql] Refection of unknown PG types won’t crash when those
types are specified within a domain.¶
References: #1327

sqlite

	[sqlite] Fixed SQLite reflection methods so that non-present
cursor.description, which triggers an auto-cursor
close, will be detected so that no results doesn’t
fail on recent versions of pysqlite which raise
an error when fetchone() called with no rows present.¶

mssql

	[mssql] Preliminary support for pymssql 1.0.1¶

	[mssql] Corrected issue on mssql where max_identifier_length was
not being respected.¶

misc

	[extensions] Fixed a recursive pickling issue in serializer, triggered
by an EXISTS or other embedded FROM construct.¶

	[extensions] Declarative locates the “inherits” class using a search
through __bases__, to skip over mixins that are local
to subclasses.¶

	[extensions] Declarative figures out joined-table inheritance primary join
condition even if “inherits” mapper argument is given
explicitly.¶

	[extensions] Declarative will properly interpret the “foreign_keys” argument
on a backref() if it’s a string.¶

	[extensions] Declarative will accept a table-bound column as a property
when used in conjunction with __table__, if the column is already
present in __table__. The column will be remapped to the given
key the same way as when added to the mapper() properties dict.¶

0.5.2

Released: Sat Jan 24 2009
orm

	[orm] Further refined 0.5.1’s warning about delete-orphan cascade
placed on a many-to-many relation. First, the bad news:
the warning will apply to both many-to-many as well as
many-to-one relations. This is necessary since in both
cases, SQLA does not scan the full set of potential parents
when determining “orphan” status - for a persistent object
it only detects an in-python de-association event to establish
the object as an “orphan”. Next, the good news: to support
one-to-one via a foreign key or association table, or to
support one-to-many via an association table, a new flag
single_parent=True may be set which indicates objects
linked to the relation are only meant to have a single parent.
The relation will raise an error if multiple parent-association
events occur within Python.¶

	[orm] Adjusted the attribute instrumentation change from 0.5.1 to
fully establish instrumentation for subclasses where the mapper
was created after the superclass had already been fully
instrumented.¶
References: #1292

	[orm] Fixed bug in delete-orphan cascade whereby two one-to-one
relations from two different parent classes to the same target
class would prematurely expunge the instance.¶

	[orm] Fixed an eager loading bug whereby self-referential eager
loading would prevent other eager loads, self referential or not,
from joining to the parent JOIN properly. Thanks to Alex K
for creating a great test case.¶

	[orm] session.expire() and related methods will not expire() unloaded
deferred attributes. This prevents them from being needlessly
loaded when the instance is refreshed.¶

	[orm] query.join()/outerjoin() will now properly join an aliased()
construct to the existing left side, even if query.from_self()
or query.select_from(someselectable) has been called.¶
References: #1293

sql

	[sql]

	Further fixes to the “percent signs and spaces in column/table

	names” functionality.

¶
References: #1284

mssql

	[mssql] Restored convert_unicode handling. Results were being passed
on through without conversion.¶
References: #1291

	[mssql] Really fixing the decimal handling this time..¶
References: #1282

	[mssql] [Ticket:1289] Modified table reflection code to use only kwargs when
constructing tables.¶

0.5.1

Released: Sat Jan 17 2009
orm

	[orm] Removed an internal join cache which could potentially leak
memory when issuing query.join() repeatedly to ad-hoc
selectables.¶

	[orm] The “clear()”, “save()”, “update()”, “save_or_update()”
Session methods have been deprecated, replaced by
“expunge_all()” and “add()”. “expunge_all()” has also
been added to ScopedSession.¶

	[orm] Modernized the “no mapped table” exception and added a more
explicit __table__/__tablename__ exception to declarative.¶

	[orm] Concrete inheriting mappers now instrument attributes which
are inherited from the superclass, but are not defined for
the concrete mapper itself, with an InstrumentedAttribute that
issues a descriptive error when accessed.¶
References: #1237

	[orm] Added a new relation() keyword back_populates. This
allows configuation of backreferences using explicit
relations. This is required when creating
bidirectional relations between a hierarchy of concrete
mappers and another class.¶
References: #1237, #781

	[orm] Test coverage added for relation() objects specified on
concrete mappers.¶
References: #1237

	[orm] Query.from_self() as well as query.subquery() both disable
the rendering of eager joins inside the subquery produced.
The “disable all eager joins” feature is available publically
via a new query.enable_eagerloads() generative.¶
References: #1276

	[orm] Added a rudimental series of set operations to Query that
receive Query objects as arguments, including union(),
union_all(), intersect(), except_(), insertsect_all(),
except_all(). See the API documentation for
Query.union() for examples.¶

	[orm] Fixed bug that prevented Query.join() and eagerloads from
attaching to a query that selected from a union or aliased union.¶

	[orm] A short documentation example added for bidirectional
relations specified on concrete mappers.¶
References: #1237

	[orm] Mappers now instrument class attributes upon construction
with the final InstrumentedAttribute object which remains
persistent. The _CompileOnAttr/__getattribute__()
methodology has been removed. The net effect is that
Column-based mapped class attributes can now be used fully
at the class level without invoking a mapper compilation
operation, greatly simplifying typical usage patterns
within declarative.¶
References: #1269

	[orm] ColumnProperty (and front-end helpers such as deferred) no
longer ignores unknown **keyword arguments.¶

	[orm] Fixed a bug with the unitofwork’s “row switch” mechanism,
i.e. the conversion of INSERT/DELETE into an UPDATE, when
combined with joined-table inheritance and an object
which contained no defined values for the child table where
an UPDATE with no SET clause would be rendered.¶

	[orm] Using delete-orphan on a many-to-many relation is deprecated.
This produces misleading or erroneous results since SQLA does
not retrieve the full list of “parents” for m2m. To get delete-orphan
behavior with an m2m table, use an explcit association class
so that the individual association row is treated as a parent.¶
References: #1281

	[orm] delete-orphan cascade always requires delete cascade. Specifying
delete-orphan without delete now raises a deprecation warning.¶
References: #1281

sql

	[sql] Improved the methodology to handling percent signs in column
names from. Added more tests. MySQL and
PostgreSQL dialects still do not issue correct CREATE TABLE
statements for identifiers with percent signs in them.¶
References: #1256

schema

	[schema] Index now accepts column-oriented InstrumentedAttributes
(i.e. column-based mapped class attributes) as column
arguments.¶
References: #1214

	[schema] Column with no name (as in declarative) won’t raise a
NoneType error when its string output is requested
(such as in a stack trace).¶

	[schema] Fixed bug when overriding a Column with a ForeignKey
on a reflected table, where derived columns (i.e. the
“virtual” columns of a select, etc.) would inadvertently
call upon schema-level cleanup logic intended only
for the original column.¶
References: #1278

mysql

	[mysql] Added the missing keywords from MySQL 4.1 so they get escaped
properly.¶

mssql

	[mssql] Corrected handling of large decimal values with more robust
tests. Removed string manipulation on floats.¶
References: #1280

	[mssql] Modified the do_begin handling in mssql to use the Cursor not
the Connection so it is DBAPI compatible.¶

	[mssql] Corrected SAVEPOINT support on adodbapi by changing the
handling of savepoint_release, which is unsupported on mssql.¶

misc

	[declarative] Can now specify Column objects on subclasses which have no
table of their own (i.e. use single table inheritance).
The columns will be appended to the base table, but only
mapped by the subclass.¶

	[declarative] For both joined and single inheriting subclasses, the subclass
will only map those columns which are already mapped on the
superclass and those explicit on the subclass. Other
columns that are present on the Table will be excluded
from the mapping by default, which can be disabled
by passing a blank exclude_properties collection to the
__mapper_args__. This is so that single-inheriting
classes which define their own columns are the only classes
to map those columns. The effect is actually a more organized
mapping than you’d normally get with explicit mapper()
calls unless you set up the exclude_properties arguments
explicitly.¶

	[declarative] It’s an error to add new Column objects to a declarative class
that specified an existing table using __table__.¶

0.5.0

Released: Tue Jan 06 2009
general

	[general] Documentation has been converted to Sphinx. In particular,
the generated API documentation has been constructed into a
full blown “API Reference” section which organizes editorial
documentation combined with generated docstrings. Cross
linking between sections and API docs are vastly improved, a
javascript-powered search feature is provided, and a full
index of all classes, functions and members is provided.¶

	[general] setup.py now imports setuptools only optionally. If not
present, distutils is used. The new “pip” installer is
recommended over easy_install as it installs in a more
simplified way.¶

	[general] added an extremely basic illustration of a PostGIS integration
to the examples folder.¶

orm

	[orm] Query.with_polymorphic() now accepts a third argument
“discriminator” which will replace the value of
mapper.polymorphic_on for that query. Mappers themselves no
longer require polymorphic_on to be set, even if the mapper
has a polymorphic_identity. When not set, the mapper will
load non-polymorphically by default. Together, these two
features allow a non-polymorphic concrete inheritance setup to
use polymorphic loading on a per-query basis, since concrete
setups are prone to many issues when used polymorphically in
all cases.¶

	[orm] dynamic_loader accepts a query_class= to customize the Query
classes used for both the dynamic collection and the queries
built from it.¶

	[orm] query.order_by() accepts None which will remove any pending
order_by state from the query, as well as cancel out any
mapper/relation configured ordering. This is primarily useful
for overriding the ordering specified on a dynamic_loader().¶
References: #1079

	[orm] Exceptions raised during compile_mappers() are now preserved
to provide “sticky behavior” - if a hasattr() call on a
pre-compiled mapped attribute triggers a failing compile and
suppresses the exception, subsequent compilation is blocked
and the exception will be reiterated on the next compile()
call. This issue occurs frequently when using declarative.¶

	[orm] property.of_type() is now recognized on a single-table
inheriting target, when used in the context of
prop.of_type(..).any()/has(), as well as
query.join(prop.of_type(...)).¶

	[orm] query.join() raises an error when the target of the join
doesn’t match the property-based attribute - while it’s
unlikely anyone is doing this, the SQLAlchemy author was
guilty of this particular loosey-goosey behavior.¶

	[orm] Fixed bug when using weak_instance_map=False where modified
events would not be intercepted for a flush().¶
References: #1272

	[orm] Fixed some deep “column correspondence” issues which could
impact a Query made against a selectable containing multiple
versions of the same table, as well as unions and similar
which contained the same table columns in different column
positions at different levels.¶
References: #1268

	[orm] Custom comparator classes used in conjunction with
column_property(), relation() etc. can define new comparison
methods on the Comparator, which will become available via
__getattr__() on the InstrumentedAttribute. In the case of
synonym() or comparable_property(), attributes are resolved
first on the user-defined descriptor, then on the user-defined
comparator.¶

	[orm] Added ScopedSession.is_active accessor.¶
References: #976

	[orm] Can pass mapped attributes and column objects as keys to
query.update({}).¶
References: #1262

	[orm] Mapped attributes passed to the values() of an expression
level insert() or update() will use the keys of the mapped
columns, not that of the mapped attribute.¶

	[orm] Corrected problem with Query.delete() and Query.update() not
working properly with bind parameters.¶
References: #1242

	[orm] Query.select_from(), from_statement() ensure that the given
argument is a FromClause, or Text/Select/Union, respectively.¶

	[orm] Query() can be passed a “composite” attribute as a column
expression and it will be expanded. Somewhat related to.¶
References: #1253

	[orm] Query() is a little more robust when passed various column
expressions such as strings, clauselists, text() constructs
(which may mean it just raises an error more nicely).¶

	[orm] first() works as expected with Query.from_statement().¶

	[orm] Fixed bug introduced in 0.5rc4 involving eager loading not
functioning for properties which were added to a mapper
post-compile using add_property() or equivalent.¶

	[orm] Fixed bug where many-to-many relation() with viewonly=True
would not correctly reference the link between
secondary->remote.¶

	[orm] Duplicate items in a list-based collection will be maintained
when issuing INSERTs to a “secondary” table in a many-to-many
relation. Assuming the m2m table has a unique or primary key
constraint on it, this will raise the expected constraint
violation instead of silently dropping the duplicate
entries. Note that the old behavior remains for a one-to-many
relation since collection entries in that case don’t result in
INSERT statements and SQLA doesn’t manually police
collections.¶
References: #1232

	[orm] Query.add_column() can accept FromClause objects in the same
manner as session.query() can.¶

	[orm] Comparison of many-to-one relation to NULL is properly
converted to IS NOT NULL based on not_().¶

	[orm] Extra checks added to ensure explicit
primaryjoin/secondaryjoin are ClauseElement instances, to
prevent more confusing errors later on.¶
References: #1087

	[orm] Improved mapper() check for non-class classes.¶
References: #1236

	[orm] comparator_factory argument is now documented and supported by
all MapperProperty types, including column_property(),
relation(), backref(), and synonym().¶
References: #5051

	[orm] Changed the name of PropertyLoader to RelationProperty, to be
consistent with all the other names. PropertyLoader is still
present as a synonym.¶

	[orm] fixed “double iter()” call causing bus errors in shard API,
removed errant result.close() left over from the 0.4
version.¶
References: #1099, #1228

	[orm] made Session.merge cascades not trigger autoflush. Fixes
merged instances getting prematurely inserted with missing
values.¶

	[orm] Two fixes to help prevent out-of-band columns from being
rendered in polymorphic_union inheritance scenarios (which
then causes extra tables to be rendered in the FROM clause
causing cartesian products):

	improvements to “column adaption” for a->b->c inheritance
situations to better locate columns that are related to
one another via multiple levels of indirection, rather
than rendering the non-adapted column.

	the “polymorphic discriminator” column is only rendered
for the actual mapper being queried against. The column
won’t be “pulled in” from a subclass or superclass mapper
since it’s not needed.

¶

	[orm] Fixed shard_id argument on ShardedSession.execute().¶
References: #1072

sql

	[sql] RowProxy objects can be used in place of dictionary arguments
sent to connection.execute() and friends.¶
References: #935

	[sql] Columns can again contain percent signs within their
names.¶
References: #1256

	[sql] sqlalchemy.sql.expression.Function is now a public class. It
can be subclassed to provide user-defined SQL functions in an
imperative style, including with pre-established behaviors.
The postgis.py example illustrates one usage of this.¶

	[sql] PickleType now favors == comparison by default, if the
incoming object (such as a dict) implements __eq__(). If the
object does not implement __eq__() and mutable=True, a
deprecation warning is raised.¶

	[sql] Fixed the import weirdness in sqlalchemy.sql to not export
__names__.¶
References: #1215

	[sql] Using the same ForeignKey object repeatedly raises an error
instead of silently failing later.¶
References: #1238

	[sql] Added NotImplementedError for params() method on
Insert/Update/Delete constructs. These items currently don’t
support this functionality, which also would be a little
misleading compared to values().¶

	[sql] Reflected foreign keys will properly locate their referenced
column, even if the column was given a “key” attribute
different from the reflected name. This is achieved via a new
flag on ForeignKey/ForeignKeyConstraint called “link_to_name”,
if True means the given name is the referred-to column’s name,
not its assigned key.¶
References: #650

	[sql] select() can accept a ClauseList as a column in the same way
as a Table or other selectable and the interior expressions
will be used as column elements.¶
References: #1253

	[sql] the “passive” flag on session.is_modified() is correctly
propagated to the attribute manager.¶

	[sql] union() and union_all() will not whack any order_by() that has
been applied to the select()s inside. If you union() a
select() with order_by() (presumably to support LIMIT/OFFSET),
you should also call self_group() on it to apply parenthesis.¶

mysql

	[mysql] “%” signs in text() constructs are automatically escaped to
“%%”. Because of the backwards incompatible nature of this
change, a warning is emitted if ‘%%’ is detected in the
string.¶

	[mysql] Fixed bug in exception raise when FK columns not present
during reflection.¶
References: #1241

	[mysql] Fixed bug involving reflection of a remote-schema table with a
foreign key ref to another table in that schema.¶

sqlite

	[sqlite] Table reflection now stores the actual DefaultClause value for
the column.¶
References: #1266

	[sqlite] bugfixes, behavioral changes¶

mssql

	[mssql] Added in a new MSGenericBinary type. This maps to the Binary
type so it can implement the specialized behavior of treating
length specified types as fixed-width Binary types and
non-length types as an unbound variable length Binary type.¶

	[mssql] Added in new types: MSVarBinary and MSImage.¶
References: #1249

	[mssql] Added in the MSReal, MSNText, MSSmallDateTime, MSTime,
MSDateTimeOffset, and MSDateTime2 types¶

	[mssql] Refactored the Date/Time types. The smalldatetime data
type no longer truncates to a date only, and will now be
mapped to the MSSmallDateTime type.¶
References: #1254

	[mssql] Corrected an issue with Numerics to accept an int.¶

	[mssql] Mapped char_length to the LEN() function.¶

	[mssql] If an INSERT includes a subselect the INSERT is
converted from an INSERT INTO VALUES construct to a
INSERT INTO SELECT construct.¶

	[mssql] If the column is part of a primary_key it will be NOT
NULL since MSSQL doesn’t allow NULL in primary_key
columns.¶

	[mssql] MSBinary now returns a BINARY instead of an
IMAGE. This is a backwards incompatible change in that
BINARY is a fixed length data type whereas IMAGE is a
variable length data type.¶
References: #1249

	[mssql] get_default_schema_name is now reflected from the database
based on the user’s default schema. This only works with MSSQL
2005 and later.¶
References: #1258

	[mssql] Added collation support through the use of a new collation
argument. This is supported on the following types: char,
nchar, varchar, nvarchar, text, ntext.¶
References: #1248

	[mssql] Changes to the connection string parameters favor DSN as the
default specification for pyodbc. See the mssql.py docstring
for detailed usage instructions.¶

	[mssql] Added experimental support of savepoints. It currently does
not work fully with sessions.¶

	[mssql] Support for three levels of column nullability: NULL, NOT
NULL, and the database’s configured default. The default
Column configuration (nullable=True) will now generate NULL in
the DDL. Previously no specification was emitted and the
database default would take effect (usually NULL, but not
always). To explicitly request the database default,
configure columns with nullable=None and no specification will
be emitted in DDL. This is backwards incompatible
behavior.¶
References: #1243

oracle

	[oracle] Adjusted the format of create_xid() to repair two-phase
commit. We now have field reports of Oracle two-phase commit
working properly with this change.¶

	[oracle] Added OracleNVarchar type, produces NVARCHAR2, and also
subclasses Unicode so that convert_unicode=True by default.
NVARCHAR2 reflects into this type automatically so these
columns pass unicode on a reflected table with no explicit
convert_unicode=True flags.¶
References: #1233

	[oracle] Fixed bug which was preventing out params of certain types
from being received; thanks a ton to huddlej at wwu.edu !¶
References: #1265

misc

	[dialect] Added a new description_encoding attribute on the dialect that
is used for encoding the column name when processing the
metadata. This usually defaults to utf-8.¶

	[engine/pool] Connection.invalidate() checks for closed status to avoid
attribute errors.¶
References: #1246

	[engine/pool] NullPool supports reconnect on failure behavior.¶
References: #1094

	[engine/pool] Added a mutex for the initial pool creation when using
pool.manage(dbapi). This prevents a minor case of “dogpile”
behavior which would otherwise occur upon a heavy load
startup.¶
References: #799

	[engine/pool] _execute_clauseelement() goes back to being a private method.
Subclassing Connection is not needed now that ConnectionProxy
is available.¶

	[documentation] Tickets.¶
References: #1149, #1200

	[documentation] Added note about create_session() defaults.¶

	[documentation] Added section about metadata.reflect().¶

	[documentation] Updated TypeDecorator section.¶

	[documentation] Rewrote the “threadlocal” strategy section of the docs due to
recent confusion over this feature.¶

	[documentation] Removed badly out of date ‘polymorphic_fetch’ and
‘select_table’ docs from inheritance, reworked the second half
of “joined table inheritance”.¶

	[documentation] Documented comparator_factory kwarg, added new doc section
“Custom Comparators”.¶

	[postgres] “%” signs in text() constructs are automatically escaped to
“%%”. Because of the backwards incompatible nature of this
change, a warning is emitted if ‘%%’ is detected in the
string.¶
References: #1267

	[postgres] Calling alias.execute() in conjunction with
server_side_cursors won’t raise AttributeError.¶

	[postgres] Added Index reflection support to PostgreSQL, using a great
patch we long neglected, submitted by Ken
Kuhlman.¶
References: #714

	[associationproxy] The association proxy properties are make themselves available
at the class level, e.g. MyClass.aproxy. Previously this
evaluated to None.¶

	[declarative] The full list of arguments accepted as string by backref()
includes ‘primaryjoin’, ‘secondaryjoin’, ‘secondary’,
‘foreign_keys’, ‘remote_side’, ‘order_by’.¶

0.5.0rc4

Released: Fri Nov 14 2008
general

	[general] global “propigate”->”propagate” change.¶

orm

	[orm] Query.count() has been enhanced to do the “right thing” in a
wider variety of cases. It can now count multiple-entity
queries, as well as column-based queries. Note that this means
if you say query(A, B).count() without any joining criterion,
it’s going to count the cartesian product of A*B. Any query
which is against column-based entities will automatically
issue “SELECT count(1) FROM (SELECT...)” so that the real
rowcount is returned, meaning a query such as
query(func.count(A.name)).count() will return a value of one,
since that query would return one row.¶

	[orm] Lots of performance tuning. A rough guesstimate over various
ORM operations places it 10% faster over 0.5.0rc3, 25-30% over
0.4.8.¶

	[orm] bugfixes and behavioral changes¶

	[orm] Adjustments to the enhanced garbage collection on
InstanceState to better guard against errors due to lost
state.¶

	[orm] Query.get() returns a more informative error message when
executed against multiple entities.¶
References: #1220

	[orm] Restored NotImplementedError on Cls.relation.in_()¶
References: #1140, #1221

	[orm] Fixed PendingDeprecationWarning involving order_by parameter
on relation().¶
References: #1226

sql

	[sql] Removed the ‘properties’ attribute of the Connection object,
Connection.info should be used.¶

	[sql] Restored “active rowcount” fetch before ResultProxy autocloses
the cursor. This was removed in 0.5rc3.¶

	[sql] Rearranged the load_dialect_impl() method in TypeDecorator
such that it will take effect even if the user-defined
TypeDecorator uses another TypeDecorator as its impl.¶

mssql

	[mssql] Lots of cleanup and fixes to correct problems with limit and
offset.¶

	[mssql] Correct situation where subqueries as part of a binary
expression need to be translated to use the IN and NOT IN
syntax.¶

	[mssql] Fixed E Notation issue that prevented the ability to insert
decimal values less than 1E-6.¶
References: #1216

	[mssql] Corrected problems with reflection when dealing with schemas,
particularly when those schemas are the default
schema.¶
References: #1217

	[mssql] Corrected problem with casting a zero length item to a
varchar. It now correctly adjusts the CAST.¶

misc

	[access] Added support for Currency type.¶

	[access] Functions were not return their result.¶
References: #1017

	[access] Corrected problem with joins. Access only support LEFT OUTER
or INNER not just JOIN by itself.¶
References: #1017

	[ext] Can now use a custom “inherit_condition” in __mapper_args__
when using declarative.¶

	[ext] fixed string-based “remote_side”, “order_by” and others not
propagating correctly when used in backref().¶

0.5.0rc3

Released: Fri Nov 07 2008
orm

	[orm] Added two new hooks to SessionExtension: after_bulk_delete()
and after_bulk_update(). after_bulk_delete() is called after
a bulk delete() operation on a query. after_bulk_update() is
called after a bulk update() operation on a query.¶

	[orm] “not equals” comparisons of simple many-to-one relation to an
instance will not drop into an EXISTS clause and will compare
foreign key columns instead.¶

	[orm] Removed not-really-working use cases of comparing a collection
to an iterable. Use contains() to test for collection
membership.¶

	[orm] Improved the behavior of aliased() objects such that they more
accurately adapt the expressions generated, which helps
particularly with self-referential comparisons.¶
References: #1171

	[orm] Fixed bug involving primaryjoin/secondaryjoin conditions
constructed from class-bound attributes (as often occurs when
using declarative), which later would be inappropriately
aliased by Query, particularly with the various EXISTS based
comparators.¶

	[orm] Fixed bug when using multiple query.join() with an
aliased-bound descriptor which would lose the left alias.¶

	[orm] Improved weakref identity map memory management to no longer
require mutexing, resurrects garbage collected instance on a
lazy basis for an InstanceState with pending changes.¶

	[orm] InstanceState object now removes circular references to itself
upon disposal to keep it outside of cyclic garbage collection.¶

	[orm] relation() won’t hide unrelated ForeignKey errors inside of
the “please specify primaryjoin” message when determining join
condition.¶

	[orm] Fixed bug in Query involving order_by() in conjunction with
multiple aliases of the same class (will add tests in)¶
References: #1218

	[orm] When using Query.join() with an explicit clause for the ON
clause, the clause will be aliased in terms of the left side
of the join, allowing scenarios like query(Source).
from_self().join((Dest, Source.id==Dest.source_id)) to work
properly.¶

	[orm] polymorphic_union() function respects the “key” of each Column
if they differ from the column’s name.¶

	[orm] Repaired support for “passive-deletes” on a many-to-one
relation() with “delete” cascade.¶
References: #1183

	[orm] Fixed bug in composite types which prevented a primary-key
composite type from being mutated.¶
References: #1213

	[orm] Added more granularity to internal attribute access, such that
cascade and flush operations will not initialize unloaded
attributes and collections, leaving them intact for a
lazy-load later on. Backref events still initialize attrbutes
and collections for pending instances.¶
References: #1202

sql

	[sql] SQL compiler optimizations and complexity reduction. The call
count for compiling a typical select() construct is 20% less
versus 0.5.0rc2.¶

	[sql] Dialects can now generate label names of adjustable
length. Pass in the argument “label_length=<value>” to
create_engine() to adjust how many characters max will be
present in dynamically generated column labels, i.e.
“somecolumn AS somelabel”. Any value less than 6 will result
in a label of minimal size, consisting of an underscore and a
numeric counter. The compiler uses the value of
dialect.max_identifier_length as a default.¶
References: #1211

	[sql] Simplified the check for ResultProxy “autoclose without
results” to be based solely on presence of
cursor.description. All the regexp-based guessing about
statements returning rows has been removed.¶
References: #1212

	[sql] Direct execution of a union() construct will properly set up
result-row processing.¶
References: #1194

	[sql] The internal notion of an “OID” or “ROWID” column has been
removed. It’s basically not used by any dialect, and the
possibility of its usage with psycopg2’s cursor.lastrowid is
basically gone now that INSERT..RETURNING is available.¶

	[sql] Removed “default_order_by()” method on all FromClause objects.¶

	[sql] Repaired the table.tometadata() method so that a passed-in
schema argument is propagated to ForeignKey constructs.¶

	[sql] Slightly changed behavior of IN operator for comparing to
empty collections. Now results in inequality comparison
against self. More portable, but breaks with stored procedures
that aren’t pure functions.¶

mysql

	[mysql] Fixed foreign key reflection in the edge case where a Table’s
explicit schema= is the same as the schema (database) the
connection is attached to.¶

	[mysql] No longer expects include_columns in table reflection to be
lower case.¶

oracle

	[oracle] Wrote a docstring for Oracle dialect. Apparently that Ohloh
“few source code comments” label is starting to sting :).¶

	[oracle] Removed FIRST_ROWS() optimize flag when using LIMIT/OFFSET,
can be reenabled with optimize_limits=True create_engine()
flag.¶
References: #536

	[oracle] bugfixes and behavioral changes¶

	[oracle] Setting the auto_convert_lobs to False on create_engine() will
also instruct the OracleBinary type to return the cx_oracle
LOB object unchanged.¶

misc

	[ext] Added a new extension sqlalchemy.ext.serializer. Provides
Serializer/Deserializer “classes” which mirror
Pickle/Unpickle, as well as dumps() and loads(). This
serializer implements an “external object” pickler which keeps
key context-sensitive objects, including engines, sessions,
metadata, Tables/Columns, and mappers, outside of the pickle
stream, and can later restore the pickle using any
engine/metadata/session provider. This is used not for
pickling regular object instances, which are pickleable
without any special logic, but for pickling expression objects
and full Query objects, such that all mapper/engine/session
dependencies can be restored at unpickle time.¶

	[ext] Fixed bug preventing declarative-bound “column” objects from
being used in column_mapped_collection().¶
References: #1174

	[misc] util.flatten_iterator() func doesn’t interpret strings with
__iter__() methods as iterators, such as in pypy.¶
References: #1077

0.5.0rc2

Released: Sun Oct 12 2008
orm

	[orm] Fixed bug involving read/write relation()s that contain
literal or other non-column expressions within their
primaryjoin condition equated to a foreign key column.¶

	[orm] “non-batch” mode in mapper(), a feature which allows mapper
extension methods to be called as each instance is
updated/inserted, now honors the insert order of the objects
given.¶

	[orm] Fixed RLock-related bug in mapper which could deadlock upon
reentrant mapper compile() calls, something that occurs when
using declarative constructs inside of ForeignKey objects.¶

	[orm] ScopedSession.query_property now accepts a query_cls factory,
overriding the session’s configured query_cls.¶

	[orm] Fixed shared state bug interfering with ScopedSession.mapper’s
ability to apply default __init__ implementations on object
subclasses.¶

	[orm] Fixed up slices on Query (i.e. query[x:y]) to work properly
for zero length slices, slices with None on either end.¶
References: #1177

	[orm] Added an example illustrating Celko’s “nested sets” as a
SQLA mapping.¶

	[orm] contains_eager() with an alias argument works even when
the alias is embedded in a SELECT, as when sent to the
Query via query.select_from().¶

	[orm] contains_eager() usage is now compatible with a Query that
also contains a regular eager load and limit/offset, in that
the columns are added to the Query-generated subquery.¶
References: #1180

	[orm] session.execute() will execute a Sequence object passed to
it (regression from 0.4).¶

	[orm] Removed the “raiseerror” keyword argument from object_mapper()
and class_mapper(). These functions raise in all cases
if the given class/instance is not mapped.¶

	[orm] Fixed session.transaction.commit() on a autocommit=False
session not starting a new transaction.¶

	[orm] Some adjustments to Session.identity_map’s weak referencing
behavior to reduce asynchronous GC side effects.¶

	[orm] Adjustment to Session’s post-flush accounting of newly
“clean” objects to better protect against operating on
objects as they’re asynchronously gc’ed.¶
References: #1182

sql

	[sql] column.in_(someselect) can now be used as a columns-clause
expression without the subquery bleeding into the FROM clause¶
References: #1074

mysql

	[mysql] Temporary tables are now reflectable.¶

sqlite

	[sqlite] Overhauled SQLite date/time bind/result processing to use
regular expressions and format strings, rather than
strptime/strftime, to generically support pre-1900 dates,
dates with microseconds.¶
References: #968

	[sqlite] String’s (and Unicode’s, UnicodeText’s, etc.) convert_unicode
logic disabled in the sqlite dialect, to adjust for pysqlite
2.5.0’s new requirement that only Python unicode objects are
accepted;
http://itsystementwicklung.de/pipermail/list-pysqlite/2008-March/000018.html¶

oracle

	[oracle] Oracle will detect string-based statements which contain
comments at the front before a SELECT as SELECT statements.¶
References: #1187

0.5.0rc1

Released: Thu Sep 11 2008
orm

	[orm] Query now has delete() and update(values) methods. This allows
to perform bulk deletes/updates with the Query object.¶

	[orm] The RowTuple object returned by Query(*cols) now features
keynames which prefer mapped attribute names over column keys,
column keys over column names, i.e. Query(Class.foo,
Class.bar) will have names “foo” and “bar” even if those are
not the names of the underlying Column objects. Direct Column
objects such as Query(table.c.col) will return the “key”
attribute of the Column.¶

	[orm] Added scalar() and value() methods to Query, each return a
single scalar value. scalar() takes no arguments and is
roughly equivalent to first()[0], value()
takes a single column expression and is roughly equivalent to
values(expr).next()[0].¶

	[orm] Improved the determination of the FROM clause when placing SQL
expressions in the query() list of entities. In particular
scalar subqueries should not “leak” their inner FROM objects
out into the enclosing query.¶

	[orm] Joins along a relation() from a mapped class to a mapped
subclass, where the mapped subclass is configured with single
table inheritance, will include an IN clause which limits the
subtypes of the joined class to those requested, within the ON
clause of the join. This takes effect for eager load joins as
well as query.join(). Note that in some scenarios the IN
clause will appear in the WHERE clause of the query as well
since this discrimination has multiple trigger points.¶

	[orm] AttributeExtension has been refined such that the event
is fired before the mutation actually occurs. Additionally,
the append() and set() methods must now return the given value,
which is used as the value to be used in the mutation operation.
This allows creation of validating AttributeListeners which
raise before the action actually occurs, and which can change
the given value into something else before its used.¶

	[orm] column_property(), composite_property(), and relation() now
accept a single or list of AttributeExtensions using the
“extension” keyword argument.¶

	[orm] query.order_by().get() silently drops the “ORDER BY” from
the query issued by GET but does not raise an exception.¶

	[orm] Added a Validator AttributeExtension, as well as a
@validates decorator which is used in a similar fashion
as @reconstructor, and marks a method as validating
one or more mapped attributes.¶

	[orm] class.someprop.in_() raises NotImplementedError pending the
implementation of “in_” for relation¶
References: #1140

	[orm] Fixed primary key update for many-to-many collections where
the collection had not been loaded yet¶
References: #1127

	[orm] Fixed bug whereby deferred() columns with a group in conjunction
with an otherwise unrelated synonym() would produce
an AttributeError during deferred load.¶

	[orm] The before_flush() hook on SessionExtension takes place before
the list of new/dirty/deleted is calculated for the final
time, allowing routines within before_flush() to further
change the state of the Session before the flush proceeds.¶
References: #1128

	[orm] The “extension” argument to Session and others can now
optionally be a list, supporting events sent to multiple
SessionExtension instances. Session places SessionExtensions
in Session.extensions.¶

	[orm] Reentrant calls to flush() raise an error. This also serves
as a rudimentary, but not foolproof, check against concurrent
calls to Session.flush().¶

	[orm] Improved the behavior of query.join() when joining to
joined-table inheritance subclasses, using explicit join
criteria (i.e. not on a relation).¶

	[orm] @orm.attributes.reconstitute and
MapperExtension.reconstitute have been renamed to
@orm.reconstructor and MapperExtension.reconstruct_instance¶

	[orm] Fixed @reconstructor hook for subclasses which inherit from a
base class.¶
References: #1129

	[orm] The composite() property type now supports a
__set_composite_values__() method on the composite class which
is required if the class represents state using attribute
names other than the column’s keynames; default-generated
values now get populated properly upon flush. Also,
composites with attributes set to None compare correctly.¶
References: #1132

	[orm] The 3-tuple of iterables returned by attributes.get_history()
may now be a mix of lists and tuples. (Previously members
were always lists.)¶

	[orm] Fixed bug whereby changing a primary key attribute on an
entity where the attribute’s previous value had been expired
would produce an error upon flush().¶
References: #1151

	[orm] Fixed custom instrumentation bug whereby get_instance_dict()
was not called for newly constructed instances not loaded
by the ORM.¶

	[orm] Session.delete() adds the given object to the session if
not already present. This was a regression bug from 0.4.¶
References: #1150

	[orm] The echo_uow flag on Session is deprecated, and unit-of-work
logging is now application-level only, not per-session level.¶

	[orm] Removed conflicting contains() operator from
InstrumentedAttribute which didn’t accept escape kwaarg.¶
References: #1153

sql

	[sql] Temporarily rolled back the “ORDER BY” enhancement from. This feature is on hold pending further
development.¶
References: #1068

	[sql] The exists() construct won’t “export” its contained list
of elements as FROM clauses, allowing them to be used more
effectively in the columns clause of a SELECT.¶

	[sql] and_() and or_() now generate a ColumnElement, allowing
boolean expressions as result columns, i.e.
select([and_(1, 0)]).¶
References: #798

	[sql] Bind params now subclass ColumnElement which allows them to be
selectable by orm.query (they already had most ColumnElement
semantics).¶

	[sql] Added select_from() method to exists() construct, which becomes
more and more compatible with a regular select().¶

	[sql] Added func.min(), func.max(), func.sum() as “generic functions”,
which basically allows for their return type to be determined
automatically. Helps with dates on SQLite, decimal types,
others.¶
References: #1160

	[sql] added decimal.Decimal as an “auto-detect” type; bind parameters
and generic functions will set their type to Numeric when a
Decimal is used.¶

schema

	[schema] Added “sorted_tables” accessor to MetaData, which returns
Table objects sorted in order of dependency as a list.
This deprecates the MetaData.table_iterator() method.
The “reverse=False” keyword argument has also been
removed from util.sort_tables(); use the Python
‘reversed’ function to reverse the results.¶
References: #1033

	[schema] The ‘length’ argument to all Numeric types has been renamed
to ‘scale’. ‘length’ is deprecated and is still accepted
with a warning.¶

	[schema] Dropped 0.3-compatibility for user defined types
(convert_result_value, convert_bind_param).¶

mysql

	[mysql] The ‘length’ argument to MSInteger, MSBigInteger, MSTinyInteger,
MSSmallInteger and MSYear has been renamed to ‘display_width’.¶

	[mysql] Added MSMediumInteger type.¶
References: #1146

	[mysql] the function func.utc_timestamp() compiles to UTC_TIMESTAMP, without
the parenthesis, which seem to get in the way when using in
conjunction with executemany().¶

oracle

	[oracle] limit/offset no longer uses ROW NUMBER OVER to limit rows,
and instead uses subqueries in conjunction with a special
Oracle optimization comment. Allows LIMIT/OFFSET to work
in conjunction with DISTINCT.¶
References: #536

	[oracle] has_sequence() now takes the current “schema” argument into
account¶
References: #1155

	[oracle] added BFILE to reflected type names¶
References: #1121

misc

	[declarative] Fixed bug whereby mapper couldn’t initialize if a composite
primary key referenced another table that was not defined
yet.¶
References: #1161

	[declarative] Fixed exception throw which would occur when string-based
primaryjoin condition was used in conjunction with backref.¶

0.5.0beta3

Released: Mon Aug 04 2008
orm

	[orm] The “entity_name” feature of SQLAlchemy mappers has been
removed. For rationale, see http://tinyurl.com/6nm2ne¶

	[orm] the “autoexpire” flag on Session, sessionmaker(), and
scoped_session() has been renamed to “expire_on_commit”. It
does not affect the expiration behavior of rollback().¶

	[orm] fixed endless loop bug which could occur within a mapper’s
deferred load of inherited attributes.¶

	[orm] a legacy-support flag “_enable_transaction_accounting” flag
added to Session which when False, disables all
transaction-level object accounting, including expire on
rollback, expire on commit, new/deleted list maintenance, and
autoflush on begin.¶

	[orm] The ‘cascade’ parameter to relation() accepts None as a value,
which is equivalent to no cascades.¶

	[orm] A critical fix to dynamic relations allows the “modified”
history to be properly cleared after a flush().¶

	[orm] user-defined @properties on a class are detected and left in
place during mapper initialization. This means that a
table-bound column of the same name will not be mapped at all
if a @property is in the way (and the column is not remapped
to a different name), nor will an instrumented attribute from
an inherited class be applied. The same rules apply for names
excluded using the include_properties/exclude_properties
collections.¶

	[orm] Added a new SessionExtension hook called after_attach(). This
is called at the point of attachment for objects via add(),
add_all(), delete(), and merge().¶

	[orm] A mapper which inherits from another, when inheriting the
columns of its inherited mapper, will use any reassigned
property names specified in that inheriting mapper.
Previously, if “Base” had reassigned “base_id” to the name
“id”, “SubBase(Base)” would still get an attribute called
“base_id”. This could be worked around by explicitly stating
the column in each submapper as well but this is fairly
unworkable and also impossible when using declarative.¶
References: #1111

	[orm] Fixed a series of potential race conditions in Session whereby
asynchronous GC could remove unmodified, no longer referenced
items from the session as they were present in a list of items
to be processed, typically during session.expunge_all() and
dependent methods.¶

	[orm] Some improvements to the _CompileOnAttr mechanism which should
reduce the probability of “Attribute x was not replaced during
compile” warnings. (this generally applies to SQLA hackers,
like Elixir devs).¶

	[orm] Fixed bug whereby the “unsaved, pending instance” FlushError
raised for a pending orphan would not take superclass mappers
into account when generating the list of relations responsible
for the error.¶

sql

	[sql] func.count() with no arguments renders as COUNT(*), equivalent
to func.count(text(‘*’)).¶

	[sql] simple label names in ORDER BY expressions render as
themselves, and not as a re-statement of their corresponding
expression. This feature is currently enabled only for
SQLite, MySQL, and PostgreSQL. It can be enabled on other
dialects as each is shown to support this
behavior.¶
References: #1068

mysql

	[mysql] Quoting of MSEnum values for use in CREATE TABLE is now
optional & will be quoted on demand as required. (Quoting was
always optional for use with existing tables.)¶
References: #1110

misc

	[ext] Class-bound attributes sent as arguments to relation()’s
remote_side and foreign_keys parameters are now accepted,
allowing them to be used with declarative. Additionally fixed
bugs involving order_by being specified as a class-bound
attribute in conjunction with eager loading.¶

	[ext] declarative initialization of Columns adjusted so that
non-renamed columns initialize in the same way as a non
declarative mapper. This allows an inheriting mapper to set
up its same-named “id” columns in particular such that the
parent “id” column is favored over the child column, reducing
database round trips when this value is requested.¶

0.5.0beta2

Released: Mon Jul 14 2008
orm

	[orm] In addition to expired attributes, deferred attributes also
load if their data is present in the result set.¶
References: #870

	[orm] session.refresh() raises an informative error message if the
list of attributes does not include any column-based
attributes.¶

	[orm] query() raises an informative error message if no columns or
mappers are specified.¶

	[orm] lazy loaders now trigger autoflush before proceeding. This
allows expire() of a collection or scalar relation to function
properly in the context of autoflush.¶

	[orm] column_property() attributes which represent SQL expressions
or columns that are not present in the mapped tables (such as
those from views) are automatically expired after an INSERT or
UPDATE, assuming they have not been locally modified, so that
they are refreshed with the most recent data upon access.¶
References: #887

	[orm] Fixed explicit, self-referential joins between two
joined-table inheritance mappers when using query.join(cls,
aliased=True).¶
References: #1082

	[orm] Fixed query.join() when used in conjunction with a
columns-only clause and a SQL-expression ON clause in the
join.¶

	[orm] The “allow_column_override” flag from mapper() has been
removed. This flag is virtually always misunderstood. Its
specific functionality is available via the
include_properties/exclude_properties mapper arguments.¶

	[orm] Repaired __str__() method on Query.¶
References: #1066

	[orm] Session.bind gets used as a default even when table/mapper
specific binds are defined.¶

sql

	[sql] Added new match() operator that performs a full-text search.
Supported on PostgreSQL, SQLite, MySQL, MS-SQL, and Oracle
backends.¶

schema

	[schema] Added prefixes option to Table that accepts a list of
strings to insert after CREATE in the CREATE TABLE statement.¶
References: #1075

	[schema] Unicode, UnicodeText types now set “assert_unicode” and
“convert_unicode” by default, but accept overriding
**kwargs for these values.¶

sqlite

	[sqlite] Modified SQLite’s representation of “microseconds” to match
the output of str(somedatetime), i.e. in that the microseconds
are represented as fractional seconds in string format. This
makes SQLA’s SQLite date type compatible with datetimes that
were saved directly using Pysqlite (which just calls str()).
Note that this is incompatible with the existing microseconds
values in a SQLA 0.4 generated SQLite database file.
To get the old behavior globally:

from sqlalchemy.databases.sqlite import DateTimeMixin
DateTimeMixin.__legacy_microseconds__ = True

To get the behavior on individual DateTime types:

t = sqlite.SLDateTime()
t.__legacy_microseconds__ = True

Then use “t” as the type on the Column.

¶References: #1090

	[sqlite] SQLite Date, DateTime, and Time types only accept Python
datetime objects now, not strings. If you’d like to format
dates as strings yourself with SQLite, use a String type. If
you’d like them to return datetime objects anyway despite
their accepting strings as input, make a TypeDecorator around
String - SQLA doesn’t encourage this pattern.¶

misc

	[extensions] Declarative supports a __table_args__ class variable, which is
either a dictionary, or tuple of the form (arg1, arg2, ...,
{kwarg1:value, ...}) which contains positional + kw arguments
to be passed to the Table constructor.¶
References: #1096

0.5.0beta1

Released: Thu Jun 12 2008
general

	[general] global “propigate”->”propagate” change.¶

orm

	[orm] polymorphic_union() function respects the “key” of each
Column if they differ from the column’s name.¶

	[orm] Fixed 0.4-only bug preventing composite columns
from working properly with inheriting mappers¶
References: #1199

	[orm] Fixed RLock-related bug in mapper which could deadlock upon
reentrant mapper compile() calls, something that occurs when
using declarative constructs inside of ForeignKey objects.
Ported from 0.5.¶

	[orm] Fixed bug in composite types which prevented a primary-key
composite type from being mutated.¶
References: #1213

	[orm] Added ScopedSession.is_active accessor.¶
References: #976

	[orm] Class-bound accessor can be used as the argument to
relation() order_by.¶
References: #939

	[orm] Fixed shard_id argument on ShardedSession.execute().¶
References: #1072

sql

	[sql] Connection.invalidate() checks for closed status
to avoid attribute errors.¶
References: #1246

	[sql] NullPool supports reconnect on failure behavior.¶
References: #1094

	[sql] The per-dialect cache used by TypeEngine to cache
dialect-specific types is now a WeakKeyDictionary.
This to prevent dialect objects from
being referenced forever for an application that
creates an arbitrarily large number of engines
or dialects. There is a small performance penalty
which will be resolved in 0.6.¶
References: #1299

	[sql] Fixed SQLite reflection methods so that non-present
cursor.description, which triggers an auto-cursor
close, will be detected so that no results doesn’t
fail on recent versions of pysqlite which raise
an error when fetchone() called with no rows present.¶

mysql

	[mysql] Fixed bug in exception raise when FK columns not present
during reflection.¶
References: #1241

oracle

	[oracle] Fixed bug which was preventing out params of certain types
from being received; thanks a ton to huddlej at wwu.edu !¶
References: #1265

firebird

	[firebird] Added support for returning values from inserts (2.0+ only),
updates and deletes (2.1+ only).¶

misc

	The “__init__” trigger/decorator added by mapper now attempts
to exactly mirror the argument signature of the original
__init__. The pass-through for ‘_sa_session’ is no longer
implicit- you must allow for this keyword argument in your
constructor.¶

	ClassState is renamed to ClassManager.¶

	Classes may supply their own InstrumentationManager by
providing a __sa_instrumentation_manager__ property.¶

	Custom instrumentation may use any mechanism to associate a
ClassManager with a class and an InstanceState with an
instance. Attributes on those objects are still the default
association mechanism used by SQLAlchemy’s native
instrumentation.¶

	Moved entity_name, _sa_session_id, and _instance_key from the
instance object to the instance state. These values are still
available in the old way, which is now deprecated, using
descriptors attached to the class. A deprecation warning will
be issued when accessed.¶

	The _prepare_instrumentation alias for prepare_instrumentation
has been removed.¶

	sqlalchemy.exceptions has been renamed to sqlalchemy.exc. The
module may be imported under either name.¶

	ORM-related exceptions are now defined in sqlalchemy.orm.exc.
ConcurrentModificationError, FlushError, and
UnmappedColumnError compatibility aliases are installed in
sqlalchemy.exc during the import of sqlalchemy.orm.¶

	sqlalchemy.logging has been renamed to sqlalchemy.log.¶

	The transitional sqlalchemy.log.SADeprecationWarning alias for
the warning’s definition in sqlalchemy.exc has been removed.¶

	exc.AssertionError has been removed and usage replaced with
Python’s built-in AssertionError.¶

	The behavior of MapperExtensions attached to multiple,
entity_name= primary mappers for a single class has been
altered. The first mapper() defined for a class is the only
mapper eligible for the MapperExtension ‘instrument_class’,
‘init_instance’ and ‘init_failed’ events. This is backwards
incompatible; previously the extensions of last mapper defined
would receive these events.¶

	[postgres] Added Index reflection support to Postgres, using a
great patch we long neglected, submitted by
Ken Kuhlman.¶
References: #714

0.4 Changelog

0.4.8

Released: Sun Oct 12 2008
orm

	[orm] Fixed bug regarding inherit_condition passed
with “A=B” versus “B=A” leading to errors¶
References: #1039

	[orm] Changes made to new, dirty and deleted
collections in
SessionExtension.before_flush() will take
effect for that flush.¶

	[orm] Added label() method to InstrumentedAttribute
to establish forwards compatibility with 0.5.¶

sql

	[sql] column.in_(someselect) can now be used as
a columns-clause expression without the subquery
bleeding into the FROM clause¶
References: #1074

mysql

	[mysql] Added MSMediumInteger type.¶
References: #1146

sqlite

	[sqlite] Supplied a custom strftime() function which
handles dates before 1900.¶
References: #968

	[sqlite] String’s (and Unicode’s, UnicodeText’s, etc.)
convert_unicode logic disabled in the sqlite dialect,
to adjust for pysqlite 2.5.0’s new requirement that
only Python unicode objects are accepted;
http://itsystementwicklung.de/pipermail/list-pysqlite/2008-March/000018.html¶

oracle

	[oracle] has_sequence() now takes schema name into account¶
References: #1155

	[oracle] added BFILE to the list of reflected types¶
References: #1121

0.4.7p1

Released: Thu Jul 31 2008
orm

	[orm] Added “add()” and “add_all()” to scoped_session
methods. Workaround for 0.4.7:
from sqlalchemy.orm.scoping import ScopedSession, instrument
setattr(ScopedSession, "add", instrument("add"))
setattr(ScopedSession, "add_all", instrument("add_all"))

¶

	[orm] Fixed non-2.3 compatible usage of set() and generator
expression within relation().¶

0.4.7

Released: Sat Jul 26 2008
orm

	[orm] The contains() operator when used with many-to-many
will alias() the secondary (association) table so
that multiple contains() calls will not conflict
with each other¶
References: #1058

	[orm] fixed bug preventing merge() from functioning in
conjunction with a comparable_property()¶

	[orm] the enable_typechecks=False setting on relation()
now only allows subtypes with inheriting mappers.
Totally unrelated types, or subtypes not set up with
mapper inheritance against the target mapper are
still not allowed.¶

	[orm] Added is_active flag to Sessions to detect when
a transaction is in progress. This
flag is always True with a “transactional”
(in 0.5 a non-“autocommit”) Session.¶
References: #976

sql

	[sql] Fixed bug when calling select([literal(‘foo’)])
or select([bindparam(‘foo’)]).¶

schema

	[schema] create_all(), drop_all(), create(), drop() all raise
an error if the table name or schema name contains
more characters than that dialect’s configured
character limit. Some DB’s can handle too-long
table names during usage, and SQLA can handle this
as well. But various reflection/
checkfirst-during-create scenarios fail since we are
looking for the name within the DB’s catalog tables.¶
References: #571

	[schema] The index name generated when you say “index=True”
on a Column is truncated to the length appropriate
for the dialect. Additionally, an Index with a too-
long name cannot be explicitly dropped with
Index.drop(), similar to.¶
References: #571, #820

mysql

	[mysql] Added ‘CALL’ to the list of SQL keywords which return
result rows.¶

oracle

	[oracle] Oracle get_default_schema_name() “normalizes” the name
before returning, meaning it returns a lower-case name
when the identifier is detected as case insensitive.¶

	[oracle] creating/dropping tables takes schema name into account
when searching for the existing table, so that tables
in other owner namespaces with the same name do not
conflict¶
References: #709

	[oracle] Cursors now have “arraysize” set to 50 by default on
them, the value of which is configurable using the
“arraysize” argument to create_engine() with the
Oracle dialect. This to account for cx_oracle’s default
setting of “1”, which has the effect of many round trips
being sent to Oracle. This actually works well in
conjunction with BLOB/CLOB-bound cursors, of which
there are any number available but only for the life of
that row request (so BufferedColumnRow is still needed,
but less so).¶
References: #1062

	[oracle]

	sqlite

	
	add SLFloat type, which matches the SQLite REAL
type affinity. Previously, only SLNumeric was provided
which fulfills NUMERIC affinity, but that’s not the
same as REAL.

¶

misc

	[postgres] Repaired server_side_cursors to properly detect
text() clauses.¶

	[postgres] Added PGCidr type.¶
References: #1092

0.4.6

Released: Sat May 10 2008
orm

	[orm] Fix to the recent relation() refactoring which fixes
exotic viewonly relations which join between local and
remote table multiple times, with a common column shared
between the joins.¶

	[orm] Also re-established viewonly relation() configurations
that join across multiple tables.¶

	[orm] Added experimental relation() flag to help with
primaryjoins across functions, etc.,
_local_remote_pairs=[tuples]. This complements a complex
primaryjoin condition allowing you to provide the
individual column pairs which comprise the relation’s
local and remote sides. Also improved lazy load SQL
generation to handle placing bind params inside of
functions and other expressions. (partial progress
towards)¶
References: #610

	[orm] repaired single table inheritance such that you
can single-table inherit from a joined-table inherting
mapper without issue.¶
References: #1036

	[orm] Fixed “concatenate tuple” bug which could occur with
Query.order_by() if clause adaption had taken place.¶
References: #1027

	[orm] Removed ancient assertion that mapped selectables require
“alias names” - the mapper creates its own alias now if
none is present. Though in this case you need to use the
class, not the mapped selectable, as the source of column
attributes - so a warning is still issued.¶

	[orm] fixes to the “exists” function involving inheritance (any(),
has(), ~contains()); the full target join will be rendered
into the EXISTS clause for relations that link to subclasses.¶

	[orm] restored usage of append_result() extension method for primary
query rows, when the extension is present and only a single-
entity result is being returned.¶

	[orm] Also re-established viewonly relation() configurations that
join across multiple tables.¶

	[orm] removed ancient assertion that mapped selectables require
“alias names” - the mapper creates its own alias now if
none is present. Though in this case you need to use
the class, not the mapped selectable, as the source of
column attributes - so a warning is still issued.¶

	[orm] refined mapper._save_obj() which was unnecessarily calling
__ne__() on scalar values during flush¶
References: #1015

	[orm] added a feature to eager loading whereby subqueries set
as column_property() with explicit label names (which is not
necessary, btw) will have the label anonymized when
the instance is part of the eager join, to prevent
conflicts with a subquery or column of the same name
on the parent object.¶
References: #1019

	[orm] set-based collections |=, -=, ^= and &= are stricter about
their operands and only operate on sets, frozensets or
subclasses of the collection type. Previously, they would
accept any duck-typed set.¶

	[orm] added an example dynamic_dict/dynamic_dict.py, illustrating
a simple way to place dictionary behavior on top of
a dynamic_loader.¶

sql

	[sql] Added COLLATE support via the .collate(<collation>)
expression operator and collate(<expr>, <collation>) sql
function.¶

	[sql] Fixed bug with union() when applied to non-Table connected
select statements¶

	[sql] improved behavior of text() expressions when used as
FROM clauses, such as select().select_from(text(“sometext”))¶
References: #1014

	[sql] Column.copy() respects the value of “autoincrement”,
fixes usage with Migrate¶
References: #1021

mssql

	[mssql] Added “odbc_autotranslate” parameter to engine / dburi
parameters. Any given string will be passed through to the
ODBC connection string as:

“AutoTranslate=%s” % odbc_autotranslate

¶
References: #1005

	[mssql] Added “odbc_options” parameter to engine / dburi
parameters. The given string is simply appended to the
SQLAlchemy-generated odbc connection string.
This should obviate the need of adding a myriad of ODBC
options in the future.

¶

firebird

	[firebird] Handle the “SUBSTRING(:string FROM :start FOR :length)”
builtin.¶

misc

	[declarative] [extension] Joined table inheritance mappers use a slightly relaxed
function to create the “inherit condition” to the parent
table, so that other foreign keys to not-yet-declared
Table objects don’t trigger an error.¶

	[declarative] [extension] fixed reentrant mapper compile hang when
a declared attribute is used within ForeignKey,
ie. ForeignKey(MyOtherClass.someattribute)¶

	[engines] Pool listeners can now be provided as a dictionary of
callables or a (possibly partial) duck-type of
PoolListener, your choice.¶

	[engines] added “rollback_returned” option to Pool which will
disable the rollback() issued when connections are
returned. This flag is only safe to use with a database
which does not support transactions (i.e. MySQL/MyISAM).¶

	[ext] set-based association proxies |=, -=, ^= and &= are
stricter about their operands and only operate on sets,
frozensets or other association proxies. Previously, they
would accept any duck-typed set.¶

0.4.5

Released: Fri Apr 04 2008
orm

	[orm] A small change in behavior to session.merge() - existing
objects are checked for based on primary key attributes, not
necessarily _instance_key. So the widely requested
capability, that:

x = MyObject(id=1)
x = sess.merge(x)

will in fact load MyObject with id #1 from the database if
present, is now available. merge() still copies the state
of the given object to the persistent one, so an example
like the above would typically have copied “None” from all
attributes of “x” onto the persistent copy. These can be
reverted using session.expire(x).

¶

	[orm] Also fixed behavior in merge() whereby collection elements
present on the destination but not the merged collection
were not being removed from the destination.¶

	[orm] Added a more aggressive check for “uncompiled mappers”,
helps particularly with declarative layer¶
References: #995

	[orm] The methodology behind “primaryjoin”/”secondaryjoin” has
been refactored. Behavior should be slightly more
intelligent, primarily in terms of error messages which
have been pared down to be more readable. In a slight
number of scenarios it can better resolve the correct
foreign key than before.¶

	[orm] Added comparable_property(), adds query Comparator
behavior to regular, unmanaged Python properties¶

	[orm] [‘machines’] [Company.employees.of_type(Engineer)] the functionality of query.with_polymorphic() has
been added to mapper() as a configuration option.

	It’s set via several forms:

	with_polymorphic=’*’
with_polymorphic=[mappers]
with_polymorphic=(‘*’, selectable)
with_polymorphic=([mappers], selectable)

This controls the default polymorphic loading strategy
for inherited mappers. When a selectable is not given,
outer joins are created for all joined-table inheriting
mappers requested. Note that the auto-create of joins
is not compatible with concrete table inheritance.

The existing select_table flag on mapper() is now
deprecated and is synonymous with
with_polymorphic(‘*’, select_table). Note that the
underlying “guts” of select_table have been
completely removed and replaced with the newer,
more flexible approach.

The new approach also automatically allows eager loads
to work for subclasses, if they are present, for
example:

sess.query(Company).options(
 eagerload_all(
))

to load Company objects, their employees, and the
‘machines’ collection of employees who happen to be
Engineers. A “with_polymorphic” Query option should be
introduced soon as well which would allow per-Query
control of with_polymorphic() on relations.

¶

	[orm] added two “experimental” features to Query,
“experimental” in that their specific name/behavior
is not carved in stone just yet: _values() and
_from_self(). We’d like feedback on these.

	_values(*columns) is given a list of column
expressions, and returns a new Query that only
returns those columns. When evaluated, the return
value is a list of tuples just like when using
add_column() or add_entity(), the only difference is
that “entity zero”, i.e. the mapped class, is not
included in the results. This means it finally makes
sense to use group_by() and having() on Query, which
have been sitting around uselessly until now.A future change to this method may include that its
ability to join, filter and allow other options not
related to a “resultset” are removed, so the feedback
we’re looking for is how people want to use
_values()...i.e. at the very end, or do people prefer
to continue generating after it’s called.

	_from_self() compiles the SELECT statement for the
Query (minus any eager loaders), and returns a new
Query that selects from that SELECT. So basically you
can query from a Query without needing to extract the
SELECT statement manually. This gives meaning to
operations like query[3:5]._from_self().filter(some
criterion). There’s not much controversial here
except that you can quickly create highly nested
queries that are less efficient, and we want feedback
on the naming choice.

¶

	[orm] query.order_by() and query.group_by() will accept
multiple arguments using *args (like select()
already does).¶

	[orm] Added some convenience descriptors to Query:
query.statement returns the full SELECT construct,
query.whereclause returns just the WHERE part of the
SELECT construct.¶

	[orm] Fixed/covered case when using a False/0 value as a
polymorphic discriminator.¶

	[orm] Fixed bug which was preventing synonym() attributes from
being used with inheritance¶

	[orm] Fixed SQL function truncation of trailing underscores¶
References: #996

	[orm] When attributes are expired on a pending instance, an
error will not be raised when the “refresh” action is
triggered and no result is found.¶

	[orm] Session.execute can now find binds from metadata¶

	[orm] Adjusted the definition of “self-referential” to be any
two mappers with a common parent (this affects whether or
not aliased=True is required when joining with Query).¶

	[orm] Made some fixes to the “from_joinpoint” argument to
query.join() so that if the previous join was aliased and
this one isn’t, the join still happens successfully.¶

	[orm]

	Assorted “cascade deletes” fixes:

	
	Fixed “cascade delete” operation of dynamic relations,
which had only been implemented for foreign-key
nulling behavior in 0.4.2 and not actual cascading
deletes

	Delete cascade without delete-orphan cascade on a
many-to-one will not delete orphans which were
disconnected from the parent before session.delete()
is called on the parent (one-to-many already had
this).

	Delete cascade with delete-orphan will delete orphans
whether or not it remains attached to its also-deleted
parent.

	delete-orphan casacde is properly detected on relations
that are present on superclasses when using inheritance.

¶
References: #895

	[orm] Fixed order_by calculation in Query to properly alias
mapper-config’ed order_by when using select_from()¶

	[orm] Refactored the diffing logic that kicks in when replacing
one collection with another into collections.bulk_replace,
useful to anyone building multi-level collections.¶

	[orm] Cascade traversal algorithm converted from recursive to
iterative to support deep object graphs.¶

sql

	[sql] schema-qualified tables now will place the schemaname
ahead of the tablename in all column expressions as well
as when generating column labels. This prevents cross-
schema name collisions in all cases¶
References: #999

	[sql] can now allow selects which correlate all FROM clauses
and have no FROM themselves. These are typically
used in a scalar context, i.e. SELECT x, (SELECT x WHERE y)
FROM table. Requires explicit correlate() call.¶

	[sql] ‘name’ is no longer a required constructor argument for
Column(). It (and .key) may now be deferred until the
column is added to a Table.¶

	[sql] like(), ilike(), contains(), startswith(), endswith() take
an optional keyword argument “escape=<somestring>”, which
is set as the escape character using the syntax “x LIKE y
ESCAPE ‘<somestring>’”.¶
References: #791, #993

	[sql] random() is now a generic sql function and will compile to
the database’s random implementation, if any.¶

	[sql] update().values() and insert().values() take keyword
arguments.¶

	[sql] Fixed an issue in select() regarding its generation of
FROM clauses, in rare circumstances two clauses could be
produced when one was intended to cancel out the other.
Some ORM queries with lots of eager loads might have seen
this symptom.¶

	[sql] The case() function now also takes a dictionary as its
whens parameter. It also interprets the “THEN”
expressions as values by default, meaning case([(x==y,
“foo”)]) will interpret “foo” as a bound value, not a SQL
expression. use text(expr) for literal SQL expressions in
this case. For the criterion itself, these may be literal
strings only if the “value” keyword is present, otherwise
SA will force explicit usage of either text() or
literal().¶

mysql

	[mysql] The connection.info keys the dialect uses to cache server
settings have changed and are now namespaced.¶

mssql

	[mssql] Reflected tables will now automatically load other tables
which are referenced by Foreign keys in the auto-loaded
table,.¶
References: #979

	[mssql] Added executemany check to skip identity fetch,.¶
References: #916

	[mssql] Added stubs for small date type.¶
References: #884

	[mssql] Added a new ‘driver’ keyword parameter for the pyodbc dialect.
Will substitute into the ODBC connection string if given,
defaults to ‘SQL Server’.¶

	[mssql] Added a new ‘max_identifier_length’ keyword parameter for
the pyodbc dialect.¶

	[mssql] Improvements to pyodbc + Unix. If you couldn’t get that
combination to work before, please try again.¶

oracle

	[oracle] The “owner” keyword on Table is now deprecated, and is
exactly synonymous with the “schema” keyword. Tables can
now be reflected with alternate “owner” attributes,
explicitly stated on the Table object or not using
“schema”.¶

	[oracle] All of the “magic” searching for synonyms, DBLINKs etc.
during table reflection are disabled by default unless you
specify “oracle_resolve_synonyms=True” on the Table
object. Resolving synonyms necessarily leads to some
messy guessing which we’d rather leave off by default.
When the flag is set, tables and related tables will be
resolved against synonyms in all cases, meaning if a
synonym exists for a particular table, reflection will use
it when reflecting related tables. This is stickier
behavior than before which is why it’s off by default.¶

	[oracle] The “owner” keyword on Table is now deprecated, and is
exactly synonymous with the “schema” keyword. Tables can
now be reflected with alternate “owner” attributes,
explicitly stated on the Table object or not using
“schema”.¶

	[oracle] All of the “magic” searching for synonyms, DBLINKs etc.
during table reflection are disabled by default unless you
specify “oracle_resolve_synonyms=True” on the Table
object. Resolving synonyms necessarily leads to some
messy guessing which we’d rather leave off by default.
When the flag is set, tables and related tables will be
resolved against synonyms in all cases, meaning if a
synonym exists for a particular table, reflection will use
it when reflecting related tables. This is stickier
behavior than before which is why it’s off by default.¶

misc

	[declarative] [extension] The “synonym” function is now directly usable with
“declarative”. Pass in the decorated property using the
“descriptor” keyword argument, e.g.: somekey =
synonym(‘_somekey’, descriptor=property(g, s))¶

	[declarative] [extension] The “deferred” function is usable with “declarative”.
Simplest usage is to declare deferred and Column together,
e.g.: data = deferred(Column(Text))¶

	[declarative] [extension] Declarative also gained @synonym_for(...) and
@comparable_using(...), front-ends for synonym and
comparable_property.¶

	[declarative] [extension] Improvements to mapper compilation when using declarative;
already-compiled mappers will still trigger compiles of
other uncompiled mappers when used¶
References: #995

	[declarative] [extension] Declarative will complete setup for Columns lacking names,
allows a more DRY syntax.

	class Foo(Base):

	__tablename__ = ‘foos’
id = Column(Integer, primary_key=True)

¶

	[declarative] [extension] inheritance in declarative can be disabled when sending
“inherits=None” to __mapper_args__.¶

	[declarative] [extension] declarative_base() takes optional kwarg “mapper”, which
is any callable/class/method that produces a mapper,
such as declarative_base(mapper=scopedsession.mapper).
This property can also be set on individual declarative
classes using the “__mapper_cls__” property.¶

	[postgres] Got PG server side cursors back into shape, added fixed
unit tests as part of the default test suite. Added
better uniqueness to the cursor ID¶
References: #1001

0.4.4

Released: Wed Mar 12 2008
orm

	[orm] any(), has(), contains(), ~contains(), attribute level ==
and != now work properly with self-referential relations -
the clause inside the EXISTS is aliased on the “remote”
side to distinguish it from the parent table. This
applies to single table self-referential as well as
inheritance-based self-referential.¶

	[orm] Repaired behavior of == and != operators at the relation()
level when compared against NULL for one-to-one relations¶
References: #985

	[orm] Fixed bug whereby session.expire() attributes were not
loading on an polymorphically-mapped instance mapped by a
select_table mapper.¶

	[orm] Added query.with_polymorphic() - specifies a list of
classes which descend from the base class, which will be
added to the FROM clause of the query. Allows subclasses
to be used within filter() criterion as well as eagerly
loads the attributes of those subclasses.¶

	[orm] Your cries have been heard: removing a pending item from
an attribute or collection with delete-orphan expunges the
item from the session; no FlushError is raised. Note that
if you session.save()’ed the pending item explicitly, the
attribute/collection removal still knocks it out.¶

	[orm] session.refresh() and session.expire() raise an error when
called on instances which are not persistent within the
session¶

	[orm] Fixed potential generative bug when the same Query was
used to generate multiple Query objects using join().¶

	[orm] Fixed bug which was introduced in 0.4.3, whereby loading
an already-persistent instance mapped with joined table
inheritance would trigger a useless “secondary” load from
its joined table, when using the default “select”
polymorphic_fetch. This was due to attributes being
marked as expired during its first load and not getting
unmarked from the previous “secondary” load. Attributes
are now unexpired based on presence in __dict__ after any
load or commit operation succeeds.¶

	[orm] Deprecated Query methods apply_sum(), apply_max(),
apply_min(), apply_avg(). Better methodologies are
coming....¶

	[orm] relation() can accept a callable for its first argument,
which returns the class to be related. This is in place
to assist declarative packages to define relations without
classes yet being in place.¶

	[orm] Added a new “higher level” operator called “of_type()”:
used in join() as well as with any() and has(), qualifies
the subclass which will be used in filter criterion, e.g.:

	query.filter(Company.employees.of_type(Engineer).

	any(Engineer.name==’foo’))

or

	query.join(Company.employees.of_type(Engineer)).

	filter(Engineer.name==’foo’)

¶

	[orm] Preventive code against a potential lost-reference bug in
flush().¶

	[orm] Expressions used in filter(), filter_by() and others, when
they make usage of a clause generated from a relation
using the identity of a child object (e.g.,
filter(Parent.child==<somechild>)), evaluate the actual
primary key value of <somechild> at execution time so that
the autoflush step of the Query can complete, thereby
populating the PK value of <somechild> in the case that
<somechild> was pending.¶

	[orm] setting the relation()-level order by to a column in the
many-to-many “secondary” table will now work with eager
loading, previously the “order by” wasn’t aliased against
the secondary table’s alias.¶

	[orm] Synonyms riding on top of existing descriptors are now
full proxies to those descriptors.¶

sql

	[sql] Can again create aliases of selects against textual FROM
clauses.¶
References: #975

	[sql] The value of a bindparam() can be a callable, in which
case it’s evaluated at statement execution time to get the
value.¶

	[sql] Added exception wrapping/reconnect support to result set
fetching. Reconnect works for those databases that raise
a catchable data error during results (i.e. doesn’t work
on MySQL)¶
References: #978

	[sql] Implemented two-phase API for “threadlocal” engine, via
engine.begin_twophase(), engine.prepare()¶
References: #936

	[sql] Fixed bug which was preventing UNIONS from being
cloneable.¶
References: #986

	[sql] Added “bind” keyword argument to insert(), update(),
delete() and DDL(). The .bind property is now assignable
on those statements as well as on select().¶

	[sql] Insert statements can now be compiled with extra “prefix”
words between INSERT and INTO, for vendor extensions like
MySQL’s INSERT IGNORE INTO table.¶

misc

	[dialects] Invalid SQLite connection URLs now raise an error.¶

	[dialects] postgres TIMESTAMP renders correctly¶
References: #981

	[dialects] postgres PGArray is a “mutable” type by default; when used
with the ORM, mutable-style equality/ copy-on-write
techniques are used to test for changes.¶

	[extensions] a new super-small “declarative” extension has been added,
which allows Table and mapper() configuration to take
place inline underneath a class declaration. This
extension differs from ActiveMapper and Elixir in that it
does not redefine any SQLAlchemy semantics at all; literal
Column, Table and relation() constructs are used to define
the class behavior and table definition.¶

0.4.3

Released: Thu Feb 14 2008
general

	[general] Fixed a variety of hidden and some not-so-hidden
compatibility issues for Python 2.3, thanks to new support
for running the full test suite on 2.3.¶

	[general] Warnings are now issued as type exceptions.SAWarning.¶

orm

	[orm] Every Session.begin() must now be accompanied by a
corresponding commit() or rollback() unless the session is
closed with Session.close(). This also includes the begin()
which is implicit to a session created with
transactional=True. The biggest change introduced here is
that when a Session created with transactional=True raises
an exception during flush(), you must call
Session.rollback() or Session.close() in order for that
Session to continue after an exception.¶

	[orm] Fixed merge() collection-doubling bug when merging transient
entities with backref’ed collections.¶
References: #961

	[orm] merge(dont_load=True) does not accept transient entities,
this is in continuation with the fact that
merge(dont_load=True) does not accept any “dirty” objects
either.¶

	[orm] Added standalone “query” class attribute generated by a
scoped_session. This provides MyClass.query without using
Session.mapper. Use via:

MyClass.query = Session.query_property()

¶

	[orm] The proper error message is raised when trying to access
expired instance attributes with no session present¶

	[orm] dynamic_loader() / lazy=”dynamic” now accepts and uses
the order_by parameter in the same way in which it works
with relation().¶

	[orm] Added expire_all() method to Session. Calls expire() for
all persistent instances. This is handy in conjunction
with...¶

	[orm] Instances which have been partially or fully expired will
have their expired attributes populated during a regular
Query operation which affects those objects, preventing a
needless second SQL statement for each instance.¶

	[orm] Dynamic relations, when referenced, create a strong
reference to the parent object so that the query still has a
parent to call against even if the parent is only created
(and otherwise dereferenced) within the scope of a single
expression.¶
References: #938

	[orm] Added a mapper() flag “eager_defaults”. When set to True,
defaults that are generated during an INSERT or UPDATE
operation are post-fetched immediately, instead of being
deferred until later. This mimics the old 0.3 behavior.¶

	[orm] query.join() can now accept class-mapped attributes as
arguments. These can be used in place or in any combination
with strings. In particular this allows construction of
joins to subclasses on a polymorphic relation, i.e.:

query(Company).join([‘employees’, Engineer.name])

¶

	[orm] [people.join(engineer))] [(‘employees’] [Engineer.name] query.join() can also accept tuples of attribute name/some
selectable as arguments. This allows construction of joins
from subclasses of a polymorphic relation, i.e.:

query(Company).join()

¶

	[orm] General improvements to the behavior of join() in
conjunction with polymorphic mappers, i.e. joining from/to
polymorphic mappers and properly applying aliases.¶

	[orm] Fixed/improved behavior when a mapper determines the natural
“primary key” of a mapped join, it will more effectively
reduce columns which are equivalent via foreign key
relation. This affects how many arguments need to be sent
to query.get(), among other things.¶
References: #933

	[orm] The lazy loader can now handle a join condition where the
“bound” column (i.e. the one that gets the parent id sent as
a bind parameter) appears more than once in the join
condition. Specifically this allows the common task of a
relation() which contains a parent-correlated subquery, such
as “select only the most recent child item”.¶
References: #946

	[orm] Fixed bug in polymorphic inheritance where an incorrect
exception is raised when base polymorphic_on column does not
correspond to any columns within the local selectable of an
inheriting mapper more than one level deep¶

	[orm] Fixed bug in polymorphic inheritance which made it difficult
to set a working “order_by” on a polymorphic mapper.¶

	[orm] Fixed a rather expensive call in Query that was slowing down
polymorphic queries.¶

	[orm] “Passive defaults” and other “inline” defaults can now be
loaded during a flush() call if needed; in particular, this
allows constructing relations() where a foreign key column
references a server-side-generated, non-primary-key
column.¶
References: #954

	[orm]

	Additional Session transaction fixes/changes:

	
	Fixed bug with session transaction management: parent
transactions weren’t started on the connection when
adding a connection to a nested transaction.

	session.transaction now always refers to the innermost
active transaction, even when commit/rollback are called
directly on the session transaction object.

	Two-phase transactions can now be prepared.

	When preparing a two-phase transaction fails on one
connection, all the connections are rolled back.

	session.close() didn’t close all transactions when
nested transactions were used.

	rollback() previously erroneously set the current
transaction directly to the parent of the transaction
that could be rolled back to. Now it rolls back the next
transaction up that can handle it, but sets the current
transaction to its parent and inactivates the
transactions in between. Inactive transactions can only
be rolled back or closed, any other call results in an
error.

	autoflush for commit() wasn’t flushing for simple
subtransactions.

	unitofwork flush didn’t close the failed transaction
when the session was not in a transaction and committing
the transaction failed.

¶

	[orm] Miscellaneous tickets:¶
References: #964, #940

sql

	[sql] Added “schema.DDL”, an executable free-form DDL statement.
DDLs can be executed in isolation or attached to Table or
MetaData instances and executed automatically when those
objects are created and/or dropped.¶

	[sql] Table columns and constraints can be overridden on a an
existing table (such as a table that was already reflected)
using the ‘useexisting=True’ flag, which now takes into
account the arguments passed along with it.¶

	[sql] Added a callable-based DDL events interface, adds hooks
before and after Tables and MetaData create and drop.¶

	[sql] Added generative where(<criterion>) method to delete() and
update() constructs which return a new object with criterion
joined to existing criterion via AND, just like
select().where().¶

	[sql] Added “ilike()” operator to column operations. Compiles to
ILIKE on postgres, lower(x) LIKE lower(y) on all
others.¶
References: #727

	[sql] Added “now()” as a generic function; on SQLite, Oracle
and MSSQL compiles as “CURRENT_TIMESTAMP”; “now()” on
all others.¶
References: #943

	[sql] The startswith(), endswith(), and contains() operators now
concatenate the wildcard operator with the given operand in
SQL, i.e. “’%’ || <bindparam>” in all cases, accept
text(‘something’) operands properly¶
References: #962

	[sql] cast() accepts text(‘something’) and other non-literal
operands properly¶
References: #962

	[sql] fixed bug in result proxy where anonymously generated
column labels would not be accessible using their straight
string name¶

	[sql] Deferrable constraints can now be defined.¶

	[sql] Added “autocommit=True” keyword argument to select() and
text(), as well as generative autocommit() method on
select(); for statements which modify the database through
some user-defined means other than the usual INSERT/UPDATE/
DELETE etc. This flag will enable “autocommit” behavior
during execution if no transaction is in progress.¶
References: #915

	[sql] The ‘.c.’ attribute on a selectable now gets an entry for
every column expression in its columns clause. Previously,
“unnamed” columns like functions and CASE statements weren’t
getting put there. Now they will, using their full string
representation if no ‘name’ is available.¶

	[sql] a CompositeSelect, i.e. any union(), union_all(),
intersect(), etc. now asserts that each selectable contains
the same number of columns. This conforms to the
corresponding SQL requirement.¶

	[sql] The anonymous ‘label’ generated for otherwise unlabeled
functions and expressions now propagates outwards at compile
time for expressions like select([select([func.foo()])]).¶

	[sql] Building on the above ideas, CompositeSelects now build up
their ”.c.” collection based on the names present in the
first selectable only; corresponding_column() now works
fully for all embedded selectables.¶

	[sql] Oracle and others properly encode SQL used for defaults like
sequences, etc., even if no unicode idents are used since
identifier preparer may return a cached unicode identifier.¶

	[sql] Column and clause comparisons to datetime objects on the
left hand side of the expression now work (d < table.c.col).
(datetimes on the RHS have always worked, the LHS exception
is a quirk of the datetime implementation.)¶

misc

	[dialects] Better support for schemas in SQLite (linked in by ATTACH
DATABASE ... AS name). In some cases in the past, schema
names were omitted from generated SQL for SQLite. This is
no longer the case.¶

	[dialects] table_names on SQLite now picks up temporary tables as well.¶

	[dialects] Auto-detect an unspecified MySQL ANSI_QUOTES mode during
reflection operations, support for changing the mode
midstream. Manual mode setting is still required if no
reflection is used.¶

	[dialects] Fixed reflection of TIME columns on SQLite.¶

	[dialects] Finally added PGMacAddr type to postgres¶
References: #580

	[dialects] Reflect the sequence associated to a PK field (typically
with a BEFORE INSERT trigger) under Firebird¶

	[dialects] Oracle assembles the correct columns in the result set
column mapping when generating a LIMIT/OFFSET subquery,
allows columns to map properly to result sets even if
long-name truncation kicks in¶
References: #941

	[dialects] MSSQL now includes EXEC in the _is_select regexp, which
should allow row-returning stored procedures to be used.¶

	[dialects] MSSQL now includes an experimental implementation of
LIMIT/OFFSET using the ANSI SQL row_number() function, so it
requires MSSQL-2005 or higher. To enable the feature, add
“has_window_funcs” to the keyword arguments for connect, or
add ”?has_window_funcs=1” to your dburi query arguments.¶

	[ext] Changed ext.activemapper to use a non-transactional session
for the objectstore.¶

	[ext] Fixed output order of “[‘a’] + obj.proxied” binary operation
on association-proxied lists.¶

0.4.2p3

Released: Wed Jan 09 2008
general

	[general] sub version numbering scheme changed to suite
setuptools version number rules; easy_install -u
should now get this version over 0.4.2.¶

orm

	[orm] fixed bug with session.dirty when using “mutable
scalars” (such as PickleTypes)¶

	[orm] added a more descriptive error message when flushing
on a relation() that has non-locally-mapped columns
in its primary or secondary join condition¶

	[orm] suppressing all errors in
InstanceState.__cleanup() now.¶

	[orm] fixed an attribute history bug whereby assigning a
new collection to a collection-based attribute which
already had pending changes would generate incorrect
history¶
References: #922

	[orm] fixed delete-orphan cascade bug whereby setting the
same object twice to a scalar attribute could log it
as an orphan¶
References: #925

	[orm] Fixed cascades on a += assignment to a list-based
relation.¶

	[orm] synonyms can now be created against props that don’t
exist yet, which are later added via add_property().
This commonly includes backrefs. (i.e. you can make
synonyms for backrefs without worrying about the
order of operations)¶
References: #919

	[orm] fixed bug which could occur with polymorphic “union”
mapper which falls back to “deferred” loading of
inheriting tables¶

	[orm] the “columns” collection on a mapper/mapped class
(i.e. ‘c’) is against the mapped table, not the
select_table in the case of polymorphic “union”
loading (this shouldn’t be noticeable).¶

	[orm] fixed fairly critical bug whereby the same instance could be listed
more than once in the unitofwork.new collection; most typically
reproduced when using a combination of inheriting mappers and
ScopedSession.mapper, as the multiple __init__ calls per instance
could save() the object with distinct _state objects¶

	[orm] added very rudimentary yielding iterator behavior to Query. Call
query.yield_per(<number of rows>) and evaluate the Query in an
iterative context; every collection of N rows will be packaged up
and yielded. Use this method with extreme caution since it does
not attempt to reconcile eagerly loaded collections across
result batch boundaries, nor will it behave nicely if the same
instance occurs in more than one batch. This means that an eagerly
loaded collection will get cleared out if it’s referenced in more than
one batch, and in all cases attributes will be overwritten on instances
that occur in more than one batch.¶

	[orm] Fixed in-place set mutation operators for set collections and association
proxied sets.¶
References: #920

sql

	[sql] Text type is properly exported now and does not
raise a warning on DDL create; String types with no
length only raise warnings during CREATE TABLE¶
References: #912

	[sql] new UnicodeText type is added, to specify an
encoded, unlengthed Text type¶

	[sql] fixed bug in union() so that select() statements
which don’t derive from FromClause objects can be
unioned¶

	[sql] changed name of TEXT to Text since its a “generic”
type; TEXT name is deprecated until 0.5. The
“upgrading” behavior of String to Text when no
length is present is also deprecated until 0.5; will
issue a warning when used for CREATE TABLE
statements (String with no length for SQL expression
purposes is still fine)¶
References: #912

	[sql] generative select.order_by(None) / group_by(None)
was not managing to reset order by/group by
criterion, fixed¶
References: #924

misc

	[dialects] Fixed reflection of mysql empty string column
defaults.¶

	[ext] ‘+’, ‘*’, ‘+=’ and ‘*=’ support for association
proxied lists.¶

	[dialects] mssql - narrowed down the test for “date”/”datetime”
in MSDate/ MSDateTime subclasses so that incoming
“datetime” objects don’t get mis-interpreted as
“date” objects and vice versa.¶
References: #923

	[dialects] Fixed the missing call to subtype result processor for the PGArray
type.¶
References: #913

0.4.2

Released: Wed Jan 02 2008
orm

	[orm] a major behavioral change to collection-based backrefs: they no
longer trigger lazy loads ! “reverse” adds and removes
are queued up and are merged with the collection when it is
actually read from and loaded; but do not trigger a load beforehand.
For users who have noticed this behavior, this should be much more
convenient than using dynamic relations in some cases; for those who
have not, you might notice your apps using a lot fewer queries than
before in some situations.¶
References: #871

	[orm] mutable primary key support is added. primary key columns can be
changed freely, and the identity of the instance will change upon
flush. In addition, update cascades of foreign key referents (primary
key or not) along relations are supported, either in tandem with the
database’s ON UPDATE CASCADE (required for DB’s like Postgres) or
issued directly by the ORM in the form of UPDATE statements, by setting
the flag “passive_cascades=False”.¶

	[orm] inheriting mappers now inherit the MapperExtensions of their parent
mapper directly, so that all methods for a particular MapperExtension
are called for subclasses as well. As always, any MapperExtension
can return either EXT_CONTINUE to continue extension processing
or EXT_STOP to stop processing. The order of mapper resolution is:
<extensions declared on the classes mapper> <extensions declared on the
classes’ parent mapper> <globally declared extensions>.
Note that if you instantiate the same extension class separately
and then apply it individually for two mappers in the same inheritance
chain, the extension will be applied twice to the inheriting class,
and each method will be called twice.

To apply a mapper extension explicitly to each inheriting class but
have each method called only once per operation, use the same
instance of the extension for both mappers.

¶References: #490

	[orm] MapperExtension.before_update() and after_update() are now called
symmetrically; previously, an instance that had no modified column
attributes (but had a relation() modification) could be called with
before_update() but not after_update()¶
References: #907

	[orm] columns which are missing from a Query’s select statement
now get automatically deferred during load.¶

	[orm] mapped classes which extend “object” and do not provide an
__init__() method will now raise TypeError if non-empty *args
or **kwargs are present at instance construction time (and are
not consumed by any extensions such as the scoped_session mapper),
consistent with the behavior of normal Python classes¶
References: #908

	[orm] fixed Query bug when filter_by() compares a relation against None¶
References: #899

	[orm] improved support for pickling of mapped entities. Per-instance
lazy/deferred/expired callables are now serializable so that
they serialize and deserialize with _state.¶

	[orm] new synonym() behavior: an attribute will be placed on the mapped
class, if one does not exist already, in all cases. if a property
already exists on the class, the synonym will decorate the property
with the appropriate comparison operators so that it can be used in
column expressions just like any other mapped attribute (i.e. usable in
filter(), etc.) the “proxy=True” flag is deprecated and no longer means
anything. Additionally, the flag “map_column=True” will automatically
generate a ColumnProperty corresponding to the name of the synonym,
i.e.: ‘somename’:synonym(‘_somename’, map_column=True) will map the
column named ‘somename’ to the attribute ‘_somename’. See the example
in the mapper docs.¶
References: #801

	[orm] Query.select_from() now replaces all existing FROM criterion with
the given argument; the previous behavior of constructing a list
of FROM clauses was generally not useful as is required
filter() calls to create join criterion, and new tables introduced
within filter() already add themselves to the FROM clause. The
new behavior allows not just joins from the main table, but select
statements as well. Filter criterion, order bys, eager load
clauses will be “aliased” against the given statement.¶

	[orm] this month’s refactoring of attribute instrumentation changes
the “copy-on-load” behavior we’ve had since midway through 0.3
with “copy-on-modify” in most cases. This takes a sizable chunk
of latency out of load operations and overall does less work
as only attributes which are actually modified get their
“committed state” copied. Only “mutable scalar” attributes
(i.e. a pickled object or other mutable item), the reason for
the copy-on-load change in the first place, retain the old
behavior.¶

	[orm] [attrname] a slight behavioral change to attributes is, del’ing an attribute
does not cause the lazyloader of that attribute to fire off again;
the “del” makes the effective value of the attribute “None”. To
re-trigger the “loader” for an attribute, use
session.expire(instance,).¶

	[orm] query.filter(SomeClass.somechild == None), when comparing
a many-to-one property to None, properly generates “id IS NULL”
including that the NULL is on the right side.¶

	[orm] query.order_by() takes into account aliased joins, i.e.
query.join(‘orders’, aliased=True).order_by(Order.id)¶

	[orm] eagerload(), lazyload(), eagerload_all() take an optional
second class-or-mapper argument, which will select the mapper
to apply the option towards. This can select among other
mappers which were added using add_entity().¶

	[orm] eagerloading will work with mappers added via add_entity().¶

	[orm] added “cascade delete” behavior to “dynamic” relations just like
that of regular relations. if passive_deletes flag (also just added)
is not set, a delete of the parent item will trigger a full load of
the child items so that they can be deleted or updated accordingly.¶

	[orm] also with dynamic, implemented correct count() behavior as well
as other helper methods.¶

	[orm] fix to cascades on polymorphic relations, such that cascades
from an object to a polymorphic collection continue cascading
along the set of attributes specific to each element in the collection.¶

	[orm] query.get() and query.load() do not take existing filter or other
criterion into account; these methods always look up the given id
in the database or return the current instance from the identity map,
disregarding any existing filter, join, group_by or other criterion
which has been configured.¶
References: #893

	[orm] added support for version_id_col in conjunction with inheriting mappers.
version_id_col is typically set on the base mapper in an inheritance
relationship where it takes effect for all inheriting mappers.¶
References: #883

	[orm] relaxed rules on column_property() expressions having labels; any
ColumnElement is accepted now, as the compiler auto-labels non-labeled
ColumnElements now. a selectable, like a select() statement, still
requires conversion to ColumnElement via as_scalar() or label().¶

	[orm] fixed backref bug where you could not del instance.attr if attr
was None¶

	[orm] several ORM attributes have been removed or made private:
mapper.get_attr_by_column(), mapper.set_attr_by_column(),
mapper.pks_by_table, mapper.cascade_callable(),
MapperProperty.cascade_callable(), mapper.canload(),
mapper.save_obj(), mapper.delete_obj(), mapper._mapper_registry,
attributes.AttributeManager¶

	[orm] Assigning an incompatible collection type to a relation attribute now
raises TypeError instead of sqlalchemy’s ArgumentError.¶

	[orm] Bulk assignment of a MappedCollection now raises an error if a key in the
incoming dictionary does not match the key that the collection’s keyfunc
would use for that value.¶
References: #886

	[orm] [newval2] [newval1] Custom collections can now specify a @converter method to translate
objects used in “bulk” assignment into a stream of values, as in:
obj.col =
or
obj.dictcol = {'foo': newval1, 'bar': newval2}

The MappedCollection uses this hook to ensure that incoming key/value
pairs are sane from the collection’s perspective.

¶

	[orm] fixed endless loop issue when using lazy=”dynamic” on both
sides of a bi-directional relationship¶
References: #872

	[orm] more fixes to the LIMIT/OFFSET aliasing applied with Query + eagerloads,
in this case when mapped against a select statement¶
References: #904

	[orm] fix to self-referential eager loading such that if the same mapped
instance appears in two or more distinct sets of columns in the same
result set, its eagerly loaded collection will be populated regardless
of whether or not all of the rows contain a set of “eager” columns for
that collection. this would also show up as a KeyError when fetching
results with join_depth turned on.¶

	[orm] fixed bug where Query would not apply a subquery to the SQL when LIMIT
was used in conjunction with an inheriting mapper where the eager
loader was only in the parent mapper.¶

	[orm] clarified the error message which occurs when you try to update()
an instance with the same identity key as an instance already present
in the session.¶

	[orm] some clarifications and fixes to merge(instance, dont_load=True).
fixed bug where lazy loaders were getting disabled on returned instances.
Also, we currently do not support merging an instance which has uncommitted
changes on it, in the case that dont_load=True is used....this will
now raise an error. This is due to complexities in merging the
“committed state” of the given instance to correctly correspond to the
newly copied instance, as well as other modified state.
Since the use case for dont_load=True is caching, the given instances
shouldn’t have any uncommitted changes on them anyway.
We also copy the instances over without using any events now, so that
the ‘dirty’ list on the new session remains unaffected.¶

	[orm] fixed bug which could arise when using session.begin_nested() in conjunction
with more than one level deep of enclosing session.begin() statements¶

	[orm] fixed session.refresh() with instance that has custom entity_name¶
References: #914

sql

	[sql] generic functions ! we introduce a database of known SQL functions, such
as current_timestamp, coalesce, and create explicit function objects
representing them. These objects have constrained argument lists, are
type aware, and can compile in a dialect-specific fashion. So saying
func.char_length(“foo”, “bar”) raises an error (too many args),
func.coalesce(datetime.date(2007, 10, 5), datetime.date(2005, 10, 15))
knows that its return type is a Date. We only have a few functions
represented so far but will continue to add to the system¶
References: #615

	[sql] auto-reconnect support improved; a Connection can now automatically
reconnect after its underlying connection is invalidated, without
needing to connect() again from the engine. This allows an ORM session
bound to a single Connection to not need a reconnect.
Open transactions on the Connection must be rolled back after an invalidation
of the underlying connection else an error is raised. Also fixed
bug where disconnect detect was not being called for cursor(), rollback(),
or commit().¶

	[sql] added new flag to String and create_engine(),
assert_unicode=(True|False|’warn’|None). Defaults to False or None on
create_engine() and String, ‘warn’ on the Unicode type. When True,
results in all unicode conversion operations raising an exception when a
non-unicode bytestring is passed as a bind parameter. ‘warn’ results
in a warning. It is strongly advised that all unicode-aware applications
make proper use of Python unicode objects (i.e. u’hello’ and not ‘hello’)
so that data round trips accurately.¶

	[sql] generation of “unique” bind parameters has been simplified to use the same
“unique identifier” mechanisms as everything else. This doesn’t affect
user code, except any code that might have been hardcoded against the generated
names. Generated bind params now have the form “<paramname>_<num>”,
whereas before only the second bind of the same name would have this form.¶

	[sql] select().as_scalar() will raise an exception if the select does not have
exactly one expression in its columns clause.¶

	[sql] bindparam() objects themselves can be used as keys for execute(), i.e.
statement.execute({bind1:’foo’, bind2:’bar’})¶

	[sql] added new methods to TypeDecorator, process_bind_param() and
process_result_value(), which automatically take advantage of the processing
of the underlying type. Ideal for using with Unicode or Pickletype.
TypeDecorator should now be the primary way to augment the behavior of any
existing type including other TypeDecorator subclasses such as PickleType.¶

	[sql] selectables (and others) will issue a warning when two columns in
their exported columns collection conflict based on name.¶

	[sql] tables with schemas can still be used in sqlite, firebird,
schema name just gets dropped¶
References: #890

	[sql] changed the various “literal” generation functions to use an anonymous
bind parameter. not much changes here except their labels now look
like ”:param_1”, ”:param_2” instead of ”:literal”¶

	[sql] column labels in the form “tablename.columname”, i.e. with a dot, are now
supported.¶

	[sql] from_obj keyword argument to select() can be a scalar or a list.¶

firebird

	[firebird] [backend] does properly reflect domains (partially fixing) and
PassiveDefaults¶
References: #410

	[firebird] [3562] [backend] reverted to use default poolclass (was set to SingletonThreadPool in
0.4.0 for test purposes)¶

	[firebird] [backend] map func.length() to ‘char_length’ (easily overridable with the UDF
‘strlen’ on old versions of Firebird)¶

misc

	[dialects] sqlite SLDate type will not erroneously render “microseconds” portion
of a datetime or time object.¶

	[dialects]

	oracle

	
	added disconnect detection support for Oracle

	some cleanup to binary/raw types so that cx_oracle.LOB is detected
on an ad-hoc basis

¶
References: #902

	[dialects]

	MSSQL

	
	PyODBC no longer has a global “set nocount on”.

	Fix non-identity integer PKs on autload

	Better support for convert_unicode

	Less strict date conversion for pyodbc/adodbapi

	Schema-qualified tables / autoload

¶
References: #824, #839, #842, #901

0.4.1

Released: Sun Nov 18 2007
orm

	[orm] eager loading with LIMIT/OFFSET applied no longer adds the primary
table joined to a limited subquery of itself; the eager loads now
join directly to the subquery which also provides the primary table’s
columns to the result set. This eliminates a JOIN from all eager loads
with LIMIT/OFFSET.¶
References: #843

	[orm] session.refresh() and session.expire() now support an additional argument
“attribute_names”, a list of individual attribute keynames to be refreshed
or expired, allowing partial reloads of attributes on an already-loaded
instance.¶
References: #802

	[orm] added op() operator to instrumented attributes; i.e.
User.name.op(‘ilike’)(‘%somename%’)¶
References: #767

	[orm] Mapped classes may now define __eq__, __hash__, and __nonzero__ methods
with arbitrary semantics. The orm now handles all mapped instances on
an identity-only basis. (e.g. ‘is’ vs ‘==’)¶
References: #676

	[orm] the “properties” accessor on Mapper is removed; it now throws an informative
exception explaining the usage of mapper.get_property() and
mapper.iterate_properties¶

	[orm] added having() method to Query, applies HAVING to the generated statement
in the same way as filter() appends to the WHERE clause.¶

	[orm] The behavior of query.options() is now fully based on paths, i.e. an
option such as eagerload_all(‘x.y.z.y.x’) will apply eagerloading to
only those paths, i.e. and not ‘x.y.x’; eagerload(‘children.children’)
applies only to exactly two-levels deep, etc.¶
References: #777

	[orm] PickleType will compare using == when set up with mutable=False,
and not the is operator. To use is or any other comparator, send
in a custom comparison function using PickleType(comparator=my_custom_comparator).¶

	[orm] query doesn’t throw an error if you use distinct() and an order_by()
containing UnaryExpressions (or other) together¶
References: #848

	[orm] order_by() expressions from joined tables are properly added to columns
clause when using distinct()¶
References: #786

	[orm] fixed error where Query.add_column() would not accept a class-bound
attribute as an argument; Query also raises an error if an invalid
argument was sent to add_column() (at instances() time)¶
References: #858

	[orm] added a little more checking for garbage-collection dereferences in
InstanceState.__cleanup() to reduce “gc ignored” errors on app
shutdown¶

	[orm] The session API has been solidified:¶

	[orm] It’s an error to session.save() an object which is already
persistent¶
References: #840

	[orm] It’s an error to session.delete() an object which is not
persistent.¶

	[orm] session.update() and session.delete() raise an error when updating
or deleting an instance that is already in the session with a
different identity.¶

	[orm] The session checks more carefully when determining “object X already
in another session”; e.g. if you pickle a series of objects and
unpickle (i.e. as in a Pylons HTTP session or similar), they can go
into a new session without any conflict¶

	[orm] merge() includes a keyword argument “dont_load=True”. setting this
flag will cause the merge operation to not load any data from the
database in response to incoming detached objects, and will accept
the incoming detached object as though it were already present in
that session. Use this to merge detached objects from external
caching systems into the session.¶

	[orm] Deferred column attributes no longer trigger a load operation when the
attribute is assigned to. In those cases, the newly assigned value
will be present in the flushes’ UPDATE statement unconditionally.¶

	[orm] Fixed a truncation error when re-assigning a subset of a collection
(obj.relation = obj.relation[1:])¶
References: #834

	[orm] De-cruftified backref configuration code, backrefs which step on
existing properties now raise an error¶
References: #832

	[orm] Improved behavior of add_property() etc., fixed involving
synonym/deferred.¶
References: #831

	[orm] Fixed clear_mappers() behavior to better clean up after itself.¶

	[orm] Fix to “row switch” behavior, i.e. when an INSERT/DELETE is combined
into a single UPDATE; many-to-many relations on the parent object
update properly.¶
References: #841

	[orm] Fixed __hash__ for association proxy- these collections are unhashable,
just like their mutable Python counterparts.¶

	[orm] Added proxying of save_or_update, __contains__ and __iter__ methods for
scoped sessions.¶

	[orm] fixed very hard-to-reproduce issue where by the FROM clause of Query
could get polluted by certain generative calls¶
References: #852

sql

	[sql] the “shortname” keyword parameter on bindparam() has been
deprecated.¶

	[sql] Added contains operator (generates a “LIKE %<other>%” clause).¶

	[sql] anonymous column expressions are automatically labeled.
e.g. select([x* 5]) produces “SELECT x * 5 AS anon_1”.
This allows the labelname to be present in the cursor.description
which can then be appropriately matched to result-column processing
rules. (we can’t reliably use positional tracking for result-column
matches since text() expressions may represent multiple columns).¶

	[sql] operator overloading is now controlled by TypeEngine objects - the
one built-in operator overload so far is String types overloading
‘+’ to be the string concatenation operator.
User-defined types can also define their own operator overloading
by overriding the adapt_operator(self, op) method.¶

	[sql] untyped bind parameters on the right side of a binary expression
will be assigned the type of the left side of the operation, to better
enable the appropriate bind parameter processing to take effect¶
References: #819

	[sql] Removed regular expression step from most statement compilations.
Also fixes¶
References: #833

	[sql] Fixed empty (zero column) sqlite inserts, allowing inserts on
autoincrementing single column tables.¶

	[sql] Fixed expression translation of text() clauses; this repairs various
ORM scenarios where literal text is used for SQL expressions¶

	[sql] Removed ClauseParameters object; compiled.params returns a regular
dictionary now, as well as result.last_inserted_params() /
last_updated_params().¶

	[sql] Fixed INSERT statements w.r.t. primary key columns that have
SQL-expression based default generators on them; SQL expression
executes inline as normal but will not trigger a “postfetch” condition
for the column, for those DB’s who provide it via cursor.lastrowid¶

	[sql] func. objects can be pickled/unpickled¶
References: #844

	[sql] rewrote and simplified the system used to “target” columns across
selectable expressions. On the SQL side this is represented by the
“corresponding_column()” method. This method is used heavily by the ORM
to “adapt” elements of an expression to similar, aliased expressions,
as well as to target result set columns originally bound to a
table or selectable to an aliased, “corresponding” expression. The new
rewrite features completely consistent and accurate behavior.¶

	[sql] Added a field (“info”) for storing arbitrary data on schema items¶
References: #573

	[sql] The “properties” collection on Connections has been renamed “info” to
match schema’s writable collections. Access is still available via
the “properties” name until 0.5.¶

	[sql] fixed the close() method on Transaction when using strategy=’threadlocal’¶

	[sql] fix to compiled bind parameters to not mistakenly populate None¶
References: #853

	[sql] <Engine|Connection>._execute_clauseelement becomes a public method
Connectable.execute_clauseelement¶

misc

	[dialects] Added experimental support for MaxDB (versions >= 7.6.03.007 only).¶

	[dialects] oracle will now reflect “DATE” as an OracleDateTime column, not
OracleDate¶

	[dialects] added awareness of schema name in oracle table_names() function,
fixes metadata.reflect(schema=’someschema’)¶
References: #847

	[dialects] MSSQL anonymous labels for selection of functions made deterministic¶

	[dialects] sqlite will reflect “DECIMAL” as a numeric column.¶

	[dialects] Made access dao detection more reliable¶
References: #828

	[dialects] Renamed the Dialect attribute ‘preexecute_sequences’ to
‘preexecute_pk_sequences’. An attribute porxy is in place for
out-of-tree dialects using the old name.¶

	[dialects] Added test coverage for unknown type reflection. Fixed sqlite/mysql
handling of type reflection for unknown types.¶

	[dialects] Added REAL for mysql dialect (for folks exploiting the
REAL_AS_FLOAT sql mode).¶

	[dialects] mysql Float, MSFloat and MSDouble constructed without arguments
now produce no-argument DDL, e.g.’FLOAT’.¶

	[misc] Removed unused util.hash().¶

0.4.0

Released: Wed Oct 17 2007
	(see 0.4.0beta1 for the start of major changes against 0.3,
as well as http://www.sqlalchemy.org/trac/wiki/WhatsNewIn04)¶

	Added initial Sybase support (mxODBC so far)¶
References: #785

	Added partial index support for PostgreSQL. Use the postgres_where keyword
on the Index.¶

	string-based query param parsing/config file parser understands
wider range of string values for booleans¶
References: #817

	backref remove object operation doesn’t fail if the other-side
collection doesn’t contain the item, supports noload collections¶
References: #813

	removed __len__ from “dynamic” collection as it would require issuing
a SQL “count()” operation, thus forcing all list evaluations to issue
redundant SQL¶
References: #818

	inline optimizations added to locate_dirty() which can greatly speed up
repeated calls to flush(), as occurs with autoflush=True¶
References: #816

	The IdentifierPreprarer’s _requires_quotes test is now regex based. Any
out-of-tree dialects that provide custom sets of legal_characters or
illegal_initial_characters will need to move to regexes or override
_requires_quotes.¶

	Firebird has supports_sane_rowcount and supports_sane_multi_rowcount set
to False due to ticket #370 (right way).¶

	

	Improvements and fixes on Firebird reflection:

	
	FBDialect now mimics OracleDialect, regarding case-sensitivity of TABLE and
COLUMN names (see ‘case_sensitive remotion’ topic on this current file).

	FBDialect.table_names() doesn’t bring system tables (ticket:796).

	FB now reflects Column’s nullable property correctly.

¶

	Fixed SQL compiler’s awareness of top-level column labels as used
in result-set processing; nested selects which contain the same column
names don’t affect the result or conflict with result-column metadata.¶

	query.get() and related functions (like many-to-one lazyloading)
use compile-time-aliased bind parameter names, to prevent
name conflicts with bind parameters that already exist in the
mapped selectable.¶

	Fixed three- and multi-level select and deferred inheritance loading
(i.e. abc inheritance with no select_table).¶
References: #795

	Ident passed to id_chooser in shard.py always a list.¶

	The no-arg ResultProxy._row_processor() is now the class attribute
_process_row.¶

	Added support for returning values from inserts and updates for
PostgreSQL 8.2+.¶
References: #797

	PG reflection, upon seeing the default schema name being used explicitly
as the “schema” argument in a Table, will assume that this is the
user’s desired convention, and will explicitly set the “schema” argument
in foreign-key-related reflected tables, thus making them match only
with Table constructors that also use the explicit “schema” argument
(even though its the default schema).
In other words, SA assumes the user is being consistent in this usage.¶

	fixed sqlite reflection of BOOL/BOOLEAN¶
References: #808

	Added support for UPDATE with LIMIT on mysql.¶

	null foreign key on a m2o doesn’t trigger a lazyload¶
References: #803

	oracle does not implicitly convert to unicode for non-typed result
sets (i.e. when no TypeEngine/String/Unicode type is even being used;
previously it was detecting DBAPI types and converting regardless).
should fix¶
References: #800

	fix to anonymous label generation of long table/column names¶
References: #806

	Firebird dialect now uses SingletonThreadPool as poolclass.¶

	Firebird now uses dialect.preparer to format sequences names¶

	Fixed breakage with postgres and multiple two-phase transactions. Two-phase
commits and rollbacks didn’t automatically end up with a new transaction
as the usual dbapi commits/rollbacks do.¶
References: #810

	Added an option to the _ScopedExt mapper extension to not automatically
save new objects to session on object initialization.¶

	fixed Oracle non-ansi join syntax¶

	PickleType and Interval types (on db not supporting it natively) are now
slightly faster.¶

	Added Float and Time types to Firebird (FBFloat and FBTime). Fixed
BLOB SUB_TYPE for TEXT and Binary types.¶

	Changed the API for the in_ operator. in_() now accepts a single argument
that is a sequence of values or a selectable. The old API of passing in
values as varargs still works but is deprecated.¶

0.4.0beta6

Released: Thu Sep 27 2007
	The Session identity map is now weak referencing by default, use
weak_identity_map=False to use a regular dict. The weak dict we are using
is customized to detect instances which are “dirty” and maintain a
temporary strong reference to those instances until changes are flushed.¶

	Mapper compilation has been reorganized such that most compilation occurs
upon mapper construction. This allows us to have fewer calls to
mapper.compile() and also to allow class-based properties to force a
compilation (i.e. User.addresses == 7 will compile all mappers; this is). The only caveat here is that an inheriting mapper now
looks for its inherited mapper upon construction; so mappers within
inheritance relationships need to be constructed in inheritance order
(which should be the normal case anyway).¶
References: #758

	added “FETCH” to the keywords detected by Postgres to indicate a
result-row holding statement (i.e. in addition to “SELECT”).¶

	Added full list of SQLite reserved keywords so that they get escaped
properly.¶

	Tightened up the relationship between the Query’s generation of “eager
load” aliases, and Query.instances() which actually grabs the eagerly
loaded rows. If the aliases were not specifically generated for that
statement by EagerLoader, the EagerLoader will not take effect when the
rows are fetched. This prevents columns from being grabbed accidentally
as being part of an eager load when they were not meant for such, which
can happen with textual SQL as well as some inheritance situations. It’s
particularly important since the “anonymous aliasing” of columns uses
simple integer counts now to generate labels.¶

	Removed “parameters” argument from clauseelement.compile(), replaced with
“column_keys”. The parameters sent to execute() only interact with the
insert/update statement compilation process in terms of the column names
present but not the values for those columns. Produces more consistent
execute/executemany behavior, simplifies things a bit internally.¶

	Added ‘comparator’ keyword argument to PickleType. By default, “mutable”
PickleType does a “deep compare” of objects using their dumps()
representation. But this doesn’t work for dictionaries. Pickled objects
which provide an adequate __eq__() implementation can be set up with
“PickleType(comparator=operator.eq)”¶
References: #560

	Added session.is_modified(obj) method; performs the same “history”
comparison operation as occurs within a flush operation; setting
include_collections=False gives the same result as is used when the flush
determines whether or not to issue an UPDATE for the instance’s row.¶

	Added “schema” argument to Sequence; use this with Postgres /Oracle when
the sequence is located in an alternate schema. Implements part of, should fix.¶
References: #584, #761

	Fixed reflection of the empty string for mysql enums.¶

	Changed MySQL dialect to use the older LIMIT <offset>, <limit> syntax
instead of LIMIT <l> OFFSET <o> for folks using 3.23.¶
References: #794

	Added ‘passive_deletes=”all”’ flag to relation(), disables all nulling-out
of foreign key attributes during a flush where the parent object is
deleted.¶

	Column defaults and onupdates, executing inline, will add parenthesis for
subqueries and other parenthesis-requiring expressions¶

	The behavior of String/Unicode types regarding that they auto-convert to
TEXT/CLOB when no length is present now occurs only for an exact type of
String or Unicode with no arguments. If you use VARCHAR or NCHAR
(subclasses of String/Unicode) with no length, they will be interpreted by
the dialect as VARCHAR/NCHAR; no “magic” conversion happens there. This
is less surprising behavior and in particular this helps Oracle keep
string-based bind parameters as VARCHARs and not CLOBs.¶
References: #793

	Fixes to ShardedSession to work with deferred columns.¶
References: #771

	User-defined shard_chooser() function must accept “clause=None” argument;
this is the ClauseElement passed to session.execute(statement) and can be
used to determine correct shard id (since execute() doesn’t take an
instance.)¶

	Adjusted operator precedence of NOT to match ‘==’ and others, so that
~(x <operator> y) produces NOT (x <op> y), which is better compatible
with older MySQL versions.. This doesn’t apply to “~(x==y)”
as it does in 0.3 since ~(x==y) compiles to “x != y”, but still applies
to operators like BETWEEN.¶
References: #764

	Other tickets:,,.¶
References: #757, #768, #779, #728

0.4.0beta5

no release date
	Connection pool fixes; the better performance of beta4 remains but fixes
“connection overflow” and other bugs which were present (like).¶
References: #754

	Fixed bugs in determining proper sync clauses from custom inherit
conditions.¶
References: #769

	Extended ‘engine_from_config’ coercion for QueuePool size / overflow.¶
References: #763

	mysql views can be reflected again.¶
References: #748

	AssociationProxy can now take custom getters and setters.¶

	Fixed malfunctioning BETWEEN in orm queries.¶

	Fixed OrderedProperties pickling¶
References: #762

	SQL-expression defaults and sequences now execute “inline” for all
non-primary key columns during an INSERT or UPDATE, and for all columns
during an executemany()-style call. inline=True flag on any insert/update
statement also forces the same behavior with a single execute().
result.postfetch_cols() is a collection of columns for which the previous
single insert or update statement contained a SQL-side default expression.¶

	Fixed PG executemany() behavior.¶
References: #759

	postgres reflects tables with autoincrement=False for primary key columns
which have no defaults.¶

	postgres no longer wraps executemany() with individual execute() calls,
instead favoring performance. “rowcount”/”concurrency” checks with
deleted items (which use executemany) are disabled with PG since psycopg2
does not report proper rowcount for executemany().¶

	[tickets] [fixed] ¶
References: #742

	[tickets] [fixed] ¶
References: #748

	[tickets] [fixed] ¶
References: #760

	[tickets] [fixed] ¶
References: #762

	[tickets] [fixed] ¶
References: #763

0.4.0beta4

Released: Wed Aug 22 2007
	Tidied up what ends up in your namespace when you ‘from sqlalchemy import *’:¶

	‘table’ and ‘column’ are no longer imported. They remain available by
direct reference (as in ‘sql.table’ and ‘sql.column’) or a glob import
from the sql package. It was too easy to accidentally use a
sql.expressions.table instead of schema.Table when just starting out
with SQLAlchemy, likewise column.¶

	Internal-ish classes like ClauseElement, FromClause, NullTypeEngine,
etc., are also no longer imported into your namespace¶

	The ‘Smallinteger’ compatibility name (small i!) is no longer imported,
but remains in schema.py for now. SmallInteger (big I!) is still
imported.¶

	The connection pool uses a “threadlocal” strategy internally to return
the same connection already bound to a thread, for “contextual” connections;
these are the connections used when you do a “connectionless” execution
like insert().execute(). This is like a “partial” version of the
“threadlocal” engine strategy but without the thread-local transaction part
of it. We’re hoping it reduces connection pool overhead as well as
database usage. However, if it proves to impact stability in a negative way,
we’ll roll it right back.¶

	Fix to bind param processing such that “False” values (like blank strings)
still get processed/encoded.¶

	Fix to select() “generative” behavior, such that calling column(),
select_from(), correlate(), and with_prefix() does not modify the
original select object¶
References: #752

	Added a “legacy” adapter to types, such that user-defined TypeEngine
and TypeDecorator classes which define convert_bind_param() and/or
convert_result_value() will continue to function. Also supports
calling the super() version of those methods.¶

	Added session.prune(), trims away instances cached in a session that
are no longer referenced elsewhere. (A utility for strong-ref
identity maps).¶

	Added close() method to Transaction. Closes out a transaction using
rollback if it’s the outermost transaction, otherwise just ends
without affecting the outer transaction.¶

	Transactional and non-transactional Session integrates better with
bound connection; a close() will ensure that connection
transactional state is the same as that which existed on it before
being bound to the Session.¶

	Modified SQL operator functions to be module-level operators,
allowing SQL expressions to be pickleable.¶
References: #735

	Small adjustment to mapper class.__init__ to allow for Py2.6
object.__init__() behavior.¶

	Fixed ‘prefix’ argument for select()¶

	Connection.begin() no longer accepts nested=True, this logic is now
all in begin_nested().¶

	Fixes to new “dynamic” relation loader involving cascades¶

	[tickets] [fixed] ¶
References: #735

	[tickets] [fixed] ¶
References: #752

0.4.0beta3

Released: Thu Aug 16 2007
	SQL types optimization:¶

	New performance tests show a combined mass-insert/mass-select test as
having 68% fewer function calls than the same test run against 0.3.¶

	General performance improvement of result set iteration is around 10-20%.¶

	In types.AbstractType, convert_bind_param() and convert_result_value()
have migrated to callable-returning bind_processor() and
result_processor() methods. If no callable is returned, no pre/post
processing function is called.¶

	Hooks added throughout base/sql/defaults to optimize the calling of bind
aram/result processors so that method call overhead is minimized.¶

	Support added for executemany() scenarios such that unneeded “last row id”
logic doesn’t kick in, parameters aren’t excessively traversed.¶

	Added ‘inherit_foreign_keys’ arg to mapper().¶

	Added support for string date passthrough in sqlite.¶

	[tickets] [fixed] ¶
References: #738

	[tickets] [fixed] ¶
References: #739

	[tickets] [fixed] ¶
References: #743

	[tickets] [fixed] ¶
References: #744

0.4.0beta2

Released: Tue Aug 14 2007
oracle

	[oracle] [improvements.] Auto-commit after LOAD DATA INFILE for mysql.¶

	[oracle] [improvements.] A rudimental SessionExtension class has been added, allowing user-defined
functionality to take place at flush(), commit(), and rollback() boundaries.¶

	[oracle] [improvements.] Added engine_from_config() function for helping to create_engine() from an
.ini style config.¶

	[oracle] [improvements.] base_mapper() becomes a plain attribute.¶

	[oracle] [improvements.] session.execute() and scalar() can search for a Table with which to bind from
using the given ClauseElement.¶

	[oracle] [improvements.] Session automatically extrapolates tables from mappers with binds, also uses
base_mapper so that inheritance hierarchies bind automatically.¶

	[oracle] [improvements.] Moved ClauseVisitor traversal back to inlined non-recursive.¶

misc

	[tickets] [fixed] ¶
References: #730

	[tickets] [fixed] ¶
References: #732

	[tickets] [fixed] ¶
References: #733

	[tickets] [fixed] ¶
References: #734

0.4.0beta1

Released: Sun Aug 12 2007
orm

	[orm] Speed! Along with recent speedups to ResultProxy, total number of function
calls significantly reduced for large loads.¶

	[orm] test/perf/masseagerload.py reports 0.4 as having the fewest number of
function calls across all SA versions (0.1, 0.2, and 0.3).¶

	[orm] New collection_class api and implementation. Collections are
now instrumented via decorations rather than proxying. You can now have
collections that manage their own membership, and your class instance will
be directly exposed on the relation property. The changes are transparent
for most users.¶
References: #213

	[orm] InstrumentedList (as it was) is removed, and relation properties no
longer have ‘clear()’, ‘.data’, or any other added methods beyond those
provided by the collection type. You are free, of course, to add them to
a custom class.¶

	[orm] __setitem__-like assignments now fire remove events for the existing
value, if any.¶

	[orm] dict-likes used as collection classes no longer need to change __iter__
semantics- itervalues() is used by default instead. This is a backwards
incompatible change.¶

	[orm] Subclassing dict for a mapped collection is no longer needed in most
cases. orm.collections provides canned implementations that key objects
by a specified column or a custom function of your choice.¶

	[orm] Collection assignment now requires a compatible type- assigning None to
clear a collection or assigning a list to a dict collection will now
raise an argument error.¶

	[orm] AttributeExtension moved to interfaces, and .delete is now .remove The
event method signature has also been swapped around.¶

	[orm] Major overhaul for Query:¶

	[orm] All selectXXX methods are deprecated. Generative methods are now the
standard way to do things, i.e. filter(), filter_by(), all(), one(),
etc. Deprecated methods are docstring’ed with their new replacements.¶

	[orm] Class-level properties are now usable as query elements... no more
‘.c.’! “Class.c.propname” is now superseded by “Class.propname”. All
clause operators are supported, as well as higher level operators such
as Class.prop==<some instance> for scalar attributes,
Class.prop.contains(<some instance>) and Class.prop.any(<some
expression>) for collection-based attributes (all are also
negatable). Table-based column expressions as well as columns mounted
on mapped classes via ‘c’ are of course still fully available and can be
freely mixed with the new attributes.¶
References: #643

	[orm] Removed ancient query.select_by_attributename() capability.¶

	[orm] The aliasing logic used by eager loading has been generalized, so that
it also adds full automatic aliasing support to Query. It’s no longer
necessary to create an explicit Alias to join to the same tables
multiple times; even for self-referential relationships.

	join() and outerjoin() take arguments “aliased=True”. Yhis causes
their joins to be built on aliased tables; subsequent calls to
filter() and filter_by() will translate all table expressions (yes,
real expressions using the original mapped Table) to be that of the
Alias for the duration of that join() (i.e. until reset_joinpoint() or
another join() is called).

	join() and outerjoin() take arguments “id=<somestring>”. When used
with “aliased=True”, the id can be referenced by add_entity(cls,
id=<somestring>) so that you can select the joined instances even if
they’re from an alias.

	join() and outerjoin() now work with self-referential relationships!
Using “aliased=True”, you can join as many levels deep as desired,
i.e. query.join([‘children’, ‘children’], aliased=True); filter
criterion will be against the rightmost joined table

¶

	[orm] Added query.populate_existing(), marks the query to reload all
attributes and collections of all instances touched in the query,
including eagerly-loaded entities.¶
References: #660

	[orm] Added eagerload_all(), allows eagerload_all(‘x.y.z’) to specify eager
loading of all properties in the given path.¶

	[orm] Major overhaul for Session:¶

	[orm] New function which “configures” a session called “sessionmaker()”. Send
various keyword arguments to this function once, returns a new class
which creates a Session against that stereotype.¶

	[orm] SessionTransaction removed from “public” API. You now can call begin()/
commit()/rollback() on the Session itself.¶

	[orm] Session also supports SAVEPOINT transactions; call begin_nested().¶

	[orm] Session supports two-phase commit behavior when vertically or
horizontally partitioning (i.e., using more than one engine). Use
twophase=True.¶

	[orm] Session flag “transactional=True” produces a session which always places
itself into a transaction when first used. Upon commit(), rollback() or
close(), the transaction ends; but begins again on the next usage.¶

	[orm] Session supports “autoflush=True”. This issues a flush() before each
query. Use in conjunction with transactional, and you can just
save()/update() and then query, the new objects will be there. Use
commit() at the end (or flush() if non-transactional) to flush remaining
changes.¶

	[orm] New scoped_session() function replaces SessionContext and assignmapper.
Builds onto “sessionmaker()” concept to produce a class whos Session()
construction returns the thread-local session. Or, call all Session
methods as class methods, i.e. Session.save(foo); Session.commit().
just like the old “objectstore” days.¶

	[orm] Added new “binds” argument to Session to support configuration of
multiple binds with sessionmaker() function.¶

	[orm] A rudimental SessionExtension class has been added, allowing
user-defined functionality to take place at flush(), commit(), and
rollback() boundaries.¶

	[orm] Query-based relation()s available with dynamic_loader(). This is a
writable collection (supporting append() and remove()) which is also a
live Query object when accessed for reads. Ideal for dealing with very
large collections where only partial loading is desired.¶

	[orm] flush()-embedded inline INSERT/UPDATE expressions. Assign any SQL
expression, like “sometable.c.column + 1”, to an instance’s attribute.
Upon flush(), the mapper detects the expression and embeds it directly in
the INSERT or UPDATE statement; the attribute gets deferred on the
instance so it loads the new value the next time you access it.¶

	[orm] A rudimental sharding (horizontal scaling) system is introduced. This
system uses a modified Session which can distribute read and write
operations among multiple databases, based on user-defined functions
defining the “sharding strategy”. Instances and their dependents can be
distributed and queried among multiple databases based on attribute
values, round-robin approaches or any other user-defined
system.¶
References: #618

	[orm] Eager loading has been enhanced to allow even more joins in more places.
It now functions at any arbitrary depth along self-referential and
cyclical structures. When loading cyclical structures, specify
“join_depth” on relation() indicating how many times you’d like the table
to join to itself; each level gets a distinct table alias. The alias
names themselves are generated at compile time using a simple counting
scheme now and are a lot easier on the eyes, as well as of course
completely deterministic.¶
References: #659

	[orm] Added composite column properties. This allows you to create a type which
is represented by more than one column, when using the ORM. Objects of
the new type are fully functional in query expressions, comparisons,
query.get() clauses, etc. and act as though they are regular single-column
scalars... except they’re not! Use the function composite(cls, *columns)
inside of the mapper’s “properties” dict, and instances of cls will be
created/mapped to a single attribute, comprised of the values corresponding
to *columns.¶
References: #211

	[orm] Improved support for custom column_property() attributes which feature
correlated subqueries, works better with eager loading now.¶

	[orm] Primary key “collapse” behavior; the mapper will analyze all columns in
its given selectable for primary key “equivalence”, that is, columns which
are equivalent via foreign key relationship or via an explicit
inherit_condition. primarily for joined-table inheritance scenarios where
different named PK columns in inheriting tables should “collapse” into a
single-valued (or fewer-valued) primary key. Fixes things like.¶
References: #611

	[orm] Joined-table inheritance will now generate the primary key columns of all
inherited classes against the root table of the join only. This implies
that each row in the root table is distinct to a single instance. If for
some rare reason this is not desirable, explicit primary_key settings on
individual mappers will override it.¶

	[orm] When “polymorphic” flags are used with joined-table or single-table
inheritance, all identity keys are generated against the root class of the
inheritance hierarchy; this allows query.get() to work polymorphically
using the same caching semantics as a non-polymorphic get. Note that this
currently does not work with concrete inheritance.¶

	[orm] Secondary inheritance loading: polymorphic mappers can be constructed
without a select_table argument. inheriting mappers whose tables were
not represented in the initial load will issue a second SQL query
immediately, once per instance (i.e. not very efficient for large lists),
in order to load the remaining columns.¶

	[orm] Secondary inheritance loading can also move its second query into a
column-level “deferred” load, via the “polymorphic_fetch” argument, which
can be set to ‘select’ or ‘deferred’¶

	[orm] It’s now possible to map only a subset of available selectable columns
onto mapper properties, using include_columns/exclude_columns..¶
References: #696

	[orm] Added undefer_group() MapperOption, sets a set of “deferred” columns
joined by a “group” to load as “undeferred”.¶

	[orm] Rewrite of the “deterministic alias name” logic to be part of the SQL
layer, produces much simpler alias and label names more in the style of
Hibernate¶

sql

	[sql] Speed! Clause compilation as well as the mechanics of SQL constructs have
been streamlined and simplified to a significant degree, for a 20-30%
improvement of the statement construction/compilation overhead of 0.3.¶

	[sql] All “type” keyword arguments, such as those to bindparam(), column(),
Column(), and func.<something>(), renamed to “type_”. Those objects still
name their “type” attribute as “type”.¶

	[sql] case_sensitive=(True|False) setting removed from schema items, since
checking this state added a lot of method call overhead and there was no
decent reason to ever set it to False. Table and column names which are
all lower case will be treated as case-insensitive (yes we adjust for
Oracle’s UPPERCASE style too).¶

mysql

	[mysql] Table and column names loaded via reflection are now Unicode.¶

	[mysql] All standard column types are now supported, including SET.¶

	[mysql] Table reflection can now be performed in as little as one round-trip.¶

	[mysql] ANSI and ANSI_QUOTES sql modes are now supported.¶

	[mysql] Indexes are now reflected.¶

oracle

	[oracle] Very rudimental support for OUT parameters added; use sql.outparam(name,
type) to set up an OUT parameter, just like bindparam(); after execution,
values are available via result.out_parameters dictionary.¶
References: #507

misc

	[transactions] Added context manager (with statement) support for transactions.¶

	[transactions] Added support for two phase commit, works with mysql and postgres so far.¶

	[transactions] Added a subtransaction implementation that uses savepoints.¶

	[transactions] Added support for savepoints.¶

	[metadata] Tables can be reflected from the database en-masse without declaring
them in advance. MetaData(engine, reflect=True) will load all tables
present in the database, or use metadata.reflect() for finer control.¶

	[metadata] DynamicMetaData has been renamed to ThreadLocalMetaData¶

	[metadata] The ThreadLocalMetaData constructor now takes no arguments.¶

	[metadata] BoundMetaData has been removed- regular MetaData is equivalent¶

	[metadata] Numeric and Float types now have an “asdecimal” flag; defaults to True for
Numeric, False for Float. When True, values are returned as
decimal.Decimal objects; when False, values are returned as float(). The
defaults of True/False are already the behavior for PG and MySQL’s DBAPI
modules.¶
References: #646

	[metadata] New SQL operator implementation which removes all hardcoded operators from
expression structures and moves them into compilation; allows greater
flexibility of operator compilation; for example, “+” compiles to “||”
when used in a string context, or “concat(a,b)” on MySQL; whereas in a
numeric context it compiles to “+”. Fixes.¶
References: #475

	[metadata] “Anonymous” alias and label names are now generated at SQL compilation
time in a completely deterministic fashion... no more random hex IDs¶

	[metadata] Significant architectural overhaul to SQL elements (ClauseElement). All
elements share a common “mutability” framework which allows a consistent
approach to in-place modifications of elements as well as generative
behavior. Improves stability of the ORM which makes heavy usage of
mutations to SQL expressions.¶

	[metadata] select() and union()’s now have “generative” behavior. Methods like
order_by() and group_by() return a new instance - the original instance
is left unchanged. Non-generative methods remain as well.¶

	[metadata] The internals of select/union vastly simplified- all decision making
regarding “is subquery” and “correlation” pushed to SQL generation phase.
select() elements are now never mutated by their enclosing containers or
by any dialect’s compilation process¶
References: #569, #52

	[metadata] select(scalar=True) argument is deprecated; use select(..).as_scalar().
The resulting object obeys the full “column” interface and plays better
within expressions.¶

	[metadata] Added select().with_prefix(‘foo’) allowing any set of keywords to be
placed before the columns clause of the SELECT¶
References: #504

	[metadata] Added array slice support to row[<index>]¶
References: #686

	[metadata] Result sets make a better attempt at matching the DBAPI types present in
cursor.description to the TypeEngine objects defined by the dialect, which
are then used for result-processing. Note this only takes effect for
textual SQL; constructed SQL statements always have an explicit type map.¶

	[metadata] Result sets from CRUD operations close their underlying cursor immediately
and will also autoclose the connection if defined for the operation; this
allows more efficient usage of connections for successive CRUD operations
with less chance of “dangling connections”.¶

	[metadata] Column defaults and onupdate Python functions (i.e. passed to
ColumnDefault) may take zero or one arguments; the one argument is the
ExecutionContext, from which you can call “context.parameters[someparam]”
to access the other bind parameter values affixed to the statement. The connection used for the execution is available as well
so that you can pre-execute statements.¶
References: #559

	[metadata] Added “explcit” create/drop/execute support for sequences (i.e. you can
pass a “connectable” to each of those methods on Sequence).¶

	[metadata] Better quoting of identifiers when manipulating schemas.¶

	[metadata] Standardized the behavior for table reflection where types can’t be
located; NullType is substituted instead, warning is raised.¶

	[metadata] ColumnCollection (i.e. the ‘c’ attribute on tables) follows dictionary
semantics for “__contains__”¶
References: #606

	[engines] Speed! The mechanics of result processing and bind parameter processing
have been overhauled, streamlined and optimized to issue as little method
calls as possible. Bench tests for mass INSERT and mass rowset iteration
both show 0.4 to be over twice as fast as 0.3, using 68% fewer function
calls.¶

	[engines] You can now hook into the pool lifecycle and run SQL statements or other
logic at new each DBAPI connection, pool check-out and check-in.¶

	[engines] Connections gain a .properties collection, with contents scoped to the
lifetime of the underlying DBAPI connection¶

	[engines] Removed auto_close_cursors and disallow_open_cursors arguments from Pool;
reduces overhead as cursors are normally closed by ResultProxy and
Connection.¶

	[extensions] proxyengine is temporarily removed, pending an actually working
replacement.¶

	[extensions] SelectResults has been replaced by Query. SelectResults /
SelectResultsExt still exist but just return a slightly modified Query
object for backwards-compatibility. join_to() method from SelectResults
isn’t present anymore, need to use join().¶

	[postgres] Added PGArray datatype for using postgres array datatypes.¶

0.3 Changelog

0.3.11

Released: Sun Oct 14 2007
orm

	[orm] added a check for joining from A->B using join(), along two
different m2m tables. this raises an error in 0.3 but is
possible in 0.4 when aliases are used.¶
References: #687

	[orm] fixed small exception throw bug in Session.merge()¶

	[orm] fixed bug where mapper, being linked to a join where one table had
no PK columns, would not detect that the joined table had no PK.¶

	[orm] fixed bugs in determining proper sync clauses from custom inherit
conditions¶
References: #769

	[orm] backref remove object operation doesn’t fail if the other-side
collection doesn’t contain the item, supports noload collections¶
References: #813

engine

	[engine] fixed another occasional race condition which could occur
when using pool with threadlocal setting¶

sql

	[sql] tweak DISTINCT precedence for clauses like
func.count(t.c.col.distinct())¶

	[sql] Fixed detection of internal ‘$’ characters in :bind$params¶
References: #719

	[sql] don’t assume join criterion consists only of column objects¶
References: #768

	[sql] adjusted operator precedence of NOT to match ‘==’ and others, so that
~(x==y) produces NOT (x=y), which is compatible with MySQL < 5.0
(doesn’t like “NOT x=y”)¶
References: #764

mysql

	[mysql] fixed specification of YEAR columns when generating schema¶

sqlite

	[sqlite] passthrough for stringified dates¶

mssql

	[mssql] added support for TIME columns (simulated using DATETIME)¶
References: #679

	[mssql] added support for BIGINT, MONEY, SMALLMONEY, UNIQUEIDENTIFIER and
SQL_VARIANT¶
References: #721

	[mssql] index names are now quoted when dropping from reflected tables¶
References: #684

	[mssql] can now specify a DSN for PyODBC, using a URI like mssql:///?dsn=bob¶

oracle

	[oracle] removed LONG_STRING, LONG_BINARY from “binary” types, so type objects
don’t try to read their values as LOB.¶
References: #622, #751

firebird

	[firebird] supports_sane_rowcount() set to False due to ticket #370 (right way).¶

	[firebird] fixed reflection of Column’s nullable property.¶

misc

	[postgres] when reflecting tables from alternate schemas, the “default” placed upon
the primary key, i.e. usually a sequence name, has the “schema” name
unconditionally quoted, so that schema names which need quoting are fine.
its slightly unnecessary for schema names which don’t need quoting
but not harmful.¶

0.3.10

Released: Fri Jul 20 2007
general

	[general] a new mutex that was added in 0.3.9 causes the pool_timeout
feature to fail during a race condition; threads would
raise TimeoutError immediately with no delay if many threads
push the pool into overflow at the same time. this issue has been
fixed.¶

orm

	[orm] cleanup to connection-bound sessions, SessionTransaction¶

sql

	[sql] got connection-bound metadata to work with implicit execution¶

	[sql] foreign key specs can have any chararcter in their identifiers¶
References: #667

	[sql] added commutativity-awareness to binary clause comparisons to
each other, improves ORM lazy load optimization¶
References: #664

misc

	[postgres] fixed max identifier length (63)¶
References: #571

0.3.9

Released: Sun Jul 15 2007
general

	[general] better error message for NoSuchColumnError¶
References: #607

	[general] finally figured out how to get setuptools version in, available
as sqlalchemy.__version__¶
References: #428

	[general] the various “engine” arguments, such as “engine”, “connectable”,
“engine_or_url”, “bind_to”, etc. are all present, but deprecated.
they all get replaced by the single term “bind”. you also
set the “bind” of MetaData using
metadata.bind = <engine or connection>¶

orm

	[orm] forwards-compatibility with 0.4: added one(), first(), and
all() to Query. almost all Query functionality from 0.4 is
present in 0.3.9 for forwards-compat purposes.¶

	[orm] reset_joinpoint() really really works this time, promise ! lets
you re-join from the root:
query.join([‘a’, ‘b’]).filter(<crit>).reset_joinpoint().join([‘a’, ‘c’]).filter(<some other crit>).all()
in 0.4 all join() calls start from the “root”¶

	[orm] added synchronization to the mapper() construction step, to avoid
thread collisions when pre-existing mappers are compiling in a
different thread¶
References: #613

	[orm] a warning is issued by Mapper when two primary key columns of the
same name are munged into a single attribute. this happens frequently
when mapping to joins (or inheritance).¶

	[orm] synonym() properties are fully supported by all Query joining/
with_parent operations¶
References: #598

	[orm] fixed very stupid bug when deleting items with many-to-many
uselist=False relations¶

	[orm] remember all that stuff about polymorphic_union ? for
joined table inheritance ? Funny thing...
You sort of don’t need it for joined table inheritance, you
can just string all the tables together via outerjoin().
The UNION still applies if concrete tables are involved,
though (since nothing to join them on).¶

	[orm] small fix to eager loading to better work with eager loads
to polymorphic mappers that are using a straight “outerjoin”
clause¶

sql

	[sql] ForeignKey to a table in a schema that’s not the default schema
requires the schema to be explicit; i.e. ForeignKey(‘alt_schema.users.id’)¶

	[sql] MetaData can now be constructed with an engine or url as the first
argument, just like BoundMetaData¶

	[sql] BoundMetaData is now deprecated, and MetaData is a direct substitute.¶

	[sql] DynamicMetaData has been renamed to ThreadLocalMetaData. the
DynamicMetaData name is deprecated and is an alias for ThreadLocalMetaData
or a regular MetaData if threadlocal=False¶

	[sql] composite primary key is represented as a non-keyed set to allow for
composite keys consisting of cols with the same name; occurs within a
Join. helps inheritance scenarios formulate correct PK.¶

	[sql] improved ability to get the “correct” and most minimal set of primary key
columns from a join, equating foreign keys and otherwise equated columns.
this is also mostly to help inheritance scenarios formulate the best
choice of primary key columns.¶
References: #185

	[sql] added ‘bind’ argument to Sequence.create()/drop(), ColumnDefault.execute()¶

	[sql] columns can be overridden in a reflected table with a “key”
attribute different than the column’s name, including for primary key
columns¶
References: #650

	[sql] fixed “ambiguous column” result detection, when dupe col names exist
in a result¶
References: #657

	[sql] some enhancements to “column targeting”, the ability to match a column
to a “corresponding” column in another selectable. this affects mostly
ORM ability to map to complex joins¶

	[sql] MetaData and all SchemaItems are safe to use with pickle. slow
table reflections can be dumped into a pickled file to be reused later.
Just reconnect the engine to the metadata after unpickling.¶
References: #619

	[sql] added a mutex to QueuePool’s “overflow” calculation to prevent a race
condition that can bypass max_overflow¶

	[sql] fixed grouping of compound selects to give correct results. will break
on sqlite in some cases, but those cases were producing incorrect
results anyway, sqlite doesn’t support grouped compound selects¶
References: #623

	[sql] fixed precedence of operators so that parenthesis are correctly applied¶
References: #620

	[sql] calling <column>.in_() (i.e. with no arguments) will return
“CASE WHEN (<column> IS NULL) THEN NULL ELSE 0 END = 1)”, so that
NULL or False is returned in all cases, rather than throwing an error¶
References: #545

	[sql] fixed “where”/”from” criterion of select() to accept a unicode string
in addition to regular string - both convert to text()¶

	[sql] added standalone distinct() function in addition to column.distinct()¶
References: #558

	[sql] result.last_inserted_ids() should return a list that is identically
sized to the primary key constraint of the table. values that were
“passively” created and not available via cursor.lastrowid will be None.¶

	[sql] long-identifier detection fixed to use > rather than >= for
max ident length¶
References: #589

	[sql] fixed bug where selectable.corresponding_column(selectable.c.col)
would not return selectable.c.col, if the selectable is a join
of a table and another join involving the same table. messed
up ORM decision making¶
References: #593

	[sql] added Interval type to types.py¶
References: #595

mysql

	[mysql] fixed catching of some errors that imply a dropped connection¶
References: #625

	[mysql] fixed escaping of the modulo operator¶
References: #624

	[mysql] added ‘fields’ to reserved words¶
References: #590

	[mysql] various reflection enhancement/fixes¶

sqlite

	[sqlite] rearranged dialect initialization so it has time to warn about pysqlite1
being too old.¶

	[sqlite] sqlite better handles datetime/date/time objects mixed and matched
with various Date/Time/DateTime columns¶

	[sqlite] string PK column inserts don’t get overwritten with OID¶
References: #603

mssql

	[mssql] fix port option handling for pyodbc¶
References: #634

	[mssql] now able to reflect start and increment values for identity columns¶

	[mssql] preliminary support for using scope_identity() with pyodbc¶

oracle

	[oracle] datetime fixes: got subsecond TIMESTAMP to work,
added OracleDate which supports types.Date with only year/month/day¶
References: #604

	[oracle] added dialect flag “auto_convert_lobs”, defaults to True; will cause any
LOB objects detected in a result set to be forced into OracleBinary
so that the LOB is read() automatically, if no typemap was present
(i.e., if a textual execute() was issued).¶

	[oracle] mod operator ‘%’ produces MOD¶
References: #624

	[oracle] converts cx_oracle datetime objects to Python datetime.datetime when
Python 2.3 used¶
References: #542

	[oracle] fixed unicode conversion in Oracle TEXT type¶

misc

	[ext] iteration over dict association proxies is now dict-like, not
InstrumentedList-like (e.g. over keys instead of values)¶

	[ext] association proxies no longer bind tightly to source collections, and are constructed with a thunk instead¶
References: #597

	[ext] added selectone_by() to assignmapper¶

	[postgres] fixed escaping of the modulo operator¶
References: #624

	[postgres] added support for reflection of domains¶
References: #570

	[postgres] types which are missing during reflection resolve to Null type
instead of raising an error¶

	[postgres] the fix in “schema” above fixes reflection of foreign keys from an
alt-schema table to a public schema table¶

0.3.8

Released: Sat Jun 02 2007
orm

	[orm] added reset_joinpoint() method to Query, moves the “join point”
back to the starting mapper. 0.4 will change the behavior of
join() to reset the “join point” in all cases so this is an
interim method. for forwards compatibility, ensure joins across
multiple relations are specified using a single join(), i.e.
join([‘a’, ‘b’, ‘c’]).¶

	[orm] fixed bug in query.instances() that wouldn’t handle more than
on additional mapper or one additional column.¶

	[orm] “delete-orphan” no longer implies “delete”. ongoing effort to
separate the behavior of these two operations.¶

	[orm] many-to-many relationships properly set the type of bind params
for delete operations on the association table¶

	[orm] many-to-many relationships check that the number of rows deleted
from the association table by a delete operation matches the
expected results¶

	[orm] session.get() and session.load() propagate **kwargs through to
query¶

	[orm] fix to polymorphic query which allows the original
polymorphic_union to be embedded into a correlated subquery¶
References: #577

	[orm] fix to select_by(<propname>=<object instance>) -style joins in
conjunction with many-to-many relationships, bug introduced in
r2556¶

	[orm] the “primary_key” argument to mapper() is propagated to the
“polymorphic” mapper. primary key columns in this list get
normalized to that of the mapper’s local table.¶

	[orm] restored logging of “lazy loading clause” under
sa.orm.strategies logger, got removed in 0.3.7¶

	[orm] improved support for eagerloading of properties off of mappers
that are mapped to select() statements; i.e. eagerloader is
better at locating the correct selectable with which to attach
its LEFT OUTER JOIN.¶

sql

	[sql] _Label class overrides compare_self to return its ultimate
object. meaning, if you say someexpr.label(‘foo’) == 5, it
produces the correct “someexpr == 5”.¶

	[sql] _Label propagates “_hide_froms()” so that scalar selects
behave more properly with regards to FROM clause #574¶

	[sql] fix to long name generation when using oid_column as an order by
(oids used heavily in mapper queries)¶

	[sql] significant speed improvement to ResultProxy, pre-caches
TypeEngine dialect implementations and saves on function calls
per column¶

	[sql] parenthesis are applied to clauses via a new _Grouping
construct. uses operator precedence to more intelligently apply
parenthesis to clauses, provides cleaner nesting of clauses
(doesn’t mutate clauses placed in other clauses, i.e. no ‘parens’
flag)¶

	[sql] added ‘modifier’ keyword, works like func.<foo> except does not
add parenthesis. e.g. select([modifier.DISTINCT(...)]) etc.¶

	[sql] removed “no group by’s in a select that’s part of a UNION”
restriction¶
References: #578

mysql

	[mysql] Nearly all MySQL column types are now supported for declaration
and reflection. Added NCHAR, NVARCHAR, VARBINARY, TINYBLOB,
LONGBLOB, YEAR¶

	[mysql] The sqltypes.Binary passthrough now always builds a BLOB,
avoiding problems with very old database versions¶

	[mysql] support for column-level CHARACTER SET and COLLATE declarations,
as well as ASCII, UNICODE, NATIONAL and BINARY shorthand.¶

firebird

	[firebird] set max identifier length to 31¶

	[firebird] supports_sane_rowcount() set to False due to ticket #370.
versioned_id_col feature wont work in FB.¶

	[firebird] some execution fixes¶

	[firebird] new association proxy implementation, implementing complete
proxies to list, dict and set-based relation collections¶

	[firebird] added orderinglist, a custom list class that synchronizes an
object attribute with that object’s position in the list¶

	[firebird] small fix to SelectResultsExt to not bypass itself during
select().¶

	[firebird] added filter(), filter_by() to assignmapper¶

misc

	[engines] added detach() to Connection, allows underlying DBAPI connection
to be detached from its pool, closing on dereference/close()
instead of being reused by the pool.¶

	[engines] added invalidate() to Connection, immediately invalidates the
Connection and its underlying DBAPI connection.¶

0.3.7

Released: Sun Apr 29 2007
orm

	[orm] fixed critical issue when, after options(eagerload()) is used,
the mapper would then always apply query “wrapping” behavior
for all subsequent LIMIT/OFFSET/DISTINCT queries, even if no
eager loading was applied on those subsequent queries.¶

	[orm] added query.with_parent(someinstance) method. searches for
target instance using lazy join criterion from parent instance.
takes optional string “property” to isolate the desired relation.
also adds static Query.query_from_parent(instance, property)
version.¶
References: #541

	[orm] improved query.XXX_by(someprop=someinstance) querying to use
similar methodology to with_parent, i.e. using the “lazy” clause
which prevents adding the remote instance’s table to the SQL,
thereby making more complex conditions possible¶
References: #554

	[orm] added generative versions of aggregates, i.e. sum(), avg(), etc.
to query. used via query.apply_max(), apply_sum(), etc.
#552¶

	[orm] fix to using distinct() or distinct=True in combination with
join() and similar¶

	[orm] corresponding to label/bindparam name generation, eager loaders
generate deterministic names for the aliases they create using
md5 hashes.¶

	[orm] improved/fixed custom collection classes when giving it “set”/
“sets.Set” classes or subclasses (was still looking for append()
methods on them during lazy loads)¶

	[orm] restored old “column_property()” ORM function (used to be called
“column()”) to force any column expression to be added as a property
on a mapper, particularly those that aren’t present in the mapped
selectable. this allows “scalar expressions” of any kind to be
added as relations (though they have issues with eager loads).¶

	[orm] fix to many-to-many relationships targeting polymorphic mappers¶
References: #533

	[orm] making progress with session.merge() as well as combining its
usage with entity_name¶
References: #543

	[orm] the usual adjustments to relationships between inheriting mappers,
in this case establishing relation()s to subclass mappers where
the join conditions come from the superclass’ table¶

sql

	[sql] keys() of result set columns are not lowercased, come back
exactly as they’re expressed in cursor.description. note this
causes colnames to be all caps in oracle.¶

	[sql] preliminary support for unicode table names, column names and
SQL statements added, for databases which can support them.
Works with sqlite and postgres so far. Mysql mostly works
except the has_table() function does not work. Reflection
works too.¶

	[sql] the Unicode type is now a direct subclass of String, which now
contains all the “convert_unicode” logic. This helps the variety
of unicode situations that occur in db’s such as MS-SQL to be
better handled and allows subclassing of the Unicode datatype.¶
References: #522

	[sql] ClauseElements can be used in in_() clauses now, such as bind
parameters, etc. #476¶

	[sql] reverse operators implemented for CompareMixin elements,
allows expressions like “5 + somecolumn” etc. #474¶

	[sql] the “where” criterion of an update() and delete() now correlates
embedded select() statements against the table being updated or
deleted. this works the same as nested select() statement
correlation, and can be disabled via the correlate=False flag on
the embedded select().¶

	[sql] column labels are now generated in the compilation phase, which
means their lengths are dialect-dependent. So on oracle a label
that gets truncated to 30 chars will go out to 63 characters
on postgres. Also, the true labelname is always attached as the
accessor on the parent Selectable so there’s no need to be aware
of the “truncated” label names.¶
References: #512

	[sql] column label and bind param “truncation” also generate
deterministic names now, based on their ordering within the
full statement being compiled. this means the same statement
will produce the same string across application restarts and
allowing DB query plan caching to work better.¶

	[sql] the “mini” column labels generated when using subqueries, which
are to work around glitchy SQLite behavior that doesn’t understand
“foo.id” as equivalent to “id”, are now only generated in the case
that those named columns are selected from (part of)¶
References: #513

	[sql] the label() method on ColumnElement will properly propagate the
TypeEngine of the base element out to the label, including a label()
created from a scalar=True select() statement.¶

	[sql] MS-SQL better detects when a query is a subquery and knows not to
generate ORDER BY phrases for those¶
References: #513

	[sql] fix for fetchmany() “size” argument being positional in most
dbapis¶
References: #505

	[sql] sending None as an argument to func.<something> will produce
an argument of NULL¶

	[sql] query strings in unicode URLs get keys encoded to ascii
for **kwargs compat¶

	[sql] slight tweak to raw execute() change to also support tuples
for positional parameters, not just lists¶
References: #523

	[sql] fix to case() construct to propagate the type of the first
WHEN condition as the return type of the case statement¶

mysql

	[mysql] support for SSL arguments given as inline within URL query string,
prefixed with “ssl_”, courtesy terjeros@gmail.com.¶

	[mysql] [<schemaname>] mysql uses “DESCRIBE.<tablename>”, catching exceptions
if table doesn’t exist, in order to determine if a table exists.
this supports unicode table names as well as schema names. tested
with MySQL5 but should work with 4.1 series as well. (#557)¶

sqlite

	[sqlite] removed silly behavior where sqlite would reflect UNIQUE indexes
as part of the primary key (?!)¶

mssql

	[mssql] pyodbc is now the preferred DB-API for MSSQL, and if no module is
specifically requested, will be loaded first on a module probe.¶

	[mssql] The @@SCOPE_IDENTITY is now used instead of @@IDENTITY. This
behavior may be overridden with the engine_connect
“use_scope_identity” keyword parameter, which may also be specified
in the dburi.¶

oracle

	[oracle] small fix to allow successive compiles of the same SELECT object
which features LIMIT/OFFSET. oracle dialect needs to modify
the object to have ROW_NUMBER OVER and wasn’t performing
the full series of steps on successive compiles.¶

misc

	[engines] warnings module used for issuing warnings (instead of logging)¶

	[engines] cleanup of DBAPI import strategies across all engines¶
References: #480

	[engines] refactoring of engine internals which reduces complexity,
number of codepaths; places more state inside of ExecutionContext
to allow more dialect control of cursor handling, result sets.
ResultProxy totally refactored and also has two versions of
“buffered” result sets used for different purposes.¶

	[engines] server side cursor support fully functional in postgres.¶
References: #514

	[engines] improved framework for auto-invalidation of connections that have
lost their underlying database, via dialect-specific detection
of exceptions corresponding to that database’s disconnect
related error messages. Additionally, when a “connection no
longer open” condition is detected, the entire connection pool
is discarded and replaced with a new instance. #516¶

	[engines] the dialects within sqlalchemy.databases become a setuptools
entry points. loading the built-in database dialects works the
same as always, but if none found will fall back to trying
pkg_resources to load an external module¶
References: #521

	[engines] Engine contains a “url” attribute referencing the url.URL object
used by create_engine().¶

	[informix] informix support added ! courtesy James Zhang, who put a ton
of effort in.¶

	[extensions] big fix to AssociationProxy so that multiple AssociationProxy
objects can be associated with a single association collection.¶

	[extensions] assign_mapper names methods according to their keys (i.e. __name__)
#551¶

0.3.6

Released: Fri Mar 23 2007
orm

	[orm] the full featureset of the SelectResults extension has been merged
into a new set of methods available off of Query. These methods
all provide “generative” behavior, whereby the Query is copied
and a new one returned with additional criterion added.
The new methods include:

	filter() - applies select criterion to the query

	filter_by() - applies “by”-style criterion to the query

	avg() - return the avg() function on the given column

	join() - join to a property (or across a list of properties)

	outerjoin() - like join() but uses LEFT OUTER JOIN

	limit()/offset() - apply LIMIT/OFFSET range-based access
which applies limit/offset: session.query(Foo)[3:5]

	distinct() - apply DISTINCT

	list() - evaluate the criterion and return results

no incompatible changes have been made to Query’s API and no methods
have been deprecated. Existing methods like select(), select_by(),
get(), get_by() all execute the query at once and return results
like they always did. join_to()/join_via() are still there although
the generative join()/outerjoin() methods are easier to use.

¶

	[orm] the return value for multiple mappers used with instances() now
returns a cartesian product of the requested list of mappers,
represented as a list of tuples. this corresponds to the documented
behavior. So that instances match up properly, the “uniquing” is
disabled when this feature is used.¶

	[orm] Query has add_entity() and add_column() generative methods. these
will add the given mapper/class or ColumnElement to the query at
compile time, and apply them to the instances() method. the user is
responsible for constructing reasonable join conditions (otherwise
you can get full cartesian products). result set is the list of
tuples, non-uniqued.¶

	[orm] strings and columns can also be sent to the *args of instances()
where those exact result columns will be part of the result tuples.¶

	[orm] a full select() construct can be passed to query.select() (which
worked anyway), but also query.selectfirst(), query.selectone()
which will be used as is (i.e. no query is compiled). works
similarly to sending the results to instances().¶

	[orm] eager loading will not “aliasize” “order by” clauses that were
placed in the select statement by something other than the eager
loader itself, to fix possibility of dupe columns as illustrated in. however, this means you have to be more careful with
the columns placed in the “order by” of Query.select(), that you
have explicitly named them in your criterion (i.e. you cant rely on
the eager loader adding them in for you)¶
References: #495

	[orm] added a handy multi-use “identity_key()” method to Session, allowing
the generation of identity keys for primary key values, instances,
and rows, courtesy Daniel Miller¶

	[orm] many-to-many table will be properly handled even for operations that
occur on the “backref” side of the operation¶
References: #249

	[orm] added “refresh-expire” cascade. allows refresh() and
expire() calls to propagate along relationships.¶
References: #492

	[orm] more fixes to polymorphic relations, involving proper lazy-clause
generation on many-to-one relationships to polymorphic mappers. also fixes to detection of “direction”, more specific
targeting of columns that belong to the polymorphic union vs. those
that don’t.¶
References: #493

	[orm] some fixes to relationship calcs when using “viewonly=True” to pull
in other tables into the join condition which arent parent of the
relationship’s parent/child mappings¶

	[orm] flush fixes on cyclical-referential relationships that contain
references to other instances outside of the cyclical chain, when
some of the objects in the cycle are not actually part of the flush¶

	[orm] put an aggressive check for “flushing object A with a collection of
B’s, but you put a C in the collection” error condition - even if
C is a subclass of B, unless B’s mapper loads polymorphically.
Otherwise, the collection will later load a “B” which should be a
“C” (since its not polymorphic) which breaks in bi-directional
relationships (i.e. C has its A, but A’s backref will lazyload it as
a different instance of type “B”) This check is going
to bite some of you who do this without issues, so the error message
will also document a flag “enable_typechecks=False” to disable this
checking. But be aware that bi-directional relationships in
particular become fragile without this check.¶
References: #500

sql

	[sql] bindparam() names are now repeatable! specify two
distinct bindparam()s with the same name in a single statement,
and the key will be shared. proper positional/named args translate
at compile time. for the old behavior of “aliasing” bind parameters
with conflicting names, specify “unique=True” - this option is
still used internally for all the auto-genererated (value-based)
bind parameters.¶

	[sql] slightly better support for bind params as column clauses, either
via bindparam() or via literal(), i.e. select([literal(‘foo’)])¶

	[sql] MetaData can bind to an engine either via “url” or “engine” kwargs
to constructor, or by using connect() method. BoundMetaData is
identical to MetaData except engine_or_url param is required.
DynamicMetaData is the same and provides thread-local connections be
default.¶

	[sql] exists() becomes useable as a standalone selectable, not just in a
WHERE clause, i.e. exists([columns], criterion).select()¶

	[sql] correlated subqueries work inside of ORDER BY, GROUP BY¶

	[sql] fixed function execution with explicit connections, i.e.
conn.execute(func.dosomething())¶

	[sql] use_labels flag on select() wont auto-create labels for literal text
column elements, since we can make no assumptions about the text. to
create labels for literal columns, you can say “somecol AS
somelabel”, or use literal_column(“somecol”).label(“somelabel”)¶

	[sql] quoting wont occur for literal columns when they are “proxied” into
the column collection for their selectable (is_literal flag is
propagated). literal columns are specified via
literal_column(“somestring”).¶

	[sql] added “fold_equivalents” boolean argument to Join.select(), which
removes ‘duplicate’ columns from the resulting column clause that
are known to be equivalent based on the join condition. this is of
great usage when constructing subqueries of joins which Postgres
complains about if duplicate column names are present.¶

	[sql] fixed use_alter flag on ForeignKeyConstraint¶
References: #503

	[sql] fixed usage of 2.4-only “reversed” in topological.py¶
References: #506

	[sql] for hackers, refactored the “visitor” system of ClauseElement and
SchemaItem so that the traversal of items is controlled by the
ClauseVisitor itself, using the method visitor.traverse(item).
accept_visitor() methods can still be called directly but will not
do any traversal of child items. ClauseElement/SchemaItem now have a
configurable get_children() method to return the collection of child
elements for each parent object. This allows the full traversal of
items to be clear and unambiguous (as well as loggable), with an
easy method of limiting a traversal (just pass flags which are
picked up by appropriate get_children() methods).¶
References: #501

	[sql] the “else_” parameter to the case statement now properly works when
set to zero.¶

mysql

	[mysql] added a catchall **kwargs to MSString, to help reflection of
obscure types (like “varchar() binary” in MS 4.0)¶

	[mysql] added explicit MSTimeStamp type which takes effect when using
types.TIMESTAMP.¶

oracle

	[oracle] got binary working for any size input ! cx_oracle works fine,
it was my fault as BINARY was being passed and not BLOB for
setinputsizes (also unit tests weren’t even setting input sizes).¶

	[oracle] also fixed CLOB read/write on a separate changeset.¶

	[oracle] auto_setinputsizes defaults to True for Oracle, fixed cases where
it improperly propagated bad types.¶

misc

	[extensions] options() method on SelectResults now implemented “generatively”
like the rest of the SelectResults methods. But
you’re going to just use Query now anyway.¶
References: #472

	[extensions] query() method is added by assignmapper. this helps with
navigating to all the new generative methods on Query.¶

	[ms-sql]

	removed seconds input on DATE column types (probably

	should remove the time altogether)

¶

	[ms-sql] null values in float fields no longer raise errors¶

	[ms-sql] LIMIT with OFFSET now raises an error (MS-SQL has no OFFSET support)¶

	[ms-sql] added an facility to use the MSSQL type VARCHAR(max) instead of TEXT
for large unsized string fields. Use the new “text_as_varchar” to
turn it on.¶
References: #509

	[ms-sql] ORDER BY clauses without a LIMIT are now stripped in subqueries, as
MS-SQL forbids this usage¶

	[ms-sql] cleanup of module importing code; specifiable DB-API module; more
explicit ordering of module preferences.¶
References: #480

0.3.5

Released: Thu Feb 22 2007
orm

	[orm] [bugs] another refactoring to relationship calculation. Allows more accurate
ORM behavior with relationships from/to/between mappers, particularly
polymorphic mappers, also their usage with Query, SelectResults. tickets
include,,.¶
References: #441, #448, #439

	[orm] [bugs] removed deprecated method of specifying custom collections on classes;
you must now use the “collection_class” option. the old way was
beginning to produce conflicts when people used assign_mapper(), which
now patches an “options” method, in conjunction with a relationship
named “options”. (relationships take precedence over monkeypatched
assign_mapper methods).¶

	[orm] [bugs] extension() query option propagates to Mapper._instance() method so that
all loading-related methods get called¶
References: #454

	[orm] [bugs] eager relation to an inheriting mapper wont fail if no rows returned for
the relationship.¶

	[orm] [bugs] eager relation loading bug fixed for eager relation on multiple
descendant classes¶
References: #486

	[orm] [bugs] fix for very large topological sorts, courtesy ants.aasma at gmail¶
References: #423

	[orm] [bugs] eager loading is slightly more strict about detecting “self-referential”
relationships, specifically between polymorphic mappers. this results in
an “eager degrade” to lazy loading.¶

	[orm] [bugs] improved support for complex queries embedded into “where” criterion for
query.select()¶
References: #449

	[orm] [bugs] mapper options like eagerload(), lazyload(), deferred(), will work for
“synonym()” relationships¶
References: #485

	[orm] [bugs] fixed bug where cascade operations incorrectly included deleted
collection items in the cascade¶
References: #445

	[orm] [bugs] fixed relationship deletion error when one-to-many child item is moved
to a new parent in a single unit of work¶
References: #478

	[orm] [bugs] fixed relationship deletion error where parent/child with a single
column as PK/FK on the child would raise a “blank out the primary key”
error, if manually deleted or “delete” cascade without “delete-orphan”
was used¶

	[orm] [bugs] fix to deferred so that load operation doesn’t mistakenly occur when only
PK col attributes are set¶

	[orm] [enhancements] implemented foreign_keys argument to mapper. use in
conjunction with primaryjoin/secondaryjoin arguments to specify/override
foreign keys defined on the Table instance.¶
References: #385

	[orm] [enhancements] contains_eager(‘foo’) automatically implies eagerload(‘foo’)¶

	[orm] [enhancements] added “alias” argument to contains_eager(). use it to specify the string
name or Alias instance of an alias used in the query for the eagerly
loaded child items. easier to use than “decorator”¶

	[orm] [enhancements] added “contains_alias()” option for result set mapping to an alias of
the mapped table¶

	[orm] [enhancements] added support for py2.5 “with” statement with SessionTransaction¶
References: #468

sql

	[sql] the value of “case_sensitive” defaults to True now, regardless of the
casing of the identifier, unless specifically set to False. this is
because the object might be label’ed as something else which does
contain mixed case, and propigating “case_sensitive=False” breaks that.
Other fixes to quoting when using labels and “fake” column objects¶

	[sql] added a “supports_execution()” method to ClauseElement, so that
individual kinds of clauses can express if they are appropriate for
executing...such as, you can execute a “select”, but not a “Table” or a
“Join”.¶

	[sql] fixed argument passing to straight textual execute() on engine,
connection. can handle *args or a list instance for positional, **kwargs
or a dict instance for named args, or a list of list or dicts to invoke
executemany()¶

	[sql] small fix to BoundMetaData to accept unicode or string URLs¶

	[sql] fixed named PrimaryKeyConstraint generation courtesy
andrija at gmail¶
References: #466

	[sql] fixed generation of CHECK constraints on columns¶
References: #464

	[sql] fixes to tometadata() operation to propagate Constraints at column and
table level¶

mysql

	[mysql] fix to reflection on older DB’s that might return array() type for
“show variables like” statements¶

mssql

	[mssql] preliminary support for pyodbc (Yay!)¶
References: #419

	[mssql] better support for NVARCHAR types added¶
References: #298

	[mssql] fix for commit logic on pymssql¶

	[mssql] fix for query.get() with schema¶
References: #456

	[mssql] fix for non-integer relationships¶
References: #473

	[mssql] DB-API module now selectable at run-time¶
References: #419

	[mssql] [415] [tickets:422] [481] now passes many more unit tests¶

	[mssql] better unittest compatibility with ANSI functions¶
References: #479

	[mssql] improved support for implicit sequence PK columns with auto-insert¶
References: #415

	[mssql] fix for blank password in adodbapi¶
References: #371

	[mssql] fixes to get unit tests working with pyodbc¶
References: #481

	[mssql] fix to auto_identity_insert on db-url query¶

	[mssql] added query_timeout to db-url query parms. currently works only for
pymssql¶

	[mssql] tested with pymssql 0.8.0 (which is now LGPL)¶

oracle

	[oracle] when returning “rowid” as the ORDER BY column or in use with ROW_NUMBER
OVER, oracle dialect checks the selectable its being applied to and will
switch to table PK if not applicable, i.e. for a UNION. checking for
DISTINCT, GROUP BY (other places that rowid is invalid) still a TODO.
allows polymorphic mappings to function.¶
References: #436

	[oracle] sequences on a non-pk column will properly fire off on INSERT¶

	[oracle] added PrefetchingResultProxy support to pre-fetch LOB columns when they
are known to be present, fixes¶
References: #435

	[oracle] implemented reflection of tables based on synonyms, including across
dblinks¶
References: #379

	[oracle] issues a log warning when a related table cant be reflected due to
certain permission errors¶
References: #363

misc

	[postgres] better reflection of sequences for alternate-schema Tables¶
References: #442

	[postgres] sequences on a non-pk column will properly fire off on INSERT¶

	[postgres] added PGInterval type, PGInet type¶
References: #460, #444

	[extensions] added distinct() method to SelectResults. generally should only make a
difference when using count().¶

	[extensions] added options() method to SelectResults, equivalent to query.options()¶
References: #472

	[extensions] added optional __table_opts__ dictionary to ActiveMapper, will send kw
options to Table objects¶
References: #462

	[extensions] added selectfirst(), selectfirst_by() to assign_mapper¶
References: #467

0.3.4

Released: Tue Jan 23 2007
general

	[general] global “insure”->”ensure” change. in US english “insure” is actually
largely interchangeable with “ensure” (so says the dictionary), so I’m not
completely illiterate, but its definitely sub-optimal to “ensure” which is
non-ambiguous.¶

orm

	[orm] poked the first hole in the can of worms: saying
query.select_by(somerelationname=someinstance) will create the join of the
primary key columns represented by “somerelationname“‘s mapper to the
actual primary key in “someinstance”.¶

	[orm] reworked how relations interact with “polymorphic” mappers, i.e. mappers
that have a select_table as well as polymorphic flags. better determination
of proper join conditions, interaction with user- defined join conditions,
and support for self-referential polymorphic mappers.¶

	[orm] related to polymorphic mapping relations, some deeper error checking when
compiling relations, to detect an ambiguous “primaryjoin” in the case that
both sides of the relationship have foreign key references in the primary
join condition. also tightened down conditions used to locate “relation
direction”, associating the “foreignkey” of the relationship with the
“primaryjoin”¶

	[orm] a little bit of improvement to the concept of a “concrete” inheritance
mapping, though that concept is not well fleshed out yet (added test case
to support concrete mappers on top of a polymorphic base).¶

	[orm] fix to “proxy=True” behavior on synonym()¶

	[orm] fixed bug where delete-orphan basically didn’t work with many-to-many
relationships, backref presence generally hid the symptom¶
References: #427

	[orm] added a mutex to the mapper compilation step. ive been reluctant to add any
kind of threading anything to SA but this is one spot that its really
needed since mappers are typically “global”, and while their state does not
change during normal operation, the initial compilation step does modify
internal state significantly, and this step usually occurs not at
module-level initialization time (unless you call compile()) but at
first-request time¶

	[orm] basic idea of “session.merge()” actually implemented. needs more testing.¶

	[orm] added “compile_mappers()” function as a shortcut to compiling all mappers¶

	[orm] fix to MapperExtension create_instance so that entity_name properly
associated with new instance¶

	[orm] speed enhancements to ORM object instantiation, eager loading of rows¶

	[orm] invalid options sent to ‘cascade’ string will raise an exception¶
References: #406

	[orm] fixed bug in mapper refresh/expire whereby eager loaders didn’t properly
re-populate item lists¶
References: #407

	[orm] fix to post_update to ensure rows are updated even for non insert/delete
scenarios¶
References: #413

	[orm] added an error message if you actually try to modify primary key values on
an entity and then flush it¶
References: #412

sql

	[sql] added “fetchmany()” support to ResultProxy¶

	[sql] added support for column “key” attribute to be useable in
row[<key>]/row.<key>¶

	[sql] changed “BooleanExpression” to subclass from “BinaryExpression”, so that
boolean expressions can also follow column-clause behaviors (i.e. label(),
etc).¶

	[sql] trailing underscores are trimmed from func.<xxx> calls, such as func.if_()¶

	[sql] fix to correlation of subqueries when the column list of the select
statement is constructed with individual calls to append_column(); this
fixes an ORM bug whereby nested select statements were not getting
correlated with the main select generated by the Query object.¶

	[sql] another fix to subquery correlation so that a subquery which has only one
FROM element will not correlate that single element, since at least one
FROM element is required in a query.¶

	[sql] default “timezone” setting is now False. this corresponds to Python’s
datetime behavior as well as Postgres’ timestamp/time types (which is the
only timezone-sensitive dialect at the moment)¶
References: #414

	[sql] the “op()” function is now treated as an “operation”, rather than a
“comparison”. the difference is, an operation produces a BinaryExpression
from which further operations can occur whereas comparison produces the
more restrictive BooleanExpression¶

	[sql] trying to redefine a reflected primary key column as non-primary key raises
an error¶

	[sql] type system slightly modified to support TypeDecorators that can be
overridden by the dialect (ok, that’s not very clear, it allows the mssql
tweak below to be possible)¶

mysql

	[mysql] mysql is inconsistent with what kinds of quotes it uses in foreign keys
during a SHOW CREATE TABLE, reflection updated to accommodate for all three
styles¶
References: #420

	[mysql] mysql table create options work on a generic passthru now, i.e. Table(...,
mysql_engine=’InnoDB’, mysql_collate=”latin1_german2_ci”,
mysql_auto_increment=”5”, mysql_<somearg>...), helps¶
References: #418

mssql

	[mssql] added an NVarchar type (produces NVARCHAR), also MSUnicode which provides
Unicode-translation for the NVarchar regardless of dialect convert_unicode
setting.¶

oracle

	[oracle] slight support for binary, but still need to figure out how to insert
reasonably large values (over 4K). requires auto_setinputsizes=True sent to
create_engine(), rows must be fully fetched individually, etc.¶

firebird

	[firebird] order of constraint creation puts primary key first before all other
constraints; required for firebird, not a bad idea for others¶
References: #408

	[firebird] Firebird fix to autoload multifield foreign keys¶
References: #409

	[firebird] Firebird NUMERIC type properly handles a type without precision¶
References: #409

misc

	[postgres] fix to the initial checkfirst for tables to take current schema into
account¶
References: #424

	[postgres] postgres has an optional “server_side_cursors=True” flag which will utilize
server side cursors. these are appropriate for fetching only partial
results and are necessary for working with very large unbounded result
sets. While we’d like this to be the default behavior, different
environments seem to have different results and the causes have not been
isolated so we are leaving the feature off by default for now. Uses an
apparently undocumented psycopg2 behavior recently discovered on the
psycopg mailing list.¶

	[postgres] added “BIGSERIAL” support for postgres table with
PGBigInteger/autoincrement¶

	[postgres] fixes to postgres reflection to better handle when schema names are
present; thanks to jason (at) ncsmags.com¶
References: #402

	[extensions] added “validate=False” argument to assign_mapper, if True will ensure that
only mapped attributes are named¶
References: #426

	[extensions] assign_mapper gets “options”, “instances” functions added (i.e.
MyClass.instances())¶

0.3.3

Released: Fri Dec 15 2006
	string-based FROM clauses fixed, i.e. select(..., from_obj=[“sometext”])¶

	fixes to passive_deletes flag, lazy=None (noload) flag¶

	added example/docs for dealing with large collections¶

	added object_session() method to sqlalchemy namespace¶

	fixed QueuePool bug whereby its better able to reconnect to a database
that was not reachable (thanks to SÃ©bastien Lelong), also fixed dispose()
method¶

	patch that makes MySQL rowcount work correctly!¶
References: #396

	fix to MySQL catch of 2006/2014 errors to properly re-raise OperationalError
exception¶

0.3.2

Released: Sun Dec 10 2006
	major connection pool bug fixed. fixes MySQL out of sync
errors, will also prevent transactions getting rolled back
accidentally in all DBs¶
References: #387

	major speed enhancements vs. 0.3.1, to bring speed
back to 0.2.8 levels¶

	made conditional dozens of debug log calls that were
time-intensive to generate log messages¶

	fixed bug in cascade rules whereby the entire object graph
could be unnecessarily cascaded on the save/update cascade¶

	various speedups in attributes module¶

	identity map in Session is by default no longer weak referencing.
to have it be weak referencing, use create_session(weak_identity_map=True)
fixes¶
References: #388

	MySQL detects errors 2006 (server has gone away) and 2014
(commands out of sync) and invalidates the connection on which it occurred.¶

	MySQL bool type fix:¶
References: #307

	postgres reflection fixes:¶
References: #382, #349

	added keywords for EXCEPT, INTERSECT, EXCEPT ALL, INTERSECT ALL¶
References: #247

	assign_mapper in assignmapper extension returns the created mapper¶
References: #2110

	added label() function to Select class, when scalar=True is used
to create a scalar subquery
i.e. “select x, y, (select max(foo) from table) AS foomax from table”¶

	added onupdate and ondelete keyword arguments to ForeignKey; propagate
to underlying ForeignKeyConstraint if present. (don’t propagate in the
other direction, however)¶

	fix to session.update() to preserve “dirty” status of incoming object¶

	sending a selectable to an IN via the in_() function no longer creates
a “union” out of multiple selects; only one selectable to a the in_() function
is allowed now (make a union yourself if union is needed)¶

	improved support for disabling save-update cascade via cascade=”none” etc.¶

	added “remote_side” argument to relation(), used only with self-referential
mappers to force the direction of the parent/child relationship. replaces
the usage of the “foreignkey” parameter for “switching” the direction.
“foreignkey” argument is deprecated for all uses and will eventually
be replaced by an argument dedicated to ForeignKey specification on mappers.¶

0.3.1

Released: Mon Nov 13 2006
orm

	[orm] the “delete” cascade will load in all child objects, if they were not
loaded already. this can be turned off (i.e. the old behavior) by setting
passive_deletes=True on a relation().¶

	[orm] adjustments to reworked eager query generation to not fail on circular
eager-loaded relationships (like backrefs)¶

	[orm] fixed bug where eagerload() (nor lazyload()) option didn’t properly
instruct the Query whether or not to use “nesting” when producing a
LIMIT query.¶

	[orm] fixed bug in circular dependency sorting at flush time; if object A
contained a cyclical many-to-one relationship to object B, and object B
was just attached to object A, but object B itself wasn’t changed,
the many-to-one synchronize of B’s primary key attribute to A’s foreign key
attribute wouldn’t occur.¶
References: #360

	[orm] implemented from_obj argument for query.count, improves count function
on selectresults¶
References: #325

	[orm] added an assertion within the “cascade” step of ORM relationships to check
that the class of object attached to a parent object is appropriate
(i.e. if A.items stores B objects, raise an error if a C is appended to A.items)¶

	[orm] new extension sqlalchemy.ext.associationproxy, provides transparent
“association object” mappings. new example
examples/association/proxied_association.py illustrates.¶

	[orm] improvement to single table inheritance to load full hierarchies beneath
the target class¶

	[orm] fix to subtle condition in topological sort where a node could appear twice,
for¶
References: #362

	[orm] additional rework to topological sort, refactoring, for¶
References: #365

	[orm] “delete-orphan” for a certain type can be set on more than one parent class;
the instance is an “orphan” only if its not attached to any of those parents¶

misc

	[engine/pool] some new Pool utility classes, updated docs¶

	[engine/pool] “use_threadlocal” on Pool defaults to False (same as create_engine)¶

	[engine/pool] fixed direct execution of Compiled objects¶

	[engine/pool] create_engine() reworked to be strict about incoming **kwargs. all keyword
arguments must be consumed by one of the dialect, connection pool, and engine
constructors, else a TypeError is thrown which describes the full set of
invalid kwargs in relation to the selected dialect/pool/engine configuration.¶

	[databases/types] MySQL catches exception on “describe” and reports as NoSuchTableError¶

	[databases/types] further fixes to sqlite booleans, weren’t working as defaults¶

	[databases/types] fix to postgres sequence quoting when using schemas¶

0.3.0

Released: Sun Oct 22 2006
general

	[general] logging is now implemented via standard python “logging” module.
“echo” keyword parameters are still functional but set/unset
log levels for their respective classes/instances. all logging
can be controlled directly through the Python API by setting
INFO and DEBUG levels for loggers in the “sqlalchemy” namespace.
class-level logging is under “sqlalchemy.<module>.<classname>”,
instance-level logging under “sqlalchemy.<module>.<classname>.0x..<00-FF>”.
Test suite includes “–log-info” and “–log-debug” arguments
which work independently of –verbose/–quiet. Logging added
to orm to allow tracking of mapper configurations, row iteration.¶

	[general] the documentation-generation system has been overhauled to be
much simpler in design and more integrated with Markdown¶

orm

	[orm] attribute tracking modified to be more intelligent about detecting
changes, particularly with mutable types. TypeEngine objects now
take a greater role in defining how to compare two scalar instances,
including the addition of a MutableType mixin which is implemented by
PickleType. unit-of-work now tracks the “dirty” list as an expression
of all persistent objects where the attribute manager detects changes.
The basic issue that’s fixed is detecting changes on PickleType
objects, but also generalizes type handling and “modified” object
checking to be more complete and extensible.¶

	[orm] a wide refactoring to “attribute loader” and “options” architectures.
ColumnProperty and PropertyLoader define their loading behaivor via switchable
“strategies”, and MapperOptions no longer use mapper/property copying
in order to function; they are instead propagated via QueryContext
and SelectionContext objects at query/instances time.
All of the internal copying of mappers and properties that was used to handle
inheritance as well as options() has been removed; the structure
of mappers and properties is much simpler than before and is clearly laid out
in the new ‘interfaces’ module.¶

	[orm] related to the mapper/property overhaul, internal refactoring to
mapper instances() method to use a SelectionContext object to track
state during the operation.
SLIGHT API BREAKAGE: the append_result() and populate_instances()
methods on MapperExtension have a slightly different method signature
now as a result of the change; hoping that these methods are not
in widespread use as of yet.¶

	[orm] instances() method moved to Query now, backwards-compatible
version remains on Mapper.¶

	[orm] added contains_eager() MapperOption, used in conjunction with
instances() to specify properties that should be eagerly loaded
from the result set, using their plain column names by default, or translated
given an custom row-translation function.¶

	[orm] more rearrangements of unit-of-work commit scheme to better allow
dependencies within circular flushes to work properly...updated
task traversal/logging implementation¶

	[orm] polymorphic mappers (i.e. using inheritance) now produces INSERT
statements in order of tables across all inherited classes¶
References: #321

	[orm] added an automatic “row switch” feature to mapping, which will
detect a pending instance/deleted instance pair with the same
identity key and convert the INSERT/DELETE to a single UPDATE¶

	[orm] “association” mappings simplified to take advantage of
automatic “row switch” feature¶

	[orm] “custom list classes” is now implemented via the “collection_class”
keyword argument to relation(). the old way still works but is
deprecated¶
References: #212

	[orm] added “viewonly” flag to relation(), allows construction of
relations that have no effect on the flush() process.¶

	[orm] added “lockmode” argument to base Query select/get functions,
including “with_lockmode” function to get a Query copy that has
a default locking mode. Will translate “read”/”update”
arguments into a for_update argument on the select side.¶
References: #292

	[orm] implemented “version check” logic in Query/Mapper, used
when version_id_col is in effect and query.with_lockmode()
is used to get() an instance that’s already loaded¶

	[orm] post_update behavior improved; does a better job at not
updating too many rows, updates only required columns¶
References: #208

	[orm] adjustments to eager loading so that its “eager chain” is
kept separate from the normal mapper setup, thereby
preventing conflicts with lazy loader operation, fixes¶
References: #308

	[orm] fix to deferred group loading¶

	[orm] session.flush() wont close a connection it opened¶
References: #346

	[orm] added “batch=True” flag to mapper; if False, save_obj
will fully save one object at a time including calls
to before_XXXX and after_XXXX¶

	[orm] added “column_prefix=None” argument to mapper; prepends the
given string (typically ‘_’) to column-based attributes automatically
set up from the mapper’s Table¶

	[orm] specifying joins in the from_obj argument of query.select() will
replace the main table of the query, if the table is somewhere within
the given from_obj. this makes it possible to produce custom joins and
outerjoins in queries without the main table getting added twice.¶
References: #315

	[orm] eagerloading is adjusted to more thoughtfully attach its LEFT OUTER JOINs
to the given query, looking for custom “FROM” clauses that may have
already been set up.¶

	[orm] added join_to and outerjoin_to transformative methods to SelectResults,
to build up join/outerjoin conditions based on property names. also
added select_from to explicitly set from_obj parameter.¶

	[orm] removed “is_primary” flag from mapper.¶

sql

	[sql] [construction] changed “for_update” parameter to accept False/True/”nowait”
and “read”, the latter two of which are interpreted only by
Oracle and Mysql¶
References: #292

	[sql] [construction] added extract() function to sql dialect
(SELECT extract(field FROM expr))¶

	[sql] [construction] BooleanExpression includes new “negate” argument to specify
the appropriate negation operator if one is available.¶

	[sql] [construction] calling a negation on an “IN” or “IS” clause will result in
“NOT IN”, “IS NOT” (as opposed to NOT (x IN y)).¶

	[sql] [construction] Function objects know what to do in a FROM clause now. their
behavior should be the same, except now you can also do things like
select([‘*’], from_obj=[func.my_function()]) to get multiple
columns from the result, or even use sql.column() constructs to name the
return columns¶
References: #172

schema

	[schema] a fair amount of cleanup to the schema package, removal of ambiguous
methods, methods that are no longer needed. slightly more constrained
usage, greater emphasis on explicitness¶

	[schema] the “primary_key” attribute of Table and other selectables becomes
a setlike ColumnCollection object; is ordered but not numerically
indexed. a comparison clause between two pks that are derived from the
same underlying tables (i.e. such as two Alias objects) can be generated
via table1.primary_key==table2.primary_key¶

	[schema] ForeignKey(Constraint) supports “use_alter=True”, to create/drop a foreign key
via ALTER. this allows circular foreign key relationships to be set up.¶

	[schema] append_item() methods removed from Table and Column; preferably
construct Table/Column/related objects inline, but if needed use
append_column(), append_foreign_key(), append_constraint(), etc.¶

	[schema] table.create() no longer returns the Table object, instead has no
return value. the usual case is that tables are created via metadata,
which is preferable since it will handle table dependencies.¶

	[schema] added UniqueConstraint (goes at Table level), CheckConstraint
(goes at Table or Column level).¶

	[schema] index=False/unique=True on Column now creates a UniqueConstraint,
index=True/unique=False creates a plain Index,
index=True/unique=True on Column creates a unique Index. ‘index’
and ‘unique’ keyword arguments to column are now boolean only; for
explcit names and groupings of indexes or unique constraints, use the
UniqueConstraint/Index constructs explicitly.¶

	[schema] added autoincrement=True to Column; will disable schema generation
of SERIAL/AUTO_INCREMENT/identity seq for postgres/mysql/mssql if
explicitly set to False¶

	[schema] TypeEngine objects now have methods to deal with copying and comparing
values of their specific type. Currently used by the ORM, see below.¶

	[schema] fixed condition that occurred during reflection when a primary key
column was explciitly overridden, where the PrimaryKeyConstraint would
get both the reflected and the programmatic column doubled up¶

	[schema] the “foreign_key” attribute on Column and ColumnElement in general
is deprecated, in favor of the “foreign_keys” list/set-based attribute,
which takes into account multiple foreign keys on one column.
“foreign_key” will return the first element in the “foreign_keys” list/set
or None if the list is empty.¶

sqlite

	[sqlite] sqlite boolean datatype converts False/True to 0/1 by default¶

	[sqlite] fixes to Date/Time (SLDate/SLTime) types; works as good as postgres
now¶
References: #335

oracle

	[oracle] Oracle has experimental support for cx_Oracle.TIMESTAMP, which requires
a setinputsizes() call on the cursor that is now enabled via the
‘auto_setinputsizes’ flag to the oracle dialect.¶

firebird

	[firebird] aliases do not use “AS”¶

	[firebird] correctly raises NoSuchTableError when reflecting non-existent table¶

misc

	[ms-sql] fixes bug 261 (table reflection broken for MS-SQL case-sensitive
databases)¶

	[ms-sql] can now specify port for pymssql¶

	[ms-sql] introduces new “auto_identity_insert” option for auto-switching
between “SET IDENTITY_INSERT” mode when values specified for IDENTITY columns¶

	[ms-sql] now supports multi-column foreign keys¶

	[ms-sql] fix to reflecting date/datetime columns¶

	[ms-sql] NCHAR and NVARCHAR type support added¶

	[connections/pooling/execution] connection pool tracks open cursors and automatically closes them
if connection is returned to pool with cursors still opened. Can be
affected by options which cause it to raise an error instead, or to
do nothing. fixes issues with MySQL, others¶

	[connections/pooling/execution] fixed bug where Connection wouldn’t lose its Transaction
after commit/rollback¶

	[connections/pooling/execution] added scalar() method to ComposedSQLEngine, ResultProxy¶

	[connections/pooling/execution] ResultProxy will close() the underlying cursor when the ResultProxy
itself is closed. this will auto-close cursors for ResultProxy objects
that have had all their rows fetched (or had scalar() called).¶

	[connections/pooling/execution] ResultProxy.fetchall() internally uses DBAPI fetchall() for better efficiency,
added to mapper iteration as well (courtesy Michael Twomey)¶

0.2 Changelog

0.2.8

Released: Tue Sep 05 2006
	cleanup on connection methods + documentation. custom DBAPI
arguments specified in query string, ‘connect_args’ argument
to ‘create_engine’, or custom creation function via ‘creator’
function to ‘create_engine’.¶

	added “recycle” argument to Pool, is “pool_recycle” on create_engine,
defaults to 3600 seconds; connections after this age will be closed and
replaced with a new one, to handle db’s that automatically close
stale connections¶
References: #274

	changed “invalidate” semantics with pooled connection; will
instruct the underlying connection record to reconnect the next
time its called. “invalidate” will also automatically be called
if any error is thrown in the underlying call to connection.cursor().
this will hopefully allow the connection pool to reconnect to a
database that had been stopped and started without restarting
the connecting application¶
References: #121

	eesh ! the tutorial doctest was broken for quite some time.¶

	add_property() method on mapper does a “compile all mappers”
step in case the given property references a non-compiled mapper
(as it did in the case of the tutorial !)¶

	check for pg sequence already existing before create¶
References: #277

	if a contextual session is established via MapperExtension.get_session
(as it is using the sessioncontext plugin, etc), a lazy load operation
will use that session by default if the parent object is not
persistent with a session already.¶

	lazy loads will not fire off for an object that does not have a
database identity (why?
see http://www.sqlalchemy.org/trac/wiki/WhyDontForeignKeysLoadData)¶

	unit-of-work does a better check for “orphaned” objects that are
part of a “delete-orphan” cascade, for certain conditions where the
parent isn’t available to cascade from.¶

	mappers can tell if one of their objects is an “orphan” based
on interactions with the attribute package. this check is based
on a status flag maintained for each relationship
when objects are attached and detached from each other.¶

	it is now invalid to declare a self-referential relationship with
“delete-orphan” (as the abovementioned check would make them impossible
to save)¶

	improved the check for objects being part of a session when the
unit of work seeks to flush() them as part of a relationship..¶

	statement execution supports using the same BindParam
object more than once in an expression; simplified handling of positional
parameters. nice job by Bill Noon figuring out the basic idea.¶
References: #280

	postgres reflection moved to use pg_schema tables, can be overridden
with use_information_schema=True argument to create_engine.¶
References: #60, #71

	added case_sensitive argument to MetaData, Table, Column, determines
itself automatically based on if a parent schemaitem has a non-None
setting for the flag, or if not, then whether the identifier name is all lower
case or not. when set to True, quoting is applied to identifiers with mixed or
uppercase identifiers. quoting is also applied automatically in all cases to
identifiers that are known to be reserved words or contain other non-standard
characters. various database dialects can override all of this behavior, but
currently they are all using the default behavior. tested with postgres, mysql,
sqlite, oracle. needs more testing with firebird, ms-sql. part of the ongoing
work with¶
References: #155

	unit tests updated to run without any pysqlite installed; pool
test uses a mock DBAPI¶

	urls support escaped characters in passwords¶
References: #281

	added limit/offset to UNION queries (though not yet in oracle)¶

	added “timezone=True” flag to DateTime and Time types. postgres
so far will convert this to “TIME[STAMP] (WITH|WITHOUT) TIME ZONE”,
so that control over timezone presence is more controllable (psycopg2
returns datetimes with tzinfo’s if available, which can create confusion
against datetimes that don’t).¶

	fix to using query.count() with distinct, **kwargs with SelectResults
count()¶
References: #287

	deregister Table from MetaData when autoload fails;¶
References: #289

	import of py2.5s sqlite3¶
References: #293

	unicode fix for startswith()/endswith()¶
References: #296

0.2.7

Released: Sat Aug 12 2006
	quoting facilities set up so that database-specific quoting can be
turned on for individual table, schema, and column identifiers when
used in all queries/creates/drops. Enabled via “quote=True” in
Table or Column, as well as “quote_schema=True” in Table. Thanks to
Aaron Spike for the excellent efforts.¶

	assignmapper was setting is_primary=True, causing all sorts of mayhem
by not raising an error when redundant mappers were set up, fixed¶

	added allow_null_pks option to Mapper, allows rows where some
primary key columns are null (i.e. when mapping to outer joins etc)¶

	modifcation to unitofwork to not maintain ordering within the
“new” list or within the UOWTask “objects” list; instead, new objects
are tagged with an ordering identifier as they are registered as new
with the session, and the INSERT statements are then sorted within the
mapper save_obj. the INSERT ordering has basically been pushed all
the way to the end of the flush cycle. that way the various sorts and
organizations occurring within UOWTask (particularly the circular task
sort) don’t have to worry about maintaining order (which they weren’t anyway)¶

	fixed reflection of foreign keys to autoload the referenced table
if it was not loaded already¶

	

	pass URL query string arguments to connect() function

¶
References: #256

	

	oracle boolean type

¶
References: #257

	custom primary/secondary join conditions in a relation will be propagated
to backrefs by default. specifying a backref() will override this behavior.¶

	better check for ambiguous join conditions in sql.Join; propagates to a
better error message in PropertyLoader (i.e. relation()/backref()) for when
the join condition can’t be reasonably determined.¶

	sqlite creates ForeignKeyConstraint objects properly upon table
reflection.¶

	adjustments to pool stemming from changes made for.
overflow counter should only be decremented if the connection actually
succeeded. added a test script to attempt testing this.¶
References: #224

	fixed mysql reflection of default values to be PassiveDefault¶

	added reflected ‘tinyint’, ‘mediumint’ type to MS-SQL.¶
References: #263, #264

	SingletonThreadPool has a size and does a cleanup pass, so that
only a given number of thread-local connections stay around (needed
for sqlite applications that dispose of threads en masse)¶

	fixed small pickle bug(s) with lazy loaders¶
References: #267, #265

	fixed possible error in mysql reflection where certain versions
return an array instead of string for SHOW CREATE TABLE call¶

	fix to lazy loads when mapping to joins¶
References: #1770

	all create()/drop() calls have a keyword argument of “connectable”.
“engine” is deprecated.¶

	fixed ms-sql connect() to work with adodbapi¶

	added “nowait” flag to Select()¶

	inheritance check uses issubclass() instead of direct __mro__ check
to make sure class A inherits from B, allowing mapper inheritance to more
flexibly correspond to class inheritance¶
References: #271

	SelectResults will use a subselect, when calling an aggregate (i.e.
max, min, etc.) on a SelectResults that has an ORDER BY clause¶
References: #252

	fixes to types so that database-specific types more easily used;
fixes to mysql text types to work with this methodology¶
References: #269

	some fixes to sqlite date type organization¶

	added MSTinyInteger to MS-SQL¶
References: #263

0.2.6

Released: Thu Jul 20 2006
	big overhaul to schema to allow truly composite primary and foreign
key constraints, via new ForeignKeyConstraint and PrimaryKeyConstraint
objects.
Existing methods of primary/foreign key creation have not been changed
but use these new objects behind the scenes. table creation
and reflection is now more table oriented rather than column oriented.¶
References: #76

	overhaul to MapperExtension calling scheme, wasn’t working very well
previously¶

	tweaks to ActiveMapper, supports self-referential relationships¶

	slight rearrangement to objectstore (in activemapper/threadlocal)
so that the SessionContext is referenced by ‘.context’ instead
of subclassed directly.¶

	activemapper will use threadlocal’s objectstore if the mod is
activated when activemapper is imported¶

	small fix to URL regexp to allow filenames with ‘@’ in them¶

	fixes to Session expunge/update/etc...needs more cleanup.¶

	select_table mappers still weren’t always compiling¶

	fixed up Boolean datatype¶

	added count()/count_by() to list of methods proxied by assignmapper;
this also adds them to activemapper¶

	connection exceptions wrapped in DBAPIError¶

	ActiveMapper now supports autoloading column definitions from the
database if you supply a __autoload__ = True attribute in your
mapping inner-class. Currently this does not support reflecting
any relationships.¶

	deferred column load could screw up the connection status in
a flush() under some circumstances, this was fixed¶

	expunge() was not working with cascade, fixed.¶

	potential endless loop in cascading operations fixed.¶

	added “synonym()” function, applied to properties to have a
propname the same as another, for the purposes of overriding props
and allowing the original propname to be accessible in select_by().¶

	fix to typing in clause construction which specifically helps
type issues with polymorphic_union (CAST/ColumnClause propagates
its type to proxy columns)¶

	mapper compilation work ongoing, someday it’ll work....moved
around the initialization of MapperProperty objects to be after
all mappers are created to better handle circular compilations.
do_init() method is called on all properties now which are more
aware of their “inherited” status if so.¶

	eager loads explicitly disallowed on self-referential relationships, or
relationships to an inheriting mapper (which is also self-referential)¶

	reduced bind param size in query._get to appease the picky oracle¶
References: #244

	added ‘checkfirst’ argument to table.create()/table.drop(), as
well as table.exists()¶
References: #234

	some other ongoing fixes to inheritance¶
References: #245

	attribute/backref/orphan/history-tracking tweaks as usual...¶

0.2.5

Released: Sat Jul 08 2006
	fixed endless loop bug in select_by(), if the traversal hit
two mappers that referenced each other¶

	upgraded all unittests to insert ‘./lib/’ into sys.path,
working around new setuptools PYTHONPATH-killing behavior¶

	further fixes with attributes/dependencies/etc....¶

	improved error handling for when DynamicMetaData is not connected¶

	MS-SQL support largely working (tested with pymssql)¶

	ordering of UPDATE and DELETE statements within groups is now
in order of primary key values, for more deterministic ordering¶

	after_insert/delete/update mapper extensions now called per object,
not per-object-per-table¶

	further fixes/refactorings to mapper compilation¶

0.2.4

Released: Tue Jun 27 2006
	try/except when the mapper sets init.__name__ on a mapped class,
supports python 2.3¶

	fixed bug where threadlocal engine would still autocommit
despite a transaction in progress¶

	lazy load and deferred load operations require the parent object
to be in a Session to do the operation; whereas before the operation
would just return a blank list or None, it now raises an exception.¶

	Session.update() is slightly more lenient if the session to which
the given object was formerly attached to was garbage collected;
otherwise still requires you explicitly remove the instance from
the previous Session.¶

	fixes to mapper compilation, checking for more error conditions¶

	small fix to eager loading combined with ordering/limit/offset¶

	utterly remarkable: added a single space between ‘CREATE TABLE’
and ‘(<the rest of it>’ since that’s how MySQL indicates a non-
reserved word tablename.....¶
References: #206

	more fixes to inheritance, related to many-to-many relations
properly saving¶

	fixed bug when specifying explicit module to mysql dialect¶

	when QueuePool times out it raises a TimeoutError instead of
erroneously making another connection¶

	Queue.Queue usage in pool has been replaced with a locally
modified version (works in py2.3/2.4!) that uses a threading.RLock
for a mutex. this is to fix a reported case where a ConnectionFairy’s
__del__() method got called within the Queue’s get() method, which
then returns its connection to the Queue via the put() method,
causing a reentrant hang unless threading.RLock is used.¶

	postgres will not place SERIAL keyword on a primary key column
if it has a foreign key constraint¶

	cursor() method on ConnectionFairy allows db-specific extension
arguments to be propagated¶
References: #221

	lazy load bind params properly propagate column type¶
References: #225

	new MySQL types: MSEnum, MSTinyText, MSMediumText, MSLongText, etc.
more support for MS-specific length/precision params in numeric types
patch courtesy Mike Bernson¶

	some fixes to connection pool invalidate()¶
References: #224

0.2.3

Released: Sat Jun 17 2006
	overhaul to mapper compilation to be deferred. this allows mappers
to be constructed in any order, and their relationships to each
other are compiled when the mappers are first used.¶

	fixed a pretty big speed bottleneck in cascading behavior particularly
when backrefs were in use¶

	the attribute instrumentation module has been completely rewritten; its
now a large degree simpler and clearer, slightly faster. the “history”
of an attribute is no longer micromanaged with each change and is
instead part of a “CommittedState” object created when the
instance is first loaded. HistoryArraySet is gone, the behavior of
list attributes is now more open ended (i.e. they’re not sets anymore).¶

	py2.4 “set” construct used internally, falls back to sets.Set when
“set” not available/ordering is needed.¶

	fix to transaction control, so that repeated rollback() calls
don’t fail (was failing pretty badly when flush() would raise
an exception in a larger try/except transaction block)¶

	“foreignkey” argument to relation() can also be a list. fixed
auto-foreignkey detection¶
References: #151

	fixed bug where tables with schema names weren’t getting indexed in
the MetaData object properly¶

	fixed bug where Column with redefined “key” property wasn’t getting
type conversion happening in the ResultProxy¶
References: #207

	fixed ‘port’ attribute of URL to be an integer if present¶

	fixed old bug where if a many-to-many table mapped as “secondary”
had extra columns, delete operations didn’t work¶

	bugfixes for mapping against UNION queries¶

	fixed incorrect exception class thrown when no DB driver present¶

	added NonExistentTable exception thrown when reflecting a table
that doesn’t exist¶
References: #138

	small fix to ActiveMapper regarding one-to-one backrefs, other
refactorings¶

	overridden constructor in mapped classes gets __name__ and
__doc__ from the original class¶

	fixed small bug in selectresult.py regarding mapper extension¶
References: #200

	small tweak to cascade_mappers, not very strongly supported
function at the moment¶

	some fixes to between(), column.between() to propagate typing
information better¶
References: #202

	if an object fails to be constructed, is not added to the
session¶
References: #203

	CAST function has been made into its own clause object with
its own compilation function in ansicompiler; allows MySQL
to silently ignore most CAST calls since MySQL
seems to only support the standard CAST syntax with Date types.
MySQL-compatible CAST support for strings, ints, etc. a TODO¶

0.2.2

Released: Mon Jun 05 2006
	big improvements to polymorphic inheritance behavior, enabling it
to work with adjacency list table structures¶
References: #190

	major fixes and refactorings to inheritance relationships overall,
more unit tests¶

	fixed “echo_pool” flag on create_engine()¶

	fix to docs, removed incorrect info that close() is unsafe to use
with threadlocal strategy (its totally safe !)¶

	create_engine() can take URLs as string or unicode¶
References: #188

	firebird support partially completed;
thanks to James Ralston and Brad Clements for their efforts.¶

	Oracle url translation was broken, fixed, will feed host/port/sid
into cx_oracle makedsn() if ‘database’ field is present, else uses
straight TNS name from the ‘host’ field¶

	fix to using unicode criterion for query.get()/query.load()¶

	count() function on selectables now uses table primary key or
first column instead of “1” for criterion, also uses label “rowcount”
instead of “count”.¶

	got rudimental “mapping to multiple tables” functionality cleaned up,
more correctly documented¶

	restored global_connect() function, attaches to a DynamicMetaData
instance called “default_metadata”. leaving MetaData arg to Table
out will use the default metadata.¶

	fixes to session cascade behavior, entity_name propigation¶

	reorganized unittests into subdirectories¶

	more fixes to threadlocal connection nesting patterns¶

0.2.1

Released: Mon May 29 2006
	“pool” argument to create_engine() properly propagates¶

	fixes to URL, raises exception if not parsed, does not pass blank
fields along to the DB connect string (a string such as
user:host@/db was breaking on postgres)¶

	small fixes to Mapper when it inserts and tries to get
new primary key values back¶

	rewrote half of TLEngine, the ComposedSQLEngine used with
‘strategy=”threadlocal”’. it now properly implements engine.begin()/
engine.commit(), which nest fully with connection.begin()/trans.commit().
added about six unittests.¶

	major “duh” in pool.Pool, forgot to put back the WeakValueDictionary.
unittest which was supposed to check for this was also silently missing
it. fixed unittest to ensure that ConnectionFairy properly falls out
of scope.¶

	placeholder dispose() method added to SingletonThreadPool, doesn’t
do anything yet¶

	rollback() is automatically called when an exception is raised,
but only if there’s no transaction in process (i.e. works more like
autocommit).¶

	fixed exception raise in sqlite if no sqlite module present¶

	added extra example detail for association object doc¶

	Connection adds checks for already being closed¶

0.2.0

Released: Sat May 27 2006
	overhaul to Engine system so that what was formerly the SQLEngine
is now a ComposedSQLEngine which consists of a variety of components,
including a Dialect, ConnectionProvider, etc. This impacted all the
db modules as well as Session and Mapper.¶

	create_engine now takes only RFC-1738-style strings:
driver://user:password@host:port/database¶

	total rewrite of connection-scoping methodology, Connection objects
can now execute clause elements directly, added explicit “close” as
well as support throughout Engine/ORM to handle closing properly,
no longer relying upon __del__ internally to return connections
to the pool.¶
References: #152

	overhaul to Session interface and scoping. uses hibernate-style
methods, including query(class), save(), save_or_update(), etc.
no threadlocal scope is installed by default. Provides a binding
interface to specific Engines and/or Connections so that underlying
Schema objects do not need to be bound to an Engine. Added a basic
SessionTransaction object that can simplistically aggregate transactions
across multiple engines.¶

	overhaul to mapper’s dependency and “cascade” behavior; dependency logic
factored out of properties.py into a separate module “dependency.py”.
“cascade” behavior is now explicitly controllable, proper implementation
of “delete”, “delete-orphan”, etc. dependency system can now determine at
flush time if a child object has a parent or not so that it makes better
decisions on how that child should be updated in the DB with regards to deletes.¶

	overhaul to Schema to build upon MetaData object instead of an Engine.
Entire SQL/Schema system can be used with no Engines whatsoever, executed
solely by an explicit Connection object. the “bound” methodlogy exists via the
BoundMetaData for schema objects. ProxyEngine is generally not needed
anymore and is replaced by DynamicMetaData.¶

	true polymorphic behavior implemented, fixes¶
References: #167

	“oid” system has been totally moved into compile-time behavior;
if they are used in an order_by where they are not available, the order_by
doesn’t get compiled, fixes¶
References: #147

	overhaul to packaging; “mapping” is now “orm”, “objectstore” is now
“session”, the old “objectstore” namespace gets loaded in via the
“threadlocal” mod if used¶

	mods now called in via “import <modname>”. extensions favored over
mods as mods are globally-monkeypatching¶

	fix to add_property so that it propagates properties to inheriting
mappers¶
References: #154

	backrefs create themselves against primary mapper of its originating
property, priamry/secondary join arguments can be specified to override.
helps their usage with polymorphic mappers¶

	“table exists” function has been implemented¶
References: #31

	“create_all/drop_all” added to MetaData object¶
References: #98

	improvements and fixes to topological sort algorithm, as well as more
unit tests¶

	tutorial page added to docs which also can be run with a custom doctest
runner to ensure its properly working. docs generally overhauled to
deal with new code patterns¶

	many more fixes, refactorings.¶

	migration guide is available on the Wiki at
http://www.sqlalchemy.org/trac/wiki/02Migration¶

0.1 Changelog

0.1.7

Released: Fri May 05 2006
	some fixes to topological sort algorithm¶

	added DISTINCT ON support to Postgres (just supply distinct=[col1,col2..])¶

	added __mod__ (% operator) to sql expressions¶

	“order_by” mapper property inherited from inheriting mapper¶

	fix to column type used when mapper UPDATES/DELETEs¶

	with convert_unicode=True, reflection was failing, has been fixed¶

	types types types! still weren’t working....have to use TypeDecorator again :(¶

	mysql binary type converts array output to buffer, fixes PickleType¶

	fixed the attributes.py memory leak once and for all¶

	unittests are qualified based on the databases that support each one¶

	fixed bug where column defaults would clobber VALUES clause of insert objects¶

	fixed bug where table def w/ schema name would force engine connection¶

	fix for parenthesis to work correctly with subqueries in INSERT/UPDATE¶

	HistoryArraySet gets extend() method¶

	fixed lazyload support for other comparison operators besides =¶

	lazyload fix where two comparisons in the join condition point to the
samem column¶

	added “construct_new” flag to mapper, will use __new__ to create instances
instead of __init__ (standard in 0.2)¶

	added selectresults.py to SVN, missed it last time¶

	tweak to allow a many-to-many relationship from a table to itself via
an association table¶

	small fix to “translate_row” function used by polymorphic example¶

	create_engine uses cgi.parse_qsl to read query string (out the window in 0.2)¶

	tweaks to CAST operator¶

	fixed function names LOCAL_TIME/LOCAL_TIMESTAMP -> LOCALTIME/LOCALTIMESTAMP¶

	fixed order of ORDER BY/HAVING in compile¶

0.1.6

Released: Wed Apr 12 2006
	support for MS-SQL added courtesy Rick Morrison, Runar Petursson¶

	the latest SQLSoup from J. Ellis¶

	ActiveMapper has preliminary support for inheritance (Jeff Watkins)¶

	added a “mods” system which allows pluggable modules that modify/augment
core functionality, using the function “install_mods(*modnames)”.¶

	added the first “mod”, SelectResults, which modifies mapper selects to
return generators that turn ranges into LIMIT/OFFSET queries
(Jonas Borgstr?¶

	factored out querying capabilities of Mapper into a separate Query object
which is Session-centric. this improves the performance of mapper.using(session)
and makes other things possible.¶

	objectstore/Session refactored, the official way to save objects is now
via the flush() method. The begin/commit functionality of Session is factored
into LegacySession which is still established as the default behavior, until
the 0.2 series.¶

	types system is bound to an engine at query compile time, not schema
construction time. this simplifies the types system as well as the ProxyEngine.¶

	added ‘version_id’ keyword argument to mapper. this keyword should reference a
Column object with type Integer, preferably non-nullable, which will be used on
the mapped table to track version numbers. this number is incremented on each
save operation and is specifed in the UPDATE/DELETE conditions so that it
factors into the returned row count, which results in a ConcurrencyError if the
value received is not the expected count.¶

	added ‘entity_name’ keyword argument to mapper. a mapper is now associated
with a class via the class object as well as an optional entity_name parameter,
which is a string defaulting to None. any number of primary mappers can be
created for a class, qualified by the entity name. instances of those classes
will issue all of their load and save operations through their
entity_name-qualified mapper, and maintain separate a identity in the identity
map for an otherwise equilvalent object.¶

	overhaul to the attributes system. code has been clarified, and also fixed to
support proper polymorphic behavior on object attributes.¶

	added “for_update” flag to Select objects¶

	some fixes for backrefs¶

	fix for postgres1 DateTime type¶

	documentation pages mostly switched over to Markdown syntax¶

0.1.5

Released: Mon Mar 27 2006
	added SQLSession concept to SQLEngine. this object keeps track of retrieving a
connection from the connection pool as well as an in-progress transaction.
methods push_session() and pop_session() added to SQLEngine which push/pop a new
SQLSession onto the engine, allowing operation upon a second connection “nested”
within the previous one, allowing nested transactions. Other tricks are sure to
come later regarding SQLSession.¶

	added nest_on argument to objectstore.Session. This is a single SQLEngine or
list of engines for which push_session()/pop_session() will be called each time
this Session becomes the active session (via objectstore.push_session() or
equivalent). This allows a unit of work Session to take advantage of the nested
transaction feature without explicitly calling push_session/pop_session on the
engine.¶

	factored apart objectstore/unitofwork to separate “Session scoping” from
“uow commit heavy lifting”¶

	added populate_instance() method to MapperExtension. allows an extension to
modify the population of object attributes. this method can call the
populate_instance() method on another mapper to proxy the attribute population
from one mapper to another; some row translation logic is also built in to help
with this.¶

	fixed Oracle8-compatibility “use_ansi” flag which converts JOINs to
comparisons with the = and (+) operators, passes basic unittests¶

	tweaks to Oracle LIMIT/OFFSET support¶

	Oracle reflection uses ALL_** views instead of USER_** to get larger
list of stuff to reflect from¶

	fixes to Oracle foreign key reflection¶
References: #105

	objectstore.commit(obj1, obj2,...) adds an extra step to seek out private
relations on properties and delete child objects, even though its not a global
commit¶

	lots and lots of fixes to mappers which use inheritance, strengthened the
concept of relations on a mapper being made towards the “local” table for that
mapper, not the tables it inherits. allows more complex compositional patterns
to work with lazy/eager loading.¶

	added support for mappers to inherit from others based on the same table,
just specify the same table as that of both parent/child mapper.¶

	some minor speed improvements to the attributes system with regards to
instantiating and populating new objects.¶

	fixed MySQL binary unit test¶

	INSERTs can receive clause elements as VALUES arguments, not just literal
values¶

	support for calling multi-tokened functions, i.e. schema.mypkg.func()¶

	added J. Ellis’ SQLSoup module to extensions package¶

	added “polymorphic” examples illustrating methods to load multiple object types
from one mapper, the second of which uses the new populate_instance() method.
small improvements to mapper, UNION construct to help the examples along¶

	improvements/fixes to session.refresh()/session.expire() (which may have
been called “invalidate” earlier..)¶

	added session.expunge() which totally removes an object from the current
session¶

	added *args, **kwargs pass-thru to engine.transaction(func) allowing easier
creation of transactionalizing decorator functions¶

	added iterator interface to ResultProxy: “for row in result:...”¶

	added assertion to tx = session.begin(); tx.rollback(); tx.begin(), i.e. cant
use it after a rollback()¶

	added date conversion on bind parameter fix to SQLite enabling dates to
work with pysqlite1¶

	improvements to subqueries to more intelligently construct their FROM
clauses¶
References: #116

	added PickleType to types.¶

	fixed two bugs with column labels with regards to bind parameters: bind param
keynames they are now generated from a column “label” in all relevant cases to
take advantage of excess-name-length rules, and checks for a peculiar collision
against a column named the same as “tablename_colname” added¶

	major overhaul to unit of work documentation, other documentation sections.¶

	fixed attributes bug where if an object is committed, its lazy-loaded list got
blown away if it hadn’t been loaded¶

	added unique_connection() method to engine, connection pool to return a
connection that is not part of the thread-local context or any current
transaction¶

	added invalidate() function to pooled connection. will remove the connection
from the pool. still need work for engines to auto-reconnect to a stale DB
though.¶

	added distinct() function to column elements so you can do
func.count(mycol.distinct())¶

	added “always_refresh” flag to Mapper, creates a mapper that will always
refresh the attributes of objects it gets/selects from the DB, overwriting any
changes made.¶

0.1.4

Released: Mon Mar 13 2006
	create_engine() now uses genericized parameters; host/hostname,
db/dbname/database, password/passwd, etc. for all engine connections. makes
engine URIs much more “universal”¶

	added support for SELECT statements embedded into a column clause, using the
flag “scalar=True”¶

	another overhaul to EagerLoading when used in conjunction with mappers that
inherit; improvements to eager loads figuring out their aliased queries
correctly, also relations set up against a mapper with inherited mappers will
create joins against the table that is specific to the mapper itself (i.e. and
not any tables that are inherited/are further down the inheritance chain),
this can be overridden by using custom primary/secondary joins.¶

	added J.Ellis patch to mapper.py so that selectone() throws an exception
if query returns more than one object row, selectfirst() to not throw the
exception. also adds selectfirst_by (synonymous with get_by) and selectone_by¶

	added onupdate parameter to Column, will exec SQL/python upon an update
statement.Also adds “for_update=True” to all DefaultGenerator subclasses¶

	added support for Oracle table reflection contributed by Andrija Zaric;
still some bugs to work out regarding composite primary keys/dictionary selection¶

	checked in an initial Firebird module, awaiting testing.¶

	added sql.ClauseParameters dictionary object as the result for
compiled.get_params(), does late-typeprocessing of bind parameters so
that the original values are easier to access¶

	more docs for indexes, column defaults, connection pooling, engine construction¶

	overhaul to the construction of the types system. uses a simpler inheritance
pattern so that any of the generic types can be easily subclassed, with no need
for TypeDecorator.¶

	added “convert_unicode=False” parameter to SQLEngine, will cause all String
types to perform unicode encoding/decoding (makes Strings act like Unicodes)¶

	added ‘encoding=”utf8”’ parameter to engine. the given encoding will be
used for all encode/decode calls within Unicode types as well as Strings
when convert_unicode=True.¶

	improved support for mapping against UNIONs, added polymorph.py example
to illustrate multi-class mapping against a UNION¶

	fix to SQLite LIMIT/OFFSET syntax¶

	fix to Oracle LIMIT syntax¶

	added backref() function, allows backreferences to have keyword arguments
that will be passed to the backref.¶

	Sequences and ColumnDefault objects can do execute()/scalar() standalone¶

	SQL functions (i.e. func.foo()) can do execute()/scalar() standalone¶

	fix to SQL functions so that the ANSI-standard functions, i.e. current_timestamp
etc., do not specify parenthesis. all other functions do.¶

	added settattr_clean and append_clean to SmartProperty, which set
attributes without triggering a “dirty” event or any history. used as:
myclass.prop1.setattr_clean(myobject, ‘hi’)¶

	improved support to column defaults when used by mappers; mappers will pull
pre-executed defaults from statement’s executed bind parameters
(pre-conversion) to populate them into a saved object’s attributes; if any
PassiveDefaults have fired off, will instead post-fetch the row from the DB to
populate the object.¶

	added ‘get_session().invalidate(*obj)’ method to objectstore, instances will
refresh() themselves upon the next attribute access.¶

	improvements to SQL func calls including an “engine” keyword argument so
they can be execute()d or scalar()ed standalone, also added func accessor to
SQLEngine¶

	fix to MySQL4 custom table engines, i.e. TYPE instead of ENGINE¶

	slightly enhanced logging, includes timestamps and a somewhat configurable
formatting system, in lieu of a full-blown logging system¶

	improvements to the ActiveMapper class from the TG gang, including
many-to-many relationships¶

	added Double and TinyInt support to mysql¶

0.1.3

Released: Thu Mar 02 2006
	completed “post_update” feature, will add a second update statement before
inserts and after deletes in order to reconcile a relationship without any
dependencies being created; used when persisting two rows that are dependent
on each other¶

	completed mapper.using(session) function, localized per-object Session
functionality; objects can be declared and manipulated as local to any
user-defined Session¶

	fix to Oracle “row_number over” clause with multiple tables¶

	mapper.get() was not selecting multiple-keyed objects if the mapper’s table was a join,
such as in an inheritance relationship, this is fixed.¶

	overhaul to sql/schema packages so that the sql package can run all on its own,
producing selects, inserts, etc. without any engine dependencies. builds upon
new TableClause/ColumnClause lexical objects. Schema’s Table/Column objects
are the “physical” subclasses of them. simplifies schema/sql relationship,
extensions (like proxyengine), and speeds overall performance by a large margin.
removes the entire getattr() behavior that plagued 0.1.1.¶

	refactoring of how the mapper “synchronizes” data between two objects into a
separate module, works better with properties attached to a mapper that has an
additional inheritance relationship to one of the related tables, also the same
methodology used to synchronize parent/child objects now used by mapper to
synchronize between inherited and inheriting mappers.¶

	made objectstore “check for out-of-identitymap” more aggressive, will perform the
check when object attributes are modified or the object is deleted¶

	Index object fully implemented, can be constructed standalone, or via
“index” and “unique” arguments on Columns.¶

	added “convert_unicode” flag to SQLEngine, will treat all String/CHAR types
as Unicode types, with raw-byte/utf-8 translation on the bind parameter and
result set side.¶

	postgres maintains a list of ANSI functions that must have no parenthesis so
function calls with no arguments work consistently¶

	tables can be created with no engine specified. this will default their engine
to a module-scoped “default engine” which is a ProxyEngine. this engine can
be connected via the function “global_connect”.¶

	added “refresh(*obj)” method to objectstore / Session to reload the attributes of
any set of objects from the database unconditionally¶

0.1.2

Released: Fri Feb 24 2006
	fixed a recursive call in schema that was somehow running 994 times then returning
normally. broke nothing, slowed down everything. thanks to jpellerin for finding this.¶

0.1.1

Released: Thu Feb 23 2006
	small fix to Function class so that expressions with a func.foo() use the type of the
Function object (i.e. the left side) as the type of the boolean expression, not the
other side which is more of a moving target (changeset 1020).¶

	creating self-referring mappers with backrefs slightly easier (but still not that easy -
changeset 1019)¶

	fixes to one-to-one mappings (changeset 1015)¶

	psycopg1 date/time issue with None fixed (changeset 1005)¶

	two issues related to postgres, which doesn’t want to give you the “lastrowid”
since oids are deprecated:

	postgres database-side defaults that are on primary key cols do execute
explicitly beforehand, even though that’s not the idea of a PassiveDefault. this is
because sequences on columns get reflected as PassiveDefaults, but need to be explicitly
executed on a primary key col so we know what we just inserted.

	if you did add a row that has a bunch of database-side defaults on it,
and the PassiveDefault thing was working the old way, i.e. they just execute on
the DB side, the “cant get the row back without an OID” exception that occurred
also will not happen unless someone (usually the ORM) explicitly asks for it.

¶

	fixed a glitch with engine.execute_compiled where it was making a second
ResultProxy that just got thrown away.¶

	began to implement newer logic in object properities. you can now say
myclass.attr.property, which will give you the PropertyLoader corresponding to that
attribute, i.e. myclass.mapper.props[‘attr’]¶

	eager loading has been internally overhauled to use aliases at all times. more
complicated chains of eager loads can now be created without any need for explicit
“use aliases”-type instructions. EagerLoader code is also much simpler now.¶

	a new somewhat experimental flag “use_update” added to relations, indicates that
this relationship should be handled by a second UPDATE statement, either after a
primary INSERT or before a primary DELETE. handles circular row dependencies.¶

	added exceptions module, all raised exceptions (except for some
KeyError/AttributeError exceptions) descend from these classes.¶

	fix to date types with MySQL, returned timedelta converted to datetime.time¶

	two-phase objectstore.commit operations (i.e. begin/commit) now return a
transactional object (SessionTrans), to more clearly indicate transaction boundaries.¶

	Index object with create/drop support added to schema¶

	fix to postgres, where it will explicitly pre-execute a PassiveDefault on a table
if it is a primary key column, pursuant to the ongoing “we cant get inserted rows
back from postgres” issue¶

	change to information_schema query that gets back postgres table defs, now
uses explicit JOIN keyword, since one user had faster performance with 8.1¶

	fix to engine.process_defaults so it works correctly with a table that has
different column name/column keys (changset 982)¶

	a column can only be attached to one table - this is now asserted¶

	postgres time types descend from Time type¶

	fix to alltests so that it runs types test (now named testtypes)¶

	fix to Join object so that it correctly exports its foreign keys (cs 973)¶

	creating relationships against mappers that use inheritance fixed (cs 973)¶

What’s New in SQLAlchemy 1.0?

About this Document

This document describes changes between SQLAlchemy version 0.9,
undergoing maintenance releases as of May, 2014,
and SQLAlchemy version 1.0, released in April, 2015.

Document last updated: June 9, 2015

Introduction

This guide introduces what’s new in SQLAlchemy version 1.0,
and also documents changes which affect users migrating
their applications from the 0.9 series of SQLAlchemy to 1.0.

Please carefully review the sections on behavioral changes for
potentially backwards-incompatible changes in behavior.

New Features and Improvements - ORM

New Session Bulk INSERT/UPDATE API

A new series of Session methods which provide hooks directly
into the unit of work’s facility for emitting INSERT and UPDATE
statements has been created. When used correctly, this expert-oriented system
can allow ORM-mappings to be used to generate bulk insert and update
statements batched into executemany groups, allowing the statements
to proceed at speeds that rival direct use of the Core.

See also

Bulk Operations - introduction and full documentation

#3100

New Performance Example Suite

Inspired by the benchmarking done for the Bulk Operations feature
as well as for the How can I profile a SQLAlchemy powered application? section of the FAQ, a new
example section has been added which features several scripts designed
to illustrate the relative performance profile of various Core and ORM
techniques. The scripts are organized into use cases, and are packaged
under a single console interface such that any combination of demonstrations
can be run, dumping out timings, Python profile results and/or RunSnake profile
displays.

See also

Performance

“Baked” Queries

The “baked” query feature is an unusual new approach which allows for
straightforward construction an invocation of Query objects
using caching, which upon successive calls features vastly reduced
Python function call overhead (over 75%). By specifying a
Query object as a series of lambdas which are only invoked
once, a query as a pre-compiled unit begins to be feasable:

from sqlalchemy.ext import baked
from sqlalchemy import bindparam

bakery = baked.bakery()

def search_for_user(session, username, email=None):

 baked_query = bakery(lambda session: session.query(User))
 baked_query += lambda q: q.filter(User.name == bindparam('username'))

 baked_query += lambda q: q.order_by(User.id)

 if email:
 baked_query += lambda q: q.filter(User.email == bindparam('email'))

 result = baked_query(session).params(username=username, email=email).all()

 return result

See also

Baked Queries

#3054

Improvements to declarative mixins, @declared_attr and related features

The declarative system in conjunction with declared_attr has been
overhauled to support new capabilities.

A function decorated with declared_attr is now called only after
any mixin-based column copies are generated. This means the function can
call upon mixin-established columns and will receive a reference to the correct
Column object:

class HasFooBar(object):
 foobar = Column(Integer)

 @declared_attr
 def foobar_prop(cls):
 return column_property('foobar: ' + cls.foobar)

class SomeClass(HasFooBar, Base):
 __tablename__ = 'some_table'
 id = Column(Integer, primary_key=True)

Above, SomeClass.foobar_prop will be invoked against SomeClass,
and SomeClass.foobar will be the final Column object that is
to be mapped to SomeClass, as opposed to the non-copied object present
directly on HasFooBar, even though the columns aren’t mapped yet.

The declared_attr function now memoizes the value
that’s returned on a per-class basis, so that repeated calls to the same
attribute will return the same value. We can alter the example to illustrate
this:

class HasFooBar(object):
 @declared_attr
 def foobar(cls):
 return Column(Integer)

 @declared_attr
 def foobar_prop(cls):
 return column_property('foobar: ' + cls.foobar)

class SomeClass(HasFooBar, Base):
 __tablename__ = 'some_table'
 id = Column(Integer, primary_key=True)

Previously, SomeClass would be mapped with one particular copy of
the foobar column, but the foobar_prop by calling upon foobar
a second time would produce a different column. The value of
SomeClass.foobar is now memoized during declarative setup time, so that
even before the attribute is mapped by the mapper, the interim column
value will remain consistent no matter how many times the
declared_attr is called upon.

The two behaviors above should help considerably with declarative definition
of many types of mapper properties that derive from other attributes, where
the declared_attr function is called upon from other
declared_attr functions locally present before the class is
actually mapped.

For a pretty slim edge case where one wishes to build a declarative mixin
that establishes distinct columns per subclass, a new modifier
declared_attr.cascading is added. With this modifier, the
decorated function will be invoked individually for each class in the
mapped inheritance hierarchy. While this is already the behavior for
special attributes such as __table_args__ and __mapper_args__,
for columns and other properties the behavior by default assumes that attribute
is affixed to the base class only, and just inherited from subclasses.
With declared_attr.cascading, individual behaviors can be
applied:

class HasSomeAttribute(object):
 @declared_attr.cascading
 def some_id(cls):
 if has_inherited_table(cls):
 return Column(ForeignKey('myclass.id'), primary_key=True)
 else:
 return Column(Integer, primary_key=True)

 return Column('id', Integer, primary_key=True)

class MyClass(HasSomeAttribute, Base):
 ""
 # ...

class MySubClass(MyClass):
 ""
 # ...

See also

Mixing in Columns in Inheritance Scenarios

Finally, the AbstractConcreteBase class has been reworked
so that a relationship or other mapper property can be set up inline
on the abstract base:

from sqlalchemy import Column, Integer, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import (declarative_base, declared_attr,
 AbstractConcreteBase)

Base = declarative_base()

class Something(Base):
 __tablename__ = u'something'
 id = Column(Integer, primary_key=True)

class Abstract(AbstractConcreteBase, Base):
 id = Column(Integer, primary_key=True)

 @declared_attr
 def something_id(cls):
 return Column(ForeignKey(Something.id))

 @declared_attr
 def something(cls):
 return relationship(Something)

class Concrete(Abstract):
 __tablename__ = u'cca'
 __mapper_args__ = {'polymorphic_identity': 'cca', 'concrete': True}

The above mapping will set up a table cca with both an id and
a something_id column, and Concrete will also have a relationship
something. The new feature is that Abstract will also have an
independently configured relationship something that builds against
the polymorphic union of the base.

#3150 #2670 #3149 #2952 #3050

ORM full object fetches 25% faster

The mechanics of the loading.py module as well as the identity map
have undergone several passes of inlining, refactoring, and pruning, so
that a raw load of rows now populates ORM-based objects around 25% faster.
Assuming a 1M row table, a script like the following illustrates the type
of load that’s improved the most:

import time
from sqlalchemy import Integer, Column, create_engine, Table
from sqlalchemy.orm import Session
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Foo(Base):
 __table__ = Table(
 'foo', Base.metadata,
 Column('id', Integer, primary_key=True),
 Column('a', Integer(), nullable=False),
 Column('b', Integer(), nullable=False),
 Column('c', Integer(), nullable=False),
)

engine = create_engine(
 'mysql+mysqldb://scott:tiger@localhost/test', echo=True)

sess = Session(engine)

now = time.time()

avoid using all() so that we don't have the overhead of building
a large list of full objects in memory
for obj in sess.query(Foo).yield_per(100).limit(1000000):
 pass

print("Total time: %d" % (time.time() - now))

Local MacBookPro results bench from 19 seconds for 0.9 down to 14 seconds for
1.0. The Query.yield_per() call is always a good idea when batching
huge numbers of rows, as it prevents the Python interpreter from having
to allocate a huge amount of memory for all objects and their instrumentation
at once. Without the Query.yield_per(), the above script on the
MacBookPro is 31 seconds on 0.9 and 26 seconds on 1.0, the extra time spent
setting up very large memory buffers.

New KeyedTuple implementation dramatically faster

We took a look into the KeyedTuple implementation in the hopes
of improving queries like this:

rows = sess.query(Foo.a, Foo.b, Foo.c).all()

The KeyedTuple class is used rather than Python’s
collections.namedtuple(), because the latter has a very complex
type-creation routine that benchmarks much slower than KeyedTuple.
However, when fetching hundreds of thousands of rows,
collections.namedtuple() quickly overtakes KeyedTuple which
becomes dramatically slower as instance invocation goes up. What to do?
A new type that hedges between the approaches of both. Benching
all three types for “size” (number of rows returned) and “num”
(number of distinct queries), the new “lightweight keyed tuple” either
outperforms both, or lags very slightly behind the faster object, based on
which scenario. In the “sweet spot”, where we are both creating a good number
of new types as well as fetching a good number of rows, the lightweight
object totally smokes both namedtuple and KeyedTuple:

size=10 num=10000 # few rows, lots of queries
namedtuple: 3.60302400589 # namedtuple falls over
keyedtuple: 0.255059957504 # KeyedTuple very fast
lw keyed tuple: 0.582715034485 # lw keyed trails right on KeyedTuple

size=100 num=1000 # <--- sweet spot
namedtuple: 0.365247011185
keyedtuple: 0.24896979332
lw keyed tuple: 0.0889317989349 # lw keyed blows both away!

size=10000 num=100
namedtuple: 0.572599887848
keyedtuple: 2.54251694679
lw keyed tuple: 0.613876104355

size=1000000 num=10 # few queries, lots of rows
namedtuple: 5.79669594765 # namedtuple very fast
keyedtuple: 28.856498003 # KeyedTuple falls over
lw keyed tuple: 6.74346804619 # lw keyed trails right on namedtuple

#3176

Significant Improvements in Structural Memory Use

Structural memory use has been improved via much more significant use
of __slots__ for many internal objects. This optimization is
particularly geared towards the base memory size of large applications
that have lots of tables and columns, and reduces memory
size for a variety of high-volume objects including event listening
internals, comparator objects and parts of the ORM attribute and
loader strategy system.

A bench that makes use of heapy measure the startup size of Nova
illustrates a difference of about 3.7 fewer megs, or 46%,
taken up by SQLAlchemy’s objects, associated dictionaries, as
well as weakrefs, within a basic import of “nova.db.sqlalchemy.models”:

reported by heapy, summation of SQLAlchemy objects +
associated dicts + weakref-related objects with core of Nova imported:

 Before: total count 26477 total bytes 7975712
 After: total count 18181 total bytes 4236456

reported for the Python module space overall with the
core of Nova imported:

 Before: Partition of a set of 355558 objects. Total size = 61661760 bytes.
 After: Partition of a set of 346034 objects. Total size = 57808016 bytes.

UPDATE statements are now batched with executemany() in a flush

UPDATE statements can now be batched within an ORM flush
into more performant executemany() call, similarly to how INSERT
statements can be batched; this will be invoked within flush
based on the following criteria:

	two or more UPDATE statements in sequence involve the identical set of
columns to be modified.

	The statement has no embedded SQL expressions in the SET clause.

	The mapping does not use a version_id_col, or
the backend dialect supports a “sane” rowcount for an executemany()
operation; most DBAPIs support this correctly now.

Session.get_bind() handles a wider variety of inheritance scenarios

The Session.get_bind() method is invoked whenever a query or unit
of work flush process seeks to locate the database engine that corresponds
to a particular class. The method has been improved to handle a variety
of inheritance-oriented scenarios, including:

	Binding to a Mixin or Abstract Class:

class MyClass(SomeMixin, Base):
 __tablename__ = 'my_table'
 # ...

session = Session(binds={SomeMixin: some_engine})

	Binding to inherited concrete subclasses individually based on table:

class BaseClass(Base):
 __tablename__ = 'base'

 # ...

class ConcreteSubClass(BaseClass):
 __tablename__ = 'concrete'

 # ...

 __mapper_args__ = {'concrete': True}

session = Session(binds={
 base_table: some_engine,
 concrete_table: some_other_engine
})

#3035

Session.get_bind() will receive the Mapper in all relevant Query cases

A series of issues were repaired where the Session.get_bind()
would not receive the primary Mapper of the Query,
even though this mapper was readily available (the primary mapper is the
single mapper, or alternatively the first mapper, that is associated with
a Query object).

The Mapper object, when passed to Session.get_bind(),
is typically used by sessions that make use of the
Session.binds parameter to associate mappers with a
series of engines (although in this use case, things frequently
“worked” in most cases anyway as the bind would be located via the
mapped table object), or more specifically implement a user-defined
Session.get_bind() method that provies some pattern of
selecting engines based on mappers, such as horizontal sharding or a
so-called “routing” session that routes queries to different backends.

These scenarios include:

	Query.count():

session.query(User).count()

	Query.update() and Query.delete(), both for the UPDATE/DELETE
statement as well as for the SELECT used by the “fetch” strategy:

session.query(User).filter(User.id == 15).update(
 {"name": "foob"}, synchronize_session='fetch')

session.query(User).filter(User.id == 15).delete(
 synchronize_session='fetch')

	Queries against individual columns:

session.query(User.id, User.name).all()

	SQL functions and other expressions against indirect mappings such as
column_property:

class User(Base):
 # ...

 score = column_property(func.coalesce(self.tables.users.c.name, None)))

session.query(func.max(User.score)).scalar()

#3227 #3242 #1326

.info dictionary improvements

The InspectionAttr.info collection is now available on every kind
of object that one would retrieve from the Mapper.all_orm_descriptors
collection. This includes hybrid_property and association_proxy().
However, as these objects are class-bound descriptors, they must be accessed
separately from the class to which they are attached in order to get
at the attribute. Below this is illustared using the
Mapper.all_orm_descriptors namespace:

class SomeObject(Base):
 # ...

 @hybrid_property
 def some_prop(self):
 return self.value + 5

inspect(SomeObject).all_orm_descriptors.some_prop.info['foo'] = 'bar'

It is also available as a constructor argument for all SchemaItem
objects (e.g. ForeignKey, UniqueConstraint etc.) as well
as remaining ORM constructs such as orm.synonym().

#2971

#2963

ColumnProperty constructs work a lot better with aliases, order_by

A variety of issues regarding column_property() have been fixed,
most specifically with regards to the aliased() construct as well
as the “order by label” logic introduced in 0.9 (see Label constructs can now render as their name alone in an ORDER BY).

Given a mapping like the following:

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)

class B(Base):
 __tablename__ = 'b'

 id = Column(Integer, primary_key=True)
 a_id = Column(ForeignKey('a.id'))

A.b = column_property(
 select([func.max(B.id)]).where(B.a_id == A.id).correlate(A)
)

A simple scenario that included “A.b” twice would fail to render
correctly:

print(sess.query(A, a1).order_by(a1.b))

This would order by the wrong column:

SELECT a.id AS a_id, (SELECT max(b.id) AS max_1 FROM b
WHERE b.a_id = a.id) AS anon_1, a_1.id AS a_1_id,
(SELECT max(b.id) AS max_2
FROM b WHERE b.a_id = a_1.id) AS anon_2
FROM a, a AS a_1 ORDER BY anon_1

New output:

SELECT a.id AS a_id, (SELECT max(b.id) AS max_1
FROM b WHERE b.a_id = a.id) AS anon_1, a_1.id AS a_1_id,
(SELECT max(b.id) AS max_2
FROM b WHERE b.a_id = a_1.id) AS anon_2
FROM a, a AS a_1 ORDER BY anon_2

There were also many scenarios where the “order by” logic would fail
to order by label, for example if the mapping were “polymorphic”:

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)
 type = Column(String)

 __mapper_args__ = {'polymorphic_on': type, 'with_polymorphic': '*'}

The order_by would fail to use the label, as it would be anonymized due
to the polymorphic loading:

SELECT a.id AS a_id, a.type AS a_type, (SELECT max(b.id) AS max_1
FROM b WHERE b.a_id = a.id) AS anon_1
FROM a ORDER BY (SELECT max(b.id) AS max_2
FROM b WHERE b.a_id = a.id)

Now that the order by label tracks the anonymized label, this now works:

SELECT a.id AS a_id, a.type AS a_type, (SELECT max(b.id) AS max_1
FROM b WHERE b.a_id = a.id) AS anon_1
FROM a ORDER BY anon_1

Included in these fixes are a variety of heisenbugs that could corrupt
the state of an aliased() construct such that the labeling logic
would again fail; these have also been fixed.

#3148 #3188

New Features and Improvements - Core

Select/Query LIMIT / OFFSET may be specified as an arbitrary SQL expression

The Select.limit() and Select.offset() methods now accept
any SQL expression, in addition to integer values, as arguments. The ORM
Query object also passes through any expression to the underlying
Select object. Typically
this is used to allow a bound parameter to be passed, which can be substituted
with a value later:

sel = select([table]).limit(bindparam('mylimit')).offset(bindparam('myoffset'))

Dialects which don’t support non-integer LIMIT or OFFSET expressions may continue
to not support this behavior; third party dialects may also need modification
in order to take advantage of the new behavior. A dialect which currently
uses the ._limit or ._offset attributes will continue to function
for those cases where the limit/offset was specified as a simple integer value.
However, when a SQL expression is specified, these two attributes will
instead raise a CompileError on access. A third-party dialect which
wishes to support the new feature should now call upon the ._limit_clause
and ._offset_clause attributes to receive the full SQL expression, rather
than the integer value.

The use_alter flag on ForeignKeyConstraint is (usually) no longer needed

The MetaData.create_all() and MetaData.drop_all() methods will
now make use of a system that automatically renders an ALTER statement
for foreign key constraints that are involved in mutually-dependent cycles
between tables, without the
need to specify ForeignKeyConstraint.use_alter. Additionally,
the foreign key constraints no longer need to have a name in order to be
created via ALTER; only the DROP operation requires a name. In the case
of a DROP, the feature will ensure that only constraints which have
explicit names are actually included as ALTER statements. In the
case of an unresolvable cycle within a DROP, the system emits
a succinct and clear error message now if the DROP cannot proceed.

The ForeignKeyConstraint.use_alter and
ForeignKey.use_alter flags remain in place, and continue to have
the same effect of establishing those constraints for which ALTER is
required during a CREATE/DROP scenario.

As of version 1.0.1, special logic takes over in the case of SQLite, which
does not support ALTER, in the case that during a DROP, the given tables have
an unresolvable cycle; in this case a warning is emitted, and the tables
are dropped with no ordering, which is usually fine on SQLite unless
constraints are enabled. To resolve the warning and proceed with at least
a partial ordering on a SQLite database, particuarly one where constraints
are enabled, re-apply “use_alter” flags to those
ForeignKey and ForeignKeyConstraint objects which should
be explicitly omitted from the sort.

See also

Creating/Dropping Foreign Key Constraints via ALTER - full description of the new behavior.

#3282

ResultProxy “auto close” is now a “soft” close

For many releases, the ResultProxy object has always been
automatically closed out at the point at which all result rows have been
fetched. This was to allow usage of the object without the need to call
upon ResultProxy.close() explicitly; as all DBAPI resources had been
freed, the object was safe to discard. However, the object maintained
a strict “closed” behavior, which meant that any subsequent calls to
ResultProxy.fetchone(), ResultProxy.fetchmany() or
ResultProxy.fetchall() would now raise a ResourceClosedError:

>>> result = connection.execute(stmt)
>>> result.fetchone()
(1, 'x')
>>> result.fetchone()
None # indicates no more rows
>>> result.fetchone()
exception: ResourceClosedError

This behavior is inconsistent vs. what pep-249 states, which is
that you can call upon the fetch methods repeatedly even after results
are exhausted. It also interferes with behavior for some implementations of
result proxy, such as the BufferedColumnResultProxy used by the
cx_oracle dialect for certain datatypes.

To solve this, the “closed” state of the ResultProxy has been
broken into two states; a “soft close” which does the majority of what
“close” does, in that it releases the DBAPI cursor and in the case of a
“close with result” object will also release the connection, and a
“closed” state which is everything included by “soft close” as well as
establishing the fetch methods as “closed”. The ResultProxy.close()
method is now never called implicitly, only the ResultProxy._soft_close()
method which is non-public:

>>> result = connection.execute(stmt)
>>> result.fetchone()
(1, 'x')
>>> result.fetchone()
None # indicates no more rows
>>> result.fetchone()
None # still None
>>> result.fetchall()
[]
>>> result.close()
>>> result.fetchone()
exception: ResourceClosedError # *now* it raises

#3330
#3329

CHECK Constraints now support the %(column_0_name)s token in naming conventions

The %(column_0_name)s will derive from the first column found in the
expression of a CheckConstraint:

metadata = MetaData(
 naming_convention={"ck": "ck_%(table_name)s_%(column_0_name)s"}
)

foo = Table('foo', metadata,
 Column('value', Integer),
)

CheckConstraint(foo.c.value > 5)

Will render:

CREATE TABLE foo (
 value INTEGER,
 CONSTRAINT ck_foo_value CHECK (value > 5)
)

The combination of naming conventions with the constraint produced by a
SchemaType such as Boolean or Enum will also
now make use of all CHECK constraint conventions.

See also

Naming CHECK Constraints

Configuring Naming for Boolean, Enum, and other schema types

#3299

Constraints referring to unattached Columns can auto-attach to the Table when their referred columns are attached

Since at least version 0.8, a Constraint has had the ability to
“auto-attach” itself to a Table based on being passed table-attached columns:

from sqlalchemy import Table, Column, MetaData, Integer, UniqueConstraint

m = MetaData()

t = Table('t', m,
 Column('a', Integer),
 Column('b', Integer)
)

uq = UniqueConstraint(t.c.a, t.c.b) # will auto-attach to Table

assert uq in t.constraints

In order to assist with some cases that tend to come up with declarative,
this same auto-attachment logic can now function even if the Column
objects are not yet associated with the Table; additional events
are established such that when those Column objects are associated,
the Constraint is also added:

from sqlalchemy import Table, Column, MetaData, Integer, UniqueConstraint

m = MetaData()

a = Column('a', Integer)
b = Column('b', Integer)

uq = UniqueConstraint(a, b)

t = Table('t', m, a, b)

assert uq in t.constraints # constraint auto-attached

The above feature was a late add as of version 1.0.0b3. A fix as of
version 1.0.4 for #3411 ensures that this logic
does not occur if the Constraint refers to a mixture of
Column objects and string column names; as we do not yet have
tracking for the addition of names to a Table:

from sqlalchemy import Table, Column, MetaData, Integer, UniqueConstraint

m = MetaData()

a = Column('a', Integer)
b = Column('b', Integer)

uq = UniqueConstraint(a, 'b')

t = Table('t', m, a, b)

constraint *not* auto-attached, as we do not have tracking
to locate when a name 'b' becomes available on the table
assert uq not in t.constraints

Above, the attachment event for column “a” to table “t” will fire off before
column “b” is attached (as “a” is stated in the Table constructor
before “b”), and the constraint will fail to locate “b” if it were to attempt
an attachment. For consistency, if the constraint refers to any string names,
the autoattach-on-column-attach logic is skipped.

The original auto-attach logic of course remains in place, if the Table
already contains all the target Column objects at the time
the Constraint is constructed:

from sqlalchemy import Table, Column, MetaData, Integer, UniqueConstraint

m = MetaData()

a = Column('a', Integer)
b = Column('b', Integer)

t = Table('t', m, a, b)

uq = UniqueConstraint(a, 'b')

constraint auto-attached normally as in older versions
assert uq in t.constraints

#3341
#3411

INSERT FROM SELECT now includes Python and SQL-expression defaults

Insert.from_select() now includes Python and SQL-expression defaults if
otherwise unspecified; the limitation where non-server column defaults
aren’t included in an INSERT FROM SELECT is now lifted and these
expressions are rendered as constants into the SELECT statement:

from sqlalchemy import Table, Column, MetaData, Integer, select, func

m = MetaData()

t = Table(
 't', m,
 Column('x', Integer),
 Column('y', Integer, default=func.somefunction()))

stmt = select([t.c.x])
print(t.insert().from_select(['x'], stmt))

Will render:

INSERT INTO t (x, y) SELECT t.x, somefunction() AS somefunction_1
FROM t

The feature can be disabled using
Insert.from_select.include_defaults.

Column server defaults now render literal values

The “literal binds” compiler flag is switched on when a
DefaultClause, set up by Column.server_default
is present as a SQL expression to be compiled. This allows literals
embedded in SQL to render correctly, such as:

from sqlalchemy import Table, Column, MetaData, Text
from sqlalchemy.schema import CreateTable
from sqlalchemy.dialects.postgresql import ARRAY, array
from sqlalchemy.dialects import postgresql

metadata = MetaData()

tbl = Table("derp", metadata,
 Column("arr", ARRAY(Text),
 server_default=array(["foo", "bar", "baz"])),
)

print(CreateTable(tbl).compile(dialect=postgresql.dialect()))

Now renders:

CREATE TABLE derp (
 arr TEXT[] DEFAULT ARRAY['foo', 'bar', 'baz']
)

Previously, the literal values "foo", "bar", "baz" would render as
bound parameters, which are useless in DDL.

#3087

UniqueConstraint is now part of the Table reflection process

A Table object populated using autoload=True will now
include UniqueConstraint constructs as well as
Index constructs. This logic has a few caveats for
Postgresql and Mysql:

Postgresql

Postgresql has the behavior such that when a UNIQUE constraint is
created, it implicitly creates a UNIQUE INDEX corresponding to that
constraint as well. The Inspector.get_indexes() and the
Inspector.get_unique_constraints() methods will continue to
both return these entries distinctly, where
Inspector.get_indexes() now features a token
duplicates_constraint within the index entry indicating the
corresponding constraint when detected. However, when performing
full table reflection using Table(..., autoload=True), the
Index construct is detected as being linked to the
UniqueConstraint, and is not present within the
Table.indexes collection; only the UniqueConstraint
will be present in the Table.constraints collection. This
deduplication logic works by joining to the pg_constraint table
when querying pg_index to see if the two constructs are linked.

MySQL

MySQL does not have separate concepts for a UNIQUE INDEX and a UNIQUE
constraint. While it supports both syntaxes when creating tables and indexes,
it does not store them any differently. The
Inspector.get_indexes()
and the Inspector.get_unique_constraints() methods will continue to
both return an entry for a UNIQUE index in MySQL,
where Inspector.get_unique_constraints() features a new token
duplicates_index within the constraint entry indicating that this is a
dupe entry corresponding to that index. However, when performing
full table reflection using Table(..., autoload=True),
the UniqueConstraint construct is
not part of the fully reflected Table construct under any
circumstances; this construct is always represented by a Index
with the unique=True setting present in the Table.indexes
collection.

See also

Postgresql Index Reflection

MySQL Unique Constraints and Reflection

#3184

New systems to safely emit parameterized warnings

For a long time, there has been a restriction that warning messages could not
refer to data elements, such that a particular function might emit an
infinite number of unique warnings. The key place this occurs is in the
Unicode type received non-unicode bind param value warning. Placing
the data value in this message would mean that the Python __warningregistry__
for that module, or in some cases the Python-global warnings.onceregistry,
would grow unbounded, as in most warning scenarios, one of these two collections
is populated with every distinct warning message.

The change here is that by using a special string type that purposely
changes how the string is hashed, we can control that a large number of
parameterized messages are hashed only on a small set of possible hash
values, such that a warning such as Unicode type received non-unicode
bind param value can be tailored to be emitted only a specific number
of times; beyond that, the Python warnings registry will begin recording
them as duplicates.

To illustrate, the following test script will show only ten warnings being
emitted for ten of the parameter sets, out of a total of 1000:

from sqlalchemy import create_engine, Unicode, select, cast
import random
import warnings

e = create_engine("sqlite://")

Use the "once" filter (which is also the default for Python
warnings). Exactly ten of these warnings will
be emitted; beyond that, the Python warnings registry will accumulate
new values as dupes of one of the ten existing.
warnings.filterwarnings("once")

for i in range(1000):
 e.execute(select([cast(
 ('foo_%d' % random.randint(0, 1000000)).encode('ascii'), Unicode)]))

The format of the warning here is:

/path/lib/sqlalchemy/sql/sqltypes.py:186: SAWarning: Unicode type received
 non-unicode bind param value 'foo_4852'. (this warning may be
 suppressed after 10 occurrences)

#3178

Key Behavioral Changes - ORM

query.update() now resolves string names into mapped attribute names

The documentation for Query.update() states that the given
values dictionary is “a dictionary with attributes names as keys”,
implying that these are mapped attribute names. Unfortunately, the function
was designed more in mind to receive attributes and SQL expressions and
not as much strings; when strings
were passed, these strings would be passed through straight to the core
update statement without any resolution as far as how these names are
represented on the mapped class, meaning the name would have to match that
of a table column exactly, not how an attribute of that name was mapped
onto the class.

The string names are now resolved as attribute names in earnest:

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 name = Column('user_name', String(50))

Above, the column user_name is mapped as name. Previously,
a call to Query.update() that was passed strings would have to
have been called as follows:

session.query(User).update({'user_name': 'moonbeam'})

The given string is now resolved against the entity:

session.query(User).update({'name': 'moonbeam'})

It is typically preferable to use the attribute directly, to avoid any
ambiguity:

session.query(User).update({User.name: 'moonbeam'})

The change also indicates that synonyms and hybrid attributes can be referred
to by string name as well:

class User(Base):
 __tablename__ = 'user'

 id = Column(Integer, primary_key=True)
 name = Column('user_name', String(50))

 @hybrid_property
 def fullname(self):
 return self.name

session.query(User).update({'fullname': 'moonbeam'})

#3228

Warnings emitted when comparing objects with None values to relationships

This change is new as of 1.0.1. Some users are performing
queries that are essentially of this form:

session.query(Address).filter(Address.user == User(id=None))

This pattern is not currently supported in SQLAlchemy. For all versions,
it emits SQL resembling:

SELECT address.id AS address_id, address.user_id AS address_user_id,
address.email_address AS address_email_address
FROM address WHERE ? = address.user_id
(None,)

Note above, there is a comparison WHERE ? = address.user_id where the
bound value ? is receving None, or NULL in SQL. This will
always return False in SQL. The comparison here would in theory
generate SQL as follows:

SELECT address.id AS address_id, address.user_id AS address_user_id,
address.email_address AS address_email_address
FROM address WHERE address.user_id IS NULL

But right now, it does not. Applications which are relying upon the
fact that “NULL = NULL” produces False in all cases run the risk that
someday, SQLAlchemy might fix this issue to generate “IS NULL”, and the queries
will then produce different results. Therefore with this kind of operation,
you will see a warning:

SAWarning: Got None for value of column user.id; this is unsupported
for a relationship comparison and will not currently produce an
IS comparison (but may in a future release)

Note that this pattern was broken in most cases for release 1.0.0 including
all of the betas; a value like SYMBOL('NEVER_SET') would be generated.
This issue has been fixed, but as a result of identifying this pattern,
the warning is now there so that we can more safely repair this broken
behavior (now captured in #3373) in a future release.

#3371

A “negated contains or equals” relationship comparison will use the current value of attributes, not the database value

This change is new as of 1.0.1; while we would have preferred for this to be in 1.0.0,
it only became apparent as a result of #3371.

Given a mapping:

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)
 a_id = Column(ForeignKey('a.id'))
 a = relationship("A")

Given A, with primary key of 7, but which we changed to be 10
without flushing:

s = Session(autoflush=False)
a1 = A(id=7)
s.add(a1)
s.commit()

a1.id = 10

A query against a many-to-one relationship with this object as the target
will use the value 10 in the bound parameters:

s.query(B).filter(B.a == a1)

Produces:

SELECT b.id AS b_id, b.a_id AS b_a_id
FROM b
WHERE ? = b.a_id
(10,)

However, before this change, the negation of this criteria would not use
10, it would use 7, unless the object were flushed first:

s.query(B).filter(B.a != a1)

Produces (in 0.9 and all versions prior to 1.0.1):

SELECT b.id AS b_id, b.a_id AS b_a_id
FROM b
WHERE b.a_id != ? OR b.a_id IS NULL
(7,)

For a transient object, it would produce a broken query:

SELECT b.id, b.a_id
FROM b
WHERE b.a_id != :a_id_1 OR b.a_id IS NULL
{u'a_id_1': symbol('NEVER_SET')}

This inconsistency has been repaired, and in all queries the current attribute
value, in this example 10, will now be used.

#3374

Changes to attribute events and other operations regarding attributes that have no pre-existing value

In this change, the default return value of None when accessing an object
is now returned dynamically on each access, rather than implicitly setting the
attribute’s state with a special “set” operation when it is first accessed.
The visible result of this change is that obj.__dict__ is not implicitly
modified on get, and there are also some minor behavioral changes
for attributes.get_history() and related functions.

Given an object with no state:

>>> obj = Foo()

It has always been SQLAlchemy’s behavior such that if we access a scalar
or many-to-one attribute that was never set, it is returned as None:

>>> obj.someattr
None

This value of None is in fact now part of the state of obj, and is
not unlike as though we had set the attribute explicitly, e.g.
obj.someattr = None. However, the “set on get” here would behave
differently as far as history and events. It would not emit any attribute
event, and additionally if we view history, we see this:

>>> inspect(obj).attrs.someattr.history
History(added=(), unchanged=[None], deleted=()) # 0.9 and below

That is, it’s as though the attribute were always None and were
never changed. This is explicitly different from if we had set the
attribute first instead:

>>> obj = Foo()
>>> obj.someattr = None
>>> inspect(obj).attrs.someattr.history
History(added=[None], unchanged=(), deleted=()) # all versions

The above means that the behavior of our “set” operation can be corrupted
by the fact that the value was accessed via “get” earlier. In 1.0, this
inconsistency has been resolved, by no longer actually setting anything
when the default “getter” is used.

>>> obj = Foo()
>>> obj.someattr
None
>>> inspect(obj).attrs.someattr.history
History(added=(), unchanged=(), deleted=()) # 1.0
>>> obj.someattr = None
>>> inspect(obj).attrs.someattr.history
History(added=[None], unchanged=(), deleted=())

The reason the above behavior hasn’t had much impact is because the
INSERT statement in relational databases considers a missing value to be
the same as NULL in most cases. Whether SQLAlchemy received a history
event for a particular attribute set to None or not would usually not matter;
as the difference between sending None/NULL or not wouldn’t have an impact.
However, as #3060 (described here in Priority of attribute changes on relationship-bound attributes vs. FK-bound may appear to change)
illustrates, there are some seldom edge cases
where we do in fact want to positively have None set. Also, allowing
the attribute event here means it’s now possible to create “default value”
functions for ORM mapped attributes.

As part of this change, the generation of the implicit “None” is now disabled
for other situations where this used to occur; this includes when an
attribute set operation on a many-to-one is received; previously, the “old” value
would be “None” if it had been not set otherwise; it now will send the
value orm.attributes.NEVER_SET, which is a value that may be sent
to an attribute listener now. This symbol may also be received when
calling on mapper utility functions such as Mapper.primary_key_from_instance();
if the primary key attributes have no setting at all, whereas the value
would be None before, it will now be the orm.attributes.NEVER_SET
symbol, and no change to the object’s state occurs.

#3061

Priority of attribute changes on relationship-bound attributes vs. FK-bound may appear to change

As a side effect of #3060, setting a relationship-bound attribute to None
is now a tracked history event which refers to the intention of persisting
None to that attribute. As it has always been the case that setting a
relationship-bound attribute will trump direct assignment to the foreign key
attributes, a change in behavior can be seen here when assigning None.
Given a mapping:

class A(Base):
 __tablename__ = 'table_a'

 id = Column(Integer, primary_key=True)

class B(Base):
 __tablename__ = 'table_b'

 id = Column(Integer, primary_key=True)
 a_id = Column(ForeignKey('table_a.id'))
 a = relationship(A)

In 1.0, the relationship-bound attribute takes precedence over the FK-bound
attribute in all cases, whether or not
the value we assign is a reference to an A object or is None.
In 0.9, the behavior is inconsistent and
only takes effect if a value is assigned; the None is not considered:

a1 = A(id=1)
a2 = A(id=2)
session.add_all([a1, a2])
session.flush()

b1 = B()
b1.a = a1 # we expect a_id to be '1'; takes precedence in 0.9 and 1.0

b2 = B()
b2.a = None # we expect a_id to be None; takes precedence only in 1.0

b1.a_id = 2
b2.a_id = 2

session.add_all([b1, b2])
session.commit()

assert b1.a is a1 # passes in both 0.9 and 1.0
assert b2.a is None # passes in 1.0, in 0.9 it's a2

#3060

session.expunge() will fully detach an object that’s been deleted

The behavior of Session.expunge() had a bug that caused an
inconsistency in behavior regarding deleted objects. The
object_session() function as well as the InstanceState.session
attribute would still report object as belonging to the Session
subsequent to the expunge:

u1 = sess.query(User).first()
sess.delete(u1)

sess.flush()

assert u1 not in sess
assert inspect(u1).session is sess # this is normal before commit

sess.expunge(u1)

assert u1 not in sess
assert inspect(u1).session is None # would fail

Note that it is normal for u1 not in sess to be True while
inspect(u1).session still refers to the session, while the transaction
is ongoing subsequent to the delete operation and Session.expunge()
has not been called; the full detachment normally completes once the
transaction is committed. This issue would also impact functions
that rely on Session.expunge() such as make_transient().

#3139

Joined/Subquery eager loading explicitly disallowed with yield_per

In order to make the Query.yield_per() method easier to use,
an exception is raised if any subquery eager loaders, or joined
eager loaders that would use collections, are
to take effect when yield_per is used, as these are currently not compatible
with yield-per (subquery loading could be in theory, however).
When this error is raised, the lazyload() option can be sent with
an asterisk:

q = sess.query(Object).options(lazyload('*')).yield_per(100)

or use Query.enable_eagerloads():

q = sess.query(Object).enable_eagerloads(False).yield_per(100)

The lazyload() option has the advantage that additional many-to-one
joined loader options can still be used:

q = sess.query(Object).options(
 lazyload('*'), joinedload("some_manytoone")).yield_per(100)

Changes and fixes in handling of duplicate join targets

Changes here encompass bugs where an unexpected and inconsistent
behavior would occur in some scenarios when joining to an entity
twice, or to multple single-table entities against the same table,
without using a relationship-based ON clause, as well as when joining
multiple times to the same target relationship.

Starting with a mapping as:

from sqlalchemy import Integer, Column, String, ForeignKey
from sqlalchemy.orm import Session, relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)
 bs = relationship("B")

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)
 a_id = Column(ForeignKey('a.id'))

A query that joins to A.bs twice:

print(s.query(A).join(A.bs).join(A.bs))

Will render:

SELECT a.id AS a_id
FROM a JOIN b ON a.id = b.a_id

The query deduplicates the redundant A.bs because it is attempting
to support a case like the following:

s.query(A).join(A.bs).\
 filter(B.foo == 'bar').\
 reset_joinpoint().join(A.bs, B.cs).filter(C.bar == 'bat')

That is, the A.bs is part of a “path”. As part of #3367,
arriving at the same endpoint twice without it being part of a
larger path will now emit a warning:

SAWarning: Pathed join target A.bs has already been joined to; skipping

The bigger change involves when joining to an entity without using a
relationship-bound path. If we join to B twice:

print(s.query(A).join(B, B.a_id == A.id).join(B, B.a_id == A.id))

In 0.9, this would render as follows:

SELECT a.id AS a_id
FROM a JOIN b ON b.a_id = a.id JOIN b AS b_1 ON b_1.a_id = a.id

This is problematic since the aliasing is implicit and in the case of different
ON clauses can lead to unpredictable results.

In 1.0, no automatic aliasing is applied and we get:

SELECT a.id AS a_id
FROM a JOIN b ON b.a_id = a.id JOIN b ON b.a_id = a.id

This will raise an error from the database. While it might be nice if
the “duplicate join target” acted identically if we joined both from
redundant relationships vs. redundant non-relationship based targets,
for now we are only changing the behavior in the more serious case where
implicit aliasing would have occurred previously, and only emitting a warning
in the relationship case. Ultimately, joining to the same thing twice without
any aliasing to disambiguate should raise an error in all cases.

The change also has an impact on single-table inheritance targets. Using
a mapping as follows:

from sqlalchemy import Integer, Column, String, ForeignKey
from sqlalchemy.orm import Session, relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class A(Base):
 __tablename__ = "a"

 id = Column(Integer, primary_key=True)
 type = Column(String)

 __mapper_args__ = {'polymorphic_on': type, 'polymorphic_identity': 'a'}

class ASub1(A):
 __mapper_args__ = {'polymorphic_identity': 'asub1'}

class ASub2(A):
 __mapper_args__ = {'polymorphic_identity': 'asub2'}

class B(Base):
 __tablename__ = 'b'

 id = Column(Integer, primary_key=True)

 a_id = Column(Integer, ForeignKey("a.id"))

 a = relationship("A", primaryjoin="B.a_id == A.id", backref='b')

s = Session()

print(s.query(ASub1).join(B, ASub1.b).join(ASub2, B.a))

print(s.query(ASub1).join(B, ASub1.b).join(ASub2, ASub2.id == B.a_id))

The two queries at the bottom are equivalent, and should both render
the identical SQL:

SELECT a.id AS a_id, a.type AS a_type
FROM a JOIN b ON b.a_id = a.id JOIN a ON b.a_id = a.id AND a.type IN (:type_1)
WHERE a.type IN (:type_2)

The above SQL is invalid, as it renders “a” within the FROM list twice.
However, the implicit aliasing bug would occur with the second query only
and render this instead:

SELECT a.id AS a_id, a.type AS a_type
FROM a JOIN b ON b.a_id = a.id JOIN a AS a_1
ON a_1.id = b.a_id AND a_1.type IN (:type_1)
WHERE a_1.type IN (:type_2)

Where above, the second join to “a” is aliased. While this seems convenient,
it’s not how single-inheritance queries work in general and is misleading
and inconsistent.

The net effect is that applications which were relying on this bug will now
have an error raised by the database. The solution is to use the expected
form. When referring to multiple subclasses of a single-inheritance
entity in a query, you must manually use aliases to disambiguate the table,
as all the subclasses normally refer to the same table:

asub2_alias = aliased(ASub2)

print(s.query(ASub1).join(B, ASub1.b).join(asub2_alias, B.a.of_type(asub2_alias)))

#3233
#3367

Deferred Columns No Longer Implicitly Undefer

Mapped attributes marked as deferred without explicit undeferral
will now remain “deferred” even if their column is otherwise
present in the result set in some way. This is a performance
enhancement in that an ORM load no longer spends time searching
for each deferred column when the result set is obtained. However,
for an application that has been relying upon this, an explicit
undefer() or similar option should now be used, in order
to prevent a SELECT from being emitted when the attribute is accessed.

Deprecated ORM Event Hooks Removed

The following ORM event hooks, some of which have been deprecated since
0.5, have been removed: translate_row, populate_instance,
append_result, create_instance. The use cases for these hooks
originated in the very early 0.1 / 0.2 series of SQLAlchemy and have long
since been unnecessary. In particular, the hooks were largely unusable
as the behavioral contracts within these events was strongly linked to
the surrounding internals, such as how an instance needs to be created
and initialized as well as how columns are located within an ORM-generated
row. The removal of these hooks greatly simplifies the mechanics of ORM
object loading.

API Change for new Bundle feature when custom row loaders are used

The new Bundle object of 0.9 has a small change in API,
when the create_row_processor() method is overridden on a custom class.
Previously, the sample code looked like:

from sqlalchemy.orm import Bundle

class DictBundle(Bundle):
 def create_row_processor(self, query, procs, labels):
 """Override create_row_processor to return values as dictionaries"""
 def proc(row, result):
 return dict(
 zip(labels, (proc(row, result) for proc in procs))
)
 return proc

The unused result member is now removed:

from sqlalchemy.orm import Bundle

class DictBundle(Bundle):
 def create_row_processor(self, query, procs, labels):
 """Override create_row_processor to return values as dictionaries"""
 def proc(row):
 return dict(
 zip(labels, (proc(row) for proc in procs))
)
 return proc

See also

Column Bundles

Right inner join nesting now the default for joinedload with innerjoin=True

The behavior of joinedload.innerjoin as well as
relationship.innerjoin is now to use “nested”
inner joins, that is, right-nested, as the default behavior when an
inner join joined eager load is chained to an outer join eager load. In
order to get the old behavior of chaining all joined eager loads as
outer join when an outer join is present, use innerjoin="unnested".

As introduced in Right-nested inner joins available in joined eager loads from version 0.9, the behavior of
innerjoin="nested" is that an inner join eager load chained to an outer
join eager load will use a right-nested join. "nested" is now implied
when using innerjoin=True:

query(User).options(
 joinedload("orders", innerjoin=False).joinedload("items", innerjoin=True))

With the new default, this will render the FROM clause in the form:

FROM users LEFT OUTER JOIN (orders JOIN items ON <onclause>) ON <onclause>

That is, using a right-nested join for the INNER join so that the full
result of users can be returned. The use of an INNER join is more efficient
than using an OUTER join, and allows the joinedload.innerjoin
optimization parameter to take effect in all cases.

To get the older behavior, use innerjoin="unnested":

query(User).options(
 joinedload("orders", innerjoin=False).joinedload("items", innerjoin="unnested"))

This will avoid right-nested joins and chain the joins together using all
OUTER joins despite the innerjoin directive:

FROM users LEFT OUTER JOIN orders ON <onclause> LEFT OUTER JOIN items ON <onclause>

As noted in the 0.9 notes, the only database backend that has difficulty
with right-nested joins is SQLite; SQLAlchemy as of 0.9 converts a right-nested
join into a subquery as a join target on SQLite.

See also

Right-nested inner joins available in joined eager loads - description of the feature as introduced in 0.9.4.

#3008

Subqueries no longer applied to uselist=False joined eager loads

Given a joined eager load like the following:

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)
 b = relationship("B", uselist=False)

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)
 a_id = Column(ForeignKey('a.id'))

s = Session()
print(s.query(A).options(joinedload(A.b)).limit(5))

SQLAlchemy considers the relationship A.b to be a “one to many,
loaded as a single value”, which is essentially a “one to one”
relationship. However, joined eager loading has always treated the
above as a situation where the main query needs to be inside a
subquery, as would normally be needed for a collection of B objects
where the main query has a LIMIT applied:

SELECT anon_1.a_id AS anon_1_a_id, b_1.id AS b_1_id, b_1.a_id AS b_1_a_id
FROM (SELECT a.id AS a_id
FROM a LIMIT :param_1) AS anon_1
LEFT OUTER JOIN b AS b_1 ON anon_1.a_id = b_1.a_id

However, since the relationship of the inner query to the outer one is
that at most only one row is shared in the case of uselist=False
(in the same way as a many-to-one), the “subquery” used with LIMIT +
joined eager loading is now dropped in this case:

SELECT a.id AS a_id, b_1.id AS b_1_id, b_1.a_id AS b_1_a_id
FROM a LEFT OUTER JOIN b AS b_1 ON a.id = b_1.a_id
LIMIT :param_1

In the case that the LEFT OUTER JOIN returns more than one row, the ORM
has always emitted a warning here and ignored addtional results for
uselist=False, so the results in that error situation should not change.

#3249

query.update() / query.delete() raises if used with join(), select_from(), from_self()

A warning is emitted in SQLAlchemy 0.9.10 (not yet released as of
June 9, 2015) when the Query.update() or Query.delete() methods
are invoked against a query which has also called upon Query.join(),
Query.outerjoin(),
Query.select_from() or Query.from_self(). These are unsupported
use cases which silently fail in the 0.9 series up until 0.9.10 where it emits
a warning. In 1.0, these cases raise an exception.

#3349

query.update() with synchronize_session='evaluate' raises on multi-table update

The “evaluator” for Query.update() won’t work with multi-table
updates, and needs to be set to synchronize_session=False or
synchronize_session='fetch' when multiple tables are present.
The new behavior is that an explicit exception is now raised, with a message
to change the synchronize setting.
This is upgraded from a warning emitted as of 0.9.7.

#3117

Resurrect Event has been Removed

The “resurrect” ORM event has been removed entirely. This event ceased to
have any function since version 0.8 removed the older “mutable” system
from the unit of work.

Change to single-table-inheritance criteria when using from_self(), count()

Given a single-table inheritance mapping, such as:

class Widget(Base):
 __table__ = 'widget_table'

class FooWidget(Widget):
 pass

Using Query.from_self() or Query.count() against a subclass
would produce a subquery, but then add the “WHERE” criteria for subtypes
to the outside:

sess.query(FooWidget).from_self().all()

rendering:

SELECT
 anon_1.widgets_id AS anon_1_widgets_id,
 anon_1.widgets_type AS anon_1_widgets_type
FROM (SELECT widgets.id AS widgets_id, widgets.type AS widgets_type,
FROM widgets) AS anon_1
WHERE anon_1.widgets_type IN (?)

The issue with this is that if the inner query does not specify all
columns, then we can’t add the WHERE clause on the outside (it actually tries,
and produces a bad query). This decision
apparently goes way back to 0.6.5 with the note “may need to make more
adjustments to this”. Well, those adjustments have arrived! So now the
above query will render:

SELECT
 anon_1.widgets_id AS anon_1_widgets_id,
 anon_1.widgets_type AS anon_1_widgets_type
FROM (SELECT widgets.id AS widgets_id, widgets.type AS widgets_type,
FROM widgets
WHERE widgets.type IN (?)) AS anon_1

So that queries that don’t include “type” will still work!:

sess.query(FooWidget.id).count()

Renders:

SELECT count(*) AS count_1
FROM (SELECT widgets.id AS widgets_id
FROM widgets
WHERE widgets.type IN (?)) AS anon_1

#3177

single-table-inheritance criteria added to all ON clauses unconditionally

When joining to a single-table inheritance subclass target, the ORM always adds
the “single table criteria” when joining on a relationship. Given a
mapping as:

class Widget(Base):
 __tablename__ = 'widget'
 id = Column(Integer, primary_key=True)
 type = Column(String)
 related_id = Column(ForeignKey('related.id'))
 related = relationship("Related", backref="widget")
 __mapper_args__ = {'polymorphic_on': type}

class FooWidget(Widget):
 __mapper_args__ = {'polymorphic_identity': 'foo'}

class Related(Base):
 __tablename__ = 'related'
 id = Column(Integer, primary_key=True)

It’s been the behavior for quite some time that a JOIN on the relationship
will render a “single inheritance” clause for the type:

s.query(Related).join(FooWidget, Related.widget).all()

SQL output:

SELECT related.id AS related_id
FROM related JOIN widget ON related.id = widget.related_id AND widget.type IN (:type_1)

Above, because we joined to a subclass FooWidget, Query.join()
knew to add the AND widget.type IN ('foo') criteria to the ON clause.

The change here is that the AND widget.type IN() criteria is now appended
to any ON clause, not just those generated from a relationship,
including one that is explicitly stated:

ON clause will now render as
related.id = widget.related_id AND widget.type IN (:type_1)
s.query(Related).join(FooWidget, FooWidget.related_id == Related.id).all()

As well as the “implicit” join when no ON clause of any kind is stated:

ON clause will now render as
related.id = widget.related_id AND widget.type IN (:type_1)
s.query(Related).join(FooWidget).all()

Previously, the ON clause for these would not include the single-inheritance
criteria. Applications that are already adding this criteria to work around
this will want to remove its explicit use, though it should continue to work
fine if the criteria happens to be rendered twice in the meantime.

See also

Changes and fixes in handling of duplicate join targets

#3222

Key Behavioral Changes - Core

Warnings emitted when coercing full SQL fragments into text()

Since SQLAlchemy’s inception, there has always been an emphasis on not getting
in the way of the usage of plain text. The Core and ORM expression systems
were intended to allow any number of points at which the user can just
use plain text SQL expressions, not just in the sense that you can send a
full SQL string to Connection.execute(), but that you can send strings
with SQL expressions into many functions, such as Select.where(),
Query.filter(), and Select.order_by().

Note that by “SQL expressions” we mean a full fragment of a SQL string,
such as:

the argument sent to where() is a full SQL expression
stmt = select([sometable]).where("somecolumn = 'value'")

and we are not talking about string arguments, that is, the normal
behavior of passing string values that become parameterized:

This is a normal Core expression with a string argument -
we aren't talking about this!!
stmt = select([sometable]).where(sometable.c.somecolumn == 'value')

The Core tutorial has long featured an example of the use of this technique,
using a select() construct where virtually all components of it
are specified as straight strings. However, despite this long-standing
behavior and example, users are apparently surprised that this behavior
exists, and when asking around the community, I was unable to find any user
that was in fact not surprised that you can send a full string into a method
like Query.filter().

So the change here is to encourage the user to qualify textual strings when
composing SQL that is partially or fully composed from textual fragments.
When composing a select as below:

stmt = select(["a", "b"]).where("a = b").select_from("sometable")

The statement is built up normally, with all the same coercions as before.
However, one will see the following warnings emitted:

SAWarning: Textual column expression 'a' should be explicitly declared
with text('a'), or use column('a') for more specificity
(this warning may be suppressed after 10 occurrences)

SAWarning: Textual column expression 'b' should be explicitly declared
with text('b'), or use column('b') for more specificity
(this warning may be suppressed after 10 occurrences)

SAWarning: Textual SQL expression 'a = b' should be explicitly declared
as text('a = b') (this warning may be suppressed after 10 occurrences)

SAWarning: Textual SQL FROM expression 'sometable' should be explicitly
declared as text('sometable'), or use table('sometable') for more
specificity (this warning may be suppressed after 10 occurrences)

These warnings attempt to show exactly where the issue is by displaying
the parameters as well as where the string was received.
The warnings make use of the Session.get_bind() handles a wider variety of inheritance scenarios so that parameterized warnings
can be emitted safely without running out of memory, and as always, if
one wishes the warnings to be exceptions, the
Python Warnings Filter
should be used:

import warnings
warnings.simplefilter("error") # all warnings raise an exception

Given the above warnings, our statement works just fine, but
to get rid of the warnings we would rewrite our statement as follows:

from sqlalchemy import select, text
stmt = select([
 text("a"),
 text("b")
]).where(text("a = b")).select_from(text("sometable"))

and as the warnings suggest, we can give our statement more specificity
about the text if we use column() and table():

from sqlalchemy import select, text, column, table

stmt = select([column("a"), column("b")]).\
 where(text("a = b")).select_from(table("sometable"))

Where note also that table() and column() can now
be imported from “sqlalchemy” without the “sql” part.

The behavior here applies to select() as well as to key methods
on Query, including Query.filter(),
Query.from_statement() and Query.having().

ORDER BY and GROUP BY are special cases

There is one case where usage of a string has special meaning, and as part
of this change we have enhanced its functionality. When we have a
select() or Query that refers to some column name or named
label, we might want to GROUP BY and/or ORDER BY known columns or labels:

stmt = select([
 user.c.name,
 func.count(user.c.id).label("id_count")
]).group_by("name").order_by("id_count")

In the above statement we expect to see “ORDER BY id_count”, as opposed to a
re-statement of the function. The string argument given is actively
matched to an entry in the columns clause during compilation, so the above
statement would produce as we expect, without warnings (though note that
the "name" expression has been resolved to users.name!):

SELECT users.name, count(users.id) AS id_count
FROM users GROUP BY users.name ORDER BY id_count

However, if we refer to a name that cannot be located, then we get
the warning again, as below:

stmt = select([
 user.c.name,
 func.count(user.c.id).label("id_count")
]).order_by("some_label")

The output does what we say, but again it warns us:

SAWarning: Can't resolve label reference 'some_label'; converting to
text() (this warning may be suppressed after 10 occurrences)

SELECT users.name, count(users.id) AS id_count
FROM users ORDER BY some_label

The above behavior applies to all those places where we might want to refer
to a so-called “label reference”; ORDER BY and GROUP BY, but also within an
OVER clause as well as a DISTINCT ON clause that refers to columns (e.g. the
Postgresql syntax).

We can still specify any arbitrary expression for ORDER BY or others using
text():

stmt = select([users]).order_by(text("some special expression"))

The upshot of the whole change is that SQLAlchemy now would like us
to tell it when a string is sent that this string is explicitly
a text() construct, or a column, table, etc., and if we use it as a
label name in an order by, group by, or other expression, SQLAlchemy expects
that the string resolves to something known, else it should again
be qualified with text() or similar.

#2992

Python-side defaults invoked for each row invidually when using a multivalued insert

Support for Python-side column defaults when using the multi-valued
version of Insert.values() were essentially not implemented, and
would only work “by accident” in specific situations, when the dialect in
use was using a non-positional (e.g. named) style of bound parameter, and
when it was not necessary that a Python-side callable be invoked for each
row.

The feature has been overhauled so that it works more similarly to
that of an “executemany” style of invocation:

import itertools

counter = itertools.count(1)
t = Table(
 'my_table', metadata,
 Column('id', Integer, default=lambda: next(counter)),
 Column('data', String)
)

conn.execute(t.insert().values([
 {"data": "d1"},
 {"data": "d2"},
 {"data": "d3"},
]))

The above example will invoke next(counter) for each row individually
as would be expected:

INSERT INTO my_table (id, data) VALUES (?, ?), (?, ?), (?, ?)
(1, 'd1', 2, 'd2', 3, 'd3')

Previously, a positional dialect would fail as a bind would not be generated
for additional positions:

Incorrect number of bindings supplied. The current statement uses 6,
and there are 4 supplied.
[SQL: u'INSERT INTO my_table (id, data) VALUES (?, ?), (?, ?), (?, ?)']
[parameters: (1, 'd1', 'd2', 'd3')]

And with a “named” dialect, the same value for “id” would be re-used in
each row (hence this change is backwards-incompatible with a system that
relied on this):

INSERT INTO my_table (id, data) VALUES (:id, :data_0), (:id, :data_1), (:id, :data_2)
{u'data_2': 'd3', u'data_1': 'd2', u'data_0': 'd1', 'id': 1}

The system will also refuse to invoke a “server side” default as inline-rendered
SQL, since it cannot be guaranteed that a server side default is compatible
with this. If the VALUES clause renders for a specific column, then a Python-side
value is required; if an omitted value only refers to a server-side default,
an exception is raised:

t = Table(
 'my_table', metadata,
 Column('id', Integer, primary_key=True),
 Column('data', String, server_default='some default')
)

conn.execute(t.insert().values([
 {"data": "d1"},
 {"data": "d2"},
 {},
]))

will raise:

sqlalchemy.exc.CompileError: INSERT value for column my_table.data is
explicitly rendered as a boundparameter in the VALUES clause; a
Python-side value or SQL expression is required

Previously, the value “d1” would be copied into that of the third
row (but again, only with named format!):

INSERT INTO my_table (data) VALUES (:data_0), (:data_1), (:data_0)
{u'data_1': 'd2', u'data_0': 'd1'}

#3288

Event listeners can not be added or removed from within that event’s runner

Removal of an event listener from inside that same event itself would
modify the elements of a list during iteration, which would cause
still-attached event listeners to silently fail to fire. To prevent
this while still maintaining performance, the lists have been replaced
with collections.deque(), which does not allow any additions or
removals during iteration, and instead raises RuntimeError.

#3163

The INSERT...FROM SELECT construct now implies inline=True

Using Insert.from_select() now implies inline=True
on insert(). This helps to fix a bug where an
INSERT...FROM SELECT construct would inadvertently be compiled
as “implicit returning” on supporting backends, which would
cause breakage in the case of an INSERT that inserts zero rows
(as implicit returning expects a row), as well as arbitrary
return data in the case of an INSERT that inserts multiple
rows (e.g. only the first row of many).
A similar change is also applied to an INSERT..VALUES
with multiple parameter sets; implicit RETURNING will no longer emit
for this statement either. As both of these constructs deal
with varible numbers of rows, the
ResultProxy.inserted_primary_key accessor does not
apply. Previously, there was a documentation note that one
may prefer inline=True with INSERT..FROM SELECT as some databases
don’t support returning and therefore can’t do “implicit” returning,
but there’s no reason an INSERT...FROM SELECT needs implicit returning
in any case. Regular explicit Insert.returning() should
be used to return variable numbers of result rows if inserted
data is needed.

#3169

autoload_with now implies autoload=True

A Table can be set up for reflection by passing
Table.autoload_with alone:

my_table = Table('my_table', metadata, autoload_with=some_engine)

#3027

DBAPI exception wrapping and handle_error() event improvements

SQLAlchemy’s wrapping of DBAPI exceptions was not taking place in the
case where a Connection object was invalidated, and then tried
to reconnect and encountered an error; this has been resolved.

Additionally, the recently added ConnectionEvents.handle_error()
event is now invoked for errors that occur upon initial connect, upon
reconnect, and when create_engine() is used given a custom connection
function via create_engine.creator.

The ExceptionContext object has a new datamember
ExceptionContext.engine that will always refer to the Engine
in use, in those cases when the Connection object is not available
(e.g. on initial connect).

#3266

ForeignKeyConstraint.columns is now a ColumnCollection

ForeignKeyConstraint.columns was previously a plain list
containing either strings or Column objects, depending on
how the ForeignKeyConstraint was constructed and whether it was
associated with a table. The collection is now a ColumnCollection,
and is only initialized after the ForeignKeyConstraint is
associated with a Table. A new accessor
ForeignKeyConstraint.column_keys
is added to unconditionally return string keys for the local set of
columns regardless of how the object was constructed or its current
state.

MetaData.sorted_tables accessor is “deterministic”

The sorting of tables resulting from the MetaData.sorted_tables
accessor is “deterministic”; the ordering should be the same in all cases
regardless of Python hashing. This is done by first sorting the tables
by name before passing them to the topological algorithm, which maintains
that ordering as it iterates.

Note that this change does not yet apply to the ordering applied
when emitting MetaData.create_all() or MetaData.drop_all().

#3084

null(), false() and true() constants are no longer singletons

These three constants were changed to return a “singleton” value
in 0.9; unfortunately, that would lead to a query like the following
to not render as expected:

select([null(), null()])

rendering only SELECT NULL AS anon_1, because the two null()
constructs would come out as the same NULL object, and
SQLAlchemy’s Core model is based on object identity in order to
determine lexical significance. The change in 0.9 had no
importance other than the desire to save on object overhead; in general,
an unnamed construct needs to stay lexically unique so that it gets
labeled uniquely.

#3170

SQLite/Oracle have distinct methods for temporary table/view name reporting

The Inspector.get_table_names() and Inspector.get_view_names()
methods in the case of SQLite/Oracle would also return the names of temporary
tables and views, which is not provided by any other dialect (in the case
of MySQL at least it is not even possible). This logic has been moved
out to two new methods Inspector.get_temp_table_names() and
Inspector.get_temp_view_names().

Note that reflection of a specific named temporary table or temporary view,
either by Table('name', autoload=True) or via methods like
Inspector.get_columns() continues to function for most if not all
dialects. For SQLite specifically, there is a bug fix for UNIQUE constraint
reflection from temp tables as well, which is #3203.

#3204

Dialect Improvements and Changes - Postgresql

Overhaul of ENUM type create/drop rules

The rules for Postgresql postgresql.ENUM have been made more strict
with regards to creating and dropping of the TYPE.

An postgresql.ENUM that is created without being explicitly
associated with a MetaData object will be created and dropped
corresponding to Table.create() and Table.drop():

table = Table('sometable', metadata,
 Column('some_enum', ENUM('a', 'b', 'c', name='myenum'))
)

table.create(engine) # will emit CREATE TYPE and CREATE TABLE
table.drop(engine) # will emit DROP TABLE and DROP TYPE - new for 1.0

This means that if a second table also has an enum named ‘myenum’, the
above DROP operation will now fail. In order to accomodate the use case
of a common shared enumerated type, the behavior of a metadata-associated
enumeration has been enhanced.

An postgresql.ENUM that is created with being explicitly
associated with a MetaData object will not be created or dropped
corresponding to Table.create() and Table.drop(), with
the exception of Table.create() called with the checkfirst=True
flag:

my_enum = ENUM('a', 'b', 'c', name='myenum', metadata=metadata)

table = Table('sometable', metadata,
 Column('some_enum', my_enum)
)

will fail: ENUM 'my_enum' does not exist
table.create(engine)

will check for enum and emit CREATE TYPE
table.create(engine, checkfirst=True)

table.drop(engine) # will emit DROP TABLE, *not* DROP TYPE

metadata.drop_all(engine) # will emit DROP TYPE

metadata.create_all(engine) # will emit CREATE TYPE

#3319

New Postgresql Table options

Added support for PG table options TABLESPACE, ON COMMIT,
WITH(OUT) OIDS, and INHERITS, when rendering DDL via
the Table construct.

See also

PostgreSQL Table Options

#2051

New get_enums() method with Postgresql Dialect

The inspect() method returns a PGInspector object in the
case of Postgresql, which includes a new PGInspector.get_enums()
method that returns information on all available ENUM types:

from sqlalchemy import inspect, create_engine

engine = create_engine("postgresql+psycopg2://host/dbname")
insp = inspect(engine)
print(insp.get_enums())

See also

PGInspector.get_enums()

Postgresql Dialect reflects Materialized Views, Foreign Tables

Changes are as follows:

	the Table construct with autoload=True will now match a name
that exists in the database as a materialized view or foreign table.

	Inspector.get_view_names() will return plain and materialized view
names.

	Inspector.get_table_names() does not change for Postgresql, it
continues to return only the names of plain tables.

	A new method PGInspector.get_foreign_table_names() is added which
will return the names of tables that are specifically marked as “foreign”
in the Postgresql schema tables.

The change to reflection involves adding 'm' and 'f' to the list
of qualifiers we use when querying pg_class.relkind, but this change
is new in 1.0.0 to avoid any backwards-incompatible surprises for those
running 0.9 in production.

#2891

Postgresql has_table() now works for temporary tables

This is a simple fix such that “has table” for temporary tables now works,
so that code like the following may proceed:

from sqlalchemy import *

metadata = MetaData()
user_tmp = Table(
 "user_tmp", metadata,
 Column("id", INT, primary_key=True),
 Column('name', VARCHAR(50)),
 prefixes=['TEMPORARY']
)

e = create_engine("postgresql://scott:tiger@localhost/test", echo='debug')
with e.begin() as conn:
 user_tmp.create(conn, checkfirst=True)

 # checkfirst will succeed
 user_tmp.create(conn, checkfirst=True)

The very unlikely case that this behavior will cause a non-failing application
to behave differently, is because Postgresql allows a non-temporary table
to silently overwrite a temporary table. So code like the following will
now act completely differently, no longer creating the real table following
the temporary table:

from sqlalchemy import *

metadata = MetaData()
user_tmp = Table(
 "user_tmp", metadata,
 Column("id", INT, primary_key=True),
 Column('name', VARCHAR(50)),
 prefixes=['TEMPORARY']
)

e = create_engine("postgresql://scott:tiger@localhost/test", echo='debug')
with e.begin() as conn:
 user_tmp.create(conn, checkfirst=True)

 m2 = MetaData()
 user = Table(
 "user_tmp", m2,
 Column("id", INT, primary_key=True),
 Column('name', VARCHAR(50)),
)

 # in 0.9, *will create* the new table, overwriting the old one.
 # in 1.0, *will not create* the new table
 user.create(conn, checkfirst=True)

#3264

Postgresql FILTER keyword

The SQL standard FILTER keyword for aggregate functions is now supported
by Postgresql as of 9.4. SQLAlchemy allows this using
FunctionElement.filter():

func.count(1).filter(True)

See also

FunctionElement.filter()

FunctionFilter

PG8000 dialect supports client side encoding

The create_engine.encoding parameter is now honored
by the pg8000 dialect, using on connect handler which
emits SET CLIENT_ENCODING matching the selected encoding.

PG8000 native JSONB support

Support for PG8000 versions greater than 1.10.1 has been added, where
JSONB is supported natively.

Support for psycopg2cffi Dialect on Pypy

Support for the pypy psycopg2cffi dialect is added.

See also

sqlalchemy.dialects.postgresql.psycopg2cffi

Dialect Improvements and Changes - MySQL

MySQL TIMESTAMP Type now renders NULL / NOT NULL in all cases

The MySQL dialect has always worked around MySQL’s implicit NOT NULL
default associated with TIMESTAMP columns by emitting NULL for
such a type, if the column is set up with nullable=True. However,
MySQL 5.6.6 and above features a new flag
explicit_defaults_for_timestamp which repairs MySQL’s non-standard
behavior to make it behave like any other type; to accommodate this,
SQLAlchemy now emits NULL/NOT NULL unconditionally for all TIMESTAMP
columns.

See also

TIMESTAMP Columns and NULL

#3155

MySQL SET Type Overhauled to support empty sets, unicode, blank value handling

The mysql.SET type historically not included a system of handling
blank sets and empty values separately; as different drivers had different
behaviors for treatment of empty strings and empty-string-set representations,
the SET type tried only to hedge between these behaviors, opting to treat the
empty set as set(['']) as is still the current behavior for the
MySQL-Connector-Python DBAPI.
Part of the rationale here was that it was otherwise impossible to actually
store a blank string within a MySQL SET, as the driver gives us back strings
with no way to discern between set(['']) and set(). It was left
to the user to determine if set(['']) actually meant “empty set” or not.

The new behavior moves the use case for the blank string, which is an unusual
case that isn’t even documented in MySQL’s documentation, into a special
case, and the default behavior of mysql.SET is now:

	to treat the empty string '' as returned by MySQL-python into the empty
set set();

	to convert the single-blank value set set(['']) returned by
MySQL-Connector-Python into the empty set set();

	To handle the case of a set type that actually wishes includes the blank
value '' in its list of possible values,
a new feature (required in this use case) is implemented whereby the set
value is persisted and loaded as a bitwise integer value; the
flag mysql.SET.retrieve_as_bitwise is added in order to
enable this.

Using the mysql.SET.retrieve_as_bitwise flag allows the set
to be persisted and retrieved with no ambiguity of values. Theoretically
this flag can be turned on in all cases, as long as the given list of
values to the type matches the ordering exactly as declared in the
database; it only makes the SQL echo output a bit more unusual.

The default behavior of mysql.SET otherwise remains the same,
roundtripping values using strings. The string-based behavior now
supports unicode fully including MySQL-python with use_unicode=0.

#3283

MySQL internal “no such table” exceptions not passed to event handlers

The MySQL dialect will now disable ConnectionEvents.handle_error()
events from firing for those statements which it uses internally
to detect if a table exists or not. This is achieved using an
execution option skip_user_error_events that disables the handle
error event for the scope of that execution. In this way, user code
that rewrites exceptions doesn’t need to worry about the MySQL
dialect or other dialects that occasionally need to catch
SQLAlchemy specific exceptions.

Changed the default value of raise_on_warnings for MySQL-Connector

Changed the default value of “raise_on_warnings” to False for
MySQL-Connector. This was set at True for some reason. The “buffered”
flag unfortunately must stay at True as MySQLconnector does not allow
a cursor to be closed unless all results are fully fetched.

#2515

MySQL boolean symbols “true”, “false” work again

0.9’s overhaul of the IS/IS NOT operators as well as boolean types in
#2682 disallowed the MySQL dialect from making use of the
“true” and “false” symbols in the context of “IS” / “IS NOT”. Apparently,
even though MySQL has no “boolean” type, it supports IS / IS NOT when the
special “true” and “false” symbols are used, even though these are otherwise
synonymous with “1” and “0” (and IS/IS NOT don’t work with the numerics).

So the change here is that the MySQL dialect remains “non native boolean”,
but the true() and false() symbols again produce the
keywords “true” and “false”, so that an expression like column.is_(true())
again works on MySQL.

#3186

The match() operator now returns an agnostic MatchType compatible with MySQL’s floating point return value

The return type of a ColumnOperators.match() expression is now a new type
called MatchType. This is a subclass of Boolean,
that can be intercepted by the dialect in order to produce a different
result type at SQL execution time.

Code like the following will now function correctly and return floating points
on MySQL:

>>> connection.execute(
... select([
... matchtable.c.title.match('Agile Ruby Programming').label('ruby'),
... matchtable.c.title.match('Dive Python').label('python'),
... matchtable.c.title
...]).order_by(matchtable.c.id)
...)
[
 (2.0, 0.0, 'Agile Web Development with Ruby On Rails'),
 (0.0, 2.0, 'Dive Into Python'),
 (2.0, 0.0, "Programming Matz's Ruby"),
 (0.0, 0.0, 'The Definitive Guide to Django'),
 (0.0, 1.0, 'Python in a Nutshell')
]

#3263

Drizzle Dialect is now an External Dialect

The dialect for Drizzle is now an external
dialect, available at https://bitbucket.org/zzzeek/sqlalchemy-drizzle.
This dialect was added to SQLAlchemy right before SQLAlchemy was able to
accommodate third party dialects well; going forward, all databases that aren’t
within the “ubiquitous use” category are third party dialects.
The dialect’s implementation hasn’t changed and is still based on the
MySQL + MySQLdb dialects within SQLAlchemy. The dialect is as of yet
unreleased and in “attic” status; however it passes the majority of tests
and is generally in decent working order, if someone wants to pick up
on polishing it.

Dialect Improvements and Changes - SQLite

SQLite named and unnamed UNIQUE and FOREIGN KEY constraints will inspect and reflect

UNIQUE and FOREIGN KEY constraints are now fully reflected on
SQLite both with and without names. Previously, foreign key
names were ignored and unnamed unique constraints were skipped. In particular
this will help with Alembic’s new SQLite migration features.

To achieve this, for both foreign keys and unique constraints, the result
of PRAGMA foreign_keys, index_list, and index_info is combined with regular
expression parsing of the CREATE TABLE statement overall to form a complete
picture of the names of constraints, as well as differentiating UNIQUE
constraints that were created as UNIQUE vs. unnamed INDEXes.

#3244

#3261

Dialect Improvements and Changes - SQL Server

PyODBC driver name is required with hostname-based SQL Server connections

Connecting to SQL Server with PyODBC using a DSN-less connection, e.g.
with an explicit hostname, now requires a driver name - SQLAlchemy will no
longer attempt to guess a default:

engine = create_engine("mssql+pyodbc://scott:tiger@myhost:port/databasename?driver=SQL+Server+Native+Client+10.0")

SQLAlchemy’s previously hardcoded default of “SQL Server” is obsolete on
Windows, and SQLAlchemy cannot be tasked with guessing the best driver
based on operation system/driver detection. Using a DSN is always preferred
when using ODBC to avoid this issue entirely.

#3182

SQL Server 2012 large text / binary types render as VARCHAR, NVARCHAR, VARBINARY

The rendering of the Text, UnicodeText, and LargeBinary
types has been changed for SQL Server 2012 and greater, with options
to control the behavior completely, based on deprecation guidelines from
Microsoft. See Large Text/Binary Type Deprecation for details.

Dialect Improvements and Changes - Oracle

Improved support for CTEs in Oracle

CTE support has been fixed up for Oracle, and there is also a new feature
CTE.with_suffixes() that can assist with Oracle’s special directives:

included_parts = select([
 part.c.sub_part, part.c.part, part.c.quantity
]).where(part.c.part == "p1").\
 cte(name="included_parts", recursive=True).\
 suffix_with(
 "search depth first by part set ord1",
 "cycle part set y_cycle to 1 default 0", dialect='oracle')

#3220

New Oracle Keywords for DDL

Keywords such as COMPRESS, ON COMMIT, BITMAP:

Oracle Table Options

Oracle Specific Index Options

What’s New in SQLAlchemy 0.9?

About this Document

This document describes changes between SQLAlchemy version 0.8,
undergoing maintenance releases as of May, 2013,
and SQLAlchemy version 0.9, which had its first production
release on December 30, 2013.

Document last updated: June 10, 2015

Introduction

This guide introduces what’s new in SQLAlchemy version 0.9,
and also documents changes which affect users migrating
their applications from the 0.8 series of SQLAlchemy to 0.9.

Please carefully review
Behavioral Changes - ORM and Behavioral Changes - Core for
potentially backwards-incompatible changes.

Platform Support

Targeting Python 2.6 and Up Now, Python 3 without 2to3

The first achievement of the 0.9 release is to remove the dependency
on the 2to3 tool for Python 3 compatibility. To make this
more straightforward, the lowest Python release targeted now
is 2.6, which features a wide degree of cross-compatibility with
Python 3. All SQLAlchemy modules and unit tests are now interpreted
equally well with any Python interpreter from 2.6 forward, including
the 3.1 and 3.2 interpreters.

#2671

C Extensions Supported on Python 3

The C extensions have been ported to support Python 3 and now build
in both Python 2 and Python 3 environments.

#2161

Behavioral Changes - ORM

Composite attributes are now returned as their object form when queried on a per-attribute basis

Using a Query in conjunction with a composite attribute now returns the object
type maintained by that composite, rather than being broken out into individual
columns. Using the mapping setup at Composite Column Types:

>>> session.query(Vertex.start, Vertex.end).\
... filter(Vertex.start == Point(3, 4)).all()
[(Point(x=3, y=4), Point(x=5, y=6))]

This change is backwards-incompatible with code that expects the individual attribute
to be expanded into individual columns. To get that behavior, use the .clauses
accessor:

>>> session.query(Vertex.start.clauses, Vertex.end.clauses).\
... filter(Vertex.start == Point(3, 4)).all()
[(3, 4, 5, 6)]

See also

Column Bundles for ORM queries

#2824

Query.select_from() no longer applies the clause to corresponding entities

The Query.select_from() method has been popularized in recent versions
as a means of controlling the first thing that a Query object
“selects from”, typically for the purposes of controlling how a JOIN will
render.

Consider the following example against the usual User mapping:

select_stmt = select([User]).where(User.id == 7).alias()

q = session.query(User).\
 join(select_stmt, User.id == select_stmt.c.id).\
 filter(User.name == 'ed')

The above statement predictably renders SQL like the following:

SELECT "user".id AS user_id, "user".name AS user_name
FROM "user" JOIN (SELECT "user".id AS id, "user".name AS name
FROM "user"
WHERE "user".id = :id_1) AS anon_1 ON "user".id = anon_1.id
WHERE "user".name = :name_1

If we wanted to reverse the order of the left and right elements of the
JOIN, the documentation would lead us to believe we could use
Query.select_from() to do so:

q = session.query(User).\
 select_from(select_stmt).\
 join(User, User.id == select_stmt.c.id).\
 filter(User.name == 'ed')

However, in version 0.8 and earlier, the above use of Query.select_from()
would apply the select_stmt to replace the User entity, as it
selects from the user table which is compatible with User:

-- SQLAlchemy 0.8 and earlier...
SELECT anon_1.id AS anon_1_id, anon_1.name AS anon_1_name
FROM (SELECT "user".id AS id, "user".name AS name
FROM "user"
WHERE "user".id = :id_1) AS anon_1 JOIN "user" ON anon_1.id = anon_1.id
WHERE anon_1.name = :name_1

The above statement is a mess, the ON clause refers anon_1.id = anon_1.id,
our WHERE clause has been replaced with anon_1 as well.

This behavior is quite intentional, but has a different use case from that
which has become popular for Query.select_from(). The above behavior
is now available by a new method known as Query.select_entity_from().
This is a lesser used behavior that in modern SQLAlchemy is roughly equivalent
to selecting from a customized aliased() construct:

select_stmt = select([User]).where(User.id == 7)
user_from_stmt = aliased(User, select_stmt.alias())

q = session.query(user_from_stmt).filter(user_from_stmt.name == 'ed')

So with SQLAlchemy 0.9, our query that selects from select_stmt produces
the SQL we expect:

-- SQLAlchemy 0.9
SELECT "user".id AS user_id, "user".name AS user_name
FROM (SELECT "user".id AS id, "user".name AS name
FROM "user"
WHERE "user".id = :id_1) AS anon_1 JOIN "user" ON "user".id = id
WHERE "user".name = :name_1

The Query.select_entity_from() method will be available in SQLAlchemy
0.8.2, so applications which rely on the old behavior can transition
to this method first, ensure all tests continue to function, then upgrade
to 0.9 without issue.

#2736

viewonly=True on relationship() prevents history from taking effect

The viewonly flag on relationship() is applied to prevent changes
to the target attribute from having any effect within the flush process.
This is achieved by eliminating the attribute from being considered during
the flush. However, up until now, changes to the attribute would still
register the parent object as “dirty” and trigger a potential flush. The change
is that the viewonly flag now prevents history from being set for the
target attribute as well. Attribute events like backrefs and user-defined events
still continue to function normally.

The change is illustrated as follows:

from sqlalchemy import Column, Integer, ForeignKey, create_engine
from sqlalchemy.orm import backref, relationship, Session
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import inspect

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)

class B(Base):
 __tablename__ = 'b'

 id = Column(Integer, primary_key=True)
 a_id = Column(Integer, ForeignKey('a.id'))
 a = relationship("A", backref=backref("bs", viewonly=True))

e = create_engine("sqlite://")
Base.metadata.create_all(e)

a = A()
b = B()

sess = Session(e)
sess.add_all([a, b])
sess.commit()

b.a = a

assert b in sess.dirty

before 0.9.0
assert a in sess.dirty
assert inspect(a).attrs.bs.history.has_changes()

after 0.9.0
assert a not in sess.dirty
assert not inspect(a).attrs.bs.history.has_changes()

#2833

Association Proxy SQL Expression Improvements and Fixes

The == and != operators as implemented by an association proxy
that refers to a scalar value on a scalar relationship now produces
a more complete SQL expression, intended to take into account
the “association” row being present or not when the comparison is against
None.

Consider this mapping:

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)

 b_id = Column(Integer, ForeignKey('b.id'), primary_key=True)
 b = relationship("B")
 b_value = association_proxy("b", "value")

class B(Base):
 __tablename__ = 'b'
 id = Column(Integer, primary_key=True)
 value = Column(String)

Up through 0.8, a query like the following:

s.query(A).filter(A.b_value == None).all()

would produce:

SELECT a.id AS a_id, a.b_id AS a_b_id
FROM a
WHERE EXISTS (SELECT 1
FROM b
WHERE b.id = a.b_id AND b.value IS NULL)

In 0.9, it now produces:

SELECT a.id AS a_id, a.b_id AS a_b_id
FROM a
WHERE (EXISTS (SELECT 1
FROM b
WHERE b.id = a.b_id AND b.value IS NULL)) OR a.b_id IS NULL

The difference being, it not only checks b.value, it also checks
if a refers to no b row at all. This will return different
results versus prior versions, for a system that uses this type of
comparison where some parent rows have no association row.

More critically, a correct expression is emitted for A.b_value != None.
In 0.8, this would return True for A rows that had no b:

SELECT a.id AS a_id, a.b_id AS a_b_id
FROM a
WHERE NOT (EXISTS (SELECT 1
FROM b
WHERE b.id = a.b_id AND b.value IS NULL))

Now in 0.9, the check has been reworked so that it ensures
the A.b_id row is present, in addition to B.value being
non-NULL:

SELECT a.id AS a_id, a.b_id AS a_b_id
FROM a
WHERE EXISTS (SELECT 1
FROM b
WHERE b.id = a.b_id AND b.value IS NOT NULL)

In addition, the has() operator is enhanced such that you can
call it against a scalar column value with no criterion only,
and it will produce criteria that checks for the association row
being present or not:

s.query(A).filter(A.b_value.has()).all()

output:

SELECT a.id AS a_id, a.b_id AS a_b_id
FROM a
WHERE EXISTS (SELECT 1
FROM b
WHERE b.id = a.b_id)

This is equivalent to A.b.has(), but allows one to query
against b_value directly.

#2751

Association Proxy Missing Scalar returns None

An association proxy from a scalar attribute to a scalar will now return
None if the proxied object isn’t present. This is consistent with the
fact that missing many-to-ones return None in SQLAlchemy, so should the
proxied value. E.g.:

from sqlalchemy import *
from sqlalchemy.orm import *
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.associationproxy import association_proxy

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)
 b = relationship("B", uselist=False)

 bname = association_proxy("b", "name")

class B(Base):
 __tablename__ = 'b'

 id = Column(Integer, primary_key=True)
 a_id = Column(Integer, ForeignKey('a.id'))
 name = Column(String)

a1 = A()

this is how m2o's always have worked
assert a1.b is None

but prior to 0.9, this would raise AttributeError,
now returns None just like the proxied value.
assert a1.bname is None

#2810

attributes.get_history() will query from the DB by default if value not present

A bugfix regarding attributes.get_history() allows a column-based attribute
to query out to the database for an unloaded value, assuming the passive
flag is left at its default of PASSIVE_OFF. Previously, this flag would
not be honored. Additionally, a new method AttributeState.load_history()
is added to complement the AttributeState.history attribute, which
will emit loader callables for an unloaded attribute.

This is a small change demonstrated as follows:

from sqlalchemy import Column, Integer, String, create_engine, inspect
from sqlalchemy.orm import Session, attributes
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'
 id = Column(Integer, primary_key=True)
 data = Column(String)

e = create_engine("sqlite://", echo=True)
Base.metadata.create_all(e)

sess = Session(e)

a1 = A(data='a1')
sess.add(a1)
sess.commit() # a1 is now expired

history doesn't emit loader callables
assert inspect(a1).attrs.data.history == (None, None, None)

in 0.8, this would fail to load the unloaded state.
assert attributes.get_history(a1, 'data') == ((), ['a1',], ())

load_history() is now equiavlent to get_history() with
passive=PASSIVE_OFF ^ INIT_OK
assert inspect(a1).attrs.data.load_history() == ((), ['a1',], ())

#2787

Behavioral Changes - Core

Type objects no longer accept ignored keyword arguments

Up through the 0.8 series, most type objects accepted arbitrary keyword
arguments which were silently ignored:

from sqlalchemy import Date, Integer

storage_format argument here has no effect on any backend;
it needs to be on the SQLite-specific type
d = Date(storage_format="%(day)02d.%(month)02d.%(year)04d")

display_width argument here has no effect on any backend;
it needs to be on the MySQL-specific type
i = Integer(display_width=5)

This was a very old bug for which a deprecation warning was added to the
0.8 series, but because nobody ever runs Python with the “-W” flag, it
was mostly never seen:

$ python -W always::DeprecationWarning ~/dev/sqlalchemy/test.py
/Users/classic/dev/sqlalchemy/test.py:5: SADeprecationWarning: Passing arguments to
type object constructor <class 'sqlalchemy.types.Date'> is deprecated
 d = Date(storage_format="%(day)02d.%(month)02d.%(year)04d")
/Users/classic/dev/sqlalchemy/test.py:9: SADeprecationWarning: Passing arguments to
type object constructor <class 'sqlalchemy.types.Integer'> is deprecated
 i = Integer(display_width=5)

As of the 0.9 series the “catch all” constructor is removed from
TypeEngine, and these meaningless arguments are no longer accepted.

The correct way to make use of dialect-specific arguments such as
storage_format and display_width is to use the appropriate
dialect-specific types:

from sqlalchemy.dialects.sqlite import DATE
from sqlalchemy.dialects.mysql import INTEGER

d = DATE(storage_format="%(day)02d.%(month)02d.%(year)04d")

i = INTEGER(display_width=5)

What about the case where we want the dialect-agnostic type also? We
use the TypeEngine.with_variant() method:

from sqlalchemy import Date, Integer
from sqlalchemy.dialects.sqlite import DATE
from sqlalchemy.dialects.mysql import INTEGER

d = Date().with_variant(
 DATE(storage_format="%(day)02d.%(month)02d.%(year)04d"),
 "sqlite"
)

i = Integer().with_variant(
 INTEGER(display_width=5),
 "mysql"
)

TypeEngine.with_variant() isn’t new, it was added in SQLAlchemy
0.7.2. So code that is running on the 0.8 series can be corrected to use
this approach and tested before upgrading to 0.9.

None can no longer be used as a “partial AND” constructor

None can no longer be used as the “backstop” to form an AND condition piecemeal.
This pattern was not a documented pattern even though some SQLAlchemy internals
made use of it:

condition = None

for cond in conditions:
 condition = condition & cond

if condition is not None:
 stmt = stmt.where(condition)

The above sequence, when conditions is non-empty, will on 0.9 produce
SELECT .. WHERE <condition> AND NULL. The None is no longer implicitly
ignored, and is instead consistent with when None is interpreted in other
contexts besides that of a conjunction.

The correct code for both 0.8 and 0.9 should read:

from sqlalchemy.sql import and_

if conditions:
 stmt = stmt.where(and_(*conditions))

Another variant that works on all backends on 0.9, but on 0.8 only works on
backends that support boolean constants:

from sqlalchemy.sql import true

condition = true()

for cond in conditions:
 condition = cond & condition

stmt = stmt.where(condition)

On 0.8, this will produce a SELECT statement that always has AND true
in the WHERE clause, which is not accepted by backends that don’t support
boolean constants (MySQL, MSSQL). On 0.9, the true constant will be dropped
within an and_() conjunction.

See also

Improved rendering of Boolean constants, NULL constants, conjunctions

The “password” portion of a create_engine() no longer considers the + sign as an encoded space

For whatever reason, the Python function unquote_plus() was applied to the
“password” field of a URL, which is an incorrect application of the
encoding rules described in RFC 1738
in that it escaped spaces as plus signs. The stringiciation of a URL
now only encodes ”:”, “@”, or “/” and nothing else, and is now applied to both the
username and password fields (previously it only applied to the
password). On parsing, encoded characters are converted, but plus signs and
spaces are passed through as is:

password: "pass word + other:words"
dbtype://user:pass word + other%3Awords@host/dbname

password: "apples/oranges"
dbtype://username:apples%2Foranges@hostspec/database

password: "apples@oranges@@"
dbtype://username:apples%40oranges%40%40@hostspec/database

password: '', username is "username@"
dbtype://username%40:@hostspec/database

#2873

The precedence rules for COLLATE have been changed

Previously, an expression like the following:

print((column('x') == 'somevalue').collate("en_EN"))

would produce an expression like this:

-- 0.8 behavior
(x = :x_1) COLLATE en_EN

The above is misunderstood by MSSQL and is generally not the syntax suggested
for any database. The expression will now produce the syntax illustrated
by that of most database documentation:

-- 0.9 behavior
x = :x_1 COLLATE en_EN

The potentially backwards incompatible change arises if the collate()
operator is being applied to the right-hand column, as follows:

print(column('x') == literal('somevalue').collate("en_EN"))

In 0.8, this produces:

x = :param_1 COLLATE en_EN

However in 0.9, will now produce the more accurate, but probably not what you
want, form of:

x = (:param_1 COLLATE en_EN)

The ColumnOperators.collate() operator now works more appropriately within an
ORDER BY expression as well, as a specific precedence has been given to the
ASC and DESC operators which will again ensure no parentheses are
generated:

>>> # 0.8
>>> print(column('x').collate('en_EN').desc())
(x COLLATE en_EN) DESC

>>> # 0.9
>>> print(column('x').collate('en_EN').desc())
x COLLATE en_EN DESC

#2879

Postgresql CREATE TYPE <x> AS ENUM now applies quoting to values

The postgresql.ENUM type will now apply escaping to single quote
signs within the enumerated values:

>>> from sqlalchemy.dialects import postgresql
>>> type = postgresql.ENUM('one', 'two', "three's", name="myenum")
>>> from sqlalchemy.dialects.postgresql import base
>>> print(base.CreateEnumType(type).compile(dialect=postgresql.dialect()))
CREATE TYPE myenum AS ENUM ('one','two','three''s')

Existing workarounds which already escape single quote signs will need to be
modified, else they will now double-escape.

#2878

New Features

Event Removal API

Events established using event.listen() or event.listens_for()
can now be removed using the new event.remove() function. The target,
identifier and fn arguments sent to event.remove() need to match
exactly those which were sent for listening, and the event will be removed
from all locations in which it had been established:

@event.listens_for(MyClass, "before_insert", propagate=True)
def my_before_insert(mapper, connection, target):
 """listen for before_insert"""
 # ...

event.remove(MyClass, "before_insert", my_before_insert)

In the example above, the propagate=True flag is set. This
means my_before_insert() is established as a listener for MyClass
as well as all subclasses of MyClass.
The system tracks everywhere that the my_before_insert()
listener function had been placed as a result of this call and removes it as
a result of calling event.remove().

The removal system uses a registry to associate arguments passed to
event.listen() with collections of event listeners, which are in many
cases wrapped versions of the original user-supplied function. This registry
makes heavy use of weak references in order to allow all the contained contents,
such as listener targets, to be garbage collected when they go out of scope.

#2268

New Query Options API; load_only() option

The system of loader options such as orm.joinedload(),
orm.subqueryload(), orm.lazyload(), orm.defer(), etc.
all build upon a new system known as Load. Load provides
a “method chained” (a.k.a. generative) approach to loader options, so that
instead of joining together long paths using dots or multiple attribute names,
an explicit loader style is given for each path.

While the new way is slightly more verbose, it is simpler to understand
in that there is no ambiguity in what options are being applied to which paths;
it simplifies the method signatures of the options and provides greater flexibility
particularly for column-based options. The old systems are to remain functional
indefinitely as well and all styles can be mixed.

Old Way

To set a certain style of loading along every link in a multi-element path, the _all()
option has to be used:

query(User).options(joinedload_all("orders.items.keywords"))

New Way

Loader options are now chainable, so the same joinedload(x) method is applied
equally to each link, without the need to keep straight between
joinedload() and joinedload_all():

query(User).options(joinedload("orders").joinedload("items").joinedload("keywords"))

Old Way

Setting an option on path that is based on a subclass requires that all
links in the path be spelled out as class bound attributes, since the
PropComparator.of_type() method needs to be called:

session.query(Company).\
 options(
 subqueryload_all(
 Company.employees.of_type(Engineer),
 Engineer.machines
)
)

New Way

Only those elements in the path that actually need PropComparator.of_type()
need to be set as a class-bound attribute, string-based names can be resumed
afterwards:

session.query(Company).\
 options(
 subqueryload(Company.employees.of_type(Engineer)).
 subqueryload("machines")
)
)

Old Way

Setting the loader option on the last link in a long path uses a syntax
that looks a lot like it should be setting the option for all links in the
path, causing confusion:

query(User).options(subqueryload("orders.items.keywords"))

New Way

A path can now be spelled out using defaultload() for entries in the
path where the existing loader style should be unchanged. More verbose
but the intent is clearer:

query(User).options(defaultload("orders").defaultload("items").subqueryload("keywords"))

The dotted style can still be taken advantage of, particularly in the case
of skipping over several path elements:

query(User).options(defaultload("orders.items").subqueryload("keywords"))

Old Way

The defer() option on a path needed to be spelled out with the full
path for each column:

query(User).options(defer("orders.description"), defer("orders.isopen"))

New Way

A single Load object that arrives at the target path can have
Load.defer() called upon it repeatedly:

query(User).options(defaultload("orders").defer("description").defer("isopen"))

The Load Class

The Load class can be used directly to provide a “bound” target,
especially when multiple parent entities are present:

from sqlalchemy.orm import Load

query(User, Address).options(Load(Address).joinedload("entries"))

Load Only

A new option load_only() achieves a “defer everything but” style of load,
loading only the given columns and deferring the rest:

from sqlalchemy.orm import load_only

query(User).options(load_only("name", "fullname"))

specify explicit parent entity
query(User, Address).options(Load(User).load_only("name", "fullname"))

specify path
query(User).options(joinedload(User.addresses).load_only("email_address"))

Class-specific Wildcards

Using Load, a wildcard may be used to set the loading for all
relationships (or perhaps columns) on a given entity, without affecting any
others:

lazyload all User relationships
query(User).options(Load(User).lazyload("*"))

undefer all User columns
query(User).options(Load(User).undefer("*"))

lazyload all Address relationships
query(User).options(defaultload(User.addresses).lazyload("*"))

undefer all Address columns
query(User).options(defaultload(User.addresses).undefer("*"))

#1418

New text() Capabilities

The text() construct gains new methods:

	TextClause.bindparams() allows bound parameter types and values
to be set flexibly:

setup values
stmt = text("SELECT id, name FROM user "
 "WHERE name=:name AND timestamp=:timestamp").\
 bindparams(name="ed", timestamp=datetime(2012, 11, 10, 15, 12, 35))

setup types and/or values
stmt = text("SELECT id, name FROM user "
 "WHERE name=:name AND timestamp=:timestamp").\
 bindparams(
 bindparam("name", value="ed"),
 bindparam("timestamp", type_=DateTime()
).bindparam(timestamp=datetime(2012, 11, 10, 15, 12, 35))

	TextClause.columns() supersedes the typemap option
of text(), returning a new construct TextAsFrom:

turn a text() into an alias(), with a .c. collection:
stmt = text("SELECT id, name FROM user").columns(id=Integer, name=String)
stmt = stmt.alias()

stmt = select([addresses]).select_from(
 addresses.join(stmt), addresses.c.user_id == stmt.c.id)

or into a cte():
stmt = text("SELECT id, name FROM user").columns(id=Integer, name=String)
stmt = stmt.cte("x")

stmt = select([addresses]).select_from(
 addresses.join(stmt), addresses.c.user_id == stmt.c.id)

#2877

INSERT from SELECT

After literally years of pointless procrastination this relatively minor
syntactical feature has been added, and is also backported to 0.8.3,
so technically isn’t “new” in 0.9. A select() construct or other
compatible construct can be passed to the new method Insert.from_select()
where it will be used to render an INSERT .. SELECT construct:

>>> from sqlalchemy.sql import table, column
>>> t1 = table('t1', column('a'), column('b'))
>>> t2 = table('t2', column('x'), column('y'))
>>> print(t1.insert().from_select(['a', 'b'], t2.select().where(t2.c.y == 5)))
INSERT INTO t1 (a, b) SELECT t2.x, t2.y
FROM t2
WHERE t2.y = :y_1

The construct is smart enough to also accommodate ORM objects such as classes
and Query objects:

s = Session()
q = s.query(User.id, User.name).filter_by(name='ed')
ins = insert(Address).from_select((Address.id, Address.email_address), q)

rendering:

INSERT INTO addresses (id, email_address)
SELECT users.id AS users_id, users.name AS users_name
FROM users WHERE users.name = :name_1

#722

New FOR UPDATE support on select(), Query()

An attempt is made to simplify the specification of the FOR UPDATE
clause on SELECT statements made within Core and ORM, and support is added
for the FOR UPDATE OF SQL supported by Postgresql and Oracle.

Using the core GenerativeSelect.with_for_update(), options like FOR SHARE and
NOWAIT can be specified individually, rather than linking to arbitrary
string codes:

stmt = select([table]).with_for_update(read=True, nowait=True, of=table)

On Posgtresql the above statement might render like:

SELECT table.a, table.b FROM table FOR SHARE OF table NOWAIT

The Query object gains a similar method Query.with_for_update()
which behaves in the same way. This method supersedes the existing
Query.with_lockmode() method, which translated FOR UPDATE clauses
using a different system. At the moment, the “lockmode” string argument is still
accepted by the Session.refresh() method.

Floating Point String-Conversion Precision Configurable for Native Floating Point Types

The conversion which SQLAlchemy does whenever a DBAPI returns a Python
floating point type which is to be converted into a Python Decimal()
necessarily involves an intermediary step which converts the floating point
value to a string. The scale used for this string conversion was previously
hardcoded to 10, and is now configurable. The setting is available on
both the Numeric as well as the Float
type, as well as all SQL- and dialect-specific descendant types, using the
parameter decimal_return_scale. If the type supports a .scale parameter,
as is the case with Numeric and some float types such as
mysql.DOUBLE, the value of .scale is used as the default
for .decimal_return_scale if it is not otherwise specified. If both
.scale and .decimal_return_scale are absent, then the default of
10 takes place. E.g.:

from sqlalchemy.dialects.mysql import DOUBLE
import decimal

data = Table('data', metadata,
 Column('double_value',
 mysql.DOUBLE(decimal_return_scale=12, asdecimal=True))
)

conn.execute(
 data.insert(),
 double_value=45.768392065789,
)
result = conn.scalar(select([data.c.double_value]))

previously, this would typically be Decimal("45.7683920658"),
e.g. trimmed to 10 decimal places

now we get 12, as requested, as MySQL can support this
much precision for DOUBLE
assert result == decimal.Decimal("45.768392065789")

#2867

Column Bundles for ORM queries

The Bundle allows for querying of sets of columns, which are then
grouped into one name under the tuple returned by the query. The initial
purposes of Bundle are 1. to allow “composite” ORM columns to be
returned as a single value in a column-based result set, rather than expanding
them out into individual columns and 2. to allow the creation of custom result-set
constructs within the ORM, using ad-hoc columns and return types, without involving
the more heavyweight mechanics of mapped classes.

See also

Composite attributes are now returned as their object form when queried on a per-attribute basis

Column Bundles

#2824

Server Side Version Counting

The versioning feature of the ORM (now also documented at Configuring a Version Counter)
can now make use of server-side version counting schemes, such as those produced
by triggers or database system columns, as well as conditional programmatic schemes outside
of the version_id_counter function itself. By providing the value False
to the version_id_generator parameter, the ORM will use the already-set version
identifier, or alternatively fetch the version identifier
from each row at the same time the INSERT or UPDATE is emitted. When using a
server-generated version identifier, it is strongly
recommended that this feature be used only on a backend with strong RETURNING
support (Postgresql, SQL Server; Oracle also supports RETURNING but the cx_oracle
driver has only limited support), else the additional SELECT statements will
add significant performance
overhead. The example provided at Server Side Version Counters illustrates
the usage of the Postgresql xmin system column in order to integrate it with
the ORM’s versioning feature.

See also

Server Side Version Counters

#2793

include_backrefs=False option for @validates

The validates() function now accepts an option include_backrefs=True,
which will bypass firing the validator for the case where the event initiated
from a backref:

from sqlalchemy import Column, Integer, ForeignKey
from sqlalchemy.orm import relationship, validates
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class A(Base):
 __tablename__ = 'a'

 id = Column(Integer, primary_key=True)
 bs = relationship("B", backref="a")

 @validates("bs")
 def validate_bs(self, key, item):
 print("A.bs validator")
 return item

class B(Base):
 __tablename__ = 'b'

 id = Column(Integer, primary_key=True)
 a_id = Column(Integer, ForeignKey('a.id'))

 @validates("a", include_backrefs=False)
 def validate_a(self, key, item):
 print("B.a validator")
 return item

a1 = A()
a1.bs.append(B()) # prints only "A.bs validator"

#1535

Postgresql JSON Type

The Postgresql dialect now features a postgresql.JSON type to
complement the postgresql.HSTORE type.

See also

postgresql.JSON

#2581

Automap Extension

A new extension is added in 0.9.1 known as sqlalchemy.ext.automap. This is an
experimental extension which expands upon the functionality of Declarative
as well as the DeferredReflection class. Essentially, the extension
provides a base class AutomapBase which automatically generates
mapped classes and relationships between them based on given table metadata.

The MetaData in use normally might be produced via reflection, but
there is no requirement that reflection is used. The most basic usage
illustrates how sqlalchemy.ext.automap is able to deliver mapped
classes, including relationships, based on a reflected schema:

from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine

Base = automap_base()

engine, suppose it has two tables 'user' and 'address' set up
engine = create_engine("sqlite:///mydatabase.db")

reflect the tables
Base.prepare(engine, reflect=True)

mapped classes are now created with names matching that of the table
name.
User = Base.classes.user
Address = Base.classes.address

session = Session(engine)

rudimentary relationships are produced
session.add(Address(email_address="foo@bar.com", user=User(name="foo")))
session.commit()

collection-based relationships are by default named "<classname>_collection"
print(u1.address_collection)

Beyond that, the AutomapBase class is a declarative base, and supports
all the features that declarative does. The “automapping” feature can be used
with an existing, explicitly declared schema to generate relationships and
missing classes only. Naming schemes and relationship-production routines
can be dropped in using callable functions.

It is hoped that the AutomapBase system provides a quick
and modernized solution to the problem that the very famous
SQLSoup
also tries to solve, that of generating a quick and rudimentary object
model from an existing database on the fly. By addressing the issue strictly
at the mapper configuration level, and integrating fully with existing
Declarative class techniques, AutomapBase seeks to provide
a well-integrated approach to the issue of expediently auto-generating ad-hoc
mappings.

See also

Automap

Behavioral Improvements

Improvements that should produce no compatibility issues except in exceedingly
rare and unusual hypothetical cases, but are good to be aware of in case there are
unexpected issues.

Many JOIN and LEFT OUTER JOIN expressions will no longer be wrapped in (SELECT * FROM ..) AS ANON_1

For many years, the SQLAlchemy ORM has been held back from being able to nest
a JOIN inside the right side of an existing JOIN (typically a LEFT OUTER JOIN,
as INNER JOINs could always be flattened):

SELECT a.*, b.*, c.* FROM a LEFT OUTER JOIN (b JOIN c ON b.id = c.id) ON a.id

This was due to the fact that SQLite up until version 3.7.16 cannot parse a statement of the above format:

SQLite version 3.7.15.2 2013-01-09 11:53:05
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> create table a(id integer);
sqlite> create table b(id integer);
sqlite> create table c(id integer);
sqlite> select a.id, b.id, c.id from a left outer join (b join c on b.id=c.id) on b.id=a.id;
Error: no such column: b.id

Right-outer-joins are of course another way to work around right-side
parenthesization; this would be significantly complicated and visually unpleasant
to implement, but fortunately SQLite doesn’t support RIGHT OUTER JOIN either :):

sqlite> select a.id, b.id, c.id from b join c on b.id=c.id
 ...> right outer join a on b.id=a.id;
Error: RIGHT and FULL OUTER JOINs are not currently supported

Back in 2005, it wasn’t clear if other databases had trouble with this form,
but today it seems clear every database tested except SQLite now supports it
(Oracle 8, a very old database, doesn’t support the JOIN keyword at all,
but SQLAlchemy has always had a simple rewriting scheme in place for Oracle’s syntax).
To make matters worse, SQLAlchemy’s usual workaround of applying a
SELECT often degrades performance on platforms like Postgresql and MySQL:

SELECT a.*, anon_1.* FROM a LEFT OUTER JOIN (
 SELECT b.id AS b_id, c.id AS c_id
 FROM b JOIN c ON b.id = c.id
) AS anon_1 ON a.id=anon_1.b_id

A JOIN like the above form is commonplace when working with joined-table inheritance structures;
any time Query.join() is used to join from some parent to a joined-table subclass, or
when joinedload() is used similarly, SQLAlchemy’s ORM would always make sure a nested
JOIN was never rendered, lest the query wouldn’t be able to run on SQLite. Even though
the Core has always supported a JOIN of the more compact form, the ORM had to avoid it.

An additional issue would arise when producing joins across many-to-many relationships
where special criteria is present in the ON clause. Consider an eager load join like the following:

session.query(Order).outerjoin(Order.items)

Assuming a many-to-many from Order to Item which actually refers to a subclass
like Subitem, the SQL for the above would look like:

SELECT order.id, order.name
FROM order LEFT OUTER JOIN order_item ON order.id = order_item.order_id
LEFT OUTER JOIN item ON order_item.item_id = item.id AND item.type = 'subitem'

What’s wrong with the above query? Basically, that it will load many order /
order_item rows where the criteria of item.type == 'subitem' is not true.

As of SQLAlchemy 0.9, an entirely new approach has been taken. The ORM no longer
worries about nesting JOINs in the right side of an enclosing JOIN, and it now will
render these as often as possible while still returning the correct results. When
the SQL statement is passed to be compiled, the dialect compiler will rewrite the join
to suit the target backend, if that backend is known to not support a right-nested
JOIN (which currently is only SQLite - if other backends have this issue please
let us know!).

So a regular query(Parent).join(Subclass) will now usually produce a simpler
expression:

SELECT parent.id AS parent_id
FROM parent JOIN (
 base_table JOIN subclass_table
 ON base_table.id = subclass_table.id) ON parent.id = base_table.parent_id

Joined eager loads like query(Parent).options(joinedload(Parent.subclasses))
will alias the individual tables instead of wrapping in an ANON_1:

SELECT parent.*, base_table_1.*, subclass_table_1.* FROM parent
 LEFT OUTER JOIN (
 base_table AS base_table_1 JOIN subclass_table AS subclass_table_1
 ON base_table_1.id = subclass_table_1.id)
 ON parent.id = base_table_1.parent_id

Many-to-many joins and eagerloads will right nest the “secondary” and “right” tables:

SELECT order.id, order.name
FROM order LEFT OUTER JOIN
(order_item JOIN item ON order_item.item_id = item.id AND item.type = 'subitem')
ON order_item.order_id = order.id

All of these joins, when rendered with a Select statement that specifically
specifies use_labels=True, which is true for all the queries the ORM emits,
are candidates for “join rewriting”, which is the process of rewriting all those right-nested
joins into nested SELECT statements, while maintaining the identical labeling used by
the Select. So SQLite, the one database that won’t support this very
common SQL syntax even in 2013, shoulders the extra complexity itself,
with the above queries rewritten as:

-- sqlite only!
SELECT parent.id AS parent_id
 FROM parent JOIN (
 SELECT base_table.id AS base_table_id,
 base_table.parent_id AS base_table_parent_id,
 subclass_table.id AS subclass_table_id
 FROM base_table JOIN subclass_table ON base_table.id = subclass_table.id
) AS anon_1 ON parent.id = anon_1.base_table_parent_id

-- sqlite only!
SELECT parent.id AS parent_id, anon_1.subclass_table_1_id AS subclass_table_1_id,
 anon_1.base_table_1_id AS base_table_1_id,
 anon_1.base_table_1_parent_id AS base_table_1_parent_id
FROM parent LEFT OUTER JOIN (
 SELECT base_table_1.id AS base_table_1_id,
 base_table_1.parent_id AS base_table_1_parent_id,
 subclass_table_1.id AS subclass_table_1_id
 FROM base_table AS base_table_1
 JOIN subclass_table AS subclass_table_1 ON base_table_1.id = subclass_table_1.id
) AS anon_1 ON parent.id = anon_1.base_table_1_parent_id

-- sqlite only!
SELECT "order".id AS order_id
FROM "order" LEFT OUTER JOIN (
 SELECT order_item_1.order_id AS order_item_1_order_id,
 order_item_1.item_id AS order_item_1_item_id,
 item.id AS item_id, item.type AS item_type
FROM order_item AS order_item_1
 JOIN item ON item.id = order_item_1.item_id AND item.type IN (?)
) AS anon_1 ON "order".id = anon_1.order_item_1_order_id

Note

As of SQLAlchemy 1.1, the workarounds present in this feature for SQLite
will automatically disable themselves when SQLite version 3.7.16
or greater is detected, as SQLite has repaired support for right-nested joins.

The Join.alias(), aliased() and with_polymorphic() functions now
support a new argument, flat=True, which is used to construct aliases of joined-table
entities without embedding into a SELECT. This flag is not on by default, to help with
backwards compatibility - but now a “polymorhpic” selectable can be joined as a target
without any subqueries generated:

employee_alias = with_polymorphic(Person, [Engineer, Manager], flat=True)

session.query(Company).join(
 Company.employees.of_type(employee_alias)
).filter(
 or_(
 Engineer.primary_language == 'python',
 Manager.manager_name == 'dilbert'
)
)

Generates (everywhere except SQLite):

SELECT companies.company_id AS companies_company_id, companies.name AS companies_name
FROM companies JOIN (
 people AS people_1
 LEFT OUTER JOIN engineers AS engineers_1 ON people_1.person_id = engineers_1.person_id
 LEFT OUTER JOIN managers AS managers_1 ON people_1.person_id = managers_1.person_id
) ON companies.company_id = people_1.company_id
WHERE engineers.primary_language = %(primary_language_1)s
 OR managers.manager_name = %(manager_name_1)s

#2369 #2587

Right-nested inner joins available in joined eager loads

As of version 0.9.4, the above mentioned right-nested joining can be enabled
in the case of a joined eager load where an “outer” join is linked to an “inner”
on the right side.

Normally, a joined eager load chain like the following:

query(User).options(joinedload("orders", innerjoin=False).joinedload("items", innerjoin=True))

Would not produce an inner join; because of the LEFT OUTER JOIN from user->order,
joined eager loading could not use an INNER join from order->items without changing
the user rows that are returned, and would instead ignore the “chained” innerjoin=True
directive. How 0.9.0 should have delivered this would be that instead of:

FROM users LEFT OUTER JOIN orders ON <onclause> LEFT OUTER JOIN items ON <onclause>

the new “right-nested joins are OK” logic would kick in, and we’d get:

FROM users LEFT OUTER JOIN (orders JOIN items ON <onclause>) ON <onclause>

Since we missed the boat on that, to avoid further regressions we’ve added the above
functionality by specifying the string "nested" to joinedload.innerjoin:

query(User).options(joinedload("orders", innerjoin=False).joinedload("items", innerjoin="nested"))

This feature is new in 0.9.4.

#2976

ORM can efficiently fetch just-generated INSERT/UPDATE defaults using RETURNING

The Mapper has long supported an undocumented flag known as
eager_defaults=True. The effect of this flag is that when an INSERT or UPDATE
proceeds, and the row is known to have server-generated default values,
a SELECT would immediately follow it in order to “eagerly” load those new values.
Normally, the server-generated columns are marked as “expired” on the object,
so that no overhead is incurred unless the application actually accesses these
columns soon after the flush. The eager_defaults flag was therefore not
of much use as it could only decrease performance, and was present only to support
exotic event schemes where users needed default values to be available
immediately within the flush process.

In 0.9, as a result of the version id enhancements, eager_defaults can now
emit a RETURNING clause for these values, so on a backend with strong RETURNING
support in particular Postgresql, the ORM can fetch newly generated default
and SQL expression values inline with the INSERT or UPDATE. eager_defaults,
when enabled, makes use of RETURNING automatically when the target backend
and Table supports “implicit returning”.

Subquery Eager Loading will apply DISTINCT to the innermost SELECT for some queries

In an effort to reduce the number of duplicate rows that can be generated
by subquery eager loading when a many-to-one relationship is involved, a
DISTINCT keyword will be applied to the innermost SELECT when the join is
targeting columns that do not comprise the primary key, as in when loading
along a many to one.

That is, when subquery loading on a many-to-one from A->B:

SELECT b.id AS b_id, b.name AS b_name, anon_1.b_id AS a_b_id
FROM (SELECT DISTINCT a_b_id FROM a) AS anon_1
JOIN b ON b.id = anon_1.a_b_id

Since a.b_id is a non-distinct foreign key, DISTINCT is applied so that
redundant a.b_id are eliminated. The behavior can be turned on or off
unconditionally for a particular relationship() using the flag
distinct_target_key, setting the value to True for unconditionally
on, False for unconditionally off, and None for the feature to take
effect when the target SELECT is against columns that do not comprise a full
primary key. In 0.9, None is the default.

The option is also backported to 0.8 where the distinct_target_key
option defaults to False.

While the feature here is designed to help performance by eliminating
duplicate rows, the DISTINCT keyword in SQL itself can have a negative
performance impact. If columns in the SELECT are not indexed, DISTINCT
will likely perform an ORDER BY on the rowset which can be expensive.
By keeping the feature limited just to foreign keys which are hopefully
indexed in any case, it’s expected that the new defaults are reasonable.

The feature also does not eliminate every possible dupe-row scenario; if
a many-to-one is present elsewhere in the chain of joins, dupe rows may still
be present.

#2836

Backref handlers can now propagate more than one level deep

The mechanism by which attribute events pass along their “initiator”, that is
the object associated with the start of the event, has been changed; instead
of a AttributeImpl being passed, a new object attributes.Event
is passed instead; this object refers to the AttributeImpl as well as
to an “operation token”, representing if the operation is an append, remove,
or replace operation.

The attribute event system no longer looks at this “initiator” object in order to halt a
recursive series of attribute events. Instead, the system of preventing endless
recursion due to mutually-dependent backref handlers has been moved
to the ORM backref event handlers specifically, which now take over the role
of ensuring that a chain of mutually-dependent events (such as append to collection
A.bs, set many-to-one attribute B.a in response) doesn’t go into an endless recursion
stream. The rationale here is that the backref system, given more detail and control
over event propagation, can finally allow operations more than one level deep
to occur; the typical scenario is when a collection append results in a many-to-one
replacement operation, which in turn should cause the item to be removed from a
previous collection:

class Parent(Base):
 __tablename__ = 'parent'

 id = Column(Integer, primary_key=True)
 children = relationship("Child", backref="parent")

class Child(Base):
 __tablename__ = 'child'

 id = Column(Integer, primary_key=True)
 parent_id = Column(ForeignKey('parent.id'))

p1 = Parent()
p2 = Parent()
c1 = Child()

p1.children.append(c1)

assert c1.parent is p1 # backref event establishes c1.parent as p1

p2.children.append(c1)

assert c1.parent is p2 # backref event establishes c1.parent as p2
assert c1 not in p1.children # second backref event removes c1 from p1.children

Above, prior to this change, the c1 object would still have been present
in p1.children, even though it is also present in p2.children at the
same time; the backref handlers would have stopped at replacing c1.parent with
p2 instead of p1. In 0.9, using the more detailed Event
object as well as letting the backref handlers make more detailed decisions about
these objects, the propagation can continue onto removing c1 from p1.children
while maintaining a check against the propagation from going into an endless
recursive loop.

End-user code which a. makes use of the AttributeEvents.set(),
AttributeEvents.append(), or AttributeEvents.remove() events,
and b. initiates further attribute modification operations as a result of these
events may need to be modified to prevent recursive loops, as the attribute system
no longer stops a chain of events from propagating endlessly in the absence of the backref
event handlers. Additionally, code which depends upon the value of the initiator
will need to be adjusted to the new API, and furthermore must be ready for the
value of initiator to change from its original value within a string of
backref-initiated events, as the backref handlers may now swap in a
new initiator value for some operations.

#2789

The typing system now handles the task of rendering “literal bind” values

A new method is added to TypeEngine TypeEngine.literal_processor()
as well as TypeDecorator.process_literal_param() for TypeDecorator
which take on the task of rendering so-called “inline literal paramters” - parameters
that normally render as “bound” values, but are instead being rendered inline
into the SQL statement due to the compiler configuration. This feature is used
when generating DDL for constructs such as CheckConstraint, as well
as by Alembic when using constructs such as op.inline_literal(). Previously,
a simple “isinstance” check checked for a few basic types, and the “bind processor”
was used unconditionally, leading to such issues as strings being encoded into utf-8
prematurely.

Custom types written with TypeDecorator should continue to work in
“inline literal” scenarios, as the TypeDecorator.process_literal_param()
falls back to TypeDecorator.process_bind_param() by default, as these methods
usually handle a data manipulation, not as much how the data is presented to the
database. TypeDecorator.process_literal_param() can be specified to
specifically produce a string representing how a value should be rendered
into an inline DDL statement.

#2838

Schema identifiers now carry along their own quoting information

This change simplifies the Core’s usage of so-called “quote” flags, such
as the quote flag passed to Table and Column. The flag
is now internalized within the string name itself, which is now represented
as an instance of quoted_name, a string subclass. The
IdentifierPreparer now relies solely on the quoting preferences
reported by the quoted_name object rather than checking for any
explicit quote flags in most cases. The issue resolved here includes
that various case-sensitive methods such as Engine.has_table() as well
as similar methods within dialects now function with explicitly quoted names,
without the need to complicate or introduce backwards-incompatible changes
to those APIs (many of which are 3rd party) with the details of quoting flags -
in particular, a wider range of identifiers now function correctly with the
so-called “uppercase” backends like Oracle, Firebird, and DB2 (backends that
store and report upon table and column names using all uppercase for case
insensitive names).

The quoted_name object is used internally as needed; however if
other keywords require fixed quoting preferences, the class is available
publically.

#2812

Improved rendering of Boolean constants, NULL constants, conjunctions

New capabilities have been added to the true() and false()
constants, in particular in conjunction with and_() and or_()
functions as well as the behavior of the WHERE/HAVING clauses in conjunction
with these types, boolean types overall, and the null() constant.

Starting with a table such as this:

from sqlalchemy import Table, Boolean, Integer, Column, MetaData

t1 = Table('t', MetaData(), Column('x', Boolean()), Column('y', Integer))

A select construct will now render the boolean column as a binary expression
on backends that don’t feature true/false constant beahvior:

>>> from sqlalchemy import select, and_, false, true
>>> from sqlalchemy.dialects import mysql, postgresql

>>> print(select([t1]).where(t1.c.x).compile(dialect=mysql.dialect()))
SELECT t.x, t.y FROM t WHERE t.x = 1

The and_() and or_() constructs will now exhibit quasi
“short circuit” behavior, that is truncating a rendered expression, when a
true() or false() constant is present:

>>> print(select([t1]).where(and_(t1.c.y > 5, false())).compile(
... dialect=postgresql.dialect()))
SELECT t.x, t.y FROM t WHERE false

true() can be used as the base to build up an expression:

>>> expr = true()
>>> expr = expr & (t1.c.y > 5)
>>> print(select([t1]).where(expr))
SELECT t.x, t.y FROM t WHERE t.y > :y_1

The boolean constants true() and false() themselves render as
0 = 1 and 1 = 1 for a backend with no boolean constants:

>>> print(select([t1]).where(and_(t1.c.y > 5, false())).compile(
... dialect=mysql.dialect()))
SELECT t.x, t.y FROM t WHERE 0 = 1

Interpretation of None, while not particularly valid SQL, is at least
now consistent:

>>> print(select([t1.c.x]).where(None))
SELECT t.x FROM t WHERE NULL

>>> print(select([t1.c.x]).where(None).where(None))
SELECT t.x FROM t WHERE NULL AND NULL

>>> print(select([t1.c.x]).where(and_(None, None)))
SELECT t.x FROM t WHERE NULL AND NULL

#2804

Label constructs can now render as their name alone in an ORDER BY

For the case where a Label is used in both the columns clause
as well as the ORDER BY clause of a SELECT, the label will render as
just its name in the ORDER BY clause, assuming the underlying dialect
reports support of this feature.

E.g. an example like:

from sqlalchemy.sql import table, column, select, func

t = table('t', column('c1'), column('c2'))
expr = (func.foo(t.c.c1) + t.c.c2).label("expr")

stmt = select([expr]).order_by(expr)

print(stmt)

Prior to 0.9 would render as:

SELECT foo(t.c1) + t.c2 AS expr
FROM t ORDER BY foo(t.c1) + t.c2

And now renders as:

SELECT foo(t.c1) + t.c2 AS expr
FROM t ORDER BY expr

The ORDER BY only renders the label if the label isn’t further
embedded into an expression within the ORDER BY, other than a simple
ASC or DESC.

The above format works on all databases tested, but might have
compatibility issues with older database versions (MySQL 4? Oracle 8?
etc.). Based on user reports we can add rules that will disable the
feature based on database version detection.

#1068

RowProxy now has tuple-sorting behavior

The RowProxy object acts much like a tuple, but up until now
would not sort as a tuple if a list of them were sorted using sorted().
The __eq__() method now compares both sides as a tuple and also
an __lt__() method has been added:

users.insert().execute(
 dict(user_id=1, user_name='foo'),
 dict(user_id=2, user_name='bar'),
 dict(user_id=3, user_name='def'),
)

rows = users.select().order_by(users.c.user_name).execute().fetchall()

eq_(rows, [(2, 'bar'), (3, 'def'), (1, 'foo')])

eq_(sorted(rows), [(1, 'foo'), (2, 'bar'), (3, 'def')])

#2848

A bindparam() construct with no type gets upgraded via copy when a type is available

The logic which “upgrades” a bindparam() construct to take on the
type of the enclosing expression has been improved in two ways. First, the
bindparam() object is copied before the new type is assigned, so that
the given bindparam() is not mutated in place. Secondly, this same
operation occurs when an Insert or Update construct is compiled,
regarding the “values” that were set in the statement via the ValuesBase.values()
method.

If given an untyped bindparam():

bp = bindparam("some_col")

If we use this parameter as follows:

expr = mytable.c.col == bp

The type for bp remains as NullType, however if mytable.c.col
is of type String, then expr.right, that is the right side of the
binary expression, will take on the String type. Previously, bp itself
would have been changed in place to have String as its type.

Similarly, this operation occurs in an Insert or Update:

stmt = mytable.update().values(col=bp)

Above, bp remains unchanged, but the String type will be used when
the statement is executed, which we can see by examining the binds dictionary:

>>> compiled = stmt.compile()
>>> compiled.binds['some_col'].type
String

The feature allows custom types to take their expected effect within INSERT/UPDATE
statements without needing to explicitly specify those types within every
bindparam() expression.

The potentially backwards-compatible changes involve two unlikely
scenarios. Since the bound parameter is
cloned, users should not be relying upon making in-place changes to a
bindparam() construct once created. Additionally, code which uses
bindparam() within an Insert or Update statement
which is relying on the fact that the bindparam() is not typed according
to the column being assigned towards will no longer function in that way.

#2850

Columns can reliably get their type from a column referred to via ForeignKey

There’s a long standing behavior which says that a Column can be
declared without a type, as long as that Column is referred to
by a ForeignKeyConstraint, and the type from the referenced column
will be copied into this one. The problem has been that this feature never
worked very well and wasn’t maintained. The core issue was that the
ForeignKey object doesn’t know what target Column it
refers to until it is asked, typically the first time the foreign key is used
to construct a Join. So until that time, the parent Column
would not have a type, or more specifically, it would have a default type
of NullType.

While it’s taken a long time, the work to reorganize the initialization of
ForeignKey objects has been completed such that this feature can
finally work acceptably. At the core of the change is that the ForeignKey.column
attribute no longer lazily initializes the location of the target Column;
the issue with this system was that the owning Column would be stuck
with NullType as its type until the ForeignKey happened to
be used.

In the new version, the ForeignKey coordinates with the eventual
Column it will refer to using internal attachment events, so that the
moment the referencing Column is associated with the
MetaData, all ForeignKey objects that
refer to it will be sent a message that they need to initialize their parent
column. This system is more complicated but works more solidly; as a bonus,
there are now tests in place for a wide variety of Column /
ForeignKey configuration scenarios and error messages have been
improved to be very specific to no less than seven different error conditions.

Scenarios which now work correctly include:

	The type on a Column is immediately present as soon as the
target Column becomes associated with the same MetaData;
this works no matter which side is configured first:

>>> from sqlalchemy import Table, MetaData, Column, Integer, ForeignKey
>>> metadata = MetaData()
>>> t2 = Table('t2', metadata, Column('t1id', ForeignKey('t1.id')))
>>> t2.c.t1id.type
NullType()
>>> t1 = Table('t1', metadata, Column('id', Integer, primary_key=True))
>>> t2.c.t1id.type
Integer()

	The system now works with ForeignKeyConstraint as well:

>>> from sqlalchemy import Table, MetaData, Column, Integer, ForeignKeyConstraint
>>> metadata = MetaData()
>>> t2 = Table('t2', metadata,
... Column('t1a'), Column('t1b'),
... ForeignKeyConstraint(['t1a', 't1b'], ['t1.a', 't1.b']))
>>> t2.c.t1a.type
NullType()
>>> t2.c.t1b.type
NullType()
>>> t1 = Table('t1', metadata,
... Column('a', Integer, primary_key=True),
... Column('b', Integer, primary_key=True))
>>> t2.c.t1a.type
Integer()
>>> t2.c.t1b.type
Integer()

	It even works for “multiple hops” - that is, a ForeignKey that refers to a
Column that refers to another Column:

>>> from sqlalchemy import Table, MetaData, Column, Integer, ForeignKey
>>> metadata = MetaData()
>>> t2 = Table('t2', metadata, Column('t1id', ForeignKey('t1.id')))
>>> t3 = Table('t3', metadata, Column('t2t1id', ForeignKey('t2.t1id')))
>>> t2.c.t1id.type
NullType()
>>> t3.c.t2t1id.type
NullType()
>>> t1 = Table('t1', metadata, Column('id', Integer, primary_key=True))
>>> t2.c.t1id.type
Integer()
>>> t3.c.t2t1id.type
Integer()

#1765

Dialect Changes

Firebird fdb is now the default Firebird dialect.

The fdb dialect is now used if an engine is created without a dialect
specifier, i.e. firebird://. fdb is a kinterbasdb compatible
DBAPI which per the Firebird project is now their official Python driver.

#2504

Firebird fdb and kinterbasdb set retaining=False by default

Both the fdb and kinterbasdb DBAPIs support a flag retaining=True
which can be passed to the commit() and rollback() methods of its
connection. The documented rationale for this flag is so that the DBAPI
can re-use internal transaction state for subsequent transactions, for the
purposes of improving performance. However, newer documentation refers
to analyses of Firebird’s “garbage collection” which expresses that this flag
can have a negative effect on the database’s ability to process cleanup
tasks, and has been reported as lowering performance as a result.

It’s not clear how this flag is actually usable given this information,
and as it appears to be only a performance enhancing feature, it now defaults
to False. The value can be controlled by passing the flag retaining=True
to the create_engine() call. This is a new flag which is added as of
0.8.2, so applications on 0.8.2 can begin setting this to True or False
as desired.

See also

sqlalchemy.dialects.firebird.fdb

sqlalchemy.dialects.firebird.kinterbasdb

http://pythonhosted.org/fdb/usage-guide.html#retaining-transactions - information
on the “retaining” flag.

#2763

What’s New in SQLAlchemy 0.8?

About this Document

This document describes changes between SQLAlchemy version 0.7,
undergoing maintenance releases as of October, 2012,
and SQLAlchemy version 0.8, which is expected for release
in early 2013.

Document date: October 25, 2012
Updated: March 9, 2013

Introduction

This guide introduces what’s new in SQLAlchemy version 0.8,
and also documents changes which affect users migrating
their applications from the 0.7 series of SQLAlchemy to 0.8.

SQLAlchemy releases are closing in on 1.0, and each new
version since 0.5 features fewer major usage changes. Most
applications that are settled into modern 0.7 patterns
should be movable to 0.8 with no changes. Applications that
use 0.6 and even 0.5 patterns should be directly migratable
to 0.8 as well, though larger applications may want to test
with each interim version.

Platform Support

Targeting Python 2.5 and Up Now

SQLAlchemy 0.8 will target Python 2.5 and forward;
compatibility for Python 2.4 is being dropped.

The internals will be able to make usage of Python ternaries
(that is, x if y else z) which will improve things
versus the usage of y and x or z, which naturally has
been the source of some bugs, as well as context managers
(that is, with:) and perhaps in some cases
try:/except:/else: blocks which will help with code
readability.

SQLAlchemy will eventually drop 2.5 support as well - when
2.6 is reached as the baseline, SQLAlchemy will move to use
2.6/3.3 in-place compatibility, removing the usage of the
2to3 tool and maintaining a source base that works with
Python 2 and 3 at the same time.

New ORM Features

Rewritten relationship() mechanics

0.8 features a much improved and capable system regarding
how relationship() determines how to join between two
entities. The new system includes these features:

	The primaryjoin argument is no longer needed when
constructing a relationship() against a class that
has multiple foreign key paths to the target. Only the
foreign_keys argument is needed to specify those
columns which should be included:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 child_id_one = Column(Integer, ForeignKey('child.id'))
 child_id_two = Column(Integer, ForeignKey('child.id'))

 child_one = relationship("Child", foreign_keys=child_id_one)
 child_two = relationship("Child", foreign_keys=child_id_two)

class Child(Base):
 __tablename__ = 'child'
 id = Column(Integer, primary_key=True)

	relationships against self-referential, composite foreign
keys where a column points to itself are now
supported. The canonical case is as follows:

class Folder(Base):
 __tablename__ = 'folder'
 __table_args__ = (
 ForeignKeyConstraint(
 ['account_id', 'parent_id'],
 ['folder.account_id', 'folder.folder_id']),
)

 account_id = Column(Integer, primary_key=True)
 folder_id = Column(Integer, primary_key=True)
 parent_id = Column(Integer)
 name = Column(String)

 parent_folder = relationship("Folder",
 backref="child_folders",
 remote_side=[account_id, folder_id]
)

Above, the Folder refers to its parent Folder
joining from account_id to itself, and parent_id
to folder_id. When SQLAlchemy constructs an auto-
join, no longer can it assume all columns on the “remote”
side are aliased, and all columns on the “local” side are
not - the account_id column is on both sides. So
the internal relationship mechanics were totally rewritten
to support an entirely different system whereby two copies
of account_id are generated, each containing different
annotations to determine their role within the
statement. Note the join condition within a basic eager
load:

SELECT
 folder.account_id AS folder_account_id,
 folder.folder_id AS folder_folder_id,
 folder.parent_id AS folder_parent_id,
 folder.name AS folder_name,
 folder_1.account_id AS folder_1_account_id,
 folder_1.folder_id AS folder_1_folder_id,
 folder_1.parent_id AS folder_1_parent_id,
 folder_1.name AS folder_1_name
FROM folder
 LEFT OUTER JOIN folder AS folder_1
 ON
 folder_1.account_id = folder.account_id
 AND folder.folder_id = folder_1.parent_id

WHERE folder.folder_id = ? AND folder.account_id = ?

	Previously difficult custom join conditions, like those involving
functions and/or CASTing of types, will now function as
expected in most cases:

class HostEntry(Base):
 __tablename__ = 'host_entry'

 id = Column(Integer, primary_key=True)
 ip_address = Column(INET)
 content = Column(String(50))

 # relationship() using explicit foreign_keys, remote_side
 parent_host = relationship("HostEntry",
 primaryjoin=ip_address == cast(content, INET),
 foreign_keys=content,
 remote_side=ip_address
)

The new relationship() mechanics make use of a
SQLAlchemy concept known as annotations. These annotations
are also available to application code explicitly via
the foreign() and remote() functions, either
as a means to improve readability for advanced configurations
or to directly inject an exact configuration, bypassing
the usual join-inspection heuristics:

from sqlalchemy.orm import foreign, remote

class HostEntry(Base):
 __tablename__ = 'host_entry'

 id = Column(Integer, primary_key=True)
 ip_address = Column(INET)
 content = Column(String(50))

 # relationship() using explicit foreign() and remote() annotations
 # in lieu of separate arguments
 parent_host = relationship("HostEntry",
 primaryjoin=remote(ip_address) == \
 cast(foreign(content), INET),
)

See also

Configuring how Relationship Joins - a newly revised section on relationship()
detailing the latest techniques for customizing related attributes and collection
access.

#1401 #610

New Class/Object Inspection System

Lots of SQLAlchemy users are writing systems that require
the ability to inspect the attributes of a mapped class,
including being able to get at the primary key columns,
object relationships, plain attributes, and so forth,
typically for the purpose of building data-marshalling
systems, like JSON/XML conversion schemes and of course form
libraries galore.

Originally, the Table and Column model were the
original inspection points, which have a well-documented
system. While SQLAlchemy ORM models are also fully
introspectable, this has never been a fully stable and
supported feature, and users tended to not have a clear idea
how to get at this information.

0.8 now provides a consistent, stable and fully
documented API for this purpose, including an inspection
system which works on mapped classes, instances, attributes,
and other Core and ORM constructs. The entrypoint to this
system is the core-level inspect() function.
In most cases, the object being inspected
is one already part of SQLAlchemy’s system,
such as Mapper, InstanceState,
Inspector. In some cases, new objects have been
added with the job of providing the inspection API in
certain contexts, such as AliasedInsp and
AttributeState.

A walkthrough of some key capabilities follows:

>>> class User(Base):
... __tablename__ = 'user'
... id = Column(Integer, primary_key=True)
... name = Column(String)
... name_syn = synonym(name)
... addresses = relationship("Address")
...

>>> # universal entry point is inspect()
>>> b = inspect(User)

>>> # b in this case is the Mapper
>>> b
<Mapper at 0x101521950; User>

>>> # Column namespace
>>> b.columns.id
Column('id', Integer(), table=<user>, primary_key=True, nullable=False)

>>> # mapper's perspective of the primary key
>>> b.primary_key
(Column('id', Integer(), table=<user>, primary_key=True, nullable=False),)

>>> # MapperProperties available from .attrs
>>> b.attrs.keys()
['name_syn', 'addresses', 'id', 'name']

>>> # .column_attrs, .relationships, etc. filter this collection
>>> b.column_attrs.keys()
['id', 'name']

>>> list(b.relationships)
[<sqlalchemy.orm.properties.RelationshipProperty object at 0x1015212d0>]

>>> # they are also namespaces
>>> b.column_attrs.id
<sqlalchemy.orm.properties.ColumnProperty object at 0x101525090>

>>> b.relationships.addresses
<sqlalchemy.orm.properties.RelationshipProperty object at 0x1015212d0>

>>> # point inspect() at a mapped, class level attribute,
>>> # returns the attribute itself
>>> b = inspect(User.addresses)
>>> b
<sqlalchemy.orm.attributes.InstrumentedAttribute object at 0x101521fd0>

>>> # From here we can get the mapper:
>>> b.mapper
<Mapper at 0x101525810; Address>

>>> # the parent inspector, in this case a mapper
>>> b.parent
<Mapper at 0x101521950; User>

>>> # an expression
>>> print(b.expression)
"user".id = address.user_id

>>> # inspect works on instances
>>> u1 = User(id=3, name='x')
>>> b = inspect(u1)

>>> # it returns the InstanceState
>>> b
<sqlalchemy.orm.state.InstanceState object at 0x10152bed0>

>>> # similar attrs accessor refers to the
>>> b.attrs.keys()
['id', 'name_syn', 'addresses', 'name']

>>> # attribute interface - from attrs, you get a state object
>>> b.attrs.id
<sqlalchemy.orm.state.AttributeState object at 0x10152bf90>

>>> # this object can give you, current value...
>>> b.attrs.id.value
3

>>> # ... current history
>>> b.attrs.id.history
History(added=[3], unchanged=(), deleted=())

>>> # InstanceState can also provide session state information
>>> # lets assume the object is persistent
>>> s = Session()
>>> s.add(u1)
>>> s.commit()

>>> # now we can get primary key identity, always
>>> # works in query.get()
>>> b.identity
(3,)

>>> # the mapper level key
>>> b.identity_key
(<class '__main__.User'>, (3,))

>>> # state within the session
>>> b.persistent, b.transient, b.deleted, b.detached
(True, False, False, False)

>>> # owning session
>>> b.session
<sqlalchemy.orm.session.Session object at 0x101701150>

See also

Runtime Inspection API

#2208

New with_polymorphic() feature, can be used anywhere

The Query.with_polymorphic() method allows the user to
specify which tables should be present when querying against
a joined-table entity. Unfortunately the method is awkward
and only applies to the first entity in the list, and
otherwise has awkward behaviors both in usage as well as
within the internals. A new enhancement to the
aliased() construct has been added called
with_polymorphic() which allows any entity to be
“aliased” into a “polymorphic” version of itself, freely
usable anywhere:

from sqlalchemy.orm import with_polymorphic
palias = with_polymorphic(Person, [Engineer, Manager])
session.query(Company).\
 join(palias, Company.employees).\
 filter(or_(Engineer.language=='java', Manager.hair=='pointy'))

See also

Basic Control of Which Tables are Queried - newly updated documentation for polymorphic
loading control.

#2333

of_type() works with alias(), with_polymorphic(), any(), has(), joinedload(), subqueryload(), contains_eager()

The PropComparator.of_type() method is used to specify
a specific subtype to use when constructing SQL expressions along
a relationship() that has a polymorphic mapping as its target.
This method can now be used to target any number of target subtypes,
by combining it with the new with_polymorphic() function:

use eager loading in conjunction with with_polymorphic targets
Job_P = with_polymorphic(Job, [SubJob, ExtraJob], aliased=True)
q = s.query(DataContainer).\
 join(DataContainer.jobs.of_type(Job_P)).\
 options(contains_eager(DataContainer.jobs.of_type(Job_P)))

The method now works equally well in most places a regular relationship
attribute is accepted, including with loader functions like
joinedload(), subqueryload(), contains_eager(),
and comparison methods like PropComparator.any()
and PropComparator.has():

use eager loading in conjunction with with_polymorphic targets
Job_P = with_polymorphic(Job, [SubJob, ExtraJob], aliased=True)
q = s.query(DataContainer).\
 join(DataContainer.jobs.of_type(Job_P)).\
 options(contains_eager(DataContainer.jobs.of_type(Job_P)))

pass subclasses to eager loads (implicitly applies with_polymorphic)
q = s.query(ParentThing).\
 options(
 joinedload_all(
 ParentThing.container,
 DataContainer.jobs.of_type(SubJob)
))

control self-referential aliasing with any()/has()
Job_A = aliased(Job)
q = s.query(Job).join(DataContainer.jobs).\
 filter(
 DataContainer.jobs.of_type(Job_A).\
 any(and_(Job_A.id < Job.id, Job_A.type=='fred')
)
)

See also

Creating Joins to Specific Subtypes

#2438 #1106

Events Can Be Applied to Unmapped Superclasses

Mapper and instance events can now be associated with an unmapped
superclass, where those events will be propagated to subclasses
as those subclasses are mapped. The propagate=True flag
should be used. This feature allows events to be associated
with a declarative base class:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

@event.listens_for("load", Base, propagate=True)
def on_load(target, context):
 print("New instance loaded:", target)

on_load() will be applied to SomeClass
class SomeClass(Base):
 __tablename__ = 'sometable'

 # ...

#2585

Declarative Distinguishes Between Modules/Packages

A key feature of Declarative is the ability to refer
to other mapped classes using their string name. The
registry of class names is now sensitive to the owning
module and package of a given class. The classes
can be referred to via dotted name in expressions:

class Snack(Base):
 # ...

 peanuts = relationship("nuts.Peanut",
 primaryjoin="nuts.Peanut.snack_id == Snack.id")

The resolution allows that any full or partial
disambiguating package name can be used. If the
path to a particular class is still ambiguous,
an error is raised.

#2338

New DeferredReflection Feature in Declarative

The “deferred reflection” example has been moved to a
supported feature within Declarative. This feature allows
the construction of declarative mapped classes with only
placeholder Table metadata, until a prepare() step
is called, given an Engine with which to reflect fully
all tables and establish actual mappings. The system
supports overriding of columns, single and joined
inheritance, as well as distinct bases-per-engine. A full
declarative configuration can now be created against an
existing table that is assembled upon engine creation time
in one step:

class ReflectedOne(DeferredReflection, Base):
 __abstract__ = True

class ReflectedTwo(DeferredReflection, Base):
 __abstract__ = True

class MyClass(ReflectedOne):
 __tablename__ = 'mytable'

class MyOtherClass(ReflectedOne):
 __tablename__ = 'myothertable'

class YetAnotherClass(ReflectedTwo):
 __tablename__ = 'yetanothertable'

ReflectedOne.prepare(engine_one)
ReflectedTwo.prepare(engine_two)

See also

DeferredReflection

#2485

ORM Classes Now Accepted by Core Constructs

While the SQL expressions used with Query.filter(),
such as User.id == 5, have always been compatible for
use with core constructs such as select(), the mapped
class itself would not be recognized when passed to select(),
Select.select_from(), or Select.correlate().
A new SQL registration system allows a mapped class to be
accepted as a FROM clause within the core:

from sqlalchemy import select

stmt = select([User]).where(User.id == 5)

Above, the mapped User class will expand into
the Table to which User is mapped.

#2245

Query.update() supports UPDATE..FROM

The new UPDATE..FROM mechanics work in query.update().
Below, we emit an UPDATE against SomeEntity, adding
a FROM clause (or equivalent, depending on backend)
against SomeOtherEntity:

query(SomeEntity).\
 filter(SomeEntity.id==SomeOtherEntity.id).\
 filter(SomeOtherEntity.foo=='bar').\
 update({"data":"x"})

In particular, updates to joined-inheritance
entities are supported, provided the target of the UPDATE is local to the
table being filtered on, or if the parent and child tables
are mixed, they are joined explicitly in the query. Below,
given Engineer as a joined subclass of Person:

query(Engineer).\
 filter(Person.id==Engineer.id).\
 filter(Person.name=='dilbert').\
 update({"engineer_data":"java"})

would produce:

UPDATE engineer SET engineer_data='java' FROM person
WHERE person.id=engineer.id AND person.name='dilbert'

#2365

rollback() will only roll back “dirty” objects from a begin_nested()

A behavioral change that should improve efficiency for those
users using SAVEPOINT via Session.begin_nested() - upon
rollback(), only those objects that were made dirty
since the last flush will be expired, the rest of the
Session remains intact. This because a ROLLBACK to a
SAVEPOINT does not terminate the containing transaction’s
isolation, so no expiry is needed except for those changes
that were not flushed in the current transaction.

#2452

Caching Example now uses dogpile.cache

The caching example now uses dogpile.cache.
Dogpile.cache is a rewrite of the caching portion
of Beaker, featuring vastly simpler and faster operation,
as well as support for distributed locking.

Note that the SQLAlchemy APIs used by the Dogpile example as well
as the previous Beaker example have changed slightly, in particular
this change is needed as illustrated in the Beaker example:

--- examples/beaker_caching/caching_query.py
+++ examples/beaker_caching/caching_query.py
@@ -222,7 +222,8 @@

 """
 if query._current_path:
- mapper, key = query._current_path[-2:]
+ mapper, prop = query._current_path[-2:]
+ key = prop.key

 for cls in mapper.class_.__mro__:
 if (cls, key) in self._relationship_options:

See also

dogpile_caching

#2589

New Core Features

Fully extensible, type-level operator support in Core

The Core has to date never had any system of adding support
for new SQL operators to Column and other expression
constructs, other than the ColumnOperators.op() method
which is “just enough” to make things work. There has also
never been any system in place for Core which allows the
behavior of existing operators to be overridden. Up until
now, the only way operators could be flexibly redefined was
in the ORM layer, using column_property() given a
comparator_factory argument. Third party libraries
like GeoAlchemy therefore were forced to be ORM-centric and
rely upon an array of hacks to apply new opertions as well
as to get them to propagate correctly.

The new operator system in Core adds the one hook that’s
been missing all along, which is to associate new and
overridden operators with types. Since after all, it’s
not really a column, CAST operator, or SQL function that
really drives what kinds of operations are present, it’s the
type of the expression. The implementation details are
minimal - only a few extra methods are added to the core
ColumnElement type so that it consults its
TypeEngine object for an optional set of operators.
New or revised operations can be associated with any type,
either via subclassing of an existing type, by using
TypeDecorator, or “globally across-the-board” by
attaching a new TypeEngine.Comparator object to an existing type
class.

For example, to add logarithm support to Numeric types:

from sqlalchemy.types import Numeric
from sqlalchemy.sql import func

class CustomNumeric(Numeric):
 class comparator_factory(Numeric.Comparator):
 def log(self, other):
 return func.log(self.expr, other)

The new type is usable like any other type:

data = Table('data', metadata,
 Column('id', Integer, primary_key=True),
 Column('x', CustomNumeric(10, 5)),
 Column('y', CustomNumeric(10, 5))
)

stmt = select([data.c.x.log(data.c.y)]).where(data.c.x.log(2) < value)
print(conn.execute(stmt).fetchall())

New features which have come from this immediately include
support for Postgresql’s HSTORE type, as well as new
operations associated with Postgresql’s ARRAY
type. It also paves the way for existing types to acquire
lots more operators that are specific to those types, such
as more string, integer and date operators.

See also

Redefining and Creating New Operators

HSTORE

#2547

Multiple-VALUES support for Insert

The Insert.values() method now supports a list of dictionaries,
which will render a multi-VALUES statement such as
VALUES (<row1>), (<row2>), This is only relevant to backends which
support this syntax, including Postgresql, SQLite, and MySQL. It is
not the same thing as the usual executemany() style of INSERT which
remains unchanged:

users.insert().values([
 {"name": "some name"},
 {"name": "some other name"},
 {"name": "yet another name"},
])

See also

Insert.values()

#2623

Type Expressions

SQL expressions can now be associated with types. Historically,
TypeEngine has always allowed Python-side functions which
receive both bound parameters as well as result row values, passing
them through a Python side conversion function on the way to/back from
the database. The new feature allows similar
functionality, except on the database side:

from sqlalchemy.types import String
from sqlalchemy import func, Table, Column, MetaData

class LowerString(String):
 def bind_expression(self, bindvalue):
 return func.lower(bindvalue)

 def column_expression(self, col):
 return func.lower(col)

metadata = MetaData()
test_table = Table(
 'test_table',
 metadata,
 Column('data', LowerString)
)

Above, the LowerString type defines a SQL expression that will be emitted
whenever the test_table.c.data column is rendered in the columns
clause of a SELECT statement:

>>> print(select([test_table]).where(test_table.c.data == 'HI'))
SELECT lower(test_table.data) AS data
FROM test_table
WHERE test_table.data = lower(:data_1)

This feature is also used heavily by the new release of GeoAlchemy,
to embed PostGIS expressions inline in SQL based on type rules.

See also

Applying SQL-level Bind/Result Processing

#1534

Core Inspection System

The inspect() function introduced in New Class/Object Inspection System
also applies to the core. Applied to an Engine it produces
an Inspector object:

from sqlalchemy import inspect
from sqlalchemy import create_engine

engine = create_engine("postgresql://scott:tiger@localhost/test")
insp = inspect(engine)
print(insp.get_table_names())

It can also be applied to any ClauseElement, which returns
the ClauseElement itself, such as Table, Column,
Select, etc. This allows it to work fluently between Core
and ORM constructs.

New Method Select.correlate_except()

select() now has a method Select.correlate_except()
which specifies “correlate on all FROM clauses except those
specified”. It can be used for mapping scenarios where
a related subquery should correlate normally, except
against a particular target selectable:

class SnortEvent(Base):
 __tablename__ = "event"

 id = Column(Integer, primary_key=True)
 signature = Column(Integer, ForeignKey("signature.id"))

 signatures = relationship("Signature", lazy=False)

class Signature(Base):
 __tablename__ = "signature"

 id = Column(Integer, primary_key=True)

 sig_count = column_property(
 select([func.count('*')]).\
 where(SnortEvent.signature == id).
 correlate_except(SnortEvent)
)

See also

Select.correlate_except()

Postgresql HSTORE type

Support for Postgresql’s HSTORE type is now available as
postgresql.HSTORE. This type makes great usage
of the new operator system to provide a full range of operators
for HSTORE types, including index access, concatenation,
and containment methods such as
has_key(),
has_any(), and
matrix():

from sqlalchemy.dialects.postgresql import HSTORE

data = Table('data_table', metadata,
 Column('id', Integer, primary_key=True),
 Column('hstore_data', HSTORE)
)

engine.execute(
 select([data.c.hstore_data['some_key']])
).scalar()

engine.execute(
 select([data.c.hstore_data.matrix()])
).scalar()

See also

postgresql.HSTORE

postgresql.hstore

#2606

Enhanced Postgresql ARRAY type

The postgresql.ARRAY type will accept an optional
“dimension” argument, pinning it to a fixed number of
dimensions and greatly improving efficiency when retrieving
results:

old way, still works since PG supports N-dimensions per row:
Column("my_array", postgresql.ARRAY(Integer))

new way, will render ARRAY with correct number of [] in DDL,
will process binds and results more efficiently as we don't need
to guess how many levels deep to go
Column("my_array", postgresql.ARRAY(Integer, dimensions=2))

The type also introduces new operators, using the new type-specific
operator framework. New operations include indexed access:

result = conn.execute(
 select([mytable.c.arraycol[2]])
)

slice access in SELECT:

result = conn.execute(
 select([mytable.c.arraycol[2:4]])
)

slice updates in UPDATE:

conn.execute(
 mytable.update().values({mytable.c.arraycol[2:3]: [7, 8]})
)

freestanding array literals:

>>> from sqlalchemy.dialects import postgresql
>>> conn.scalar(
... select([
... postgresql.array([1, 2]) + postgresql.array([3, 4, 5])
...])
...)
[1, 2, 3, 4, 5]

array concatenation, where below, the right side [4, 5, 6] is coerced into an array literal:

select([mytable.c.arraycol + [4, 5, 6]])

See also

postgresql.ARRAY

postgresql.array

#2441

New, configurable DATE, TIME types for SQLite

SQLite has no built-in DATE, TIME, or DATETIME types, and
instead provides some support for storage of date and time
values either as strings or integers. The date and time
types for SQLite are enhanced in 0.8 to be much more
configurable as to the specific format, including that the
“microseconds” portion is optional, as well as pretty much
everything else.

Column('sometimestamp', sqlite.DATETIME(truncate_microseconds=True))
Column('sometimestamp', sqlite.DATETIME(
 storage_format=(
 "%(year)04d%(month)02d%(day)02d"
 "%(hour)02d%(minute)02d%(second)02d%(microsecond)06d"
),
 regexp="(\d{4})(\d{2})(\d{2})(\d{2})(\d{2})(\d{2})(\d{6})"
)
)
Column('somedate', sqlite.DATE(
 storage_format="%(month)02d/%(day)02d/%(year)04d",
 regexp="(?P<month>\d+)/(?P<day>\d+)/(?P<year>\d+)",
)
)

Huge thanks to Nate Dub for the sprinting on this at Pycon 2012.

See also

sqlite.DATETIME

sqlite.DATE

sqlite.TIME

#2363

“COLLATE” supported across all dialects; in particular MySQL, Postgresql, SQLite

The “collate” keyword, long accepted by the MySQL dialect, is now established
on all String types and will render on any backend, including
when features such as MetaData.create_all() and cast() is used:

>>> stmt = select([cast(sometable.c.somechar, String(20, collation='utf8'))])
>>> print(stmt)
SELECT CAST(sometable.somechar AS VARCHAR(20) COLLATE "utf8") AS anon_1
FROM sometable

See also

String

#2276

“Prefixes” now supported for update(), delete()

Geared towards MySQL, a “prefix” can be rendered within any of
these constructs. E.g.:

stmt = table.delete().prefix_with("LOW_PRIORITY", dialect="mysql")

stmt = table.update().prefix_with("LOW_PRIORITY", dialect="mysql")

The method is new in addition to those which already existed
on insert(), select() and Query.

See also

Update.prefix_with()

Delete.prefix_with()

Insert.prefix_with()

Select.prefix_with()

Query.prefix_with()

#2431

Behavioral Changes

The consideration of a “pending” object as an “orphan” has been made more aggressive

This is a late add to the 0.8 series, however it is hoped that the new behavior
is generally more consistent and intuitive in a wider variety of
situations. The ORM has since at least version 0.4 included behavior
such that an object that’s “pending”, meaning that it’s
associated with a Session but hasn’t been inserted into the database
yet, is automatically expunged from the Session when it becomes an “orphan”,
which means it has been de-associated with a parent object that refers to it
with delete-orphan cascade on the configured relationship(). This
behavior is intended to approximately mirror the behavior of a persistent
(that is, already inserted) object, where the ORM will emit a DELETE for such
objects that become orphans based on the interception of detachment events.

The behavioral change comes into play for objects that
are referred to by multiple kinds of parents that each specify delete-orphan; the
typical example is an association object that bridges two other kinds of objects
in a many-to-many pattern. Previously, the behavior was such that the
pending object would be expunged only when de-associated with all of its parents.
With the behavioral change, the pending object
is expunged as soon as it is de-associated from any of the parents that it was
previously associated with. This behavior is intended to more closely
match that of persistent objects, which are deleted as soon
as they are de-associated from any parent.

The rationale for the older behavior dates back
at least to version 0.4, and was basically a defensive decision to try to alleviate
confusion when an object was still being constructed for INSERT. But the reality
is that the object is re-associated with the Session as soon as it is
attached to any new parent in any case.

It’s still possible to flush an object
that is not associated with all of its required parents, if the object was either
not associated with those parents in the first place, or if it was expunged, but then
re-associated with a Session via a subsequent attachment event but still
not fully associated. In this situation, it is expected that the database
would emit an integrity error, as there are likely NOT NULL foreign key columns
that are unpopulated. The ORM makes the decision to let these INSERT attempts
occur, based on the judgment that an object that is only partially associated with
its required parents but has been actively associated with some of them,
is more often than not a user error, rather than an intentional
omission which should be silently skipped - silently skipping the INSERT here would
make user errors of this nature very hard to debug.

The old behavior, for applications that might have been relying upon it, can be re-enabled for
any Mapper by specifying the flag legacy_is_orphan as a mapper
option.

The new behavior allows the following test case to work:

from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship, backref
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(64))

class UserKeyword(Base):
 __tablename__ = 'user_keyword'
 user_id = Column(Integer, ForeignKey('user.id'), primary_key=True)
 keyword_id = Column(Integer, ForeignKey('keyword.id'), primary_key=True)

 user = relationship(User,
 backref=backref("user_keywords",
 cascade="all, delete-orphan")
)

 keyword = relationship("Keyword",
 backref=backref("user_keywords",
 cascade="all, delete-orphan")
)

 # uncomment this to enable the old behavior
 # __mapper_args__ = {"legacy_is_orphan": True}

class Keyword(Base):
 __tablename__ = 'keyword'
 id = Column(Integer, primary_key=True)
 keyword = Column('keyword', String(64))

from sqlalchemy import create_engine
from sqlalchemy.orm import Session

note we're using Postgresql to ensure that referential integrity
is enforced, for demonstration purposes.
e = create_engine("postgresql://scott:tiger@localhost/test", echo=True)

Base.metadata.drop_all(e)
Base.metadata.create_all(e)

session = Session(e)

u1 = User(name="u1")
k1 = Keyword(keyword="k1")

session.add_all([u1, k1])

uk1 = UserKeyword(keyword=k1, user=u1)

previously, if session.flush() were called here,
this operation would succeed, but if session.flush()
were not called here, the operation fails with an
integrity error.
session.flush()
del u1.user_keywords[0]

session.commit()

#2655

The after_attach event fires after the item is associated with the Session instead of before; before_attach added

Event handlers which use after_attach can now assume the
given instance is associated with the given session:

@event.listens_for(Session, "after_attach")
def after_attach(session, instance):
 assert instance in session

Some use cases require that it work this way. However,
other use cases require that the item is not yet part of
the session, such as when a query, intended to load some
state required for an instance, emits autoflush first and
would otherwise prematurely flush the target object. Those
use cases should use the new “before_attach” event:

@event.listens_for(Session, "before_attach")
def before_attach(session, instance):
 instance.some_necessary_attribute = session.query(Widget).\
 filter_by(instance.widget_name).\
 first()

#2464

Query now auto-correlates like a select() does

Previously it was necessary to call Query.correlate() in
order to have a column- or WHERE-subquery correlate to the
parent:

subq = session.query(Entity.value).\
 filter(Entity.id==Parent.entity_id).\
 correlate(Parent).\
 as_scalar()
session.query(Parent).filter(subq=="some value")

This was the opposite behavior of a plain select()
construct which would assume auto-correlation by default.
The above statement in 0.8 will correlate automatically:

subq = session.query(Entity.value).\
 filter(Entity.id==Parent.entity_id).\
 as_scalar()
session.query(Parent).filter(subq=="some value")

like in select(), correlation can be disabled by calling
query.correlate(None) or manually set by passing an
entity, query.correlate(someentity).

#2179

Correlation is now always context-specific

To allow a wider variety of correlation scenarios, the behavior of
Select.correlate() and Query.correlate() has changed slightly
such that the SELECT statement will omit the “correlated” target from the
FROM clause only if the statement is actually used in that context. Additionally,
it’s no longer possible for a SELECT statement that’s placed as a FROM
in an enclosing SELECT statement to “correlate” (i.e. omit) a FROM clause.

This change only makes things better as far as rendering SQL, in that it’s no
longer possible to render illegal SQL where there are insufficient FROM
objects relative to what’s being selected:

from sqlalchemy.sql import table, column, select

t1 = table('t1', column('x'))
t2 = table('t2', column('y'))
s = select([t1, t2]).correlate(t1)

print(s)

Prior to this change, the above would return:

SELECT t1.x, t2.y FROM t2

which is invalid SQL as “t1” is not referred to in any FROM clause.

Now, in the absence of an enclosing SELECT, it returns:

SELECT t1.x, t2.y FROM t1, t2

Within a SELECT, the correlation takes effect as expected:

s2 = select([t1, t2]).where(t1.c.x == t2.c.y).where(t1.c.x == s)

print(s2)

SELECT t1.x, t2.y FROM t1, t2
WHERE t1.x = t2.y AND t1.x =
 (SELECT t1.x, t2.y FROM t2)

This change is not expected to impact any existing applications, as
the correlation behavior remains identical for properly constructed
expressions. Only an application that relies, most likely within a
testing scenario, on the invalid string output of a correlated
SELECT used in a non-correlating context would see any change.

#2668

create_all() and drop_all() will now honor an empty list as such

The methods MetaData.create_all() and MetaData.drop_all()
will now accept a list of Table objects that is empty,
and will not emit any CREATE or DROP statements. Previously,
an empty list was interepreted the same as passing None
for a collection, and CREATE/DROP would be emitted for all
items unconditionally.

This is a bug fix but some applications may have been relying upon
the previous behavior.

#2664

Repaired the Event Targeting of InstrumentationEvents

The InstrumentationEvents series of event targets have
documented that the events will only be fired off according to
the actual class passed as a target. Through 0.7, this wasn’t the
case, and any event listener applied to InstrumentationEvents
would be invoked for all classes mapped. In 0.8, additional
logic has been added so that the events will only invoke for those
classes sent in. The propagate flag here is set to True
by default as class instrumentation events are typically used to
intercept classes that aren’t yet created.

#2590

No more magic coercion of “=” to IN when comparing to subquery in MS-SQL

We found a very old behavior in the MSSQL dialect which
would attempt to rescue users from themselves when
doing something like this:

scalar_subq = select([someothertable.c.id]).where(someothertable.c.data=='foo')
select([sometable]).where(sometable.c.id==scalar_subq)

SQL Server doesn’t allow an equality comparison to a scalar
SELECT, that is, “x = (SELECT something)”. The MSSQL dialect
would convert this to an IN. The same thing would happen
however upon a comparison like “(SELECT something) = x”, and
overall this level of guessing is outside of SQLAlchemy’s
usual scope so the behavior is removed.

#2277

Fixed the behavior of Session.is_modified()

The Session.is_modified() method accepts an argument
passive which basically should not be necessary, the
argument in all cases should be the value True - when
left at its default of False it would have the effect of
hitting the database, and often triggering autoflush which
would itself change the results. In 0.8 the passive
argument will have no effect, and unloaded attributes will
never be checked for history since by definition there can
be no pending state change on an unloaded attribute.

See also

Session.is_modified()

#2320

Column.key is honored in the Select.c attribute of select() with Select.apply_labels()

Users of the expression system know that Select.apply_labels()
prepends the table name to each column name, affecting the
names that are available from Select.c:

s = select([table1]).apply_labels()
s.c.table1_col1
s.c.table1_col2

Before 0.8, if the Column had a different Column.key, this
key would be ignored, inconsistently versus when
Select.apply_labels() were not used:

before 0.8
table1 = Table('t1', metadata,
 Column('col1', Integer, key='column_one')
)
s = select([table1])
s.c.column_one # would be accessible like this
s.c.col1 # would raise AttributeError

s = select([table1]).apply_labels()
s.c.table1_column_one # would raise AttributeError
s.c.table1_col1 # would be accessible like this

In 0.8, Column.key is honored in both cases:

with 0.8
table1 = Table('t1', metadata,
 Column('col1', Integer, key='column_one')
)
s = select([table1])
s.c.column_one # works
s.c.col1 # AttributeError

s = select([table1]).apply_labels()
s.c.table1_column_one # works
s.c.table1_col1 # AttributeError

All other behavior regarding “name” and “key” are the same,
including that the rendered SQL will still use the form
<tablename>_<colname> - the emphasis here was on
preventing the Column.key contents from being rendered into the
SELECT statement so that there are no issues with
special/ non-ascii characters used in the Column.key.

#2397

single_parent warning is now an error

A relationship() that is many-to-one or many-to-many and
specifies “cascade=’all, delete-orphan’”, which is an
awkward but nonetheless supported use case (with
restrictions) will now raise an error if the relationship
does not specify the single_parent=True option.
Previously it would only emit a warning, but a failure would
follow almost immediately within the attribute system in any
case.

#2405

Adding the inspector argument to the column_reflect event

0.7 added a new event called column_reflect, provided so
that the reflection of columns could be augmented as each
one were reflected. We got this event slightly wrong in
that the event gave no way to get at the current
Inspector and Connection being used for the
reflection, in the case that additional information from the
database is needed. As this is a new event not widely used
yet, we’ll be adding the inspector argument into it
directly:

@event.listens_for(Table, "column_reflect")
def listen_for_col(inspector, table, column_info):
 # ...

#2418

Disabling auto-detect of collations, casing for MySQL

The MySQL dialect does two calls, one very expensive, to
load all possible collations from the database as well as
information on casing, the first time an Engine
connects. Neither of these collections are used for any
SQLAlchemy functions, so these calls will be changed to no
longer be emitted automatically. Applications that might
have relied on these collections being present on
engine.dialect will need to call upon
_detect_collations() and _detect_casing() directly.

#2404

“Unconsumed column names” warning becomes an exception

Referring to a non-existent column in an insert() or
update() construct will raise an error instead of a
warning:

t1 = table('t1', column('x'))
t1.insert().values(x=5, z=5) # raises "Unconsumed column names: z"

#2415

Inspector.get_primary_keys() is deprecated, use Inspector.get_pk_constraint

These two methods on Inspector were redundant, where
get_primary_keys() would return the same information as
get_pk_constraint() minus the name of the constraint:

>>> insp.get_primary_keys()
["a", "b"]

>>> insp.get_pk_constraint()
{"name":"pk_constraint", "constrained_columns":["a", "b"]}

#2422

Case-insensitive result row names will be disabled in most cases

A very old behavior, the column names in RowProxy were
always compared case-insensitively:

>>> row = result.fetchone()
>>> row['foo'] == row['FOO'] == row['Foo']
True

This was for the benefit of a few dialects which in the
early days needed this, like Oracle and Firebird, but in
modern usage we have more accurate ways of dealing with the
case-insensitive behavior of these two platforms.

Going forward, this behavior will be available only
optionally, by passing the flag `case_sensitive=False`
to `create_engine()`, but otherwise column names
requested from the row must match as far as casing.

#2423

InstrumentationManager and alternate class instrumentation is now an extension

The sqlalchemy.orm.interfaces.InstrumentationManager
class is moved to
sqlalchemy.ext.instrumentation.InstrumentationManager.
The “alternate instrumentation” system was built for the
benefit of a very small number of installations that needed
to work with existing or unusual class instrumentation
systems, and generally is very seldom used. The complexity
of this system has been exported to an ext. module. It
remains unused until once imported, typically when a third
party library imports InstrumentationManager, at which
point it is injected back into sqlalchemy.orm by
replacing the default InstrumentationFactory with
ExtendedInstrumentationRegistry.

Removed

SQLSoup

SQLSoup is a handy package that presents an alternative
interface on top of the SQLAlchemy ORM. SQLSoup is now
moved into its own project and documented/released
separately; see https://bitbucket.org/zzzeek/sqlsoup.

SQLSoup is a very simple tool that could also benefit from
contributors who are interested in its style of usage.

#2262

MutableType

The older “mutable” system within the SQLAlchemy ORM has
been removed. This refers to the MutableType interface
which was applied to types such as PickleType and
conditionally to TypeDecorator, and since very early
SQLAlchemy versions has provided a way for the ORM to detect
changes in so-called “mutable” data structures such as JSON
structures and pickled objects. However, the
implementation was never reasonable and forced a very
inefficient mode of usage on the unit-of-work which caused
an expensive scan of all objects to take place during flush.
In 0.7, the sqlalchemy.ext.mutable extension was
introduced so that user-defined datatypes can appropriately
send events to the unit of work as changes occur.

Today, usage of MutableType is expected to be low, as
warnings have been in place for some years now regarding its
inefficiency.

#2442

sqlalchemy.exceptions (has been sqlalchemy.exc for years)

We had left in an alias sqlalchemy.exceptions to attempt
to make it slightly easier for some very old libraries that
hadn’t yet been upgraded to use sqlalchemy.exc. Some
users are still being confused by it however so in 0.8 we’re
taking it out entirely to eliminate any of that confusion.

#2433

What’s New in SQLAlchemy 0.7?

About this Document

This document describes changes between SQLAlchemy version 0.6,
last released May 5, 2012, and SQLAlchemy version 0.7,
undergoing maintenance releases as of October, 2012.

Document date: July 27, 2011

Introduction

This guide introduces what’s new in SQLAlchemy version 0.7,
and also documents changes which affect users migrating
their applications from the 0.6 series of SQLAlchemy to 0.7.

To as great a degree as possible, changes are made in such a
way as to not break compatibility with applications built
for 0.6. The changes that are necessarily not backwards
compatible are very few, and all but one, the change to
mutable attribute defaults, should affect an exceedingly
small portion of applications - many of the changes regard
non-public APIs and undocumented hacks some users may have
been attempting to use.

A second, even smaller class of non-backwards-compatible
changes is also documented. This class of change regards
those features and behaviors that have been deprecated at
least since version 0.5 and have been raising warnings since
their deprecation. These changes would only affect
applications that are still using 0.4- or early 0.5-style
APIs. As the project matures, we have fewer and fewer of
these kinds of changes with 0.x level releases, which is a
product of our API having ever fewer features that are less
than ideal for the use cases they were meant to solve.

An array of existing functionalities have been superseded in
SQLAlchemy 0.7. There’s not much difference between the
terms “superseded” and “deprecated”, except that the former
has a much weaker suggestion of the old feature would ever
be removed. In 0.7, features like synonym and
comparable_property, as well as all the Extension
and other event classes, have been superseded. But these
“superseded” features have been re-implemented such that
their implementations live mostly outside of core ORM code,
so their continued “hanging around” doesn’t impact
SQLAlchemy’s ability to further streamline and refine its
internals, and we expect them to remain within the API for
the foreseeable future.

New Features

New Event System

SQLAlchemy started early with the MapperExtension class,
which provided hooks into the persistence cycle of mappers.
As SQLAlchemy quickly became more componentized, pushing
mappers into a more focused configurational role, many more
“extension”, “listener”, and “proxy” classes popped up to
solve various activity-interception use cases in an ad-hoc
fashion. Part of this was driven by the divergence of
activities; ConnectionProxy objects wanted to provide a
system of rewriting statements and parameters;
AttributeExtension provided a system of replacing
incoming values, and DDL objects had events that could
be switched off of dialect-sensitive callables.

0.7 re-implements virtually all of these plugin points with
a new, unified approach, which retains all the
functionalities of the different systems, provides more
flexibility and less boilerplate, performs better, and
eliminates the need to learn radically different APIs for
each event subsystem. The pre-existing classes
MapperExtension, SessionExtension,
AttributeExtension, ConnectionProxy,
PoolListener as well as the DDLElement.execute_at
method are deprecated and now implemented in terms of the
new system - these APIs remain fully functional and are
expected to remain in place for the foreseeable future.

The new approach uses named events and user-defined
callables to associate activities with events. The API’s
look and feel was driven by such diverse sources as JQuery,
Blinker, and Hibernate, and was also modified further on
several occasions during conferences with dozens of users on
Twitter, which appears to have a much higher response rate
than the mailing list for such questions.

It also features an open-ended system of target
specification that allows events to be associated with API
classes, such as for all Session or Engine objects,
with specific instances of API classes, such as for a
specific Pool or Mapper, as well as for related
objects like a user- defined class that’s mapped, or
something as specific as a certain attribute on instances of
a particular subclass of a mapped parent class. Individual
listener subsystems can apply wrappers to incoming user-
defined listener functions which modify how they are called
- an mapper event can receive either the instance of the
object being operated upon, or its underlying
InstanceState object. An attribute event can opt whether
or not to have the responsibility of returning a new value.

Several systems now build upon the new event API, including
the new “mutable attributes” API as well as composite
attributes. The greater emphasis on events has also led to
the introduction of a handful of new events, including
attribute expiration and refresh operations, pickle
loads/dumps operations, completed mapper construction
operations.

See also

Events

#1902

Hybrid Attributes, implements/supersedes synonym(), comparable_property()

The “derived attributes” example has now been turned into an
official extension. The typical use case for synonym()
is to provide descriptor access to a mapped column; the use
case for comparable_property() is to be able to return a
PropComparator from any descriptor. In practice, the
approach of “derived” is easier to use, more extensible, is
implemented in a few dozen lines of pure Python with almost
no imports, and doesn’t require the ORM core to even be
aware of it. The feature is now known as the “Hybrid
Attributes” extension.

synonym() and comparable_property() are still part
of the ORM, though their implementations have been moved
outwards, building on an approach that is similar to that of
the hybrid extension, so that the core ORM
mapper/query/property modules aren’t really aware of them
otherwise.

See also

Hybrid Attributes

#1903

Speed Enhancements

As is customary with all major SQLA releases, a wide pass
through the internals to reduce overhead and callcounts has
been made which further reduces the work needed in common
scenarios. Highlights of this release include:

	The flush process will now bundle INSERT statements into
batches fed to cursor.executemany(), for rows where
the primary key is already present. In particular this
usually applies to the “child” table on a joined table
inheritance configuration, meaning the number of calls to
cursor.execute for a large bulk insert of joined-
table objects can be cut in half, allowing native DBAPI
optimizations to take place for those statements passed
to cursor.executemany() (such as re-using a prepared
statement).

	The codepath invoked when accessing a many-to-one
reference to a related object that’s already loaded has
been greatly simplified. The identity map is checked
directly without the need to generate a new Query
object first, which is expensive in the context of
thousands of in-memory many-to-ones being accessed. The
usage of constructed-per-call “loader” objects is also no
longer used for the majority of lazy attribute loads.

	The rewrite of composites allows a shorter codepath when
mapper internals access mapped attributes within a
flush.

	New inlined attribute access functions replace the
previous usage of “history” when the “save-update” and
other cascade operations need to cascade among the full
scope of datamembers associated with an attribute. This
reduces the overhead of generating a new History
object for this speed-critical operation.

	The internals of the ExecutionContext, the object
corresponding to a statement execution, have been
inlined and simplified.

	The bind_processor() and result_processor()
callables generated by types for each statement
execution are now cached (carefully, so as to avoid memory
leaks for ad-hoc types and dialects) for the lifespan of
that type, further reducing per-statement call overhead.

	The collection of “bind processors” for a particular
Compiled instance of a statement is also cached on
the Compiled object, taking further advantage of the
“compiled cache” used by the flush process to re-use the
same compiled form of INSERT, UPDATE, DELETE statements.

A demonstration of callcount reduction including a sample
benchmark script is at
http://techspot.zzzeek.org/2010/12/12/a-tale-of-three-
profiles/

Composites Rewritten

The “composite” feature has been rewritten, like
synonym() and comparable_property(), to use a
lighter weight implementation based on descriptors and
events, rather than building into the ORM internals. This
allowed the removal of some latency from the mapper/unit of
work internals, and simplifies the workings of composite.
The composite attribute now no longer conceals the
underlying columns it builds upon, which now remain as
regular attributes. Composites can also act as a proxy for
relationship() as well as Column() attributes.

The major backwards-incompatible change of composites is
that they no longer use the mutable=True system to
detect in-place mutations. Please use the Mutation
Tracking extension to establish in-place change events
to existing composite usage.

See also

Composite Column Types

Mutation Tracking

#2008 #2024

More succinct form of query.join(target, onclause)

The default method of issuing query.join() to a target
with an explicit onclause is now:

query.join(SomeClass, SomeClass.id==ParentClass.some_id)

In 0.6, this usage was considered to be an error, because
join() accepts multiple arguments corresponding to
multiple JOIN clauses - the two-argument form needed to be
in a tuple to disambiguate between single-argument and two-
argument join targets. In the middle of 0.6 we added
detection and an error message for this specific calling
style, since it was so common. In 0.7, since we are
detecting the exact pattern anyway, and since having to type
out a tuple for no reason is extremely annoying, the non-
tuple method now becomes the “normal” way to do it. The
“multiple JOIN” use case is exceedingly rare compared to the
single join case, and multiple joins these days are more
clearly represented by multiple calls to join().

The tuple form will remain for backwards compatibility.

Note that all the other forms of query.join() remain
unchanged:

query.join(MyClass.somerelation)
query.join("somerelation")
query.join(MyTarget)
... etc

Querying with Joins

#1923

Mutation event extension, supersedes “mutable=True”

A new extension, Mutation Tracking, provides a
mechanism by which user-defined datatypes can provide change
events back to the owning parent or parents. The extension
includes an approach for scalar database values, such as
those managed by PickleType, postgresql.ARRAY, or
other custom MutableType classes, as well as an approach
for ORM “composites”, those configured using composite().

See also

Mutation Tracking

NULLS FIRST / NULLS LAST operators

These are implemented as an extension to the asc() and
desc() operators, called nullsfirst() and
nullslast().

See also

nullsfirst()

nullslast()

#723

select.distinct(), query.distinct() accepts *args for Postgresql DISTINCT ON

This was already available by passing a list of expressions
to the distinct keyword argument of select(), the
distinct() method of select() and Query now
accept positional arguments which are rendered as DISTINCT
ON when a Postgresql backend is used.

distinct()

Query.distinct()

#1069

Index() can be placed inline inside of Table, __table_args__

The Index() construct can be created inline with a Table
definition, using strings as column names, as an alternative
to the creation of the index outside of the Table. That is:

Table('mytable', metadata,
 Column('id',Integer, primary_key=True),
 Column('name', String(50), nullable=False),
 Index('idx_name', 'name')
)

The primary rationale here is for the benefit of declarative
__table_args__, particularly when used with mixins:

class HasNameMixin(object):
 name = Column('name', String(50), nullable=False)
 @declared_attr
 def __table_args__(cls):
 return (Index('name'), {})

class User(HasNameMixin, Base):
 __tablename__ = 'user'
 id = Column('id', Integer, primary_key=True)

Indexes

Window Function SQL Construct

A “window function” provides to a statement information
about the result set as it’s produced. This allows criteria
against various things like “row number”, “rank” and so
forth. They are known to be supported at least by
Postgresql, SQL Server and Oracle, possibly others.

The best introduction to window functions is on Postgresql’s
site, where window functions have been supported since
version 8.4:

http://www.postgresql.org/docs/9.0/static/tutorial-
window.html

SQLAlchemy provides a simple construct typically invoked via
an existing function clause, using the over() method,
which accepts order_by and partition_by keyword
arguments. Below we replicate the first example in PG’s
tutorial:

from sqlalchemy.sql import table, column, select, func

empsalary = table('empsalary',
 column('depname'),
 column('empno'),
 column('salary'))

s = select([
 empsalary,
 func.avg(empsalary.c.salary).
 over(partition_by=empsalary.c.depname).
 label('avg')
])

print(s)

SQL:

SELECT empsalary.depname, empsalary.empno, empsalary.salary,
avg(empsalary.salary) OVER (PARTITION BY empsalary.depname) AS avg
FROM empsalary

sqlalchemy.sql.expression.over

#1844

execution_options() on Connection accepts “isolation_level” argument

This sets the transaction isolation level for a single
Connection, until that Connection is closed and its
underlying DBAPI resource returned to the connection pool,
upon which the isolation level is reset back to the default.
The default isolation level is set using the
isolation_level argument to create_engine().

Transaction isolation support is currently only supported by
the Postgresql and SQLite backends.

execution_options()

#2001

TypeDecorator works with integer primary key columns

A TypeDecorator which extends the behavior of
Integer can be used with a primary key column. The
“autoincrement” feature of Column will now recognize
that the underlying database column is still an integer so
that lastrowid mechanisms continue to function. The
TypeDecorator itself will have its result value
processor applied to newly generated primary keys, including
those received by the DBAPI cursor.lastrowid accessor.

#2005 #2006

TypeDecorator is present in the “sqlalchemy” import space

No longer need to import this from sqlalchemy.types,
it’s now mirrored in sqlalchemy.

New Dialects

Dialects have been added:

	a MySQLdb driver for the Drizzle database:

Drizzle

	support for the pymysql DBAPI:

pymsql Notes

	psycopg2 now works with Python 3

Behavioral Changes (Backwards Compatible)

C Extensions Build by Default

This is as of 0.7b4. The exts will build if cPython 2.xx
is detected. If the build fails, such as on a windows
install, that condition is caught and the non-C install
proceeds. The C exts won’t build if Python 3 or Pypy is
used.

Query.count() simplified, should work virtually always

The very old guesswork which occurred within
Query.count() has been modernized to use
.from_self(). That is, query.count() is now
equivalent to:

query.from_self(func.count(literal_column('1'))).scalar()

Previously, internal logic attempted to rewrite the columns
clause of the query itself, and upon detection of a
“subquery” condition, such as a column-based query that
might have aggregates in it, or a query with DISTINCT, would
go through a convoluted process of rewriting the columns
clause. This logic failed in complex conditions,
particularly those involving joined table inheritance, and
was long obsolete by the more comprehensive .from_self()
call.

The SQL emitted by query.count() is now always of the
form:

SELECT count(1) AS count_1 FROM (
 SELECT user.id AS user_id, user.name AS user_name from user
) AS anon_1

that is, the original query is preserved entirely inside of
a subquery, with no more guessing as to how count should be
applied.

#2093

To emit a non-subquery form of count()

MySQL users have already reported that the MyISAM engine not
surprisingly falls over completely with this simple change.
Note that for a simple count() that optimizes for DBs
that can’t handle simple subqueries, func.count() should
be used:

from sqlalchemy import func
session.query(func.count(MyClass.id)).scalar()

or for count(*):

from sqlalchemy import func, literal_column
session.query(func.count(literal_column('*'))).select_from(MyClass).scalar()

LIMIT/OFFSET clauses now use bind parameters

The LIMIT and OFFSET clauses, or their backend equivalents
(i.e. TOP, ROW NUMBER OVER, etc.), use bind parameters for
the actual values, for all backends which support it (most
except for Sybase). This allows better query optimizer
performance as the textual string for multiple statements
with differing LIMIT/OFFSET are now identical.

#805

Logging enhancements

Vinay Sajip has provided a patch to our logging system such
that the “hex string” embedded in logging statements for
engines and pools is no longer needed to allow the echo
flag to work correctly. A new system that uses filtered
logging objects allows us to maintain our current behavior
of echo being local to individual engines without the
need for additional identifying strings local to those
engines.

#1926

Simplified polymorphic_on assignment

The population of the polymorphic_on column-mapped
attribute, when used in an inheritance scenario, now occurs
when the object is constructed, i.e. its __init__ method
is called, using the init event. The attribute then behaves
the same as any other column-mapped attribute. Previously,
special logic would fire off during flush to populate this
column, which prevented any user code from modifying its
behavior. The new approach improves upon this in three
ways: 1. the polymorphic identity is now present on the
object as soon as its constructed; 2. the polymorphic
identity can be changed by user code without any difference
in behavior from any other column-mapped attribute; 3. the
internals of the mapper during flush are simplified and no
longer need to make special checks for this column.

#1895

contains_eager() chains across multiple paths (i.e. “all()”)

The `contains_eager()`` modifier now will chain itself
for a longer path without the need to emit individual
``contains_eager()` calls. Instead of:

session.query(A).options(contains_eager(A.b), contains_eager(A.b, B.c))

you can say:

session.query(A).options(contains_eager(A.b, B.c))

#2032

Flushing of orphans that have no parent is allowed

We’ve had a long standing behavior that checks for a so-
called “orphan” during flush, that is, an object which is
associated with a relationship() that specifies “delete-
orphan” cascade, has been newly added to the session for an
INSERT, and no parent relationship has been established.
This check was added years ago to accommodate some test
cases which tested the orphan behavior for consistency. In
modern SQLA, this check is no longer needed on the Python
side. The equivalent behavior of the “orphan check” is
accomplished by making the foreign key reference to the
object’s parent row NOT NULL, where the database does its
job of establishing data consistency in the same way SQLA
allows most other operations to do. If the object’s parent
foreign key is nullable, then the row can be inserted. The
“orphan” behavior runs when the object was persisted with a
particular parent, and is then disassociated with that
parent, leading to a DELETE statement emitted for it.

#1912

Warnings generated when collection members, scalar referents not part of the flush

Warnings are now emitted when related objects referenced via
a loaded relationship() on a parent object marked as
“dirty” are not present in the current Session.

The save-update cascade takes effect when objects are
added to the Session, or when objects are first
associated with a parent, so that an object and everything
related to it are usually all present in the same
Session. However, if save-update cascade is
disabled for a particular relationship(), then this
behavior does not occur, and the flush process does not try
to correct for it, instead staying consistent to the
configured cascade behavior. Previously, when such objects
were detected during the flush, they were silently skipped.
The new behavior is that a warning is emitted, for the
purposes of alerting to a situation that more often than not
is the source of unexpected behavior.

#1973

Setup no longer installs a Nose plugin

Since we moved to nose we’ve used a plugin that installs via
setuptools, so that the nosetests script would
automatically run SQLA’s plugin code, necessary for our
tests to have a full environment. In the middle of 0.6, we
realized that the import pattern here meant that Nose’s
“coverage” plugin would break, since “coverage” requires
that it be started before any modules to be covered are
imported; so in the middle of 0.6 we made the situation
worse by adding a separate sqlalchemy-nose package to
the build to overcome this.

In 0.7 we’ve done away with trying to get nosetests to
work automatically, since the SQLAlchemy module would
produce a large number of nose configuration options for all
usages of nosetests, not just the SQLAlchemy unit tests
themselves, and the additional sqlalchemy-nose install
was an even worse idea, producing an extra package in Python
environments. The sqla_nose.py script in 0.7 is now
the only way to run the tests with nose.

#1949

Non-Table-derived constructs can be mapped

A construct that isn’t against any Table at all, like a
function, can be mapped.

from sqlalchemy import select, func
from sqlalchemy.orm import mapper

class Subset(object):
 pass
selectable = select(["x", "y", "z"]).select_from(func.some_db_function()).alias()
mapper(Subset, selectable, primary_key=[selectable.c.x])

#1876

aliased() accepts FromClause elements

This is a convenience helper such that in the case a plain
FromClause, such as a select, Table or join
is passed to the orm.aliased() construct, it passes
through to the .alias() method of that from construct
rather than constructing an ORM level AliasedClass.

#2018

Session.connection(), Session.execute() accept ‘bind’

This is to allow execute/connection operations to
participate in the open transaction of an engine explicitly.
It also allows custom subclasses of Session that
implement their own get_bind() method and arguments to
use those custom arguments with both the execute() and
connection() methods equally.

Session.connection
Session.execute

#1996

Standalone bind parameters in columns clause auto-labeled.

Bind parameters present in the “columns clause” of a select
are now auto-labeled like other “anonymous” clauses, which
among other things allows their “type” to be meaningful when
the row is fetched, as in result row processors.

SQLite - relative file paths are normalized through os.path.abspath()

This so that a script that changes the current directory
will continue to target the same location as subsequent
SQLite connections are established.

#2036

MS-SQL - String/Unicode/VARCHAR/NVARCHAR/VARBINARY emit “max” for no length

On the MS-SQL backend, the String/Unicode types, and their
counterparts VARCHAR/ NVARCHAR, as well as VARBINARY
(#1833) emit “max” as the length when no length is
specified. This makes it more compatible with Postgresql’s
VARCHAR type which is similarly unbounded when no length
specified. SQL Server defaults the length on these types
to ‘1’ when no length is specified.

Behavioral Changes (Backwards Incompatible)

Note again, aside from the default mutability change, most
of these changes are *extremely minor* and will not affect
most users.

PickleType and ARRAY mutability turned off by default

This change refers to the default behavior of the ORM when
mapping columns that have either the PickleType or
postgresql.ARRAY datatypes. The mutable flag is now
set to False by default. If an existing application uses
these types and depends upon detection of in-place
mutations, the type object must be constructed with
mutable=True to restore the 0.6 behavior:

Table('mytable', metadata,
 #

 Column('pickled_data', PickleType(mutable=True))
)

The mutable=True flag is being phased out, in favor of
the new Mutation Tracking extension. This extension
provides a mechanism by which user-defined datatypes can
provide change events back to the owning parent or parents.

The previous approach of using mutable=True does not
provide for change events - instead, the ORM must scan
through all mutable values present in a session and compare
them against their original value for changes every time
flush() is called, which is a very time consuming event.
This is a holdover from the very early days of SQLAlchemy
when flush() was not automatic and the history tracking
system was not nearly as sophisticated as it is now.

Existing applications which use PickleType,
postgresql.ARRAY or other MutableType subclasses,
and require in-place mutation detection, should migrate to
the new mutation tracking system, as mutable=True is
likely to be deprecated in the future.

#1980

Mutability detection of composite() requires the Mutation Tracking Extension

So-called “composite” mapped attributes, those configured
using the technique described at Composite Column Types, have been re-implemented such
that the ORM internals are no longer aware of them (leading
to shorter and more efficient codepaths in critical
sections). While composite types are generally intended to
be treated as immutable value objects, this was never
enforced. For applications that use composites with
mutability, the Mutation Tracking extension offers a
base class which establishes a mechanism for user-defined
composite types to send change event messages back to the
owning parent or parents of each object.

Applications which use composite types and rely upon in-
place mutation detection of these objects should either
migrate to the “mutation tracking” extension, or change the
usage of the composite types such that in-place changes are
no longer needed (i.e., treat them as immutable value
objects).

SQLite - the SQLite dialect now uses NullPool for file-based databases

This change is 99.999% backwards compatible, unless you
are using temporary tables across connection pool
connections.

A file-based SQLite connection is blazingly fast, and using
NullPool means that each call to Engine.connect
creates a new pysqlite connection.

Previously, the SingletonThreadPool was used, which
meant that all connections to a certain engine in a thread
would be the same connection. It’s intended that the new
approach is more intuitive, particularly when multiple
connections are used.

SingletonThreadPool is still the default engine when a
:memory: database is used.

Note that this change breaks temporary tables used across
Session commits, due to the way SQLite handles temp
tables. See the note at
http://www.sqlalchemy.org/docs/dialects/sqlite.html#using-
temporary-tables-with-sqlite if temporary tables beyond the
scope of one pool connection are desired.

#1921

Session.merge() checks version ids for versioned mappers

Session.merge() will check the version id of the incoming
state against that of the database, assuming the mapping
uses version ids and incoming state has a version_id
assigned, and raise StaleDataError if they don’t match.
This is the correct behavior, in that if incoming state
contains a stale version id, it should be assumed the state
is stale.

If merging data into a versioned state, the version id
attribute can be left undefined, and no version check will
take place.

This check was confirmed by examining what Hibernate does -
both the merge() and the versioning features were
originally adapted from Hibernate.

#2027

Tuple label names in Query Improved

This improvement is potentially slightly backwards
incompatible for an application that relied upon the old
behavior.

Given two mapped classes Foo and Bar each with a
column spam:

qa = session.query(Foo.spam)
qb = session.query(Bar.spam)

qu = qa.union(qb)

The name given to the single column yielded by qu will
be spam. Previously it would be something like
foo_spam due to the way the union would combine
things, which is inconsistent with the name spam in the
case of a non-unioned query.

#1942

Mapped column attributes reference the most specific column first

This is a change to the behavior involved when a mapped
column attribute references multiple columns, specifically
when dealing with an attribute on a joined-table subclass
that has the same name as that of an attribute on the
superclass.

Using declarative, the scenario is this:

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)

class Child(Parent):
 __tablename__ = 'child'
 id = Column(Integer, ForeignKey('parent.id'), primary_key=True)

Above, the attribute Child.id refers to both the
child.id column as well as parent.id - this due to
the name of the attribute. If it were named differently on
the class, such as Child.child_id, it then maps
distinctly to child.id, with Child.id being the same
attribute as Parent.id.

When the id attribute is made to reference both
parent.id and child.id, it stores them in an ordered
list. An expression such as Child.id then refers to
just one of those columns when rendered. Up until 0.6,
this column would be parent.id. In 0.7, it is the less
surprising child.id.

The legacy of this behavior deals with behaviors and
restrictions of the ORM that don’t really apply anymore; all
that was needed was to reverse the order.

A primary advantage of this approach is that it’s now easier
to construct primaryjoin expressions that refer to the
local column:

class Child(Parent):
 __tablename__ = 'child'
 id = Column(Integer, ForeignKey('parent.id'), primary_key=True)
 some_related = relationship("SomeRelated",
 primaryjoin="Child.id==SomeRelated.child_id")

class SomeRelated(Base):
 __tablename__ = 'some_related'
 id = Column(Integer, primary_key=True)
 child_id = Column(Integer, ForeignKey('child.id'))

Prior to 0.7 the Child.id expression would reference
Parent.id, and it would be necessary to map child.id
to a distinct attribute.

It also means that a query like this one changes its
behavior:

session.query(Parent).filter(Child.id > 7)

In 0.6, this would render:

SELECT parent.id AS parent_id
FROM parent
WHERE parent.id > :id_1

in 0.7, you get:

SELECT parent.id AS parent_id
FROM parent, child
WHERE child.id > :id_1

which you’ll note is a cartesian product - this behavior is
now equivalent to that of any other attribute that is local
to Child. The with_polymorphic() method, or a
similar strategy of explicitly joining the underlying
Table objects, is used to render a query against all
Parent objects with criteria against Child, in the
same manner as that of 0.5 and 0.6:

print(s.query(Parent).with_polymorphic([Child]).filter(Child.id > 7))

Which on both 0.6 and 0.7 renders:

SELECT parent.id AS parent_id, child.id AS child_id
FROM parent LEFT OUTER JOIN child ON parent.id = child.id
WHERE child.id > :id_1

Another effect of this change is that a joined-inheritance
load across two tables will populate from the child table’s
value, not that of the parent table. An unusual case is that
a query against “Parent” using with_polymorphic="*"
issues a query against “parent”, with a LEFT OUTER JOIN to
“child”. The row is located in “Parent”, sees the
polymorphic identity corresponds to “Child”, but suppose the
actual row in “child” has been deleted. Due to this
corruption, the row comes in with all the columns
corresponding to “child” set to NULL - this is now the value
that gets populated, not the one in the parent table.

#1892

Mapping to joins with two or more same-named columns requires explicit declaration

This is somewhat related to the previous change in
#1892. When mapping to a join, same-named columns
must be explicitly linked to mapped attributes, i.e. as
described in Mapping a Class Against Multiple Tables.

Given two tables foo and bar, each with a primary
key column id, the following now produces an error:

foobar = foo.join(bar, foo.c.id==bar.c.foo_id)
mapper(FooBar, foobar)

This because the mapper() refuses to guess what column
is the primary representation of FooBar.id - is it
foo.c.id or is it bar.c.id ? The attribute must be
explicit:

foobar = foo.join(bar, foo.c.id==bar.c.foo_id)
mapper(FooBar, foobar, properties={
 'id':[foo.c.id, bar.c.id]
})

#1896

Mapper requires that polymorphic_on column be present in the mapped selectable

This is a warning in 0.6, now an error in 0.7. The column
given for polymorphic_on must be in the mapped
selectable. This to prevent some occasional user errors
such as:

mapper(SomeClass, sometable, polymorphic_on=some_lookup_table.c.id)

where above the polymorphic_on needs to be on a
sometable column, in this case perhaps
sometable.c.some_lookup_id. There are also some
“polymorphic union” scenarios where similar mistakes
sometimes occur.

Such a configuration error has always been “wrong”, and the
above mapping doesn’t work as specified - the column would
be ignored. It is however potentially backwards
incompatible in the rare case that an application has been
unknowingly relying upon this behavior.

#1875

DDL() constructs now escape percent signs

Previously, percent signs in DDL() strings would have to
be escaped, i.e. %% depending on DBAPI, for those DBAPIs
that accept pyformat or format binds (i.e. psycopg2,
mysql-python), which was inconsistent versus text()
constructs which did this automatically. The same escaping
now occurs for DDL() as for text().

#1897

Table.c / MetaData.tables refined a bit, don’t allow direct mutation

Another area where some users were tinkering around in such
a way that doesn’t actually work as expected, but still left
an exceedingly small chance that some application was
relying upon this behavior, the construct returned by the
.c attribute on Table and the .tables attribute
on MetaData is explicitly non-mutable. The “mutable”
version of the construct is now private. Adding columns to
.c involves using the append_column() method of
Table, which ensures things are associated with the
parent Table in the appropriate way; similarly,
MetaData.tables has a contract with the Table
objects stored in this dictionary, as well as a little bit
of new bookkeeping in that a set() of all schema names
is tracked, which is satisfied only by using the public
Table constructor as well as Table.tometadata().

It is of course possible that the ColumnCollection and
dict collections consulted by these attributes could
someday implement events on all of their mutational methods
such that the appropriate bookkeeping occurred upon direct
mutation of the collections, but until someone has the
motivation to implement all that along with dozens of new
unit tests, narrowing the paths to mutation of these
collections will ensure no application is attempting to rely
upon usages that are currently not supported.

#1893 #1917

server_default consistently returns None for all inserted_primary_key values

Established consistency when server_default is present on an
Integer PK column. SQLA doesn’t pre-fetch these, nor do they
come back in cursor.lastrowid (DBAPI). Ensured all backends
consistently return None in result.inserted_primary_key for
these - some backends may have returned a value previously.
Using a server_default on a primary key column is extremely
unusual. If a special function or SQL expression is used
to generate primary key defaults, this should be established
as a Python-side “default” instead of server_default.

Regarding reflection for this case, reflection of an int PK
col with a server_default sets the “autoincrement” flag to
False, except in the case of a PG SERIAL col where we
detected a sequence default.

#2020 #2021

The sqlalchemy.exceptions alias in sys.modules is removed

For a few years we’ve added the string
sqlalchemy.exceptions to sys.modules, so that a
statement like “import sqlalchemy.exceptions” would
work. The name of the core exceptions module has been
exc for a long time now, so the recommended import for
this module is:

from sqlalchemy import exc

The exceptions name is still present in “sqlalchemy”
for applications which might have said from sqlalchemy
import exceptions, but they should also start using the
exc name.

Query Timing Recipe Changes

While not part of SQLAlchemy itself, it’s worth mentioning
that the rework of the ConnectionProxy into the new
event system means it is no longer appropriate for the
“Timing all Queries” recipe. Please adjust query-timers to
use the before_cursor_execute() and
after_cursor_execute() events, demonstrated in the
updated recipe UsageRecipes/Profiling.

Deprecated API

Default constructor on types will not accept arguments

Simple types like Integer, Date etc. in the core
types module don’t accept arguments. The default
constructor that accepts/ignores a catchall *args,
**kwargs is restored as of 0.7b4/0.7.0, but emits a
deprecation warning.

If arguments are being used with a core type like
Integer, it may be that you intended to use a dialect
specific type, such as sqlalchemy.dialects.mysql.INTEGER
which does accept a “display_width” argument for example.

compile_mappers() renamed configure_mappers(), simplified configuration internals

This system slowly morphed from something small, implemented
local to an individual mapper, and poorly named into
something that’s more of a global “registry-” level function
and poorly named, so we’ve fixed both by moving the
implementation out of Mapper altogether and renaming it
to configure_mappers(). It is of course normally not
needed for an application to call configure_mappers() as
this process occurs on an as-needed basis, as soon as the
mappings are needed via attribute or query access.

#1966

Core listener/proxy superseded by event listeners

PoolListener, ConnectionProxy,
DDLElement.execute_at are superseded by
event.listen(), using the PoolEvents,
EngineEvents, DDLEvents dispatch targets,
respectively.

ORM extensions superseded by event listeners

MapperExtension, AttributeExtension,
SessionExtension are superseded by event.listen(),
using the MapperEvents/InstanceEvents,
AttributeEvents, SessionEvents, dispatch targets,
respectively.

Sending a string to ‘distinct’ in select() for MySQL should be done via prefixes

This obscure feature allows this pattern with the MySQL
backend:

select([mytable], distinct='ALL', prefixes=['HIGH_PRIORITY'])

The prefixes keyword or prefix_with() method should
be used for non-standard or unusual prefixes:

select([mytable]).prefix_with('HIGH_PRIORITY', 'ALL')

useexisting superseded by extend_existing and keep_existing

The useexisting flag on Table has been superseded by a
new pair of flags keep_existing and extend_existing.
extend_existing is equivalent to useexisting - the
existing Table is returned, and additional constructor
elements are added. With keep_existing, the existing
Table is returned, but additional constructor elements are
not added - these elements are only applied when the Table
is newly created.

Backwards Incompatible API Changes

Callables passed to bindparam() don’t get evaluated - affects the Beaker example

#1950

Note this affects the Beaker caching example, where the
workings of the _params_from_query() function needed a
slight adjustment. If you’re using code from the Beaker
example, this change should be applied.

types.type_map is now private, types._type_map

We noticed some users tapping into this dictionary inside of
sqlalchemy.types as a shortcut to associating Python
types with SQL types. We can’t guarantee the contents or
format of this dictionary, and additionally the business of
associating Python types in a one-to-one fashion has some
grey areas that should are best decided by individual
applications, so we’ve underscored this attribute.

#1870

Renamed the alias keyword arg of standalone alias() function to name

This so that the keyword argument name matches that of
the alias() methods on all FromClause objects as
well as the name argument on Query.subquery().

Only code that uses the standalone alias() function, and
not the method bound functions, and passes the alias name
using the explicit keyword name alias, and not
positionally, would need modification here.

Non-public Pool methods underscored

All methods of Pool and subclasses which are not
intended for public use have been renamed with underscores.
That they were not named this way previously was a bug.

Pooling methods now underscored or removed:

Pool.create_connection() ->
Pool._create_connection()

Pool.do_get() -> Pool._do_get()

Pool.do_return_conn() -> Pool._do_return_conn()

Pool.do_return_invalid() -> removed, was not used

Pool.return_conn() -> Pool._return_conn()

Pool.get() -> Pool._get(), public API is
Pool.connect()

SingletonThreadPool.cleanup() -> _cleanup()

SingletonThreadPool.dispose_local() -> removed, use
conn.invalidate()

#1982

Previously Deprecated, Now Removed

Query.join(), Query.outerjoin(), eagerload(), eagerload_all(), others no longer allow lists of attributes as arguments

Passing a list of attributes or attribute names to
Query.join, eagerload(), and similar has been
deprecated since 0.5:

old way, deprecated since 0.5
session.query(Houses).join([Houses.rooms, Room.closets])
session.query(Houses).options(eagerload_all([Houses.rooms, Room.closets]))

These methods all accept *args as of the 0.5 series:

current way, in place since 0.5
session.query(Houses).join(Houses.rooms, Room.closets)
session.query(Houses).options(eagerload_all(Houses.rooms, Room.closets))

ScopedSession.mapper is removed

This feature provided a mapper extension which linked class-
based functionality with a particular ScopedSession, in
particular providing the behavior such that new object
instances would be automatically associated with that
session. The feature was overused by tutorials and
frameworks which led to great user confusion due to its
implicit behavior, and was deprecated in 0.5.5. Techniques
for replicating its functionality are at
[wiki:UsageRecipes/SessionAwareMapper]

What’s New in SQLAlchemy 0.6?

About this Document

This document describes changes between SQLAlchemy version 0.5,
last released January 16, 2010, and SQLAlchemy version 0.6,
last released May 5, 2012.

Document date: June 6, 2010

This guide documents API changes which affect users
migrating their applications from the 0.5 series of
SQLAlchemy to 0.6. Note that SQLAlchemy 0.6 removes some
behaviors which were deprecated throughout the span of the
0.5 series, and also deprecates more behaviors specific to
0.5.

Platform Support

	cPython versions 2.4 and upwards throughout the 2.xx
series

	Jython 2.5.1 - using the zxJDBC DBAPI included with
Jython.

	cPython 3.x - see [source:sqlalchemy/trunk/README.py3k]
for information on how to build for python3.

New Dialect System

Dialect modules are now broken up into distinct
subcomponents, within the scope of a single database
backend. Dialect implementations are now in the
sqlalchemy.dialects package. The
sqlalchemy.databases package still exists as a
placeholder to provide some level of backwards compatibility
for simple imports.

For each supported database, a sub-package exists within
sqlalchemy.dialects where several files are contained.
Each package contains a module called base.py which
defines the specific SQL dialect used by that database. It
also contains one or more “driver” modules, each one
corresponding to a specific DBAPI - these files are named
corresponding to the DBAPI itself, such as pysqlite,
cx_oracle, or pyodbc. The classes used by
SQLAlchemy dialects are first declared in the base.py
module, defining all behavioral characteristics defined by
the database. These include capability mappings, such as
“supports sequences”, “supports returning”, etc., type
definitions, and SQL compilation rules. Each “driver”
module in turn provides subclasses of those classes as
needed which override the default behavior to accommodate
the additional features, behaviors, and quirks of that
DBAPI. For DBAPIs that support multiple backends (pyodbc,
zxJDBC, mxODBC), the dialect module will use mixins from the
sqlalchemy.connectors package, which provide
functionality common to that DBAPI across all backends, most
typically dealing with connect arguments. This means that
connecting using pyodbc, zxJDBC or mxODBC (when implemented)
is extremely consistent across supported backends.

The URL format used by create_engine() has been enhanced
to handle any number of DBAPIs for a particular backend,
using a scheme that is inspired by that of JDBC. The
previous format still works, and will select a “default”
DBAPI implementation, such as the Postgresql URL below that
will use psycopg2:

create_engine('postgresql://scott:tiger@localhost/test')

However to specify a specific DBAPI backend such as pg8000,
add it to the “protocol” section of the URL using a plus
sign “+”:

create_engine('postgresql+pg8000://scott:tiger@localhost/test')

Important Dialect Links:

	Documentation on connect arguments:
http://www.sqlalchemy.org/docs/06/dbengine.html#create-
engine-url-arguments.

	Reference documentation for individual dialects: http://ww
w.sqlalchemy.org/docs/06/reference/dialects/index.html

	The tips and tricks at DatabaseNotes.

Other notes regarding dialects:

	the type system has been changed dramatically in
SQLAlchemy 0.6. This has an impact on all dialects
regarding naming conventions, behaviors, and
implementations. See the section on “Types” below.

	the ResultProxy object now offers a 2x speed
improvement in some cases thanks to some refactorings.

	the RowProxy, i.e. individual result row object, is
now directly pickleable.

	the setuptools entrypoint used to locate external dialects
is now called sqlalchemy.dialects. An external
dialect written against 0.4 or 0.5 will need to be
modified to work with 0.6 in any case so this change does
not add any additional difficulties.

	dialects now receive an initialize() event on initial
connection to determine connection properties.

	Functions and operators generated by the compiler now use
(almost) regular dispatch functions of the form
“visit_<opname>” and “visit_<funcname>_fn” to provide
customed processing. This replaces the need to copy the
“functions” and “operators” dictionaries in compiler
subclasses with straightforward visitor methods, and also
allows compiler subclasses complete control over
rendering, as the full _Function or _BinaryExpression
object is passed in.

Dialect Imports

The import structure of dialects has changed. Each dialect
now exports its base “dialect” class as well as the full set
of SQL types supported on that dialect via
sqlalchemy.dialects.<name>. For example, to import a
set of PG types:

from sqlalchemy.dialects.postgresql import INTEGER, BIGINT, SMALLINT,\
 VARCHAR, MACADDR, DATE, BYTEA

Above, INTEGER is actually the plain INTEGER type
from sqlalchemy.types, but the PG dialect makes it
available in the same way as those types which are specific
to PG, such as BYTEA and MACADDR.

Expression Language Changes

An Important Expression Language Gotcha

There’s one quite significant behavioral change to the
expression language which may affect some applications.
The boolean value of Python boolean expressions, i.e.
==, !=, and similar, now evaluates accurately with
regards to the two clause objects being compared.

As we know, comparing a ClauseElement to any other
object returns another ClauseElement:

>>> from sqlalchemy.sql import column
>>> column('foo') == 5
<sqlalchemy.sql.expression._BinaryExpression object at 0x1252490>

This so that Python expressions produce SQL expressions when
converted to strings:

>>> str(column('foo') == 5)
'foo = :foo_1'

But what happens if we say this?

>>> if column('foo') == 5:
... print("yes")
...

In previous versions of SQLAlchemy, the returned
_BinaryExpression was a plain Python object which
evaluated to True. Now it evaluates to whether or not
the actual ClauseElement should have the same hash value
as to that being compared. Meaning:

>>> bool(column('foo') == 5)
False
>>> bool(column('foo') == column('foo'))
False
>>> c = column('foo')
>>> bool(c == c)
True
>>>

That means code such as the following:

if expression:
 print("the expression is:", expression)

Would not evaluate if expression was a binary clause.
Since the above pattern should never be used, the base
ClauseElement now raises an exception if called in a
boolean context:

>>> bool(c)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ...
 raise TypeError("Boolean value of this clause is not defined")
TypeError: Boolean value of this clause is not defined

Code that wants to check for the presence of a
ClauseElement expression should instead say:

if expression is not None:
 print("the expression is:", expression)

Keep in mind, this applies to Table and Column objects
too.

The rationale for the change is twofold:

	Comparisons of the form if c1 == c2: <do something>
can actually be written now

	Support for correct hashing of ClauseElement objects
now works on alternate platforms, namely Jython. Up until
this point SQLAlchemy relied heavily on the specific
behavior of cPython in this regard (and still had
occasional problems with it).

Stricter “executemany” Behavior

An “executemany” in SQLAlchemy corresponds to a call to
execute(), passing along a collection of bind parameter
sets:

connection.execute(table.insert(), {'data':'row1'}, {'data':'row2'}, {'data':'row3'})

When the Connection object sends off the given
insert() construct for compilation, it passes to the
compiler the keynames present in the first set of binds
passed along to determine the construction of the
statement’s VALUES clause. Users familiar with this
construct will know that additional keys present in the
remaining dictionaries don’t have any impact. What’s
different now is that all subsequent dictionaries need to
include at least every key that is present in the first
dictionary. This means that a call like this no longer
works:

connection.execute(table.insert(),
 {'timestamp':today, 'data':'row1'},
 {'timestamp':today, 'data':'row2'},
 {'data':'row3'})

Because the third row does not specify the ‘timestamp’
column. Previous versions of SQLAlchemy would simply insert
NULL for these missing columns. However, if the
timestamp column in the above example contained a
Python-side default value or function, it would not be
used. This because the “executemany” operation is optimized
for maximum performance across huge numbers of parameter
sets, and does not attempt to evaluate Python-side defaults
for those missing keys. Because defaults are often
implemented either as SQL expressions which are embedded
inline with the INSERT statement, or are server side
expressions which again are triggered based on the structure
of the INSERT string, which by definition cannot fire off
conditionally based on each parameter set, it would be
inconsistent for Python side defaults to behave differently
vs. SQL/server side defaults. (SQL expression based
defaults are embedded inline as of the 0.5 series, again to
minimize the impact of huge numbers of parameter sets).

SQLAlchemy 0.6 therefore establishes predictable consistency
by forbidding any subsequent parameter sets from leaving any
fields blank. That way, there’s no more silent failure of
Python side default values and functions, which additionally
are allowed to remain consistent in their behavior versus
SQL and server side defaults.

UNION and other “compound” constructs parenthesize consistently

A rule that was designed to help SQLite has been removed,
that of the first compound element within another compound
(such as, a union() inside of an except_()) wouldn’t
be parenthesized. This is inconsistent and produces the
wrong results on Postgresql, which has precedence rules
regarding INTERSECTION, and its generally a surprise. When
using complex composites with SQLite, you now need to turn
the first element into a subquery (which is also compatible
on PG). A new example is in the SQL expression tutorial at
the end of
[http://www.sqlalchemy.org/docs/06/sqlexpression.html
#unions-and-other-set-operations]. See #1665 and
r6690 for more background.

C Extensions for Result Fetching

The ResultProxy and related elements, including most
common “row processing” functions such as unicode
conversion, numerical/boolean conversions and date parsing,
have been re-implemented as optional C extensions for the
purposes of performance. This represents the beginning of
SQLAlchemy’s path to the “dark side” where we hope to
continue improving performance by reimplementing critical
sections in C. The extensions can be built by specifying
--with-cextensions, i.e. python setup.py --with-
cextensions install.

The extensions have the most dramatic impact on result
fetching using direct ResultProxy access, i.e. that
which is returned by engine.execute(),
connection.execute(), or session.execute(). Within
results returned by an ORM Query object, result fetching
is not as high a percentage of overhead, so ORM performance
improves more modestly, and mostly in the realm of fetching
large result sets. The performance improvements highly
depend on the dbapi in use and on the syntax used to access
the columns of each row (eg row['name'] is much faster
than row.name). The current extensions have no impact
on the speed of inserts/updates/deletes, nor do they improve
the latency of SQL execution, that is, an application that
spends most of its time executing many statements with very
small result sets will not see much improvement.

Performance has been improved in 0.6 versus 0.5 regardless
of the extensions. A quick overview of what connecting and
fetching 50,000 rows looks like with SQLite, using mostly
direct SQLite access, a ResultProxy, and a simple mapped
ORM object:

sqlite select/native: 0.260s

0.6 / C extension

sqlalchemy.sql select: 0.360s
sqlalchemy.orm fetch: 2.500s

0.6 / Pure Python

sqlalchemy.sql select: 0.600s
sqlalchemy.orm fetch: 3.000s

0.5 / Pure Python

sqlalchemy.sql select: 0.790s
sqlalchemy.orm fetch: 4.030s

Above, the ORM fetches the rows 33% faster than 0.5 due to
in-python performance enhancements. With the C extensions
we get another 20%. However, ResultProxy fetches
improve by 67% with the C extension versus not. Other
tests report as much as a 200% speed improvement for some
scenarios, such as those where lots of string conversions
are occurring.

New Schema Capabilities

The sqlalchemy.schema package has received some long-
needed attention. The most visible change is the newly
expanded DDL system. In SQLAlchemy, it was possible since
version 0.5 to create custom DDL strings and associate them
with tables or metadata objects:

from sqlalchemy.schema import DDL

DDL('CREATE TRIGGER users_trigger ...').execute_at('after-create', metadata)

Now the full suite of DDL constructs are available under the
same system, including those for CREATE TABLE, ADD
CONSTRAINT, etc.:

from sqlalchemy.schema import Constraint, AddConstraint

AddContraint(CheckConstraint("value > 5")).execute_at('after-create', mytable)

Additionally, all the DDL objects are now regular
ClauseElement objects just like any other SQLAlchemy
expression object:

from sqlalchemy.schema import CreateTable

create = CreateTable(mytable)

dumps the CREATE TABLE as a string
print(create)

executes the CREATE TABLE statement
engine.execute(create)

and using the sqlalchemy.ext.compiler extension you can
make your own:

from sqlalchemy.schema import DDLElement
from sqlalchemy.ext.compiler import compiles

class AlterColumn(DDLElement):

 def __init__(self, column, cmd):
 self.column = column
 self.cmd = cmd

@compiles(AlterColumn)
def visit_alter_column(element, compiler, **kw):
 return "ALTER TABLE %s ALTER COLUMN %s %s ..." % (
 element.column.table.name,
 element.column.name,
 element.cmd
)

engine.execute(AlterColumn(table.c.mycolumn, "SET DEFAULT 'test'"))

Deprecated/Removed Schema Elements

The schema package has also been greatly streamlined. Many
options and methods which were deprecated throughout 0.5
have been removed. Other little known accessors and methods
have also been removed.

	the “owner” keyword argument is removed from Table.
Use “schema” to represent any namespaces to be prepended
to the table name.

	deprecated MetaData.connect() and
ThreadLocalMetaData.connect() have been removed - send
the “bind” attribute to bind a metadata.

	deprecated metadata.table_iterator() method removed (use
sorted_tables)

	the “metadata” argument is removed from
DefaultGenerator and subclasses, but remains locally
present on Sequence, which is a standalone construct
in DDL.

	deprecated PassiveDefault - use DefaultClause.

	Removed public mutability from Index and
Constraint objects:
	ForeignKeyConstraint.append_element()

	Index.append_column()

	UniqueConstraint.append_column()

	PrimaryKeyConstraint.add()

	PrimaryKeyConstraint.remove()

These should be constructed declaratively (i.e. in one
construction).

	Other removed things:
	Table.key (no idea what this was for)

	Column.bind (get via column.table.bind)

	Column.metadata (get via column.table.metadata)

	Column.sequence (use column.default)

Other Behavioral Changes

	UniqueConstraint, Index, PrimaryKeyConstraint
all accept lists of column names or column objects as
arguments.

	The use_alter flag on ForeignKey is now a shortcut
option for operations that can be hand-constructed using
the DDL() event system. A side effect of this refactor
is that ForeignKeyConstraint objects with
use_alter=True will not be emitted on SQLite, which
does not support ALTER for foreign keys. This has no
effect on SQLite’s behavior since SQLite does not actually
honor FOREIGN KEY constraints.

	Table.primary_key is not assignable - use
table.append_constraint(PrimaryKeyConstraint(...))

	A Column definition with a ForeignKey and no type,
e.g. Column(name, ForeignKey(sometable.c.somecol))
used to get the type of the referenced column. Now support
for that automatic type inference is partial and may not
work in all cases.

Logging opened up

At the expense of a few extra method calls here and there,
you can set log levels for INFO and DEBUG after an engine,
pool, or mapper has been created, and logging will commence.
The isEnabledFor(INFO) method is now called
per-Connection and isEnabledFor(DEBUG)
per-ResultProxy if already enabled on the parent
connection. Pool logging sends to log.info() and
log.debug() with no check - note that pool
checkout/checkin is typically once per transaction.

Reflection/Inspector API

The reflection system, which allows reflection of table
columns via Table('sometable', metadata, autoload=True)
has been opened up into its own fine-grained API, which
allows direct inspection of database elements such as
tables, columns, constraints, indexes, and more. This API
expresses return values as simple lists of strings,
dictionaries, and TypeEngine objects. The internals of
autoload=True now build upon this system such that the
translation of raw database information into
sqlalchemy.schema constructs is centralized and the
contract of individual dialects greatly simplified, vastly
reducing bugs and inconsistencies across different backends.

To use an inspector:

from sqlalchemy.engine.reflection import Inspector
insp = Inspector.from_engine(my_engine)

print(insp.get_schema_names())

the from_engine() method will in some cases provide a
backend-specific inspector with additional capabilities,
such as that of Postgresql which provides a
get_table_oid() method:

my_engine = create_engine('postgresql://...')
pg_insp = Inspector.from_engine(my_engine)

print(pg_insp.get_table_oid('my_table'))

RETURNING Support

The insert(), update() and delete() constructs
now support a returning() method, which corresponds to
the SQL RETURNING clause as supported by Postgresql, Oracle,
MS-SQL, and Firebird. It is not supported for any other
backend at this time.

Given a list of column expressions in the same manner as
that of a select() construct, the values of these
columns will be returned as a regular result set:

result = connection.execute(
 table.insert().values(data='some data').returning(table.c.id, table.c.timestamp)
)
row = result.first()
print("ID:", row['id'], "Timestamp:", row['timestamp'])

The implementation of RETURNING across the four supported
backends varies wildly, in the case of Oracle requiring an
intricate usage of OUT parameters which are re-routed into a
“mock” result set, and in the case of MS-SQL using an
awkward SQL syntax. The usage of RETURNING is subject to
limitations:

	it does not work for any “executemany()” style of
execution. This is a limitation of all supported DBAPIs.

	Some backends, such as Oracle, only support RETURNING that
returns a single row - this includes UPDATE and DELETE
statements, meaning the update() or delete() construct
must match only a single row, or an error is raised (by
Oracle, not SQLAlchemy).

RETURNING is also used automatically by SQLAlchemy, when
available and when not otherwise specified by an explicit
returning() call, to fetch the value of newly generated
primary key values for single-row INSERT statements. This
means there’s no more “SELECT nextval(sequence)” pre-
execution for insert statements where the primary key value
is required. Truth be told, implicit RETURNING feature
does incur more method overhead than the old “select
nextval()” system, which used a quick and dirty
cursor.execute() to get at the sequence value, and in the
case of Oracle requires additional binding of out
parameters. So if method/protocol overhead is proving to be
more expensive than additional database round trips, the
feature can be disabled by specifying
implicit_returning=False to create_engine().

Type System Changes

New Archicture

The type system has been completely reworked behind the
scenes to provide two goals:

	Separate the handling of bind parameters and result row
values, typically a DBAPI requirement, from the SQL
specification of the type itself, which is a database
requirement. This is consistent with the overall dialect
refactor that separates database SQL behavior from DBAPI.

	Establish a clear and consistent contract for generating
DDL from a TypeEngine object and for constructing
TypeEngine objects based on column reflection.

Highlights of these changes include:

	The construction of types within dialects has been totally
overhauled. Dialects now define publically available types
as UPPERCASE names exclusively, and internal
implementation types using underscore identifiers (i.e.
are private). The system by which types are expressed in
SQL and DDL has been moved to the compiler system. This
has the effect that there are much fewer type objects
within most dialects. A detailed document on this
architecture for dialect authors is in [source:/lib/sqlalc
hemy/dialects/type_migration_guidelines.txt].

	Reflection of types now returns the exact UPPERCASE type
within types.py, or the UPPERCASE type within the dialect
itself if the type is not a standard SQL type. This means
reflection now returns more accurate information about
reflected types.

	User defined types that subclass TypeEngine and wish
to provide get_col_spec() should now subclass
UserDefinedType.

	The result_processor() method on all type classes now
accepts an additional argument coltype. This is the
DBAPI type object attached to cursor.description, and
should be used when applicable to make better decisions on
what kind of result-processing callable should be
returned. Ideally result processor functions would never
need to use isinstance(), which is an expensive call
at this level.

Native Unicode Mode

As more DBAPIs support returning Python unicode objects
directly, the base dialect now performs a check upon the
first connection which establishes whether or not the DBAPI
returns a Python unicode object for a basic select of a
VARCHAR value. If so, the String type and all
subclasses (i.e. Text, Unicode, etc.) will skip the
“unicode” check/conversion step when result rows are
received. This offers a dramatic performance increase for
large result sets. The “unicode mode” currently is known to
work with:

	sqlite3 / pysqlite

	psycopg2 - SQLA 0.6 now uses the “UNICODE” type extension
by default on each psycopg2 connection object

	pg8000

	cx_oracle (we use an output processor - nice feature !)

Other types may choose to disable unicode processing as
needed, such as the NVARCHAR type when used with MS-SQL.

In particular, if porting an application based on a DBAPI
that formerly returned non-unicode strings, the “native
unicode” mode has a plainly different default behavior -
columns that are declared as String or VARCHAR now
return unicode by default whereas they would return strings
before. This can break code which expects non-unicode
strings. The psycopg2 “native unicode” mode can be
disabled by passing use_native_unicode=False to
create_engine().

A more general solution for string columns that explicitly
do not want a unicode object is to use a TypeDecorator
that converts unicode back to utf-8, or whatever is desired:

class UTF8Encoded(TypeDecorator):
 """Unicode type which coerces to utf-8."""

 impl = sa.VARCHAR

 def process_result_value(self, value, dialect):
 if isinstance(value, unicode):
 value = value.encode('utf-8')
 return value

Note that the assert_unicode flag is now deprecated.
SQLAlchemy allows the DBAPI and backend database in use to
handle Unicode parameters when available, and does not add
operational overhead by checking the incoming type; modern
systems like sqlite and Postgresql will raise an encoding
error on their end if invalid data is passed. In those
cases where SQLAlchemy does need to coerce a bind parameter
from Python Unicode to an encoded string, or when the
Unicode type is used explicitly, a warning is raised if the
object is a bytestring. This warning can be suppressed or
converted to an exception using the Python warnings filter
documented at: http://docs.python.org/library/warnings.html

Generic Enum Type

We now have an Enum in the types module. This is a
string type that is given a collection of “labels” which
constrain the possible values given to those labels. By
default, this type generates a VARCHAR using the size of
the largest label, and applies a CHECK constraint to the
table within the CREATE TABLE statement. When using MySQL,
the type by default uses MySQL’s ENUM type, and when using
Postgresql the type will generate a user defined type using
CREATE TYPE <mytype> AS ENUM. In order to create the
type using Postgresql, the name parameter must be
specified to the constructor. The type also accepts a
native_enum=False option which will issue the
VARCHAR/CHECK strategy for all databases. Note that
Postgresql ENUM types currently don’t work with pg8000 or
zxjdbc.

Reflection Returns Dialect-Specific Types

Reflection now returns the most specific type possible from
the database. That is, if you create a table using
String, then reflect it back, the reflected column will
likely be VARCHAR. For dialects that support a more
specific form of the type, that’s what you’ll get. So a
Text type would come back as oracle.CLOB on Oracle,
a LargeBinary might be an mysql.MEDIUMBLOB etc. The
obvious advantage here is that reflection preserves as much
information possible from what the database had to say.

Some applications that deal heavily in table metadata may
wish to compare types across reflected tables and/or non-
reflected tables. There’s a semi-private accessor available
on TypeEngine called _type_affinity and an
associated comparison helper _compare_type_affinity.
This accessor returns the “generic” types class which
the type corresponds to:

>>> String(50)._compare_type_affinity(postgresql.VARCHAR(50))
True
>>> Integer()._compare_type_affinity(mysql.REAL)
False

Miscellaneous API Changes

The usual “generic” types are still the general system in
use, i.e. String, Float, DateTime. There’s a
few changes there:

	Types no longer make any guesses as to default parameters.
In particular, Numeric, Float, as well as
subclasses NUMERIC, FLOAT, DECIMAL don’t generate any
length or scale unless specified. This also continues to
include the controversial String and VARCHAR types
(although MySQL dialect will pre-emptively raise when
asked to render VARCHAR with no length). No defaults are
assumed, and if they are used in a CREATE TABLE statement,
an error will be raised if the underlying database does
not allow non-lengthed versions of these types.

	the Binary type has been renamed to LargeBinary,
for BLOB/BYTEA/similar types. For BINARY and
VARBINARY, those are present directly as
types.BINARY, types.VARBINARY, as well as in the
MySQL and MS-SQL dialects.

	PickleType now uses == for comparison of values when
mutable=True, unless the “comparator” argument with a
comparison function is specified to the type. If you are
pickling a custom object you should implement an
__eq__() method so that value-based comparisons are
accurate.

	The default “precision” and “scale” arguments of Numeric
and Float have been removed and now default to None.
NUMERIC and FLOAT will be rendered with no numeric
arguments by default unless these values are provided.

	DATE, TIME and DATETIME types on SQLite can now take
optional “storage_format” and “regexp” argument.
“storage_format” can be used to store those types using a
custom string format. “regexp” allows to use a custom
regular expression to match string values from the
database.

	__legacy_microseconds__ on SQLite Time and
DateTime types is not supported anymore. You should
use the new “storage_format” argument instead.

	DateTime types on SQLite now use by a default a
stricter regular expression to match strings from the
database. Use the new “regexp” argument if you are using
data stored in a legacy format.

ORM Changes

Upgrading an ORM application from 0.5 to 0.6 should require
little to no changes, as the ORM’s behavior remains almost
identical. There are some default argument and name
changes, and some loading behaviors have been improved.

New Unit of Work

The internals for the unit of work, primarily
topological.py and unitofwork.py, have been
completely rewritten and are vastly simplified. This
should have no impact on usage, as all existing behavior
during flush has been maintained exactly (or at least, as
far as it is exercised by our testsuite and the handful of
production environments which have tested it heavily). The
performance of flush() now uses 20-30% fewer method calls
and should also use less memory. The intent and flow of the
source code should now be reasonably easy to follow, and the
architecture of the flush is fairly open-ended at this
point, creating room for potential new areas of
sophistication. The flush process no longer has any
reliance on recursion so flush plans of arbitrary size and
complexity can be flushed. Additionally, the mapper’s
“save” process, which issues INSERT and UPDATE statements,
now caches the “compiled” form of the two statements so that
callcounts are further dramatically reduced with very large
flushes.

Any changes in behavior observed with flush versus earlier
versions of 0.6 or 0.5 should be reported to us ASAP - we’ll
make sure no functionality is lost.

Changes to query.update() and query.delete()

	the ‘expire’ option on query.update() has been renamed to
‘fetch’, thus matching that of query.delete()

	query.update() and query.delete() both default to
‘evaluate’ for the synchronize strategy.

	the ‘synchronize’ strategy for update() and delete()
raises an error on failure. There is no implicit fallback
onto “fetch”. Failure of evaluation is based on the
structure of criteria, so success/failure is deterministic
based on code structure.

relation() is officially named relationship()

This to solve the long running issue that “relation” means a
“table or derived table” in relational algebra terms. The
relation() name, which is less typing, will hang around
for the foreseeable future so this change should be entirely
painless.

Subquery eager loading

A new kind of eager loading is added called “subquery”
loading. This is a load that emits a second SQL query
immediately after the first which loads full collections for
all the parents in the first query, joining upwards to the
parent using INNER JOIN. Subquery loading is used simlarly
to the current joined-eager loading, using the
`subqueryload()`` and ``subqueryload_all()`` options
as well as the ``lazy='subquery'`` setting on
``relationship()`. The subquery load is usually much
more efficient for loading many larger collections as it
uses INNER JOIN unconditionally and also doesn’t re-load
parent rows.

`eagerload()``, ``eagerload_all()`` is now ``joinedload()``, ``joinedload_all()`

To make room for the new subquery load feature, the existing
`eagerload()``/``eagerload_all()`` options are now
superseded by ``joinedload()`` and
``joinedload_all()``. The old names will hang around
for the foreseeable future just like ``relation()`.

`lazy=False|None|True|'dynamic'`` now accepts ``lazy='noload'|'joined'|'subquery'|'select'|'dynamic'`

Continuing on the theme of loader strategies opened up, the
standard keywords for the `lazy`` option on
``relationship()`` are now ``select`` for lazy
loading (via a SELECT issued on attribute access),
``joined`` for joined-eager loading, ``subquery``
for subquery-eager loading, ``noload`` for no loading
should occur, and ``dynamic`` for a “dynamic”
relationship. The old ``True``, ``False``,
``None` arguments are still accepted with the identical
behavior as before.

innerjoin=True on relation, joinedload

Joined-eagerly loaded scalars and collections can now be
instructed to use INNER JOIN instead of OUTER JOIN. On
Postgresql this is observed to provide a 300-600% speedup on
some queries. Set this flag for any many-to-one which is
on a NOT NULLable foreign key, and similarly for any
collection where related items are guaranteed to exist.

At mapper level:

mapper(Child, child)
mapper(Parent, parent, properties={
 'child':relationship(Child, lazy='joined', innerjoin=True)
})

At query time level:

session.query(Parent).options(joinedload(Parent.child, innerjoin=True)).all()

The innerjoin=True flag at the relationship() level
will also take effect for any joinedload() option which
does not override the value.

Many-to-one Enhancements

	many-to-one relations now fire off a lazyload in fewer
cases, including in most cases will not fetch the “old”
value when a new one is replaced.

	many-to-one relation to a joined-table subclass now uses
get() for a simple load (known as the “use_get”
condition), i.e. Related->``Sub(Base)``, without the
need to redefine the primaryjoin condition in terms of the
base table. [ticket:1186]

	specifying a foreign key with a declarative column, i.e.
ForeignKey(MyRelatedClass.id) doesn’t break the
“use_get” condition from taking place [ticket:1492]

	relationship(), joinedload(), and joinedload_all() now
feature an option called “innerjoin”. Specify True or
False to control whether an eager join is constructed
as an INNER or OUTER join. Default is False as always.
The mapper options will override whichever setting is
specified on relationship(). Should generally be set for
many-to-one, not nullable foreign key relations to allow
improved join performance. [ticket:1544]

	the behavior of joined eager loading such that the main
query is wrapped in a subquery when LIMIT/OFFSET are
present now makes an exception for the case when all eager
loads are many-to-one joins. In those cases, the eager
joins are against the parent table directly along with the
limit/offset without the extra overhead of a subquery,
since a many-to-one join does not add rows to the result.

For example, in 0.5 this query:

session.query(Address).options(eagerload(Address.user)).limit(10)

would produce SQL like:

SELECT * FROM
 (SELECT * FROM addresses LIMIT 10) AS anon_1
 LEFT OUTER JOIN users AS users_1 ON users_1.id = anon_1.addresses_user_id

This because the presence of any eager loaders suggests
that some or all of them may relate to multi-row
collections, which would necessitate wrapping any kind of
rowcount-sensitive modifiers like LIMIT inside of a
subquery.

In 0.6, that logic is more sensitive and can detect if all
eager loaders represent many-to-ones, in which case the
eager joins don’t affect the rowcount:

SELECT * FROM addresses LEFT OUTER JOIN users AS users_1 ON users_1.id = addresses.user_id LIMIT 10

Mutable Primary Keys with Joined Table Inheritance

A joined table inheritance config where the child table has
a PK that foreign keys to the parent PK can now be updated
on a CASCADE-capable database like Postgresql.
mapper() now has an option passive_updates=True
which indicates this foreign key is updated automatically.
If on a non-cascading database like SQLite or MySQL/MyISAM,
set this flag to False. A future feature enhancement
will try to get this flag to be auto-configuring based on
dialect/table style in use.

Beaker Caching

A promising new example of Beaker integration is in
examples/beaker_caching. This is a straightforward
recipe which applies a Beaker cache within the result-
generation engine of Query. Cache parameters are
provided via query.options(), and allows full control
over the contents of the cache. SQLAlchemy 0.6 includes
improvements to the Session.merge() method to support
this and similar recipes, as well as to provide
significantly improved performance in most scenarios.

Other Changes

	the “row tuple” object returned by Query when multiple
column/entities are selected is now picklable as well as
higher performing.

	query.join() has been reworked to provide more
consistent behavior and more flexibility (includes
[ticket:1537])

	query.select_from() accepts multiple clauses to
produce multiple comma separated entries within the FROM
clause. Useful when selecting from multiple-homed join()
clauses.

	the “dont_load=True” flag on Session.merge() is
deprecated and is now “load=False”.

	added “make_transient()” helper function which transforms
a persistent/ detached instance into a transient one (i.e.
deletes the instance_key and removes from any session.)
[ticket:1052]

	the allow_null_pks flag on mapper() is deprecated and has
been renamed to allow_partial_pks. It is turned “on” by
default. This means that a row which has a non-null value
for any of its primary key columns will be considered an
identity. The need for this scenario typically only occurs
when mapping to an outer join. When set to False, a PK
that has NULLs in it will not be considered a primary key
- in particular this means a result row will come back as
None (or not be filled into a collection), and new in 0.6
also indicates that session.merge() won’t issue a round
trip to the database for such a PK value. [ticket:1680]

	the mechanics of “backref” have been fully merged into the
finer grained “back_populates” system, and take place
entirely within the _generate_backref() method of
RelationProperty. This makes the initialization
procedure of RelationProperty simpler and allows
easier propagation of settings (such as from subclasses of
RelationProperty) into the reverse reference. The
internal BackRef() is gone and backref() returns a
plain tuple that is understood by RelationProperty.

	the keys attribute of ResultProxy is now a method, so
references to it (result.keys) must be changed to
method invocations (result.keys())

	ResultProxy.last_inserted_ids is now deprecated, use
ResultProxy.inserted_primary_key instead.

Deprecated/Removed ORM Elements

Most elements that were deprecated throughout 0.5 and raised
deprecation warnings have been removed (with a few
exceptions). All elements that were marked “pending
deprecation” are now deprecated and will raise a warning
upon use.

	‘transactional’ flag on sessionmaker() and others is
removed. Use ‘autocommit=True’ to indicate
‘transactional=False’.

	‘polymorphic_fetch’ argument on mapper() is removed.
Loading can be controlled using the ‘with_polymorphic’
option.

	‘select_table’ argument on mapper() is removed. Use
‘with_polymorphic=(“*”, <some selectable>)’ for this
functionality.

	‘proxy’ argument on synonym() is removed. This flag did
nothing throughout 0.5, as the “proxy generation”
behavior is now automatic.

	Passing a single list of elements to joinedload(),
joinedload_all(), contains_eager(), lazyload(), defer(),
and undefer() instead of multiple positional *args is
deprecated.

	Passing a single list of elements to query.order_by(),
query.group_by(), query.join(), or query.outerjoin()
instead of multiple positional *args is deprecated.

	query.iterate_instances() is removed. Use
query.instances().

	Query.query_from_parent() is removed. Use the
sqlalchemy.orm.with_parent() function to produce a
“parent” clause, or alternatively query.with_parent().

	query._from_self() is removed, use
query.from_self() instead.

	the “comparator” argument to composite() is removed. Use
“comparator_factory”.

	RelationProperty._get_join() is removed.

	the ‘echo_uow’ flag on Session is removed. Use logging
on the “sqlalchemy.orm.unitofwork” name.

	session.clear() is removed. use
session.expunge_all().

	session.save(), session.update(),
session.save_or_update() are removed. Use
session.add() and session.add_all().

	the “objects” flag on session.flush() remains deprecated.

	the “dont_load=True” flag on session.merge() is deprecated
in favor of “load=False”.

	ScopedSession.mapper remains deprecated. See the
usage recipe at http://www.sqlalchemy.org/trac/wiki/Usag
eRecipes/SessionAwareMapper

	passing an InstanceState (internal SQLAlchemy state
object) to attributes.init_collection() or
attributes.get_history() is deprecated. These
functions are public API and normally expect a regular
mapped object instance.

	the ‘engine’ parameter to declarative_base() is
removed. Use the ‘bind’ keyword argument.

Extensions

SQLSoup

SQLSoup has been modernized and updated to reflect common
0.5/0.6 capabilities, including well defined session
integration. Please read the new docs at [http://www.sqlalc
hemy.org/docs/06/reference/ext/sqlsoup.html].

Declarative

The DeclarativeMeta (default metaclass for
declarative_base) previously allowed subclasses to
modify dict_ to add class attributes (e.g. columns).
This no longer works, the DeclarativeMeta constructor
now ignores dict_. Instead, the class attributes should
be assigned directly, e.g. cls.id=Column(...), or the
MixIn class approach should be used
instead of the metaclass approach.

What’s new in SQLAlchemy 0.5?

About this Document

This document describes changes between SQLAlchemy version 0.4,
last released October 12, 2008, and SQLAlchemy version 0.5,
last released January 16, 2010.

Document date: August 4, 2009

This guide documents API changes which affect users
migrating their applications from the 0.4 series of
SQLAlchemy to 0.5. It’s also recommended for those working
from Essential SQLAlchemy, which only
covers 0.4 and seems to even have some old 0.3isms in it.
Note that SQLAlchemy 0.5 removes many behaviors which were
deprecated throughout the span of the 0.4 series, and also
deprecates more behaviors specific to 0.4.

Major Documentation Changes

Some sections of the documentation have been completely
rewritten and can serve as an introduction to new ORM
features. The Query and Session objects in
particular have some distinct differences in API and
behavior which fundamentally change many of the basic ways
things are done, particularly with regards to constructing
highly customized ORM queries and dealing with stale session
state, commits and rollbacks.

	ORM Tutorial

	Session Documentation

Deprecations Source

Another source of information is documented within a series
of unit tests illustrating up to date usages of some common
Query patterns; this file can be viewed at
[source:sqlalchemy/trunk/test/orm/test_deprecations.py].

Requirements Changes

	Python 2.4 or higher is required. The SQLAlchemy 0.4 line
is the last version with Python 2.3 support.

Object Relational Mapping

	Column level expressions within Query. - as detailed
in the tutorial,
Query has the capability to create specific SELECT
statements, not just those against full rows:

session.query(User.name, func.count(Address.id).label("numaddresses")).join(Address).group_by(User.name)

The tuples returned by any multi-column/entity query are
named‘ tuples:

for row in session.query(User.name, func.count(Address.id).label('numaddresses')).join(Address).group_by(User.name):
 print("name", row.name, "number", row.numaddresses)

Query has a statement accessor, as well as a
subquery() method which allow Query to be used to
create more complex combinations:

subq = session.query(Keyword.id.label('keyword_id')).filter(Keyword.name.in_(['beans', 'carrots'])).subquery()
recipes = session.query(Recipe).filter(exists().
 where(Recipe.id==recipe_keywords.c.recipe_id).
 where(recipe_keywords.c.keyword_id==subq.c.keyword_id)
)

	Explicit ORM aliases are recommended for aliased joins
- The aliased() function produces an “alias” of a
class, which allows fine-grained control of aliases in
conjunction with ORM queries. While a table-level alias
(i.e. table.alias()) is still usable, an ORM level
alias retains the semantics of the ORM mapped object which
is significant for inheritance mappings, options, and
other scenarios. E.g.:

Friend = aliased(Person)
session.query(Person, Friend).join((Friend, Person.friends)).all()

	query.join() greatly enhanced. - You can now specify
the target and ON clause for a join in multiple ways. A
target class alone can be provided where SQLA will attempt
to form a join to it via foreign key in the same way as
table.join(someothertable). A target and an explicit
ON condition can be provided, where the ON condition can
be a relation() name, an actual class descriptor, or a
SQL expression. Or the old way of just a relation()
name or class descriptor works too. See the ORM tutorial
which has several examples.

	Declarative is recommended for applications which don’t
require (and don’t prefer) abstraction between tables and
mappers - The [/docs/05/reference/ext/declarative.html
Declarative] module, which is used to combine the
expression of Table, mapper(), and user defined
class objects together, is highly recommended as it
simplifies application configuration, ensures the “one
mapper per class” pattern, and allows the full range of
configuration available to distinct mapper() calls.
Separate mapper() and Table usage is now referred
to as “classical SQLAlchemy usage” and of course is freely
mixable with declarative.

	The .c. attribute has been removed from classes (i.e.
MyClass.c.somecolumn). As is the case in 0.4, class-
level properties are usable as query elements, i.e.
Class.c.propname is now superseded by
Class.propname, and the c attribute continues to
remain on Table objects where they indicate the
namespace of Column objects present on the table.

To get at the Table for a mapped class (if you didn’t keep
it around already):

table = class_mapper(someclass).mapped_table

Iterate through columns:

for col in table.c:
 print(col)

Work with a specific column:

table.c.somecolumn

The class-bound descriptors support the full set of Column
operators as well as the documented relation-oriented
operators like has(), any(), contains(), etc.

The reason for the hard removal of .c. is that in 0.5,
class-bound descriptors carry potentially different
meaning, as well as information regarding class mappings,
versus plain Column objects - and there are use cases
where you’d specifically want to use one or the other.
Generally, using class-bound descriptors invokes a set of
mapping/polymorphic aware translations, and using table-
bound columns does not. In 0.4, these translations were
applied across the board to all expressions, but 0.5
differentiates completely between columns and mapped
descriptors, only applying translations to the latter. So
in many cases, particularly when dealing with joined table
inheritance configurations as well as when using
query(<columns>), Class.propname and
table.c.colname are not interchangeable.

For example, session.query(users.c.id, users.c.name)
is different versus session.query(User.id, User.name);
in the latter case, the Query is aware of the mapper
in use and further mapper-specific operations like
query.join(<propname>), query.with_parent() etc.
may be used, but in the former case cannot. Additionally,
in polymorphic inheritance scenarios, the class-bound
descriptors refer to the columns present in the
polymorphic selectable in use, not necessarily the table
column which directly corresponds to the descriptor. For
example, a set of classes related by joined-table
inheritance to the person table along the
person_id column of each table will all have their
Class.person_id attribute mapped to the person_id
column in person, and not their subclass table.
Version 0.4 would map this behavior onto table-bound
Column objects automatically. In 0.5, this automatic
conversion has been removed, so that you in fact can use
table-bound columns as a means to override the
translations which occur with polymorphic querying; this
allows Query to be able to create optimized selects
among joined-table or concrete-table inheritance setups,
as well as portable subqueries, etc.

	Session Now Synchronizes Automatically with
Transactions. Session now synchronizes against the
transaction automatically by default, including autoflush
and autoexpire. A transaction is present at all times
unless disabled using the autocommit option. When all
three flags are set to their default, the Session recovers
gracefully after rollbacks and it’s very difficult to get
stale data into the session. See the new Session
documentation for details.

	Implicit Order By Is Removed. This will impact ORM
users who rely upon SA’s “implicit ordering” behavior,
which states that all Query objects which don’t have an
order_by() will ORDER BY the “id” or “oid” column of
the primary mapped table, and all lazy/eagerly loaded
collections apply a similar ordering. In 0.5, automatic
ordering must be explicitly configured on mapper() and
relation() objects (if desired), or otherwise when
using Query.

To convert an 0.4 mapping to 0.5, such that its ordering
behavior will be extremely similar to 0.4 or previous, use
the order_by setting on mapper() and
relation():

mapper(User, users, properties={
 'addresses':relation(Address, order_by=addresses.c.id)
}, order_by=users.c.id)

To set ordering on a backref, use the backref()
function:

'keywords':relation(Keyword, secondary=item_keywords,
 order_by=keywords.c.name, backref=backref('items', order_by=items.c.id))

Using declarative ? To help with the new order_by
requirement, order_by and friends can now be set using
strings which are evaluated in Python later on (this works
only with declarative, not plain mappers):

class MyClass(MyDeclarativeBase):
 ...
 'addresses':relation("Address", order_by="Address.id")

It’s generally a good idea to set order_by on
relation()s which load list-based collections of
items, since that ordering cannot otherwise be affected.
Other than that, the best practice is to use
Query.order_by() to control ordering of the primary
entities being loaded.

	Session is now
autoflush=True/autoexpire=True/autocommit=False. - To
set it up, just call sessionmaker() with no arguments.
The name transactional=True is now
autocommit=False. Flushes occur upon each query
issued (disable with autoflush=False), within each
commit() (as always), and before each
begin_nested() (so rolling back to the SAVEPOINT is
meaningful). All objects are expired after each
commit() and after each rollback(). After
rollback, pending objects are expunged, deleted objects
move back to persistent. These defaults work together
very nicely and there’s really no more need for old
techniques like clear() (which is renamed to
expunge_all() as well).

P.S.: sessions are now reusable after a rollback().
Scalar and collection attribute changes, adds and deletes
are all rolled back.

	session.add() replaces session.save(), session.update(),
session.save_or_update(). - the
session.add(someitem) and session.add_all([list of
items]) methods replace save(), update(), and
save_or_update(). Those methods will remain
deprecated throughout 0.5.

	backref configuration made less verbose. - The
backref() function now uses the primaryjoin and
secondaryjoin arguments of the forwards-facing
relation() when they are not explicitly stated. It’s
no longer necessary to specify
primaryjoin/secondaryjoin in both directions
separately.

	Simplified polymorphic options. - The ORM’s
“polymorphic load” behavior has been simplified. In 0.4,
mapper() had an argument called polymorphic_fetch
which could be configured as select or deferred.
This option is removed; the mapper will now just defer any
columns which were not present in the SELECT statement.
The actual SELECT statement used is controlled by the
with_polymorphic mapper argument (which is also in 0.4
and replaces select_table), as well as the
with_polymorphic() method on Query (also in 0.4).

An improvement to the deferred loading of inheriting
classes is that the mapper now produces the “optimized”
version of the SELECT statement in all cases; that is, if
class B inherits from A, and several attributes only
present on class B have been expired, the refresh
operation will only include B’s table in the SELECT
statement and will not JOIN to A.

	The execute() method on Session converts plain
strings into text() constructs, so that bind
parameters may all be specified as ”:bindname” without
needing to call text() explicitly. If “raw” SQL is
desired here, use session.connection().execute("raw
text").

	session.Query().iterate_instances() has been renamed
to just instances(). The old instances() method
returning a list instead of an iterator no longer exists.
If you were relying on that behavior, you should use
list(your_query.instances()).

Extending the ORM

In 0.5 we’re moving forward with more ways to modify and
extend the ORM. Heres a summary:

	MapperExtension. - This is the classic extension
class, which remains. Methods which should rarely be
needed are create_instance() and
populate_instance(). To control the initialization of
an object when it’s loaded from the database, use the
reconstruct_instance() method, or more easily the
@reconstructor decorator described in the
documentation.

	SessionExtension. - This is an easy to use extension
class for session events. In particular, it provides
before_flush(), after_flush() and
after_flush_postexec() methods. This usage is
recommended over MapperExtension.before_XXX in many
cases since within before_flush() you can modify the
flush plan of the session freely, something which cannot
be done from within MapperExtension.

	AttributeExtension. - This class is now part of the
public API, and allows the interception of userland events
on attributes, including attribute set and delete
operations, and collection appends and removes. It also
allows the value to be set or appended to be modified.
The @validates decorator, described in the
documentation, provides a quick way to mark any mapped
attributes as being “validated” by a particular class
method.

	Attribute Instrumentation Customization. - An API is
provided for ambitious efforts to entirely replace
SQLAlchemy’s attribute instrumentation, or just to augment
it in some cases. This API was produced for the purposes
of the Trellis toolkit, but is available as a public API.
Some examples are provided in the distribution in the
/examples/custom_attributes directory.

Schema/Types

	String with no length no longer generates TEXT, it
generates VARCHAR - The String type no longer
magically converts into a Text type when specified
with no length. This only has an effect when CREATE TABLE
is issued, as it will issue VARCHAR with no length
parameter, which is not valid on many (but not all)
databases. To create a TEXT (or CLOB, i.e. unbounded
string) column, use the Text type.

	PickleType() with mutable=True requires an __eq__()
method - The PickleType type needs to compare values
when mutable=True. The method of comparing
pickle.dumps() is inefficient and unreliable. If an
incoming object does not implement __eq__() and is
also not None, the dumps() comparison is used but
a warning is raised. For types which implement
__eq__() which includes all dictionaries, lists, etc.,
comparison will use == and is now reliable by default.

	convert_bind_param() and convert_result_value() methods
of TypeEngine/TypeDecorator are removed. - The O’Reilly
book unfortunately documented these methods even though
they were deprecated post 0.3. For a user-defined type
which subclasses TypeEngine, the bind_processor()
and result_processor() methods should be used for
bind/result processing. Any user defined type, whether
extending TypeEngine or TypeDecorator, which uses
the old 0.3 style can be easily adapted to the new style
using the following adapter:

class AdaptOldConvertMethods(object):
 """A mixin which adapts 0.3-style convert_bind_param and
 convert_result_value methods

 """
 def bind_processor(self, dialect):
 def convert(value):
 return self.convert_bind_param(value, dialect)
 return convert

 def result_processor(self, dialect):
 def convert(value):
 return self.convert_result_value(value, dialect)
 return convert

 def convert_result_value(self, value, dialect):
 return value

 def convert_bind_param(self, value, dialect):
 return value

To use the above mixin:

class MyType(AdaptOldConvertMethods, TypeEngine):
 # ...

	The quote flag on Column and Table as well as
the quote_schema flag on Table now control quoting
both positively and negatively. The default is None,
meaning let regular quoting rules take effect. When
True, quoting is forced on. When False, quoting
is forced off.

	Column DEFAULT value DDL can now be more conveniently
specified with Column(..., server_default='val'),
deprecating Column(..., PassiveDefault('val')).
default= is now exclusively for Python-initiated
default values, and can coexist with server_default. A
new server_default=FetchedValue() replaces the
PassiveDefault('') idiom for marking columns as
subject to influence from external triggers and has no DDL
side effects.

	SQLite’s DateTime, Time and Date types now
only accept datetime objects, not strings as bind
parameter input. If you’d like to create your own
“hybrid” type which accepts strings and returns results as
date objects (from whatever format you’d like), create a
TypeDecorator that builds on String. If you only
want string-based dates, just use String.

	Additionally, the DateTime and Time types, when
used with SQLite, now represent the “microseconds” field
of the Python datetime.datetime object in the same
manner as str(datetime) - as fractional seconds, not a
count of microseconds. That is:

dt = datetime.datetime(2008, 6, 27, 12, 0, 0, 125) # 125 usec

old way
'2008-06-27 12:00:00.125'

new way
'2008-06-27 12:00:00.000125'

So if an existing SQLite file-based database intends to be
used across 0.4 and 0.5, you either have to upgrade the
datetime columns to store the new format (NOTE: please
test this, I’m pretty sure its correct):

UPDATE mytable SET somedatecol =
 substr(somedatecol, 0, 19) || '.' || substr((substr(somedatecol, 21, -1) / 1000000), 3, -1);

or, enable “legacy” mode as follows:

from sqlalchemy.databases.sqlite import DateTimeMixin
DateTimeMixin.__legacy_microseconds__ = True

Connection Pool no longer threadlocal by default

0.4 has an unfortunate default setting of
“pool_threadlocal=True”, leading to surprise behavior when,
for example, using multiple Sessions within a single thread.
This flag is now off in 0.5. To re-enable 0.4’s behavior,
specify pool_threadlocal=True to create_engine(), or
alternatively use the “threadlocal” strategy via
strategy="threadlocal".

*args Accepted, *args No Longer Accepted

The policy with method(*args) vs. method([args])
is, if the method accepts a variable-length set of items
which represent a fixed structure, it takes *args. If
the method accepts a variable-length set of items that are
data-driven, it takes [args].

	The various Query.options() functions eagerload(),
eagerload_all(), lazyload(), contains_eager(),
defer(), undefer() all accept variable-length
*keys as their argument now, which allows a path to
be formulated using descriptors, ie.:

query.options(eagerload_all(User.orders, Order.items, Item.keywords))

A single array argument is still accepted for backwards
compatibility.

	Similarly, the Query.join() and Query.outerjoin()
methods accept a variable length *args, with a single
array accepted for backwards compatibility:

query.join('orders', 'items')
query.join(User.orders, Order.items)

	the in_() method on columns and similar only accepts a
list argument now. It no longer accepts *args.

Removed

	entity_name - This feature was always problematic and
rarely used. 0.5’s more deeply fleshed out use cases
revealed further issues with entity_name which led to
its removal. If different mappings are required for a
single class, break the class into separate subclasses and
map them separately. An example of this is at
[wiki:UsageRecipes/EntityName]. More information
regarding rationale is described at http://groups.google.c
om/group/sqlalchemy/browse_thread/thread/9e23a0641a88b96d?
hl=en .

	get()/load() cleanup

The load() method has been removed. Its
functionality was kind of arbitrary and basically copied
from Hibernate, where it’s also not a particularly
meaningful method.

To get equivalent functionality:

x = session.query(SomeClass).populate_existing().get(7)

Session.get(cls, id) and Session.load(cls, id)
have been removed. Session.get() is redundant vs.
session.query(cls).get(id).

MapperExtension.get() is also removed (as is
MapperExtension.load()). To override the
functionality of Query.get(), use a subclass:

class MyQuery(Query):
 def get(self, ident):
 # ...

session = sessionmaker(query_cls=MyQuery)()

ad1 = session.query(Address).get(1)

	sqlalchemy.orm.relation()

The following deprecated keyword arguments have been
removed:

foreignkey, association, private, attributeext, is_backref

In particular, attributeext is replaced with
extension - the AttributeExtension class is now in
the public API.

	session.Query()

The following deprecated functions have been removed:

list, scalar, count_by, select_whereclause, get_by,
select_by, join_by, selectfirst, selectone, select,
execute, select_statement, select_text, join_to, join_via,
selectfirst_by, selectone_by, apply_max, apply_min,
apply_avg, apply_sum

Additionally, the id keyword argument to join(),
outerjoin(), add_entity() and add_column() has
been removed. To target table aliases in Query to
result columns, use the aliased construct:

from sqlalchemy.orm import aliased
address_alias = aliased(Address)
print(session.query(User, address_alias).join((address_alias, User.addresses)).all())

	sqlalchemy.orm.Mapper

	instances()

	get_session() - this method was not very noticeable, but
had the effect of associating lazy loads with a
particular session even if the parent object was
entirely detached, when an extension such as
scoped_session() or the old SessionContextExt
was used. It’s possible that some applications which
relied upon this behavior will no longer work as
expected; but the better programming practice here is
to always ensure objects are present within sessions if
database access from their attributes are required.

	mapper(MyClass, mytable)

Mapped classes no are longer instrumented with a “c” class
attribute; e.g. MyClass.c

	sqlalchemy.orm.collections

The _prepare_instrumentation alias for
prepare_instrumentation has been removed.

	sqlalchemy.orm

Removed the EXT_PASS alias of EXT_CONTINUE.

	sqlalchemy.engine

The alias from DefaultDialect.preexecute_sequences to
.preexecute_pk_sequences has been removed.

The deprecated engine_descriptors() function has been
removed.

	sqlalchemy.ext.activemapper

Module removed.

	sqlalchemy.ext.assignmapper

Module removed.

	sqlalchemy.ext.associationproxy

Pass-through of keyword args on the proxy’s
.append(item, **kw) has been removed and is now
simply .append(item)

	sqlalchemy.ext.selectresults,
sqlalchemy.mods.selectresults

Modules removed.

	sqlalchemy.ext.declarative

declared_synonym() removed.

	sqlalchemy.ext.sessioncontext

Module removed.

	sqlalchemy.log

The SADeprecationWarning alias to
sqlalchemy.exc.SADeprecationWarning has been removed.

	sqlalchemy.exc

exc.AssertionError has been removed and usage replaced
by the Python built-in of the same name.

	sqlalchemy.databases.mysql

The deprecated get_version_info dialect method has
been removed.

Renamed or Moved

	sqlalchemy.exceptions is now sqlalchemy.exc

The module may still be imported under the old name until
0.6.

	FlushError, ConcurrentModificationError,
UnmappedColumnError -> sqlalchemy.orm.exc

These exceptions moved to the orm package. Importing
‘sqlalchemy.orm’ will install aliases in sqlalchemy.exc
for compatibility until 0.6.

	sqlalchemy.logging -> sqlalchemy.log

This internal module was renamed. No longer needs to be
special cased when packaging SA with py2app and similar
tools that scan imports.

	session.Query().iterate_instances() ->
session.Query().instances().

Deprecated

	Session.save(), Session.update(),
Session.save_or_update()

All three replaced by Session.add()

	sqlalchemy.PassiveDefault

Use Column(server_default=...) Translates to
sqlalchemy.DefaultClause() under the hood.

	session.Query().iterate_instances(). It has been
renamed to instances().

What’s new in SQLAlchemy 0.4?

About this Document

This document describes changes between SQLAlchemy version 0.3,
last released October 14, 2007, and SQLAlchemy version 0.4,
last released October 12, 2008.

Document date: March 21, 2008

First Things First

If you’re using any ORM features, make sure you import from
sqlalchemy.orm:

from sqlalchemy import *
from sqlalchemy.orm import *

Secondly, anywhere you used to say engine=,
connectable=, bind_to=, something.engine,
metadata.connect(), use bind:

myengine = create_engine('sqlite://')

meta = MetaData(myengine)

meta2 = MetaData()
meta2.bind = myengine

session = create_session(bind=myengine)

statement = select([table], bind=myengine)

Got those ? Good! You’re now (95%) 0.4 compatible. If
you’re using 0.3.10, you can make these changes immediately;
they’ll work there too.

Module Imports

In 0.3, “from sqlachemy import *” would import all of
sqlachemy’s sub-modules into your namespace. Version 0.4 no
longer imports sub-modules into the namespace. This may mean
you need to add extra imports into your code.

In 0.3, this code worked:

from sqlalchemy import *

class UTCDateTime(types.TypeDecorator):
 pass

In 0.4, one must do:

from sqlalchemy import *
from sqlalchemy import types

class UTCDateTime(types.TypeDecorator):
 pass

Object Relational Mapping

Querying

New Query API

Query is standardized on the generative interface (old
interface is still there, just deprecated). While most of
the generative interface is available in 0.3, the 0.4 Query
has the inner guts to match the generative outside, and has
a lot more tricks. All result narrowing is via filter()
and filter_by(), limiting/offset is either through array
slices or limit()/offset(), joining is via
join() and outerjoin() (or more manually, through
select_from() as well as manually-formed criteria).

To avoid deprecation warnings, you must make some changes to
your 03 code

User.query.get_by(**kwargs)

User.query.filter_by(**kwargs).first()

User.query.select_by(**kwargs)

User.query.filter_by(**kwargs).all()

User.query.select()

User.query.filter(xxx).all()

New Property-Based Expression Constructs

By far the most palpable difference within the ORM is that
you can now construct your query criterion using class-based
attributes directly. The ”.c.” prefix is no longer needed
when working with mapped classes:

session.query(User).filter(and_(User.name == 'fred', User.id > 17))

While simple column-based comparisons are no big deal, the
class attributes have some new “higher level” constructs
available, including what was previously only available in
filter_by():

comparison of scalar relations to an instance
filter(Address.user == user)

return all users who contain a particular address
filter(User.addresses.contains(address))

return all users who *dont* contain the address
filter(~User.address.contains(address))

return all users who contain a particular address with
the email_address like '%foo%'
filter(User.addresses.any(Address.email_address.like('%foo%')))

same, email address equals 'foo@bar.com'. can fall back to keyword
args for simple comparisons
filter(User.addresses.any(email_address = 'foo@bar.com'))

return all Addresses whose user attribute has the username 'ed'
filter(Address.user.has(name='ed'))

return all Addresses whose user attribute has the username 'ed'
and an id > 5 (mixing clauses with kwargs)
filter(Address.user.has(User.id > 5, name='ed'))

The Column collection remains available on mapped
classes in the .c attribute. Note that property-based
expressions are only available with mapped properties of
mapped classes. .c is still used to access columns in
regular tables and selectable objects produced from SQL
Expressions.

Automatic Join Aliasing

We’ve had join() and outerjoin() for a while now:

session.query(Order).join('items')...

Now you can alias them:

session.query(Order).join('items', aliased=True).
 filter(Item.name='item 1').join('items', aliased=True).filter(Item.name=='item 3')

The above will create two joins from orders->items using
aliases. the filter() call subsequent to each will
adjust its table criterion to that of the alias. To get at
the Item objects, use add_entity() and target each
join with an id:

session.query(Order).join('items', id='j1', aliased=True).
filter(Item.name == 'item 1').join('items', aliased=True, id='j2').
filter(Item.name == 'item 3').add_entity(Item, id='j1').add_entity(Item, id='j2')

Returns tuples in the form: (Order, Item, Item).

Self-referential Queries

So query.join() can make aliases now. What does that give
us ? Self-referential queries ! Joins can be done without
any Alias objects:

standard self-referential TreeNode mapper with backref
mapper(TreeNode, tree_nodes, properties={
 'children':relation(TreeNode, backref=backref('parent', remote_side=tree_nodes.id))
})

query for node with child containing "bar" two levels deep
session.query(TreeNode).join(["children", "children"], aliased=True).filter_by(name='bar')

To add criterion for each table along the way in an aliased
join, you can use from_joinpoint to keep joining against
the same line of aliases:

search for the treenode along the path "n1/n12/n122"

first find a Node with name="n122"
q = sess.query(Node).filter_by(name='n122')

then join to parent with "n12"
q = q.join('parent', aliased=True).filter_by(name='n12')

join again to the next parent with 'n1'. use 'from_joinpoint'
so we join from the previous point, instead of joining off the
root table
q = q.join('parent', aliased=True, from_joinpoint=True).filter_by(name='n1')

node = q.first()

query.populate_existing()

The eager version of query.load() (or
session.refresh()). Every instance loaded from the
query, including all eagerly loaded items, get refreshed
immediately if already present in the session:

session.query(Blah).populate_existing().all()

Relations

SQL Clauses Embedded in Updates/Inserts

For inline execution of SQL clauses, embedded right in the
UPDATE or INSERT, during a flush():

myobject.foo = mytable.c.value + 1

user.pwhash = func.md5(password)

order.hash = text("select hash from hashing_table")

The column-attribute is set up with a deferred loader after
the operation, so that it issues the SQL to load the new
value when you next access.

Self-referential and Cyclical Eager Loading

Since our alias-fu has improved, relation() can join
along the same table *any number of times*; you tell it how
deep you want to go. Lets show the self-referential
TreeNode more clearly:

nodes = Table('nodes', metadata,
 Column('id', Integer, primary_key=True),
 Column('parent_id', Integer, ForeignKey('nodes.id')),
 Column('name', String(30)))

class TreeNode(object):
 pass

mapper(TreeNode, nodes, properties={
 'children':relation(TreeNode, lazy=False, join_depth=3)
})

So what happens when we say:

create_session().query(TreeNode).all()

? A join along aliases, three levels deep off the parent:

SELECT
nodes_3.id AS nodes_3_id, nodes_3.parent_id AS nodes_3_parent_id, nodes_3.name AS nodes_3_name,
nodes_2.id AS nodes_2_id, nodes_2.parent_id AS nodes_2_parent_id, nodes_2.name AS nodes_2_name,
nodes_1.id AS nodes_1_id, nodes_1.parent_id AS nodes_1_parent_id, nodes_1.name AS nodes_1_name,
nodes.id AS nodes_id, nodes.parent_id AS nodes_parent_id, nodes.name AS nodes_name
FROM nodes LEFT OUTER JOIN nodes AS nodes_1 ON nodes.id = nodes_1.parent_id
LEFT OUTER JOIN nodes AS nodes_2 ON nodes_1.id = nodes_2.parent_id
LEFT OUTER JOIN nodes AS nodes_3 ON nodes_2.id = nodes_3.parent_id
ORDER BY nodes.oid, nodes_1.oid, nodes_2.oid, nodes_3.oid

Notice the nice clean alias names too. The joining doesn’t
care if it’s against the same immediate table or some other
object which then cycles back to the beginning. Any kind
of chain of eager loads can cycle back onto itself when
join_depth is specified. When not present, eager
loading automatically stops when it hits a cycle.

Composite Types

This is one from the Hibernate camp. Composite Types let
you define a custom datatype that is composed of more than
one column (or one column, if you wanted). Lets define a
new type, Point. Stores an x/y coordinate:

class Point(object):
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def __composite_values__(self):
 return self.x, self.y
 def __eq__(self, other):
 return other.x == self.x and other.y == self.y
 def __ne__(self, other):
 return not self.__eq__(other)

The way the Point object is defined is specific to a
custom type; constructor takes a list of arguments, and the
__composite_values__() method produces a sequence of
those arguments. The order will match up to our mapper, as
we’ll see in a moment.

Let’s create a table of vertices storing two points per row:

vertices = Table('vertices', metadata,
 Column('id', Integer, primary_key=True),
 Column('x1', Integer),
 Column('y1', Integer),
 Column('x2', Integer),
 Column('y2', Integer),
)

Then, map it ! We’ll create a Vertex object which
stores two Point objects:

class Vertex(object):
 def __init__(self, start, end):
 self.start = start
 self.end = end

mapper(Vertex, vertices, properties={
 'start':composite(Point, vertices.c.x1, vertices.c.y1),
 'end':composite(Point, vertices.c.x2, vertices.c.y2)
})

Once you’ve set up your composite type, it’s usable just
like any other type:

v = Vertex(Point(3, 4), Point(26,15))
session.save(v)
session.flush()

works in queries too
q = session.query(Vertex).filter(Vertex.start == Point(3, 4))

If you’d like to define the way the mapped attributes
generate SQL clauses when used in expressions, create your
own sqlalchemy.orm.PropComparator subclass, defining any
of the common operators (like __eq__(), __le__(),
etc.), and send it in to composite(). Composite types
work as primary keys too, and are usable in query.get():

a Document class which uses a composite Version
object as primary key
document = query.get(Version(1, 'a'))

dynamic_loader() relations

A relation() that returns a live Query object for
all read operations. Write operations are limited to just
append() and remove(), changes to the collection are
not visible until the session is flushed. This feature is
particularly handy with an “autoflushing” session which will
flush before each query.

mapper(Foo, foo_table, properties={
 'bars':dynamic_loader(Bar, backref='foo', <other relation() opts>)
})

session = create_session(autoflush=True)
foo = session.query(Foo).first()

foo.bars.append(Bar(name='lala'))

for bar in foo.bars.filter(Bar.name=='lala'):
 print(bar)

session.commit()

New Options: undefer_group(), eagerload_all()

A couple of query options which are handy.
undefer_group() marks a whole group of “deferred”
columns as undeferred:

mapper(Class, table, properties={
 'foo' : deferred(table.c.foo, group='group1'),
 'bar' : deferred(table.c.bar, group='group1'),
 'bat' : deferred(table.c.bat, group='group1'),
)

session.query(Class).options(undefer_group('group1')).filter(...).all()

and eagerload_all() sets a chain of attributes to be
eager in one pass:

mapper(Foo, foo_table, properties={
 'bar':relation(Bar)
})
mapper(Bar, bar_table, properties={
 'bat':relation(Bat)
})
mapper(Bat, bat_table)

eager load bar and bat
session.query(Foo).options(eagerload_all('bar.bat')).filter(...).all()

New Collection API

Collections are no longer proxied by an
{{{InstrumentedList}}} proxy, and access to members, methods
and attributes is direct. Decorators now intercept objects
entering and leaving the collection, and it is now possible
to easily write a custom collection class that manages its
own membership. Flexible decorators also replace the named
method interface of custom collections in 0.3, allowing any
class to be easily adapted to use as a collection container.

Dictionary-based collections are now much easier to use and
fully dict-like. Changing __iter__ is no longer
needed for dict``s, and new built-in ``dict types cover
many needs:

use a dictionary relation keyed by a column
relation(Item, collection_class=column_mapped_collection(items.c.keyword))
or named attribute
relation(Item, collection_class=attribute_mapped_collection('keyword'))
or any function you like
relation(Item, collection_class=mapped_collection(lambda entity: entity.a + entity.b))

Existing 0.3 dict-like and freeform object derived
collection classes will need to be updated for the new API.
In most cases this is simply a matter of adding a couple
decorators to the class definition.

Mapped Relations from External Tables/Subqueries

This feature quietly appeared in 0.3 but has been improved
in 0.4 thanks to better ability to convert subqueries
against a table into subqueries against an alias of that
table; this is key for eager loading, aliased joins in
queries, etc. It reduces the need to create mappers against
select statements when you just need to add some extra
columns or subqueries:

mapper(User, users, properties={
 'fullname': column_property((users.c.firstname + users.c.lastname).label('fullname')),
 'numposts': column_property(
 select([func.count(1)], users.c.id==posts.c.user_id).correlate(users).label('posts')
)
 })

a typical query looks like:

SELECT (SELECT count(1) FROM posts WHERE users.id = posts.user_id) AS count,
users.firstname || users.lastname AS fullname,
users.id AS users_id, users.firstname AS users_firstname, users.lastname AS users_lastname
FROM users ORDER BY users.oid

Horizontal Scaling (Sharding) API

[browser:/sqlalchemy/trunk/examples/sharding/attribute_shard
.py]

Sessions

New Session Create Paradigm; SessionContext, assignmapper Deprecated

That’s right, the whole shebang is being replaced with two
configurational functions. Using both will produce the most
0.1-ish feel we’ve had since 0.1 (i.e., the least amount of
typing).

Configure your own Session class right where you define
your engine (or anywhere):

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

engine = create_engine('myengine://')
Session = sessionmaker(bind=engine, autoflush=True, transactional=True)

use the new Session() freely
sess = Session()
sess.save(someobject)
sess.flush()

If you need to post-configure your Session, say with an
engine, add it later with configure():

Session.configure(bind=create_engine(...))

All the behaviors of SessionContext and the query
and __init__ methods of assignmapper are moved into
the new scoped_session() function, which is compatible
with both sessionmaker as well as create_session():

from sqlalchemy.orm import scoped_session, sessionmaker

Session = scoped_session(sessionmaker(autoflush=True, transactional=True))
Session.configure(bind=engine)

u = User(name='wendy')

sess = Session()
sess.save(u)
sess.commit()

Session constructor is thread-locally scoped. Everyone gets the same
Session in the thread when scope="thread".
sess2 = Session()
assert sess is sess2

When using a thread-local Session, the returned class
has all of Session's interface implemented as
classmethods, and “assignmapper“‘s functionality is
available using the mapper classmethod. Just like the
old objectstore days....

"assignmapper"-like functionality available via ScopedSession.mapper
Session.mapper(User, users_table)

u = User(name='wendy')

Session.commit()

Sessions are again Weak Referencing By Default

The weak_identity_map flag is now set to True by default
on Session. Instances which are externally deferenced and
fall out of scope are removed from the session
automatically. However, items which have “dirty” changes
present will remain strongly referenced until those changes
are flushed at which case the object reverts to being weakly
referenced (this works for ‘mutable’ types, like picklable
attributes, as well). Setting weak_identity_map to
False restores the old strong-referencing behavior for
those of you using the session like a cache.

Auto-Transactional Sessions

As you might have noticed above, we are calling commit()
on Session. The flag transactional=True means the
Session is always in a transaction, commit()
persists permanently.

Auto-Flushing Sessions

Also, autoflush=True means the Session will
flush() before each query as well as when you call
flush() or commit(). So now this will work:

Session = sessionmaker(bind=engine, autoflush=True, transactional=True)

u = User(name='wendy')

sess = Session()
sess.save(u)

wendy is flushed, comes right back from a query
wendy = sess.query(User).filter_by(name='wendy').one()

Transactional methods moved onto sessions

commit() and rollback(), as well as begin() are
now directly on Session. No more need to use
SessionTransaction for anything (it remains in the
background).

Session = sessionmaker(autoflush=True, transactional=False)

sess = Session()
sess.begin()

use the session

sess.commit() # commit transaction

Sharing a Session with an enclosing engine-level (i.e.
non-ORM) transaction is easy:

Session = sessionmaker(autoflush=True, transactional=False)

conn = engine.connect()
trans = conn.begin()
sess = Session(bind=conn)

... session is transactional

commit the outermost transaction
trans.commit()

Nested Session Transactions with SAVEPOINT

Available at the Engine and ORM level. ORM docs so far:

http://www.sqlalchemy.org/docs/04/session.html#unitofwork_ma
naging

Two-Phase Commit Sessions

Available at the Engine and ORM level. ORM docs so far:

http://www.sqlalchemy.org/docs/04/session.html#unitofwork_ma
naging

Inheritance

Polymorphic Inheritance with No Joins or Unions

New docs for inheritance: http://www.sqlalchemy.org/docs/04
/mappers.html#advdatamapping_mapper_inheritance_joined

Better Polymorphic Behavior with get()

All classes within a joined-table inheritance hierarchy get
an _instance_key using the base class, i.e.
(BaseClass, (1,), None). That way when you call
get() a Query against the base class, it can locate
subclass instances in the current identity map without
querying the database.

Types

Custom Subclasses of sqlalchemy.types.TypeDecorator

There is a New API for subclassing a TypeDecorator.
Using the 0.3 API causes compilation errors in some cases.

SQL Expressions

All New, Deterministic Label/Alias Generation

All the “anonymous” labels and aliases use a simple
<name>_<number> format now. SQL is much easier to read and
is compatible with plan optimizer caches. Just check out
some of the examples in the tutorials:
http://www.sqlalchemy.org/docs/04/ormtutorial.html
http://www.sqlalchemy.org/docs/04/sqlexpression.html

Generative select() Constructs

This is definitely the way to go with select(). See htt
p://www.sqlalchemy.org/docs/04/sqlexpression.html#sql_transf
orm .

New Operator System

SQL operators and more or less every SQL keyword there is
are now abstracted into the compiler layer. They now act
intelligently and are type/backend aware, see: http://www.sq
lalchemy.org/docs/04/sqlexpression.html#sql_operators

All type Keyword Arguments Renamed to type_

Just like it says:

b = bindparam('foo', type_=String)

in_ Function Changed to Accept Sequence or Selectable

The in_ function now takes a sequence of values or a
selectable as its sole argument. The previous API of passing
in values as positional arguments still works, but is now
deprecated. This means that

my_table.select(my_table.c.id.in_(1,2,3)
my_table.select(my_table.c.id.in_(*listOfIds)

should be changed to

my_table.select(my_table.c.id.in_([1,2,3])
my_table.select(my_table.c.id.in_(listOfIds)

Schema and Reflection

MetaData, BoundMetaData, DynamicMetaData...

In the 0.3.x series, BoundMetaData and
DynamicMetaData were deprecated in favor of MetaData
and ThreadLocalMetaData. The older names have been
removed in 0.4. Updating is simple:

+-------------------------------------+-------------------------+
|If You Had | Now Use |
+=====================================+=========================+
| ``MetaData`` | ``MetaData`` |
+-------------------------------------+-------------------------+
| ``BoundMetaData`` | ``MetaData`` |
+-------------------------------------+-------------------------+
| ``DynamicMetaData`` (with one | ``MetaData`` |
| engine or threadlocal=False) | |
+-------------------------------------+-------------------------+
| ``DynamicMetaData`` | ``ThreadLocalMetaData`` |
| (with different engines per thread) | |
+-------------------------------------+-------------------------+

The seldom-used name parameter to MetaData types has
been removed. The ThreadLocalMetaData constructor now
takes no arguments. Both types can now be bound to an
Engine or a single Connection.

One Step Multi-Table Reflection

You can now load table definitions and automatically create
Table objects from an entire database or schema in one
pass:

>>> metadata = MetaData(myengine, reflect=True)
>>> metadata.tables.keys()
['table_a', 'table_b', 'table_c', '...']

MetaData also gains a .reflect() method enabling
finer control over the loading process, including
specification of a subset of available tables to load.

SQL Execution

engine, connectable, and bind_to are all now bind

Transactions, NestedTransactions and TwoPhaseTransactions

Connection Pool Events

The connection pool now fires events when new DB-API
connections are created, checked out and checked back into
the pool. You can use these to execute session-scoped SQL
setup statements on fresh connections, for example.

Oracle Engine Fixed

In 0.3.11, there were bugs in the Oracle Engine on how
Primary Keys are handled. These bugs could cause programs
that worked fine with other engines, such as sqlite, to fail
when using the Oracle Engine. In 0.4, the Oracle Engine has
been reworked, fixing these Primary Key problems.

Out Parameters for Oracle

result = engine.execute(text("begin foo(:x, :y, :z); end;", bindparams=[bindparam('x', Numeric), outparam('y', Numeric), outparam('z', Numeric)]), x=5)
assert result.out_parameters == {'y':10, 'z':75}

Connection-bound MetaData, Sessions

MetaData and Session can be explicitly bound to a
connection:

conn = engine.connect()
sess = create_session(bind=conn)

Faster, More Foolproof ResultProxy Objects

OEBPS/Images/sqla_arch_small.png
Engine

Object Relational Mapper (ORM)
SQL Expression
Language

‘Schema /Types

‘SQLAlchemy ORM
‘SQLAkhemy Core

DBAPI

OEBPS/Images/sqla_engine_arch.png
connect()

