

 目录

 	

 介绍

 0

 	

 入门指南

 1

 	

 node.js 新手？

 1.1

 	

 sails是什么？

 1.2

 	

 核心概念

 2

 	

 附件

 2.1

 	

 默认任务

 2.1.1

 	

 禁用Grunt

 2.1.2

 	

 自动化任务

 2.1.3

 	

 设置

 2.2

 	

 Localjsfile

 2.2.1

 	

 Usingsailsrcfiles

 2.2.2

 	

 控制器

 2.3

 	

 Generating Controllers

 2.3.1

 	

 Routing To Controllers

 2.3.2

 	

 定制响应

 2.4

 	

 Adding Custom Response

 2.4.1

 	

 Default Responses

 2.4.2

 	

 部署

 2.5

 	

 FAQ

 2.5.1

 	

 Hosting

 2.5.2

 	

 Scaling

 2.5.3

 	

 文件上传

 2.6

 	

 Uploading To Amazon S 3

 2.6.1

 	

 Uploading To Mongo Gridfs

 2.6.2

 	

 全局变量

 2.7

 	

 Disabling Globals

 2.7.1

 	

 国际化

 2.8

 	

 Locales

 2.8.1

 	

 Translating Dynamic Content

 2.8.2

 	

 记录日志

 2.9

 	

 sails.log

 2.9.1

 	

 中间件

 2.10

 	

 Conventional Defaults

 2.10.1

 	

 ORM

 2.11

 	

 Associations

 2.11.1

 	

 Dominance

 2.11.1.1

 	

 Manyto Many

 2.11.1.2

 	

 One Way Association

 2.11.1.3

 	

 Oneto Many

 2.11.1.4

 	

 Oneto One

 2.11.1.5

 	

 Through Associations

 2.11.1.6

 	

 Attributes

 2.11.1.6.1

 	

 Lifecyclecallbacks

 2.11.1.6.2

 	

 Models

 2.11.1.6.3

 	

 Querylanguage

 2.11.1.6.4

 	

 Validations

 2.11.1.6.5

 	

 Model Settings

 2.11.1.6.6

 	

 Policies

 2.12

 	

 Sails And Passport

 2.12.1

 	

 Routes

 2.13

 	

 Route Target Syntax

 2.13.1

 	

 URL Slugs

 2.13.2

 	

 Security

 2.14

 	

 CORS

 2.14.1

 	

 CSRF

 2.14.2

 	

 Clickjacking

 2.14.3

 	

 Content Security Policy

 2.14.4

 	

 DDOS

 2.14.5

 	

 P 3 P

 2.14.6

 	

 Socket Hijacking

 2.14.7

 	

 Strict Transport Security

 2.14.8

 	

 XSS

 2.14.9

 	

 Services

 2.15

 	

 Creating A Service

 2.15.1

 	

 Sessions

 2.16

 	

 Testing

 2.17

 	

 Code Coverage

 2.17.1

 	

 Upgrading

 2.18

 	

 To0.10

 2.18.1

 	

 To0.11

 2.18.2

 	

 Views

 2.19

 	

 Layouts

 2.19.1

 	

 Locals

 2.19.2

 	

 Partials

 2.19.3

 	

 View Engines

 2.19.4

 	

 Extending Sails

 2.20

 	

 Adapters

 2.20.1

 	

 Adapter List

 2.20.1.1

 	

 Custom Adapters

 2.20.1.2

 	

 Generators

 2.20.2

 	

 Custom Generators

 2.20.2.1

 	

 Generator List

 2.20.2.2

 	

 Hooks

 2.20.3

 	

 Hookspec

 2.20.3.1

 	

 Configure

 2.20.3.1.1

 	

 Defaults

 2.20.3.1.2

 	

 Initialize

 2.20.3.1.3

 	

 Routes

 2.20.3.1.4

 	

 Installablehooks

 2.20.3.1.4.1

 	

 Projecthooks

 2.20.3.1.4.2

 	

 Usinghooks

 2.20.3.1.4.3

 	

 Reference

 3

 	

 Blueprint Api

 3.1

 	

 Add

 3.1.1

 	

 Create

 3.1.2

 	

 Destroy

 3.1.3

 	

 Find

 3.1.4

 	

 Find One

 3.1.5

 	

 Populate

 3.1.6

 	

 Remove

 3.1.7

 	

 Update

 3.1.8

 	

 Cli

 3.2

 	

 Sailsconsole

 3.2.1

 	

 Sailsdebug

 3.2.2

 	

 Sailsgenerate

 3.2.3

 	

 Sailslift

 3.2.4

 	

 Sailsnew

 3.2.5

 	

 Sailsversion

 3.2.6

 	

 Req

 3.3

 	

 req.accepted

 3.3.1

 	

 req.acceptedCharsets

 3.3.2

 	

 req.acceptedLanguages

 3.3.3

 	

 req.accepts

 3.3.4

 	

 req.acceptsCharset

 3.3.5

 	

 req.acceptsLanguage

 3.3.6

 	

 req.allParams

 3.3.7

 	

 req.body

 3.3.8

 	

 req.cookies

 3.3.9

 	

 req.file

 3.3.10

 	

 req.fresh

 3.3.11

 	

 req.get

 3.3.12

 	

 req.headers

 3.3.13

 	

 req.host

 3.3.14

 	

 req.ip

 3.3.15

 	

 req.ips

 3.3.16

 	

 req.is

 3.3.17

 	

 req.isSocket

 3.3.18

 	

 req.method

 3.3.19

 	

 req.options

 3.3.19.1

 	

 req.options.values

 3.3.19.2

 	

 req.options.where

 3.3.19.3

 	

 req.param

 3.3.20

 	

 req.params

 3.3.21

 	

 req.path

 3.3.22

 	

 req.protocol

 3.3.23

 	

 req.query

 3.3.24

 	

 req.secure

 3.3.25

 	

 req.signedCookies

 3.3.26

 	

 req.socket

 3.3.27

 	

 req.subdomains

 3.3.28

 	

 req.url

 3.3.29

 	

 req.wantsJSON

 3.3.30

 	

 req.xhr

 3.3.31

 	

 Res

 3.4

 	

 res.attachment

 3.4.1

 	

 res.badRequest

 3.4.2

 	

 res.clearCookie

 3.4.3

 	

 res.cookie

 3.4.4

 	

 res.forbidden

 3.4.5

 	

 res.get

 3.4.6

 	

 res.json

 3.4.7

 	

 res.jsonp

 3.4.8

 	

 res.location

 3.4.9

 	

 res.negotiate

 3.4.10

 	

 res.notFound

 3.4.11

 	

 res.ok

 3.4.12

 	

 res.redirect

 3.4.13

 	

 res.send

 3.4.14

 	

 res.serverError

 3.4.15

 	

 res.set

 3.4.16

 	

 res.status

 3.4.17

 	

 res.type

 3.4.18

 	

 res.view

 3.4.19

 	

 sails.config

 3.5

 	

 Miscellaneous

 3.5.1

 	

 sails.config.blueprints

 3.5.2

 	

 sails.config.bootstrap

 3.5.3

 	

 sails.config.connections

 3.5.4

 	

 sails.config.cors

 3.5.5

 	

 sails.config.csrf

 3.5.6

 	

 sails.config.globals

 3.5.7

 	

 sails.config.http

 3.5.8

 	

 sails.config.i18n

 3.5.9

 	

 sails.config.log

 3.5.10

 	

 sails.config.models

 3.5.11

 	

 sails.config.policies

 3.5.12

 	

 sails.config.routes

 3.5.13

 	

 sails.config.session

 3.5.14

 	

 sails.config.sockets

 3.5.15

 	

 sails.config.views

 3.5.16

 	

 Waterline

 3.6

 	

 Models

 3.6.1

 	

 Count

 3.6.1.1

 	

 Create

 3.6.1.2

 	

 Destroy

 3.6.1.3

 	

 Find

 3.6.1.4

 	

 Find One

 3.6.1.5

 	

 Find Or Create

 3.6.1.6

 	

 Native

 3.6.1.7

 	

 Query

 3.6.1.8

 	

 Stream

 3.6.1.9

 	

 Update

 3.6.1.10

 	

 Populated Values

 3.6.2

 	

 Add

 3.6.2.1

 	

 Remove

 3.6.2.2

 	

 Queries

 3.6.3

 	

 Exec

 3.6.3.1

 	

 Limit

 3.6.3.2

 	

 Populate

 3.6.3.3

 	

 Populate All

 3.6.3.4

 	

 Skip

 3.6.3.5

 	

 Sort

 3.6.3.6

 	

 Where

 3.6.3.7

 	

 Records

 3.6.4

 	

 Save

 3.6.4.1

 	

 To JSON

 3.6.4.2

 	

 To Object

 3.6.4.3

 	

 Validate

 3.6.4.4

 	

 Websockets

 3.7

 	

 Resourceful Pubsub

 3.7.1

 	

 Message

 3.7.1.1

 	

 Publish Add

 3.7.1.2

 	

 Publish Create

 3.7.1.3

 	

 Publish Destroy

 3.7.1.4

 	

 Publish Remove

 3.7.1.5

 	

 Publish Update

 3.7.1.6

 	

 Subscribe

 3.7.1.7

 	

 Subscribers

 3.7.1.8

 	

 Unsubscribe

 3.7.1.9

 	

 Unwatch

 3.7.1.10

 	

 Watch

 3.7.1.11

 	

 sails.io.js

 3.7.2

 	

 io.socket.on

 3.7.2.1

 	

 socket.delete

 3.7.2.2

 	

 socket.get

 3.7.2.3

 	

 socket.post

 3.7.2.4

 	

 socket.put

 3.7.2.5

 	

 socket.request

 3.7.2.6

 	

 sails.sockets

 3.7.3

 	

 sails.sockets.blast

 3.7.3.1

 	

 sails.sockets.broadcast

 3.7.3.2

 	

 sails.sockets.emit

 3.7.3.3

 	

 sails.sockets.id

 3.7.3.4

 	

 sails.sockets.join

 3.7.3.5

 	

 sails.sockets.leave

 3.7.3.6

 	

 sails.sockets.rooms

 3.7.3.7

 	

 sails.sockets.socketRooms

 3.7.3.8

 	

 sails.sockets.subscribers

 3.7.3.9

 	

 Userguides

 4

 	

 Contributing

 4.1

 	

 Deployment

 4.1.1

 	

 Nodejitsu

 4.1.2

 	

 Openshift

 4.1.3

 	

 Guide Stub

 4.2

 介绍

 Sails.js 官方文档中文版 (v0.11.x)

关于sails.js

sails.js类似于ruby on rails, 是一个优秀的web后台开发框架。它基于著名的express，添加了很多功能模块，支持REST、各种流行数据库等，
使用它开发适用于多设备、数据密集型、实时web应用是件异常简单、高效、愉快的事情。

关于本文档

本文档是 sails.js官方文档 中文版本，力争做到“覆盖全面、理解正确、表述清晰”，如果您感觉没有达到这一点，可以翻看对应英文原文（我写的+我想的=原文，^_^）。

为了方便，我们配合本文档，借助gitbook平台推出了PDF等个格式的电子书，您可以下载到本地使用。

贡献

本书原稿托管在 github 上，您也可以参与进来，直接fork、修改、提交pr就可以了。

电子书的生成，需要使用我们的插件 gitbook-summary自动生成一个目录，然后借助gitbook导出。

链接

下载页： https://imfly.gitbooks.io/sailsjs-docs-gitbook/

中文版： https://imfly.gitbooks.io/sailsjs-docs-gitbook/content/cn/index.html

英文版： https://imfly.gitbooks.io/sailsjs-docs-gitbook/content/en/index.html

原码库： https://github.com/imfly/sails-docs/tree/zh-CN

协议

MIT

 入门指南

 入门教程

安装

使用命令行工具安装最新稳定版：

sudo npm -g install sails

在 Windows 上(或者在有Homebrew的Mac OS系统上)，不需要使用sudo:

npm install -g sails

创建sails新工程

创建新应用:

sails new testProject

启动服务器:

cd testProject
sails lift

这时，访问 http://localhost:1337/ 会看到默认主页。

现在，可以让Sails做点更酷的事情了。

 node.js 新手？

 Node.js 新手?

好吧，让我们帮你“领上道”吧。

官网 nodejs.org 的介绍是这样的：

"Node.js是一个构建在谷歌javascript运行器(Chrome's JavaScript runtime)上的平台， 易于构建快速、可扩展的网络应用。Node.js 使用事件驱动，非柱塞 I/O 模型，使得数据密集型实时应用运行在跨分布式设备上（更加）轻量、高效和完美。"

更简单地说，Node.js允许我们在浏览器之外迅速有效地运行JavaScript代码，使得应用同一种语言开发前端和后端成为可能。

需要什么操作系统？

Node.js 可以安装在大部分主流的操作系统上，MacOSX，许多流行的 Linux，以及 Windows 都支持。

现在，你可以根据自己的操作系统，选择浏览下面的介绍文章：

 Mac OSX

Linux

 Windows

OSX安装

使用 一个包:

简单 下载 Macintosh Installer.

使用 homebrew:

brew install node

使用 macports:

port install nodejs

Linux安装

Ubuntu, Mint

例如:

sudo apt-get install python-software-properties python g++ make
curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -
sudo apt-get install -y nodejs

这会将当前稳定的 node.js 安装在当前稳定版的Ubuntu.上。Quantal (12.10) 用户可能需要为add-apt-repository命令安装 software-properties-common 包，才能运行 sudo apt-get install software-properties-common

与包(Amateur Packet Radio Node Program)有一个名字冲突，二进制的nodejs已经将名字从node改为nodejs。你需要符号链接/usr/bin/node 到/usr/bin/nodejs，或者卸载 Amateur Packet Radio Node 程序，避免冲突。

Fedora

Fedora 18 和更新版本，提供了Node.js 和 npm。仅仅使用您喜欢的图形包管理器，或在命令行安装即可:

sudo yum install npm

RHEL/CentOS/Scientific Linux 6

Fedora Extra Packages for Enterprise Linux (EPEL) 提供了Node.js and npm 测试 库。如果你还没有这么做，首先启用EPEL，然后运行下面的命令：

su -c 'yum --enablerepo=epel-testing install npm'

Arch Linux

社区库提供了Node.js

pacman -S nodejs

Gentoo

官方 gentoo 仓库树里提供了Node.js ，你需要unmask它。

emerge -aqv --autounmask-write nodejs
etc-update
emerge -aqv nodejs

Debian, LMDE

对于 Debian sid (不稳定版), 官方库提供了Node.js.

对于 Debian Wheezy (最新稳定版), wheezy-backports 提供了Node.js. 为了安装 backports，添加下面一行到 sources.list (/etc/apt/sources.list):

deb http://YOURMIRROR.debian.org/debian wheezy-backports main

然后，运行：

apt-get update
apt-get install nodejs

对于 Debian Squeeze (旧稳定版)，最好自己编译 (as root):

apt-get install python g++ make
mkdir ~/nodejs && cd $_
wget -N http://nodejs.org/dist/node-latest.tar.gz
tar xzvf node-latest.tar.gz && cd `ls -rd node-v*`
./configure
make install

openSUSE & SLE

Node.js 稳定版仓库列表。node.js 也可在 openSUSE:Factory repository 中找到。

可用的 RPM 包: openSUSE 11.4, 12.1, Factory and Tumbleweed; SLE 11 (with SP1 and SP2 variations).

例如， 安装在openSUSE 12.1上:

sudo zypper ar http://download.opensuse.org/repositories/devel:/languages:/nodejs/openSUSE_12.1/ NodeJSBuildService
sudo zypper in nodejs nodejs-devel

FreeBSD and OpenBSD

Node.js 可通过ports系统使用。

/usr/ports/www/node

开发版本也可使用ports

cd /usr/ports/www/node-devel/ && make install clean

或者FreeBSD上的包

pkg_add -r node-devel

在FreeBSD上，Node包管理并不默认与 Node.js 一起安装，但对于开发和安装以来还是需要的。

/usr/ports/www/npm

还要注意，FreeBSD 10与偶尔使用的构建脚本（好像是gcc，用于node-gyp）冲突，可以通过设置一个环境变量解决。

CXX=c++

Windows安装

使用 一个包:

简单 下载 Windows 安装器

使用 chocolatey 安装 Node:

cinst nodejs

或者 与NPM一起完全安装:

cinst nodejs.install

关于 Sails.js

一旦 Node.js 安装完毕， 就可以继续 安装 Sails。

更多帮助

计划赶不上变化，如果你仍然有问题，请. If you still have any issue with this, 请随时访问 node.js IRC频道 或者 我们的 IRC 频道.

 sails是什么？

 Sails是什么？

当然，Sails是一个web框架。但退一步，这又是什么意思呢？有时，当我们提到web的时候，我们指的是"front-end web"(web前端）。
我们想到的是Web标准的概念，像HTML5或CSS3；以及框架，Backbone、Angular, 或 jQuery。sails可不是“这种”的web框架。
Sails可以与Angular和Backbone工作的很好，但绝不会使用Sails取代这些包。

换句话说，当我们谈论Web框架的时候，我们指的是“back-end web”（服务器端）。这里提到的概念是REST、HTTP,或WebSockets，
以及Java、Ruby、Node.js等技术。一个“back-end web”框架有助于你构建API，处理HTML文件成千上万的并发用户。Sails就是
“这种”web框架。

约定优于配置

Sails 完成许多与其他 MVC 网站应用程序框架相同的目标，使用许多相同的方法学。这样做是有目的的。一致的方式使得参与其中的任何人开发应用程序更具可预测性且高效率的。

想像一下，开始一份新的工作，在一家公司建立 Sails 应用程序。如果任何在你团队中的人曾使用如 Zend、Laravel、CodeIgniter、Cake、Grails、Django、ASP.NET MVC 或 Rails，会觉得很熟悉 Sails。不仅如此，一般来说，他们还可以了解 Sails 工程，如何撰写他们在过去已反复实践的基本模式；无论他们的背景是 PHP、Ruby、Java、C# 或 Node.js。那么你的第二个应用程序或第三个？每当你建立新的 Sails 应用程序，你以一个健全、熟悉的样版开始，让你更有效率。在许多情况下，你甚至可以回收重复使用一些后端程序码。

历史

Sails 没有发明这个概念，它已经存在多年。即使在 Ruby on Rails 那句「约定优于配置」（或称 CoC）流行之前，JavaBeans 借用了常见于 90 年代末期到 21 世纪初期，传统的 Java 网站框架极其冗长的 XML 设置到许多核心规范中。简单来说就是用简单的约定（Convention）来取代繁杂的配置（Configuration），简化开发者的工作。

Loose Coupling

TODO: explain why pushing towards an open standard for programming apps is important.

TODO: more specifically, give some background why small, loosely coupled modules are good.

TODO: explain how Sails core is a set of standalone, loosely coupled components (link to MODULES.md).

TODO: discuss how a Sails app is a set of standalone, loosely coupled components:

	how each model, or controller, etc. is a node module.

	how policies are designed to be general-purpose and shared between apps and/or developers.

	how Sails strives to make adapter development as easy as possible, even for non-database integrations.

TODO: explain how Sails is designed for any part to be rip-outable, overridden, or extended (hooks, generators, adapters)

TODO: Explain how Sails can be used without any boilerplate files, just like Express, to fit an imperative programming style, or plug in as part of your existing Node / Node+Express app.

Links:

	Unix philosophy

	Node culture

Pragmatism

TODO: set the stage- the purpose of any practical web framework should be to solve real-world use cases. Node, being built on JavaScript, is the most intensely pragmatic thing to hit the scene since the introduction of Java. It will replace Java in the enterprise.

TODO: explain where this fits into the Node.js ecosystem, and pay homage to the PHP community (pragmatism is the best thing PHP has going for it)

TODO: provide some examples of choices we've made w/

 附件

 资源（Assets）

概述

资源指的是在你的服务器上想让外界存取的静态文档（js、css、图档等等）。在 Sails，这些文档都放在 assets/ 目录，当你启动应用程序，他们会被处理并同步到一个隐藏的暂存目录(.tmp/public/)。这个 .tmp/public 文件夹就是 Sails 实际提供的内容，大致等同于 express 的「public」文件夹，或是其他你或许熟悉的网站服务器如 Apache 的「www」文件夹。这中间的过程允许 Sails 准备或预先编译在用户端上使用的资源，像是 LESS、CoffeeScript、SASS、spritesheets、Jade 模板等等。

静态中间件（Static middleware）

在幕后，Sails 使用 Express 的静态中间件来提供你的资源。你可以在 /config/http.js 设置这个中间件（例如 cache 设置）。

index.html

如同大多数网页服务器，Sails 实践了 index.html 约定。举例来说，如果你在新的 Sails 工程建立 assets/foo.html，便可通过 http://localhost:1337/foo.html 存取。但是，如果你建立 assets/foo/index.html，则可通过 http://localhost:1337/foo/index.html 及 http://localhost:1337/foo 存取。

优先权

重要的是需注意静态中间件是安装在 Sails 路由之后。所以，如果你定义了一个自定义路由，但在你的资源目录也有文档与该路径冲突，自定义路由会在到达静态中间件前拦截请求。举例来说，如果你建立 assets/index.html 且没有定义路由在 config/routes.js 文档，它会被当成你的首页。但是如果你定义一个自定义路由 '/': 'FooController.bar'，将优先采用此路由。

 默认任务

 默认任务（Default Tasks）

概述

Sails 内的 asset pipeline 是一组能增加工程一致性和效率的 Grunt 任务设置。整个前端资源工作流程可完全自定义，它提供了一些可立即使用的默认任务。Sails 可以很容易的设置新任务，以满足你的需求。

这些 Sails 默认的 Grunt 组件设置可协助你：

	自动编译 LESS

	自动编译 JST

	自动编译 Coffeescript

	自定义的资源自动注入、压缩及合并

	建立网站公用目录

	监视和同步文档

	优化生产环境的资源

默认 Grunt 任务行为

以下是包含在 Sails 工程的 Grunt 任务及每个任务的简短说明。此外，还包含了每个任务的使用说明连结。

clean

这个 grunt 任务是用来清理 sails 工程里 .tmp/public/ 的内容。

使用说明

coffee

从 assest/js/ 将 coffeeScript 文档编译成 Javascript 并放到 .tmp/public/js/ 目录。

使用说明

concat

合并 javascript 和 css 并将合并后的文档放到 .tmp/public/concat/ 目录。

使用说明

copy

dev 任务设置
从 sails 资源文件夹复制 coffeescript 和 less 以外的所有目录与文档到 .tmp/public/ 目录。

build 任务设置
从 .tmp/public/ 目录复制所有目录及文档到 www 目录。

使用说明

cssmin

压缩 css 文档并放到 .tmp/public/min/ 目录。

使用说明

jst

预先将 Underscore 模板编译成 .jst 文档。（也就是说，它需要模板文档并将其转换成微小的 javascript 函数）。这可以加速在用户端的模板呈现，及减少频宽的消耗。

使用说明

less

将 LESS 文档编译成 CSS。只有 assets/styles/importer.less 会被编译。这让你可以自行控制顺序，即在其他样式之前汇入你的相依（Dependencies）、混入（Mixins）、变数（Variables）、重置（Resets）等等。

使用说明

sails-linker

自动为 javascript 文档注入 <script> 标签以及为 css 文档注入 <link> 标签。还可以自动连接输出文档到使用 <script> 标签的预先编译模板。这个任务的详细说明可以在这里找到，但最大的改变是只有当文档包含 <!--SCRIPTS--><!--SCRIPTS END--> 和/或 <!--STYLES--><!--STYLES END--> 才会做 script 和 stylesheet 注入。这些都包含在新 Sails 工程默认的 views/layout.ejs 文档。如果不想在工程使用连接器，只需删除这些标签。

使用说明

sync

保持目录同步的 grunt 任务。它与 grunt-contrib-copy 非常类似，但仅会尝试复制那些真正有改变的文档。它明确的从 assets/ 文件夹同步文档到 .tmp/public/，并覆盖任何已存在的文档。

使用说明

uglify

压缩用户端 javascript 资源。

使用说明

watch

当被监视的文档类型被新增、修改或删除，执行预先定义的任务。监视 assets/ 文件夹的文档异动，并重新执行对应的任务（例如编译 less 和 jst）。这让你可以看到应用程序的资源变更，而无需重新启动 Sails 服务器。

使用说明

 禁用Grunt

 禁用 Grunt（Disabling Grunt）

要禁用整合在 Sails 的 Grunt，只需删除 Gruntfile（和/或 tasks/ 文件夹）。你还可以禁用 Grunt hook。只要像这样在 .sailsrc hooks 设置 grunt 属性为 false：

{
 "hooks": {
 "grunt": false
 }
}

我可以为 SASS、Angular、用户端 Jade 模板等自定义任务吗？

是的！只需取代 tasks/ 目录中对应的 grunt 任务，或新增一个。如同 SASS 例子。

如果你仍然想使用 Grunt 做其他用途，但不想要任何默认的网页前端工作，只要删除工程的资源文件夹并从 grunt/register/ 和 grunt/config/ 文件夹移除前端相关任务。你还可以在往后的工程执行 sails new myCoolApi --no-frontend 来省略资源文件夹和前端相关 Grunt 任务。你也可以用社区的产生器或建立自己的产生器来取代 sails-generate-frontend 模组。这让 sails new 可以建立原生 iOS 应用程序、Android 应用程序、Cordova 应用程序、SteroidsJS 应用程序等等的模板。

 自动化任务

 任务自动化（Task Automation）

概述

tasks/ 目录包含了一系列 Grunt 任务和它们的组件设置。

任务主要是用在打包前端资源（如 stylesheets、scripts 及用户端标记模板），但它们也可以用在自动化重复各种开发时的琐事，从 browserify 编译到资料库迁移皆可使用。

为了方便起见，Sails 打包了一些默认任务，但随著数以百计的插件可供选择，你可以几乎毫不费力的使用任务自动完成任何事情。如果没有你需要的，你可以撰写并发布自己的 Grunt 插件到 npm！

如果你以前从未使用过 Grunt，一定要查看新手上路指南，因为它解释了如何建立 Gruntfile 以及安装和使用 Grunt 插件。

Asset pipeline

Asset pipeline 是让你组织要注入到检视的资源的地方，可以在 tasks/pipeline.js 文档找到它。设置这些资源很简单，使用 grunt 任务文档组件设置和匹配模式。它们被分为三个部分。

要注入的 CSS 文档

这是一个 css 文档阵列，会注入到 html 的 <link> 标签。这些标签会放在所有检视的 <!--STYLES--><!--STYLES END--> 注解之间。

要注入的 Javascript 文档

这是一个 Javascript 文档阵列，会注入到 html 的 <script> 标签。这些标签会放在所有检视的 <!--SCRIPTS--><!--SCRIPTS END--> 注解之间。文档会依照在阵列中的顺序被注入（也就是你应该按照文档相依关系来调整注入的顺序）。

要注入的模板文档

这是一个 html 文档阵列，会编译成 jst 函数并放在一个 jst.js 文档。这些文档会注入到 <script> 标签，放在 html 的 <!--TEMPLATES--><!--TEMPLATES END--> 注解之间。

如果你想改变它们的话，相同的 grunt 匹配模式和任务文档组件设置也使用在一些任务组件设置文档自身。

任务组件设置（Task configuration）

每个已设置的任务都是一组规则，Gruntfile 会遵循此规则执行。他们位于 tasks/config/ 目录且可完全自定义。你可以修改、忽略或取代任何一个 Grunt 任务，以满足你的需求。你也可以加入自己的 Grunt 任务，只需在此目录新增一个 someTask.js 文档来设置新的任务，然后用适当的父任务注册它（请查看 grunt/register/*.js 内的文档）。请记住，Sails 具备一套实用的默认任务，是为了让你在无需任何组件设置下执行。

设置自定义任务

设置一个自定义任务到你的工程非常简单，使用 Grunt 的设置和任务 APIs 允许你建立自己的任务模组。让我们实践一个建立新任务取代已存在任务的简单例子。比方说，我们希望 Handlebars 模板引擎来取代默认具备的 underscore 模板引擎：

	第一步是在终端机使用以下指令安装 handlebars 的 grunt 插件：

npm install grunt-contrib-handlebars --save-dev

	建立组件设置文档在 tasks/config/handlebars.js。这是我们要放 handlebars 设置的地方。


```javascript
// tasks/config/handlebars.js
// --------------------------------
// handlebar 任务组件设置。

module.exports = function(grunt) {

  // 我们使用 grunt.config api 的 set 方法来设置一个对象到定义的字串。
  // 在这个例子中，'handlebars' 任


            
            

        
    



        
        
    
    


        
        

    
        设置

        
            
            
                设置（Configuration）

概述

虽然 Sails 尽责的坚守约定优于配置的理念，但了解如何自定义这些方便的默认值是很重要的。对于几乎每个 Sails 的约定，允许你调整或覆盖附带的设置选项，以满足你的需求。本章节的文件完整包含了 Sails 可用的设置选项。

Sails 应用程序可以通过程序设置，通过指定环境变数或命令行参数，通过改变区域或全局 .sailsrc 文档，或（最常见）使用约定位于工程内 config/ 文件夹的模板设置文档。执行时期可通过 sails 全局变数的 sails.config 在应用程序使用合并后的设置。

标准设置文档 (config/*)

在默认情况下，新的 Sails 应用程序包含许多的设置文档。这些模板文档包含了一些行内注解，目的是为了提供一个快速、即时的参考，而不必来回跳转于文件与文字编辑器之间。

在多数情况下，sails.config 对象的顶层键（例如 sails.config.views）对应在应用程序内特定的设置文档（例如 config/views.js）；而设置可以安排在 config/ 目录内任何你喜欢的文档中。重要的部分是设置的名称（即键），不是它从哪个文档来。

举例来说，假设你新增一个新文档，config/foo.js：

// config/foo.js
// 对象会被合并到 `sails.config.blueprints`：
module.exports.blueprints = {
  shortcuts: false
};


对于个别设置项目的详细参考资料，默认存在于该设置文档中，请参考本章节内的参考资料页面，或查看Sails 应用程序剖析的「config/」取得更多的说明。

在你的应用程序存取 sails.config

config 对象存在于 Sails 应用程序实例（sails）。默认情况下，在启动时会置于全局范围，因此存在于应用程序的任何地方。

例子

// 这个例子检查在生产环境时 csrf 必需启动。
// 否则，抛出错误并终止应用程序。
if (sails.config.environment === 'production' && !sails.config.csrf) {
  throw new Error('STOP IMMEDIATELY ! CSRF should always be enabled in a production deployment!');
}


自定义组件设置

Sails 能辨认顶层键下的许多不同设置、命名空间（如 sails.config.sockets 和 sails.config.blueprints）。但你也可以在你的自定义组件设置使用 sails.config（如sails.config.someProprietaryAPI.secret）。

例子

// config/linkedin.js
module.exports.linkedin = {
  apiKey: '...',
  apiSecret: '...'
};


// 在你的 controller/service/model/hook/whatever:
// ...
var apiKey = sails.config.linkedin.apiKey;
var apiSecret = sails.config.linkedin.apiSecret;
// ...


设置 sails 命令行界面

当谈到设置，大部分时间你会专注于管理特定应用程序的执行时期设置：连接埠、资料库连线，等等。然而，为了简化你的工作流程，减少重复性任务，执行自定义的自动化建置等，自定义 Sails 命令行界面也是很有用的。值得庆幸的是，Sails v0.11 增加了强大的新工具来做到这一点。

.sailsrc 文档与其他在 Sails 中的设置文档不同，它也可以被用于设置 Sails 命令行界面－无论是全系统、目录群组或仅当你 cd 到特定文件夹。这样做的主要理由是自定义用于执行 sails generate 和 sails new 的[产生器](http://beta.sailsjs.org/#/documentation/concepts/extending-sai


            
            

        
    



        
        
    
    


        
        

    
        Usingsailsrcfiles

        
            
            
                使用 .sailsrc 文档（Using .sailsrc Files）

除了设置应用程序的其他方法外，从 0.10 版开始，你可以在 .sailsrc 文档里为指定一个或多个应用程序的设置（感谢 Dominic Tarr 的优秀 rc 模组）。rc 文档对于设置命令行和/或套用组件设置到所有执行在你电脑上的 Sails 应用程序最有用。

当 Sails 命令行界面执行一个指令时，它会先在当前目录和你的家目录（即 ~/.sailsrc）（任何新建立的 Sails 应用程序附带的模板 .sailsrc 文档）寻找 .sailsrc 文档（JSON 或 .ini 格式）。然后将它们合并到现有的组件设置。


其实，Sails 会从其它几个地方寻找 .sailsrc 文档（遵循 rc 约定）。你可以放置 .sailsrc 文档到这些路径。也就是说，你最好能遵循约定，放置公用 .sailsrc 文档的地方是你的家目录（即 ~/.sailsrc）。








            
            

        
    



        
        
    
    


        
        

    
        控制器

        
            
            
                
            
            

        
    



        
        
    
    


        
        

    
        定制响应

        
            
            
                自定义回应（Custom Responses）

概述

Sails v.10 允许自定义服务器回应。Sails 默认附带一些常见的回应类型。可以在工程的 /api/responses 目录找到它们。只需编辑对应的 .js 文档，就可以自定义。

作为一个简单的例子，思考以下的控制器动作：

foo: function(req, res) {
   if (!req.param('id')) {
     res.status(400);
     res.view('400', {message: 'Sorry, you need to tell us the ID of the FOO you want!'});
   }
   ...
}

这个程序码通过发送一个 400 错误状态及简短问题描述来处理错误请求。然而，这个程序码有几个缺点，主要是：


	它不是标准化的：该代码是特定于此情况，我们必须在任何地方努力保持相同的格式

	它不是被分离的：当我们想要在其他地方使用类似的方法，就需要复制／贴上程序码

	它不是内容协商的：如果用户端期待一个 JSON 回应，那别指望了



现在，思考一下这个修改：

foo: function(req, res) {
   if (!req.param('id')) {
     res.badRequest('Sorry, you need to tell us the ID of the FOO you want!');
   }
   ...
}

这种方法具有许多优点：


	错误被标准化

	有考虑到生产环境与开发环境的日志记录

	错误代码是一致的

	有考虑到内容协商（JSON 与 HTML）

	可在适当的共用回应文档快速的调整 API



回应方法和文档（Responses methods and files）

任何储存在 /api/responses 文件夹的 .js 脚本可通过在控制器内呼叫 res.[responseName] 来执行。例如，可以通过呼叫 res.serverError(errors) 来执行 /api/responses/serverError.js。在回应脚本内可以通过 this.req 和 this.res 取得请求及回应对象；这让实际的回应方法可以取得任意参数。（如 serverError 的 errors 参数）。

默认回应

以下的回应已绑定在所有新的 Sails 应用程序的 /api/responses 文件夹内。当用户端期望收到 JSON，会回应一个包含了 HTTP 状态代码的 status 键及任何错误相关资讯的标准化 JSON 对象。

res.serverError(errors)

这个回应会将错误标准化为适当、可读取的 Error 对象。 errors 可以是一个或多个字串或 Error 对象。它会记录所有错误到 Sails 记录器（通常是终端机），并当用户端期望收到 HTML 时回应 views/500.* 检视文档，或当用户端期望收到 JSON 时回应一个 JSON 对象。在开发模式下，错误清单会包含在回应中。在生产环境下，实际的错误会受到抑制。

res.badRequest(validationErrors, redirectTo)

对于期望收到 JSON 的请求者，这个回应包含了 400 状态码及被作为 validationErrors 所传送的任何相关资料。

对于传统的（非 AJAX）网页表单，当使用者提交无效的表单资料，这个中间件遵循了最佳做法：


	首先，一个暂存变数可能被填入了一个字串或语义验证错误对象。

	然后，将使用者重新导向回 redirectTo，即发出错误请求的来源 URL。

	还有，控制器和／或检视可能使用暂存变数 errors 来显示讯息或突显无效的 HTML 表单栏位。



res.notFound()

当请求者期望收到 JSON，这个回应会发送 404 状态码及一个 {status: 404} 对象。

否则，将发送位于 myApp/views/404.* 内的检视。若找不到检视，那么便发送 JSON 回应。

res.forbidden(message)

当请求者期望收到 JSON，这个回应会发送 403 状态码及 message 的内容。

否则，将发送位于 myApp/views/403.* 内的检视。若找不到检视，那么便发送 JSON 回应。

自定义回应

要加入你自己的自定义回应方法，只需新增与方法名称相同的文档到 /api/responses。该文档应该导出函数，可以附带任何你喜欢的参数。

```
/**

	api/responses/myResponse.js
*

	This will be available in controllers as res.myResponse('foo');
*/

module.exports = function(message) {

 var

 部署

 部署（Deployment）

概述

在部署之前

在你启动任何网页应用程序前，你应该问自己几个问题：

	你预期的流量为何？

	你的合约是否要求满足任何正常执行时间保证，如服务层级协议（SLA）？

	哪种前端应用程序会触及你的网页应用程序？
	Android 应用程序

	iOS 应用程序

	桌面版网页浏览器

	行动版网页浏览器（平板电脑、电话、iPad mini？）

	电视、手表、烤面包机…？

	以及它们会要求什么东西？
	JSON？

	HTML？

	XML？

	你会利用 Socket.io 的即时发布订阅功能？
	例如聊天、即时分析、应用程序内通知／讯息

	你是如何追踪崩溃与错误？
	看看 Sails 的日志设置

部署在单一服务器

Node.js 非常快速。对于许多应用程序，在一开始一台服务器就足够处理预期的流量。

设置

	所有生产环境设置都储存在 config/env/production.js

	设置应用程序执行于连接埠 80（如果不是在如 nginx 之类的代理之后）。如果你使用的是 nginx，一定要对其设置中继 WebSocket 到应用程序。你可以在 nginx 文件 WebSocket proxying 找到指南。

	设置「正式」环境，让所有的 css/js 被打包，且内部服务器被切换到适当的环境（需要连接器）。

	务必确认资料库已设置在正式服务器。更重要的一点是，如果你使用的是关联式资料库如 MySQL，当执行于生产环境时， Sails 会设置所有的模型为 migrate:safe，这代表启动应用程序时不会进行自动移转。你可以用以下方法设置资料库：
	在服务器上建立资料库，使用正式服务器作为资料库，然后在本地使用 migrate:alter 设置执行 Sails 应用程序。这样就自动设置好了。

	如果你无法远端连线服务器，你可以倒出在本地端的结构，并将其汇入到资料库服务器。

	启用 CSRF 来保护 POST、PUT 及 DELETE 请求

	启用 SSL

	如果你使用 SOCKETS：
	设置 config/sockets.js 并使用 socket.io 的生产环境建议设置
	例如启用 flashsocket 传输

部署

在生产环境中，你会想要使用 forever 或 PM2 来取代 sails lift，以确保即使应用程序崩溃了也会继续运作。

	安装 forever：sudo npm install -g forever
	更多关于 forever 的资讯：https://github.com/nodejitsu/forever

	或安装 PM2：sudo npm install pm2 -g --unsafe-perm
	更多关于 PM2 的资讯：https://github.com/Unitech/pm2

	从你的应用程序目录，使用 forever start app.js --prod 或 pm2 start app.js -x -- --prod 启动服务器
	这和 sails lift --prod 所做的事相同，但是当服务器崩溃时，它会自动重新启动。

 FAQ

 常见问题（FAQ）

我可以使用环境变数吗？

你可以在 Sails 使用环境变数设置 port 和 environment。
NODE_ENV=production sails lift
PORT=443 sails lift

在哪边放置我的生产环境资料库凭证（credentials）或其它设置？

对于其它部署／特定机器的设置，也就是任何形式的凭证，你应该使用 config/local.js。
它默认包含在 .gitignore 文档，这样你就不会无意中提交凭证到程序码储存库。

config/local.js

// Local configuration
//
// Included in the .gitignore by default,
// this is where you include configuration overrides for your local system
// or for a production deployment.
//
// For example, to use port 80 on the local machine, override the `port` config
module.exports = {
 port: 80,
 environment: 'production',
 adapters: {
 mysql: {
 user: 'root',
 password: '12345'
 }
 }
}

如何让应用程序运作在服务器上？

你的 Node.js 实例已正常运作吗？在第一次的时候，当你有一个 IP 位址，便可以 ssh 连线到它，执行 sudo npm install -g forever 来安装 Sails 和 forever。

然后，git clone 你的工程（或 scp 到服务器，如果它不在 git 储存库中）到服务器并 cd 进入，接著 forever start app.js。

效能基准

Sails 的效能可与你所期望的标准 Node.js/Express 应用程序相比。换句话说，就是「快」！我们在 Sails 和 Waterline 做了一些优化，但本质上，我们的重点是不要把已经非常快的东西搞糟了。最重要的，我们要感谢 @ry、@visionmedia、@isaacs、#v8、@joyent 和在 Node.js 核心团队的其他成员。

	http://serdardogruyol.com/?p=111

 Hosting

 托管（Hosting）

以下是不完整的 Sails.js 托管服务供应商清单。

部署到 Modulus？

	http://blog.modulus.io/sails-js

部署到 NodeJitsu？

要部署到 NodeJitsu，你需要稍微修改设置文档：
在应用程序文件夹开启 config/local.js。你需要加入以下几行到此设置文档。

// Port this Sails application will live on
port: 80,
host: 'subdomain.jit.su',

host: 不是默认建立的属性。你需要加入这个属性。当执行 jitsu deploy 时，Nodejitsu 会询问你的 subdomain

	https://blog.nodejitsu.com/keep-a-nodejs-server-up-with-forever/

	https://github.com/balderdashy/sails/issues/455

部署到 OpenShift？

要部署到 OpenShift，你需要稍微修改设置文档：
在应用程序文件夹开启 config/local.js。你需要加入以下几行到此设置文档。

port: process.env.OPENSHIFT_NODEJS_PORT,
host: process.env.OPENSHIFT_NODEJS_IP,

使用 DigitalOcean？

	https://www.digitalocean.com/community/articles/how-to-create-an-node-js-app-using-sails-js-on-an-ubuntu-vps

	https://www.digitalocean.com/community/articles/how-to-use-pm2-to-setup-a-node-js-production-environment-on-an-ubuntu-vps

	https://www.digitalocean.com/community/articles/how-to-host-multiple-node-js-applications-on-a-single-vps-with-nginx-forever-and-crontab

部署到 Heroku？

	SailsCasts：Deploying a Sails App to Heroku

	https://groups.google.com/forum/#!topic/sailsjs/vgqJFr7maSY

	https://github.com/chadn/heroku-sails

	http://dennisrongo.com/deploying-sails-js-to-heroku/#.UxQKPfSwI9w

	http://stackoverflow.com/a/20184907/486547

部署到 AWS？

	http://blog.grio.com/2014/01/your-own-mini-heroku-on-aws.html

	http://serverfault.com/questions/531560/creating-an-sails-js-application-on-aws-ami-instance

	http://bussing-dharaharsh.blogspot.com/2013/08/creating-sailsjs-application-on-aws-ami.html

	http://cloud.dzone.com/articles/how-deploy-nodejs-apps-aws-mac

使用 PM2？

	http://devo.ps/blog/2013/06/26/goodbye-node-forever-hello-pm2.html

部署到 CloudControl？

	https://www.cloudcontrol.com/dev-center/Guides/NodeJS/Sailsjs

取得专业协助

这些日子以来，拥有一定技术的情况下，部署强大的应用程序变得越来越简单。尽管如此，你不一定有时间来自己处理这些事情。
Sails.js 是由我的公司维护，Balderdash，一间在美国德州奥斯丁的 Node.js 顾问公司。如果你的公司需要专业协助，我们很乐意提供帮助。部署不是很困难，而且在大多情况下，它不应该超过几个小时。

 Scaling

 扩充（Scaling）

如果你预料到会有大流量到应用程序（或者更好的是，你已经拥有大流量！），你要建立一个可扩充的架构，让应用程序可以随著越来越多人使用而进行扩充。

效能基准（Benchmarks）

在大多数情况下，Sails 效能与任何 Connect、Express 或 Socket.io 应用程序相同。这已在几个不同的场合下被证实，最近一次是在这里。如果你有自己的效能基准想和大家分享，请在 Github 发送 pull request 到本页面。

例子架构

　　　　　 Sails.js 服务器
　　　　　
　　　　　 / Sails.js 服务器 \ / 资料库（如 Mongo、Postgres 等）
负载平衡器 <--> Sails.js 服务器 <--> Socket 储存区（Redis）
　　　　　 \ Sails.js 服务器 / \ 会话（Session）储存区（Redis）
　　　　　
　　　　　 Sails.js 服务器

设置应用程序的丛集部署

	确保模型所使用的资料库（如 MySQL、Postgres、Mongo）具有可扩充性（如分片丛集）

	设置应用程序使用共享的会话（Session）储存区
	内建支持 redis（查看 config/session.js 内的 adapter 选项）

	如果你使用 SOCKETS：
	设置应用程序使用共享的 socket 储存区

	内建支持 redis（查看 config/sockets.js 内的 adapter 选项）

	注意：如果你不想设置 socket 储存区，这种状况下可行的解决方案是在负载平衡器使用黏性会话（sticky sessions）。

	确保应用程序可能会使用的其他相依功能没有依赖于共享记忆体。

部署 Sails 丛集到多台服务器

	在负载平衡器之后部署多个实例（又称服务器执行应用程序的副本）
	在每个实例使用 forever 启动 Sails

	更多关于负载平衡器的资讯：http://en.wikipedia.org/wiki/Load_balancing_(computing)

	设置负载平衡器终止 SSL 请求
	因为传输已经被解密，你不需要在 Sails 使用 SSL 设置

 文件上传

 文档上传（File Uploads）

TODO: Normalize/expand this section

例子

产生一个 api

首先，我们需要替 serving/storing 产生一个新的 api 文档。用 sails 命令行工具执行此动作。

dude@littleDude:~/node/myApp$ sails generate api file

debug: Generated a new controller `file` at api/controllers/FileController.js!
debug: Generated a new model `File` at api/models/File.js!

info: REST API generated @ http://localhost:1337/file
info: and will be available the next time you run `sails lift`.

dude@littleDude:~/node/myApp$

撰写控制器动作

让我们建立一个 index 动作来开始文档上传及 upload 动作来接收文档。

// myApp/api/controllers/FileController.js

module.exports = {

 index: function (req,res){

 res.writeHead(200, {'content-type': 'text/html'});
 res.end(
 '<form action="http://localhost:1337/file/upload" enctype="multipart/form-data" method="post">'+
 '<input type="text" name="title">
'+
 '<input type="file" name="avatar" multiple="multiple">
'+
 '<input type="submit" value="Upload">'+
 '</form>'
)
 },
 upload: function (req, res) {
 req.file('avatar').upload(function (err, files) {
 if (err)
 return res.serverError(err);

 return res.json({
 message: files.length + ' file(s) uploaded successfully!',
 files: files
 });
 });
 }

};

它们去哪了？

使用默认的 receiver，上传的文档会在 myApp/.tmp/uploads/ 目录。你可以在 upload 动作内做你想做的任何事情。

上传到自定义文件夹

在上面的例子中，我们可以将文档上传到 .tmp/uploads。那么我们该如何设置为自定义文件夹，例如 assets/images。我们可以通过增加选项到上传功能来实现这一目标，如下所示：

 var uploadPath = './assets/images';
 uploadFile.upload({ dirname: uploadPath },function onUploadComplete (err, files) {

 if (err)
 return res.serverError(err);

 return res.json({
 message: files.length + ' file(s) uploaded successfully!',
 path:uploadPath
 file:files
 });
 });

请查看 Skipper 文件取得更多资讯及其他可用的 receivers 清单！

 全局变量

 全局变数（Globals）

概述

为了方便起见，Sails 公开了一些全局变数。默认情况下，应用程序的模型、服务，和全局 sails 对象都存在于全局范围；这代表你可以在后端程序码的任何地方通过名称参考使用它们（只要 Sails 已经载入）。

在 Sails 核心没有什么东西是依赖于这些全局变数，每个公开的全局变数也可以在 sails.config.globals 内禁用（通常设置在 config/globals.js）。

应用程序对象（sails）

在大多数情况下，你会想保留 sails 对象的全局存取，它使你的程序码更加干净。但是，如果你确实需要禁用所有全局变数，包含 sails，你可以从请求对象（req）存取 sails。

模型和服务

应用程序的模型和服务被通过它们的 globalId 公开为全局变数。例如，定义在 api/models/Foo.js 文档的模型可以通过 Foo 在全局存取，而定义在 api/services/Baz.js 的服务则可通过 Baz 存取。

Async（async）和 Lodash（_）

Sails 也公开 _ 为 lodash 的实例，以及 async 为 async 的实例。默认已提供这些常用的套件，这样你就不必在每个新工程 npm install 它们。如同 sails 的其他全局变数，它们可以被禁用。

禁用全局变数

Sails 通过检查 sails.config.globals 来决定要公开哪个全局变数，通常设置在 config/globals.js。

要禁用所有全局变数，只需将组件设置为 false：

// config/globals.js
module.exports.globals = false;

要禁用一些全局变数，指定一个对象来代替，例如：

// config/globals.js
module.exports.globals = {
 _: false,
 async: false,
 models: false,
 services: false
};

注意事项

	请记住，在 sails 被载入前，没有一个全局变数，包含 sails，可以被存取。换句话说，你不能使用 sails.models.user 或 User 功能（因为 sails 还没载入完成。）

 国际化

 国际化（Internationalization）

概述

如果你的应用程序会触及从世界各地而来的人或系统，国际化（i18n）和本地化（l10n）会是你国际化策略重要的一部分。Sails 提供内建支持，用于侦测用户语言偏好设置和翻译静态单字／句子，这要归功于 i18n-node（npm）。

用法

在检视内：

 <%= __('Hello')="" %="">

 <%= __('Hello="" %s,="" how="" are="" you="" today?',="" 'Mike')="" %="">

 <%= i18n('That\'s="" right--="" you="" can="" use="" either="" i18n()="" or="" __()')="" %="">

在控制器或政策内：

req.__('Hello'); // => Hola
req.__('Hello %s', 'Marcus'); // => Hola Marcus
req.__('Hello {{name}}', { name: 'Marcus' }); // => Hola Marcus

或者，你已经知道语系 ID，你可以在应用程序内的任何地方使用 sails.__ 翻译：

sails.__({
 phrase: 'Hello',
 locale: 'es'
});
// => 'Hola!'

语系

i18n 挂勾（hook）会从工程的「locales」目录（默认是 config/locales）读取 JSON 格式翻译文档。每个文档对应一个 Sails 后端所支持的语系（通常是语言）。

这些文档包含特定的语系字串（为 JSON 键值对），你可以使用在检视、控制器等地方。

这里有一个语系例子文档（config/locales/es.json）：

{
 "Hello!": "Hola!",
 "Hello %s, how are you today?": "¿Hola %s, como estas?",
}

请注意，语系档内的键（例如 "Hello %s, how are you today?"）有区分大小写且需要精准匹配。这里有几个不同思想流派的最佳翻译，要选择哪个翻译取决于未来最常会由谁编辑语系档与 HTML。特别是如果你会手动编辑，将键的名称全部小写会最提供最佳的可维护性。

例如，这里有另一个翻译在 config/locales/es.json：

{
 "hello": "Hola!",
 "hello-how-are-you-today": "Hola %s, ¿cómo estás?",
}

以及这里 config/locales/en.json：

{
 "hello": "Hello!",
 "hello-how-are-you-today": "Hello, how are you today?",
}

侦测和／或覆写请求的所需语系

使用新的语系代码呼叫 req.setLocale() 来覆写请求的自动侦测语言／本地化偏好设置：

// 强制让请求使用德文：
req.setLocale('de');
//（这会使用在 `config/locales/de.json` 的字串来翻译）

默认情况下，node-i18n 会通过检查请求的 Language 标头来侦测所需的语言。Language 标头是设置在用户的浏览器，且它们大多是正确的，你可能需要灵活覆写所侦测到的语系并提供翻译。

例如，如果你的应用程序允许使用者选择偏好语言，你可能会建立一个政策用来检查使用者会话（Session）内的自定义语言，如果存在的话，设置相应语系以便在后续的政策、控制器动作和检视使用：

// api/policies/localize.js
module.exports = function(req, res, next) {
 req.setLocale(req.session.languagePreference);
 next();
};

<!--

 Alternatively, here's another extended example:
 (todo: at the very least pull this into a sep

 记录日志

 日志（Logging）

概述

Sails 内建一个名为 captains-log 的简单日志记录器。它的用法与 Node 的 console.log 非常类似，但有一些额外的功能；即支持在终端机输出多种含前缀字和颜色的日志等级。

组件设置

Sails 日志记录器的设置在 sails.config.log，照约定默认对应 Sails 工程的设置文档（config/log.js）。

当设置了一个日志输出等级，Sails 会在相同或高于目前设置等级时输出日志讯息。这个日志等级已标准化，且适用于从 socket.io、Waterline 及其它相依功能产生输出。日志等级和相应的优先权分级结构总结为以下图表：

	优先权
	等级
	可见的日志

	0
	silent
	无

	1
	error
	.error()

	2
	warn
	.warn(), .error()

	3
	debug
	.debug(), .warn(), .error()

	4
	info
	.info(), .debug(), .warn(), .error()

	5
	verbose
	.verbose(), .info(), .debug(), .warn(), .error()

	6
	silly
	.silly(), .verbose(), .info(), .debug(), .warn(), .error()

注意事项

	默认的日志等级是「info」。当你设置应用程序的日志等级为「info」，Sails 会记录关于服务器／应用程序状态的有限资讯。

	当日志等级设置为「silly」，Sails 会记录已被绑定的路由、其它详细的框架生命周期资讯、诊断和实践细节等内部资讯。

	当日志等级设置为「verbose」，Sails 会记录 Grunt 的输出，以及更详细的路由、模型、挂勾（hook）等被载入的资讯。

 sails.log

 sails.log()

概述

下列方法接受以逗点分隔的参数，没有数量与资料型态限制。如同 console.log，作为参数传入 Sails 日志记录器的资料会使用 Node 的 util.inspect() 自动美化，以方便阅读。因此，适用于标准 Node.js 约定，也就是说，如果你使用 inspect() 方法记录一个对象，它会自动执行并返回将被写入到终端机的字串。相同的，对象、日期、阵列和大多数其它资料型态会使用 util.inspect() 内建的逻辑来美化（例如，你会看到 { pet: { name: 'Hamlet' } } 而不是 [object Object]。）

sails.log()

默认的日志功能，会将「debug」等级的日志输出到 stderr。

sails.log('hello');
// -> debug: hello.

sails.log.error()

将「error」等级的日志输出到 stderr。

sails.log.error('Unexpected error occurred.');
// -> error: Unexpected error occurred.

sails.log.warn()

将「warn」等级的日志输出到 stderr。

sails.log.warn('File upload quota exceeded for user','request aborted.');
// -> warn: File upload quota exceeded for user- request aborted.

sails.log.debug()

sails.log() 的别名

sails.log.info()

将「info」等级的日志输出到 stderr。

sails.log.info('A new user (', 'mike@foobar.com', ') just signed up!');
// -> info: A new user (mike@foobar.com) just signed up!

sails.log.verbose()

将「verbose」等级的日志输出到 stderr。
可用于截取应用程序的详细资讯，你可能只会在少数情况下使用。

sails.log.verbose('A user initiated an account transfer...')
// -> verbose: A user initiated an account transfer...

sails.log.silly()

将「silly」等级的日志输出到 stderr。
可用于截取应用程序的完整资讯，你可能只会在少数情况下使用。

sails.log.silly('A user probably clicked on something..?');
// -> silly: A user probably clicked on something..?

 中间件

 ORM

 Waterline: SQL/noSQL Data Mapper (ORM/ODM)

Sails comes installed with a powerful ORM/ODM called Waterline, a datastore-agnostic tool that dramatically simplifies interaction with one or more databases. It provides an abstraction layer on top of the underlying database, allowing you to easily query and manipulate your data without writing vendor-specific integration code.

Database Agnosticism

In schemaful databases like Postgres, Oracle, and MySQL, models are represented by tables. In MongoDB, they're represented by Mongo "collections". In Redis, they're represented using key/value pairs. Each database has its own distinct query dialect, and in some cases even requires installing and compiling a specific native module to connect to the server. This involves a fair amount of overhead, and garners an unsettling level of vendor lock-in to a specific database; e.g. if your app uses a bunch of SQL queries, it will be very hard to switch to Mongo later, or Redis, and vice versa.

Waterline query syntax floats above all that, focusing on business logic like creating new records, fetching/searching existing records, updating records, or destroying records. No matter what database you're contacting, the usage is exactly the same. Furthermore, Waterline allows you to .populate() associations between models, even if the data for each model lives in a different database. That means you can switch your app's models from Mongo, to Postgres, to MySQL, to Redis, and back again - without changing any code. For the times when you need low-level, database-specific functionality, Waterline provides a query interface that allows you to talk directly to your models' underlying database driver (see .query() and .native().)

Scenario

Let's imagine you're building an e-commerce website, with an accompanying mobile app. Users browse products by category or search for products by keyword, then they buy them. That's it! Some parts of your app are quite ordinary; you have an API-driven flow for logging in, signing up, order/payment processing, resetting passwords, etc. However, you know there are a few mundane features lurking in your roadmap that will likely become more involved. Sure enough:

Flexibility

You ask the business what database they would like to use:

"Datab... what? Let's not be hasty, wouldn't want to make the wrong choice. I'll get ops/IT on it. Go ahead and get started though."

The traditional methodology of choosing one single database for a web application/API is actually prohibitive for many production use cases. Oftentimes the application needs to maintain compatibility with one or more existing data sets, or it is necessary to use a few different types of databases for performance reasons.

Since Sails uses sails-disk by default, you can start building your app with zero configuration, using a local temporary file as storage. When you're ready to switch to the real thing (and when everyone knows what that even is), just change your app's connection configuration.

Compatibility

The product owner/stakeholder walks up to you and says:

"Oh hey by the way, the products actually already live in our point of sale system. It's some ERP thing I guess, something like "DB2"? Anyways, I'm sure you'll figure it out- sounds easy right?"

Many enterprise applications must integrate with an existing database. If you're lucky, a one-time data migration may be all that's necessary, but more commonly, the existing dataset is still b

 Associations

 关联（Associations）

使用 Sails 和 Waterline，你可以跨多个资料储存区来关联模型。这代表，即使你的使用者储存在 PostgreSQL，而他们的相片储存在 MongoDB，你可以与资料进行互动，就好像他们储存在相同的资料库中。你也可以使用相同桥接器跨越不同连线（即资料储存区／资料库）的关联。举个能派上用场的例子，你的应用程序需要从公司的资料中心的 MySQL 资料库存取／更新旧的食谱资料，但也要从云端的全新 MySQL 资料库存取材料资料。

 Dominance

 Manyto Many

 多对多（Many-to-Many）

概述

多对多关联表示一个模型可以关联到许多其他模型，反之亦然。
因为两个模型都可以有许多关联模型，将需要建立一个新连接资料表来追踪这些关联。

Waterline 会看著你的模型，当它找到两个模型都有 collection 属性指向彼此时，会自动为你建立连接资料表。

因为你可能想要一个模型有多个多对多关联到另一个模型，collection 属性必需要有一个 via 键。这说明了哪一边的关联 modal 属性会用来提供记录。

使用 User 和 Pet 例子让我们来看看如何建立「一个 User 可能有很多 Pet 记录，和 Pet 可能有多个主人」的架构。

多对多例子

在这个例子中，我们将由 users 阵列和 pets 阵列开始。我们将建立资料到阵列的每个元素，然后关联所有的 Pets 与所有的 Users。如果一切运作正常，我们应该能够查询任何 User，看到他们「拥有」所有的 Pets。此外，我们应该能够查询任何 Pet，看到它被所有 User 拥有。

myApp/api/models/pet.js

module.exports = {

 attributes: {
 name:'STRING',
 color:'STRING',

 // 加入一个参考到 User
 owners: {
 collection: 'user',
 via: 'pets',
 dominant:true
 }
 }
}

myApp/api/models/user.js

module.exports = {

 attributes: {
 name:'STRING',
 age:'INTEGER',

 // 加入一个参考到 Pet
 pets:{
 collection: 'pet',
 via: 'owners'
 }
 }

}

myApp/config/bootstrap.js

module.exports.bootstrap = function (cb) {

// 在建立 users 之后，我们会在这储存他们来关联 pets
var storeUsers = [];

var users = [{name:'Mike',age:'16'},{name:'Cody',age:'25'},{name:'Gabe',age:'107'}];
var ponys = [{ name: 'Pinkie Pie', color: 'pink'},{ name: 'Rainbow Dash',color: 'blue'},{ name: 'Applejack', color: 'orange'}]

// 这边进行实际的关联。
// 它需要一个宠物，然后迭代新建立的 Users 阵列，加入每一个到它的连接资料表var associate = function(onePony,cb){
 var thisPony = onePony;
 var callback = cb;

 storeUsers.forEach(function(thisUser,index){
 console.log('Associating ',thisPony.name,'with',thisUser.name);
 thisUser.pets.add(thisPony.id);
 thisUser.save(console.log);

 if (index === storeUsers.length-1)
 return callback(thisPony.name);
 })
};

// 这个回呼会在所有 Pets 建立后执行。
// 它送出每个新宠物和我们的 Users 到 'associate'
var afterPony = function(err,newPonys){
 while (newPonys.length){
 var thisPony = newPonys.pop();
 var callback = function(ponyID){
 console.log('Done with pony ',ponyID)
 }
 associate(thisPony,callback);
 }
 console.log('Everyone belongs to everyone!! Exiting.');

 // 这个回呼让我们离开 bootstrap.js 并继续启动应用程序！
 return cb();
};

// 这个回呼会在所有 Users 建立后执行。
// 它需要返回的 User 并储存到 storeUsers 阵列供稍后使用。
var afterUser = function(err,newUsers){
 while (newUsers.length)
 storeUsers.push(newUsers.pop());

 Pet.create(ponys).exec(afterPony);
};

User.create(users).exec(afterUser);

};

使用 sails console 启动应用程序

```sh

dude@littleDude:~/node/myApp$ sails console

info: Starting app in interactive mode...

Associating  Applejack with Gabe
Associating  Applejack with Cody
Associating  Applejack with Mike
Done with pony  Applejack
Associating  Rainbow Dash with Gabe
Associating  Rainbow Dash with Cody
Associating  Rainbow Dash with Mike
Done with pony  Rainbow Dash
Associating  Pinkie Pie with Gabe
Associating  Pinkie Pie with Cody
Associating  Pinkie Pie with Mike
Done with pony  Pinkie Pie
Everyone belongs to everyone!! Exiting.
info: Welcome to the Sails console.
info: ( to exit, type + )

sails> null { name: 'Gabe',
  age: 107,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CS


            
            

        
    



        
        
    
    


        
        

    
        One Way Association

        
            
            
                单向关联（One Way Association）

概述

单向关联就是一个模型关联到另一个模型。你可以查询该模型并提供所关联的模型。但是，你不能查询被关联的模型并提供关联它的模型。

单向关联例子

在这个例子中，我们关联了一个 User 到 Pet，而不是 Pet 到 User。

myApp/api/models/pet.js


module.exports = {

  attributes: {
    name:'STRING',
    color:'STRING'
  }

}


myApp/api/models/user.js


module.exports = {

  attributes: {
    name:'STRING',
    age:'INTEGER',
    pony:{
      model: 'pet'
    }
  }

}


使用 sails console


sails> Pet.create({name:'Pinkie Pie',color:'pink'}).exec(console.log)
null { name: 'Pinkie Pie',
  color: 'pink',
  createdAt: Tue Feb 11 2014 15:45:33 GMT-0600 (CST),
  updatedAt: Tue Feb 11 2014 15:45:33 GMT-0600 (CST),
  id: 5 }

sails> User.create({name:'Mike',age:21,pony:5}).exec(console.log);
null { name: 'Mike',
  age: 21,
  pony: 5,
  createdAt: Tue Feb 11 2014 15:48:53 GMT-0600 (CST),
  updatedAt: Tue Feb 11 2014 15:48:53 GMT-0600 (CST),
  id: 1 }

sails> User.find({name:'Mike'}).populate('pony').exec(console.log);
null [ { name: 'Mike',
    age: 21,
    pony: 
     { name: 'Pinkie Pie',
       color: 'pink',
       id: 5,
       createdAt: Tue Feb 11 2014 15:45:33 GMT-0600 (CST),
       updatedAt: Tue Feb 11 2014 15:45:33 GMT-0600 (CST) },
    createdAt: Tue Feb 11 2014 15:48:53 GMT-0600 (CST),
    updatedAt: Tue Feb 11 2014 15:48:53 GMT-0600 (CST),
    id: 1 } ]


注意事项


请查看 Waterline 文件取得这种类型的关联的更多资讯

因为我们只形成一个关联于一个模型，Pet 没有归属于 User 模型的数量限制。如果我们想要，我们可以改变这一点，让 Pet 正好关联到一个 User ，且 User 正好关联到一个 Pet。








            
            

        
    



        
        
    
    


        
        

    
        Oneto Many

        
            
            
                一对多（One-to-Many）

概述

一对多关联表示一个模型可以关联到许多其他模型。要建立这种关联，要加入一个虚拟属性 collection 到模型。在一对多关联中，一边必需有 collection 属性，另一边必需包含一个 modal 属性。这让「Many」那侧知道当使用 populate 时，它需要取得哪些记录。

因为你可能想要一个模型有多个一对多关联到另一个模型，collection 属性必需要有一个 via 键。这说明了哪一边的关联 modal 属性会用来提供记录。

一对多例子

myApp/api/models/pet.js


module.exports = {

  attributes: {
    name:'STRING',
    color:'STRING',
    owner:{
      model:'user'
    }
  }

}


myApp/api/models/user.js


module.exports = {

  attributes: {
    name:'STRING',
    age:'INTEGER',
    pets:{
      collection: 'pet',
      via: 'owner'
    }
  }

}


使用 sails console


sails> User.create({name:'Mike',age:'21'}).exec(console.log)
null { pets: [Getter/Setter],
  name: 'Mike',
  age: 21,
  createdAt: Tue Feb 11 2014 17:49:04 GMT-0600 (CST),
  updatedAt: Tue Feb 11 2014 17:49:04 GMT-0600 (CST),
  id: 1 }

sails> Pet.create({name:'Pinkie Pie',color:'pink',owner:1}).exec(console.log)
null { name: 'Pinkie Pie',
  color: 'pink',
  owner: 1,
  createdAt: Tue Feb 11 2014 17:58:04 GMT-0600 (CST),
  updatedAt: Tue Feb 11 2014 17:58:04 GMT-0600 (CST),
  id: 2 }

sails> Pet.create({name:'Applejack',color:'orange',owner:1}).exec(console.log)
null { name: 'Applejack',
  color: 'orange',
  owner: 1,
  createdAt: Tue Feb 11 2014 18:02:58 GMT-0600 (CST),
  updatedAt: Tue Feb 11 2014 18:02:58 GMT-0600 (CST),
  id: 4 }

sails> User.find().populate('pets').exec(function(err,r){console.log(r[0].toJSON())});
{ pets: 
   [ { name: 'Pinkie Pie',
       color: 'pink',
       id: 2,
       createdAt: Tue Feb 11 2014 17:58:04 GMT-0600 (CST),
       updatedAt: Tue Feb 11 2014 17:58:04 GMT-0600 (CST),
       owner: 1 },
     { name: 'Applejack',
       color: 'orange',
       id: 4,
       createdAt: Tue Feb 11 2014 18:02:58 GMT-0600 (CST),
       updatedAt: Tue Feb 11 2014 18:02:58 GMT-0600 (CST),
       owner: 1 } ],
  name: 'Mike',
  age: 21,
  createdAt: Tue Feb 11 2014 17:49:04 GMT-0600 (CST),
  updatedAt: Tue Feb 11 2014 17:49:04 GMT-0600 (CST),
  id: 1 }

sails> Pet.find(4).populate('owner').exec(console.log)
null [ { name: 'Applejack',
    color: 'orange',
    owner: 
     { pets: [Getter/Setter],
       name: 'Mike',
       age: 21,
       id: 1,
       createdAt: Tue Feb 11 2014 17:49:04 GMT-0600 (CST),
       updatedAt: Tue Feb 11 2014 17:49:04 GMT-0600 (CST) },
    createdAt: Tue Feb 11 2014 18:02:58 GMT-0600 (CST),
    updatedAt: Tue Feb 11 2014 18:02:58 GMT-0600 (CST),
    id: 4 } ]


注意事项


请查看 Waterline 文件取得这种类型的关联的更多资讯








            
            

        
    



        
        
    
    


        
        

    
        Oneto One

        
            
            
                一对一（One-to-One）

概述

一对一关联表示一个模型可能只与另一个模型关联。为了使模型知道它与其他哪些模型关联，外键必需包含在记录中。

一对一例子

在这个例子中，我们关联了一个 Pet 到 User。在这种情况下 User 可能只有一个 Pet，但是 Pet 并不局限于单一 User。

myApp/api/models/pet.js


module.exports = {

  attributes: {
    name:'STRING',
    color:'STRING',
    owner:{
      model:'user'
    }
  }

}


myApp/api/models/user.js


module.exports = {

  attributes: {
    name:'STRING',
    age:'INTEGER',
    pony:{
      model: 'pet'
    }
  }

}


使用 sails console


sails> User.create({ name: 'Mike', age: 21}).exec(console.log);
null { name: 'Mike',
  age: 21,
  createdAt: Thu Feb 20 2014 17:12:18 GMT-0600 (CST),
  updatedAt: Thu Feb 20 2014 17:12:18 GMT-0600 (CST),
  id: 1 }

sails> Pet.create({ name: 'Pinkie Pie', color: 'pink', owner: 1}).exec(console.log)
null { name: 'Pinkie Pie',
    color: 'pink',
    owner: 1,
    createdAt: Thu Feb 20 2014 17:26:16 GMT-0600 (CST),
    updatedAt: Thu Feb 20 2014 17:26:16 GMT-0600 (CST),
    id: 2 }

sails> Pet.find().populate('owner').exec(console.log)
null [ { name: 'Pinkie Pie',
    color: 'pink',
    owner: 
     { name: 'Mike',
       age: 21,
       id: 1,
       createdAt: Thu Feb 20 2014 17:12:18 GMT-0600 (CST),
       updatedAt: Thu Feb 20 2014 17:12:18 GMT-0600 (CST) },
    createdAt: Thu Feb 20 2014 17:26:16 GMT-0600 (CST),
    updatedAt: Thu Feb 20 2014 17:26:16 GMT-0600 (CST),
    id: 2 } ]

sails> User.find().populate('pony').exec(console.log)
null [ { name: 'Mike',
    age: 21,
    createdAt: Thu Feb 20 2014 18:11:15 GMT-0600 (CST),
    updatedAt: Thu Feb 20 2014 18:11:15 GMT-0600 (CST),
    id: 2,
    pony: undefined } ]

sails> User.update({name:'Mike'},{pony:2}).exec(console.log)
null [ { name: 'Mike',
    age: 21,
    createdAt: Thu Feb 20 2014 17:12:18 GMT-0600 (CST),
    updatedAt: Thu Feb 20 2014 17:30:58 GMT-0600 (CST),
    id: 1,
    pony: 2 } ]

sails> User.findOne(1).populate('pony').exec(console.log)
null { name: 'Mike',
  age: 21,
  createdAt: Thu Feb 20 2014 17:12:18 GMT-0600 (CST),
  updatedAt: Thu Feb 20 2014 17:30:58 GMT-0600 (CST),
  id: 1,
  pony: 
   { name: 'Pinkie Pie',
     color: 'pink',
     id: 2,
     createdAt: Thu Feb 20 2014 17:26:16 GMT-0600 (CST),
     updatedAt: Thu Feb 20 2014 17:26:16 GMT-0600 (CST),
     owner: 1 } }


注意事项


请查看 Waterline 文件取得这种类型的关联的更多资讯








            
            

        
    



        
        
    
    


        
        

    
        Through Associations

        
            
            
                穿透关联（Through Associations）

概述

多对多穿透关联的行为和多对多关联相同，且会自动为你建立例外的连接表。这使你可以附加额外的属性到连接表内的关联。

不幸的是，他们尚未支持。请不要担心，有一个简单的解决方法。

你可以通过使用一个额外的模型为中介来实现这一目标。你可以使用多个一对多关联到中介模型，取代两个模型间的多对多关联。






            
            

        
    



        
        
    
    


        
        

    
        Attributes

        
            
            
                
            
            

        
    



        
        
    
    


        
        

    
        Lifecyclecallbacks

        
            
            
                生命周期回呼（Lifecycle callbacks）

概述

Sails 公开了一些模型的生命周期回呼，在做某些动作之前或之后会自动被呼叫。例如，我们有时候会使用生命周期回呼在建立或更新帐号模型前自动加密密码。另一个使用情况是当工程的 name 属性更新时自动重新产生网址。

create 的回呼


	beforeValidate: fn(values, cb)

	afterValidate: fn(values, cb)

	beforeCreate: fn(values, cb)

	afterCreate: fn(newlyInsertedRecord, cb)



update 的回呼


	beforeValidate: fn(valuesToUpdate, cb)

	afterValidate: fn(valuesToUpdate, cb)

	beforeUpdate: fn(valuesToUpdate, cb)

	afterUpdate: fn(updatedRecord, cb)



destroy 的回呼


	beforeDestroy: fn(criteria, cb)

	afterDestroy: fn(destroyedRecords, cb)



例子

如果你想在密码储存到资料库前先加密，你可以使用 beforeCreate 生命周期回呼。

var bcrypt = require('bcrypt');

module.exports = {

  attributes: {

    username: {
      type: 'string',
      required: true
    },

    password: {
      type: 'string',
      minLength: 6,
      required: true,
      columnName: 'encrypted_password'
    }

  },


  // 生命周期回呼
  beforeCreate: function (values, cb) {

    // 密码加密
    bcrypt.hash(values.password, 10, function(err, hash) {
      if(err) return cb(err);
      values.password = hash;
      // 呼叫 cb() 时带入一个参数，会返回错误。当某些条件失败要取消整个操作时很有用。
      cb();
    });
  }
};







            
            

        
    



        
        
    
    


        
        

    
        Models

        
            
            
                Models

A model represents a collection of structured data, usually corresponding to a single table or collection in a database.  Models are usually defined by creating a file in an app's api/models/ folder.

[image: screenshot of a Waterline/Sails model in Sublime Text 2]


Using models

Models may be accessed from our controllers, policies, services, responses, tests, and in custom model methods.  There are many built-in methods available on models, the most important of which are the query methods: find, create, update, and destroy.  These methods are asynchronous - under the covers, Waterline has to send a query to the database and wait for a response.

Consequently, query methods return a deferred query object.  To actually execute a query, .exec(cb) must be called on this deferred object, where cb is a callback function to run after the query is complete.

Waterline also includes opt-in support for promises.  Instead of calling .exec() on a query object, we can call .then(), .spread(), or .catch(), which will return a Bluebird promise.

Model Methods (aka "static" or "class" methods)

Model class methods are functions built into the model itself that perform a particular task on its instances (records).  This is where you will find the familiar CRUD methods for performing database operations like .create(), .update(), .destroy(), .find(), etc.

Custom model methods

Waterline allows you to define custom methods on your models.  This feature takes advantage of the fact that Waterline models ignore unrecognized keys, so you do need to be careful about inadvertently overriding built-in methods and dynamic finders (don't define methods named "create", etc.)  Custom model methods are most useful for extrapolating controller code that relates to a particular model; i.e. this allows you to pull code your controllers and into reusuable functions that can be called from anywhere (i.e. don't depend on req or res.)

Model methods are generally asynchronous functions.  By convention, asynchronous model methods should be 2-ary functions, which accept an object of inputs as their first argument (usually called opts or options) and a Node callback as the second argument.  Alternatively, you might opt to return a promise (both strategies work just fine- it's a matter of preference.  If you don't have a preference, stick with Node callbacks.)

A best practice is to write your static model method so that it can accept either a record OR its primary key value.  For model records that operate on/from multiple records at once, you should allow an array of records OR an array of primary key values to be passed in.  This takes more time to write, but makes your method much more powerful.  And since you're doing this to extrapolate commonly-used logic anyway, it's usually worth the extra effort.

For example:

```js
// in api/models/Monkey.js...

// Find monkeys with the same name as the specified person
findWithSameNameAsPerson: function (opts, cb) {

 var person = opts.person;

 // Before doing anything else, check if a primary key value
 // was passed in instead of a record, and if so, lookup which
 // person we're even talking about:
 (function _lookupPersonIfNecessary(afterLookup){
 // (this self-calling function is just for concise-ness)
 if (typeof person === 'object')) return afterLookup(n

 Querylanguage

 Waterline Query Language

The Waterline Query language is an object-based criteria used to retrieve the records from any of the supported database adapters. This means that you can use the same query on MySQL as you do on Redis or MongoDb. This allows you to change your database without changing your code.

Query Language Basics

The criteria objects are formed using one of four types of object keys. These are the top level
keys used in a query object. It is loosely based on the criteria used in MongoDB with a few slight variations.

Queries can be built using either a where key to specify attributes, which will allow you to also use query options such as limit and skip or if where is excluded the entire object will be treated as a where criteria.

Model.find({ where: { name: 'foo' }, skip: 20, limit: 10, sort: 'name DESC' });

// OR

Model.find({ name: 'foo' })

Key Pairs

A key pair can be used to search records for values matching exactly what is specified. This is the base of a criteria object where the key represents an attribute on a model and the value is a strict equality check of the records for matching values.

Model.find({ name: 'walter' })

They can be used together to search multiple attributes.

Model.find({ name: 'walter', state: 'new mexico' })

Modified Pairs

Modified pairs also have model attributes for keys but they also use any of the supported criteria modifiers to perform queries where a strict equality check wouldn't work.

Model.find({
 name : {
 'contains' : 'alt'
 }
})

In Pairs

IN queries work similarly to mysql 'in queries'. Each element in the array is treated as 'or'.

Model.find({
 name : ['Walter', 'Skyler']
});

Not-In Pairs

Not-In queries work similar to in queries, except for the nested object criteria.

Model.find({
 name: { '!' : ['Walter', 'Skyler'] }
});

Or Pairs

Performing OR queries is done by using an array of query pairs. Results will be returned that
match any of the criteria objects inside the array.

Model.find({
 or : [
 { name: 'walter' },
 { occupation: 'teacher' }
]
})

Criteria Modifiers

The following modifiers are available to use when building queries.

	'<' / 'lessThan'

	'<=' / 'lessThanOrEqual'

	'>' / 'greaterThan'

	'>=' / 'greaterThanOrEqual'

	'!' / 'not'

	'like'

	'contains'

	'startsWith'

	'endsWith'

'<' / 'lessThan'

Searches for records where the value is less than the value specified.

Model.find({ age: { '<': 30 }})

'<=' / 'lessThanOrEqual'

Searches for records where the value is less or equal to the value specified.

Model.find({ age: { '<=': 21 }})

'>' / 'greaterThan'

Searches for records where the value is more than the value specified.

Model.find({ age: { '>': 18 }})

'>=' / 'greaterThanOrEqual'

Searches for records where the value is more or equal to the value specified.

Model.find({ age: { '>=': 21 }})

'!' / 'not'

Searches for records where the value is not equal to the value specified.

Model.find({ name: { '!': 'foo' }})

'like'

Searches for records using pattern matching with the % sign.

Model.find({ food: { 'like': '%beans' }})

'contains'

A shorthand for pattern matching both sides of a string. Will return records where the value
contains the string anywhere inside of it.

Model.find({ class: { 'contains': 'history' }})

// The same as

Model.find({ class: { 'like': '%history%' }})

'startsWith'

A shorthand for pattern matching the right side of a string. Will return records where the value
starts with the supplied string value.

Model.find({ class: { 'startsWith': 'american' }})

// The same as

Model.find({ class: { 'like': 'american%' }})

'endsWith'

A shorthand for pattern matching the left side of a string. Will

 Validations

 Validations

Sails bundles support for automatic validations of your models' attributes. Any time a record is updated, or a new record is created, the data for each attribute will be checked against all of your predefined validation rules. This provides a convenient failsafe to ensure that invalid entries don't make their way into your app's database(s).

Validation Rules

Validations are handled by Anchor, a thin layer on top of Validator, one of the most robust validation libraries for Node.js. Sails supports most of the validations available in Validator, as well as a few extras that require database integration, like unique.

	Name of validator
	What does it check?
	Notes on usage

	after
	check if string date in this record is after the specified Date
	must be valid javascript Date

	alpha
	check if string in this record contains only letters (a-zA-Z)
	

	alphadashed
	
	does this string contain only numbers and/or dashes?

	alphanumeric
	check if string in this record contains only letters and numbers.
	

	alphanumericdashed
	does this string contain only numbers and/or letters and/or dashes?
	

	array
	is this a valid javascript array object?
	strings formatted as arrays won't pass

	before
	check if string in this record is a date that's before the specified date
	

	binary
	is this binary data?
	If it's a string, it will always pass

	boolean
	is this a valid javascript boolean ?
	strings will fail

	contains
	check if string in this record contains the seed
	

	creditcard
	check if string in this record is a credit card
	

	date
	check if string in this record is a date
	takes both strings and javascript

	datetime
	check if string in this record looks like a javascript datetime
	

	decimal
	
	contains a decimal or is less than 1?

	email
	check if string in this record looks like an email address
	

	empty
	Arrays, strings, or arguments objects with a length of 0 and objects with no own enumerable properties are considered "empty"
	lo-dash _.isEmpty()

	equals
	check if string in this record is equal to the specified value
	=== ! They must match in both value and type

	falsey
	Would a Javascript engine register a value of false on this?
	

	finite
	Checks if given value is, or can be coerced to, a finite number
	This is not the same as native isFinite which will return true for booleans and empty strings

	float
	check if string in this record is of the number type float
	

	hexadecimal
	check if string in this record is a hexadecimal number
	

	hexColor
	check if string in this record is a hexadecimal color
	

	in
	check if string in this record is in the specified array of allowed string values
	

	int
	check if string in this record is an integer
	

	integer
	same as above
	Im not sure why there are two of these.

	ip
	check if string in this record is a valid IP (v4 or v6)
	

	ipv4
	check if string in this record is a valid IP v4
	

	ipv6
	check if string in this record is aa valid IP v6
	

	is
	
	something to do with REGEX

	json
	does a try&catch to check for valid JSON.
	

	len
	is integer > param1 && < param2
	Where are params defined?

	lowercase
	is this string in all lowercase?
	

	max
	
	

	maxLength
	is integer > 0 && < param2
	

	min
	
	

	minLength
	
	

	not
	
	Something about regexes

	notContains
	
	

	notEmpty
	
	

	notIn
	does the value of this model attribute exist inside of the defined validator value (of the same type)
	Takes strings and arrays

	notNull
	does this not have a value of null ?
	

	notRegex
	
	

	null
	check if string in this record is null
	

	number
	is this a number?
	NaN is considered a number

	numeric
	checks if string in this record contains only numbers
	

	object
	checks if this attribute is the language type of Object
	Passes for arrays, functions, objects, regexes, new Number(0), and new String

 Model Settings

 模型设置（Model Settings）

以下的属性可以指定在你的模型定义的上层，来覆写该模型的默认值。修改 config/models.js 来覆写所有模型共享的默认设置。

migrate

migrate: 'safe'

总之，此设置控制了 Sails 是否／如何尝试在你的结构自动重建 tables/collections/sets 等。

在生产环境中（NODE_ENV === "production"）Sails 总是使用 migrate:"safe" 来保护意外删除你的资料。然而在开发过程中，你有其他几个方便的选项：

	safe - 永远不要自动迁移我的资料库。我会自己去做（手动）

	alter - 自动迁移，但尝试保留现有资料（实验性）

	drop - 每次启动 Sails 时清除／删除所有资料并重建模型

当你启动 sails 应用程序时，waterline 会验证你的资料库的所有资料。这个标记告诉 waterline 资料毁损时该如何处理资料。你可以设置这个标记为 safe，将忽略毁损的资料并继续启动。你还可以将其设置为

	自动迁移策略
	说明

	safe
	永远不要自动迁移我的资料库。我会自己手动去做

	alter
	自动迁移，但尝试保留现有资料（实验性）

	drop
	每次启动 Sails 时清除／删除所有资料并重建模型

请注意，使用 drop 或 alter 可能失去你的资料。当心，永远不要在生产环境使用 drop 或 alter。

schema

schema: true

在支持无结构（Schemaless）资料结构资料库切换无结构（Schemaless）或结构（Schema）模式的标记。如果关闭，将允许你储存任意资料的记录。如果开启，只有定义在模型的 attributes 属性对象会被储存。

对于不需要结构的桥接器，如 Mongo 或 Redis，默认设置是 schema:false。

connection

connection: 'my-local-postgresql'

此模型将从已设置的资料库连线取得和储存资料。默认为 localDiskDb，默认的连线使用 sails-disk 桥接器。

identity

identity: 'purchase'

此模型的小写唯一键（Unique key），例如 user。默认情况下，会自动从它的文档名称自动推测模型的 identity。你永远不应该在模型改变这个属性。

globalId

globalId: 'Purchase'

这个标记变更了你可以存取模型的全局名称（如果启用了模型的全局化）。你永远不应该在模型改变这个属性。要停用全局，请参考 sails.config.globals。

autoPK

autoPK: true

切换模型中自动定义主键的标记。此默认 PK 的细节依桥接器而有所不同（例如 MySQL 使用一个自动递增的整数主键，而 MongoDB 使用乱数字串 UUID）。在任何情况下，由 autoPK 产生的主键是唯一的。如果关闭，默认将不会建立主键，你将需要手动定义一个，例如：

attributes: {
 sku: {
 type: 'string',
 primaryKey: true,
 unique: true
 }
}

autoCreatedAt

autoCreatedAt: true

切换模型中自动定义 createdAt 属性的标记。默认情况下，当记录建立时 createdAt 属性会自动设置为目前时间戳记，例如：

attributes: {
 createdAt: {
 type: 'datetime',
 defaultsTo: function (){ return new Date(); }
 }
}

autoUpdatedAt

autoUpdatedAt: true

切换模型中自动定义 updatedAt 属性的标记。默认情况下，当记录被更新时 updatedAt 属性会自动设置为目前时间戳记，例如：

attributes: {
 updatedAt: {
 type: 'datetime',
 defaultsTo: function (){ return new Date(); }
 }
}

tableName

```java


            
            

        
    



        
        
    
    


        
        

    
        Policies

        
            
            
                Policies

Overview

Policies in Sails are versatile tools for authorization and access control-- they let you allow or deny access to your controllers down to a fine level of granularity.  For example, if you were building Dropbox, before letting a user upload a file to a folder, you might check that she isAuthenticated, then ensure that she canWrite (has write permissions on the folder.)  Finally, you'd want to check that the folder she's uploading into hasEnoughSpace.

Policies can be used for anything: HTTP BasicAuth, 3rd party single-sign-on, OAuth 2.0, or your own custom authorization/authentication scheme.


NOTE: policies apply only to controller actions, not to views.  If you define a route in your routes.js config file that points directly to a view, no policies will be applied to it.  To make sure policies are applied, you can instead define a controller action which displays your view, and point your route to that action.



Writing Your First Policy

Policies are files defined in the api/policies folder in your Sails app.  Each policy file should contain a single function.

When it comes down to it, policies are really just Connect/Express middleware functions which run before your controllers.  You can chain as many of them together as you like-- in fact they're designed to be used this way.  Ideally, each middleware function should really check just one thing.

For example, the canWrite policy mentioned above might look something like this:

// policies/canWrite.js
module.exports = function canWrite (req, res, next) {
  var targetFolderId = req.param('id');
  var userId = req.session.user.id;

  Permission
  .findOneByFolderId( targetFolderId )
  .exec( function foundPermission (err, permission) {

    // Unexpected error occurred-- skip to the app's default error (500) handler
    if (err) return next(err);

    // No permission exists linking this user to this folder.  Maybe they got removed from it?  Maybe they never had permission in the first place?  Who cares?
    if ( ! permission ) return res.redirect('/notAllowed');

    // OK, so a permission was found.  Let's be sure it's a "write".
    if ( permission.type !== 'write' ) return res.redirect('/notAllowed');

    // If we made it all the way down here, looks like everything's ok, so we'll let the user through
    next();
  });
};


Protecting Controllers with Policies

Sails has a built in ACL (access control list) located in config/policies.js.  This file is used to map policies to your controllers.  

This file is  declarative, meaning it describes what the permissions for your app should look like, not how they should work.  This makes it easier for new developers to jump in and understand what's going on, plus it makes your app more flexible as your requirements inevitably change over time.

Your config/policies.js file should export a Javascript object whose keys are controller names (or '*' for  global policies), and whose values are objects mapping action names to one or more policies.  See below for more details and examples.

To apply a policy to a specific controller action:

{
  ProfileController: {
      // Apply the 'isLoggedIn' policy to the 'edit' action of 'ProfileController'
      edit: 'isLoggedIn'
      // Apply the 'isAdmin' AND 'isLoggedIn' policies, in that order, to the 'create' action
      create: ['isAdmin', 'isLoggedIn']
  }
}


To apply a policy to an entire controller:

{
  ProfileController: {
    // Apply 'isLogged' in by default to all actions that are NOT specified below
    '*': 'isLoggedIn',
    // If an action is explicitly listed, its policy list will override the default list.
    // So, we have to list 'isLoggedIn' again for the 'edit' action if we want it to be applied.
    edit: ['isAdmin', 'isLoggedIn']
  }
}



Note: Default policy mappings do not "cascade" or "trickle down."  Specified mappings for the controller'




            
            

        
    



        
        
    
    


        
        

    
        Routes

        
            
            
                Routes

Overview

The most basic feature of any web application is the ability to interpret a request sent to a URL, then send back a response.  In order to do this, your application has to be able to distinguish one URL from another.

Like most web frameworks, Sails provides a router: a mechanism for mapping URLs to controllers and views.  Routes are rules that tell Sails what to do when faced with an incoming request.  There are two main types of routes in Sails: custom (or "explicit") and automatic (or "implicit").

Custom Routes

Sails lets you design your app's URLs in any way you like- there are no framework restrictions.

Every Sails project comes with config/routes.js, a simple Node.js module that exports an object of custom, or "explicit" routes. For example, this routes.js file defines six routes; some of them point to a controller's action, while others route directly to a view.

// config/routes.js
module.exports = {
  'get /signup': { view: 'conversion/signup' },
  'post /signup': 'AuthController.processSignup',
  'get /login': { view: 'portal/login' },
  'post /login': 'AuthController.processLogin',
  '/logout': 'AuthController.logout',
  'get /me': 'UserController.profile'
}


Each route consists of an address (on the left, e.g. 'get /me') and a target (on the right, e.g. 'UserController.profile')  The address is a URL path and (optionally) a specific HTTP method. The target can be defined a number of different ways (see the expanded concepts section on the subject), but the two different syntaxes above are the most common.  When Sails receives an incoming request, it checks the address of all custom routes for matches.  If a matching route is found, the request is then passed to its target.

For example, we might read 'get /me': 'UserController.profile' as:


"Hey Sails, when you receive a GET request to http://mydomain.com/me, run the profile action of UserController, would'ya?"



What if I want to change the view layout within the route itself?  No problem we could:

'get /privacy': {
    view: 'users/privacy',
    locals: {
      layout: 'users'
    }
  },


Notes


	Just because a request matches a route address doesn't necessarily mean it will be passed to that route's target directly.  For instance, HTTP requests will usually pass through some middleware first.  And if the route points to a controller action, the request will need to pass through any configured policies first.  Finally, there are a few special route options which allow a route to be "skipped" for certain kinds of requests.

	The router can also programmatically bind a route to any valid route target, including canonical Node middleware functions (i.e. function (req, res, next) {}).  However, you should always use the conventional route target syntax when possible- it streamlines development, simplifies training, and makes your app more maintainable.



Automatic Routes

In addition to your custom routes, Sails binds many routes for you automatically.  If a URL doesn't match a custom route, it may match one of the automatic routes and still generate a response.  The main types of automatic routes in Sails are:


	Blueprint routes, which provide your [controllers](http




            
            

        
    



        
        
    
    


        
        

    
        Route Target Syntax

        
            
            
                Custom Routes

Overview

Sails allows you to explicitly route URLs in several different ways in your config/routes.js file.  Every route configuration consists of an address and a target, for example:

'GET /foo/bar': 'FooController.bar'
^^^address^^^^  ^^^^^^target^^^^^^^

Route Address

The route address indicates what URL should be matched in order to apply the handler and options defined by the target.  A route consists of an optional verb and a mandatory path:

'POST  /foo/bar'
^verb^ ^^path^^

If no verb is specified, the target will be applied to any request that matches the path, regardless of the HTTP method used (GET, POST, PUT etc.).  Note the initial / in the path--all paths should start with one in order to work properly.

Wildcards and dynamic parameters

In addition to specifying a static path like foo/bar, you can use * as a wildcard:

'/*'

will match all paths, where as:

'/user/foo/*'

will match all paths that start with /user/foo.

You can capture the parts of the address that are matched by wildcards into named parameters by using the :paramName wildcard syntax instead of the *:

'/user/foo/:name/bar/:age'

Will match the same URLs as:

'/user/foo/*/bar/*'

but will provide the values of the wildcard portions of the route to the route handler as req.param('name') and req.param('age'), respectively.

Regular expressions in addresses

In addition to the wildcard address syntax, you may also use Regular Expressions to define the URLs that a route should match.  The syntax for defining an address with a regular expression is:

"r|<regular expression string>|<comma-delimited list of param names>"

That's the letter "r", followed by a pipe character |, a regular expression string without delimiters, another pipe, and a list of parameter names that should be mapped to parenthesized groups in the regular expression.  For example:

"r|^/\\d+/(\\w+)/(\\w+)$|foo,bar": "MessageController.myaction"

Will match /123/abc/def, running the myaction action of MessageController and supplying the values abc and def as req.param('foo') and req.param('bar'), respectively.

Note the double-backslash in \\d and \\w; this escaping is necessary for the regular expression to work correctly!

About route ordering

When using wildcards or regular expressions in your addresses, keep in mind that the ordering of your routes in config/routes.js matters; URLs are matched against addresses in the list from the top down.  If you have two configurations in this order:

'/user': 'UserController.doSomething',
'/*'   : 'CatchallController.doSomethingElse'

then a request to /user will not be matched by the second configuration unless the first configuration's handler calls next() in its code, which is discouraged (only policies should call next()).  Unless you're doing something very advanced, it is safe to assume that every request will be handled by at most one route in your config/routes.js file.

Route Target

The address portion of a custom route specifies which URLs the route should match.  The target portion specifies what Sails should do after the match is made.  A target can take one of several different forms.  In some cases you may want to chain multiple targets to a single address by placing them in an array, but in most cases each address will have only one target.  The different types of targets are discussed below, followed by a discussion of the various options that can be applied to them.

Controller / action target syntax

The most common type of target is one which binds a route to a custom controller action.  The following four routes are equivalent:

```
'GET /foo/go': 'FooController.myGoAction',
'GET /foo/go': 'Foo.myGoAction',
'GET /foo/go': {controller: "Foo", action: "myGoAction"},
'GET /

 URL Slugs

 URL Slugs

A common use case for explicit routes is the design of slugs or vanity URLs. For example, consider the URL of a repository on Github, http://www.github.com/balderdashy/sailsjs. In Sails, we might define this route at the bottom of our config/routes.js file like so:

 'get /:account/:repo': {
 controller: 'RepoController',
 action: 'show',
 skipAssets: true
 }

In your RepoController's show action, we'd use req.param('account') and req.param('repo') to look up the data for the appropriate repository, then pass it in to the appropriate view as locals. The skipAssets option ensures that the vanity route doesn't accidentally match any of our assets (e.g. /images/logo.png), so they are still accessible.

 Security

 Security

Overview

Sails and Express provide built-in, easily configurable protection against most known types of web-application-level attacks.

 CORS

 Cross-Origin Resource Sharing (CORS)

CORS is a mechanism that allows browser scripts on pages served from other domains (e.g. myothersite.com) to talk to your server (e.g. api.mysite.com). Like JSONP, the goal of CORS is to function as a secure method to circumvent the same-origin policy; allowing your Sails server to successfully respond to requests from client-side JavaScript code running on a page from some other domain. But unlike JSONP, it works with more than just GET requests.

Sails can be configured to allow cross-origin requests from a list of domains you specify, or from every domain. This can be done on a per-route basis, or globally for every route in your app.

Enabling CORS

For security reasons, CORS is disabled by default in Sails. But enabling it is dead-simple.

To allow cross-origin requests from any domain to any route in your app, simply enable allRoutes in config/cors.js:

allRoutes: true

See sails.config.cors for a comprehensive reference of all available options.

Configuring CORS For Individual Routes

Besides the global CORS configuration, you can set up individual routes in config/routes.js to accept (or deny) cross-origin requests. To indicate that a route should accept CORS requests using the configuration parameters in config/cors.js, set its cors property to true:

"get /foo": {
 controller: "FooController",
 action: "index",
 cors: true
}

If you have the allRoutes parameter set to true in config.cors.js, but you want to exempt a specific route, you can do so by explicitly setting its cors property to false:

"get /foo": {
 controller: "FooController",
 action: "index",
 cors: false
}

To override specific CORS configuration parameters for a route, add a cors property object:

"get /foo": {
 controller: "FooController",
 action: "index",
 cors: {
 origin: "http://sailsjs.org, http://sailsjs.com",
 credentials: false
}

 CSRF

 CSRF

Cross-site request forgery (CSRF) is a type of attack which forces an end user to execute unwanted actions on a web application backend with which he/she is currently authenticated. In other words, without protection, cookies stored in a browser like Google Chrome can be used to send requests to Chase.com from a user's computer whether that user is currently visiting Chase.com or Horrible-Hacker-Site.com.

Enabling CSRF Protection

Sails bundles optional CSRF protection out of the box. To enable the built-in enforcement, just make the following adjustment to sails.config.csrf (conventionally located in your project's config/csrf.js file):

csrf: true

Note that if you have existing code that communicates with your Sails backend via POST, PUT, or DELETE requests, you'll need to acquire a CSRF token and include it as a parameter or header in those requests. More on that in a sec.

CSRF Tokens

Like most Node applications, Sails and Express are compatibile with Connect's CSRF protection middleware for guarding against such attacks. This middleware implements the Synchronizer Token Pattern_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern). When CSRF protection is enabled, all non-GET requests to the Sails server must be accompanied by a special token, identified by either a header or a parameter in the query string or HTTP body.

CSRF tokens are temporary and session-specific; e.g. Imagine Mary and Muhammad are both shoppers accessing our e-commerce site running on Sails, and CSRF protection is enabled. Let's say that on Monday, Mary and Muhammad both make purchases. In order to do so, our site needed to dispense at least two different CSRF tokens- one for Mary and one for Muhammad. From then on, if our web backend received a request with a missing or incorrect token, that request will be rejected. So now we can rest assured that when Mary navigates away to play online poker, the 3rd party website cannot trick the browser into sending malicious requests to our site using her cookies.

Dispensing CSRF Tokens

To get a CSRF token, you should either bootstrap it in your view using locals (good for traditional multi-page web applications) or fetch it using sockets or AJAX from a special protected JSON endpoint (handy for single-page-applications (SPAs).)

Using View Locals:

For old-school form submissions, it's as easy as passing the data from a view into a form action. You can grab hold of the token in your view, where it may be accessed as a view local: <%= _csrf %>

e.g.:

<form action="/signup" method="POST">
 <input type="text" name="emailaddress"/>
 <input type='hidden' name='_csrf' value='<%= _csrf %>'>
 <input type='submit'>
</form>

If you are doing a multipart/form-data upload with the form, be sure to place the _csrf field before the file input, otherwise you run the risk of a timeout and a 403 firing before the file finishes uploading.

Using AJAX/WebSockets

In AJAX/Socket-heavy apps, you might prefer to send a GET request to the built-in /csrfToken route, where it will be returned as JSON, e.g.:

{
 "_csrf": "ajg4JD(JGdajhLJALHDa"
}

Spending CSRF Tokens

Once you've enabled CSRF protection, any POST, PUT, or DELETE requests (including virtual requests, e.g. from Socket.io) made to your Sails app will need to send an accompanying CSRF token as a header or parameter. Otherwise, they'll be rejected with a 403 (Forbidden) response.

For example, if you're sending an AJAX request from a webpage with jQuery:
```js
$.post('/checkout', {
  order: '8abfe13491afe',
  electronicReceiptOK: true,
  _csrf: 'USER_CSRF_TOKEN'


            
            

        
    



        
        
    
    


        
        

    
        Clickjacking

        
            
            
                Clickjacking

Clickjacking (aka "UI redress attacks") are where an attacker manages to trick your users into triggering "unintended" UI events (e.g. DOM events.)

X-FRAME-OPTIONS

One simple way to help prevent clickjacking attacks is to enable the X-FRAME-OPTIONS header.

Using lusca


lusca is open-source under the Apache license



# In your sails app
npm install lusca --save


Then in the middleware config object in config/http.js:

  // ...
  // maxAge ==> Number of seconds strict transport security will stay in effect.
  xframe: require('lusca').xframe('SAMEORIGIN')
  // ...
  order: [
    // ...
    'xframe'
    // ...
  ]


Additional Resources


	Clickjacking (OWasp)









            
            

        
    



        
        
    
    


        
        

    
        Content Security Policy

        
            
            
                Content Security Policy


TODO: flesh this section out
https://www.owasp.org/index.php/Content_Security_Policy



stuff
stuff
stuff






            
            

        
    



        
        
    
    


        
        

    
        DDOS

        
            
            
                DDOS

The prevention of denial of service attacks is a complex problem which involves multiple layers of protection, up and down the networking stack.
This type of attack has achieved notoriety in recent years due to widespread media coverage of groups like Anonymous.

At the API layer, there isn't much that can be done in the way of prevention.  However, Sails offers a few settings to mitigate certain types of DDOS attacks:


	The session in Sails can be configured to use a separate session store (e.g. Redis), allowing your application to run without relying on the memory state of any one API server.  This means that multiple copies of your Sails app may be deployed to as many servers as is necessary to handle traffic.  This is achieved by using a load balancer), which directs each incoming request to a free server with the resources to handle it, eliminating any one app server as a single point of failure.

	Socket.io connections may be configured to use a separate socket store (e.g. Redis) for managing pub/sub state and message queueing. This eliminates the need for sticky sessions at the load balancer, preventing would-be attackers from directing their attacks against the same server again and again.



Additional Resources


	Backpressure and Unbounded Concurrency in Node.js (Voxer)

	Building a Node.js Server That Won't Melt (Mozilla)

	Security in Node.js - see the "Denial of Service" section (Harry Torry)

	Slowloris DDoSAttacks








            
            

        
    



        
        
    
    


        
        

    
        P 3 P

        
            
            
                P3P

Background

P3P stands for the "Platform for Privacy Preferences", a browser/web standard designed to facilitate better consumer web privacy control.  Currently (as of 2014), out of all the major browsers, it is only supported by Internet Explorer.  It comes into play most often when dealing with legacy applications.

Many modern organizations are willfully ignoring P3P. Here's what whate Facebook has to say on the subject:


The organization that established P3P, the World Wide Web Consortium, suspended its work on this standard several years ago because most modern web browsers don't fully support P3P. As a result, the P3P standard is now out of date and doesn't reflect technologies that are currently in use on the web, so most websites currently don't have P3P policies.

See also: http://www.zdnet.com/blog/facebook/facebook-to-microsoft-p3p-is-outdated-what-else-ya-got/9332



Supporting P3P with Sails

But all that aside, sometimes you just have to support P3P anyways.

Fortunately, a few different modules exist that bring P3P support to Express and Sails by enabling the relevant P3P headers.  To use one of these modules for handling P3P headers, install it from npm using the directions below, then open config/http.js in your project and configure it as a custom middleware.  To do that, define your P3P middleware as "p3p", and add the string "p3p" to your middleware.order array wherever you'd like it to run in the middleware chain (a good place to put it might be right before cookieParser):

E.g. in config/http.js:

// .....
module.exports.http = {

  middleware: {

    p3p: require('p3p')(p3p.recommmended), // <==== set up the custom middleware here and named it "p3p"

    order: [
      'startRequestTimer',
      'p3p', // <============ configured the order of our "p3p" custom middleware here
      'cookieParser',
      'session',
      'bodyParser',
      'handleBodyParserError',
      'compress',
      'methodOverride',
      'poweredBy',
      '$custom',
      'router',
      'www',
      'favicon',
      '404',
      '500'
    ],
    // .....
  }
};


Check out the examples below for more guidance - and be sure and follow the links to see the docs for the module you're using for the latest information, comparative analysis of its features, any recent bug fixes, and advanced usage details.

Using node-p3p


node-p3p is open-source under the MIT license.



# In your sails app
npm install p3p --save


Then in the middleware config object in config/http.js:

  // ...
  // node-p3p provides a recommended compact privacy policy out of the box
  p3p: require('p3p')(require('p3p').recommended)
  // ...


Using lusca


lusca is open-source under the Apache license



# In your sails app
npm install lusca --save


Then in the middleware config object in config/http.js:

  // ...
  // "ABCDEF" ==> The compact privacy policy to use.
  p3p: require('lusca').p3p('ABCDEF')
  // ...


Additional Resources:


	Description of the P3P Project (Microsoft)

	"P3P Work suspended" (W3C)

	P3P Compact Specification (CompactPrivacyPolicy.org)








            
            

        
    



        
        
    
    


        
        

    
        Socket Hijacking

        
            
            
                Socket Hijacking

Unfortunately, cross-site request forgery attacks are not limited to the HTTP protocol.  WebSocket hijacking (sometimes known as CSWSH) is a commonly overlooked vulnerability in most realtime applications.  Fortunately, since Sails treats both HTTP and WebSocket requests as first-class citizens, its built-in CSRF protection and configurable CORS rulesets apply to both protocols.

You can prepare your Sails app against CSWSH attacks by enabling the built-in protection in config/csrf.js and ensuring that a _csrf token is sent with all relevant incoming socket requests.  Additionally, if you're planning on allowing sockets to connect to your Sails app cross-origin (i.e. from a different domain, subdomain, or port) you'll want to configure your CORS settings accordingly.  You can also define the authorization setting in config/sockets.js as a custom function which allows or denies the initial socket connection based on your needs.

Notes


	CSWSH prevention is only a concern in scenarios where people use the same client application to connect sockets to multiple web services (e.g. cookies in a browser like Google Chrome can be used to connect a socket to Chase.com from both Chase.com and Horrible-Hacker-Site.com.)








            
            

        
    



        
        
    
    


        
        

    
        Strict Transport Security

        
            
            
                HTTP Strict Transport Security

Enabling STS

Implementing STS is actually very simple and only takes a few lines of code.  But better yet, a few different open-source modules exist that bring support for this feature to Express and Sails.  To use one of these modules, install it from npm using the directions below, then open config/http.js in your project and configure it as a custom middleware.  The example(s) below cover basic usage and configuration.  For more guidance and advanced usage details, be sure and follow the link to the docs.

Using lusca


lusca is open-source under the Apache license



# In your sails app
npm install lusca --save


Then in the middleware config object in config/http.js:

  // ...
  // maxAge ==> Number of seconds strict transport security will stay in effect.
  strictTransportSecurity: require('lusca').hsts({ maxAge: 31536000 })
  // ...


Additional Resources


	HTTP Strict Transport Security (OWasp)







            
            

        
    



        
        
    
    


        
        

    
        XSS

        
            
            
                XSS

Cross-site scripting (XSS) is a type of attack in which a malicious agent manages to inject client-side JavaScript into your website, so that it runs in the trusted environment of your users' browsers.

Additional Resources


	XSS (OWasp))

	XSS Prevention Cheatsheet_Prevention_Cheat_Sheet)







            
            

        
    



        
        
    
    


        
        

    
        Services

        
            
            
                Services

Overview

Services can be thought of as libraries which contain functions that you might want to use in many places of your application.  For example, you might have an EmailService which wraps some default email message boilerplate code that you would want to use in many parts of your application. The main benefit of using services in Sails is that they are globalized--you don't have to use require() to access them.

How do I create a service?

Simply save a Javascript file containing a function or object into your api/services folder.  The filename will be used as the globally-accessible variable name for the service.  For example, an email service might look something like this:

// EmailService.js - in api/services
module.exports = {

    sendInviteEmail: function(options) {

        var opts = {"type":"messages","call":"send","message":
            {
                "subject": "YourIn!",
                "from_email": "info@balderdash.co",
                "from_name": "AmazingStartupApp",
                "to":[
                    {"email": options.email, "name": options.name}
                ],
                "text": "Dear "+options.name+",\nYou're in the Beta! Click <insert link> to verify your account"
            }
        };

        myEmailSendingLibrary.send(opts);

    }
};


You can then use EmailService anywhere in your app:

// Somewhere in a controller
  EmailService.sendInviteEmail({email: 'test@test.com', name: 'test'});







            
            

        
    



        
        
    
    


        
        

    
        Testing

        
            
            
                Testing your code

Preparation

For our test suite, we use mocha.
Before you start building your test cases, you should first organise your ./test directory structure, for example in the following way:

./myApp
├── api
├── assets
├── ...
├── test
│  ├── unit
│  │  ├── controllers
│  │  │  └── UsersController.test.js
│  │  ├── models
│  │  │  └── Users.test.js
│  │  └── ...
│  ├── fixtures
│  ├── ...
│  ├── bootstrap.test.js
│  └── mocha.opts
└── views


bootstrap.test.js

This file is useful when you want to execute some code before and after running your tests (e.g. lifting and lowering your sails application):

var Sails = require('sails');

before(function(done) {
  Sails.lift({
    // configuration for testing purposes
  }, function(err, sails) {
    if (err) return done(err);
    // here you can load fixtures, etc.
    done(err, sails);
  });
});

after(function(done) {
  // here you can clear fixtures, etc.
  sails.lower(done);
});


mocha.opts

This file should contain mocha configuration as described here: [mocha.opts] (http://visionmedia.github.io/mocha/#mocha.opts)

Writing tests

Once you have prepared your directory you can start writing your unit tests.

./test/unit/models/Users.test.js

describe.only('UsersModel', function() {

  describe('#find()', function() {
    it('should check find function', function (done) {
      Users.find()
        .then(function(results) {
          // some tests
          done();
        })
        .catch(done);
    });
  });

});


Testing controllers

To test controller responses you can use Supertest library which provides several useful methods for testing HTTP requests.

./test/unit/controllers/UsersController.test.js

var request = require('supertest');

describe('UsersController', function() {

  describe('#login()', function() {
    it('should redirect to /mypage', function (done) {
      request(sails.hooks.http.app)
        .post('/users/login')
        .send({ name: 'test', password: 'test' })
        .expect(302)
        .expect('location','/mypage', done);
    });
  });

});


Code coverage

Another popular method for testing your code is Code Coverage.

You can use mocha and istanbul to check your code and prepare various coverage reports (HTML, Cobertura) which can be used in continuous integration services such as Jenkins.

To test your code and prepare a simple HTML report run the following commands:

istanbul cover -x "**/config/**" _mocha -- --timeout 5000
istanbul report html






            
            

        
    



        
        
    
    


        
        

    
        Upgrading

        
            
            
                Upgrading


TODO:
move this to the appropriate part of the docs (shouldn't show up in reference-- instead it should appear at the top of the other migration guide/changelog stuff in the "Support" section)



Sails v0.11 is finally here.

For the most part, running sails lift in an existing v0.9 project should just work.  The core contributors have taken a number of steps to make the upgrade as easy as possible, and if you follow the deprecation messages in the console, you should do just fine.

Sails v0.11 comes with some big changes.  The sections below provide a high level overview of what's changed, major bug fixes, enhancements and new features, as well as a basic tutorial on how to upgrade your v0.9.x Sails app to v0.11.

The Sails/Waterline communities have been extremely supportive to newer users throughout the beta. If you run into problems, please reach out for help in IRC, the Google Group and on Stack Overflow.

If you believe you've encountered an upgrade issue not addressed in this document, please let the core team know by sending a pull request to this file on Github.  If you don't know the answer to a question, explain the upgrade issue you've having in the appropriate section (or a new one), and someone will do their best to answer it/provide a migration strategy.

Thanks!

@mikermcneil

========================================

Contents




	
	Jump to...





	
	File Uploads



	
	Blueprints



	
	Policies



	
	Associations



	
	Pubsub



	
	.done() vs. .exec()



	
	Generators



	
	Command-Line Tool



	
	Custom Server Responses



	
	Legacy Data in sails-disk



	
	Validations



	
	Adapter/Connections Configuration



	
	Blueprints/Controllers Configuration



	
	Layout Paths





========================================

File Uploads


The Connect multipart middleware will soon be officially deprecated. But since this module was used as the built-in HTTP body parser in Sails v0.9 and Express v3, this is a breaking change for v0.9 Sails projects relying on req.files.

By default in v0.11, Sails includes skipper, a body parser which allows for streaming file uploads without buffering tmp files to disk.  For run-of-the-mill file upload use cases, Skipper comes with bundled support for uploads to local disk (via skipper-disk), but streaming uploads can be plugged in to any of its supported adapters.

For examples/documentation, please see the Skipper repository as well as the Sails documentation on req.file().

Why?

A body parser's job is to parse the "body" of incoming multipart HTTP requests.  Sometimes, that "body" includes text parameters, but sometimes, it includes file uploads.

Connect multipart is great code, and it supports both file uploads AND text parameters in multipart requests. But like most modules of its kind, it accomplishes this by buffering file uploads to disk.  This can quickl


            
            

        
    



        
        
    
    


        
        

    
        Views

        
            
            
                Views

Overview

In Sails, views are markup templates that are compiled on the server into HTML pages.  In most cases, views are used as the response to an incoming HTTP request, e.g. to serve your home page.

Alternatively, a view can be compiled directly into an HTML string for use in your backend code (see sails.renderView().)  For instance, you might use this approach to send HTML emails, or to build big XML strings for use with a legacy API.

Creating a view

By default, Sails is configured to use EJS (Embedded Javascript) as its view engine.  The syntax for EJS is highly conventional- if you've worked with php, asp, erb, gsp, jsp, etc., you'll immediately know what you're doing.

If you prefer to use a different view engine, there are a multitude of options.  Sails supports all of the view engines compatible with Express via Consolidate.

Views are defined in your app's views/ folder by default, but like all of the default paths in Sails, they are configurable.  If you don't need to serve dynamic HTML pages at all (say, if you're building an API for a mobile app), you can remove the directory from your app.

Compiling a view

Anywhere you can access the res object (i.e. a controller action, custom response, or policy), you can use res.view to compile one of your views, then send the resulting HTML down to the user.

You can also hook up a view directly to a route in your routes.js file.  Just indicate the relative path to the view from your app's views/ directory.  For example:

{
  'get /': {
    view: 'homepage'
  },
  'get /signup': {
    view: 'signupFlow/basicInfo'
  },
  'get /signup/password': {
    view: 'signupFlow/chooseAPassword'
  },
  // and so on.
}


What about single-page apps?

If you are building a web application for the browser, part (or all) of your navigation may take place on the client; i.e. instead of the browser fetching a new HTML page each time the user navigates around, the client-side code preloads some markup templates which are then rendered in the user's browser without needing to hit the server again directly.

In this case, you have a couple of options for bootstrapping the single-page app:


	Use a single view, e.g. views/publicSite.ejs.  Advantages:
	You can use the view engine in Sails to pass data from the server directly into the HTML that will be rendered on the client.  This is an easy way to get stuff like user data to your client-side javascript, without having to send AJAX/WebSocket requests from the client.





	Use a single HTML page in your assets folder , e.g. assets/index.html. Advantages:
	Although you can't pass server-side data directly to the client this way, this approach allows you to further decouple the client and server-side parts of your application.

	Anything in your assets folder can be moved to a static CDN (like Cloudfront or CloudFlare), allowing you to take advantage of that provider's geographically distributed data centers to get your content closer to your users.












            
            

        
    



        
        
    
    


        
        

    
        Layouts

        
            
            
                Layouts

When building an app with many different pages, it can be helpful to extrapolate markup shared by several HTML files into a layout.  This reduces the total amount of code in your project and helps you avoid making the same changes in multiple files down the road.

In Sails and Express, layouts are implemented by the view engines themselves.  For instance, jade has its own layout system, with its own syntax.

For convenience, Sails bundles special support for layouts when using the default view engine, EJS. If you'd like to use layouts with a different view engine, check out that view engine's documentation to find the appropriate syntax.

Creating Layouts

Sails layouts are special .ejs files in your app's views/ folder you can use to "wrap" or "sandwich" other views. Layouts usually contain the preamble (e.g. !DOCTYPE html<html><head>....</head><body>) and conclusion (</body></html).  Then the original view file is included using <%- body %>.  Layouts are never used without a view- that would be like serving someone a bread sandwich.

Layout support for your app can be configured or disabled in config/views.js, and can be overridden for a particular route or action by setting a special local called layout. By default, Sails will compile all views using the layout located at views/layout.ejs.

Notes


Why do layouts only work for EJS?

In Express 3, built-in support for layouts/partials was deprecated. Instead, developers are expected to rely on the view engines themselves to implement this features. (See https://github.com/balderdashy/sails/issues/494 for more info on that.)

Since adopting Express 3, Sails has chosen to support the legacy layouts feature for convenience, backwards compatibility with Express 2.x and Sails 0.8.x apps, and in particular, familiarity for new community members coming from other MVC frameworks. As a result, layouts have only been tested with the default view engine (ejs).

If layouts aren’t your thing, or (for now) if you’re using a server-side view engine other than ejs, (e.g. Jade, handlebars, haml, dust) you’ll want to set layout:false in sails.config.views, then rely on your view engine’s custom layout/partial support.








            
            

        
    



        
        
    
    


        
        

    
        Locals

        
            
            
                Locals

The variables accessible in a particular view are called locals.  Locals represent server-side data that is accessible to your view-- locals are not actually included in the compiled HTML unless you explicitly reference them using special syntax provided by your view engine.

Logged in as <%= name="" %="">.



Using locals in your views

The notation for accessing locals varies between view engines.  In EJS, you use special template markup (e.g. <%= someValue %>) to include locals in your views.

There are three kinds of template tags in EJS:


	<%= someValue %>
	HTML-escapes the someValue local, and then includes it as a string.





	<%- someRawHTML %>
	Includes the someRawHTML local verbatim, without escaping it.

	Be careful!  This tag can make you vulnerable to XSS attacks if you don't know what you're doing.





	<% if (!loggedIn) { %>  <a>Logout</a>  <% } %>
	Runs the javascript inside the <% ... %> when the view is compiled.

	Useful for conditionals (if/else), and looping over data (for/each).







Here's an example of a view (views/backOffice/profile.ejs) using two locals, user and corndogs:

<div>
  <h1><%= user.name %>'s first view</h1>
  <h2>My corndog collection:</h2>
  <ul>
    <% _.each(corndogs, function (corndog) { %>
    <li><%= corndog.name %></li>
    <% }) %>
  </ul>
</div>



You might have noticed another local, _.  By default, Sails passes down a few locals to your views automatically, including lodash (_).



If the data you wanted to pass down to this view was completely static, you don't necessarily need a controller- you could just hard-code the view and its locals in your config/routes.js file, i.e:

  // ...
  'get /profile': {
    view: 'backOffice/profile',
    locals: {
      user: {
        name: 'Frank',
        emailAddress: 'frank@enfurter.com'
      },
      corndogs: [
        { name: 'beef corndog' },
        { name: 'chicken corndog' },
        { name: 'soy corndog' }
      ]
    }
  },
  // ...


On the other hand, in the more likely scenario that this data is dynamic, we'd need to use a controller action to load it from our models, then pass it to the view using the res.view() method.

Assuming we hooked up our route to one of our controller's actions (and our models were set up), we might send down our view like this:

// in api/controllers/UserController.js...

  profile: function (req, res) {
    // ...
    return res.view('backOffice/profile', {
      user: theUser,
      corndogs: theUser.corndogCollection
    });
  },
  // ...







            
            

        
    



        
        
    
    


        
        

    
        Partials

        
            
            
                Partials

Sails uses ejs-locals in its view rendering code, so in your views you can do:

<%- partial ('foo.ejs') %>

to render a partial located at /views/foo.ejs. All of your locals will be sent to the partial automatically.

the paths are relative to the view, that is loading the partial. So if you have a a user view at /views/users/view.ejs and want to load /views/partials/widget.ejs then you would use:

<%- partial ('../../partials/widget.ejs') %>

One thing to note: partials are rendered synchronously, so they will block Sails from serving more requests until they're done loading. It's something to keep in mind while developing your app, especially if you anticipate a large number of connections.

NOTE: When using other templating languages than ejs, their syntax for loading partials or block, etc. will be used. Please refer to their documentation for more information on their syntax and conventions






            
            

        
    



        
        
    
    


        
        

    
        View Engines

        
            
            
                View Engines

The default view engine in Sails is EJS.

Swapping out the view engine

To use a different view engine, you should use npm to install it in your project, then set sails.config.views.engine (in config/views.js.)

For example, to switch to jade, run npm install jade --save-dev, then set engine: 'jade' in config/views.js.

Supported view engines


	atpl

	dust (website) (.dust)

	eco

	ect (website)

	ejs (.ejs)

	haml (website)

	haml-coffee (website)

	handlebars (website) (.hbs)

	hogan (website)

	jade (website) (.jade)

	jazz

	jqtpl (website)

	JUST

	liquor

	lodash (website)

	mustache

	QEJS

	ractive

	swig (website)

	templayed

	toffee

	underscore (website)

	walrus (website)

	whiskers



Adding new custom view engines

For instructions on adding support for a view engine not listed above, check out the consolidate project repository.






            
            

        
    



        
        
    
    


        
        

    
        Extending Sails

        
            
            
                Extending Sails

There are currently three types of plugins in Sails:


	Generators - for adding and overriding functionality in the Sails CLI

	Adapters - for integrating Waterline (Sails' ORM) with new data sources, including databases, APIs, or even hardware.

	Hooks - for overriding or injecting new low-level functionality in the Sails runtime







            
            

        
    



        
        
    
    


        
        

    
        Adapters

        
            
            
                Adapters

Status

Stability: 3 - Stable

The API has proven satisfactory, but cleanup in the underlying code may cause minor changes.  Backwards-compatibility is guaranteed.

What is an adapter?

 Adapters expose interfaces, which imply a contract to implement certain functionality.  This allows us to guarantee conventional usage patterns across multiple models, developers, apps, and even companies, making app code more maintainable, efficient, and reliable.  Adapters are useful for integrating with databases, open APIs, internal/proprietary web services, or even hardware.

What kind of things can I do in an adapter?

Adapters are mainly focused on providing model-contextualized CRUD methods.  CRUD stands for create, read, update, and delete.  In Sails/Waterline, we call these methods create(), find(), update(), and destroy().

For example, a MySQLAdapter implements a create() method which, internally, calls out to a MySQL database using the specified table name and connection informtion and runs an INSERT ... SQL query.

In practice, your adapter can really do anything it likes-- any method you write will be exposed on the raw connection objects and any models which use them.

Class methods

Below, class methods refer to the static, or collection-oriented, functions available on the model itself, e.g. User.create() or Menu.update().  To add custom class methods to your model (beyond what is provided in the adapters it implements), define them as top-level key/function pairs in the model object.

Instance methods

instance methods on the other hand, (also known as object, or model, methods) refer to methods available on the individual result models themselves, e.g. User.findOne(7).done(function (err, user) { user.someInstanceMethod(); });.  To add custom instance methods to your model (beyond what is provided in the adapters it implements), define them as key/function pairs in the attributes object of the model's definition.

DDL and auto-migrations

DDL stands for data-definition language, and is a common fixture of schema-oriented databases.  In Sails, auto-migrations are supported out of the box.  Since adapters for the most common SQL databases support alter(), they also support automatic schema migration!  In your own adapter, if you write the alter() method, the same behavior will take effect.  The feature is configurable using the migrate property, which can be set to safe (don't touch the schema, period), drop (recreate the tables every time the app starts), or alter (the default-- merge the schema in the apps' models with what is currently in the database).







            
            

        
    



        
        
    
    


        
        

    
        Adapter List

        
            
            
                List of Available Adapters

This file is meant to be an up to date, comprehensive list of all of the adapters available for the Sails.js framework.  If we missed one or you would like to add an adapter you made, just submit a Pull Request to this file, adding to the list.

Officially Supported Adapters

sails-disk

https://github.com/balderdashy/sails-disk/

Write to your computer's hard disk, or a mounted network drive.  Not suitable for at-scale production deployments, but great for a small project, and essential for developing in environments where you may not always have a database set up. This adapter is bundled with Sails and works out of the box with zero configuration.

Interfaces implemented:


	Semantic

	Queryable

	Streaming



sails-memory

https://github.com/balderdashy/sails-memory/

Pretty much like Disk, but doesn't actually write to disk, so it's not persistent.  Not suitable for at-scale production deployments, but useful when developing on systems with little or no disk space.

Interfaces implemented:


	Semantic

	Queryable

	Streaming



sails-mysql

https://github.com/balderdashy/sails-mysql/

MySQL is the world's most popular relational database.
http://en.wikipedia.org/wiki/MySQL

Interfaces implemented:


	Semantic

	Queryable

	Streaming

	Migratable



sails-postgres

https://github.com/balderdashy/sails-postgresql/

PostgreSQL is another popular relational database. 

Interfaces implemented:


	Semantic

	Queryable

	Streaming

	Migratable



sails-mongo

https://github.com/balderdashy/sails-mongo/

MongoDB is the leading NoSQL database.

Interfaces implemented:


	Semantic

	Queryable

	Streaming



sails-redis

https://github.com/balderdashy/sails-redis/

Redis is an open source, BSD licensed, advanced key-value store.

Interfaces implemented:


	Semantic

	Queryable



Community Supported Adapters

Have you written a Sails adapter?  Submit a PR to this file and add it here!





            
            

        
    



        
        
    
    


        
        

    
        Custom Adapters

        
            
            
                Custom Adapters

Overview

Sails makes it fairly easy to write your own adapter.  Check out the sails-boilerplate-repo to learn how 




            
            

        
    



        
        
    
    


        
        

    
        Generators

        
            
            
                Generators

Status

Stability: 2 - Unstable

The API is in the process of settling, but has not yet had sufficient real-world testing to be considered stable.  

Backwards-compatibility will be maintained if reasonable.

Purpose

What is my purpose in this world?

old partial content from when spec was an itty bitty baby

Generators are designed to make it easier to customize the sails new and sails generate command-line tools, and provide better support for different Gruntfiles, configuration options, view engines, coffeescript, etc.

Structure

A generator has either:

(1) a generate method, or

(2) a configure + render method  (render may be omitted in the simplest of cases)

Sails 

    app (appPath + name)
        <- view
        <- folder
        <- jsonfile
        <- file

    api (appPath + name)
        <- controller
        <- model

    controller (appPath + template + name)
        <- file

    model (appPath + template + name)
        <- file

    view (appPath + template + name)
        <- file

    file (destination + name + template + data)

    jsonfile (destination + name + data)

    folder (destination + name)







            
            

        
    



        
        
    
    


        
        

    
        Custom Generators

        
            
            
                Custom Generators

Overview

Here is some info on writing custom generators.




            
            

        
    



        
        
    
    


        
        

    
        Generator List

        
            
            
                List of Available Adapters

This file is meant to be an up to date, comprehensive list of all of the generators available for the Sails.js framework.  If we missed one or you would like to add a generator you've made, just submit a Pull Request to this file, adding to the list.

Officially Supported Generators

sails-generate-generator

Github Repo

https://github.com/balderdashy/sails-generate-generator/

On NPM

'npm install sails-generate-generator`

Description

Generate the boilerplates to make your own generator.

Community Supported Generators





            
            

        
    



        
        
    
    


        
        

    
        Hooks

        
            
            
                Hooks

Status


Stability: 2 - Unstable



The API is in the process of settling, but has not yet had sufficient real-world testing to be considered stable.  

Backwards-compatibility will be maintained if reasonable.

Most of the non-essential Sails core has been pulled into hooks already.
These hooks may eventually be pulled out into separate modules, or they may continue to live in the main Sails repo (like Connect middleware).

Custom hooks in userland are functional- specifiable as dependencies (node_modules) or by tossing them into a folder in your project.  However, this process is not currently well-documented and backwards-compatibility is not guaranteed.  Please check out the source for more details.

Purpose

Hooks were introduced to Sails as part of major refactor designed to make the framework more modular and testable.
Their primary purpose for now is to pull all but the most minimal functionality of Sails into independent modules.
Eventually, this architecture will allow for built-in hooks to be overridden, and even new hooks to be mixed-in to projects (a proper plugin system).

Original Proposal:
https://gist.github.com/mikermcneil/5746660

Custom Hooks = Plugins?

Sort of! The goal is to make hooks powerful, and simple to work w/ for plugin developers, but also predictable, easy to distribute and install, and documented for end users.

The hooks API is tentative, and it is currently going through at least one more set of changes.  We are quickly approaching the point where we can call this feature "Stable", prioritize backwards compatibilty, and limit API changes.

That said, you can write and distribute a custom hook today.  If you're interested in the roadmap for the plugin system, or developing a plugin yourself, consider/check out the following tools at your disposal:


	Custom Generators :: coming in v0.11, useful for extending the Sails command-line interface (Stage 1 - Experimental)

	Custom Adapters :: Since v0.8, useful for adding database support, API integrations, etc. (Stage 2 - Unstable, but approaching Stage 3)

	sails Core Events :: Since v0.9, the sails object is an EventEmitter. (Stage 2 - Unstable, but approaching Stage 3)

	Custom blueprint middlewares (coming in v0.11: Stage 1 - Experimental)

	Custom API responses (coming in v0.11: Stage 2 - Unstable)

	Custom route-level options (since v0.9, but changing in 0.10: Stage 2 - Unstable, but approaching Stage 3)

	Custom configuration (since v0.7)

	Custom "shadow routes" (since v0.7, merged in hooks in v0.9)



FAQ


If you have a question that isn't covered here, please feel free to send a PR adding it to this section (even if you don't have the answer!)









            
            

        
    



        
        
    
    


        
        

    
        Reference

        
            
            
                sails-docs-reference

Reference Section of Sails.js documentation

ideas for some restructuring:

 |
 |- Usage
   |
   |- Request (req)
   |
   |- Response (res)
   |
   |- Config (sails.config)
   |
   |- Model (sails.models)
   |
   |- Sockets (sails.sockets)
   |
   |- Sails CLI
   |
   |- Blueprint API
   |
   |- Browser SDK (sails.io.js)

 |
 |- Concepts
    |
    |- Security
    |
    |- Deployment
       |
       |- FAQ
       |- Hosting
       |- Scaling
    |
    |- Testing
    |
    |- Internationalization
    |
    |- Logging
    |
    |- File Uploads
    |
    |- Assets & Tasks
    |
    |- Middleware
    |
    |- Routes
    |
    |- Blueprints
    |
    |- Policies
    |
    |- Controllers
    |
    |- Custom Responses
    |
    |- Models
       |
       |- Attributes
       |- Validations
       |- Associations
       |- Lifecycle Callbacks
       |- Custom Schemas
       |- Migrations
    |
    |- Services
       |- todo: add example: Sending Email
    |
    |- Views

 |
 |- Advanced
    |
    |- Plugins
    |
    |- Programmatic Usage
    |
    |- Globals
    |
    |- .sailsrc






            
            

        
    



        
        
    
    


        
        

    
        Blueprint Api

        
            
            
                Blueprint API

Overview

Together, blueprint routes and blueprint actions constitute the blueprint API, the built-in logic that powers the RESTful JSON API you get every time you create a model and controller.

For example, if you create a User.js model and UserController.js controller file in your project, then with blueprints enabled you will be able to immediately visit /user/create?name=joe to create a user, and visit /user to see an array of your app's users.  All without writing a single line of code!

Blueprints are great for prototyping, but they are also a powerful tool in production due to their ability to be overridden, protected, extended or disabled entirely.

Blueprint Routes

When you run sails lift with blueprints enabled, the framework inspects your controllers, models, and configuration in order to bind certain routes automatically. These implicit blueprint routes (sometimes called "shadows") allow your app to respond to certain requests without you having to bind those routes manually in your config/routes.js file.  By default, the blueprint routes point to their corresponding blueprint actions (see "Blueprint Actions" below), any of which can be overridden with custom code.

There are three types of blueprint routes in Sails:


	RESTful routes, where the path is always /:modelIdentity or /:modelIdentity/:id.  These routes use the HTTP "verb" to determine the action to take; for example a POST request to /user will create a new user, and a DELETE request to /user/123 will delete the user whose primary key is 123.  In a production environment, RESTful routes should generally be protected by policies to avoid unauthorized access.

	Shortcut routes, where the action to take is encoded in the path.  For example, the /user/create?name=joe shortcut creates a new user, while /user/update/1?name=mike updates user #1. These routes only respond to GET requests.  Shortcut routes are very handy for development, but generally should be disabled in a production environment.

	Action routes, which automatically create routes for your custom controller actions.  For example, if you have a FooController.js file with a bar method, then a /foo/bar route will automatically be created for you as long as blueprint action routes are enabled.  Unlike RESTful and shortcut routes, action routes do not require that a controller has a corresponding model file.



See the blueprints subsection of the configuration reference for blueprint configuration options, including how to enable / disable different blueprint route types.

Blueprint Actions

Blueprint actions (not to be confused with blueprint action routes) are generic actions designed to work with any of your controllers that have a model of the same name (e.g. ParrotController would need a Parrot model).  Think of them as the default behavior for your application.  For instance, if you have a User.js model and an empty UserController.js controller, find, create, update, destroy, populate, add and remove actions exist implicitly, without you having to write them.

By default, the blueprint RESTful routes and shortcut routes are bound to their corresponding blueprint actions.  However, any blueprint action can be overridden for a particular controller by creating a custom action in that controller file (e.g. ParrotController.find).  Alternatively, you can override the blueprint action everywhere in your app by creating your own custom blueprint action. (e.g. api/blueprints/create.js).

The current version of Sails ships with the following blueprint actions:


	find

	findOne

	[create](./#/documentation/refere




            
            

        
    



        
        
    
    


        
        

    
        Add

        
            
            
                Add to Collection

Adds an association between two records.

POST /:model/:record/:association/:record_to_add?

This action pushes a reference to some other record (the "foreign" record) onto a collection attribute of this record (the "primary" record).


	If :record_to_add of an existing record is supplied, it will be associated with the primary record.

	If no :record_to_add is supplied, and the body of the POST contains values for a new record, that record will be created and associated with the primary record.

	If the collection within the primary record already contains a reference to the foreign record, this action will be ignored.

	If the association is 2-way (i.e. reflexive, with "via" on both sides) the association on the foreign record will also be updated.



Example

Add purchase 47 to the list of purchases that Dolly (employee #7) has been involved in.

Using jQuery:

$.post('/employee/7/involvedInPurchases/47', function (purchases) {
  console.log(purchases);
});


Using Angular:

$http.post('/employee/7/involvedInPurchases/47')
.then(function (purchases) {
  console.log(purchases);
});


Using sails.io.js:

io.socket.post('/employee/7/involvedInPurchases/47', function (purchases) {
  console.log(purchases);
});


Using cURL:

curl http://localhost:1337/employee/7/involvedInPurchases/47 -X "POST"


Should return "Dolly", the primary record:

{
  "involvedInPurchases": [
    {
      "amount": 10000,
      "createdAt": "2014-08-03T01:50:33.898Z",
      "updatedAt": "2014-08-03T01:51:08.227Z",
      "id": 47,
      "cashier": 7
    }
  ],
  "name": "Dolly",
  "createdAt": "2014-08-03T01:16:35.440Z",
  "updatedAt": "2014-08-03T01:51:41.567Z",
  "id": 7
}


Notes



	This action is for dealing with plural ("collection") associations.  If you want to set or unset a singular ("model") association, just use update.

	The example above assumes "rest" blueprints are enabled, and that your project contains at least an 'Employee' model with association: involvedInPurchases: {collection: 'Purchase', via: 'cashier'} as well as a Purchase model with association: cashier: {model: 'Employee'}.  You'll also need at least an empty PurchaseController and EmployeeController.  You can quickly achieve this by running:

$ sails new foo
$ cd foo
$ sails generate api purchase
$ sails generate api employee






...then editing api/models/Purchase.js and api/models/Employee.js.







            
            

        
    



        
        
    
    


        
        

    
        Create

        
            
            
                Create a Record

Creates a new model instance in your database then returns it's values.

POST /:model

Attributes can be sent in the HTTP body as form-encoded values or JSON.

Responds with a JSON object representing the newly created instance.  If a validation error occurred, a JSON response with the invalid attributes and a 400 status code will be returned instead.

Additionally, a create event will be published to all listening sockets (see the docs for .watch() for more info).

If the action is triggered via a socket request, the requesting socket will ALSO be subscribed to the newly created model instance.  If the record is subsequently updated or deleted, a message will be sent to that socket's client informing them of the change. See the docs for .subscribe() for more info.

Parameters




	Parameter
	Type
	Details





	 *
	((string))
((number))
((object))
((array))
	For POST (RESTful) requests, pass in body parameter with the same name as the attribute defined on your model to set those values on your new record.  For GET (shortcut) requests, add the parameters to the query string. 
 
 Nested objects and arrays passed in as parameters are handled the same way as if they were passed into the model's .create() method.



	 callback
	((string))
	If specified, a JSONP response will be sent (instead of JSON).  This is the name of the client-side javascript function to call, passing results as the first (and only) argument
 
 e.g. ?callback=myJSONPHandlerFn





Examples

Create a record (REST)

Create a new pony named "AppleJack" with a hobby of "pickin".

Route

POST /pony

JSON Request Body

{
  "name": "AppleJack",
  "hobby": "pickin"
}


Example Response

{
  "name": "AppleJack",
  "hobby": "pickin",
  "id": 47,
  "createdAt": "2013-10-18T01:23:56.000Z",
  "updatedAt": "2013-11-26T22:55:19.951Z"
}


Create a record (shortcuts)

Route

GET /pony/create?name=Shutterfly&best_pony=yep

Expected Response

{
 "name": "Shutterfly",
 "best_pony": "yep",
 "createdAt": "2014-02-24T21:02:16.068Z",
 "updatedAt": "2014-02-24T21:02:16.068Z",
 "id": 5
}


Examples with One Way Associations

You can create associations between models in two different ways.  You can either make the association with a record that already exists OR you can create both records simultaneously.  Check out the examples to see how.

These examples assume the existence of Pet and Pony APIs which can be created by hand or using the Sails CLI Tool.  The Pony model must be configured with a pet attribute pointing to the Pet model.  See Model Association Docs for info on how to do this.

Create record while associating w/ existing record (REST)

Create a new pony named "Pinkie Pie" and associate it with an existing pet named "Gummy" which has an id of 10.

Route

POST /pony

JSON Request Body

{
  "name": "Pinkie Pie",
  "hobby": "ice skating",
  "pet": 10
}


Example Response

{
  "name": "Pinkie Pie",
  "hobby": "ice skating",
  "pet": {
    "name": "Gummy",
    "species": "crocodile",
    "id": 10
  },
  "id": 4,
  "createdAt": "2013-10-18T01:22:56.000Z",
  "updatedAt": "2013-11-26T22:54:19.951Z"
}


Create new record while associating w/ another new record (REST)

Create a new pony named "Pinkie Pie", an "ice skating" hobby, and a new pet named "Gummy".

Route

POST /pony

JSON Request Body

{
  "name": "Pinkie Pie",
  "hobby": "ice skating",
  "pet": {
    "name": "Gummy",
    "species": "crocodile"
  }
}


Expected Response


            
            

        
    



        
        
    
    


        
        

    
        Destroy

        
            
            
                Destroy a Record

Deletes an existing record specified by id from the database forever and returns the values of the deleted record.

DELETE /:model/:record

Destroys the model instance which matches the id parameter.  Responds with a JSON object representing the newly destroyed instance.  If no model instance exists matching the specified id, a 404 is returned.

Additionally, a destroy event will be published to all sockets subscribed to the instance room.

Consequently, all sockets currently subscribed to the instance will be unsubscribed from it.

Parameters




	Parameter
	Type
	Details





	 id
(required)
	((number))
-or-
((string))
	The primary key value of the record to destroy.  For POST (RESTful) requests, this can be supplied in the JSON body or as part of the route path.  For GET (shortcut) requests, it must be supplied in the route path.



	 callback
	((string))
	If specified, a JSONP response will be sent (instead of JSON).  This is the name of the client-side javascript function to call, passing results as the first (and only) argument
 
 e.g. ?callback=myJSONPHandlerFn





Examples

Destroy (REST)

Delete Pinkie Pie.

Route

DELETE /pony

JSON Request Body

{
  "id": 4
}


Expected Response

{
  "name": "Pinkie Pie",
  "hobby": "kickin",
  "id": 4,
  "createdAt": "2013-10-18T01:23:56.000Z",
  "updatedAt": "2013-11-26T22:55:19.951Z"
}


Destroy (Shortcuts)

Route

GET /pony/destroy/4

Expected Response

Same as above.






            
            

        
    



        
        
    
    


        
        

    
        Find

        
            
            
                Find Records

Returns a list of records from the model as a JSON array of objects.

GET /:model

Results may be filtered, paginated, and sorted based on the blueprint configuration and/or parameters sent in the request.

If the action was triggered via a socket request, the requesting socket will be "subscribed" to all records returned.  If any of the returned records are subsequently updated or deleted, a message will be sent to that socket's client informing them of the change.  See the docs for Model.subscribe() for details.

Parameters

All parameters are optional.




	Parameter
	Type
	Details





	 *
	((string))
	To filter results based on a particular attribute, specify a query parameter with the same name as the attribute defined on your model. 
 
 For instance, if our Purchase model has an amount attribute, we could send GET /purchase?amount=99.99 to return a list of $99.99 purchases.



	 where
	((string))
	Instead of filtering based on a specific attribute, you may instead choose to provide a where parameter with a Waterline WHERE criteria object, encoded as a JSON string.  This allows you to take advantage of contains, startsWith, and other sub-attribute criteria modifiers for more powerful find() queries. 
 
 e.g. ?where={"name":{"contains":"theodore"}}



	 limit
	((number))
	The maximum number of records to send back (useful for pagination). Defaults to 30. 
 
 e.g. ?limit=100



	 skip
	((number))
	The number of records to skip (useful for pagination). 
 
 e.g. ?skip=30



	 sort
	((string))
	The sort order. By default, returned records are sorted by primary key value in ascending order. 
 
 e.g. ?sort=lastName%20ASC



	 callback
	((number))
	If specified, a JSONP response will be sent (instead of JSON).  This is the name of a client-side javascript function to call, to which results will be passed as the first (and only) argument 
 
 e.g. ?callback=my_JSONP_data_receiver_fn





find Example

Find the 30 newest purchases in our database.

[
 {
   "amount": 49.99,
   "id": 1,
   "createdAt": "2013-10-18T01:22:56.000Z",
   "updatedAt": "2013-10-18T01:22:56.000Z"
 },
 {
   "amount": 99.99,
   "id": 47,
   "createdAt": "2013-10-14T01:22:00.000Z",
   "updatedAt": "2013-10-15T01:20:54.000Z"
 }
]


Using jQuery:

$.get('/purchase?sort=createdAt DESC', function (purchases) {
  console.log(purchases);
});


Using Angular:

$http.get('/purchase?sort=createdAt DESC')
.then(function (res) {
  var purchases = res.data;
  console.log(purchases);
});


Using sails.io.js:

io.socket.get('/purchase?sort=createdAt DESC', function (purchases) {
  console.log(purchases);
});


Using cURL:

curl http://localhost:1337/purchase?sort=createdAt%20DESC


Notes



	The example above assumes "rest" blueprints are enabled, and that your project contains a Purchase model and an empty PurchaseController.  You can quickly achieve this by running:

$ sails new foo
$ cd foo
$ sails generate api purchase













            
            

        
    



        
        
    
    


        
        

    
        Find One

        
            
            
                Find One

Returns a single record from the model as a JSON Object.

GET /:model/:id


The findOne() blueprint action returns a single record from the model (given by :modelIdentity) as a JSON object.  The specified id is the primary key of the desired record.

If the action was triggered via a socket request, the requesting socket will be "subscribed" to the returned record.  If the record is subsequently updated or deleted, a message will be sent to that socket's client informing them of the change.  See the docs for .subscribe() for more info.

Parameters




	Parameter
	Type
	Details





	 id
(required)
	((number))
-or-
((string))
	The desired record's primary key value

e.g. /product/7



	 callback
	((string))
	If specified, a JSONP response will be sent (instead of JSON).  This is the name of the client-side javascript function to call, passing results as the first (and only) argument
 
 e.g. ?callback=myJSONPHandlerFn





Example

Find the purchase with ID #1, E.g. http://localhost:1337/purchase/1

Route

GET /purchase/1

Expected Response

 {
   "amount": 49.99,
   "id": 1,
   "createdAt": "2013-10-18T01:22:56.000Z",
   "updatedAt": "2013-10-18T01:22:56.000Z"
 }







            
            

        
    



        
        
    
    


        
        

    
        Populate

        
            
            
                Populate Where...

If the specified association is plural ("collection"), this action returns the list of associated records as a JSON array of objects.  If the specified association is singular ("model"), this action returns the associated record as a JSON object.

GET /:model/:record/:association

Example

Populate the cashier who conducted purchase #47.

Using jQuery:

$.get('/purchase/47/cashier', function (purchase) {
  console.log(purchase);
});


Using Angular:

$http.get('/purchase/47/cashier')
.then(function (purchase) {
  console.log(purchase);
});


Using sails.io.js:

io.socket.get('/purchase/47/cashier', function (purchase) {
  console.log(purchase);
});


Using cURL:

curl http://localhost:1337/purchase/47/cashier


Should return

{
  "amount": 99.99,
  "id": 47,
  "cashier": {
    "name": "Dolly",
    "id": 7,
    "createdAt": "2012-05-14T01:21:05.000Z",
    "updatedAt": "2013-01-15T01:18:40.000Z"
  },
  "createdAt": "2013-10-14T01:22:00.000Z",
  "updatedAt": "2013-10-15T01:20:54.000Z"
}


Notes



	The example above assumes "rest" blueprints are enabled, and that your project contains at least an empty 'Employee' model as well as a Purchase model with an association attribute: cashier: {model: 'Employee'}.  You'll also need at least an empty PurchaseController and EmployeeController.  You can quickly achieve this by running:

$ sails new foo
$ cd foo
$ sails generate api purchase
$ sails generate api employee






...then editing api/models/Purchase.js.







            
            

        
    



        
        
    
    


        
        

    
        Remove

        
            
            
                Remove from Collection

Removes an association between two records.

DELETE /:model/:record/:association/:record_to_remove

This action removes a reference to some other record (the "foreign" record) from a collection attribute of this record (the "primary" record).


	If the foreign record does not exist, it is created first.

	If the collection doesn't contain a reference to the foreign record, this action will be ignored.

	If the association is 2-way (i.e. reflexive, with "via" on both sides) the association on the foreign record will also be updated.



Example

Remove Dolly (employee #7) from the employeesOfTheMonth list of store #16.

Using jQuery:

$.delete('/store/16/employeesOfTheMonth/7', function (purchases) {
  console.log(purchases);
});


Using Angular:

$http.delete('/store/16/employeesOfTheMonth/7')
.then(function (purchases) {
  console.log(purchases);
});


Using sails.io.js:

io.socket.delete('/store/16/employeesOfTheMonth/7', function (purchases) {
  console.log(purchases);
});


Using cURL:

curl http://localhost:1337/store/16/employeesOfTheMonth/7 -X "DELETE"


Should return store #16, the primary record:

{
  "employeesOfTheMonth": [],
  "name": "Dolly",
  "createdAt": "2014-08-03T01:16:35.440Z",
  "updatedAt": "2014-08-03T01:51:41.567Z",
  "id": 16
}


Notes



	This action is for dealing with plural ("collection") associations.  If you want to set or unset a singular ("model") association, just use update.

	The example above assumes "rest" blueprints are enabled, and that your project contains at least an empty 'Employee' model as well as a Store model with association: employeesOfTheMonth: {collection: 'Employee'}.  You'll also need at least an empty PurchaseController and EmployeeController.  You can quickly achieve this by running:

$ sails new foo
$ cd foo
$ sails generate api purchase
$ sails generate api employee






...then editing api/models/Store.js.







            
            

        
    



        
        
    
    


        
        

    
        Update

        
            
            
                Update a Record

PUT /:model/:record

Update an existing record.
Attributes to change should be sent in the HTTP body as form-encoded values or JSON.

Description

Updates the model instance which matches the id parameter.  Responds with a JSON object representing the newly updated instance.  If a validation error occurred, a JSON response with the invalid attributes and a 400 status code will be returned instead.  If no model instance exists matching the specified id, a 404 is returned.

Parameters




	Parameter
	Type
	Details





	 id
(required)
	((number))
-or-
((string))
	The primary key value of the record to update.

e.g. PUT /product/5



	 *
	((string))
((number))
((object))
((array))
	For POST (RESTful) requests, pass in body parameters with the same name as the attributes defined on your model to set those values on the desired record.  For GET (shortcut) requests, add the parameters to the query string.



	 callback
	((string))
	If specified, a JSONP response will be sent (instead of JSON).  This is the name of the client-side javascript function to call, passing results as the first (and only) argument
 
 e.g. ?callback=myJSONPHandlerFn





Examples

Update Record (REST)

Change AppleJack's hobby to "kickin".

Route

PUT /pony/47

JSON Request Body

{
  "hobby": "kickin"
}


Expected Response

{
  "name": "AppleJack",
  "hobby": "kickin",
  "id": 47,
  "createdAt": "2013-10-18T01:23:56.000Z",
  "updatedAt": "2013-11-26T22:55:19.951Z"
}


Update Record (Shortcuts)

GET /pony/update/47?hobby=kickin

Expected Response

Same as above.

Add association between two existing records (REST)

Give Pinkie Pie the pre-existing pet named "Bubbles" who has ID 15.

Route

POST /pony/4/pets

JSON Request Body

{
  "id": 15
}


Expected Response

{
  "name": "Pinkie Pie",
  "hobby": "kickin",
  "id": 4,
  "pets": [{
      "name": "Gummy",
      "species": "crocodile"
      "id": 10,
      "createdAt": "2014-02-13T00:06:50.603Z",
      "updatedAt": "2014-02-13T00:06:50.603Z"
    },{
      "name": "Bubbles",
      "species": "wiggleworm"
      "id": 15,
      "createdAt": "2014-02-13T00:06:50.603Z",
      "updatedAt": "2014-02-13T00:06:50.603Z"
    }],
  "createdAt": "2013-10-18T01:23:56.000Z",
  "updatedAt": "2013-11-26T22:55:19.951Z"
}


Add association between two existing records (Shortcuts)

GET /pony/4/pets/add/15

Remove Association (Many-To-Many) (REST)

Remove Pinkie Pie's pet, "Gummy" (ID 12)

Route

DELETE /pony/4/pets

JSON Request Body

{
  "id": 12
}


Expected Response


{
  "name": "Pinkie Pie",
  "hobby": "ice skating",
  "pets": [{
      "name": "Bubbles",
      "species": "crackhead"
      "id": 15,
      "createdAt": "2014-02-13T00:06:50.603Z",
      "updatedAt": "2014-02-13T00:06:50.603Z"
    }],
  "id": 4,
  "createdAt": "2013-10-18T01:22:56.000Z",
  "updatedAt": "2013-11-26T22:54:19.951Z"
}


Remove Association (Many-To-Many) (Shortcuts)

Route

GET /pony/4/pets/remove/12

Expected Response

Same as above.






            
            

        
    



        
        
    
    


        
        

    
        Cli

        
            
            
                Command Line Interface (CLI)

Overview

Sails comes with a convenient command line tool to quickly get your app scaffolded and running.








            
            

        
    



        
        
    
    


        
        

    
        Sailsconsole

        
            
            
                sails console

Quietly lift your sails app (i.e. with logging silenced), and enter the node REPL.  This means you can access and use all of your models, services, configuration, and much more.  Useful for trying out Waterline queries, quickly managing your data, and checking out your project's runtime configuration.

Example

$ sails console

info: Starting app in interactive mode...

info: Welcome to the Sails console.
info: ( to exit, type <CTRL>+<C> )

sails>



Note that sails console still lifts the server, so your routes will be accessible via HTTP and sockets (e.g. in a browser.)



Global variables in sails console

Sails exposes the same global variables in the console as it does in your app code. This is particularly useful in the REPL.  By default, you have access to the sails app instance, your models, and your services, as well as Lo-Dash (sails.util._) and async (async).


Warning

Be careful when using _ as a variable name in the Node REPL- and when possible, don't.
(It doesn't work quite like you'd expect.)

Instead, use lodash as sails.util._, e.g.:

sails> sails.util._.keys(sails.config)


Or alternatively, build yourself a local variable to use for familiarity:

sails> var lodash = _;


Then you can do:

sails> lodash.keys(sails.config);




More Examples

Waterline

The format Model.action(query).exec(console.log) console.log is good for seeing the results.

sails> User.create({name: 'Brian', password: 'sailsRules'}).exec(console.log)
undefined
sails> null { name: 'Brian',
  password: 'sailsRules',
  createdAt: "2014-08-07T04:29:21.447Z",
  updatedAt: "2014-08-07T04:29:21.447Z",
  id: 1 }


Pretty cool, it inserts it into the database. However, you might be noticing the undefined and null. Don't worry about those. Remember that the .exec() returns error and data for values. So doing .exec(console.log) is the same as doing .exec(console.log(err, data))` The second method will remove the undefined message, but add null on a new line. It's up to you if you want to type more.

Exposing Sails

In sails console, type in sails to view a list of sails properties. You can use this to learn more about sails, override properties, or check to see if you disabled globals.

sails> sails
  |>   [a lifted Sails app on port 1337]
\___/  For help, see: http://links.sailsjs.org/docs

Tip: Use `sails.config` to access your app's runtime configuration.

1 Models:
User

1 Controllers:
UserController

20 Hooks:
moduleloader,logger,request,orm,views,blueprints,responses,controllers,sockets,p
ubsub,policies,services,csrf,cors,i18n,userconfig,session,grunt,http,userhooks

sails>







            
            

        
    



        
        
    
    


        
        

    
        Sailsdebug

        
            
            
                sails debug

Attach the node debugger and lift the sails app; similar to running node --debug app.js.  Takes the same options as sails lift.  You can then use node-inspector to debug your app as it runs.

Example

$ sails debug

info: Running node-inspector on this app...
info: If you don't know what to do next, type `help`
info: Or check out the docs:
info: http://nodejs.org/api/debugger.html

info: ( to exit, type <CTRL>+<C> )

debugger listening on port 5858



To use the standard (command-line) node debugger with sails, you can always just run node debug app.js.








            
            

        
    



        
        
    
    


        
        

    
        Sailsgenerate

        
            
            
                sails generate

Sails ships with several generators to help you scaffold new projects.  You can also create your own generators to handle frequent tasks, or extend functionality (for example, by creating a generator that outputs view files for your favorite templating language).

The following generators are bundled with Sails:

sails generate new <appName>

Create a new Sails project in a folder called appName.  See sails new for usage options.

sails generate api <foo>

Generate api/models/Foo.js and api/controllers/FooController.js

sails generate model <foo> [attribute1:type1, attribute2:type2 ... ]

Generate api/models/Foo.js, optionally include attributes with the specified types.

sails generate controller <foo> [action1, action2, ...]

Generate api/controllers/FooController.js, optionally include actions with the specified names.

sails generate adapter <foo>

Generate a api/adapters/foo folder containing the files necessary for building a new adapter.

sails generate generator <foo>

Generate a foo folder containing the files necessary for building a new generator.






            
            

        
    



        
        
    
    


        
        

    
        Sailslift

        
            
            
                sails lift

Run the Sails app in the current dir (if node_modules/sails exists, it will be used instead of the globally installed Sails)

Options:


	--dev - in development environment (the default). In the development environment Sails use grunt-watch to keep a eye on your files in /assets. If you change something (for example in one of our css-files) and reload your browser Sails will automatically show your changes. Also you views won't be cached so you can change your view-files without restarting Sails like the assets.

	--prod - in production environment

	--port <portNum> - on the port specified by portNum instead of the default (1337)

	--verbose - with verbose logging enabled

	--silly - with insane logging enabled



Example

$ sails lift

info: Starting app...

info: 
info: 
info:    Sails              <|
info:    v0.11.3             |\
info:                       /|.\
info:                      / || \
info:                    ,'  |'  \
info:                 .-'.-==|/_--'
info:                 `--'-------' 
info:    __---___--___---___--___---___--___
info:  ____---___--___---___--___---___--___-__
info: 
info: Server lifted in `/Users/mikermcneil/code/sandbox/second`
info: To see your app, visit http://localhost:1337
info: To shut down Sails, press <CTRL> + C at any time.

debug: --------------------------------------------------------
debug: :: Sat Apr 05 2014 17:03:39 GMT-0500 (CDT)

debug: Environment : development
debug: Port        : 1337
debug: --------------------------------------------------------







            
            

        
    



        
        
    
    


        
        

    
        Sailsnew

        
            
            
                sails new

sails new <appName> creates a new Sails project in a folder called appName.

Options:


	--no-linker Disable automatic asset linking in your view and static HTML files (the relevant grunt tasks will not be created)

	--no-frontend Disable the generation of the assets folder and files. Views will be created with hardcopied linked resources  off of sailsjs.org.

	--template=[template language] Use a different template language than the default (e.g. jade).  Requires that a views generator for that language (e.g. sails-generate-views-jade) be installed in your global node path (e.g. ~/node_modules/ works).




sails new is really just a special generator which runs sails-generate-new.  In other words, running sails new foo is an alias for running sails generate new foo, and like any Sails generator, the actual generator module which gets run can be overridden in your global ~/.sailsrc file.








            
            

        
    



        
        
    
    


        
        

    
        Sailsversion

        
            
            
                sails version

Get the current globally installed Sails version.

Example

$ sails version
0.10.0-rc5







            
            

        
    



        
        
    
    


        
        

    
        Req

        
            
            
                Request (req)

Sails is built on Express, and uses Node's HTTP server conventions.  Because of this, you can access all of the Node and Express methods and properties on the req object whereever it is accessible (i.e. in your controllers, policies, and custom responses.)

A nice side effect of this compatibility is that, in many cases, you can paste existing Node.js code into a Sails app and it will work.  And since Sails implements a transport-agnostic request interpreter, the code in your Sails app is WebSocket-compatible as well.

Sails adds a few methods and properties of its own to the req object, like req.wantsJSON and req.params.all().  These features are syntactic sugar on top of the underlying implementation, and also support both HTTP and WebSockets.

Protocol Support

The chart below describes support for the methods and properties on the Sails Request object (req) across multiple transports:





	
	HTTP
	WebSockets





	req.file()
	:white_check_mark:
	:white_large_square:



	req.param()
	:white_check_mark:
	:white_check_mark:



	req.route
	:white_check_mark:
	:white_check_mark:



	req.cookies
	:white_check_mark:
	:white_large_square:



	req.signedCookies
	:white_check_mark:
	:white_large_square:



	req.get()
	:white_check_mark:
	:white_large_square:



	req.accepts()
	:white_check_mark:
	:white_large_square:



	req.accepted
	:white_check_mark:
	:white_large_square:



	req.is()
	:white_check_mark:
	:white_large_square:



	req.ip
	:white_check_mark:
	:white_check_mark:



	req.ips
	:white_check_mark:
	:white_large_square:



	req.path
	:white_check_mark:
	:white_large_square:



	req.host
	:white_check_mark:
	:white_large_square:



	req.fresh
	:white_check_mark:
	:white_large_square:



	req.stale
	:white_check_mark:
	:white_large_square:



	req.xhr
	:white_check_mark:
	:white_large_square:



	req.protocol
	:white_check_mark:
	:white_check_mark:



	req.secure
	:white_check_mark:
	:white_large_square:



	req.session
	:white_check_mark:
	:white_check_mark:



	req.subdomains
	:white_check_mark:
	:white_large_square:



	req.method
	:white_check_mark:
	:white_check_mark:



	req.originalUrl
	:white_check_mark:
	:white_large_square:



	req.acceptedLanguages
	:white_check_mark:
	:white_large_square:



	req.acceptedCharsets
	:white_check_mark:
	:white_large_square:



	req.acceptsCharset()
	:white_check_mark:
	:white_large_square:



	req.acceptsLanguage()
	:white_check_mark:
	:white_large_square:



	req.isSocket
	:white_check_mark:
	:white_check_mark:



	req.params.all()
	:white_check_mark:
	:white_check_mark:



	req.socket.id
	:heavy_multiplication_x:
	:white_check_mark:



	req.socket.join
	:heavy_multiplication_x:
	:white_check_mark:



	req.socket.leave
	:heavy_multiplication_x:
	:white_check_mark:



	req.socket.broadcast
	:heavy_multiplication_x:
	:white_check_mark:



	req.transport
	:white_large_square:
	:white_check_mark:



	req.url
	:white_check_mark:
	:white_check_mark:



	req.wantsJSON
	:white_check_mark:
	:white_check_mark:





Legend


	:white_check_mark: - fully supported

	:white_large_square: - feature not yet implemented

	:heavy_multiplication_x: - unsupported due to protocol restrictions










            
            

        
    



        
        
    
    


        
        

    
        req.accepted

        
            
            
                req.accepted

Contains an array of the "media types" this request (req) can accept (e.g. text/html or application/json), ordered from highest to lowest quality.

Usage

req.accepted;


Example

req.accepted;

/*
  [ { value: 'application/json',
      quality: 1,
      type: 'application',
      subtype: 'json' },
  { value: 'text/html',
       quality: 0.5,
       type: 'text',
       subtype: 'html' } ]
*/


Notes



	See the accepts module for the finer details of the header parsing algorithm used in Sails/Express/Koa/Connect.










            
            

        
    



        
        
    
    


        
        

    
        req.acceptedCharsets

        
            
            
                req.acceptedCharsets

This property is an array that contains the acceptable charsets specified by the user agent in the request.

Usage

req.acceptedCharsets;


Details

Useful for advanced content negotiation where a client may or may not support certain character sets, such as unicode (utf-8.)  This returns all of the "acceptable" charsets specified in this request's Accept-Charset header (see RFC-2616.)

Example

req.acceptedCharsets;
// -> ['utf-8', 'utf-16']


Notes



	See the accepts module for the finer details of the header parsing algorithm used in Sails/Express/Koa/Connect.










            
            

        
    



        
        
    
    


        
        

    
        req.acceptedLanguages

        
            
            
                req.acceptedLanguages

An array containing the "acceptable" response languages specified by the user agent in the "Accept-Language" header of this request (req).

Usage

req.acceptedLanguages;


Details

req.acceptedLanguages contains all the languages specified by the request's Accept-Language header (see RFC-2616.)

This method is used by Sails internally for its implementation of internationalization and localization.  The i18n hook automatically serves different content to different locales, based on the request.

Example

req.acceptedLanguages;
// -> ['en-US', 'en']


Notes



	See the accepts module for the finer details of the header parsing algorithm used in Sails/Express/Koa/Connect.

	Browsers send the "Accept-Language" header automatically based on the user's language settings.

	You can expect the "Accept-Language" header to exist in most requests which originate from web browsers.










            
            

        
    



        
        
    
    


        
        

    
        req.accepts

        
            
            
                req.accepts()

Checks whether this request's stated list of "accepted" media types includes the specified type. Returns true or false.

Usage

req.accepts(type);


Example

req.accepts('application/json');
// -> true
req.accepts('json');
// -> true


Notes



	See the accepts module for the finer details of the header parsing algorithm used in Sails/Express/Koa/Connect.










            
            

        
    



        
        
    
    


        
        

    
        req.acceptsCharset

        
            
            
                req.acceptsCharset()

Returns whether this request (req) is able to handle a specified characterSet.

Usage

req.acceptsCharset(characterSet);


Details

Useful for advanced content negotiation where a client may or may not support certain character sets, such as unicode (utf-8.)  This method determines whether or not a request has specified the given characterSet as "acceptable" its Accept-Charset header (see RFC-2616.)

Example

If a request is sent with a "Accept-Charset: utf-8" header:

req.acceptsCharset('utf-8');
// -> true


Notes



	See the accepts module for the finer details of the header parsing algorithm used in Sails/Express/Koa/Connect.










            
            

        
    



        
        
    
    


        
        

    
        req.acceptsLanguage

        
            
            
                req.acceptsLanguage()

Returns whether this request (req) considers a certain language "acceptable".

Usage

req.acceptsLanguage(language);


Details

req.acceptsLanguage() returns true if a request has specified the given language as "acceptable" its Accept-Language header (see RFC-2616.)

This method is used by Sails internally for its implementation of internationalization and localization.  The i18n hook automatically serves different content to different locales, based on the request.

Example

If a request is sent with a "Accept-Charset: utf-8" header:

req.acceptsCharset('utf-8');
// -> true


Notes



	See the accepts module for the finer details of the header parsing algorithm used in Sails/Express/Koa/Connect.

	Browsers send the "Accept-Language" header automatically based on the user's language settings.

	You can expect the "Accept-Language" header to exist in most requests which originate from web browsers.










            
            

        
    



        
        
    
    


        
        

    
        req.allParams

        
            
            
                req.allParams()

Returns the value of all parameters sent in the request, merged together into a single object. Includes parameters parsed from the url path, the query string, and the request body. See req.param() for details.

Usage

req.allParams();


Example

Update the product with the specified sku, setting new values using the parameters which were passed in:

var values = req.allParams();

// Don't allow `price` or `isAvailable` to be edited.
delete values.price;
delete values.isAvailable;

// At this point, `values` might look something like this:
// values ==> { displayName: 'Bubble Trouble Bubble Bath' }

Product.update({sku: sku})
.set(values)
.then(function (newProduct) {
  // ...
});


Notes



	This method can also be called as req.params.all() - they are synonyms.










            
            

        
    



        
        
    
    


        
        

    
        req.body

        
            
            
                req.body

An object containing text parameters from the parsed request body, defaulting to {}.

By default, the request body can be url-encoded or stringified as JSON.  Support for other formats, such as serialized XML, is possible using the middleware configuration.

Usage

req.body;


Notes



	If a request contains one or more file uploads, only the text parameters sent before the first file parameter will be available in req.body.










            
            

        
    



        
        
    
    


        
        

    
        req.cookies

        
            
            
                req.cookies

An object containing all of the unsigned cookies from this request (req).

Usage

req.cookies;


Example

Assuming the request contained a cookie named "chocolatechip" with value "Yummy:

req.cookies.chocolatechip;
// "Yummy"







            
            

        
    



        
        
    
    


        
        

    
        req.file

        
            
            
                req.file()

Returns a readable Node stream of incoming multipart file uploads (an Upstream) from the specified field.

Usage

req.file(field);


Details

req.file() comes from Skipper, an opinionated variant of the original Connect body parser that allows you to take advantage of high-performance, streaming file uploads without any dramatic changes in your application logic.

This is a great simplification, but comes with a minor caveat:  Text parameters must be included before files in the request body.  Typically, these text parameters contain string metadata which provides additional information about the file upload.

Multipart requests to Sails should send all of their text parameters. before sending any file parameters.  For instance, if you're building a web frontend that communicates with Sails, you should include text parameters first in any form upload or AJAX file upload requests.  The term "text parameters" refers to the metadata parameters you might send along with the file(s) providing some additional information about this upload.

How It Works

Skipper treats all file uploads as streams.  This allows users to upload monolithic files with minimal performance impact and no disk footprint, all the while protecting your app against nasty denial-of-service attacks involving tmp files.

When a multipart request hits your server, instead of writing temporary files to disk, Skipper buffers the request just long enough to run your app code, giving you an opportunity to "plug in" to a compatible blob receiver.  If you don't "plug in" the data from a particular field, the Upstream hits its "high water mark", the buffer is flushed, and subsequent incoming bytes on that field are ignored.

Example

In a controller action or policy:

var SomeReceiver = require('../services/SomeReceiver');

req.file('avatar').upload( SomeReceiver(), function (err, files) {
    if (err) return res.serverError(err);
    return res.json({
      message: files.length + ' file(s) uploaded successfully!',
      files: files
    });
  });
});


Notes



	Remember that the client request's text parameters must be sent first, before the file parameters.

	req.file() supports multiple files sent over the same field, but it's important to realize that, as a consequence, the Upstream it returns is actually a stream (buffered event emitter) of potential binary streams (files).

	If you prefer to work directly with the Upstream as a stream of streams, you can omit the .upload() method and bind "finish" and "error" events (or use .pipe()) instead.  Under the covers, all .upload() is doing is piping the Upstream into the specified receiver instance, then running the specified callback when the Upstream emits either a finish or error event.










            
            

        
    



        
        
    
    


        
        

    
        req.fresh

        
            
            
                req.fresh

A flag indicating the user-agent sending this request (req) wants "fresh" data (as indicated by the "if-none-match", "cache-control", and/or "if-modified-since" request headers.)

If the request wants "fresh" data, usually you'll want to .find() fresh data from your models and send it back to the client.

Usage

req.fresh;


Example

if (req.fresh) {
  // The user-agent is asking for a more up-to-date version of the requested resource.
  // Let's hit the database to get some stuff and send it back.
}


Notes



	See the node-fresh module for details specific to the implementation in Sails/Express/Koa/Connect.










            
            

        
    



        
        
    
    


        
        

    
        req.get

        
            
            
                req.get()

Returns the value of the specified header field in this request (req).  Note that header names are case-insensitive.

Usage

req.get(header);


Example

Assuming req contains a header named 'myField' with value 'cat':

req.get('myField');
// -> cat


Notes



	The header argument is case-insensitive.

	The header argument treats both "referrer" and "referer" as synonyms, because sp3ll1n6.










            
            

        
    



        
        
    
    


        
        

    
        req.host

        
            
            
                req.host

The hostname of this request, without the port number, as specified by its "Host" header.

Usage

req.host;


Example

If this request's "Host" header was: "ww3.staging.ibm.com:1492":

req.host;
// -> "ww3.staging.ibm.com"







            
            

        
    



        
        
    
    


        
        

    
        req.ip

        
            
            
                req.ip

Purpose

The IP address of the client who sent this request (req).

If the trust proxy option is disabled, this is the "remote address".  Otherwise, if trust proxy is enabled, this is the "upstream address".

Usage

req.ip;


Example

req.ip;
// -> "127.0.0.1"







            
            

        
    



        
        
    
    


        
        

    
        req.ips

        
            
            
                req.ips

If "trust proxy" is enabled, this variable contains the IP addresses in this request's "X-Forwarded-For" header as an array of the IP address strings. Otherwise an empty array is returned.

Usage

req.ips;


Example

If a request contains a header: "X-Forwarded-For: client, proxy1, proxy2":

req.ips;
// -> ["client", "proxy1", "proxy2"]`

// ("proxy2" is the furthest "down-stream" IP address)







            
            

        
    



        
        
    
    


        
        

    
        req.is

        
            
            
                req.is()

Returns true if this request's declared "Content-Type" matches the specified media/mime type.  

Specifically, this method matches the given type against this request's "Content-Type" header.

Usage

req.is(type);


Example

Assuming the request contains a "Content-Type" header, "text/html; charset=utf-8":

req.is('html');
// -> true
req.is('text/html');
// -> true
req.is('text/*');
// -> true







            
            

        
    



        
        
    
    


        
        

    
        req.isSocket

        
            
            
                req.isSocket

A flag indicating whether or not this request (req) originated from a Socket.io connection.

Usage

req.isSocket;


Example

if (req.isSocket){
  // You're a socket.  Do cool socket stuff.
}
else {
  // Just another HTTP request.
}


Notes



	Useful for allowing HTTP requests to skip calls to pubsub or WebSocket-centric methods like subscribe() or watch()  that depend on an actual Socket.io request.  This allows you to reuse backend code, using it for both WebSocket and HTTP clients.

	As you might expect, req.isSocket doesn't need to be checked before running methods which publish to other connected sockets.  Those methods don't depend on the request, so they work either way.










            
            

        
    



        
        
    
    


        
        

    
        req.method

        
            
            
                req.method

The request method (aka "verb".)

Usage

req.method;


Example

If a client sends a POST request to /product:

req.method;
// -> "POST"


Notes



	All requests to a Sails server have a "method", even via WebSockets (this is thanks to the request interpreter)










            
            

        
    



        
        
    
    


        
        

    
        req.param

        
            
            
                req.param()

Returns the value of the parameter with the specified name.

Usage

req.param(name);


Details

req.param() searches the url path, query string, and body of the request for the specified parameter.  If no parameter value exists anywhere in the request with the given name, it returns undefined.


	url path parameters (req.params)
	e.g. a request "/foo/4" to route /foo/:id has url path params { id: 4 }





	query string parameters (req.query)
	e.g. a request "/foo?email=5" has query params { email: 5 }





	body parameters (req.body)
	e.g. a request with a parseable body (e.g. JSON, url-encoded, or XML) has body parameters equal to its parsed value







Example

Consider a route (POST /product/:sku) which points to a blueprint, controller, or policy with the following code:

req.param('sku');
// -> 123


We can get the expected result by sending the sku parameter any of the following ways:


	POST /product/123

	POST /product?sku=123

	POST /product
	with a JSON request body: { "sku": 123 }







Notes



	If you'd like to get ALL parameters from ALL sources (including the URL path, query string, and parsed request body) you can use req.allParams().










            
            

        
    



        
        
    
    


        
        

    
        req.params

        
            
            
                req.params

An object containing parameter values parsed from the URL path.

For example if you have the route /user/:name, then the "name" from the URL path wil be available as req.params.name.  This object defaults to {}.

Usage

req.params;


Notes



	When a route address is defined using a regular expression, each capture group match from the regex is available as req.params[0], req.params[1], etc.This strategy is also applied to unnamed wild-card matches in string routes such as /file/*.










            
            

        
    



        
        
    
    


        
        

    
        req.path

        
            
            
                req.path

The URL pathname from the request URL string of the current request (req). Note that this is the part of the URL after and including the leading slash (e.g. /foo/bar), but without the query string (e.g. ?name=foo) or fragment (e.g. #foobar.)

Usage

req.path;


Example

Assuming a client sends the following request:


http://localhost:1337/donor/37?name=foo#foobar



req.path will be defined as follows:

req.path;
// -> "/donor/37"







            
            

        
    



        
        
    
    


        
        

    
        req.protocol

        
            
            
                req.protocol

The protocol used to send this request (req).

Usage

req.protocol;


Example

switch (req.protocol) {
  case 'http':
    // this is an HTTP request
    break;
  case 'https':
    // this is a secure HTTPS request
    break;
}







            
            

        
    



        
        
    
    


        
        

    
        req.query

        
            
            
                req.query

An object containing the parsed query-string, defaulting to {}.

Usage

req.query;


Example

If the request is GET /search?q=mudslide:

req.query.q
// -> "mudslide"







            
            

        
    



        
        
    
    


        
        

    
        req.secure

        
            
            
                req.secure

Indicates whether or not the request was sent over a secure TLS connection (i.e. https:// or wss://).

Usage

req.secure;







            
            

        
    



        
        
    
    


        
        

    
        req.signedCookies

        
            
            
                req.signedCookies

Purpose

An object containing all of the signed cookies from this request (req).

Usage

req.signedCookies;


Example

Assuming the request contained a signed cookie named "chocolatechip" with value "Yummy:

req.cookies.chocolatechip;
// "Yummy"







            
            

        
    



        
        
    
    


        
        

    
        req.socket

        
            
            
                req.socket

If the current Request (req) originated from a connected Socket.io client, req.socket refers to the raw Socket.io socket instance.

Usage

req.socket;


Details


Warning:

req.socket may be deprecated in a future release of Sails.  You should use the sails.sockets.* methods instead.



If the current request (req) did NOT originate from a Socket.io client, req.socket does not have the same meaning.  In the most common scenario, HTTP requests, req.socket actually does exist, but it refers instead to the underlying TCP socket. Before using req.socket, you should check the req.isSocket flag to ensure the request arrived via a connected Socket.io client.

req.socket.id is a unique identifier representing the current socket.  This is generated by the Socket.io server when a client first connects, and is a valid unique identifier until the socket is disconnected (e.g. if the client is a web browser, until the user closes her browser tab.)

Sails also provides direct, low-level access to all of the other methods and properties from a Socket.io Socket, including req.socket, including req.socket.join, req.socket.leave, req.socket.broadcast, and more.  See the relevant docs in the Socket.io wiki for more information.

Example

if (req.isSocket) {
  // Low-level Socket.io methods and properties accessible on req.socket.
  // ...
}
else {
  // This is not a request from a Socket.io client, so req.socket
  // may or may not exist.  If this is an HTTP request, req.socket is actually
  // the underlying TCP socket.
  // ...
}







            
            

        
    



        
        
    
    


        
        

    
        req.subdomains

        
            
            
                req.subdomains

An array of all the subdomains in this request's URL.

Usage

req.subdomains;


Example

If the requested URL was "https://ww3.staging.ibm.com":

req.subdomains;
// -> ['ww3', 'staging']







            
            

        
    



        
        
    
    


        
        

    
        req.url

        
            
            
                req.url

Like req.path, but also includes the query string suffix.

req.url;

// => "/search?q=worlds%20largest%20dogs"


Notes



	It is worth mentioning that the URL fragment/hash (e.g. "#some/clientside/route") part of the url is not available on the server. This is an open issue with the current HTTP specification. So if you write an action to redirect from one subdomain to another, for instance, you won't be able to peek at the URL fragment in that action.

	However, if you respond with a 302 redirect (i.e. res.redirect()) the user agent on the other end will preserve the URL fragment/hash and tack it on to the end of the new redirected URL.  In many cases, this is exactly what you want!











            
            

        
    



        
        
    
    


        
        

    
        req.wantsJSON

        
            
            
                req.wantsJSON

A flag indicating whether the requesting client would prefer a JSON response (as opposed to some other format, like XML or HTML.)

req.wantsJSON is used by all of the built-in custom responses in Sails.

Usage

req.wantsJSON;


Details

The intended purpose of req.wantsJSON is to provide a clean, reusable indication of whether the server should respond with JSON, or send back something else (like an HTML page or a 302 redirect.) It is not the right answer for every content negotiation problem, but it is a simple, go-to solution for most use cases.

For instance, for requests typed into the URL bar, all major browsers set an "Accept: text/plain;" request header.  In that case, req.wantsJSON is false.  But for many other cases, the distinction is not quite as clear.  In those scenarios, Sails uses heuristics to determine the best value for req.wantsJSON.

Technically, req.wantsJSON inspects the request's "Content-type", "Accepts", and "X-Requested-With" headers to make an inference as to whether the request is expecting a JSON response.  If the request did not provide enough information to know for sure, Sails errs on the side of JSON (i.e. req.wantsJSON will be set to true.)

This all makes your app more future-proof and less brittle: as best-practices for content negotiation change over time (e.g. a new type of consumer device or enterprise user-agent introduces a new header) Sails can patch req.wantsJSON at the framework level and modify the heuristics accordingly. Not to mention that it reduces code duplication and saves you the annoyance of manually inspecting headers in each of your routes.

Example

if (req.wantsJSON) {
  return res.json(data);
}
else {
  return res.view(data);
}


Details

Here is the specific order in which req.wantsJSON inspects the request.  If any of the following match, subsequent checks are ignored.

A request "wantsJSON" if:


	if this looks like an AJAX request

	if this is a virtual request from a socket

	if this request DOESN'T explicitly want HTML

	if this request has a "json" content-type AND ALSO has its "Accept" header set

	if req.options.wantsJSON is truthy



Notes



	Lower-level content negotiation is, of course, still possible using req.is(), req.accepts(), req.xhr, and req.get().

	As of Sails v0.11, requests originating from a WebSocket client always "want JSON".










            
            

        
    



        
        
    
    


        
        

    
        req.xhr

        
            
            
                req.xhr

A flag indicating whether the current request (req) appears to be an AJAX request (i.e. it was issued with its "X-Requested-With" header set to "XMLHttpRequest".)

Usage

req.xhr;


Example

if (req.xhr) {
  // Yup, it's AJAX alright.
}


Notes



	Whenever possible, you should prefer the req.wantsJSON flag.  Avoid writing custom content-negotiation negotiation logic into your app  - it makes your code more brittle and more verbose.










            
            

        
    



        
        
    
    


        
        

    
        Res

        
            
            
                Response (res)

Overview

Sails is built on Express, and uses Node's HTTP server conventions.  Because of this, you can access all of the Node and Express methods and properties on the res object whereever it is accessible (i.e. in your controllers, policies, and custom responses.)

A nice side effect of this compatibility is that, in many cases, you can paste existing Node.js code into a Sails app and it will work.  And since Sails implements a transport-agnostic request interpreter, the code in your Sails app is WebSocket-compatible as well.

Sails adds a few methods of its own to the res object, like res.view().  These features are syntactic sugar on top of the underlying implementation, and also support both HTTP and WebSockets.

Protocol Support

The chart below describes support for the methods and properties on the Sails Request object (req) across multiple transports:

The chart below describes support for the methods and properties on the Sails Response object (res) across multiple transports:




	
	HTTP
	WebSockets





	res.status()
	:white_check_mark:
	:white_check_mark:



	res.set()
	:white_check_mark:
	:white_large_square:



	res.get()
	:white_check_mark:
	:white_large_square:



	res.cookie()
	:white_check_mark:
	:white_large_square:



	res.clearCookie()
	:white_check_mark:
	:white_large_square:



	res.redirect()
	:white_check_mark:
	:white_check_mark:



	res.location()
	:white_check_mark:
	:white_large_square:



	res.charset
	:white_check_mark:
	:white_check_mark:



	res.send()
	:white_check_mark:
	:white_check_mark:



	res.json()
	:white_check_mark:
	:white_check_mark:



	res.jsonp()
	:white_check_mark:
	:white_check_mark:



	res.type()
	:white_check_mark:
	:white_large_square:



	res.format()
	:white_check_mark:
	:white_large_square:



	res.attachment()
	:white_check_mark:
	:white_large_square:



	res.sendfile()
	:white_check_mark:
	:white_large_square:



	res.download()
	:white_check_mark:
	:white_large_square:



	res.links()
	:white_check_mark:
	:white_large_square:



	res.locals
	:white_check_mark:
	:white_check_mark:



	res.render()
	:white_check_mark:
	:white_large_square:



	res.view()
	:white_check_mark:
	:white_large_square:





Legend


	:white_check_mark: - fully supported

	:white_large_square: - feature not yet implemented

	:heavy_multiplication_x: - unsupported due to protocol restrictions










            
            

        
    



        
        
    
    


        
        

    
        res.attachment

        
            
            
                res.attachment()

Sets the "Content-Disposition" header of the current response to "attachment". If a filename is given, then the "Content-Type" will be automatically set based on the extension of the file (e.g. .jpg or .html), and the "Content-Disposition" header will be set to "filename=filename".

Usage

res.attachment([filename]);


Example

res.attachment();
// -> response header will contain:
//   Content-Disposition: attachment

res.attachment('path/to/logo.png');
// -> response header will contain:
//   Content-Disposition: attachment; filename="logo.png"
//   Content-Type: image/png







            
            

        
    



        
        
    
    


        
        

    
        res.badRequest

        
            
            
                res.badRequest()

This method is used to send a 400 ("Bad Request") response back down to the client indicating that the request is invalid.  This usually means it contained invalid parameters or headers, or tried to do something impossible based on your app logic.

Usage

return res.badRequest();


Or:


	return res.badRequest(data);

	return res.badRequest(data, pathToView);



Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:


	If the request "wants JSON" (e.g. the request originated from AJAX, WebSockets, or a REST client like cURL), Sails will send the provided error data as JSON.  If no data is provided a default response body will be sent (the string "Bad Request").

	If the request does not "want JSON" (e.g. a URL typed into a web browser), Sails will attempt to serve one of your views.
	If a specific pathToView was provided, Sails will attempt to use that view.

	Alternatively if pathToView was not provided, Sails will try to guess an appropriate view (see res.view() for details).  If Sails cannot guess a workable view, it will just send JSON.

	If Sails serves a view, the data argument will be accessible as a view local: data.







Example

Using the default view:

if ( req.param('amount') < 500 )
  return res.badRequest(
    'Transaction limit exceeded. Please try again with an amount less than $500.'
  );
}


With a custom view:

if ( req.param('amount') < 500 )
  return res.badRequest(
    'Transaction limit exceeded. Please try again with an amount less than $500.',
    'salesforce/leads/edit'
  );
}


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

	res.badRequest() (like other userland response methods) can be overridden or modified.  It runs the response method defined in /responses/badRequest.js, which is bundled automatically in newly generated Sails apps.  If a badRequest.js response method does not exist in your app, Sails will implicitly use the default behavior.

	This method is called automatically if a call to req.validate() fails any of its validation checks.

	By default, the specified error (err) will be excluded if the app is running in the "production" environment (i.e. process.env.NODE_ENV === 'production').










            
            

        
    



        
        
    
    


        
        

    
        res.clearCookie

        
            
            
                res.clearCookie()

Clears cookie (name) in the response.

Usage

res.clearCookie(name [,options]);


Details

The path option defaults to "/".

Example

res.cookie('name', 'tobi', { path: '/admin' });
res.clearCookie('name', { path: '/admin' });







            
            

        
    



        
        
    
    


        
        

    
        res.cookie

        
            
            
                res.cookie()

Sets a cookie with name (name) and value (value) to be sent along with the response.

Usage

res.cookie(name, value [,options]);


Details

The "path" option defaults to "/".

The "maxAge" option is a convenience option for setting "expires" relative to the current time in milliseconds. The following is equivalent to the previous example.

res.cookie('rememberme', '1', { maxAge: 900000, httpOnly: true })


An object may be passed which is then serialized as JSON, which is automatically parsed by the bodyParser() middleware.

res.cookie('cart', { items: [1,2,3] });
res.cookie('cart', { items: [1,2,3] }, { maxAge: 900000 });


Signed cookies are also supported through this method. Simply pass the signed option. When given res.cookie() will use the secret passed to express.cookieParser(secret) to sign the value.

res.cookie('name', 'tobi', { signed: true });


Example

res.cookie('name', 'tobi', {
  domain: '.example.com',
  path: '/admin',
  secure: true
});

res.cookie('rememberme', '1', {
  expires: new Date(Date.now() + 900000),
  httpOnly: true
});







            
            

        
    



        
        
    
    


        
        

    
        res.forbidden

        
            
            
                res.forbidden()

This method is used to send a 403 ("Forbidden") response back down to the client indicating that the request is not allowed.  This usually means the user-agent tried to do something it was not allowed to do, like change the password of another user.

Usage

return res.forbidden();


Or:


	return res.forbidden(data);

	return res.forbidden(data, pathToView);



Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:


	If the request "wants JSON" (e.g. the request originated from AJAX, WebSockets, or a REST client like cURL), Sails will send the provided error data as JSON.  If no data is provided a default response body will be sent (the string "Forbidden").

	If the request does not "want JSON" (e.g. a URL typed into a web browser), Sails will attempt to serve one of your views.
	If a specific pathToView was provided, Sails will attempt to use that view.

	Alternatively if pathToView was not provided, Sails will serve a default error page (the view located at views/403.ejs).  If that view does not exist, Sails will just send JSON.

	If Sails serves a view, the data argument will be accessible as a view local: data.







Example

Using the default view:

if ( !req.session.canEditSalesforceLeads ) {
  return res.forbidden('Write access required');
}


With a custom view:

if ( !req.session.canEditSalesforceLeads ) {
  return res.forbidden(
    ''Write access required'',
    'salesforce/leads/edit'
  );
}


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

	res.forbidden() (like other userland response methods) can be overridden or modified.  It runs the response method defined in /responses/forbidden.js, which is bundled automatically in newly generated Sails apps.  If a forbidden.js response method does not exist in your app, Sails will implicitly use the default behavior.

	If pathToView refers to a missing view, this method will respond as if the request "wants JSON".
+By default, the specified error (err) will be excluded if the app is running in the "production" environment (i.e. process.env.NODE_ENV === 'production').










            
            

        
    



        
        
    
    


        
        

    
        res.get

        
            
            
                res.get()

Returns the current value of the specified response header (header).

Usage

res.get(header);


Example

res.get('Content-Type');
// -> "text/plain"


Notes



	The header argument is case-insensitive.
+Response headers can be changed up until the response is sent - see res.set().










            
            

        
    



        
        
    
    


        
        

    
        res.json

        
            
            
                res.json()

Sends a JSON response composed of a stringified version of the specified data.

Usage

return res.json([statusCode, ] data);


Details

This method is identical to res.send() when an object or array is passed, however it may be used for explicit JSON conversion of non-objects (null, undefined, etc), though these are technically not valid JSON.

Example

res.json(null)
res.json({ user: 'tobi' })
res.json(500, { error: 'message' })


Notes



	Don't forget this method's name is all lowercase.

	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).










            
            

        
    



        
        
    
    


        
        

    
        res.jsonp

        
            
            
                res.jsonp()

Send a JSON or JSONP response.

Identical to res.json(), except if a "callback" parameter exists, a JSONP response will be sent instead, using the value of the "callback" parameter as the name of the function wrapper.

Usage

return res.jsonp([statusCode, ] data);


Example

return res.jsonp({
  users: [{
    name: 'Thelma',
    id: 1
  }, {
    name: 'Leonardo'
    id: 2
  }]
});



Notes



	Don't forget this method's name is all lowercase.

	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).










            
            

        
    



        
        
    
    


        
        

    
        res.location

        
            
            
                res.location()

Sets the "Location" response header to the specified URL expression (url).

Usage

res.location(url);

Example

res.location('/foo/bar');
res.location('foo/bar');
res.location('http://example.com');
res.location('../login');
res.location('back');


Notes



	You can use the same kind of URL expressions as in res.redirect().










            
            

        
    



        
        
    
    


        
        

    
        res.negotiate

        
            
            
                res.negotiate()

Given an error (err), send an appropriate error response back down to the client.  Especially handy for handling potential validation errors from Model.create() or Model.update().

Usage

return res.negotiate(err);


Details

Like the other built-in custom response modules, the behavior of this method is customizable.

res.negotiate() examines the provided error (err) and determines the appropriate error-handling behavior from one of the following methods:


	res.badRequest()   (400)

	res.forbidden()    (403)

	res.notFound()     (404)

	res.serverError()  (500)



The determination is made based on err's "status" property.  If a more specific diagnosis cannot be determined (e.g. err doesn't have a "status" property, or it's a string), Sails will default to res.serverError().

Example

// Add Fido's birthday to the database:
Pet.update({name: 'fido'})
  .set({birthday: new Date('01/01/2010')})
  .exec(function (err, fido) {
    if (err) return res.negotiate(err);
    return res.ok(fido);
   });


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

	res.negotiate() (like other userland response methods) can be overridden - just define a response module (/responses/negotiate.js) and export a function definition.

	This method is used as the default handler for uncaught errors in Sails.  That means it is called automatically if an error is thrown in any request handling code, but only within the initial step of the event loop.  You should always specifically handle errors that might arise in callbacks/promises from asynchronous code.










            
            

        
    



        
        
    
    


        
        

    
        res.notFound

        
            
            
                res.notFound()

Sends a 404 ("Not Found") response using either res.json() or res.view(). Called automatically when Sails receives a request which doesn't match any of its explicit routes or route blueprints (i.e. serves the 404 page).

When called manually from your app code, this method is normally used to indicate that the user-agent tried to find, update, or delete something that doesn't exist.

Usage

return res.notFound();


Or:


	return res.notFound(data);

	return res.notFound(data, pathToView);



Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:


	If the request "wants JSON" (e.g. the request originated from AJAX, WebSockets, or a REST client like cURL), Sails will send the provided error data as JSON.  If no data is provided a default response body will be sent (the string "Not Found").

	If the request does not "want JSON" (e.g. a URL typed into a web browser), Sails will attempt to serve one of your views.
	If a specific pathToView was provided, Sails will attempt to use that view.

	Alternatively if pathToView was not provided, Sails will try to guess an appropriate view (see res.view() for details).  If Sails cannot guess a workable view, it will just send JSON.

	If Sails serves a view, the data argument will be accessible as a view local: data.







Example

Using the default view:

return res.notFound();


With a custom view:

Pet.findOne()
.where(name: 'fido')
.exec(function(err, fido) {
  if (err) return res.serverError(err);
  if (!fido) return res.notFound(undefined,'pet/sorry-that-pet-has-moved');
  // ...
})


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

	res.notFound() (like other userland response methods) can be overridden or modified.  It runs the response method defined in /responses/notFound.js, which is bundled automatically in newly generated Sails apps.  If a notFound.js response method does not exist in your app, Sails will implicitly use the default behavior.

	If pathToView refers to a missing view, this method will respond as if the request "wants JSON".
+By default, the specified error (err) will be excluded if the app is running in the "production" environment (i.e. process.env.NODE_ENV === 'production').










            
            

        
    



        
        
    
    


        
        

    
        res.ok

        
            
            
                res.ok()

Send a 200 ("OK") response back down to the client with the provided data.  Performs content-negotiation on the request and calls either res.json() or res.view().

Usage

return res.ok();


Or:


	return res.ok(data);

	return res.ok(data, pathToView);



Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:


	If the request "wants JSON" (e.g. the request originated from AJAX, WebSockets, or a REST client like cURL), Sails will send the provided data as JSON.  If no data is provided a default response body will be sent (the string "OK").

	If the request does not "want JSON" (e.g. a URL typed into a web browser), Sails will attempt to serve one of your views.
	If a specific pathToView was provided, Sails will attempt to use that view.

	Alternatively if pathToView was not provided, Sails will try to guess an appropriate view (see res.view() for details).  If Sails cannot guess a workable view, it will fall back and send JSON.

	If Sails serves a view, the data argument will be accessible as a view local: data.







Example

return res.ok({
  name: 'Loïc',
  occupation: 'developer'
});


If the request originated from a socket or AJAX request, the response sent from the usage above would contain the following JSON:

{
  "name": "Loïc",
  "occupation": "developer"
}


Alternatively, if the code that calls res.ok() was located somewhere where a view file could be guessed, that view would be served, with with Loïc available as the data local.  For example if res.ok() was called in UserController.update, then we might create the following view as views/user/update.ejs:

<input type="text" placeholder="Name" value="<%= data.name %>"/>
<input type="text" placeholder="Occupation" value="<%= data.occupation %>"/>


If the code that calls res.ok() is not in a controller action, a conventional view cannot be guessed, so Sails will just send back JSON instead.

Finally, if a custom pathToView is provided as the second argument, Sails will always use that view instead of guessing, e.g. the following usage will compile and respond with a view located in views/user/detail.ejs:

return res.ok({
  name: 'Loïc',
  occupation: 'developer'
}, 'user/detail');


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

	res.ok() (like other userland response methods) can be overridden or modified.  It runs the response method defined in api/responses/ok.js, which is bundled automatically in newly generated Sails apps.  If an ok.js response method does not exist in your app, Sails will implicitly use the default behavior.

	This method is used by blueprint actions to send a success response.  Therefore as you might expect, it is a great place to marshal response data for clients which expect data in a specific format, i.e. to convert data to XML, or it wrap in an additional object (for Ember clients).












            
            

        
    



        
        
    
    


        
        

    
        res.redirect

        
            
            
                res.redirect()

Redirect the requesting user-agent to the given absolute or relative url.

Usage

return res.redirect(url);


Arguments




	
	Argument
	Type
	Details





	1
	url
	((string))
	A URL expression (see below for complete specification).
 e.g. "http://google.com" or "/login"





Details

Sails/Express/Koa/Connect support a few forms of redirection, first being a fully qualified URI for redirecting to a different domain:

return res.redirect('http://google.com');


The second form is the domain-relative redirect.  For example, if you were on http://example.com/admin/post/new, the following redirect to /admin would land you at http://example.com/admin:

return res.redirect('/checkout');



Pathname relative redirects are also possible. If you were on http://example.com/admin/post/new, the following redirect would land you at http//example.com/admin/post:

return res.redirect('..');


The final special-case is a back redirect, which allows you to redirect a request back where it came from using the "Referer" (or "Referrer") header (if omitted, redirects to / by default)

return res.redirect('back');


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

	When your app calls res.redirect(), Sails sends a response with status code 302.  This instructs the user-agent to send a new request to the indicated URL.  There is no way to force a user-agent to follow redirects, but most clients play nicely.

	In general, you should not need to use res.redirect() if a request "wants JSON" (i.e. req.wantsJSON).

	If a request originated from a Socket.io client, it always "wants JSON".  If you do call res.redirect(/#/documentation/reference/res/res.redirect.html) for a socket request, Sails reroutes the request internally on the server, effectively "forcing" the redirect to take place (i.e. instead of sending a 302 status code, the server simply creates a new request to the redirect URL).
	As a result, redirects to external domains are not supported for socket requests (although this is technically possible by proxying).

	This behavior may change to more closely reflect HTTP in future versions of Sails.














            
            

        
    



        
        
    
    


        
        

    
        res.send

        
            
            
                res.send()

Send a simple response.  statusCode defaults to 200 ("OK").

This method is used in the underlying implementation of most of the other terminal response methods.

Usage

return res.send([statusCode,] body);


Details

This method performs a myriad of useful tasks for simple non-streaming responses such as automatically assigning the Content-Length unless previously defined and providing automatic HEAD and HTTP cache freshness support.

When a Buffer is given the Content-Type is set to "application/octet-stream" unless previously defined as shown below:

res.set('Content-Type', 'text/html');
res.send(new Buffer('some html'));


When a String is given the Content-Type is set defaulted to "text/html":

res.send('some html');


When an Array or Object is given Express will respond with the JSON representation:

res.send({ user: 'tobi' })
res.send([1,2,3])


Finally when a Number is given without any of the previously mentioned bodies, then a response body string is assigned for you. For example 200 will respond will the text "OK", and 404 "Not Found" and so on.

res.send(200)
res.send(404)
res.send(500)


Example

res.send(new Buffer('whoop'));
res.send({ some: 'json' });
res.send('some html');
res.send(404, 'Sorry, we cannot find that!');
res.send(500, { error: 'something blew up' });
res.send(200);


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).










            
            

        
    



        
        
    
    


        
        

    
        res.serverError

        
            
            
                res.serverError()

This method is used to send a 500 ("Server Error") response back down to the client indicating that some kind of server error occurred.

Usage

return res.serverError();


Or:


	return res.serverError(data);

	return res.serverError(data, pathToView);



Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:


	If the request "wants JSON" (e.g. the request originated from AJAX, WebSockets, or a REST client like cURL), Sails will send the provided error data as JSON.  If no data is provided a default response body will be sent (the string "Server Error").

	If the request does not "want JSON" (e.g. a URL typed into a web browser), Sails will attempt to serve one of your views.
	If a specific pathToView was provided, Sails will attempt to use that view.

	Alternatively if pathToView was not provided, Sails will serve a default error page (the view located at views/500.ejs).  If that view does not exist, Sails will just send JSON.

	If Sails serves a view, the data argument will be accessible as a view local: data.







Example

Using the default error view:

return res.serverError('Salesforce could not be reached');


With a custom view:

return res.serverError(
  'Salesforce could not be reached',
  'salesforce/leads/edit'
);


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

	res.serverError() (like other userland response methods) can be overridden or modified.  It runs the response method defined in /responses/serverError.js, which is bundled automatically in newly generated Sails apps.  If a serverError.js response method does not exist in your app, Sails will implicitly use the default behavior.

	If pathToView refers to a missing view, this method will respond as if the request "wants JSON".
+By default, the specified error (err) will be excluded if the app is running in the "production" environment (i.e. process.env.NODE_ENV === 'production').










            
            

        
    



        
        
    
    


        
        

    
        res.set

        
            
            
                res.set()

Sets specified response header (header) to the specified value (value).  

Alternatively, you can pass in a single object argument (headers) to set multiple header fields at once, where the keys are the header field names, and the corresponding values are the desired values.

Usage

res.set(header, value);


-or-

res.set(headers);


Example


res.set('Content-Type', 'text/plain');

res.set({
  'Content-Type': 'text/plain',
  'Content-Length': '123',
  'ETag': '12345'
})







            
            

        
    



        
        
    
    


        
        

    
        res.status

        
            
            
                res.status()

Set the status code of this response.

Usage

res.status(200);


Example

res.status(404);
res.send('oops');


Notes



	The status code may be set up until the response is sent.

	res.status() is effectively just a chainable alias of node's 'res.statusCode=.










            
            

        
    



        
        
    
    


        
        

    
        res.type

        
            
            
                res.type()

Sets the "Content-Type" response header to the specified type.

This method is pretty forgiving (see examples below), but note that if type contains a "/", res.type() assumes it is a MIME type and interprets it literally.

Usage

res.type(type);


Example

res.type('.html');
res.type('html');
res.type('json');
res.type('application/json');
res.type('png');







            
            

        
    



        
        
    
    


        
        

    
        res.view

        
            
            
                res.view()

Respond with an HTML page.

Usage

return res.view(pathToView, locals);


Or:


	return res.view(pathToView);

	return res.view(locals);

	return res.view();



Uses the configured view engine to compile the view template at pathToView into HTML.  If pathToView is not provided, serves the conventional view based on the current controller and action.

The specified locals are merged with your configured app-wide locals, as well as certain built-in locals from Sails and/or your view engine, then passed to the view engine as data.

Arguments




	
	Argument
	Type
	Details





	1
	pathToView
	((string))
	The path to the desired view file relative to your app's views folder (usually views/), without the file extension (e.g. .ejs), and with no trailing slash.
Defaults to "identityOfController/nameOfAction".



	2
	locals
	((object))
	Data to pass to the view template.  These explicitly specified locals will be merged in to Sails' built-in locals and your configured app-wide locals.
Defaults to {}.





Example

Consider a conventionally configured Sails app with a call to res.view() in the cook() action of its OvenController.js.

With no pathToView argument, res.view() will decide the path by combining the identity of the controller (oven) and the name of the action (cook):

return res.view();
// -> responds with `views/oven/cook.ejs`


Here's how you would load the same view using an explicit pathToView:

return res.view('oven/cook');
// -> responds with `views/oven/cook.ejs`


Finally, here's a more involved example demonstrating how res.view can be combined with Waterline queries:

// Find the 5 hottest oven brands on the market
Oven.find().sort('heat ASC').exec(function (err, ovens){
  if (err) return res.serverError(err);

  return res.view('oven/top5', {
    hottestOvens: ovens
  });
  // -> responds using the view at `views/oven/top5.ejs`,
  // and with the oven data we looked up as view locals.
  //
  // e.g. in the view, we might have something like:
  // ...
  // <% _.each(hottestOvens, function (aHotOven) { %>
  //  <li><%= aHotOven.name %></li>
  // <% }) %>
  // ...
});


Notes



	This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

	res.view() reads a view file from disk, compiles it into HTML, then streams it back to the client.  If you already have the view in memory, or don't want to stream the compiled HTML directly back to the client, use sails.hooks.views.render() instead.










            
            

        
    



        
        
    
    


        
        

    
        sails.config

        
            
            
                Configuration (sails.config)

The sails.config object contains the runtime values of your app's configuration. It is assembled automatically when Sails loads your app; merging together command-line arguments, environment variables, your .sailsrc file, and the configuration objects exported from any and all modules in your app's config/ directory.

More specifically, when you load your app, whether that's using node app, programmatic usage inside of a script, or sails lift, Sails will look in a few different places for configuration.  Here they are listed in order of descending priority:


	an optional object of configuration overrides passed-in programmatically

	a local .sailsrc file in your app's directory, or the first found looking in ../, ../../ etc.

	a global .sailsrc file in your home folder (e.g. ~/.sailsrc)

	command-line arguments (parsed by minimist)

	environment variables (prefixed with SAILS_, e.g. SAILS_PORT=1492)

	files in your app's config/ directory (if one exists)









            
            

        
    



        
        
    
    


        
        

    
        sails.config.blueprints

        
            
            
                sails.config.blueprints

By default, Sails controllers automatically bind routes for each of their functions. Additionally, each controller will automatically bind routes for a CRUD API controlling the model which matches its name, if one exists.

Properties




	Property
	Type
	Default
	Details





	actions
	((boolean))
	true
	Whether routes are automatically generated for every action in your controllers (also maps index to /:controller) '/:controller', '/:controller/index', and '/:controller/:action'



	rest
	((boolean))
	true
	Automatic REST blueprints enabled? e.g. 'get /:controller/:id?' 'post /:controller' 'put /:controller/:id' 'delete /:controller/:id'



	shortcuts
	((boolean))
	true
	These CRUD shortcuts exist for your convenience during development, but you'll want to disable them in production.: '/:controller/find/:id?', '/:controller/create', '/:controller/update/:id', and '/:controller/destroy/:id'



	prefix
	((string))
	''
	Optional mount path prefix for blueprints (the automatically bound routes in your controllers) e.g. '/api/v2'



	pluralize
	((boolean))
	false
	Optionally use plural controller names in blueprint routes, e.g. /users for api/controllers/UserController.js.



	populate
	((boolean))
	true
	Whether the blueprint controllers should populate model fetches with data from other models which are linked by associations.  If you have a lot of data in one-to-many associations, leaving this on may result in very heavy api calls.



	defaultLimit
	((integer))
	30
	The default number of records to show in the response from a "find" action.  Doubles as the default size of populated arrays if populate is true.



	autoWatch
	((boolean))
	true
	Whether to run Model.watch() in the find and findOne blueprint actions.  Can be overridden on a per-model basis.



	jsonp
	((boolean))
	false
	Optionally wrap blueprint JSON responses in a JSONP callback using res.jsonp() from Express 3.










            
            

        
    



        
        
    
    


        
        

    
        sails.config.bootstrap

        
            
            
                sails.config.bootstrap

What is this?

This is an asynchronous boostrap function that runs before your Sails app gets lifted (i.e. starts up). This gives you an opportunity to set up your data model, run jobs, or perform some special logic.

Description

module.exports.bootstrap = function (cb) {

  // It's very important to trigger this callback method when you are finished
  // with the bootstrap!  (otherwise your server will never lift, since it's waiting on the bootstrap)
  cb();
};







            
            

        
    



        
        
    
    


        
        

    
        sails.config.connections

        
            
            
                sails.config.connections

What is this?

Adapters are the middle man between your Sails app and some kind of storage (typically a database)

Adapters are configured in the connections.js file located in your project's config directory.  Here you can create different global “saved settings” that you can mix and match in your models.

Sails adapters have been written for a variety of popular databases such as MySQL, Postgres and Mongo.  You can find a list of supported adapters here.

Example

To use the sails-memory adapter (for DEVELOPMENT ONLY), first install the module with npm install sails-memory, then define it in connections.js:

Here is an example adapter configuration file

myApp/config/connections.js


module.exports.connections = {
  // sails-disk is installed by default.
  localDiskDb: {
    adapter: 'sails-disk'
  },
  memory: {
    adapter: 'sails-memory'
  }
};


If you wanted to set memory as the default adapter for your models, you would do this.
myApp/config/models.js

module.exports.models = {

  connection: 'memory'
};



Keep in mind that options you define directly in your model definitions will override these settings.
Prior to v0.11, adapters were defined in myApp/config/Adapters.js.  See v0.9 docs for more info.



Multiple connections for an adapter

You can set up more than one connection using the same adapter.  For example, if you
had two mysql databases, you could configure them as:


module.exports.connections = {
  localMysql: {
    adapter: 'sails-mysql',
    user: 'root',
    host: 'localhost',
    database: 'someDbase'
  },
  remoteMysql: {
    adapter: 'sails-mysql',
    user: 'remoteUser',
    password: 'remotePassword',
    host: 'http://remote-mysql-host.com',
    database: 'remoteDbase'
  }
};



Note If any connection to an adapter is used by a model, then all connections to that adapter will be loaded on sails.lift, whether or not models are actually using them.  In the example above, if a model was configured to use the localMysql connection, then both localMysql and remoteMysql would attempt to connect at run time.  It is therefore good practice to comment out any connection configurations that you aren't using!








            
            

        
    



        
        
    
    


        
        

    
        sails.config.cors

        
            
            
                sails.config.cors

Configuration for Sails' built-in support for Cross-Origin Resource Sharing.  CORS specifies how HTTP requests to your app originating from foreign domains should be treated.  It is primarily used to allow third-party sites to make AJAX requests to your app, which are normally blocked by browsers following the same-origin policy.

These options are conventionally set in the config/cors.js configuration file.  Note that these settings (with the exception of allRoutes) can be changed on a per-route basis in the config/routes.js file.

Properties




	Property
	Type
	Default
	Details





	allRoutes
	((boolean))
	false
	Indicates whether the other CORS configuration settings should apply to every route in the app by default.



	origin
	((string))
	*
	Comma-delimited list of default hosts (beginning with http:// or https://) to give access to, or * to allow all domains CORS access.  If allRoutes is true and origin is *, then your app will be fully accessible to sites hosted on foreign domains (except for routes which have their own CORS settings).



	methods
	((string))
	GET, POST, PUT, DELETE, OPTIONS, HEAD
	Comma-delimited list of methods that are allowed to be used in CORS requests.  This is only used in response to preflight requests, so the inclusion of GET, POST, OPTIONS and HEAD, although customary, is not necessary.



	headers
	((string))
	content-type
	Comma-delimited list of headers that are allowed to be sent with CORS requests.  This is only used in response to preflight requests.



	credentials
	((boolean))
	true
	Indicates whether cookies can be shared in CORS requests.





Custom route config example

The following will allow cross-origin AJAX GET, PUT and POST requests to /foo/bar from sites hosted http://foobar.com and https://owlhoot.com.  DELETE requests, or requests from sites on any other domains, will be blocked by the browser.

'/foo/bar': {
  target: 'FooController.bar',
  cors: {
    origin: 'http://foobar.com,https://owlhoot.com',
    methods: 'GET,PUT,POST,OPTIONS,HEAD'
  }
}







            
            

        
    



        
        
    
    


        
        

    
        sails.config.csrf

        
            
            
                sails.config.csrf

Configuration for Sails' built-in CSRF protection middleware.  These options are conventionally set in the config/csrf.js configuration file.  See the docs on Cross-Site Request Forgery in the security section for detailed usage instructions.

This option protects your Sails app against cross-site request forgery (or CSRF) attacks. A would-be attacker needs not only a user's session cookie, but also this timestamped, secret CSRF token, which is refreshed/granted when the user visits a URL on your app's domain.

This allows you to have certainty that your users' requests haven't been hijacked, and that the requests they're making are intentional and legitimate.

Properties




	Property
	Type
	Default
	Details





	csrf
	((boolean)) or ((object))
	false
	CSRF protection is disabled by default to facilitate development.  To turn it on, just set sails.config.csrf to true, or to an object as described below.





csrf object settings

Besides true and false, you can set sails.config.csrf to an object with the following properties:




	Property
	Type
	Default
	Details





	grantTokenViaAjax
	((boolean))
	true
	Whether to activate the /csrfToken route, which will return the current CSRF token value which can then be used in AJAX requests.



	origin
	((string))
	''
	Comma-delimited list of origins that are allowed to access the CSRF token via the /csrfToken route.  This is separate from the other CORS settings, which do not apply to /csrfToken.



	routesDisabled
	((string))
	''
	Comma-delimited list of routes where CSRF protection is disabled.










            
            

        
    



        
        
    
    


        
        

    
        sails.config.globals

        
            
            
                sails.config.globals

Configuration for the global variables that Sails exposes to its Node process.  The options are conventionally specified in the config/globals.js configuration file.

Properties




	Property
	Type
	Default
	Details





	sails
	((boolean))
	true
	Expose the sails instance representing your app.  If this is disabled, you can still get access via req._sails.



	models
	((boolean))
	true
	Expose each of your app's models as global variables (using their "globalId").  E.g. a model defined in api/models/User.js would have a globalId of User by default.   If this is disabled, you can still access your models via sails.models.*.



	services
	((boolean))
	true
	Expose each of your app's services as global variables (using their "globalId").  E.g. a service defined in api/models/NaturalLanguage.js would have a globalId of NaturalLanguage by default.  If this is disabled, you can still access your services via sails.services.*.



	_
	((boolean))
	true
	Expose the lodash installed in Sails core as a global variable. If this is disabled, like any other node module you can always run npm install lodash --save, then var _ = require('lodash') at the top of any file.



	async
	((boolean))
	true
	Expose the async installed in Sails core as a global variable.  If this is disabled, like any other node module you can always run npm install async --save, then var async = require('async') at the top of any file.





Notes



	To disable all global variables, you can set sails.config.globals to false.










            
            

        
    



        
        
    
    


        
        

    
        sails.config.http

        
            
            
                sails.config.http

Configuration for your app's underlying HTTP server.  These properties are conventionally specified in the config/http.js configuration file.

Properties




	Property
	Type
	Default
	Details





	 middleware
	((object))
	See conventional defaults for HTTP middleware
	A configuration object of all HTTP middleware functions your app will run on every incoming HTTP request.  All Express or Connect middleware is supported.
Example



	 middleware.order
	((array))
	See conventional defaults for HTTP middleware order
	The order in which middleware should be run for HTTP request (the Sails router, which runs the appropriate explicit routes, policies, controllers, etc. from your app is invoked by the "router" middleware).



	 cache
	((number))
	cache: 31557600000
	The number of seconds to cache flat files on disk being served by Express static middleware (by default, these files are in .tmp/public)
The HTTP static cache is only active in a 'production' environment (default 1 year), since that's the only time Express will cache flat-files.



	 serverOptions
	((object))
	TODO
	TODO





Notes



	Note that this HTTP middleware stack configured in sails.config.http.middleware is only applied to true HTTP requests-- it is ignored when handling virtual requests (e.g. sockets)



	You cannot define a custom middleware function with the key order (since sails.config.http.middleware.order has special meaning)


















            
            

        
    



        
        
    
    


        
        

    
        sails.config.i18n

        
            
            
                sails.config.i18n

Configuration for Sails' built-in internationalization & localization features.  For more information see the concepts section on internationalization.

Properties




	Property
	Type
	Default
	Details





	locales
	((array))
	['en','es','fr','de']
	List of supported locale codes



	localesDirectory
	((string))
	'/config/locales'
	The project-relative path to the folder containing your locale translations (i.e. stringfiles)



	defaultLocale
	((string))
	'en'
	The default locale for the site. Note that this setting will be overridden for any request that sends an "Accept-Language" header (i.e. most browsers), but it's still useful if you need to localize the response for requests made by non-browser clients (e.g. cURL).



	updateFiles
	((boolean))
	false
	Whether to automatically add new keys to locale (translation) files when they are encountered during a request.










            
            

        
    



        
        
    
    


        
        

    
        sails.config.log

        
            
            
                sails.config.log

Configuration for the instance of the Sails logger (sails.log) used in your Sails app. The options are conventionally specified in the config/log.js configuration file.

Properties




	Property
	Type
	Default
	Details





	level
	((string))
	'info'
	Set the level of detail to be shown in your app's log












            
            

        
    



        
        
    
    


        
        

    
        sails.config.models

        
            
            
                sails.config.models

Your default project-wide model settings. Can also be overridden on a per-model basis by providing a top-level property with the same name in that model definition.  For more details, see the conceptual docs on Model Settings.  These options are conventionally specified in the config/models.js configuration file.

sails.config.models;


Properties




	Property
	Type
	Default
	Details





	 attributes
	((object))
	{}
	The basic pieces of information to store about a model. See Attributes.



	 migrate
	((string))
	see Model Settings
	How & whether Sails will attempt to automatically rebuild the tables/collections/etc. in your schema



	 connection
	((string))
	"localDiskDb"
	The default database connection any given model will use without a configured override



	 autoPK
	((boolean))
	true
	Toggle the automatic definition of a primary key in your model



	 autoCreatedAt
	((boolean))
	true
	Toggle the automatic definition of a property createdAt in your model



	 autoUpdatedAt
	((boolean))
	true
	Toggle the automatic definition of a property updatedAt in your model



	 tableName
	((string))
	identity
	Used to specify database table name for the model











            
            

        
    



        
        
    
    


        
        

    
        sails.config.policies

        
            
            
                sails.config.policies


TODO:

Merge most of the contents of this file into the main reference section on policies.
Include a simple config reference table (with only one row with property: *) explaining how
this particular config module is read.  But don't worry about trying to explain what policies are here-- instead, link to the full docs on the subject (again, to reduce duplicate content and make this all more maintainable)



What is this?

Policies are like any other system for authentication control. You can allow or deny access in fine granularity with policies.

Description

Your app's ACL (access control list) is located in config/policies.js.

Applying a Policy

To a Specific Action

To apply a policy to a specific action in particular, you should specify it on the right-hand side of that action:

{
  ProfileController: {
      edit: 'isLoggedIn'
  }
}


To an Entire Controller

To set the default policy mapping for a controller, use the * notation:


Note: Default policy mappings do not "cascade" or "trickle down."  Specified mappings for the controller's actions will override the default mapping.  In this example, isLoggedIn is overriding false.



{
  ProfileController: {
    '*': false,
    edit: 'isLoggedIn'
  }
}


Globally


Note: Global policy mappings do not "cascade" or "trickle down" either.  Specified mappings, whether they're default controller mappings or for specific actions, will ALWAYS override the global mapping.  In this example, isLoggedIn is overriding false.



{

  // Anything you don't see here (the unmapped stuff) is publicly accessible
  '*': true,

  ProfileController: {
    '*': false,
    edit: 'isLoggedIn'
  }
}


Built-in policies

true


This is the default policy mapped to all controllers and actions in a new project.  In production, it's good practice to set this to false to prevent access to any logic you might have inadvertently exposed.



Allow public access to the mapped controller/action.  This will allow any request to get through, no matter what.

module.exports = {
  UserController: {

    // login should always be accessible
    login: true

  }
}


false

NO access to the mapped controller/action.  No requests get through.  Period.

module.exports = {
  MathController: {

    // This fancy algorithm we're working on isn't done yet
    // so we set it to false to disable it
    someFancyAlgorithm: false

  }
}


Custom policies

You can apply one or more policies to a given controller or action.  Any file in your /policies folder (e.g. authenticated.js) is referable in your ACL (config/policies.js) by its filename minus the extension, (e.g.  'authenticated').

module.exports = {
  FileController: {
    upload: ['isAuthenticated', 'canWrite', 'hasEnoughSpace']
  }
}


Multiple Policies

To apply two or more policies to a given action, (order matters!) you can specify an array, each referring to a specific policy. 

UserController: {
    lock: ['isLoggedIn', 'isAdmin']
}


In each of the policies, the next policy in the chain will only be run if next(), the third argument, is called.  When and if the last policy calls next(), the requested controller action is run.






            
            

        
    



        
        
    
    


        
        

    
        sails.config.routes

        
            
            
                sails.config.routes

Configuration for custom (aka "explicit") routes.  sails.config.routes consists of a single Javascript object whose keys are URL paths (the "address") and whose values are one of several types of route handler configurations (the "target"), for example:

module.exports.routes = {

    "GET /": {view: "homepage"},
    "POST /foo/bar": {controller: "FooController", action: "bar"}

}

Please see the routes concept overview for a full discussion of Sails routes, and the custom routes documentation for a detailed description of the available configurations for both the route address and target.






            
            

        
    



        
        
    
    


        
        

    
        sails.config.session

        
            
            
                sails.config.session

What is this?

Sails session integration leans heavily on the great work already done by Express, but also unifies Socket.io with the Connect session store.

Description

Sails session integration leans heavily on the great work already done by Express, but also unifies 
Socket.io with the Connect session store. It uses Connect’s cookie parser to normalize configuration
differences between Express and Socket.io and hooks into Sails’ middleware interpreter to allow you
to access and auto-save to req.session with Socket.io the same way you would with Express.

secret

Session secret is automatically generated when your new app is created.
Replace at your own risk in production-- you will invalidate the cookies of your users, forcing them to log in again. 

Shared Redis session store

In production, uncomment the following line to set up a shared redis session store
that can be shared across multiple Sails.js servers.

adapter: 'redis',


The following values are optional, if no options are set a redis instance running
on localhost is expected.
Read more about options at: https://github.com/visionmedia/connect-redis

        host: 'localhost',
        port: 6379,
        ttl: <redis session TTL in seconds>,
        db: 0,
        pass: <redis auth password>
        prefix: 'sess:'


Uncomment the following lines to use your Mongo adapter as a session store

        adapter: 'mongo',

        host: 'localhost',
        port: 27017,
        db: 'sails',
        collection: 'sessions',


Optional Values:

        // Note: url will override other connection settings
        // url: 'mongodb://user:pass@host:port/database/collection',

        username: '',
        password: '',
        auto_reconnect: false,
        ssl: false,
        stringify: true







            
            

        
    



        
        
    
    


        
        

    
        sails.config.sockets

        
            
            
                sails.config.sockets

What is this?

These configuration options provide transparent access to Socket.io, the WebSocket/pubsub server encapsulated by Sails.

Commonly-Used Options




	Property
	Type
	Default
	Details





	 onConnect
	((function))
	see config/sockets.js
	A function to run every time a new client-side socket connects to the server.



	 onDisconnect
	((function))
	see config/sockets.js
	A function to run every time a new client-side socket disconnects from the server.



	 adapter
	((string))
	'memory'
	The database where socket.io will store its message queue and answer pubsub logic.  Can be set to either 'memory' or 'redis'



	 host
	((string))
	'127.0.0.1'
	Hostname of your redis instance (only applicable if using the redis socket store adapter)



	 port
	((integer))
	6379
	Port of your redis instance (only applicable if using the redis socket store adapter)



	 db
	((string))
	'sails'
	The name of the database to use within your redis instance (only applicable if using the redis socket store adapter)



	 pass
	((string))
	((undefined))
	The password for your redis instance (only applicable if using the redis socket store adapter)





Advanced Configuration

These configuration options provide lower-level access to the underlying Socket.io server settings for complete customizability.




	Property
	Type
	Default
	Details





	transports
	((array))
	['websocket', 'htmlfile', 'xhr-polling', 'jsonp-polling']
	A array of allowed transport methods which the clients will try to use. The flashsocket transport is disabled by default You can enable flashsockets by adding 'flashsocket' to this list.



	origins
	((string))
	'*:*'
	Match string representing the origins that are allowed to connect to the Socket.IO server



	heartbeats
	((boolean))
	true
	Sets whether we should use heartbeats to check the health of Socket.IO connections



	close timeout
	((integer))
	60
	When client closes connection, the number of seconds to wait before attempting a reconnect. This value is sent to the client after a successful handshake.



	heartbeat timeout
	((integer))
	60
	The max number of seconds between heartbeats sent from the client to the server. This value is sent to the client after a successful handshake.



	heartbeat interval
	((integer))
	25
	The max number of seconds to wait for an expcted heartbeat before declaring the pipe broken. This number should be less than the heartbeat timeout



	polling duration
	((integer))
	20
	The maximum duration of one HTTP poll; if it exceeds this limit it will be closed.



	flash policy server
	((boolean))
	true
	Enables the flash policy server if the flashsocket transport is enabled.



	flash policy port
	((integer))
	10843
	TODO



	destroy buffer size
	((integer))
	10E7
	Used by the HTTP transports. The Socket.io server buffers HTTP request bodies up to this limit. This limit is not applied to websocket or flashsockets.



	destroy upgrade
	((boolean))
	true
	Whether we need to destroy non-socket.io upgrade requests



	browser client
	((boolean))
	true
	Whether Sails/Socket.io should serve the socket.io.js client (as well as WebSocketMain.swf for Flash sockets, etc.)



	browser client cache
	((boolean))
	true
	Whether to cache the Socket.io file generation in the memory of the process to speed up the serving of the static files.



	browser client minification
	((boolean))
	false
	Whether Socket.io needs to send a minified build of the static client script



	browser client etag
	((boolean))
	false
	Whether Socket.io needs to send an ETag header for the static requests



	browser client expires
	((integer))
	315360000
	TODO



	browser client gzip
	((boolean))
	false
	Whet






            
            

        
    



        
        
    
    


        
        

    
        sails.config.views

        
            
            
                sails.config.views

Configuration for your app's server-side views.  The options are conventionally specified in the config/views.js configuration file.

Properties




	Property
	Type
	Default
	Details





	layout
	((string)) -or- ((boolean))
	"layout"
	Set the default layout for your app by specifying the relative path to the desired layout file from your views folder (i.e. views/.)  Or disable layout support altogether with false.



	engine
	((string))
	"ejs"
	The view engine your app will use to compile server-side markup into HTML.



	locals
	((object))
	{}
	Default data to be included as view locals every time a server-side view is compiled anywhere in this app.





Notes



	If your app is NOT using ejs (the default view engine) Sails will function as if the layout option was set to false.  To take advantage of layouts when using a custom view engine like Jade or Handlebars, check out that view engine's documentation to find the appropriate syntax.










            
            

        
    



        
        
    
    


        
        

    
        Waterline

        
            
            
                Waterline (ORM)

By default, Sails comes bundled with an ORM called Waterline (implemented in the orm hook.)






            
            

        
    



        
        
    
    


        
        

    
        Models

        
            
            
                Working with Models

This section of the documentation focuses on the model methods provided by Waterline out of the box.  In addition to these, additional methods can come from hooks (i.e. the resourceful pubsub methods), be exposed by the underlying adapters to provide custom functionality, or be hand-written in your app to wrap reusable custom code.


For an in-depth introduction to models in Sails/Waterline, see http://sailsjs.org/#/documentation/concepts/ORM/Models.html.



[image: screenshot of a Waterline/Sails model in Sublime Text 2]

Built-In Model Methods

In general, model methods are asynchronous, meaning you cannot just call them and use the return value.  Instead, you must use callbacks, or promises.
Most built-in model methods accept a callback as an optional final argument. If the callback is not supplied, a chainable Query object is returned, which has methods like .where() and .exec(). See Working with Queries for more on that.




	Method
	Summary





	 .find()
	Lookup an array of records which match the specified criteria



	 .findOne()
	Lookup a single record which matches the specified criteria, or send back null if it doesn't.



	 .update()
	Update records matching the specified criteria, setting the specified object of attrName:value pairs.



	 .destroy()
	Destroy records matching the specified criteria.



	 .findOrCreate()
	Lookup a single record which matches the specified criteria, or create it if it doesn't.



	 .count()
	Get the total count of records which match the specified criteria.



	 .native()/query()
	Make a direct call to the underlying database driver.



	 .stream()
	Return a readable (object-mode) stream of records which match the specified criteria






sails.models

If you need to disable global variables in Sails, you can still use sails.models.<model_identity> to access your models.

A model's identity is different than its globalId.  The globalId is determined automatically from the name of the model, whereas the identity is the all-lowercased version.  For instance, you the model defined in api/models/Kitten.js has a globalId of Kitten, but its identity is kitten. For example:

// Kitten === sails.models.kitten
sails.models.kitten.find().exec(function (err, allTheKittens) {
  // We also could have just used `Kitten.find().exec(...)`
  // if we'd left the global variable exposed.
})







            
            

        
    



        
        
    
    


        
        

    
        Count

        
            
            
                .count( [criteria, ] callback )

Purpose

Returns the number of records in your database that meet the given search criteria.

Overview

Parameters




	#
	Description
	Accepted Data Types
	Required ?





	1
	Find Criteria
	{},[{}], string, int
	No



	2
	Callback
	function
	No





Callback Parameters




	#
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Number of Records
	int





Example Usage

User.count({name:'Flynn'}).exec(function countCB(error, found) {
  console.log('There are ' + found + ' users called "Flynn"');

  // There are 1 users called 'Flynn'
  // Don't forget to handle your errors
});


Notes


Any string arguments passed must be the ID of the record.












            
            

        
    



        
        
    
    


        
        

    
        Create

        
            
            
                .create( values, [callback] )

Purpose

Creates a new instance of this model in the database.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Record(s) to Create
	{}, [{}]
	Yes



	2
	Callback
	function
	No





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Records Created
	{}, [{}]





Example Usage

// create a new record with name 'Walter Jr'

User.create({name:'Walter Jr'}).exec(function createCB(err,created){
  console.log('Created user with name '+created.name);
  });

// Created user with name Walter Jr
// Don't forget to handle your errors and abide by the rules you defined in your model











            
            

        
    



        
        
    
    


        
        

    
        Destroy

        
            
            
                .destroy( criteria , [callback] )

Purpose

Destroys all records in your database that match the given criteria.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Find Criteria
	{},[{}], string, int
	Yes



	2
	Callback
	function
	No





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Deleted Records
	[{}]





Example Usage

User.destroy({name:'Flynn'}).exec(function deleteCB(err){
  console.log('The record has been deleted');
  });

// If the record existed, then it has been deleted
// Don't forget to handle your errors


Notes


If you want to confirm the record exists before you delete it, you must first perform a find()
Any string arguments passed must be the ID of the record.












            
            

        
    



        
        
    
    


        
        

    
        Find

        
            
            
                .find(criteria , [callback])

Purpose

Finds and returns all records that meet the criteria object(s) that you pass it.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Find Criteria
	{},[{}], string, int
	Yes



	2
	Callback
	function
	Yes





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Found Records
	[{}]





Example Usage

User.find({}).exec(function findCB(err,found){
  while (found.length)
    console.log('Found User with name '+found.pop().name)
  });

// Found User with name Flynn
// Found User with name Jessie

// Don't forget to handle your errors


Notes


Any string arguments passed must be the ID of the record.
This method will ALWAYS return records in an array.
If you are trying to find an attribute that is an array, you must wrap it in an additional set of brackets otherwise Waterline will think you want to perform an inQuery.












            
            

        
    



        
        
    
    


        
        

    
        Find One

        
            
            
                .findOne( criteria , [callback] )

Purpose

This finds and returns a single record that meets the criteria.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Find Criteria
	{}, string
	Yes



	2
	Callback
	function
	Yes





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Found Record
	{}





Example Usage

User.findOne({name:'Jessie'}).exec(function findOneCB(err,found){
  console.log('We found '+found.name);
  });

// We found Jessie
// Don't forget to handle your errors


Notes


Any string arguments passed must be the ID of the record.
If you are trying to find an attribute that is an array, you must wrap it in an additional set of brackets otherwise Waterline will think you want to perform an inQuery.

If no matching record is found, the value of found will be undefined.  Not finding a record does not constitute an error for findOne.












            
            

        
    



        
        
    
    


        
        

    
        Find Or Create

        
            
            
                .findOrCreate( criteria , record , [callback] )

Purpose

Checks for the existence of the record in the first parameter.  If it can't be found, the record in the second parameter is created.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Find Criteria
	{},[{}], string, int
	Yes



	2
	Records to Create
	{},[{}]
	Yes



	2
	Callback
	function
	No





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Records Created
	{}, [{}]





Example Usage

User.findOrCreate({name:'Walter'},{name:'Jessie'}).exec(function createFindCB(err,record){
  console.log('What\'s cookin\' '+record.name+'?');
  });

// What's cookin' Jessie?
// Don't forget to handle your errors and abide by the rules you defined in your model


Notes


Any string arguments passed must be the ID of the record.
If you are trying to find an attribute that is an array, you must wrap it in an additional set of brackets otherwise Waterline will think you want to perform an inQuery.












            
            

        
    



        
        
    
    


        
        

    
        Native

        
            
            
                .native()

.native() is only available when using Sails/Waterline with MongoDB.

Returns a raw Mongo collection instance representing the specified model, allowing you to perform raw Mongo queries.

For full documentation and usage examples, check out the native Node Mongo driver.

Note that sails-mongo maintains a single Mongo connection for each of your configured connections/datastores.  Consequently, when using .native(), you don't need to close or open db manually.  For lower-level usage, you can require('mongodb') directly.

Example

Pet.native(function(err, collection) {
  if (err) return res.serverError(err);

  collection.find({}, {
    name: true
  }).toArray(function (err, results) {
    if (err) return res.serverError(err);
    return res.ok(results);
  });
});


Source: https://gist.github.com/mikermcneil/483987369d54512b6104

Notes



	This method only works with Mongo! For raw functionality in SQL databases, use .query().














            
            

        
    



        
        
    
    


        
        

    
        Query

        
            
            
                .query()

.query() is only available on Sails/Waterline models using a SQL database (PostgreSQL and mySQL) adapter.  Its purpose is to perform raw SQL queries.

Example

Pet.query('SELECT pet.name FROM pet', function(err, results) {
  if (err) return res.serverError(err);
  return res.ok(results);
});


Notes


This method only works with PostgreSQL and mySQL! use .native() for Mongo.












            
            

        
    



        
        
    
    


        
        

    
        Stream

        
            
            
                .stream( criteria )

Purpose

This method uses a node write stream to pipe model data as it is retrieved without first having to buffer all of the results to memory.  

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Find Criteria
	{},[{}], string, int
	Yes



	2
	Custom Write/End Methods
	{}
	No





Returned




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Stream of Records
	stream





Example Usage

UsersController.js

module.exports = {

  testStream: function(req,res){

    if (req.param('startStream') && req.isSocket){

        var getSocket = req.socket;

        // Start the stream.  Pipe it to sockets.
        User.stream({name:'Walter'}).pipe(getSocket.emit);

    } else {

      res.view();

    }


  }
}
`


views/users/testSocket.ejs

<script type="text/javascript">
window.onload = function startListening(){
    socket.on('gotUser',function(data){
      console.log(data.name+' number '+data.id+' has joined the party');
    });
};

</script>
<div class="addButton" onClick="socket.get('/users/testStream/',{startStream:true})">Stream all the Users !</div>


Notes


This method is useful for piping data from VERY large models straight to res.  You can also pipe it other places.  See the node stream docs for more info.
Only the mongo, mysql, and posgresql adapters support this method.  This won't work with the disk adapter.
Any string arguments passed must be the ID of the record.












            
            

        
    



        
        
    
    


        
        

    
        Update

        
            
            
                .update()

Purpose

Updates existing records in the database that match the specified criteria.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Find Criteria
	{},[{}], string, int
	Yes



	2
	Updated Records
	{},[{}]
	Yes



	3
	Callback
	function
	No





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Sucessfully Updated Records
	[{}]





Example Usage

User.update({name:'Walter Jr'},{name:'Flynn'}).exec(function afterwards(err,updated){

  if (err) {
    // handle error here- e.g. `res.serverError(err);`
    return;
  }

  console.log('Updated user to have name '+updated[0].name);
});


Notes



	An array of primary key values passed to .update() for a collection association will set the association to contain only the records with those primary key values provided.  That is- it unlinks all other records from the association.

	Although you may pass .update() an object or an array of objects, it will always return an array of objects.

	If you specify a primary key (e.g. 7 or "50c9b254b07e040200000028") instead of a criteria object, any .where() filters will be ignored.

	Currently, calling .populate() on an .update() query has no effect.  To populate attributes on the results, you should follow up your update with a find().populate() query.














            
            

        
    



        
        
    
    


        
        

    
        Populated Values

        
            
            
                Populated Values

In addition to basic attribute data like email addresses, phone numbers, and birthdates, Waterline can dynamically store and retrieve linked sets of records using associations.  When .populate() is called on a query, each of the resulting records will contain one or more populated values.  Each one of those populated values is a snapshot of the record(s) linked to that particular association at the time of the query.

The type of a populated value is either:


	null, or a plain old JavaScript object (POJO), or  (if it corresponds to a "model" association)

	an empty array, or an array of plain old JavaScript objects (if it corresonds to a "collection" association)



For example, assuming we're dealing with orders of adorable wolf puppies:

Order.find()
.populate('buyers')  // a "collection" association
.populate('seller')  // a "model" association
.exec(function (err, orders){

  // this array is a snapshot of the Customers who are associated with the first Order as "buyers"
  orders[0].buyers;
  // => [ {id: 1, name: 'Rob Stark'}, {id: 6, name: 'Arya Stark'} ]

  // this object is a snapshot of the Company that is associated with the first Order as the "seller"
  orders[0].seller;
  // => { id: 42941, corporateName: 'WolvesRUs Inc.' }

  // this array is empty because the second Order doesn't have any "buyers"
  orders[1].buyers;
  // => []

  // this is `null` because there is no "seller" associated with the second Order
  orders[1].seller;
  // => null
});


Modifying populated values

Changes to populated values are persisted (i.e. saved to the database) by calling .save() on the record they are attached to.  You cannot call .save() directly on a populated value.

Changing or remove the linked record of a "model" association can be accomplished by simply setting the property directly on the original record:

orders[1].seller = { corporateName: 'Wolf Orphanage' };


"collection" associations, on the other hand, do have a couple of special (non-enumerable) methods for associating and disassociating linked records.  However, .save() must still be called on the original record in order for changes to be persisted to the database.

orders[1].buyers.add({ name: 'Jon Snow' });
orders[1].save(function (err) { ... });


Example

Finally, to put it all together:

Order.find()
.populate('buyers')
.exec(function (err, orders){

  orders[1].buyers.add({ name: 'Jon Snow' });
  orders[1].seller = { corporateName: 'Wolf Orphanage' };
  orders[1].save(function (err) {
    // We successfully created a new Customer named Jon and added
    // him to `order[1]` as one of its "buyers".
    // We also created a new company and set it as `order[1]`'s "seller".
    //
    // If we had provided only a primary key value instead of an object,
    // in both cases Waterline would have tried to associate existing
    // Customer and Company records rather than creating new ones.
  });

});







            
            

        
    



        
        
    
    


        
        

    
        Add

        
            
            
                * .add( primary key )

Purpose

Used to add records to the join table that is automatically generated during a Many-to-Many association.  It accepts either the primary key of the model instance (defaults to record ID) or a new record (object) that you want created and to be associated with.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Records
	{}, string, int
	Yes





Example Usage

User.find({name:'Mike'}).populate('pets').exec(function(e,r){
  r[0].pets.add(7);
  r[0].save(function(err,res){
    console.log(res);
  }
});

/*

{ pets:
   [ { name: 'Pinkie Pie',
       color: 'pink',
       id: 7,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) },
     { name: 'Rainbow Dash',
       color: 'blue',
       id: 8,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) },
     { name: 'Applejack',
       color: 'orange',
       id: 9,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) } ],
  name: 'Mike',
  age: 16,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 19:30:54 GMT-0600 (CST),
  id: 7 }

*/


Notes



	.add() does not accept arrays of any kind.  Don't try it.

	Any string arguments passed must be the primary key of the record.

	.add() alone won't actually persist the change in associations to the databse.  You should call .save() after using .add() or .remove().














            
            

        
    



        
        
    
    


        
        

    
        Remove

        
            
            
                *.remove( primary key )

Purpose

Used to remove records from the join table that is automatically generated during a many-to-many association. Unlike .add(), it only accepts the primary key of the model instance (defaults to record ID).

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Primary Key
	string, int
	Yes





Example Usage


User.find({name:'Mike'}).populate('pets').exec(function(e,r){
  r[0].pets.remove(7);
  r[0].save(console.log)
});

  /*

{ pets:
   [ { name: 'Rainbow Dash',
       color: 'blue',
       id: 8,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) },
     { name: 'Applejack',
       color: 'orange',
       id: 9,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) } ],
  name: 'Mike',
  age: 16,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 19:30:54 GMT-0600 (CST),
  id: 7 }

  */


Notes



	Any string arguments passed must be the primary key of the record.

	.remove() alone won't actually persist the change in associations to the databse.  You should call .save() after using .add() or .remove().














            
            

        
    



        
        
    
    


        
        

    
        Queries

        
            
            
                Working with Queries

Chainable deferred objects returned from Waterline model methods like .find() and .create().

var query = Stuff.find();


You have likely already interacted with query objects in your Sails app. Most of the time, you probably won't think about them as objects per se, rather just another part of the syntax for communicating with the database.

The primary purpose of Waterline query instances is to provide a convenient, chainable syntax for working with your models.  Methods like .populate(), .where(), and .sort() allow you to refine database calls before they're sent down the wire.  When you're ready to fire the query off to the database, you can just call .exec().

Promises

In addition to the .exec() method, Waterline queries implement a partial integration with the q promise library, exposing .then() and .catch() methods.

Stuff.find()
.then(function (allTheStuff) {...})
.catch(function (err) {...});


If you are a fan of promises, and have a reasonable amount of experience with them, you should have no problem working with this interface.  However if you are not very familiar with promises, or don't care one way or another, you will probably have an easier time working with .exec(), which uses standard Node.js callback conventions.

Stuff.find()
.exec(function (err, allTheStuff) {...})


Query Execution

When you execute a query, a lot happens:

Zookeeper.find().exec(function (err, zookeepers){
  // would you look at all those zookeepers?
});


First, it is "shaken out" by Waterline core into a normalized criteria object.  Then it passes through the relevant Waterline adapter(s) for translation to the raw query syntax of your database(s) (e.g. Redis or Mongo commands, various SQL dialects, etc.)  Finally, each involved adapter uses its native Node.js database driver to send the query out over the network to the corresponding physical database.

When the adapter receives a response, it is marshalled to the Waterline interface spec and passed back up to Waterine core, where it is integrated with any other raw adapter responses into a coherent result set.  At that point, it undergoes one last normalization before being passed back to your callback for consumption by your app.

Notes



	Waterline model methods will NOT return a query instance if an optional callback is directly passed as the final argument.  Instead, that callback will be triggered when the query is complete.










            
            

        
    



        
        
    
    


        
        

    
        Exec

        
            
            
                .exec(callback)

Purpose

This is run at the end of a chain of stringable methods.  It signals the adapter to run the query. 

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Callback
	function
	Yes





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Data Returned
	{}, [{}], int





Example Usage

// refer to any of the examples above


Notes


The .find() method returns a chainable object if you don't supply a callback.  This method can be chained to .find() to further filter your results.

If you don't run .exec(), your query will not execute.












            
            

        
    



        
        
    
    


        
        

    
        Limit

        
            
            
                .limit(integer)

Purpose

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Number to Return
	int
	Yes





Example Usage

var myQuery = User.find();
myQuery.limit(12);

myQuery.exec(function callBack(err,results){
    console.log(results)
    });


Notes


The .find() method returns a chainable object if you don't supply a callback.  This method can be chained to .find() to further filter your results.












            
            

        
    



        
        
    
    


        
        

    
        Populate

        
            
            
                .populate( foreignKey, [query] )

Purpose

This chainable method is used between .find()/.update() and .exec() in order to retrieve records associated with the model being queried.  You must supply the Foreign Key specified in your model config.  

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Foreign Key
	string
	Yes



	2
	Query
	object
	No





Example Usage


User.find({name:'Mike'}).exec(function(e,r){
  console.log(r[0].toJSON())
})

/* 
{ name: 'Mike',
  age: 16,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  id: 7 }
*/

User.find({name:'Mike'}).populate('pets').exec(function(e,r){
  console.log(r[0].toJSON())
});

/*
{ pets: 
   [ { name: 'Pinkie Pie',
       color: 'pink',
       id: 7,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) },
     { name: 'Rainbow Dash',
       color: 'blue',
       id: 8,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) },
     { name: 'Applejack',
       color: 'orange',
       id: 9,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) } ],
  name: 'Mike',
  age: 16,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  id: 7 }
*/

User.find({name:'Mike'}).populate('pets',{color:'pink'}).exec(function(e,r){
  console.log(r[0].toJSON())
});

/*
{ pets: 
   [ { name: 'Pinkie Pie',
       color: 'pink',
       id: 7,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) }],
  name: 'Mike',
  age: 16,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  id: 7 }
*/


Notes


Any string arguments passed must be the primary key of the record.












            
            

        
    



        
        
    
    


        
        

    
        Populate All

        
            
            
                .populateAll( [query] )

Purpose

This chainable method is used between .find()/.update() and .exec() in order to retrieve records associated with the model being queried.  All known associations of your model will be populated and the query will be applied to each of them.  

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Query
	object
	No





Example Usage


User.find({name:'Mike'}).exec(function(e,r){
  console.log(r[0].toJSON())
})

/* 
{ name: 'Mike',
  age: 16,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  id: 7 }
*/

User.find({name:'Mike'}).populateAll().exec(function(e,r){
  console.log(r[0].toJSON())
});

/*
{ poneys:
   [ { name: 'Twinky',
       color: 'brown',
       id: 1,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) } ],
  pets: 
   [ { name: 'Pinkie Pie',
       color: 'pink',
       id: 7,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) },
     { name: 'Rainbow Dash',
       color: 'blue',
       id: 8,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) },
     { name: 'Applejack',
       color: 'orange',
       id: 9,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) } ],
  name: 'Mike',
  age: 16,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  id: 7 }
*/

User.find({name:'Mike'}).populateAll({color:'pink'}).exec(function(e,r){
  console.log(r[0].toJSON())
});

/*
{ pets: 
   [ { name: 'Pinkie Pie',
       color: 'pink',
       id: 7,
       createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
       updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST) }],
  name: 'Mike',
  age: 16,
  createdAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  updatedAt: Wed Feb 12 2014 18:06:50 GMT-0600 (CST),
  id: 7 }
*/


Notes


Any string arguments passed must be the primary key of the record.












            
            

        
    



        
        
    
    


        
        

    
        Skip

        
            
            
                .skip(integer)

Purpose

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Number to Skip
	int
	Yes





Example Usage

var myQuery = User.find();
myQuery.skip(12);

myQuery.exec(function callBack(err,results){
    console.log(results)
    });


Notes


The .find() method returns a chainable object if you don't supply a callback.  This method can be chained to .find() to further filter your results.












            
            

        
    



        
        
    
    


        
        

    
        Sort

        
            
            
                .sort(string)

Purpose

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Sort String
	string
	Yes





Example Usage

var myQuery = User.find();

var sortString= 'name ASC';

// Sort strings look like this

// '<Model Attribute> <sort type>' 

myQuery.sort('name ASC');

myQuery.exec(function callBack(err,results){
    console.log(results)
    });


Notes


The .find() method returns a chainable object if you don't supply a callback.  This method can be chained to .find() to further filter your results.

Other Sort Types include


	ASC

	DESC














            
            

        
    



        
        
    
    


        
        

    
        Where

        
            
            
                .where(criteria)

Purpose

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Criteria Object
	{}
	Yes





Example Usage

var myQuery = User.find();
myQuery.where({'name':{startsWith:'W'}});

myQuery.exec(function callBack(err,results){
    console.log(results)
    });


Notes


The .find() method returns a chainable object if you don't supply a callback.  This method can be chained to .find() to further filter your results.












            
            

        
    



        
        
    
    


        
        

    
        Records

        
            
            
                Records

A record is a uniquely identifiable object that corresponds 1-to-1 with a database entry; e.g. a row in Oracle/MSSQL/PostgreSQL/MySQL, a document in MongoDB, or a hash in Redis.

Order.findOne().exec(function (err, order){
  var record = order;
});


For the most part, records are just plain old JavaScript objects (aka POJOs).  However they do have a few protected (non-enumerable) methods for formatting their wrapped data, as well as a special method (.save()) for persisting programmatic changes to the database.






            
            

        
    



        
        
    
    


        
        

    
        Save

        
            
            
                * .save(callback)

Purpose

The save() method updates your record in the database using the current attributes.  It then returns the newly saved object in the callback. 

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Callback
	function
	Yes





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error



	2
	Saved Record
	{ }





Example Usage

User.find().exec(
  function(err,myRecords){

    // Grab a record off the top of the returned array and save a new attribute to it
    var getOneRecord = myRecords.pop();
    getOneRecord.name = 'Hank';
    getOneRecord.save(
      function(err,s){
        console.log('User with ID '+s.id+' now has name '+s.name);
      });
  });

// User with ID 1 now has name Hank

// Don't forget to handle your errors.
// Don't forget to abide by the rules you set in your model


Notes


This is an instance method.  Currently, instance methods ARE NOT TRANSACTIONAL.  Because of this, it is recommended that you use the equivalent model method instead.  












            
            

        
    



        
        
    
    


        
        

    
        To JSON

        
            
            
                .toJSON()

Purpose

This method also returns a cloned model instance.  This one however includes all instance methods.  Be sure to read the notes on this one.

Overview

Return Value




	
	Description
	Possible Data Types





	
	Cloned Record
	{ }





Example Usage

User.find().exec(
  function(err,myRecord){
    var datUser = myRecord.pop().toObject();
    console.log(datUser);
  });

/* { id: 2,
  createdAt: '2013-10-31T22:42:25.459Z',
  updatedAt: '2013-11-01T20:12:55.534Z',
  name: 'Hank',
  phoneNumber: '101-150-1337' } */

User.find().exec(
  function(err,myRecord){
    var datUser = myRecord.pop().toJSON();
    console.log(datUser);
  });

/* { id: 2,
  createdAt: '2013-10-31T22:42:25.459Z',
  updatedAt: '2013-11-01T20:12:55.534Z',
  name: 'Hank' } */



// Don't forget to handle your errors


For model

module.exports = {
  attributes: {
    name: 'string',
    phoneNumber: 'string',

    // Override the default toJSON method

    toJSON: function() {
      var obj = this.toObject();
      delete obj.phoneNumber;
      return obj;
    }
  }
}


Notes


The real power of toJSON relies on the fact every model instance sent out via res.json is first passed through toJSON.
Instead of writing custom code for every controller action that uses a particular model (including the "out of the box" blueprints), you can manipulate outgoing records by simply overriding the default toJSON function in your model.
You would use this to keep private data like email addresses and passwords from being sent back to every client.

This is an instance method.  Currently, instance methods ARE NOT TRANSACTIONAL.  Because of this, it is recommended that you use the equivalent model method instead.  












            
            

        
    



        
        
    
    


        
        

    
        To Object

        
            
            
                .toObject()

Purpose

The toObject method returns a cloned model instance (record) but stripped of all instance methods.

Overview

Return Value




	
	Description
	Possible Data Types





	
	Cloned Record
	{ }





Example Usage

See usage in .toJSON()

Notes


You will only want to use .toObject when overriding the default .toJSON instance method.












            
            

        
    



        
        
    
    


        
        

    
        Validate

        
            
            
                * .validate(callback)

Purpose

Checks the current keys/values on the record against the validations specified in the attributes object of your model. 

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Callback
	function
	Yes





Callback Parameters




	
	Description
	Possible Data Types





	1
	Error
	Error





Example Usage

User.find().exec(
  function(err,myRecords){

    // Grab a record off the top, change it to the wrong data type, then try to validate
    var getOneRecord = myRecords.pop();
    getOneRecord.name = ['Marie','Hank'];
    getOneRecord.name.validate(
      function(err){
        if (err)
          console.log(JSON.stringify(err));
      });
  });

// {"ValidationError":{"name":[{"data":["Marie","Hank"],"message":"Validation error: \"Marie,Hank\" is not of type \"string\"","rule":"string"}]}}


For model

module.exports = {

  attributes: {
    name: 'string'

  }

};


Notes


This is shorthand for Model.validate({ attributes }, cb)
If you .save() without first validating, Waterline tries to convert.  If it can't, it will throw an error.
In this case, it would have converted the array to the string 'Marie,Hank'

There will be no parameters in the callback unless there is an error.  No news is good news.

This is an instance method.  Currently, instance methods ARE NOT TRANSACTIONAL.  Because of this, it is recommended that you use the equivalent model method instead.  












            
            

        
    



        
        
    
    


        
        

    
        Websockets

        
            
            
                WebSockets

Overview

There are two main continents in the world of WebSockets- the client (e.g. browser) and the server (e.g. your routes, controllers, and so forth).






            
            

        
    



        
        
    
    


        
        

    
        Resourceful Pubsub

        
            
            
                Resourceful PubSub

Overview

For apps that rely heavily on real-time client-server communication--for example, peer-to-peer chat and social networking apps--sending and listening for socket events can quickly become overwhelming.  Sails helps smooth away some of this complexity by introducing the concept of Resourceful PubSub (Publish / Subscribe).  Every model (AKA resource) in your app is automatically equipped with class methods for subscribing sockets to notifications about instance creations, updates and deletions.  If you’re using the Blueprint API, socket messages are automatically broadcast to subscribed sockets when a model event occurs.  If not, you can use the methods described in this section to manually communicate model events to clients.

Listening for events on the client

While you are free to use any Javascript library to listen for socket events on the client, Sails does provide its own Socket Client as a convenient way to communicate with the server.  Using the Sails socket client makes listening for resourceful pubsub events as easy as:

io.socket.on("<model name>", listenerFunction)

Example

Let’s say you have a model named User in your app, with a single “name” attribute.  First, we’ll add a listener for “user” events:

io.socket.on("user", function(event){console.log(event);})

This will log any notifications about User models to the console.  However, we won’t receive any such messages until we subscribe to the existing User model instances.  If you’re using the default blueprints, you can subscribe by making a socket request from the client to /user:

io.socket.get("/user", function(resData, jwres) {console.log(resData);})

This requests the current list of users from the Sails server, and subscribes the client to events about each user.  Additionally, if the autoWatch setting is on (the default), the client will also be notified whenever a new User is created, and will automatically be subscribed to the new user.  The callback in this example simply logs the user list to the console.  See the socket.get reference for more info about this method.

It’s important to note that in order for the subscription to take place, the /user request must be made via a websocket call, not a regular HTTP request.  That is, using an AJAX request (e.g. jQuery.get("/user")) will not result in the client being subscribed to resourceful pubsub messages about User.  However, once the subscription is made, any changes to models--whether they be the result of a socket call, an AJAX request, even a cURL request from the command line--will cause the client to receive a notification.  Continuing with the above example, if you were to open up a new browser window and go to the following URL:

/user/create?name=joe

You would see something like the following in the console of the first window:

{
    data: {
        createdAt: "2014-08-01T05:50:19.855Z"
        id: 1
        name: "joe"
        updatedAt: "2014-08-01T05:50:19.855Z"
    },
    id: 1,
    verb: "created"
}

The verb indicates the kind of action that occurred.  The id refers to the instance that the action occurred on, and data contains more information about the User that was acted upon.  Each event type sends back slightly different information; see the individual resourceful pubsub method reference documents for more info.






            
            

        
    



        
        
    
    


        
        

    
        Message

        
            
            
                .message( models,data, [request] )

Purpose

Publishes a custom message to a model’s subscribers.




	
	Description
	Accepted Data Types
	Required ?





	1
	Record (or ID of record) to send message to
	int, string, object
	Yes



	2
	Message payload
	object
	Yes



	3
	Request
	request object
	No





message() emits a socket message using the model identity as the event name.  The message is broadcast to all sockets subscribed to the model instance via the .subscribe model method.

The socket message is an object with the following properties:


	id - the id attribute of the model instance

	verb  - "messaged" (a string)

	data - the message payload



data

Arbitrary data to send to the subscribed sockets.

request

If this argument is included then the socket attached to that request will not receive the notification.










            
            

        
    



        
        
    
    


        
        

    
        Publish Add

        
            
            
                .publishAdd( {id},attribute, idAdded, [request], [options] )

Purpose

Publishes a notification when an associated record is added to a model's collection.  For example, if a User model has an association with the Pet model so that a user can have one or more pets available in its pets attribute, then any time a new pet is associated with a user publishAdd may be called.




	
	Description
	Accepted Data Types
	Required ?





	1
	ID of Updated Record
	int, string
	Yes



	2
	Attribute of associated collection
	string
	Yes



	3
	ID of associated record that was added
	int, string
	Yes



	4
	Request
	request object
	No



	5
	Additional Options
	object
	No





publishAdd() emits a socket message using the model identity as the event name.  The message is broadcast to all sockets subscribed to the model instance via the .subscribe model method.

The socket message is an object with the following properties:


	id - the id attribute of the model instance

	verb  - "addedTo" (a string)

	attribute - the name of the model attribute that was added to

	addedId - the ID of the record that was added



request

If this argument is included then the socket attached to that request will not receive the notification.

options.noReverse

See the documentation for publishUpdate for information about options.noReverse.  In general, you should not have to set this argument unless you are writing your own implementation of publishAdd for a model.










            
            

        
    



        
        
    
    


        
        

    
        Publish Create

        
            
            
                .publishCreate( data,[request] )

Purpose

PublishCreate doesn't actually create anything.  It simply publishes information about the creation of a model instance via websockets.  PublishCreate is called automatically by the blueprint create action.




	
	Description
	Accepted Data Types
	Required ?





	1
	Data to Send
	object
	Yes



	2
	Request
	Request object
	No





The default implementation of publishCreate only publishes messages to the firehose, and to sockets subscribed to the model class using the watch method.  It also subscribes all sockets "watching" the model class to the new instance.  The socket message to subscribers will include the following properties:


	id - the id attribute of the new model instance

	verb  - "created" (a string)

	data - an object-- the attributes and values of the new model instance



data

An object containing the attributes and values of the new model instance.

request

If this argument is included then the socket attached to that request will not receive the notification.

Example Usage

UsersController.js

module.exports = {

  testSocket: function(req,res){

        var nameSent = req.param('name');

        if (nameSent && req.isSocket){

          User.create({name:nameSent}).exec(function created(err,newGuy){
            User.publishCreate({id:newGuy.id,name:newGuy.name});
            console.log('A new user called '+newGuy.name+' has been created');
          });

        } else if (req.isSocket){

          User.watch(req);
          console.log('User with socket id '+sails.sockets.id(req)+' is now subscribed to the model class \'users\'.');

        } else {

          res.view();

        }
    }
}

    // Don't forget to handle your errors


views/users/testSocket.ejs


<script type="text/javascript">
window.onload = function subscribeAndListen(){
    // When the document loads, send a request to users.testSocket
    // The controller code will subscribe you to the model 'users'
    socket.get('/users/testSocket/');

    // Listen for the event called 'user' emited by the publishCreate() method.
    socket.on('user',function(obj){
      if (obj.verb == 'created') {
         var data = obj.data;
         console.log('User '+data.name+' has been created.');
      }
    });
};

function makeNew(){

    // Send the new users name to the 'testSocket' action on the 'users' contoller

    socket.get('/users/testSocket/',{name:'Walter'});
}

</script>
<div class="addButton" onClick="makeNew()">Click Me to add a new 'Walter' ! </div>











            
            

        
    



        
        
    
    


        
        

    
        Publish Destroy

        
            
            
                .publishDestroy( {id}, [request], [options] )

Purpose

Publish the destruction of a model




	
	Description
	Accepted Data Types
	Required ?





	1
	ID of Destroyed Record
	int, string
	Yes



	2
	Request
	request object
	No



	3
	Additional options
	object
	No





publishDestroy() emits a socket message using the model identity as the event name.  The message is broadcast to all sockets subscribed to the model instance via the .subscribe model method.

The socket message is an object with the following properties:


	id - the id attribute of the model instance

	verb  - "destroyed" (a string)

	previous - an object--if present, contains the attributes and values of the object that was destroyed.



request

If this argument is included then the socket attached to that request will not receive the notification.

options.previous

If this is set, it is expected to be a representation of the model before it was destroyed.  This may be used to send out additional notifications to associated records.

Example Usage

UsersController.js

module.exports = {

  testSocket: function(req,res){

        var nameSent = req.param('name');

        if (nameSent && req.isSocket){

          User.findOne({name:nameSent}).exec(function findIt(err,foundHim){
            User.destroy({id:foundHim.id}).exec(function destroy(err){
              User.publishDestroy(foundHim.id);
            });
          });

        } else if (req.isSocket){

        User.find({}).exec(function(e,listOfUsers){
          User.subscribe(req.socket,listOfUsers);
        console.log('User with socket id '+req.socket.id+' is now subscribed to all of the model instances in \'users\'.');
        });

        } else {

          res.view();

        }

  }
}

    // Don't forget to handle your errors


views/users/testSocket.ejs


<script type="text/javascript">
window.onload = function subscribeAndListen(){
    // When the document loads, send a request to users.testSocket
    // The controller code will subscribe you to all of the 'users' model instances (records)
    socket.get('/users/testSocket/');

    // Listen for the event called 'message' emited by the publishDestroy() method.
    socket.on('message',function(obj){
      if (obj.verb == 'destroyed') {
        console.log('User '+obj.previous.name+' has been destroyed .');
      }
    });
};

function destroy(){

    // Send the name to the testSocket action on the 'Users' contoller
    socket.get('/users/testSocket/',{name:'Walter'});
}

</script>
<div class="addButton" onClick="destroy()">Click Me to destroy user 'Walter' ! </div>


Notes


Any string arguments passed must be the ID of the record.












            
            

        
    



        
        
    
    


        
        

    
        Publish Remove

        
            
            
                .publishRemove( {id},attribute, idRemoved, [request], [options] )

Purpose

Publishes a notification when an associated record is removed to a model's collection.  For example, if a User model has an association with the Pet model so that a user can have one or more pets available in its pets attribute, then any time a pet is removed from a user's pets collection, publishRemove may be called.




	
	Description
	Accepted Data Types
	Required ?





	1
	ID of Updated Record
	int, string
	Yes



	2
	Attribute of associated collection
	string
	Yes



	3
	ID of associated record that was removed
	int, string
	Yes



	4
	Request
	request object
	No



	5
	Additional Options
	object
	No





publishRemove() emits a socket message using the model identity as the event name.  The message is broadcast to all sockets subscribed to the model instance via the .subscribe model method.

The socket message is an object with the following properties:


	id - the id attribute of the model instance

	verb  - "removedFrom" (a string)

	attribute - the name of the model attribute that was removed from

	removedId - the ID of the record that was removed



request

If this argument is included then the socket attached to that request will not receive the notification.

options.noReverse

See the documentation for publishUpdate for information about options.noReverse.  In general, you should not have to set this argument unless you are writing your own implementation of publishRemove for a model.










            
            

        
    



        
        
    
    


        
        

    
        Publish Update

        
            
            
                .publishUpdate( {id},[changes],[request],[options] )

Purpose

PublishUpdate updates nothing.  It publishes information about the update of a model instance via websockets.




	
	Description
	Accepted Data Types
	Required ?





	1
	ID of Updated Record
	int, string
	Yes



	2
	Updated values
	{}
	No



	3
	Request
	request object
	No



	4
	Additional Options
	object
	No





publishUpdate() emits a socket message using the model identity as the event name.  The message is broadcast to all sockets subscribed to the model instance via the .subscribe model method.

The socket message is an object with the following properties:


	id - the id attribute of the model instance

	verb  - "updated" (a string)

	data - an object-- the attributes that were updated

	previous - an object--if present, the previous values of the updated attributes



changes

This should be an object containing any changed attributes and their new values.  

request

If this argument is included then the socket attached to that request will not receive the notification.

options.previous

If the options object contains a previous property, it is expected to be a representation of the model instance's attributes before they were updated.  This may be used to determine whether or not to publish additional messages (see the options.noReverse flag below for more info).

options.noReverse

The default implementation of publishUpdate will, if options.previous is present, check whether any associated records were affected by the update, and possibly send out additional notifications.  For example, if a Pet model has an owner attribute that is associated with the User model so that a user may own several pets, and the data sent with the call to publishUpdate indicates that the value of a pet's owner changed, then an additional publishAdd or publishRemove call may be made.  To suppress these notifications, set the options.noReverse flag to true.  In general, you should not have to set this flag unless you are writing your own implementation of publishUpdate for a model.

Example Usage

UsersController.js

module.exports = {

  testSocket: function(req,res){

        var nameSent = req.param('name');

        if (nameSent && req.isSocket){

          User.update({name:nameSent},{name:'Heisenberg'}).exec(function update(err,updated){
            User.publishUpdate(updated[0].id,{ name:updated[0].name });
          });

        } else if (req.isSocket){

        User.find({}).exec(function(e,listOfUsers){
          User.subscribe(req.socket,listOfUsers);
        console.log('User with socket id '+req.socket.id+' is now subscribed to all of the model instances in \'users\'.');
        });

        } else {

          res.view();

        }
    }
}

    // Don't forget to handle your errors


views/users/testSocket.ejs

<script type="text/javascript">
window.onload = function subscribeAndListen(){
    // When the document loads, send a request to users.testSocket
    // The controller code will subscribe you to all of the 'users' model instances (records)
    socket.get('/users/testSocket/');

    // Listen for the event called 'user'
    socket.on('user',function(obj){
      if (obj.verb == 'updated') {
        var previous = obj.previous;
        var data = obj.data;
        console.log('User '+previous.name+' has been updated to '+data.name);
      }
    });
};

function doEdit(){

    // Send the name to the testSocket action on the 'Users' contoller

    socket.get('/users/testSocket/',{name:'Walter'});
}

</script>
<div class="addButton" onClick="doEdit()">Click Me to add a new User! </div>








<docmeta name="dis


            
            

        
    



        
        
    
    


        
        

    
        Subscribe

        
            
            
                .subscribe(request,records,[contexts])

Purpose

This subscribes clients to one or more existing model instances (records).  It allows clients to see message emitted by .publishUpdate(), .publishDestroy(), .publishAdd() and .publishRemove().




	
	Description
	Accepted Data Types
	Required ?





	1
	Request
	Request object
	Yes



	2
	Records
	[], object
	Yes



	3
	Contexts to subscribe to
	string, array
	No





Note: subscribe will only work when the request is made over a socket connection (e.g. using socket.get), not over an http connection (e.g. using jquery.get).

context

If you specify a specific context (or array of contexts) to subscribe to, you will only get messages sent in that context.  For example, User.subscribe(socket, user, 'update') will cause the socket to receive messages only when publishUpdate is called for user.  Subsequent calls to subscribe are cumulative, so if you called User.subscribe(socket, user, 'destroy') later with the same socket, that socket would then be subscribed to messages from both publishUpdate and publishDestroy.  

You can omit context to subscribe a socket to the default contexts for that model class.  The default contexts are defined by the autosubscribe property of the model class.  If autosubscribe is not present, then the default contexts are update, destroy, message (for custom messages), add:* and remove:* (publishAdd and publishRemove messages for associated models).

Example Usage

Controller Code


    // Subscribes client to ONLY the create and destroy events for every `User` record.

    User.find({}).exec(function(e,listOfUsers){
        User.subscribe(req.socket,listOfUsers,['create','destroy']);
    });

    // Don't forget to handle your errors


Blueprints and .subscribe()


By default, the blueprint find and findOne actions will call .subscribe() to subscribe a requesting socket to all returned records.  However, the blueprint update and delete actions will not cause a message to be sent to the requesting socket by default--only to the other connected sockets.  This is intended to allow the caller of io.socket.update() (for example) to use the client-side SDK's callback to handle the server response separately.  To force the blueprint actions to send messages to all sockets, including the requesting socket, set sails.config.blueprints.mirror to true.












            
            

        
    



        
        
    
    


        
        

    
        Unsubscribe

        
            
            
                .unsubscribe(request,records,[contexts])

Purpose

This method will unsubscribe a socket from one or more model instances.




	
	Description
	Accepted Data Types
	Required ?





	1
	Request
	Request object
	Yes



	2
	Records
	[], object
	Yes



	3
	Contexts to unsubscribe from
	string, array
	No





Note: unsubscribe will only work when the request is made over a socket connection (e.g. using socket.get), not over an http connection (e.g. using jquery.get).

context

See .subscribe() for a discussion of pubsub contexts.  Omit this argument to unsubscribe a socket from all contexts.

Example Usage

Controller Code

User.findOne({id: 123}).exec(function(err, userInstance) {
    User.unsubscribe(req.socket, userInstance);
});











            
            

        
    



        
        
    
    


        
        

    
        Unwatch

        
            
            
                .unwatch(request)

Purpose

This unsubscribes a client from publishCreate events for the model.




	
	Description
	Accepted Data Types
	Required ?





	1
	Request
	request object
	Yes





Note: unwatch will only work when the request is made over a socket connection (e.g. using socket.get), not over an http connection (e.g. using jquery.get).










            
            

        
    



        
        
    
    


        
        

    
        Watch

        
            
            
                .watch(request)

Purpose

This subscribes a client to publishCreate events for the model.  Any connections that are "watching" the model class will be automatically subscribed to new model instances that are created using the blueprint create method.




	
	Description
	Accepted Data Types
	Required ?





	1
	Request
	request object
	Yes





Note: watch will only work when the request is made over a socket connection (e.g. using socket.get), not over an http connection (e.g. using jquery.get).

Blueprints and .watch()


By default, the blueprint find and findOne actions will call .watch() on the model class.  This behavior can be changed for all models by setting the sails.config.blueprints.autoWatch to false, or for a specific model by setting autoWatch to false in the model's class file.












            
            

        
    



        
        
    
    


        
        

    
        sails.io.js

        
            
            
                Socket Client (sails.io.js)


This section of the docs is about the Sails socket client SDK for the browser.  It is written in JavaScript and is also usable on the server.

There are also a handful of community projects implementing Sails/Socket.io clients for native iOS, Android, and Windows Phone.



Overview

The Sails socket client (sails.io.js) is a tiny browser library that is bundled by default in new Sails apps.  It is a lightweight wrapper that sits on top of the Socket.IO client whose purpose is to make sending and receiving messages from your Sails backend as simple as possible.

The main responsibility of sails.io.js is to provide a familiar ajax-like interface for communicating with your Sails app using WebSockets/Socket.io.  That basically means providing .get(), .post(), .put(), and .delete() methods that let you take advantage of realtime features while still reusing the same backend routes you're using for the rest of your app.  In other words, running io.socket.post('/user') in your browser will be routed within your Sails app exactly the same as an HTTP POST request to the same route.

Can I use this with...

Yes.  The Sails socket client can be used to great effect with any front-end framework-- no matter whether it's angular, backbone, ember, knockout, etc.

Do I have to use this?

No. The Sails socket client is extremely helpful when building realtime/chat features in a browser-based UI, but like the rest of the assets/ directory, it is probably not particularly useful if you are building a native Android app, or an API with no user interface.

Fortunately, like every other boilerplate file and folder in Sails, the socket client is completely optional. To remove it, just delete assets/js/depencencies/sails.io.js.









            
            

        
    



        
        
    
    


        
        

    
        io.socket.on

        
            
            
                io.socket.on()

Starts listening for server-sent events from Sails with the specified eventIdentity.  Will trigger the provided callback function when a matching event is received.

Usage

io.socket.on(eventIdentity, function (msg) {
  // ...
});





	
	Argument
	Type
	Details





	1
	eventIdentity
	((string))
	The unique identity of a server-sent event, e.g. "recipe"



	2
	callback
	((function))
	Will be called when the server emits a message to this socket.





Callback




	
	Argument
	Type
	Details





	1
	msg
	((object))
	Message sent from the Sails server





Note that the callback will NEVER trigger until one of your back-end controllers, models, services, etc. sends a message to this socket.  Typically that is achieved one of the following ways:

Resourceful Pubsub Methods


	server publishes a message about a record to which this socket is subscribed (see Model.publishUpdate(), Model.publishDestroy(), and Model.subscribe())

	server publishes a message informing all permitted watcher sockets that a new record has been created in the model with the same identity as eventIdentity (see Model.publishCreate(/#/documentation/reference/websockets/resourceful-pubsub/publishCreate.html) and Model.watch())



Low-Level Socket Methods


	server emits a message to all known sockets (see sails.sockets.blast())

	server emits a message directly to this socket (io.socket) using its unique id (see sails.sockets.emit())

	server broadcasts to a room in which this socket (io.socket) has been allowed to join (remember that a socket only stays subscribed as long as it is connected-- i.e. as long as the browser tab is open)



Example

Listen for new orders and updates to existing orders:

io.socket.on('order', function onServerSentEvent (msg) {
  // msg => {...whatever the server published/emitted...}
});


Another example, this time using Angular:


Note that this Angular example assumes the backend calls publishCreate() at some point.



angular.module('cafeteria').controller('CheckoutCtrl', function ($scope) {

  $scope.orders = $scope.orders || [];

  if (!io.socket.alreadyListeningToOrders) {
    io.socket.alreadyListeningToOrders = true;
    io.socket.on('order', function onServerSentEvent (msg) {

      // Let's see what the server has to say...
      switch(msg.verb) {

        case 'created':
          $scope.orders.push(msg.data); // (add the new order to the DOM)
          $scope.$apply();              // (re-render)
          break;

        default: return; // ignore any unrecognized messages
      }
    });
  }
});


Notes



	When listening for resourceful pubsub calls, the eventIdentity is the same as the identity of the calling model (e.g. if you have a model "UserComment", the identity is "usercomment".)

	For context-- these types of server-sent events are sometimes referred to as "comet") messages.











            
            

        
    



        
        
    
    


        
        

    
        socket.delete

        
            
            
                socket.delete()

Sends a virtual DELETE request to a Sails server using Socket.io.

Usage

io.socket.delete(url, data, function (data, jwres){
  // ...
});





	
	Argument
	Type
	Details





	1
	url
	((string))
	The destination URL path, e.g. "/checkout".



	2
	data
	((*))
	Optional request data- if provided, will be URL encoded and appended to url (existing query string params in url will be preserved)



	3
	callback
	((function))
	Optional callback- if provided, will be called when the server responds.





Callback




	
	Argument
	Type
	Details





	1
	resData
	((*))
	Data received in the response from the Sails server (=== jwres.body, equivalent to the HTTP response body.)



	2
	jwres
	((JWR))
	The JSON WebSocket Response object.  Has headers, a body, and a statusCode.





Example

<script>
io.socket.delete('/users/9', function (resData) {
  resData; // => {id:9, name: 'Timmy Mendez', occupation: 'psychic'}
});
</script>







            
            

        
    



        
        
    
    


        
        

    
        socket.get

        
            
            
                socket.get()

Sends a virtual GET request to a Sails server using Socket.io.

Usage

io.socket.get(url, data, function (data, jwres){
  // ...
});





	
	Argument
	Type
	Details





	1
	url
	((string))
	The destination URL path, e.g. "/checkout".



	2
	data
	((*))
	Optional request data- if provided, will be URL encoded and appended to url (existing query string params in url will be preserved)



	3
	callback
	((function))
	Optional callback- if provided, will be called when the server responds.





Callback




	
	Argument
	Type
	Details





	1
	resData
	((*))
	Data received in the response from the Sails server (=== jwres.body, equivalent to the HTTP response body.)



	2
	jwres
	((JWR))
	The JSON WebSocket Response object.  Has headers, a body, and a statusCode.





Example

<script>
io.socket.get('/users/9', function (resData) {
  resData; // => {id:9, name: 'Timmy Mendez'}
});
</script>







            
            

        
    



        
        
    
    


        
        

    
        socket.post

        
            
            
                socket.post()

Sends a virtual POST request to a Sails server using Socket.io.

Usage

io.socket.post(url, data, function (data, jwres){
  // ...
});





	
	Argument
	Type
	Details





	1
	url
	((string))
	The destination URL path, e.g. "/checkout".



	2
	data
	((*))
	Optional request data- if provided, will be JSON-encoded and included as the virtual HTTP body



	3
	callback
	((function))
	Optional callback- if provided, will be called when the server responds.





Callback




	
	Argument
	Type
	Details





	1
	resData
	((*))
	Data received in the response from the Sails server (=== jwres.body, equivalent to the HTTP response body.)



	2
	jwres
	((JWR))
	The JSON WebSocket Response object.  Has headers, a body, and a statusCode.





Example

<script>
io.socket.post('/users', { name: 'Timmy Mendez' }, function (resData) {
  resData; // => {id:9, name: 'Timmy Mendez'}
});
</script>







            
            

        
    



        
        
    
    


        
        

    
        socket.put

        
            
            
                socket.put()

Sends a virtual PUT request to a Sails server using Socket.io.

Usage

io.socket.put(url, data, function (data, jwres){
  // ...
});





	
	Argument
	Type
	Details





	1
	url
	((string))
	The destination URL path, e.g. "/checkout".



	2
	data
	((*))
	Optional request data- if provided, will be JSON-encoded and included as the virtual HTTP body



	3
	callback
	((function))
	Optional callback- if provided, will be called when the server responds.





Callback




	
	Argument
	Type
	Details





	1
	resData
	((*))
	Data received in the response from the Sails server (=== jwres.body, equivalent to the HTTP response body.)



	2
	jwres
	((JWR))
	The JSON WebSocket Response object.  Has headers, a body, and a statusCode.





Example

<script>
io.socket.put('/users/9', { occupation: 'psychic' }, function (resData) {
  resData; // => {id:9, name: 'Timmy Mendez', occupation: 'psychic'}
});
</script>







            
            

        
    



        
        
    
    


        
        

    
        socket.request

        
            
            
                io.socket.request()

Sends a virtual request to a Sails server using Socket.io.

This method is wrapped by the other io.socket.*() request methods, which should be used instead.


	io.socket.get()

	io.socket.post()

	io.socket.put()

	io.socket.delete()



Please do not use io.socket.request() directly unless you know what you're doing.







            
            

        
    



        
        
    
    


        
        

    
        sails.sockets

        
            
            
                Sockets (sails.sockets)

Overview

Sails exposes several low-level methods for realtime communication with the client via sails.sockets.  These methods are implemented using a Socket.io connection which is available as sails.io; however, using the sails.sockets methods instead will future-proof your app against possible changes in underlying implementation.  If your app is mainly sending messages to the client regarding changes in your models, you should try and use the model PubSub methods instead.

Looking for sails.io?

For raw access to the underlying socket.io singleton, you can still access sails.io.  But starting with Sails v0.11, you should use sails.sockets for most low-level use-cases involving sockets, since sails.io may be deprecated in an upcoming release to allow for more flexibility/extensibility in the underlying socket implementation.







            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.blast

        
            
            
                sails.sockets.blast()

Broadcast a message to all sockets connected to the server.

sails.sockets.blast(data);


Or:


	sails.sockets.blast(eventName, data);

	sails.sockets.blast(data, socketToOmit);

	sails.sockets.blast(eventName, data, socketToOmit);



Usage




	
	Argument
	Type
	Details





	1
	eventName
	((string))
	Optional. Defaults to 'message'.



	2
	data
	((*))
	The data to send in the message.



	3
	socketToOmit
	((Socket))
	Optional. If provided, that request socket will not receive the message blasted out to everyone else.  Useful when the broadcast-worthy event is triggered by a requesting user who doesn't need to hear about it again.





Example

In a controller action...

sails.sockets.blast('user_logged_in', {
  msg: 'User #' + req.session.userId + ' just logged in.',
  user: {
    id: req.session.userId,
    username: req.session.username
  }
}, req.socket);


Notes



	The phrase "request socket" here refers to an application-layer WebSocket/Socket.io connection.  req.socket also exists for HTTP requests, but it refers to the underlying TCP socket at the transport layer, which is different.  Be sure and ensure req.isSocket == true before using req.socket with this method.










            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.broadcast

        
            
            
                sails.sockets.broadcast( roomName, [event], data, [socketToOmit] )

Broadcast a message to a room.

sails.sockets.broadcast(roomName, data);


Or:


	sails.sockets.broadcast(roomName, eventName, data);

	sails.sockets.broadcast(roomName, data, socketToOmit);

	sails.sockets.broadcast(roomName, eventName, data, socketToOmit);



Usage




	
	Argument
	Type
	Details





	1
	roomName
	((string))
	The room to broadcast a message in (see sails.sockets.join)



	2
	eventName
	((string))
	Optional. Defaults to 'message'.



	3
	data
	((*))
	The data to send in the message.



	4
	socketToOmit
	((Socket))
	Optional. If provided, that socket will not receive the message.  This is useful if you trigger the broadcast from a client, but don't want that client to receive the message itself (for example, sending a message to everybody else in a chat room).





Example

sails.sockets.broadcast('artsAndEntertainment', { msg: 'Hi there!' });


Notes



	The phrase "request socket" here refers to an application-layer WebSocket/Socket.io connection.  req.socket also exists for HTTP requests, but it refers to the underlying TCP socket at the transport layer, which is different.  Be sure and ensure req.isSocket == true before using req.socket with this method.










            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.emit

        
            
            
                sails.sockets.emit( socketIds, [event], data)

Purpose

Send a message to one or more sockets by ID.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	IDs of sockets to receive message
	string, array
	Yes



	2
	Event name
	string
	No



	3
	Message data
	object
	Yes





Example Usage

// Controller action

sayHiToFriend: function(req, res) {
    var friendId = req.param('friendId');
    sails.sockets.emit(friendId, 'privateMessage', {from: req.session.userId, msg: 'Hi!'});
    res.json({
      message: 'Message sent!'
    });
}







            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.id

        
            
            
                sails.sockets.id()

Gets the ID of a request socket object.

sails.sockets.id(socket);


Usage




	
	Argument
	Type
	Details





	1
	socket
	((Socket))
	A request socket (WebSocket/Socket.io) object 
 e.g. req.socket.





Once acquired, the socket object's ID can be used to send direct messages to that socket (see sails.sockets.emit) or get information about the rooms that the socket is subscribed to (see sails.sockets.socketRooms).

Example

// Controller action

getSocketID: function(req, res) {
  if (!req.isSocket) return res.badRequest();

  var socketId = sails.sockets.id(req.socket);
  // => "BetX2G-2889Bg22xi-jy"

  return res.ok('My socket ID is: ' + socketId);
}


Notes



	The phrase "request socket" here refers to an application-layer WebSocket/Socket.io connection.  req.socket also exists for HTTP requests, but it refers to the underlying TCP socket at the transport layer, which is different.  Be sure and ensure req.isSocket == true before using req.socket with this method.










            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.join

        
            
            
                sails.sockets.join()

Subscribes a socket to a generic room.

Usage

sails.sockets.join(socket, roomName);





	
	Argument
	Type
	Details





	1
	socket
	((string)) -or- ((socket))
	The socket to be subscribed.  May be specified by the socket's id or a raw socket object.



	2
	roomName
	((string))
	The name of the room to which the socket will be subscribed.  If the room does not exist yet, it will be created.





Example

In a controller action:

subscribeToFunRoom: function(req, res) {
  var roomName = req.param('roomName');
  sails.sockets.join(req.socket, roomName);
  res.json({
    message: 'Subscribed to a fun room called '+roomName+'!'
  });
}


Note: req.socket is only valid if the action is triggered via a socket request, e.g. socket.get('/subscribeToFunRoom/someRoomName')

Notes



	The phrase "request socket" here refers to an application-layer WebSocket/Socket.io connection.  req.socket also exists for HTTP requests, but it refers to the underlying TCP socket at the transport layer, which is different.  Be sure and ensure req.isSocket == true before using req.socket with this method.










            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.leave

        
            
            
                sails.sockets.leave( socket, roomName )

Purpose

Unsubscribe a socket from a generic room.

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Socket object
	object
	Yes



	2
	Room Name
	string
	Yes





Example Usage

// Controller action

leaveFunRoom: function(req, res) {
    var roomName = req.param('roomName');
    sails.sockets.leave(req.socket, roomName);
    res.json({
      message: 'Left a fun room called '+roomName+'!'
    });
}


Note: req.socket is only valid if the action is triggered via a socket request, e.g. socket.get('/leaveFunRoom/someRoomName')

Notes



	The phrase "request socket" here refers to an application-layer WebSocket/Socket.io connection.  req.socket also exists for HTTP requests, but it refers to the underlying TCP socket at the transport layer, which is different.  Be sure and ensure req.isSocket == true before using req.socket with this method.










            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.rooms

        
            
            
                sails.sockets.rooms()

Purpose

Get the list of all current socket rooms

Overview

Parameters

None.

Example Usage

// Controller action

getRoomsList: function(req, res) {
    var roomNames = JSON.stringify(sails.sockets.rooms());
    res.json({
      message: 'A list of all the rooms: '+roomNames
    });
}


Note: In Socket.io, all sockets are automatically subscribed to a global room with an empty name ('').  This room is not returned as part of the array in sails.sockets.rooms 






            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.socketRooms

        
            
            
                sails.sockets.socketRooms( socket )

Purpose

Get the list of rooms a socket is subscribed to

Overview

Parameters




	
	Description
	Accepted Data Types
	Required ?





	1
	Socket
	object
	Yes





Example Usage

// Controller action

getMyRooms: function(req, res) {
    var roomNames = JSON.stringify(sails.sockets.socketRooms(req.socket));
    res.json({
      message: 'I am subscribed to: '+roomNames
    });
}


Notes



	The phrase "request socket" here refers to an application-layer WebSocket/Socket.io connection.  req.socket also exists for HTTP requests, but it refers to the underlying TCP socket at the transport layer, which is different.  Be sure and ensure req.isSocket == true before using req.socket with this method.










            
            

        
    



        
        
    
    


        
        

    
        sails.sockets.subscribers

        
            
            
                sails.sockets.subscribers()

Get the IDs of all sockets subscribed to a room.

sails.sockets.subscribers(roomName);


Usage




	
	Argument
	Type
	Details





	1
	roomName
	((string))
	The name of the room whose socket ids should be retrieved. 
 e.g. 'supportchat'





Example

sails.sockets.subscribers('supportchat');
// => ['BetX2G-2889Bg22xi-jy', 'BTA4G-8126Kr32bi-za']








            
            

        
    



        
        
    
    


        
        

    
        Userguides

        
            
            
                Sails.js User Guides

Guides


This will be a top level documentation section on the sails.js website as soon as we get a little more content for it.



Sails.js was created by the Balderdash team out of necessity in order to quickly and efficiently make rock solid apps for our clients.  We then open sourced it so others could do the same.  Client work is still what pays the bills at Balderdash and while we love to work on Sails full time, we just can't.  This section is part of an ongoing effort to further open up the Sails.js framework to the community and keep Balderdash from constraining it's growth.

How can you help?

Think about how you have used Sails for your project then write a guide about it!

What should I write about?


	If you have a less than common use case, write a guide about it.

	If you had a hard time finding a solution to a particular problem while using Sails, write a guide describing your workaround.

	Are you doing something unconventional with Sails?  Write a guide.

	Are you using Sails for your embedded hardware project?  Please, for the love of God, write a guide!



Okay, I'll do it! Now what?

Thanks.  You're awesome!  Now, before you write anything, see the very first user guide in this folder under contributing.md

Legal Disclaimer

Just kidding about the legal disclaimer.  Seriously though, thank you for contibuting.  If it weren't for the help of folks like you, this project wouldn't be half of what it is today.  You guys rock.

Sincerely and Truly

Nick (@uncletammy)





            
            

        
    



        
        
    
    


        
        

    
        Contributing

        
            
            
                Contributing

Submit Your Own Guide

Submitting your own guide is easy.  Read this guide in its entirety before submitting a PR though.

Sails.js Documentation Structure

The documentation on the Sails.js website is automatically pulled down from the sails-docs github repo and all of the .md files which contain github flavored markdown are turned in html templates.  Every time the sails-docs repo changes, the changes are instantly reflected on the website.  

In order for this to work, the sails-docs repo must have a particular structure.  It's easy to follow though.

The Basics

Every folder must contain a .md file with the same (case sensitive) name.  A folder called SecuRity must contain SecuRity.md.  This file will be loaded when someone clicks the link on the guides navigation menu.

Every .md file must contain two <docmeta> tags.  They are required for automatically generating the navigation.  Without these tags, the template is ignored. 

The uniqueID tag is used by the router on the front-end of the Sails.js website.  The value can be anything as it's unique among all the other .md files.  We add some random numbers to it just in case. 

<docmeta name="uniqueID" value="someUniqueName85732">


The value of the displayName tag determines the link text on the navigation menu.  This does not need to be unique. 

<docmeta name="displayName" value="Name To Appear On Navigation">


Making a New Section

Lets say you want to create a guide called Socket.io Safety in a new section called Security.


	First, create the folder sails-docs/userguides/security/

	Next, create the file sails-docs/userguides/security/security.md

	Add your introduction/overview of the section to security.md and make sure to include your <docmeta> tags

	Now, create sails-docs/userguides/security/socketio.md and put the content for your guide in it.  Make sure to include <docmeta> tags



If there is already an appropriate section for your guide, skip to the last step.

The Contributed By section.

This section is entirely optional.  Feel free to use it to talk a little about yourself.

Example Stub

Feel free to copy and change the file guideStub.md

Contributed By

Nicholas Crumrine

A real West Texas cowboy with an affinity for cats

Link

https://twitter.com/ncrumrine

Organizations

Sails, Balderdash,cluckus





            
            

        
    



        
        
    
    


        
        

    
        Deployment

        
            
            
                Deployment

Deploying your app

Make sure you see 'before deployment' guide in 'security'

Picking a host

Here are some hosts...




            
            

        
    



        
        
    
    


        
        

    
        Nodejitsu

        
            
            
                Nodejitsu

Deploying to Nodejitsu

This guide was brought to you by

Name

Bio

Link

Organization

Etc...





            
            

        
    



        
        
    
    


        
        

    
        Openshift

        
            
            
                Openshift

Deploying to OpenShift

This guide was brought to you by

Name

Bio

Link

Organization

Etc...





            
            

        
    



        
        
    
    


        
        

    
        Guide Stub

        
            
            
                Document Stubb

This is a stub!

Here is some information

Contributed By

Name

Bio

Link

Organization

Etc...




            
            

        
    



        
        
    
    

deade1d3.png
module.exports = {

attributes: {

name: {

type: 'string'
h
wingspan: {

type: 'float’,
required: true

1,

wingspanUnits: {
type: 'string',
enum: ['cm', 'in',
defaultsTo: 'cm'

}

knownDialects: {

collection: 'Dialect’
1





cover.jpg
Sails.js B XH
(PHEEH)






