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Chapter 1

Introduction

Inventors have long dreamed of creating machines that think. Ancient Greek
myths tell of intelligent objects, such as animated statues of human beings and
tables that arrive full of food and drink when called.

When programmable computers were first conceived, people wondered whether
they might become intelligent, over a hundred years before one was built (Lovelace,

1842). Today, artificial intelligence (AI) is a thriving field with many practical
applications and active research topics. We look to intelligent software to auto-

mate routine labor, understand speech or images, make diagnoses in medicine,
and to support basic scientific research.

In the early days of artificial intelligence, the field rapidly tackled and solved
problems that are intellectually difficult for human beings but relatively straight-
forward for computers—problems that can be described by a list of formal, math-
ematical rules. The true challenge to artificial intelligence proved to be solving
the tasks that are easy for people to perform but hard for people to describe
formally—problems that we solve intuitively, that feel automatic, like recognizing
spoken words or faces in images.

This book is about a solution to these more intuitive problems. This solution

is to allow computers to learn from experience and understand the world in terms
of a hierarchy of concepts, with each concept defined in terms of its relation

to simpler concepts. By gathering knowledge from experience, this approach
avoids the need for human operators to formally specify all of the knowledge that
the computer needs. The hierarchy of concepts allows the computer to learn
complicated concepts by building them out of simpler ones. If we draw a graph
showing how these concepts are built on top of each other, the graph is deep, with
many layers. For this reason, we call this approach to AI deep learning.

Many of the early successes of AI took place in relatively sterile and formal
environments and did not require computers to have much knowledge about the

1



CHAPTER 1. INTRODUCTION

world. For example, IBM’s Deep Blue chess-playing system defeated world cham-
pion Garry Kasparov in 1997 (Hsu, 2002). Chess is of course a very simple world,
containing only sixty-four locations and thirty-two pieces that can move in only
rigidly circumscribed ways. Devising a successful chess strategy is a tremendous
accomplishment, but the challenge is not due to the difficulty of describing the
relevant concepts to the computer. Chess can be completely described by a very
brief list of completely formal rules, easily provided ahead of time by the pro-
grammer.

Ironically, abstract and formal tasks that are among the most difficult mental

undertakings for a human being are among the easiest for a computer. Com-
puters have long been able to defeat even the best human chess player, but are

only recently matching some of the abilities of average human beings to recog-
nize objects or speech. A person’s everyday life requires an immense amount of
knowledge about the world, and much of this knowledge is subjective and intu-
itive, and therefore difficult to articulate in a formal way. Computers need to
capture this same knowledge in order to behave in an intelligent way. One of the
key challenges in artificial intelligence is how to get this informal knowledge into
a computer.

Several artificial intelligence projects have sought to hard-code knowledge
about the world in formal languages. A computer can reason about statements in

these formal languages automatically using logical inference rules. This is known
as the knowledge base approach to artificial intelligence. None of these projects

has lead to a major success. One of the most famous such projects is Cyc (Lenat
and Guha, 1989). Cyc is an inference engine and a database of statements in
a language called CycL. These statements are entered by a staff of human su-
pervisors. It is an unwieldy process. People struggle to devise formal rules with
enough complexity to accurately describe the world. For example, Cyc failed to
understand a story about a person named Fred shaving in the morning (Linde,
1992). Its inference engine detected an inconsistency in the story: it knew that
people do not have electrical parts, but because Fred was holding an electric razor,
it believed the entity “FredWhileShaving” contained electrical parts. It therefore
asked whether Fred was still a person while he was shaving.

The difficulties faced by systems relying on hard-coded knowledge suggest that
AI systems need the ability to acquire their own knowledge, by extracting patterns

from raw data. This capability is known as machine learning. The introduction
of machine learning allowed computers to tackle problems involving knowledge
of the real world and make decisions that appear subjective. A simple machine
learning algorithm called logistic regression can determine whether to recommend
cesarean delivery (Mor-Yosef et al., 1990). A simple machine learning algorithm
called naive Bayes can separate legitimate e-mail from spam e-mail.

2



CHAPTER 1. INTRODUCTION

The performance of these simple machine learning algorithms depends heavily
on the representation of the data they are given. For example, when logistic
regression is used to recommend cesarean delivery, the AI system does not examine
the patient directly. Instead, the doctor tells the system several pieces of relevant
information, such as the presence or absence of a uterine scar. Each piece of
information included in the representation of the patient is known as a feature.
Logistic regression learns how each of these features of the patient correlates with
various outcomes. However, it cannot influence the way that the features are
defined in any way. If logistic regression was given a 3-D MRI image of the

patient, rather than the doctor’s formalized report, it would not be able to make
useful predictions. Individual voxels1 in an MRI scan have negligible correlation

with any complications that might occur during delivery.
This dependence on representations is a general phenomenon that appears

throughout computer science and even daily life. In computer science, operations
such as searching a collection of data can proceed exponentially faster if the collec-
tion is structured and indexed intelligently. People can easily perform arithmetic
on Arabic numerals, but find arithmetic on Roman numerals much more time
consuming. It is not surprising that the choice of representation has an enormous
effect on the performance of machine learning algorithms. For a simple visual
example, see Fig. 1.1.

Many artificial intelligence tasks can be solved by designing the right set of
features to extract for that task, then providing these features to a simple machine

learning algorithm. For example, a useful feature for speaker identification from
sound is the pitch. The pitch can be formally specified—it is the lowest frequency
major peak of the spectrogram. It is useful for speaker identification because it
is determined by the size of the vocal tract, and therefore gives a strong clue as
to whether the speaker is a man, woman, or child.

However, for many tasks, it is difficult to know what features should be ex-
tracted. For example, suppose that we would like to write a program to detect
cars in photographs. We know that cars have wheels, so we might like to use the
presence of a wheel as a feature. Unfortunately, it is difficult to describe exactly
what a wheel looks like in terms of pixel values. A wheel has a simple geometric

shape but its image may be complicated by shadows falling on the wheel, the sun
glaring off the metal parts of the wheel, the fender of the car or an object in the

foreground obscuring part of the wheel, and so on.
One solution to this problem is to use machine learning to discover not only

the mapping from representation to output but also the representation itself.
This approach is known as representation learning. Learned representations of-

1
A voxel is the value at a single point in a 3-D scan, much as a pixel as the value at a single

point in an image.
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Figure 1.1: Example of different representations: suppose we want to separate two cate-
gories of data by drawing a line between them in a scatterplot. In the plot on the left, we
represent some data using Cartesian coordinates, and the task is impossible. In the plot
on the right, we represent the data with polar coordinates and the task becomes simple
to solve with a vertical line. (Figure credit: David Warde-Farley)

ten result in much better performance than can be obtained with hand-designed
representations. They also allow AI systems to rapidly adapt to new tasks, with
minimal human intervention. A representation learning algorithm can discover a
good set of features for a simple task in minutes, or a complex task in hours to
months. Manually designing features for a complex task requires a great deal of

human time and effort; it can take decades for an entire community of researchers.
The quintessential example of a representation learning algorithm is the au-

toencoder. An autoencoder is the combination of an encoder function that converts
the input data into a different representation, and a decoder function that converts
the new representation back into the original format. Autoencoders are trained
to preserve as much information as possible when an input is run through the
encoder and then the decoder, but are also trained to make the new representa-
tion have various nice properties. Different kinds of autoencoders aim to achieve
different kinds of properties.

When designing features or algorithms for learning features, our goal is usually
to separate the factors of variation that explain the observed data. In this context,

we use the word “factors” simply to refer to separate sources of influence; the
factors are usually not combined by multiplication. Such factors are often not

quantities that are directly observed but they may exist either as unobserved
objects or forces in the physical world that affect observable quantities, or they
are constructs in the human mind that provide useful simplifying explanations
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or inferred causes of the observed data. They can be thought of as concepts or
abstractions that help us make sense of the rich variability in the data. When
analyzing a speech recording, the factors of variation include the speaker’s age
and sex, their accent, and the words that they are speaking. When analyzing an
image of a car, the factors of variation include the position of the car, its color,
and the angle and brightness of the sun.

A major source of difficulty in many real-world artificial intelligence applica-
tions is that many of the factors of variation influence every single piece of data
we are able to observe. The individual pixels in an image of a red car might be

very close to black at night. The shape of the car’s silhouette depends on the
viewing angle. Most applications require us to disentangle the factors of variation

and discard the ones that we do not care about.
Of course, it can be very difficult to extract such high-level, abstract features

from raw data. Many of these factors of variation, such as a speaker’s accent,
can only be identified using sophisticated, nearly human-level understanding of
the data. When it is nearly as difficult to obtain a representation as to solve the
original problem, representation learning does not, at first glance, seem to help
us.

Deep learning solves this central problem in representation learning by intro-
ducing representations that are expressed in terms of other, simpler represen-

tations. Deep learning allows the computer to build complex concepts out of
simpler concepts. Fig. 1.2 shows how a deep learning system can represent the

concept of an image of a person by combining simpler concepts, such as corners
and contours, which are in turn defined in terms of edges.

The quintessential example of a deep learning model is the multilayer percep-
tron (MLP). A multilayer perceptron is just a mathematical function mapping
some set of input values to output values. The function is formed by composing
many simpler functions. We can think of each application of a different mathe-
matical function as providing a new representation of the input.

The idea of learning the right representation for the data provides one per-
spective on deep learning. Another perspective on deep learning is that it allows
the computer to learn a multi-step computer program. Each layer of the repre-

sentation can be thought of as the state of the computer’s memory after executing
another set of instructions in parallel. Networks with greater depth can execute

more instructions in sequence. Being able to execute instructions sequentially of-
fers great power because later instructions can refer back to the results of earlier
instructions. According to this view of deep learning, not all of the information
in a layer’s representation of the input necessarily encodes factors of variation
that explain the input. The representation is also used to store state information
that helps to execute a program that can make sense of the input. This state
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Visible layer
(input pixels)

1st hidden layer

(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL
Output

(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to un-
derstand the meaning of raw sensory input data, such as this image represented as a
collection of pixel values. The function mapping from a set of pixels to an object identity
is very complicated. Learning or evaluating this mapping seems insurmountable if tack-
led directly. Deep learning resolves this difficulty by breaking the desired complicated
mapping into a series of nested simple mappings, each described by a different layer of
the model. The input is presented at the visible layer, so named because it contains the
variables that we are able to observe. Then a series of hidden layers extracts increasingly
abstract features from the image. These layers are called “hidden” because their values
are not given in the data; instead the model must determine which concepts are useful
for explaining the relationships in the observed data. The images here are visualizations
of the kind of feature represented by each hidden unit. Given the pixels, the first layer
can easily identify edges, by comparing the brightness of neighboring pixels. Given the
first hidden layer’s description of the edges, the second hidden layer can easily search for

corners and extended contours, which are recognizable as collections of edges. Given the
second hidden layer’s description of the image in terms of corners and contours, the third
hidden layer can detect entire parts of specific objects, by finding specific collections of
contours and corners. Finally, this description of the image in terms of the object parts
it contains can be used to recognize the objects present in the image. Images reproduced
with permission from Zeiler and Fergus (2014).
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Figure 1.3: Illustration of computational flow graphs mapping an input to an output
where each node performs an operation. Depth is the length of the longest path from input
to output but depends on the definition of what constitutes a possible computational step.
The computation depicted in these graphs is the output of a logistic regression model,
σ(wTx), where σ is the logistic sigmoid function. If we use addition, multiplication, and

logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

information could be analogous to a counter or pointer in a traditional computer
program. It has nothing to do with the content of the input specifically, but it

helps the model to organize its processing.
There are two main ways of measuring the depth of a model.
The first view is based on the number of sequential instructions that must be

executed to evaluate the architecture. We can think of this as the length longest
path through a flow chart that describes how to compute each of the model’s
outputs given its inputs. Just as two equivalent computer programs will have
different lengths depending on which language the program is written in, the
same function may be drawn as a flow chart with different depths depending on
which functions we allow to be used as individual steps in the flow chart. Fig. 1.3
illustrates how this choice of language can give two different measurements for

the same architecture.
Another approach, used by deep probabilistic models, examples not the depth

of the computational graph but the depth of the graph describing how concepts are
related to each other. In this case, the depth of the flow-chart of the computations
needed to compute the representation of each concept may be much deeper than
the graph of the concepts themselves. This is because the system’s understanding
of the simpler concepts can be refined given information about the more complex
concepts. For example, an AI system observing an image of a face with one eye in

shadow may initially only see one eye. After detecting that a face is present, it can
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then infer that a second eye is probably present as well. In this case, the graph of
concepts only includes two layers—a layer for eyes and a layer for faces—but the
graph of computations includes 2n layers if we refine our estimate of each concept
given the other n times.

Because it is not always clear which of these two views—the depth of the
computational graph, or the depth of the probabilistic modeling graph—is most
relevant, and because different people choose different sets of smallest elements
from which to construct their graphs, there is no single correct value for the depth
of an architecture, just as there is no single correct value for length of a computer

program. Nor is there a consensus about how much depth a model requires to
qualify as “deep.” However, deep learning can safely be regarded as the study of

models that either involve a greater amount of composition of learned functions
or learned concepts than traditional machine learning does.

To summarize, deep learning, the subject of this book, is an approach to AI.
Specifically, it is a type of machine learning, a technique that allows computer
systems to improve with experience and data. According to the authors of this
book, machine learning is the only viable approach to building AI systems that can
operate in complicated, real-world environments. Deep learning is a particular
kind of machine learning that achieves great power and flexibility by learning
to represent the world as a nested hierarchy of concepts and representations,

with each concept defined in relation to simpler concepts, and more abstract
representations computed in terms of less abstract ones. Fig. 1.4 illustrates the

relationship between these different AI disciplines. Fig. 1.5 gives a high-level
schematic of how each works.

1.1 Who Should Read This Book?

This book can be useful for a variety of readers, but we wrote it with two main
target audiences in mind. One of these target audiences is university students (un-
dergraduate or graduate) learning about machine learning, including those who
are beginning a career in deep learning and artificial intelligence research. The

other target audience is software engineers who do not have a machine learning or
statistics background, but want to rapidly acquire one and begin using deep learn-

ing in their product or platform. Software engineers working in a wide variety of
industries are likely to find deep learning to be useful, as it has already proven
successful in many areas including computer vision, speech and audio processing,
natural language processing, robotics, bioinformatics and chemistry, video games,
search engines, online advertising, and finance.

This book has been organized into three parts in order to best accommodate
a variety of readers. Part 1 introduces basic mathematical tools and machine
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AI

Machine learning

Representation learning

Deep learning
Example:

Knowledge

bases

Example:

Logistic

regression

Example:

Shallow

autoencoders

Example:

MLPs

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learn-
ing, which is in turn a kind of machine learning, which is used for many but not all
approaches to AI. Each section of the Venn diagram includes an example of an AI tech-

nology.
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Figure 1.5: Flow-charts showing how the different parts of an AI system relate to each

other within different AI disciplines. Shaded boxes indicate components that are able to
learn from data.
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learning concepts. Part 2 describes the most established deep learning algorithms
that are essentially solved technologies. Part 3 describes more speculative ideas
that are widely believed to be important for future research in deep learning.

Readers should feel free to skip parts that are not relevant given their interests
or background. Readers familiar with linear algebra, probability, and fundamental
machine learning concepts can skip part 1, for example, while readers who just
want to implement a working system need not read beyond part 2.

We do assume that all readers come from a computer science background. We
assume familiarity with programming, a basic understanding of computational

performance issues, complexity theory, introductory level calculus, and some of
the terminology of graph theory.

1.2 Historical Trends in Deep Learning

It is easiest to understand deep learning with some historical context. Rather
than providing a detailed history of deep learning, we identify a few key trends:

• Deep learning has had a long and rich history, but has gone by many names

reflecting different philosophical viewpoints, and has waxed and waned in
popularity.

• Deep learning has become more useful as the amount of available training

data has increased.

• Deep learning models have grown in size over time as computer hardware

and software infrastructure for deep learning has improved.

• Deep learning has solved increasingly complicated applications with increas-

ing accuracy over time.

1.2.1 The Many Names and Changing Fortunes of Neural Net-
works

We expect that many readers of this book have heard of deep learning as an
exciting new technology, and are surprised to see a mention of “history” in a
book about an emerging field. In fact, deep learning has a long and rich history.
Deep learning only appears to be new, because it was relatively unpopular for
several years preceding its current popularity, and because it has gone through
many different names. While the term “deep learning” is relatively new, the field

dates back to the 1950s. The field has been rebranded many times, reflecting the
influence of different researchers and different perspectives.
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A comprehensive history of deep learning is beyond the scope of this peda-
gogical textbook. However, some basic context is useful for understanding deep
learning. Broadly speaking, there have been three waves of development of deep
learning: deep learning known as cybernetics in the 1940s-1960s, deep learning
known as connectionism in the 1980s-1990s, and the current resurgence under the
name deep learning beginning in 2006. See Figure 1.6 for a basic timeline.

Figure 1.6: The three historical waves of artificial neural nets research, starting with
cybernetics in the 1940-1960’s, with the perceptron (Rosenblatt, 1958) to train a
single neuron, then the connectionist approach of the 1980-1995 period, with back-
propagation (Rumelhart et al., 1986a) to train a neural network with one or two hidden

layers, and the current wave, deep learning, started around 2006 (Hinton et al., 2006;
Bengio et al., 2007a; Ranzato et al., 2007a), which allows us to train very deep networks.

Some of the earliest learning algorithms we recognize today were intended
to be computational models of biological learning, i.e. models of how learning
happens or could happen in the brain. As a result, one of the names that deep
learning has gone by is artificial neural networks (ANNs). The corresponding

perspective on deep learning models is that they are engineered systems inspired
by the biological brain (whether the human brain or the brain of another ani-
mal). The neural perspective on deep learning is motivated by two main ideas.

One idea is that the brain provides a proof by example that intelligent behavior
is possible, and a conceptually straightforward path to building intelligence is to

reverse engineer the computational principles behind the brain and duplicate its
functionality. Another perspective is that it would be deeply interesting to under-
stand the brain and the principles that underlie human intelligence, so machine
learning models that shed light on these basic scientific questions are useful apart
from their ability to solve engineering applications.
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The modern term “deep learning” goes beyond the neuroscientific perspective
on the current breed of machine learning models. It appeals to a more general
principle of learning multiple levels of composition, which can be applied in ma-
chine learning frameworks that are not necessarily neurally inspired.

The earliest predecessors of modern deep learning were simple linear models
motivated from a neuroscientific perspective. These models were designed to
take a set of n input values x1, . . . , xn and associate them with an output y.
These models would learn a set of weights w1, . . . , wn and compute their output
f(x,w) = x1w1 + · · · + xnwn. This first wave of neural networks research was

known as cybernetics (see Fig. 1.6).
The McCulloch-Pitts Neuron (McCulloch and Pitts, 1943) was an early model

of brain function. This linear model could recognize two different categories of
inputs by testing whether f(x,w) is positive or negative. Of course, for the model
to correspond to the desired definition of the categories, the weights needed to be
set correctly. These weights could be set by the human operator. In the 1950s,
the perceptron (Rosenblatt, 1958, 1962) became the first model that could learn
the weights defining the categories given examples of inputs from each category.
The Adaptive Linear Element (ADALINE), which dates from the about the same
time, simply returned the value of f(x) itself to predict a real number (Widrow
and Hoff, 1960), and could also learn to predict these numbers from data.

These simple learning algorithms greatly affected the modern landscape of ma-
chine learning. The training algorithm used to adapt the weights of the ADALINE

was a special case of an algorithm called stochastic gradient descent. Slightly mod-
ified versions of the stochastic gradient descent algorithm remain the dominant
training algorithms for deep learning models today.

Models based on the f(x,w) used by the perceptron and ADALINE are called
linear models. These models remain some of the most widely used machine learn-
ing models, though in many cases they are trained in different ways than the
original models were trained.

Linear models have many limitations. Most famously, they cannot learn the
XOR function, where f([0, 1],w) = 1 and f([1, 0],w) = 1 but f([1, 1],w) = 0
and f([0, 0],w) = 0. Critics who observed these flaws in linear models caused

a backlash against biologically inspired learning in general (Minsky and Papert,
1969). This is the first dip in the popularity of neural networks in our broad

timeline (Fig. 1.6).
Today, neuroscience is regarded as an important source of inspiration for deep

learning researchers, but it is no longer the predominant guide for the field.
The main reason for the diminished role of neuroscience in deep learning

research today is that we simply do not have enough information about the brain
to use it as a guide. To obtain a deep understanding of the actual algorithms
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used by the brain, we would need to be able to monitor the activity of (at the
very least) thousands of interconnected neurons simultaneously. Because we are
not able to do this, we are far from understanding even some of the most simple
and well-studied parts of the brain (Olshausen and Field, 2005).

Neuroscience has given us a reason to hope that a single deep learning algo-
rithm can solve many different tasks. Neuroscientists have found that ferrets can
learn to “see” with the auditory processing region of their brain if their brains
are rewired to send visual signals to that area (Von Melchner et al., 2000). This
suggests that much of the mammalian brain might use a single algorithm to solve

most of the different tasks that the brain solves. Before this hypothesis, machine
learning research was more fragmented, with different communities of researchers

studying natural language processing, vision, motion planning, and speech recog-
nition. Today, these application communities are still separate, but it is common
for deep learning research groups to study many or even all of these application
areas simultaneously.

We are able to draw some rough guidelines from neuroscience. The basic idea
of having many computational units that become intelligent only via their inter-
actions with each other is inspired by the brain. The Neocognitron (Fukushima,
1980) introduced a powerful model architecture for processing images that was
inspired by the structure of the mammalian visual system and later became the

basis for the modern convolutional network (LeCun et al., 1998a), as we will see
in Chapter 9.11. Most neural networks today are based on a model neuron called

the rectified linear unit. These units were developed from a variety of viewpoints,
with (Nair and Hinton, 2010b) and Glorot et al. (2011a) citing neuroscience as an
influence, and Jarrett et al. (2009a) citing more engineering-oriented influences.
While neuroscience is an important source of inspiration, it need not be taken
as a rigid guide. We know that actual neurons compute very different functions
than modern rectified linear units, but greater neural realism has not yet found
a machine learning value or interpretation. Also, while neuroscience has success-
fully inspired several neural network architectures, we do not yet know enough
about biological learning for neuroscience to offer much guidance for the learning
algorithms we use to train these architectures.

Media accounts often emphasize the similarity of deep learning to the brain.
While it is true that deep learning researchers are more likely to cite the brain

as an influence than researchers working in other machine learning fields such
as kernel machines or Bayesian statistics, one should not view deep learning as
an attempt to simulate the brain. Modern deep learning draws inspiration from
many fields, especially applied math fundamentals like linear algebra, probabil-
ity, information theory, and numerical optimization. While some deep learning
researchers cite neuroscience as an important influence, others are not concerned
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with neuroscience at all.
It is worth noting that the effort to understand how the brain works on an

algorithmic level is alive and well. This endeavor is primarily known as “compu-
tational neuroscience” and is a separate field of study from deep learning. It is
common for researchers to move back and forth between both fields. The field
of deep learning is primarily concerned with how to build computer systems that
are able to successfully solve tasks requiring intelligence, while the field of compu-
tational neuroscience is primarily concerned with building more accurate models
of how the brain actually works.

In the 1980s, the second wave of neural network research emerged in great part
via a movement called connectionism or parallel distributed processing (Rumelhart

et al., 1986d). Connectionism arose in the context of cognitive science. Cognitive
science is an interdisciplinary approach to understanding the mind, combining
multiple different levels of analysis. During the early 1980s, most cognitive sci-
entists studied models of symbolic reasoning. Despite their popularity, symbolic
models were difficult to explain in terms of how the brain could actually imple-
ment them using neurons. The connectionists began to study models of cognition
that could actually be grounded in neural implementations, reviving many ideas
dating back to the work of psychologist Donald Hebb in the 1940s (Hebb, 1949).

The central idea in connectionism is that a large number of simple compu-

tational units can achieve intelligent behavior when networked together. This
insight applies equally to neurons in biological nervous systems and to hidden

units in computational models.
Several key concepts arose during the connectionism movement of the 1980s

that remain central to today’s deep learning.
One of these concepts is that of distributed representation. This is the idea that

each input to a system should be represented by many features, and each feature
should be involved in the representation of many possible inputs. For example,
suppose we have a vision system that can recognize cars, trucks, and birds and
these objects can each be red, green, or blue. One way of representing these inputs
would be to have a separate neuron or hidden unit that activates for each of the
nine possible combinations: red truck, red car, red bird, green truck, and so on.

This requires nine different neurons, and each neuron must independently learn
the concept of color and object identity. One way to improve on this situation

is to use a distributed representation, with three neurons describing the color
and three neurons describing the object identity. This requires only six neurons
total instead of nine, and the neuron describing redness is able to learn about
redness from images of cars, trucks, and birds, not only from images of one specific
category of objects. The concept of distributed representation is central to this
book, and will be described in greater detail in Chapter 16.
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Another major accomplishment of the connectionist movement was the suc-
cessful use of back-propagation to train deep neural networks with internal repre-
sentations and the popularization of the back-propagation algorithm (Rumelhart
et al., 1986a; LeCun, 1987). This algorithm has waxed and waned in popularity
but as of this writing is currently the dominant approach to training deep models.

The second wave of neural networks research lasted until the mid-1990s. At
that point, the popularity of neural networks declined again. This was in part due
to a negative reaction to the failure of neural networks (and AI research in general)
to fulfill excessive promises made by a variety of people seeking investment in

neural network-based ventures, but also due to improvements in other fields of
machine learning: kernel machines (Boser et al., 1992; Cortes and Vapnik, 1995;

Schölkopf et al., 1999) and graphical models (Jordan, 1998).
Kernel machines enjoy many nice theoretical guarantees. In particular, train-

ing a kernel machine is a convex optimization problem (this will be explained in
more detail in Chapter 4) which means that the training process can be guar-
anteed to find the optimal model efficiently. This made kernel machines very
amenable to software implementations that “just work” without much need for
the human operator to understand the underlying ideas. Soon, most machine
learning applications consisted of manually designing good features to provide to
a kernel machine for each different application area.

During this time, neural networks continued to obtain impressive performance
on some tasks (LeCun et al., 1998b; Bengio et al., 2001a). The Canadian Institute

for Advanced Research (CIFAR) helped to keep neural networks research alive
via its Neural Computation and Adaptive Perception research initiative. This
program united machine research groups led by Geoffrey Hinton at University of
Toronto, Yoshua Bengio at University of Montreal, and Yann LeCun at New York
University. It had a multi-disciplinary nature that also included neuroscientists
and experts in human and computer vision.

At this point in time, deep networks were generally believed to be very difficult
to train. We now know that algorithms that have existed since the 1980s work
quite well, but this was not apparent circa 2006. The issue is perhaps simply that
these algorithms were too computationally costly to allow much experimentation

with the hardware available at the time.
The third wave of neural networks research began with a breakthrough in

2006. Geoffrey Hinton showed that a kind of neural network called a deep be-
lief network could be efficiently trained using a strategy called greedy layer-wise
pretraining (Hinton et al., 2006), which will be described in more detail in Chap-
ter 16.1. The other CIFAR-affiliated research groups quickly showed that the
same strategy could be used to train many other kinds of deep networks (Bengio
et al., 2007a; Ranzato et al., 2007a) and systematically helped to improve gen-
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eralization on test examples. This wave of neural networks research popularized
the use of the term deep learning to emphasize that researchers were now able to
train deeper neural networks than had been possible before, and to emphasize the
theoretical importance of depth (Bengio and LeCun, 2007a; Delalleau and Ben-
gio, 2011; Pascanu et al., 2014a; Montufar et al., 2014). Deep neural networks
displaced kernel machines with manually designed features for several important
application areas during this time—in part because the time and memory cost
of training a kernel machine is quadratic in the size of the dataset, and datasets
grew to be large enough for this cost to outweigh the benefits of convex optimiza-

tion. This third wave of popularity of neural networks continues to the time of
this writing, though the focus of deep learning research has changed dramatically

within the time of this wave. The third wave began with a focus on new unsuper-
vised learning techniques and the ability of deep models to generalize well from
small datasets, but today there is more interest in much older supervised learning
algorithms and the ability of deep models to leverage large labeled datasets.

1.2.2 Increasing Dataset Sizes

One may wonder why deep learning has only recently become recognized as a
crucial technology if it has existed since the 1950s. Deep learning has been suc-

cessfully used in commercial applications since the 1990s, but was often regarded
as being more of an art than a technology and something that only an expert could
use, until recently. It is true that some skill is required to get good performance

from a deep learning algorithm. Fortunately, the amount of skill required re-
duces as the amount of training data increases. The learning algorithms reaching
human performance on complex tasks today are nearly identical to the learning
algorithms that struggled to solve toy problems in the 1980s, though the models
we train with these algorithms have undergone changes that simplify the train-
ing of very deep architectures. The most important new development is that
today we can provide these algorithms with the resources they need to succeed.

Fig. 1.7 shows how the size of benchmark datasets has increased remarkably over

time. This trend is driven by the increasing digitization of society. As more and
more of our activities take place on computers, more and more of what we do
is recorded. As our computers are increasingly networked together, it becomes

easier to centralize these records and curate them into a dataset appropriate for
machine learning applications. The age of “Big Data” has made machine learning
much easier because the key burden of statistical estimation—generalizing well
to new data after observing only a small amount of data—has been considerably
lightened. As of 2015, a rough rule of thumb is that a supervised deep learning
algorithm will generally achieve acceptable performance with around 5,000 la-
beled examples per category, and will match or exceed human performance when
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trained with a dataset containing at least 10 million labeled examples. Working
successfully with datasets smaller than this is an important research area, focus-
ing in particular on how we can take advantage of large quantities of unlabeled
examples, with unsupervised or semi-supervised learning.

1.2.3 Increasing Model Sizes

Another key reason that neural networks are wildly successful today after enjoy-

ing comparatively little success since the 1980s is that we have the computational
resources to run much larger models today. One of the main insights of con-

nectionism is that animals become intelligent when many of their neurons work
together. An individual neuron or small collection of neurons is not particularly
useful.

Biological neurons are not especially densely connected. As seen in Fig. 1.8,
our machine learning models have had a number of connections per neuron that
was within an order of magnitude of even mammalian brains for decades.

In terms of the total number of neurons, neural networks have been aston-
ishingly small until quite recently, as shown in Fig. 1.9. Since the introduction

of hidden units, artificial neural networks have doubled in size roughly every 2.4
years. This growth is driven by faster computers with larger memory and by the

availability of larger datasets. Larger networks are able to achieve higher accuracy
on more complex tasks. This trend looks set to continue for decades. Unless new
technologies allow faster scaling, artificial neural networks will not have the same

number of neurons as the human brain until at least the 2050s. Biological neu-
rons may represent more complicated functions than current artificial neurons, so
biological neural networks may be even larger than this plot portrays.

In retrospect, it is not particularly surprising that neural networks with fewer
neurons than a leech were unable to solve sophisticated artificial intelligence prob-
lems. Even today’s networks, which we consider quite large from a computational
systems point of view, are smaller than the nervous system of even relatively prim-

itive vertebrate animals like frogs.

The increase in model size over time, due to the availability of faster CPUs, the
advent of general purpose GPUs, faster network connectivity, and better software
infrastructure for distributed computing, is one of the most important trends in

the history of deep learning. This trend is generally expected to continue well
into the future.
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Figure 1.7: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (Gar-
son, 1900; Gosset, 1908; Anderson, 1935; Fisher, 1936). In the 1950s through 1980s,
the pioneers of biologically-inspired machine learning often worked with small, synthetic
datasets, such as low-resolution bitmaps of letters, that were designed to incur low com-
putational cost and demonstrate that neural networks were able to learn specific kinds
of functions (Widrow and Hoff, 1960; Rumelhart et al., 1986b). In the 1980s and 1990s,
machine learning became more statistical in nature and began to leverage larger datasets
containing tens of thousands of examples such as the MNIST dataset of scans of handwrit-

ten numbers (LeCun et al., 1998b). In the first decade of the 2000s, more sophisticated
datasets of this same size, such as the CIFAR-10 dataset (Krizhevsky and Hinton, 2009)

continued to be produced. Toward the end of that decade and throughout the first half
of the 2010s, significantly larger datasets, containing hundreds of thousands to tens of
millions of examples, completely changed what was possible with deep learning. These
datasets included the public Street View House Numbers dataset(Netzer et al., 2011),

various versions of the ImageNet dataset (Deng et al., 2009, 2010a; Russakovsky et al.,
2014a), and the Sports-1M dataset (Karpathy et al., 2014). At the top of the graph,
we see that datasets of translated sentences, such as IBM’s dataset constructed from the
Canadian Hansard (Brown et al., 1990) and the WMT 2014 dataset (Schwenk, 2014) are
typically far ahead of other dataset sizes.
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Figure 1.8: Initially, the number of connections between neurons in artificial neural net-
works was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. The sparse connec-
tivity of biological neural networks means that our artificial networks are able to match

the performance of biological neural networks despite limited hardware. Modern neural
networks are much smaller than the brains of any vertebrate animal, but we typically
train each network to perform just one task, while an animal’s brain has different areas
devoted to different tasks. Biological neural network sizes from Wikipedia (2015).

1. Adaptive Linear Element (Widrow and Hoff, 1960)

2. Neocognitron (Fukushima, 1980)

3. GPU-accelerated convolutional network (Chellapilla et al., 2006)

4. Deep Boltzmann machines (Salakhutdinov and Hinton, 2009a)

5. Unsupervised convolutional network (Jarrett et al., 2009b)

6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012a)

9. COTS HPC unsupervised convolutional network (Coates et al., 2013)

10. GoogLeNet (Szegedy et al., 2014a)
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1.2.4 Increasing Accuracy, Application Complexity, and Real-
World Impact

Since the 1980s, deep learning has consistently improved in its ability to provide
accurate recognition or prediction. Moreover, deep learning has consistently been
applied with success to broader and broader sets of applications.

The earliest deep models were used to recognize individual objects in tightly

cropped, extremely small images (Rumelhart et al., 1986a). Since then there
has been a gradual increase in the size of images neural networks could process.

Modern object recognition networks process rich high-resolution photographs and
do not have a requirement that the photo be cropped near the object to be rec-
ognized(Krizhevsky et al., 2012b). Similarly, the earliest networks could only
recognize two kinds of objects (or in some cases, the absence or presence of a sin-
gle kind of object), while these modern networks typically recognize at least 1,000
different categories of objects. The largest contest in object recognition is the Im-
ageNet Large-Scale Visual Recognition Competition held each year. A dramatic
moment in the meteoric rise of deep learning came when a convolutional network
won this challenge for the first time and by a wide margin, bringing down the
state-of-the-art error rate from 26.1% to 15.3% (Krizhevsky et al., 2012b). Since

then, these competitions are consistently won by deep convolutional nets, and as
of this writing, advances in deep learning had brought the latest error rate in this
contest down to 6.5% as shown in Fig. 1.10, using even deeper networks (Szegedy

et al., 2014a). Outside the framework of the contest, this error rate has now
dropped to below 5% (Ioffe and Szegedy, 2015; Wu et al., 2015).

Deep learning has also had a dramatic impact on speech recognition. After
improving throughout the 1990s, the error rates for speech recognition stagnated
starting in about 2000. The introduction of deep learning (Dahl et al., 2010;
Deng et al., 2010b; Seide et al., 2011; Hinton et al., 2012a) to speech recognition
resulted in a sudden drop of error rates by up to half! We will explore this history
in more detail in Chapter 12.3.1.

Deep networks have also had spectacular successes for pedestrian detection

and image segmentation (Sermanet et al., 2013; Farabet et al., 2013a; Cou-
prie et al., 2013) and yielded superhuman performance in traffic sign classifica-
tion (Ciresan et al., 2012).

At the same time that the scale and accuracy of deep networks has increased,
so has the complexity of the tasks that they can solve. Goodfellow et al. (2014d)

showed that neural networks could learn to output an entire sequence of characters
transcribed from an image, rather than just identifying a single object. Previously,
it was widely believed that this kind of learning required labeling of the individual
elements of the sequence (Gülçehre and Bengio, 2013). Since this time, a neural
network designed to model sequences, the Long Short-Term Memory or LSTM
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(Hochreiter and Schmidhuber, 1997), has enjoyed an explosion in popularity.
LSTMs and related models are now used to model relationships between sequences
and other sequences rather than just fixed inputs. This sequence-to-sequence
learning seems to be on the cusp of revolutionizing another application: machine
translation (Sutskever et al., 2014a; Bahdanau et al., 2014).

This trend of increasing complexity has been pushed to its logical conclusion
with the introduction of the Neural Turing Machine (Graves et al., 2014), a neural
network that can learn entire programs. This neural network has been shown to
be able to learn how to sort lists of numbers given examples of scrambled and

sorted sequences. This self-programming technology is in its infancy, but in the
future could in principle be applied to nearly any task.

Many of these applications of deep learning are highly profitable, given enough
data to apply deep learning to. Deep learning is now used by many top technology
companies including Google, Microsoft, Facebook, IBM, Baidu, Apple, Adobe,
Netflix, NVIDIA and NEC.

Deep learning has also made contributions back to other sciences. Modern
convolutional networks for object recognition provide a model of visual processing
that neuroscientists can study (DiCarlo, 2013). Deep learning also provides useful
tools for processing massive amounts of data and making useful predictions in
scientific fields. It has been successfully used to predict how molecules will interact

in order to help pharmaceutical companies design new drugs (Dahl et al., 2014),
to search for subatomic particles (Baldi et al., 2014), and to automatically parse

microscope images used to construct a 3-D map of the human brain (Knowles-
Barley et al., 2014). We expect deep learning to appear in more and more scientific
fields in the future.

In summary, deep learning is an approach to machine learning that has drawn
heavily on our knowledge of the human brain, statistics and applied math as it
developed over the past several decades. In recent years, it has seen tremendous
growth in its popularity and usefulness, due in large part to more powerful com-
puters, larger datasets and techniques to train deeper networks. The years ahead
are full of challenges and opportunities to improve deep learning even further and
bring it to new frontiers.
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Figure 1.9: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive Linear Element (Widrow and Hoff, 1960)

3. Neocognitron (Fukushima, 1980)

4. Early backpropagation network (Rumelhart et al., 1986b)

5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)

6. Multilayer perceptron for speech recognition (Bengio et al., 1991)

7. Mean field sigmoid belief network (Saul et al., 1996)

8. LeNet-5 (LeCun et al., 1998a)

9. Echo state network (Jaeger and Haas, 2004)

10. Deep belief network (Hinton et al., 2006)

11. GPU-accelerated convolutional network (Chellapilla et al., 2006)

12. Deep Boltzmann machines (Salakhutdinov and Hinton, 2009a)

13. GPU-accelerated deep belief network (Raina et al., 2009)

14. Unsupervised convolutional network (Jarrett et al., 2009b)

15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

16. OMP-1 network (Coates and Ng, 2011)

17. Distributed autoencoder (Le et al., 2012)

18. Multi-GPU convolutional network (Krizhevsky et al., 2012a)

19. COTS HPC unsupervised convolutional network (Coates et al., 2013)

20. GoogLeNet (Szegedy et al., 2014a)
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Figure 1.10: Since deep networks reached the scale necessary to compete in the ImageNet
Large Scale Visual Recognition, they have consistently won the competition every year,
and yielded lower and lower error rates each time. Data from Russakovsky et al. (2014b).
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Part I

Applied Math and Machine
Learning Basics
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This part of the book introduces the basic mathematical concepts needed to
understand deep learning. We begin with general ideas from applied math, that
allow us to define functions of many variables, find the highest and lowest points
on these functions, and quantify degrees of belief.

Next, we describe the fundamental goals of machine learning. We describe how
to accomplish these goals by specifying a model that represents certain beliefs,
designing a cost function that measures how well those beliefs correspond with
reality, and using a training algorithm to minimize that cost function.

This elementary framework is the basis for a broad variety of machine learning

algorithms, including approaches to machine learning that are not deep. In the
subsequent parts of the book, we develop deep learning algorithms within this

framework.
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Chapter 2

Linear Algebra

Linear algebra is a branch of mathematics that is widely used throughout science
and engineering. However, because linear algebra is a form of continuous rather
than discrete mathematics, many computer scientists have little experience with
it. A good understanding of linear algebra is essential for understanding and work-
ing with many machine learning algorithms, especially deep learning algorithms.

We therefore begin the technical content of the book with a focused presentation
of the key linear algebra ideas that are most important in deep learning.

If you are already familiar with linear algebra, feel free to skip this chapter.
If you have previous experience with these concepts but need a detailed reference
sheet to review key formulas, we recommend The Matrix Cookbook (Petersen and
Pedersen, 2006). If you have no exposure at all to linear algebra, this chapter
will teach you enough to read this book, but we highly recommend that you also
consult another resource focused exclusively on teaching linear algebra, such as
(Shilov, 1977). This chapter will completely omit many important linear algebra
topics that are not essential for understanding deep learning.

2.1 Scalars, Vectors, Matrices and Tensors

The study of linear algebra involves several types of mathematical objects:

• Scalars: A scalar is just a single number, in contrast to most of the other
objects studied in linear algebra, which are usually arrays of multiple num-
bers. We write scalars in italics. We usually give scalars lower-case variable
names. When we introduce them, we specify what kind of number they
are. For example, we might say “Let s ∈ R be the slope of the line,” while
defining a real-valued scalar, or “Let n ∈ N be the number of units,” while

defining a natural number scalar.
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• Vectors: A vector is an array of numbers. The numbers have an order to
them, and we can identify each individual number by its index in that or-
dering. Typically we give vectors lower case names written in bold typeface,
such as x. The elements of the vector are identified by writing its name in
italic typeface, with a subscript. The first element of x is x1, the second
element is x2, and so on. We also need to say what kind of numbers are
stored in the vector. If each element is in R, and the vector has n elements,
then the vector lies in the set formed by taking the Cartesian product of R
n times, denoted as Rn. When we need to explicitly identify the elements

of a vector, we write them as a column enclosed in square brackets:

x =





x1
x2
...
xn



 .

We can think of vectors as identifying points in space, with each element

giving the coordinate along a different axis.

Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices, and write the set as a subscript. For
example, to access x1, x3, and x6, we define the set S = {1, 3, 6} and write
xS. We use the − sign to index the complement of a set. For example
x−1 is the vector containing all elements of x except for x1, and x−S is the
vector containing all of the elements of x except for x1, x3, and x6.

• Matrices: A matrix is a 2-D array of numbers, so each element is identified
by two indices instead of just one. We usually give matrices upper-case
variable names with bold typeface, such as A. If a real-valued matrix A
has a height of m and a width of n, then we say that A ∈ Rm×n . We usually

identify the elements of a matrix using its name in italic but not bold font,
and the indices are listed with separating commas. For example, A 1,1 is the

upper left entry of A and Am,n is the bottom right entry. We can identify all
of the numbers with vertical coordinate i by writing a “:” for the horizontal
coordinate. For example, Ai,: denotes the horizontal cross section of A with
vertical coordinate i. This is known as the i-th row of A. Likewise, A:,i is
the i-th column of A. When we need to explicitly identify the elements of
a matrix, we write them as an array enclosed in square brackets:


A1,1 A1,2

A2,1 A2,2


.
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A =
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&

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

Sometimes we may need to index matrix-valued expressions that are not
just a single letter. In this case, we use subscripts after the expression, but

do not convert anything to lower case. For example, f (A)i,j gives element
(i, j) of the matrix computed by applying the function f to A.

• Tensors: In some cases we will need an array with more than two axes. In

the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named
“A” with this typeface: A. We identify the element of A at coordinates
(i, j, k) by writing Ai,j,k.

By convention, we consider that adding (or subtracting) a scalar and a vector
yields a vector with the additive operation performed on each element. The same

thing happens with a matrix or a tensor. This is called a broadcasting operation
in Python’s numpy library.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. 2.1 for a graphical depiction of this operation. We denote the transpose of a
matrix A as A>, and it is defined such that

(A>)i,j = Aj,i .

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we
define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.

x = [x1, x2, x3 ]>.
We can add matrices to each other, as long as they have the same shape, just

by adding their corresponding elements: C = A+B where Ci,j = A i,j + Bi,j .
We can also add a scalar to a matrix or multiply a matrix by a scalar, just

by performing that operation on each element of a matrix: D = a ·B + c where
D i,j = a · Bi,j + c.
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2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C . In order
for this product to be defined, A must have the same number of columns as B
has rows. If A is of shape m× n and B is of shape n× p, then C is of shape
m × p. We can write the matrix product just by placing two or more matrices
together, e.g.

C = AB.

The product operation is defined by

ci,j =
X

k

ai,k bk,j .

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the

element-wise product or Hadamard product, and is denoted in this book1 as AB.
The dot product between two vectors x and y of the same dimensionality is the

matrix product x>y. We can think of the matrix product C = AB as computing

ci,j as the dot product between row i of A and column j of B.
Matrix product operations have many useful properties that make mathemat-

ical analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B +C) = AB +AC.

It is also associative:
A(BC) = (AB)C.

Matrix multiplication is not commutative, unlike scalar multiplication.
The transpose of a matrix product also has a simple form:

(AB) >= B>A> .

Since the focus of this textbook is not linear algebra, we do not attempt to develop
a comprehensive list of useful properties of the matrix product here, but the reader

should be aware that many more exist.
We now know enough linear algebra notation to write down a system of linear

equations:
Ax = b (2.1)

where A ∈ Rm×n is a known matrix, b ∈ Rm is a known vector, and x ∈ Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is

1The element-wise product is used relatively rarely, so the notation for it is not as standardized

as the other operations described in this chapter.
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1 0 0
0 1 0

0 0 1





Figure 2.2: Example identity matrix: This is I3 .

one of these unknowns to solve for. Each row of A and each element of b provide

another constraint. We can rewrite equation 2.1 as:

A1,:x = b1

A2,:x = b2

. . .

Am,:x = bm

or, even more explicitly, as:

a1,1 x1 + a1,2x2 + · · · + a1,nxn = b1

a2,1 x1 + a2,2x2 + · · · + a2,nxn = b2

. . .

am,1 x1 + am,2x2 + · · · + am,nxn = bm.

Matrix-vector product notations provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matrix inversion that allows us to

solve equation 2.1 for many values of A.
To describe matrix inversion, we first need to define the concept of an identity

matrix. An identity matrix is a matrix that does not change any vector when
we multiply that vector by that matrix. We denote the n-dimensional identity
matrix as In. Formally,

∀x ∈ R
n, Inx = x.

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. 2.2 for an example.
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The matrix inverse of A is denoted as A−1 , and it is defined as the matrix
such that

A
−1
A = In.

We can now solve equation 2.1 by the following steps:

Ax = b

A−1Ax = A−1b

Inx = A−1b

x = A−1b.

Of course, this depends on it being possible to find A−1. We discuss the
conditions for the existence of A−1 in the following section.

When A−1 exists, several different algorithms exist for finding it in closed
form. In theory, the same inverse matrix can then be used to solve the equation
many times for different values of b. However, A−1 is primarily useful as a

theoretical tool, and should not actually be used in practice for most software
applications. Because A−1 can only be represented with limited precision on a
digital computer, algorithms that make use of the value of b can usually obtain
more accurate estimates of x.

2.4 Linear Dependence, Span, and Rank

In order for A−1 to exist, equation 2.1 must have exactly one solution for every
value of b. However, it is also possible for the system of equations to have no

solutions or infinitely many solutions for some values of b. It is not possible to
have more than one but less than infinitely many solutions for a particular b; if

both x and y are solutions then

z = αx+ (1− α)y

is also a solution for any real α.

To analyze how many solutions the equation has, we can think of the columns
of A as specifying different directions we can travel from the origin (the point
specified by the vector of all zeros), and determine how many ways there are of
reaching b. In this view, each element of x specifies how far we should travel
in each of these directions, i.e. x i specifies how far to move in the direction of
column i:

Ax =
X

i

x iA:,i .
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In general, this kind of operation is called a linear combination. Formally, a linear
combination of some set of vectors {v(1) , . . . , v(n)} is given by multiplying each
vector v (i) by a corresponding scalar coefficient and adding the results:

X

i

civ
(i) .

The span of a set of vectors is the set of all points obtainable by linear combination
of the original vectors.

Determining whether Ax = b has a solution thus amounts to testing whether

b is in the span of the columns of A. This particular span is known as the column
space or the range of A.

In order for the system Ax = b to have a solution for all values of b ∈ R
m,

we therefore require that the column space of A be all of Rm. If any point in Rm

is excluded from the column space, that point is a potential value of b that has
no solution. This implies immediately that A must have at least m columns, i.e.,
n ≥m. Otherwise, the dimensionality of the column space must be less than m.

For example, consider a 3 × 2 matrix. The target b is 3-D, but x is only 2-D, so
modifying the value of x at best allows us to trace out a 2-D plane within R3.
The equation has a solution if and only if b lies on that plane.

Having n ≥m is only a necessary condition for every point to have a solution.
It is not a sufficient condition, because it is possible for some of the columns to
be redundant. Consider a 2 × 2 matrix where both of the columns are equal to
each other. This has the same column space as a 2 × 1 matrix containing only

one copy of the replicated column. In other words, the column space is still just
a line, and fails to encompass all of R2, even though there are two columns.

Formally, this kind of redundancy is known as linear dependence. A set of

vectors is linearly independent if no vector in the set is a linear combination of
the other vectors. If we add a vector to a set that is a linear combination of the

other vectors in the set, the new vector does not add any points to the set’s span.
This means that for the column space of the matrix to encompass all of Rm, the
matrix must have at least m linearly independent columns. This condition is both
necessary and sufficient for equation 2.1 to have a solution for every value of b.

In order for the matrix to have an inverse, we additionally need to ensure that
equation 2.1 has at most one solution for each value of b. To do so, we need to
ensure that the matrix has at most m columns. Otherwise there is more than one
way of parametrizing each solution.

Together, this means that the matrix must be square, that is, we require that

m = n, and that all of the columns must be linearly independent. A square
matrix with linearly dependent columns is known as singular.
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If A is not square or is square but singular, it can still be possible to solve the
equation. However, we can not use the method of matrix inversion to find the
solution.

So far we have discussed matrix inverses as being multiplied on the left. It is
also possible to define an inverse that is multiplied on the right:

AA−1 = I.

For square matrices, the left inverse and right inverse are the same.

2.5 Norms

Sometimes we need to measure the size of a vector. In machine learning, we

usually measure the size of vectors using an Lpnorm:

||x||p =

 
X

i

|xi|p
! 1

p

for p ∈ R, p ≥ 1.
Norms, including the Lp norm, are functions mapping vectors to non-negative

values, satisfying these properties that make them behave like distances between
points:

• f (x) = 0 ⇒ x = 0

• f (x+ y) ≤ f(x) + f (y) (the triangle inequality)

• ∀α ∈ R, f (αx) = |α|f (x)

The L2 norm, with p = 2, is known as the Euclidean norm. It is simply the
Euclidean distance from the origin to the point identified by x. This is probably
the most common norm used in machine learning. It is also common to measure
the size of a vector using the squared L2 norm, which can be calculated simply
as x>x.

The squared L2 norm is more convenient to work with mathematically and

computationally than the L2 norm itself. For example, the derivatives of the
squared L2 norm with respect to each element of x each depend only on the

corresponding element of x, while all of the derivatives of the L2 norm depend
on the entire vector. In many contexts, the squared L2 norm may be undesirable
because it increases very slowly near the origin. In several machine learning

applications, it is important to discriminate between elements that are exactly
zero and elements that are small but nonzero. In these cases, we turn to a
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function that grows at the same rate in all locations, but retains mathematical
simplicity: the L1 norm. The L1 norm may be simplified to

||x||1 =
X

i

|xi |.

The L1 norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of x moves
away from 0 by , the L 1 norm increases by .

We sometimes measure the size of the vector by counting its number of nonzero

elements (and when we use the L 1 norm, we often use it as a proxy for this
function). Some authors refer to this function as the “l 0 norm,” but this is
incorrect terminology, because scaling the vector by α does not change the number
of nonzero entries.

One other norm that commonly arises in machine learning is the l∞ norm,
also known as the max norm. This norm simplifies to

||x||∞ = max
i

|xi|,

e.g., the absolute value of the element with the largest magnitude in the vector.
Sometimes we may also wish to measure the size of a matrix. In the context

of deep learning, the most common way to do this is with the otherwise obscure
Frobenius norm

||A||F =

sX

i,j

a2i,j,

which is analogous to the L 2 norm of a vector.
The dot product of two vectors can be rewritten in terms of norms. Specifi-

cally,
x>y = ||x||2||y||2 cos θ

where θ is the angle between x and y.

2.6 Special Kinds of Matrices and Vectors

Some special kinds of matrices and vectors are particularly useful.
Diagonal matrices only have non-zero entries along the main diagonal. For-

mally, a matrix D is diagonal if and only if di,j = 0 for all i 6= j. We’ve already
seen one example of a diagonal matrix: the identity matrix, where all of the di-

agonal entries are 1. In this book2, we write diag(v) to denote a square diagonal

2There is not a standardized notation for constructing a diagonal matrix from a vector.
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matrix whose diagonal entries are given by the entries of the vector v. Diagonal
matrices are of interest in part because multiplying by a diagonal matrix is very
computationally efficient. To compute diag(v)x, we only need to scale each ele-
ment xi by vi . In other words, diag(v)x = v  x. Inverting a square diagonal
matrix is also efficient. The inverse exists only if every diagonal entry is nonzero,
and in that case, diag(v)−1 = diag([1/v1, . . . , 1/vn ]>). In many cases, we may de-
rive some very general machine learning algorithm in terms of arbitrary matrices,
but obtain a less expensive (and less descriptive) algorithm by restricting some
matrices to be diagonal.

Note that not all diagonal matrices need be square. It is possible to construct
a rectangular diagonal matrix. Non-square diagonal matrices do not have inverses

but it is still possible to multiply by them cheaply. For a non-square diagonal
matrix D, the product Dx will involving scaling each element of x, and either

concatenating some zeros to the result if D is taller than it is wide, or discarding

some of the last elements of the vector if D is wider than it is tall.
A symmetric matrix is any matrix that is equal to its own transpose:

A = A> .

Symmetric matrices often arise when the entries are generated by some function of
two arguments that does not depend on the order of the arguments. For example,

if A is a matrix of distance measurements, with ai,j giving the distance from point
i to point j, then ai,j = aj,i because distance functions are symmetric.

A unit vector is a vector with unit norm:

||x||2 = 1.

A vector x and a vector y are orthogonal to each other if x>y = 0. If both

vectors have nonzero norm, this means that they are at 90 degree angles to each
other. In R

n, at most n vectors may be mutually orthogonal with nonzero norm.

If the vectors are not only orthogonal but also have unit norm, we call them
orthonormal.

An orthogonal matrix is a square matrix whose rows are mutually orthonormal

and whose columns are mutually orthonormal:

A>A = AA> = I.

This implies that

A−1 = A>,

so orthogonal matrices are of interest because their inverse is very cheap to com-
pute. Pay careful attention to the definition of orthogonal matrices. Counter-
intuitively, their rows are not merely orthogonal but fully orthonormal. There
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is no special term for a matrix whose rows or columns are orthogonal but not
orthonormal.

2.7 Eigendecomposition

Many mathematical objects can be understood better by breaking them into

constituent parts, or finding some properties of them that are universal, not caused
by the way we choose to represent them.

For example, integers can be decomposed into prime factors. The way we
represent the number 12 will change depending on whether we write it in base

ten or in binary, but it will always be true that 12 = 2 × 2 × 3. From this
representation we can conclude useful properties, such as that 12 is not divisible
by 5, or that any integer multiple of 12 will be divisible by 3.

Much as we can discover something about the true nature of an integer by
decomposing it into prime factors, we can also decompose matrices in ways that

show us information about their functional properties that is not obvious from

the representation of the matrix as an array of elements.
One of the most widely used kinds of matrix decomposition is called eigen-

decomposition, in which we decompose a matrix into a set of eigenvectors and
eigenvalues.

An eigenvector of a square matrix A is a non-zero vector v such that multi-
plication by A alters only the scale of v:

Av = λv.

The scalar λ is known as the eigenvalue corresponding to this eigenvector. (One
can also find a left eigenvector such that v>A = λv, but we are usually concerned

with right eigenvectors).
Note that if v is an eigenvector of A, then so is any rescaled vector sv for

s ∈ R, s 6= 0. Moreover, sv still has the same eigenvalue. For this reason, we
usually only look for unit eigenvectors.

We can represent the matrixA using an eigendecomposition, with eigenvectors
{v(1), . . . , v(n)} and corresponding eigenvalues {λ1 , . . . , λn} by concatenating the

eigenvectors into a matrix V = [v (1), . . . , v(n) ], (i.e. one column per eigenvector)

and concatenating the eigenvalues into a vector λ. Then the matrix

A = V diag(λ)V−1

has the desired eigenvalues and eigenvectors. If we make V an orthogonal matrix,
then we can think of A as scaling space by λi in direction v (i). See Fig. 2.3 for
an example.
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Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have
a matrix A with two orthonormal eigenvectors, v(1) with eigenvalue λ1 and v(2) with

eigenvalue λ2 . Left) We plot the set of all unit vectors u ∈ R
2 as a unit circle. Right) We

plot the set of all points Au. By observing the way that A distorts the unit circle, we
can see that it scales space in direction v(i) by λ i.

38



CHAPTER 2. LINEAR ALGEBRA

We have seen that constructing matrices with specific eigenvalues and eigen-
vectors allows us to stretch space in desired directions. However, we often want
to decompose matrices into their eigenvalues and eigenvectors. Doing so can help
us to analyze certain properties of the matrix, much as decomposing an integer
into its prime factors can help us understand the behavior of that integer.

Not every matrix can be decomposed into eigenvalues and eigenvectors. In
some cases, the decomposition exists, but may involve complex rather than real
numbers. Fortunately, in this book, we usually need to decompose only a spe-
cific class of matrices that have a simple decomposition. Specifically, every real

symmetric matrix can be decomposed into an expression using only real-valued
eigenvectors and eigenvalues:

A = QΛQ>,

where Q is an orthogonal matrix composed of eigenvectors of A, and Λ is a

diagonal matrix, with λi,i being the eigenvalue corresponding to Q :,i .

While any real symmetric matrix A is guaranteed to have an eigendecom-
position, the eigendecomposition is not unique. If any two or more eigenvectors

share the same eigenvalue, then any set of orthogonal vectors lying in their span
are also eigenvectors with that eigenvalue, and we could equivalently choose a Q
using those eigenvectors instead. By convention, we usually sort the entries of
Λ in descending order. Under this convention, the eigendecomposition is unique
only if all of the eigenvalues are unique.

The eigendecomposition of a matrix tells us many useful facts about the ma-
trix. The matrix is singular if and only if any of the eigenvalues are 0. The
eigendecomposition can also be used to optimize quadratic expressions of the
form f (x) = x>Ax subject to ||x||2 = 1. Whenever x is equal to an eigenvector
of A, f takes on the value of the corresponding eigenvalue. The maximum value

of f within the constraint region is the maximum eigenvalue and its minimum
value within the constraint region is the minimum eigenvalue.

A matrix whose eigenvalues are all positive is called positive definite. A matrix
whose eigenvalues are all positive or zero-valued is called positive semidefinite.
Likewise, if all eigenvalues are negative, the matrix is negative definite, and if
all eigenvalues are negative or zero-valued, it is negative semidefinite. Positive
semidefinite matrices are interesting because they guarantee that ∀x, x>Ax ≥ 0.
Positive definite matrices additionally guarantee that x>Ax = 0 ⇒ x= 0.

2.8 Singular Value Decomposition

In Sec. 2.7, we saw how to decompose a matrix into eigenvectors and eigenval-

ues. The singular value decomposition (SVD) provides another way to factorize a

matrix, into singular vectors and singular values. The SVD allows us to discover
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some of the same kind of information as the eigendecomposition. However, the
SVD is more generally applicable. Every real matrix has a singular value decom-
position, but the same is not true of the eigenvalue decomposition. For example,
if a matrix is not square, the eigendecomposition is not defined, and we must use
a singular value decomposition instead.

Recall that the eigendecomposition involves analyzing a matrix A to discover
a matrix V of eigenvectors and a vector of eigenvalues λ such that we can rewrite
A as

A = V diag(λ)V −1 .

The singular value decomposition is similar, except this time we will write A
as a product of three matrices:

A = UDV >.

Suppose thatA is an m×n matrix. Then U is defined to be an m×m matrix,
D to be an m× n matrix, and V to be an n× n matrix.

Each of these matrices is defined to have a special structure. The matrices U
and V are both defined to be orthogonal matrices. The matrix D is defined to

be a diagonal matrix. Note that D is not necessarily square.

The elements along the diagonal of D are known as the singular values of the
matrix A. The columns of U are known as the left-singular vectors. The columns
of V are known as as the right-singular vectors.

We can actually interpret the singular value decomposition of A in terms of
the eigendecomposition of functions of A. The left-singular vectors of A are the
eigenvectors of AA>. The right-singular vectors of A are the eigenvectors of
A>A. The non-zero singular values of A are the square roots of the eigenvalues
of A>A. The same is true for AA>.

Perhaps the most useful feature of the SVD is that we can use it to partially
generalize matrix inversion to non-square matrices, as we will see in the next

section.

2.9 The Moore-Penrose Pseudoinverse

Matrix inversion is not defined for matrices that are not square. Suppose we want
to make a left-inverse B of a matrix A, so that we can solve a linear equation

Ax = y

by left-multiplying each side to obtain

x = By.
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Depending on the structure of the problem, it may not be possible to design a
unique mapping from A to B.

If A is taller than it is wide, then it is possible for this equation to have
no solution. If A is wider than it is tall, then there could be multiple possible
solutions.

The Moore-Penrose Pseudoinverse allows us to make some headway in these
cases. The pseudoinverse of A is defined as a matrix

A+ = lim
α&0

(A>A+ αI)−1A>.

Practical algorithms for computing the pseudoinverse are not based on this defi-
nition, but rather the formula

A+ = V D+ U>,

where U , D, and V are the singular value decomposition of A, and the pseu-
doinverse D+ of a diagonal matrix D is obtained by taking the reciprocal of its

non-zero elements then taking the transpose of the resulting matrix.
When A has more rows than columns, then solving a linear equation using

pseudoinverse provides one of the many possible solutions. Specifically, it provides

the solution x = A+y with minimal Euclidean norm ||x||2 among all possible
solutions.

When A has more columns than rows, it is possible for there to be no solution.
In this case, using the pseudoinverse gives us the x for which Ax is as close as
possible to y in terms of Euclidean norm ||Ax− y||2.

2.10 The Trace Operator

The trace operator gives the sum of all of the diagonal entries of a matrix:

Tr(A) =
X

i

ai,i.

The trace operator is useful for a variety of reasons. Some operations that

are difficult to specify without resorting to summation notation can be specified
using matrix products and the trace operator. For example, the trace operator
provides an alternative way of writing the Frobenius norm of a matrix:

||A||F =
q

Tr(A>A).

The trace operator also has many useful properties that make it easy to ma-
nipulate expressions involving the trace operator. For example, the trace operator

is invariant to the transpose operator:

Tr(A) = Tr(A>).
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The trace of a square matrix composed of many factors is also invariant to
moving the last factor into the first position:

Tr(ABC) = Tr(CAB) = Tr(BCA)

or more generally,

Tr(
nY

i=1

F (i) ) = Tr(F (n)
n−1Y

i=1

F (i)).

Another useful fact to keep in mind is that a scalar is its own trace, i.e.
a = T r(a). This can be useful when wishing to manipulate inner products. Let

a and b be two column vectors in R
n

a>b = Tr(a>b) = Tr(ba>).

2.11 Determinant

The determinant of a square matrix, denoted det(A), is a function mapping ma-
trices to real scalars. The determinant is equal to the product of all the matrix’s

eigenvalues. The absolute value of the determinant can be thought of as a mea-
sure of how much multiplication by the matrix expands or contracts space. If
the determinant is 0, then space is contracted completely along at least one di-

mension, causing it to lose all of its volume. If the determinant is 1, then the
transformation is volume-preserving.

2.12 Example: Principal Components Analysis

One simple machine learning algorithm, principal components analysis (PCA)
can be derived using only knowledge of basic linear algebra.

Suppose we have a collection of m points {x(1) , . . . ,x(m)} in Rn. Suppose we
would like to apply lossy compression to these points, i.e. we would like to find a
way of storing the points that requires less memory but may lose some precision.
We would like to lose as little precision as possible.

One way we can encode these points is to represent a lower-dimensional version

of them. For each point x (i) ∈ Rn we will find a corresponding code vector

c(i) ∈ R
l . If l is smaller than n, it will take less memory to store the code points

than the original data. We can use matrix multiplication to map the code back
into Rn. Let the reconstruction r(c) = Dc, whereD ∈ Rn×l is the matrix defining
the decoding.

To simplify the computation of the optimal encoding, we constrain the columns
of D to be orthogonal to each other. (Note that D is still not technically “an
orthogonal matrix” unless l = n)
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With the problem as described so far, many solutions are possible, because
we can increase the scale of D:,i if we decrease ci proportionally for all points. To
give the problem a unique solution, we constrain all of the columns of D to have
unit norm.

In order to turn this basic idea into an algorithm we can implement, the first
thing we need to do is figure out how to generate the optimal code point c∗ for
each input point x. One way to do this is to minimize the distance between the
input point x and its reconstruction, r(c). We can measure this distance using a
norm. In the principal components algorithm, we use the L2 norm:

c∗ = arg min
c

||x− r(c)||2.

We can switch to the squared L2 norm instead of the L2 norm itself, because
both are minimized by the same value of c. This is because the L2 norm is non-
negative and the squaring operation is monotonically increasing for non-negative

arguments.

c∗ = arg min
c

||x− r(c)||22

The function being minimized simplifies to

(x− r(c))> (x− r(c))

(by the definition of the L2 norm)

= x>x− x>r(c) − r(c)>x+ r(c)>r(c)

(by the distributive property)

= x>x− 2x>r(c) + r(c)>r(c)

(because a scalar is equal to the transpose of itself ).
We can now change the function being minimized again, to omit the first term,

since this term does not depend on c:

c ∗ = arg min
c

−2x>r(c) + r(c)>r(c).

To make further progress, we must substitute in the definition of r(c):

c ∗= arg min
c

−2x>Dc+ c>D>Dc

= arg min
c

−2x>Dc+ c>Ilc
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(by the orthogonality and unit norm constraints on D)

= arg min
c

−2x>Dc+ c>c

We can solve this optimization problem using vector calculus (see section 4.3

if you do not know how to do this):

∇c(−2x
>Dc+ c>c) = 0

−2D>x+ 2c = 0

c = D>x. (2.2)

This is good news: we can optimally encode x just using a vector-product
operation.

Next, we need to choose the encoding matrix D. To do so, we revisit the
idea of minimizing the L2 distance between inputs and reconstructions. However,
since we will use the same matrix D to decode all of the points, we can no longer
consider the points in isolation. Instead, we must minimize the Frobenius norm
of the matrix of errors computed over all dimensions and all points:

D ∗ = arg min
D

sX

i,j

(x
(i)
j − r (i)j )2 subject to D>D = Il (2.3)

To derive the algorithm for finding D∗ , we will start by considering the case
where l = 1. In this case, D is just a single vector, d. Substituting equation 2.2
into equation 2.3 and simplifying D into d, the problem reduces to

d∗ = arg min
d

X

i

||x(i) − x(i)>dd||22 subject to ||d||2 = 1.

At this point, it can be helpful to rewrite the problem in terms of matrices.

This will allow us to use more compact notation. Let X ∈ Rm×n be the matrix
defined by stacking all of the vectors describing the points, such thatXi,: = x(i)> .

We can now rewrite the problem as

d∗ = arg min
d

||X −Xdd> ||2F subject to d>d = 1

Disregarding the constraint for the moment, we can simplify the Frobenius norm
portion as follows:

arg min
d

||X −Xdd>||2F

= arg min
d

Tr


X −Xdd>



>


X −Xdd>
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(by the alternate definition of the Frobenius norm)

= arg min
d

Tr(X>X −X>Xdd> − dd>X >X + dd>X>Xdd> )

= arg min
d

Tr(X>X) − Tr(X>Xdd> ) − Tr(dd>X >X) + Tr(dd>X >Xdd>)

= arg min
d

−Tr(X>Xdd>) − Tr(dd>X >X) + Tr(dd>X>Xdd> )

(because terms not involving d do not affect the arg min)

= arg min
d

−2 Tr(X>Xdd>) + Tr(dd>X >Xdd> )

(because the trace is invariant to transpose)

= arg min
d

−2 Tr(X>Xdd>) + Tr(X>Xdd>dd> )

(because we can cycle the order of the matrices inside a trace)
At this point, we re-introduce the constraint:

arg min
d

−2 Tr(X>Xdd>) + Tr(X>Xdd> dd>) subject to d>d = 1

= arg min
d

−2 Tr(X>Xdd>) + Tr(X>Xdd>) subject to d>d = 1

(due to the constraint)

= arg min
d

−Tr(X>Xdd>) subject to d>d = 1

= arg max
d

Tr(X>Xdd> ) subject to d>d = 1

= arg max
d

Tr(d>X >Xd) subject to d>d = 1

This optimization problem may be solved using eigendecomposition. Specif-
ically, the optimal d is given by the eigenvector of X>X corresponding to the
largest eigenvalue.

In the general case, where l > 1, D is given by the l eigenvectors corresponding
to the largest eigenvalues. This may be shown using proof by induction. We

recommend writing this proof as an exercise.
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Chapter 3

Probability and Information
Theory

In this chapter, we describe probability theory. Probability theory is a mathe-
matical framework for representing uncertain statements. It provides a means
of quantifying uncertainty and axioms for deriving new uncertain statements. In
artificial intelligence applications, we use probability theory in two major ways.

First, the laws of probability tell us how AI systems should reason, so we de-
sign our algorithms to compute or approximate various expressions derived using

probability theory. Second, we can use probability and statistics to theoretically
analyze the behavior of proposed AI systems.

Probability theory is a fundamental tool of many disciplines of science and
engineering. We provide this chapter to ensure that readers whose background is
primarily in software engineering with limited exposure to probability theory can
understand the material in this book. If you are already familiar with probability
theory, feel free to skip this chapter. If you have absolutely no prior experi-
ence with probability, this chapter should be sufficient to successfully carry out
deep learning research projects, but we do suggest that you consult an additional

resource, such as (Jaynes, 2003).

3.1 Why Probability?

Many branches of computer science deal mostly with entities that are entirely
deterministic and certain. A programmer can usually safely assume that a CPU
will execute each machine instruction flawlessly. Errors in hardware do occur, but
are rare enough that most software applications do not need to be designed to
account for them. Given that many computer scientists and software engineers
work in a relatively clean and certain environment, it can be surprising that
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machine learning makes heavy use of probability theory.
This is because machine learning must always deal with uncertain quantities,

and sometimes may also need to deal with stochastic quantities. Uncertainty
and stochasticity can arise from many sources. Researchers have made com-
pelling arguments for quantifying uncertainty using probability since at least the
1980s. Many of the arguments presented here are summarized from or inspired
by (Pearl, 1988). Much earlier work in probability and engineering introduced
and developed the underlying fundamental notions, such as the notion of ex-
changeability (de Finetti, 1937), Cox’s theorem as the foundations of Bayesian

inference (Cox, 1946), and the theory of stochastic processes (Doob, 1953).
Nearly all activities require some ability to reason in the presence of uncer-

tainty. In fact, beyond mathematical statements that are true by definition, it is
difficult to think of any proposition that is absolutely true or any event that is
absolutely guaranteed to occur.

One source of uncertainty is incomplete observability. When we cannot ob-
serve something, we are uncertain about its true nature. In machine learning, it
is often the case that we can observe a large amount of data, but there is not a
data instance for every situation we care about. We are also generally not able to
observe directly what process generates the data. Since we are uncertain about
what process generates the data, we are also uncertain about what happens in

the situations for which we have not observed data points. Lack of observability
can also give rise to apparent stochasticity. Deterministic systems can appear

stochastic when we cannot observe all of the variables that drive the behavior of
the system. For example, consider a game of Russian roulette. The outcome is
deterministic if you know which chamber of the revolver is loaded. If you do not
know this important information, then it is a game of chance. In many cases, we
are able to observe some quantity, but our measurement is itself uncertain. For
example, laser range finders may have several centimeters of random error.

Uncertainty can also arise from the simplifications we make in order to model
real-world processes. For example, if we discretize space, then we immediately
become uncertain about the precise position of objects: each object could be
anywhere within the discrete cell that we know it occupies.

Conceivably, the universe itself could have stochastic dynamics, but we make
no claim on this subject.

In many cases, it is more practical to use a simple but uncertain rule rather
than a complex but certain one, even if our modeling system has the fidelity to
accommodate a complex rule. For example, the simple rule “Most birds fly” is
cheap to develop and is broadly useful, while a rule of the form, “Birds fly, except
for very young birds that have not yet learned to fly, sick or injured birds that have
lost the ability to fly, flightless species of birds including the cassowary, ostrich,
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and kiwi. . . ” is expensive to develop, maintain, and communicate, and after all
of this effort is still very brittle and prone to failure.

Given that we need a means of representing and reasoning about uncertainty,
it is not immediately obvious that probability theory can provide all of the tools
we want for artificial intelligence applications. Probability theory was originally
developed to analyze the frequencies of events. It is easy to see how probability
theory can be used to study events like drawing a certain hand of cards in a
game of poker. These kinds of events are often repeatable, and when we say that
an outcome has a probability p of occurring, it means that if we repeated the

experiment (e.g., draw a hand of cards) infinitely many times, then proportion
p of the repetitions would result in that outcome. This kind of reasoning does

not seem immediately applicable to propositions that are not repeatable. If a
doctor analyzes a patient and says that the patient has a 40% chance of having
the flu, this means something very different—we can not make infinitely many
replicas of the patient, nor is there any reason to believe that different replicas of
the patient would present with the same symptoms yet have varying underlying
conditions. In the case of the doctor diagnosing the patient, we use probability to
represent a degree of belief, with 1 indicating absolute certainty, and 0 indicating
absolute uncertainty. The former kind of probability, related directly to the rates
at which events occur, is known as frequentist probability, while the latter, related

to qualitative levels of certainty, is known as Bayesian probability.
It turns out that if we list several properties that we expect common sense

reasoning about uncertainty to have, then the only way to satisfy those properties
is to treat Bayesian probabilities as behaving exactly the same as frequentist
probabilities. For example, if we want to compute the probability that a player
will win a poker game given that she has a certain set of cards, we use exactly the
same formulas as when we compute the probability that a patient has a disease
given that she has certain symptoms. For more details about why a small set of
common sense assumptions implies that the same axioms must control both kinds
of probability, see (Ramsey, 1926).

Probability can be seen as the extension of logic to deal with uncertainty.
Logic provides a set of formal rules for determining what propositions are implied

to be true or false given the assumption that some other set of propositions is
true or false. Probability theory provides a set of formal rules for determining the

likelihood of a proposition being true given the likelihood of other propositions.

3.2 Random Variables

A random variable is a variable that can take on different values randomly. We
typically denote the random variable itself with a lower case letter in plain type-
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face, and the values it can take on with lower case script letters. For example,
x1 and x2 are both possible values that the random variable x can take on. For
vector-valued variables, we would write the random variable as x and one of its
values as x. On its own, a random variable is just a description of the states that
are possible; it must be coupled with a probability distribution that specifies how
likely each of these states are.

Random variables may be discrete or continuous. A discrete random variable
is one that has a finite or countably infinite number of states. Note that these
states are not necessarily the integers; they can also just be named states that

are not considered to have any numerical value. A continuous random variable is
associated with a real value.

3.3 Probability Distributions

A probability distribution is a description of how likely a random variable or set
of random variables is to take on each of its possible states. The way we de-
scribe probability distributions depends on whether the variables are discrete or
continuous.

3.3.1 Discrete Variables and Probability Mass Functions

A probability distribution over discrete variables may be described using a proba-

bility mass function (PMF). We typically denote probability mass functions with
a capital P . Often we associate each random variable with a different probabil-
ity mass function and the reader must infer which probability mass function to
use based on the identity of the random variable, rather than the name of the
function; P (x) is usually not the same as P (y).

The probability mass function maps from a state of a random variable to
the probability of that random variable taking on that state. P (x) denotes the
probability that x = x, with a probability of 1 indicating that x = x is certain and
a probability of 0 indicating that x = x is impossible. Sometimes to disambiguate
which PMF to use, we write the name of the random variable explicitly: P (x =

x). Sometimes we define a variable first, then use ∼ notation to specify which

distribution it follows later: x ∼ P (x).
Probability mass functions can act on many variables at the same time. Such

a probability distribution over many variables is known as a joint probability
distribution. P (x = x, y = y) denotes the probability that x = x and y = y
simultaneously. We may also write P (x, y) for brevity.

To be a probability mass function on a set of random variables x, a function
f must meet the following properties:
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• The domain of f must be the set of all possible states of x.

• The range of f must be a subset of the real interval [0,1]. (No state can be
more likely than a guaranteed event or less likely than an impossible event.)

•
P

x∈x f (x) = 1. (f must guarantee that some state occurs.)

For example, consider a single discrete random variable x with k different
states. We can place a uniform distribution on x — that is, make each of its
states equally likely, by setting its probability mass function to

P (x = xi) =
1

k

for all i. We can see that this fits the requirements for a probability mass function.
The value 1

k is positive because k is a positive integer. We also see that
P

i P (x =

xi) =
P

i
1
k = k

k = 1, so the distribution is properly normalized.

3.3.2 Continuous Variables and Probability Density Functions

When working with continuous random variables, we describe probability distri-
butions using a probability density function (PDF) rather than a probability mass

function. A probability density function must satisfy the following properties:

• It must map from the domain of the random variable whose distribution it
describes to the real numbers.

• ∀x, p(x) ≥ 0. Note that we do not require p(x) ≤ 1.

•
R
p(x)dx = 1.

A probability density function does not give the probability of a specific state
directly, instead the probability of landing inside an infinitesimal region with
volume δx is given by p(x)δx.

We can integrate the density function to find the actual probability mass of
a set of points. Specifically, the probability that x lies in some set S is given by
the integral of p(x) over that set. In the univariate example, the probability that
x lies in the interval [a, b] is given by

R
[a,b]
p(x)dx.

For an example of a probability density function corresponding to a specific
probability density over a continuous random variable, consider a uniform dis-

tribution on an interval of the real numbers. We can do this with a function
u(x; a, b), where a and b are the endpoints of the interval, with b > a. (The

“;” notation means “parametrized by”; we consider x to be the argument of the
function, while a and b are parameters that define the function) To ensure that
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there is no probability mass outside the interval, we say u(x; a, b) = 0 for all
x 6∈ [a, b]. Within [a, b], u(x; a, b) = 1

b−a . We can see that this is nonnegative
everywhere. Additionally, it integrates to 1. We often denote that x follows the
uniform distribution on [a, b] by writing x ∼ U (a, b).

3.4 Marginal Probability

Sometimes we know the probability distribution over a set of variables, and we
want to know the probability distribution over just a subset of them. The prob-
ability distribution over the subset is known as the marginal probability.

For example, suppose we have discrete random variables x and y, and we know

P (x,y). We can find P (x) with the sum rule:

∀x ∈ x, P (x = x) =
X

y

P (x = x,y = y).

The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P (x,y) are written in a grid with dif-
ferent values of x in rows and different values of y in columns, it is natural to sum
across a row of the grid, then write P (x) in the margin of the paper just to the
right of the row.

For continuous variables, we need to use integration instead of summation:

p(x) =

Z
p(x, y)dy.

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some

other event has happened. This is called a conditional probability. We denote the

conditional probability that y = y given x = x as P (y = y | x = x). This
conditional probability can be computed with the formula

P (y = y | x = x) = P (y = y, x = x)/P (x = x).

Note that this is only defined when P (x = x) > 0. We cannot compute the
conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what
would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling, which
we do not explore in this book.
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3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decom-
posed into conditional distributions over only one variable:

P (x (1), . . . ,x(n)) = P (x(1) )Πn
i=2P (x(i) | x(1), . . . ,x(i−1)).

This observation is known as the chain rule or product rule of probability. It
follows immediately from the definition of conditional probability. For example,
applying the definition twice, we get

P (a,b, c) = P (a | b, c)P (b, c)

P (b, c) = P (b | c)P (c)

P (a,b, c) = P (a | b, c)P (b | c)P (c).

Note how every statement about probabilities remains true if we add conditions

(stuff on the right-hand side of the vertical bar) consistently on all the “P”’s in

the statement. We can use this to derive the same thing differently:

P (a,b | c) = P (a | b, c)P (b | c)

P (a,b, c) = P (a, b | c)P (c) = P (a | b, c)P (b | c)P (c).

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution can
be expressed as a product of two factors, one involving only x and one involving
only y:

∀x ∈ x, y ∈ y, p(x = x, y = y) = p(x = x)p(y = y).

Two random variables x and y are conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

∀x ∈ x, y ∈ y, z ∈ z, p(x = x, y = y | z = z) = p(x = x | z = z)p(y = y | z = z).

We can denote independence and conditional independence with compact no-
tation: x⊥y means that x and y are independent, while x⊥y | z means that x and
y are conditionally independent given z.
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3.8 Expectation, Variance, and Covariance

The expectation or expected value of some function f(x) with respect to a prob-
ability distribution P (x) is the average or mean value that f takes on when x is
drawn from P . For discrete variables this can be computed with a summation:

Ex∼P[f (x)] =
X

x

P (x)f (x),

while for continuous variables, it is computed with an integral:

Ex∼P [f (x)] =

Z
p(x)f (x)dx.

When the identity of the distribution is clear from the context, we may simply
write the name of the random variable that the expectation is over, e.g. Ex[f (x)].
If it is clear which random variable the expectation is over, we may omit the
subscript entirely, e.g. E[f (x)]. By default, we can assume that E[·] averages over
the values of all the random variables inside the brackets. Likewise, when there
is no ambiguity, we may omit the square brackets.

Expectations are linear, for example, E[αf (x) +βg(x)] = αE[f (x)] +βE[g(x)],

when α and β are fixed (not random and not depending on x).
The variance gives a measure of how much the different values of a function

are spread apart:

Var(f(x)) = E
h
(f(x) − E[f(x)])2

i
.

When the variance is low, the values of f(x) cluster near their expected value.
The square root of the variance is known as the standard deviation.

The covariance gives some sense of how much two values are linearly related
to each other, as well as the scale of these variables:

Cov(f (x), g(y)) = E [(f(x) − E [f(x)]) (g(y) − E [g(y)])] .

High absolute values of the covariance mean that the values change a lot and
are both far from their respective means at the same time. If the sign of the
covariance is positive, then the values tend to change in the same direction, while

if it is negative, they tend to change in opposite directions. Other measures such
as correlation normalize the contribution of each variable in order to measure only
how much the variables are related, rather than also being affected by the scale
of the separate variables.

The notions of covariance and dependence are conceptually related, but are in
fact distinct concepts. Two random variables that have non-zero covariance are

dependent. However, they may have zero covariance without being independent.
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For example, suppose we first generate x, then generate s ∈ {−1,1} with each
state having probability 0.5, then generate y as s(x − E[x]). Clearly, x and y
are not independent, because y only has two possible values given x. However,
Cov(x, y) = 0.

The covariance matrix of a random vector x ∈ Rn is an n × n matrix, such
that

Cov(x) i,j = Cov(xi , xj).

Note that the diagonal elements give Cov(x i, x i) = Var(x i).

3.9 Information Theory

Information theory is a branch of applied mathematics that revolves around quan-
tifying how much information is present in a signal. It was originally invented

to study sending messages from discrete alphabets over a noisy channel, such as

communication via radio transmission. In this context, information theory tells
how to design optimal codes and calculate the expected length of messages sam-

pled from specific probability distributions using various encoding schemes. In
the context of machine learning, we can also apply information theory to contin-
uous variables where some of these message length interpretations do not apply.
This field is fundamental to many areas of electrical engineering and computer
science. In this textbook, we mostly use a few key ideas from information theory
to characterize probability distributions or quantify similarity between probabil-
ity distributions. For more detail on information theory, see (Cover and Thomas,
2006; MacKay, 2003).

The basic intuition behind information theory is that learning that an un-

likely event has occurred is more informative than learning that a likely event has
occurred. A message saying “the sun rose this morning” is so uninformative as

to be unnecessary to send, but a message saying “there was a solar eclipse this
morning” is very informative.

We would like to quantify information in a way that formalizes this intuition.
Specifically,

• Likely events should have low information content, and in the extreme case,
events that are guaranteed to happen should have no information content
whatsoever.

• Less likely events should have higher information content.

• Independent events should have additive information. For example, finding
out that a tossed coin has come up as heads twice should convey twice as
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much information as finding out that a tossed coin has come up as heads
once.

In order to satisfy all three of these properties, we define the self-information
of an event x = x to be

I(x) = − logP (x). (3.1)

In this book, we always use log to mean the natural logarithm, with base e. Our
definition of I(x) is therefore written in units of nats. One nat is the amount of
information gained by observing an event of probability 1

e
. Other texts use base-2

logarithms and units called bits or shannons; information measured in bits is just

a rescaling of information measured in nats.
When x is continuous, we use the same definition of information by analogy,

but some of the properties from the discrete case are lost. For example, an event
with unit density still has zero information, despite not being an event that is
guaranteed to occur.

Self-information deals only with a single outcome. We can quantify the
amount of uncertainty in an entire probability distribution using the Shannon
entropy 1:

H(x) = E x∼P[I(x)] = −Ex∼P[log P(x)]. (3.2)

also denoted H(P ). In other words, the Shannon entropy of a distribution is

the expected amount of information in an event drawn from that distribution. It
actually gives a lower bound on the number of bits (if the logarithm is base 2,
otherwise the units are different) needed in average to encode symbols drawn from

a distribution P . Distributions that are nearly deterministic (where the outcome

is nearly certain) have low entropy; distributions that are closer to uniform have
high entropy. See Fig. 3.1 for a demonstration. When x is continous, the Shannon
entropy is known as the differential entropy.

If we have two separate probability distributions P (x) and Q(x) over the same
random variable x, we can measure how different these two distributions are using
the Kullback-Leibler (KL) divergence:

DKL(QkP ) = E x∼Q


log
Q(x)

P (x)


. (3.3)

In the case of discrete variables, it is the extra amount of information needed to
send a message containing symbols drawn with probability Q, when we incorrectly
believe that they were drawn with probability P , i.e., it measures how much it
hurts to use P as a model when Q is the ground truth. The KL divergence has

1
Shannon entropy is named for Claude Shannon, the father of information theory (Shannon,

1948, 1949). For an interesting biographical account of Shannon and some of his contemporaries,
see Fortune’s Formula by William Poundstone (Poundstone, 2005).
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Figure 3.1: This plot shows how distributions that are closer to deterministic have low
Shannon entropy while distributions that are close to uniform have high Shannon entropy.
On the horizontal axis, we plot p, the probability of a binary random variable being equal

to 1. When p is near 0, the distribution is nearly deterministic, because the random
variable is nearly always 0. When p is near 1, the distribution is nearly deterministic,
because the random variable is nearly always 1. When p = 0.5, the entropy is maximal,
because the distribution is uniform over the two outcomes.
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many useful properties, most notably that it is non-negative. The KL divergence
is 0 if and only if P and Q are the same distribution in the case of discrete
variables, or equal “almost everywhere” in the case of continuous variables (see
section 3.13 for details). Because the KL divergence is non-negative and measures
the difference between two distributions, it is often conceptualized as measuring
some sort of distance between these distributions. However, it is not a true
distance measure because it is not symmetric, i.e. DKL(PkQ) 6= DKL (QkP ) for
some P and Q.

When computing many of these quantities, it is common to encounter expres-

sions of the form 0 log 0. By convention, in the context of information theory, we
treat these expressions as limx→0 x logx = 0.

3.10 Common Probability Distributions

Several simple probability distributions are useful in many contexts in machine
learning.

3.10.1 Bernoulli Distribution

The Bernoulli distribution is a distribution over a single binary random variable.

It is controlled by a single parameter φ ∈ [0, 1], which gives the probability of the
random variable being equal to 1. It has the following properties:

P (x = 1) = φ

P (x = 0) = 1 − φ

P (x = x) = φx(1 − φ) 1−x

Ex[x] = φ

Varx(x) = φ(1 − φ)

H(x) = (φ − 1) log(1 − φ) − φ log φ.

3.10.2 Multinoulli Distribution

The multinoulli or categorical distribution is a distribution over a single discrete
variable with k different states, where k is finite2 . The multinoulli distribution

2 “Multinoulli” is a recently coined term. The multinoulli distribution is a special case of

the multinomial distribution. A multinomial distribution is the distribution over vectors in
{0, . . . , k}n representing how many times each of the k categories is visited when n samples

are drawn from a multinoulli distribution. Many texts use the term “multinomial” to refer to
multinoulli distributions without clarifying that they refer only to the n = 1 case.
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is parametrized by a vector p ∈ [0, 1]k−1 , where pi gives the probability of the
i-th state. The final, k-th state’s probability is given by 1 − 1> p. Note that
we must constrain 1>p ≤ 1. Multinoulli distributions are often used to refer to
distributions over categories of objects, so we do not usually assume that state 1
has numerical value 1, etc. For this reason, we do not usually need to compute
the expectation or variance of multinoulli-distributed random variables.

The Bernoulli and multinoulli distributions are sufficient to describe any distri-
bution over their domain. This is because they model discrete variables for which
it is feasible to simply enumerate all of the states. When dealing with continuous

variables, there are uncountably many states, so any distribution described by a
small number of parameters must impose strict limits on the distribution.

3.10.3 Gaussian Distribution

The most commonly used distribution over real numbers is the normal distribu-
tion, also known as the Gaussian distribution:

N (x | µ, σ2) =

r
1

2πσ2
exp


− 1

2σ 2
(x− µ)2


.

See Fig. 3.2 for a schematic.
The two parameters µ ∈ R and σ ∈ R+ control the normal distribution. µ

gives the coordinate of the central peak. This is also the mean of the distribution,

i.e. E[x] = µ. The standard deviation of the distribution is given by σ, i.e.
Var(x) = σ2.

Note that when we evaluate the PDF, we need to square and invert σ. When
we need to frequently evaluate the PDF with different parameter values, a more
efficient way of parametrizing the distribution is to use a parameter β ∈ R+ to

control the precision or inverse variance of the distribution:

N (x | µ, β−1 ) =

r
β

2π
exp


−1

2
β(x− µ)2


.

Normal distributions are a sensible choice for many applications. In the ab-

sence of prior knowledge about what form a distribution over the real numbers
should take, the normal distribution is a good default choice for two major rea-

sons.
First, many distributions we wish to model are truly close to being normal

distributions. The central limit theorem shows that the sum of many indepen-
dent random variables is approximately normally distributed. This means that
in practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.
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Figure 3.2: The normal distribution: The normal distribution N (x | µ, σ2) exhibits a
classic “bell curve” shape, with the x coordinate of its central peak given by µ, and
the width of its peak controlled by σ. In this example, we depict the standard normal
distribution, with µ = 0 and σ = 1.
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Second, the normal distribution in some sense makes the fewest assumptions
of any distribution over the reals, so choosing to use it inserts the least amount of
prior knowledge into a model. Out of all distributions with the same variance, the
normal distribution has the highest entropy. It is not possible to place a uniform
distribution on all of R. The closest we can come to doing so is to use a normal
distribution with high variance.

The normal distribution generalizes to Rn, in which case it is known as the
multivariate normal distribution. It may be parametrized with a positive definite
symmetric matrix Σ:

N (x | µ,Σ) =

s
1

(2π) ndet(Σ)
exp


−

1

2
(x− µ)>Σ−1(x− µ)


.

The parameter µ still gives the mean of the distribution, though now it is
vector-valued. The parameter Σ gives the covariance matrix of the distribution.
As in the univariate case, the covariance is not necessarily the most computation-
ally efficient way to parametrize the distribution, since we need to invert Σ to
evaluate the PDF. We can instead use a precision matrix β:

N (x | µ,β−1) =

s
det(β)

(2π)n exp


−

1

2
(x− µ)

>
β(x −µ)


.

3.10.4 Dirac Distribution

In some cases, we wish to specify that all of the mass in a probability distribution

clusters around a single point. This can be accomplished by defining a PDF using
the Dirac delta function, δ(x):

p(x) = δ(x − µ).

The Dirac delta function is defined such that it is zero-valued everywhere but 0,

yet integrates to 1. By defining p(x) to be δ shifted by −µ we obtain an infinitely
narrow and infinitely high peak of probability mass where x = µ.

A common use of the Dirac delta distribution is as a component of the so-called

empirical distribution,

p̂(x) =
1

n

nX

i=1

δ(x − xi) (3.4)

which puts probability mass 1
n on each of the n points x1, . . . xn forming a given

data set or collection of samples. The Dirac delta distribution is only necessary to
define the empirical distribution over continuous variables. For discrete variables,
the situation is simpler: an empirical distribution can be conceptualized as a
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multinoulli distribution, with a probability associated to each possible input value
that is simply equal to the empirical frequency of that value in the training set.

We can view the empirical distribution formed from a dataset of training ex-
amples as specifying the distribution that we sample from when we train a model
on this dataset. Another important perspective on the empirical distribution is
that it is the probability density that maximizes the likelihood of the training data
(see Section 5.8). Many machine learning algorithms can be configured to have
arbitrarily high capacity. If given enough capacity, these algorithms will simply
learn the empirical distribution. This is a bad outcome because the model does

not generalize at all and assigns infinitesimal probability to any point in space
that did not occur in the training set. A central problem in machine learning is

studying how to limit the capacity of a model in a way that prevents it from sim-
ply learning the empirical distribution while also allowing it to learn complicated
functions.

The empirical distribution is a particular form of mixture, discussed next.

3.10.5 Mixtures of Distributions and Gaussian Mixture

It is also common to define probability distributions by composing other sim-
pler probability distributions. One common way of combining distributions is to

construct a mixture distribution. A mixture distribution is made up of several
component distributions. On each trial, the choice of which component distribu-
tion generates the sample is determined by sampling a component identity from

a multinoulli distribution:

P (x) =
X

i

P (c = i)P (x | c = i)

where P (c) is the multinoulli distribution over component identities. In chap-
ter 13, we explore the art of building complex probability distributions from sim-
ple ones in more detail. Note that we can think of the variable c as a non-observed
(or latent) random variable that is related to x through their joint distribution
P (x, c) = P (x | c)P (c). Latent variables are discussed further in Section 13.4.2.

A very powerful and common type of mixture model is the Gaussian mixture

model, in which the components P (x | c = i) are Gaussians, each with its mean µi

and covariance Σi. Some mixtures can have more constraints, for example, the co-
variances could be shared across components, i.e., Σi = Σj = Σ, or the covariance
matrices could be constrained to be diagonal or simply equal to a scalar times the
identity. A Gaussian mixture model is a universal approximator of densities, in
the sense that any smooth density can be approximated to a particular precision
by a Gaussian mixture model with enough components. Gaussian mixture models
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have been used in many settings, and are particularly well known for their use as
acoustic models in speech recognition (Bahl et al., 1987).

3.11 Useful Properties of Common Functions

Certain functions arise often while working with probability distributions, espe-
cially the probability distributions used in deep learning models.

One of these functions is the logistic sigmoid:

σ(x) =
1

1 + exp(−x)
.

The logistic sigmoid is commonly used to produce the φ parameter of a Bernoulli
distribution because its range is (0, 1), which lies within the valid range of values
for the φ parameter. See Fig. 3.3 for a graph of the sigmoid function.

Figure 3.3: The logistic sigmoid function.

Another commonly encountered function is the softplus function (Dugas et al.,
2001):

ζ(x) = log (1 + exp(x)) .

The softplus function can be useful for producing the β or σ parameter of a normal
distribution because its range is R+ . It also arises commonly when manipulating
expressions involving sigmoids, as it is the primitive of the sigmoid, i.e., the

integral from −∞ to x of the sigmoid. The name of the softplus function comes
from the fact that it is a smoothed or “softened” version of

x+ = max(0, x).
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Figure 3.4: The softplus function.

See Fig. 3.4 for a graph of the softplus function.

The following properties are all useful enough that you may wish to memorize
them:

σ(x) =
exp(x)

exp(x) + exp(0)

d

dx
σ(x) = σ(x)(1 − σ(x))

1 − σ(x) = σ(−x)

log σ(x) = −ζ(−x)

d

dx
ζ(x) = σ(x)

∀x ∈ (0, 1), σ−1(x) = log


x

1 − x



∀x > 0, ζ−1(x) = log (exp(x) − 1)

ζ(x) − ζ(−x) = x

The function σ−1(x) is called the logit in statistics, but this term is more rarely

used in machine learning. The final property provides extra justification for the
name “softplus”, since x+ − x− = x.
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3.12 Bayes’ Rule

We often find ourselves in a situation where we know P (y | x) and need to know
P (x | y). Fortunately, if we also know P (x), we can compute the desired quantity
using Bayes’ rule:

P (x | y) =
P (x)P (y | x)

P (y)
.

Note that while P (y) appears in the formula, it is usually feasible to compute
P (y) =

P
x P (y | x)P (x), so we do not need to begin with knowledge of P (y).

Bayes’ rule is straightforward to derive from the definition of conditional prob-

ability, but it is useful to know the name of this formula since many texts refer to
it by name. It is named after the Reverend Thomas Bayes, who first discovered a

special case of the formula. The general version presented here was independently
discovered by Pierre-Simon Laplace.

3.13 Technical Details of Continuous Variables

A proper formal understanding of continuous random variables and probability
density functions requires developing probability theory in terms of a branch of

mathematics known as measure theory. Measure theory is beyond the scope of
this textbook, but we can briefly sketch some of the issues that measure theory

is employed to resolve.
In section 3.3.2, we saw that the probability of x lying in some set S is

given by the integral of p(x) over the set S. Some choices of set S can produce
paradoxes. For example, it is possible to construct two sets S1 and S2 such
that P(S1) + P (S2 ) > 1 but S1 ∩ S2 = ∅. These sets are generally constructed
making very heavy use of the infinite precision of real numbers, for example by
making fractal-shaped sets or sets that are defined by transforming the set of
rational numbers3 . One of the key contributions of measure theory is to provide a
characterization of the set of sets that we can compute the probability of without
encountering paradoxes. In this book, we only integrate over sets with relatively

simple descriptions, so this aspect of measure theory never becomes a relevant
concern.

For our purposes, measure theory is more useful for describing theorems that

apply to most points in Rn but do not apply to some corner cases. Measure theory
provides a rigorous way of describing that a set of points is negligibly small. Such
a set is said to have “measure zero”. We do not formally define this concept in this

textbook. However, it is useful to understand the intuition that a set of measure
zero occupies no volume in the space we are measuring. For example, within R2,

3The Banach-Tarski theorem provides a fun example of such sets.
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a line has measure zero, while a filled polygon has positive measure. Likewise, an
individual point has measure zero. Any union of countably many sets that each
have measure zero also has measure zero (so the set of all the rational numbers
has measure zero, for instance).

Another useful term from measure theory is “almost everywhere”. A property
that holds almost everywhere holds throughout all of space except for on a set
of measure zero. Because the exceptions occupy a negligible amount of space,
they can be safely ignored for many applications. Some important results in
probability theory hold for all discrete values but only hold “almost everywhere”

for continuous values.
One other detail we must be aware of relates to handling random variables

that are deterministic functions of one another. Suppose we have two random
variables, x and y, such that y = g(x). You might think that py (y) = px(g−1 (y)).
This is actually not the case.

Suppose y = x

2 and x ∼ U(0, 1). If we use the rule p y(y) = px(2y) then p y

will be 0 everywhere except the interval [0, 12 ], and it will be 1 on this interval.
This means Z

py (y)dy =
1

2

which violates the definition of a probability distribution.
This common mistake is wrong because it fails to account for the distortion

of space introduced by the function g(x). Recall that the probability of x lying
in an infinitesimally small region with volume δx is given by p(x)δx. Since g can
expand or contract space, the infinitesimal volume surrounding x in x space may
have different volume in y space. To correct the problem, we need to preserve
the property

|py (g(x))dy| = |px(x)dx|.
Solving from this, we obtain

py (y) = px (g−1 (y))|∂x
∂y

|

or equivalently

px(x) = p y(g(x))|
∂g(x)

∂x
|. (3.5)

In higher dimensions, the absolute value of the derivative generalizes to the de-

terminant of the Jacobian matrix — the matrix with Ji,j = ∂xi

∂yj
.

3.14 Structured Probabilistic Models

Machine learning algorithms often involve probability distributions over a very
large number of random variables. Often, these probability distributions involve
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direct interactions between relatively few variables. Using a single function to
describe the entire joint probability distribution can be very inefficient (both
computationally and statistically).

Instead of using a single function to represent a probability distribution, we
can split a probability distribution into many factors that we multiply together.
For example, suppose we have three random variables, a, b, and c. Suppose that
a influences the value of b and b influences the value of c, but that a and c are
independent given b. We can represent the probability distribution over all three
variables as a product of probability distributions over two variables:

p(a, b, c) = p(a)p(b | a)p(c | a).

These factorizations can greatly reduce the number of parameters needed to

describe the distribution. Each factor uses a number of parameters that is expo-
nential in the number of variables in the factor. This means that we can greatly

reduce the cost of representing a distribution if we are able to find a factorization
into distributions over fewer variables.

We can describe these kinds of factorizations using graphs. Here we use the
word “graph” in the sense of graph theory, i.e. a set of vertices that may be

connected to each other with edges. When we represent the factorization of a
probability distribution with a graph, we call it a structured probabilistic model
or graphical model.

There are two main kinds of structured probabilistic models: directed and

undirected. Both kinds of graphical models use a graph in which each node in
the graph corresponds to a random variable, and an edge connecting two ran-

dom variables means that the probability distribution is able to represent direct
interactions between those two random variables.

Directed models use graphs with directed edges, and they represent factoriza-
tions into conditional probability distributions, as in the example above. Specif-

ically, a directed model contains one factor for every random variable xi in the
distribution, and that factor consists of the conditional distribution over x i given
the parents of x i:

p(x) =
Y

i

p (xi | PaG (xi)) .

See Fig. 3.5 for an example of a directed graph and the factorization of probability
distributions it represents.

Undirected models use graphs with undirected edges, and they represent fac-

torizations into a set of functions; unlike in the directed case, these functions are
usually not probability distributions of any kind. Any set of nodes that are all
connected to each other in G is called a clique. Each clique C (i) in an undirected

model is associated with a factor φ (i)(C(i) ). These factors are just functions, not
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a

c

b

e

d

Figure 3.5: A directed graphical model over random variables a, b, c, d, and e. This
graph corresponds to probability distributions that can be factored as p(a,b, c, d, e) =

p(a)p(b)p(c | a,b)p(d | b)p(e | c). This graph allows us to quickly see some properties
of the distribution. For example, a and c interact directly, but a and e interact only

indirectly via c.
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probability distributions. The output of each factor must be non-negative, but
there is no constraint that the factor must sum or integrate to 1 like a probability
distribution.

The probability of a configuration of random variables is proportional to the
product of all of these factors—assignments that result in larger factor values are
more likely. Of course, there is no guarantee that this product will sum to 1. We
therefore divide by a normalizing constant Z, defined to be the sum or integral
over all states of the product of the φ functions, in order to obtain a normalized
probability distribution:

p(x) =
1

Z

Y

i

φ(i)

C(i)

.

See Fig. 3.6 for an example of an undirected graph and the factorization of prob-
ability distributions it represents.

Keep in mind that these graphical representations of factorizations are a lan-
guage for describing probability distributions. They are not mutually exclusive
families of probability distributions. Being directed or undirected is not a prop-
erty of a probability distribution; it is a property of a particular description of

a probability distribution, but any probability distribution may be described in
both ways.

Throughout part I and part II of this book, we will use structured probabilistic

models merely as a language to describe which direct probabilistic relationships
different machine learning algorithms choose to represent. No further understand-
ing of structured probabilistic models is needed until the discussion of research

topics, in part III, where we will explore structured probabilistic models in much
greater detail.

3.15 Example: Naive Bayes

We now know enough probability theory that we can perform some simple appli-
cations with a probabilistic model. In this example, we will show how to infer the
probability that a patient has the flu using a simple probabilistic model. For now,

we will assume that we just know the correct model somehow. Later chapters will
cover the concepts needed to learn the model from data.

The Naive Bayes model is a simple probabilistic model that is often used to
recognize patterns. The model consists of one random variable c representing a
category, and a set of random variables F = {f (1), . . . , f(n)} representing features

of objects in each category. In this example, we’ll use Naive Bayes to diagnose
patients as having the flu or not. The random variable c can thus have two

values: c0 representing the category of patients who do not have the flu, and c1
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a

c

b

e

d

Figure 3.6: An undirected graphical model over random variables a, b, c, d, and e. This
graph corresponds to probability distributions that can be factored as p(a,b, c, d, e) =
1
Z
φ (1)(a,b, c)φ(2)(b,d)φ(3)(c, e). This graph allows us to quickly see some properties of

the distribution. For example, a and c interact directly, but a and e interact only indirectly

via c.

69



CHAPTER 3. PROBABILITY AND INFORMATION THEORY

representing the category of patients who do. Suppose f(1) is the random variable

representing whether the patient has a sore throat, with f
(1)
0 representing no sore

throat, and f
(1)
1 representing a sore throat. Suppose f (2) ∈ R is the patient’s

temperature in degrees Celsius.

When using the Naive Bayes model, we assume that all of the features are
independent from each other given the category:

P (c, f(1), . . . , f (n)) = P (c)
Y

i

P (f(i) | c).

See Fig. 3.7 for a directed graphical model that expresses these conditional in-
dependence assumptions. These assumptions are very strong and unlikely to be
true in naturally occuring situations, hence the name “naive”. Surprisingly, Naive

Bayes often produces good predictions in practice (even though the assumptions
do not hold precisely), and is a good baseline model to start with when tackling
a new problem.

Beyond these conditional independence assumptions, the Naive Bayes frame-
work does not specify anything about the probability distribution. The specific
choice of distributions is left up to the designer. In our flu example, let’s make

P (c) a Bernoulli distribution, with P (c = c1 ) = φ(c). We can also make P (f(1) | c)
a Bernoulli distribution, with

P (f(1) = f (1)
1 | c = c) = φ f

c.

In other words, the Bernoulli parameter changes depending on the value of c.
Finally, we need to choose the distribution over f(2). Since f (2) is real-valued, a
normal distribution is a good choice. Because f(2) is a temperature, there are
hard limits to the values it can take on—it cannot go below 0K, for example.
Fortunately, these values are so far from the values measured in human patients
that we can safely ignore these hard limits. Values outside the hard limits will
receive extremely low probability under the normal distribution so long as the

mean and variance are set correctly. As with f(1) , we need to use different param-
eters for different values of c, to represent that patients with the flu have different
temperatures than patients without it:

f(2) ∼ N(f(2) | µ c, σ
2
c).

Now we are ready to determine how likely a patient is to have the flu. To do
this, we want to compute P (c | F), but we know P (c) and P(F | c). This suggests
that we should use Bayes’ rule to determine the desired distribution. The word
“Bayes” in the name “Naive Bayes” comes from this frequent use of Bayes’ rule
in conjunction with the model. We begin by applying Bayes’ rule:
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f
(1)

f
(2)

c

Figure 3.7: A directed graphical model depicting the conditional independence assump-
tions used by the Naive Bayes model.
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P (c | F) =
P (c)P (F | c)

P (F)
. (3.6)

We do not know P (F). Fortunately, it is easy to compute:

P (F) =
X

c∈c
P (c = c,F) (by the sum rule)

=
X

c∈c
P (c = c)P (F | c = c) (by the chain rule).

Substituting this result back into equation 3.6, we obtain

P (c | F) =
P (c)P (F | c)P

c∈cP (c = c)P (F | c = c)

=
P (c)ΠiP (f (i) | c)

P
c∈c P (c = c)ΠiP (f (i) | c = c)

by the Naive Bayes assumptions. This is as far as we can simplify the expression

for a general Naive Bayes model.
We can simplify the expression further by substituting in the definitions of the

particular probability distributions we have defined for our flu diagnosis example:

P (c = c | f(1) = f1 , f
(2) = f2) =

g(c)P
c0∈c g(c

0)

where
g(c) = P (c = c)P (f(1) = f(1) | c = c)P (f(2) = f (2) | c = c).

Since c only has two possible values in our example, we can simplify this to:

P (c = 1 | f(1) = f1 , f
(2) = f2) =

g(1)

g(0) + g(1)

=
1

1 +
g(0)

g(1)

=
1

1 + exp (log g(0) − log g(1))

= σ (log g(1) − log g(0)) . (3.7)

To go further, let’s simplify log g(i):

log g(i) = log

 
φ(c)i(1 − φ(c) )1−iφ (f)f1

1 (1 − φ(f)1 )1−f1

s

1

2πσ2
i

exp


− 1

2σ2
i

(f2 − µi)
2

!
72



CHAPTER 3. PROBABILITY AND INFORMATION THEORY

= i logφ(c) +(1−i) log


1 − φ(c)

+f1 log φ

(f)
i +(1−f1) log(1−φ (f)

i )+
1

2
log

1

2πσ2i
− 1

2σ2i
(f2 − µi)

2
.

Substituting this back into equation 3.7, we obtain

P (c = c | f(1) = f1, f
(2) = f2) =

σ


log φ(c) − log(1 − φ(c) ) + f1 log φ

(f)
1 + (1 − f1) log(1 − φ(f)1 )

−f1 log φ (f)
0 + (1 − f1 ) log(1 − φ(f)

0 )

− 1

2
log 2πσ21 +

1

2
log 2πσ 2

0−
1

2σ2
1

(f2 − µ1) 2 +
1

2σ20
(f 2 − µ0)2


.

From this formula, we can read off various intuitive properties of the Naive

Bayes classifier’s behavior on this example problem, regarding the inference that
can be drawn from a trained model. The probability of the patient having the flu
grows like a sigmoidal curve. We move farther to the left as f2, the patient’s tem-
perature, moves farther away from µ1, the average temperature of a flu patient.
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Chapter 4

Numerical Computation

Machine learning algorithms usually require a high amount of numerical compu-
tation. This typically refers to algorithms that solve mathematical problems by
methods that iteratively update estimates of the solution, rather than analytically
deriving a formula providing a symbolic expression for the correct solution. Com-
mon operations include solving systems of linear equations and finding the value

of an argument that minimizes a function. Even just evaluating a mathematical
function on a digital computer can be difficult when the function involves real

numbers, which cannot be represented precisely using a finite amount of memory.

4.1 Overflow and Underflow

The fundamental difficulty in performing continuous math on a digital computer
is that we need to represent infinitely many real numbers with a finite number
of bit patterns. This means that for almost all real numbers, we incur some
approximation error when we represent the number in the computer. In many
cases, this is just rounding error. Rounding error is problematic, especially when

it compounds across many operations, and can cause algorithms that work in
theory to fail in practice if they are not designed to minimize the accumulation

of rounding error.
One form of rounding error that is particularly devastating is underflow. Un-

derflow occurs when numbers near zero are rounded to zero. Many functions
behave qualitatively differently when their argument is zero rather than a small
positive number. For example, we usually want to avoid division by zero (some
software environments will raise exceptions when this occurs, otherwise will re-
turn a result with a placeholder not-a-number value) or taking the logarithm of
zero (this is usually treated as −∞, which then becomes not-a-number if it is
used for further arithmetic).
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Another highly damaging form of numerical error is overflow. Overflow occurs
when numbers with large magnitude are approximated as ∞ or −∞. Further
arithmetic will usually change this infinite values into not-a-number values.

For an example of the need to design software implementations to deal with
overflow and underflow, consider the softmax function, typically used to predict
the probabilities associated with a Multinoulli distribution:

softmax(x)i =
exp(xi)Pn
j exp(xj)

.

Consider what happens when all of the xi are equal to some constant c. Analyt-
ically, we can see that all of the outputs should be equal to 1

n . Numerically, this
may not occur when c has large magnitude. If c is very negative, then exp(c) will
underflow. This means the denominator of the softmax will become 0, so the final
result is undefined. When c is very large and positive, exp(c) will overflow, again

resulting in the expression as a whole being undefined. Both of these difficulties

can be resolved by instead evaluating softmax(z) where z = x − maxi xi. Simple

algebra shows that the value of the softmax function is not changed analytically
by adding or subtracting a scalar from the input vector. Subtracting maxi xi

results in the largest argument to exp being 0, which rules out the possibility of
overflow. Likewise, at least one term in the denominator has a value of 1, which
rules out the possibility of underflow in the denominator leading to a division by
zero.

There is still one small problem. Underflow in the numerator can still cause
the expression as a whole to evaluate to zero. This means that if we implement
log softmax(x) by first running the softmax subroutine then passing the result to
the log function, we could erroneously obtain −∞. Instead, we must implement

a separate function that calculates log softmax in a numerically stable way. The
log softmax function can be stabilized using the same trick as we used to stabilize

the softmax function.
For the most part, we do not explicitly detail all of the numerical consider-

ations involved in implementing the various algorithms described in this book.
Implementors should keep numerical issues in mind when developing implemen-
tations. Many numerical issues can be avoided by using Theano (Bergstra et al.,
2010a; Bastien et al., 2012), a software package that automatically detects and
stabilizes many common numerically unstable expressions that arise in the context
of deep learning.

4.2 Poor Conditioning

Conditioning refers to how rapidly a function changes with respect to small
changes in its inputs. Functions that change rapidly when their inputs are per-
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turbed slightly can be problematic for scientific computation because rounding
errors in the inputs can result in large changes in the output.

Consider the function f (x) = A−1x. When A ∈ Rn×n has an eigenvalue
decomposition, its condition number is

max
i,j

|
λ i

λj
|,

i.e. the ratio of the magnitude of the largest and smallest eigenvalue. When this

number is large, matrix inversion is particularly sensitive to error in the input.

Note that this is an intrinsic property of the matrix itself, not the result
of rounding error during matrix inversion. Poorly conditioned matrices amplify

pre-existing errors when we multiply by the true matrix inverse. In practice,
the error will be compounded further by numerical errors in the inversion process
itself. With iterative algorithms such as solving a linear system (or the worked-out
example of linear least square by gradient descent, Section 4.5) ill-conditioning
(in that case of the linear system matrix) yields very slow convergence of the
iterative algorithm, i.e., more iterations are needed to achieve some given degree
of approximation to the final solution.

4.3 Gradient-Based Optimization

Most deep learning algorithms involve optimization of some sort. Optimization
refers to the task of either minimizing or maximizing some function f (x) by al-
tering x. We usually phrase most optimization problems in terms of minimizing
f (x). Maximization may be accomplished via a minimization algorithm by min-

imizing −f(x).
The function we want to minimize or maximize is called the objective function.

When we are minimizing it, we may also call it the cost function, loss function,
or error function.

We often denote the value that minimizes or maximizes a function with a
superscript ∗. For example, we might say x ∗ = arg min f(x).

We assume the reader is already familiar with calculus, but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f(x), where both x and y are real numbers.
The derivative of this function is denoted as f 0(x) or as dy

dx
. The derivative f 0(x)

gives the slope of f(x) at the point x. In other words, it specifies how to scale
a small change in the input in order to obtain the corresponding change in the
output: f(x+ ) ≈ f(x) + f 0(x).

The derivative is therefore useful for minimizing a function because it tells us
how to change x in order to make a small improvement in y. For example, we
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Figure 4.1: An illustration of how the derivatives of a function can be used to follow the
function downhill to a minimum. This technique is called gradient descent.

know that f(x −  sign(f 0(x))) is less than f(x) for small enough . We can thus
reduce f(x) by moving x in small steps with opposite sign of the the derivative.
This technique is called gradient descent (Cauchy, 1847a). See Fig. 4.1 for an
example of this technique.

When f 0(x) = 0, the derivative provides no information about which direction
to move. Points where f 0(x) = 0 are known as critical points or stationary points.

A local minimum is a point where f(x) is lower than at all neighboring points,
so it is no longer possible to decrease f(x) by making infinitesimal steps. A local

maximum is a point where f(x) is higher than at all neighboring points, so it is
not possible to increase f(x) by making infinitesimal steps. Some critical points
are neither maxima nor minima. These are known as saddle points. See Fig. 4.2
for examples of each type of critical point.

A point that obtains the absolute lowest value of f(x) is a global minimum. It
is possible for there to be only one global minimum or multiple global minima of
the function. It is also possible for there to be local minima that are not globally

77



CHAPTER 4. NUMERICAL COMPUTATION

Figure 4.2: Examples of each of the three types of critical points in 1-D. A critical point is
a point with zero slope. Such a point can either be a local minimum, which is lower than
the neighboring points, a local maximum, which is higher than the neighboring points, or

a saddle point, which has neighbors that are both higher and lower than the point itself.
The situation in higher dimension is qualitatively different, especially for saddle points:
see Figures 4.4 and 4.5.
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Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they corre-
spond to significantly low values of the cost function. Optimizing MLPs was believed
to suffer from the presence of many local minima, but this idea is questioned in recent
work (Dauphin et al., 2014), with saddle points being considered as the more serious
issue.

optimal. In the context of deep learning, we optimize functions that may have
many local minima that are not optimal, and many saddle points surrounded by
very flat regions. All of this makes optimization very difficult, especially when the

input to the function is multidimensional. We therefore usually settle for finding
a value of f that is very low, but not necessarily minimal in any formal sense. See

Fig. 4.3 for an example. The figure caption also raises the question of whether
local minima or saddle points and plateaus are more to blame for the difficulties
one may encounter in training deep networks, a question that is discussed further
in Chapter 8, in particular Section 8.2.3.

We often minimize functions that have multiple inputs: f : Rn → R. Note
that for the concept of “minimization” to make sense, there must still be only
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one output.
For these functions, we must make use of the concept of partial derivatives.

The partial derivative ∂
∂xi
f(x) measures how f changes as only the variable xi

increases at point x. The gradient generalizes the notion of derivative to the
case where the derivative is with respect to a vector: f is the vector containing
all of the partial derivatives, denoted ∇xf(x). Element i of the gradient is the
partial derivative of f with respect to x i. In multiple dimensions, critical points
are points where every element of the gradient is equal to zero.

The directional derivative in direction u (a unit vector) is the slope of the

function f in direction u. In other words, the derivative of the function f(x+αu)
with respect to α, evaluated at α = 0. Using the chain rule, we can see that this

is u>∇xf(x).
To minimize f , we would like to find the direction in which f decreases the

fastest. We can do this using the directional derivative:

min
u,u>u=1

u>∇xf(x)

= min
u,u>u=1

||u||2||∇xf(x)||2 cos θ

where θ is the angle between u and the gradient. Substituting in ||u||2 = 1
and ignoring factors that don’t depend on u, this simplifies to minu cos θ. This
is minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent or gradient descent.

Steepest descent proposes a new point

x0 = x− ∇ xf(x)

where  is the size of the step. We can choose  in several different ways. A
popular approach is to set  to a small constant. Sometimes, we can solve for
the step size that makes the directional derivative vanish. Another approach is to
evaluate f (x − ∇xf(x)) for several values of  and choose the one that results
in the smallest objective function value. This last strategy is called a line search.

Steepest descent converges when every element of the gradient is zero (or, in

practice, very close to zero). In some cases, we may be able to avoid running
this iterative algorithm, and just jump directly to the critical point by solving the

equation ∇xf(x) = 0 for x.
Sometimes we need to find all of the partial derivatives of all of the elements

of a vector-valued function. The matrix containing all such partial derivatives is
known as a Jacobian matrix. Specifically, if we have a function f : Rm → Rn ,
then the Jacobian matrix J ∈ Rn×m of f is defined such that Ji,j = ∂

∂xj
f(x)i.
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We are also sometimes interested in a derivative of a derivative. This is known
as a second derivative. For example, for a function f : R n → R, the derivative
with respect to xi of the derivative of f with respect to xj is denoted as ∂2

∂xi∂xj
f .

In a single dimension, we can denote d2

dx2
f by f 00(x).

The second derivative tells us how the first derivative will change as we vary
the input. This means it can be useful for determining whether a critical point
is a local maximum, a local minimum, or saddle point. Recall that on a critical
point, f 0(x) = 0. When f 00(x) > 0, this means that f 0(x) increases as we move to

the right, and f 0 (x) decreases as we move to the left. This means f0(x − ) < 0
and f 0(x+ ) > 0 for small enough . In other words, as we move right, the slope

begins to point uphill to the right, and as we move left, the slope begins to point
uphill to the left. Thus, when f 0 (x) = 0 and f00(x) > 0, we can conclude that x is
a local minimum. Similarly, when f 0(x) = 0 and f 00(x) < 0, we can conclude that
x is a local maximum. This is known as the second derivative test. Unfortunately,
when f 00 (x) = 0, the test is inconclusive. In this case x may be a saddle point, or
a part of a flat region.

In multiple dimensions, we need to examine all of the second derivatives of
the function. These derivatives can be collected together into a matrix called the

Hessian matrix. The Hessian matrix H(f)(x) is defined such that

H(f)(x)i,j =
∂2

∂xi∂xj
f(x).

Equivalently, the Hessian is the Jacobian of the gradient.
Anywhere that the second partial derivatives are continuous, the differential

operators are commutative, i.e. their order can be swapped:

∂2

∂xi ∂xj
f(x) =

∂ 2

∂xj ∂xi
f(x).

This implies that H i,j = Hj,i, so the Hessian matrix is symmetric at such points.
Most of the functions we encounter in the context of deep learning have a sym-
metric Hessian almost everywhere. Because the Hessian matrix is real and sym-
metric, we can decompose it into a set of real eigenvalues and an orthogonal basis
of eigenvectors.

Using the eigendecomposition of the Hessian matrix, we can generalize the sec-
ond derivative test to multiple dimensions. At a critical point, where ∇ xf(x) = 0,
we can examine the eigenvalues of the Hessian to determine whether the critical
point is a local maximum, local minimum, or saddle point. When the Hessian is
positive definite1, the point is a local minimum. This can be seen by observing

1
all its eigenvalues are positive
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that the directional second derivative in any direction must be positive, and mak-
ing reference to the univariate second derivative test. Likewise, when the Hessian
is negative definite2 , the point is a local maximum. In multiple dimensions, it is
actually possible to find positive evidence of saddle points in some cases. When
at least one eigenvalue is positive and at least one eigenvalue is negative, we know
that x is a local maximum on one cross section of f but a local minimum on
another cross section. See Fig. 4.4 for an example. Finally, the multidimensional
second derivative test can be inconclusive, just like the univariate version. The
test is inconclusive whenever all of the non-zero eigenvalues have the same sign,

but at least one eigenvalue is zero. This is because the univariate second derivative
test is inconclusive in the cross section corresponding to the zero eigenvalue.

The Hessian can also be useful for understanding the performance of gradient
descent. When the Hessian has a poor condition number, gradient descent per-
forms poorly. This is because in one direction, the derivative increases rapidly,
while in another direction, it increases slowly. Gradient descent is unaware of this
change in the derivative so it does not know that it needs to explore preferentially
in the direction where the derivative remains negative for longer. See Fig. 4.5 for
an example.

This issue can be resolved by using information from the Hessian matrix to
guide the search. The simplest method for doing so is known as Newton’s method.

Newton’s method is based on using a second-order Taylor series expansion to
approximate f(x) near some point x0, ignoring derivatives of higher order:

f(x) ≈ f(x0 ) + (x− x0 )>∇xf(x0 ) +
1

2
(x− x0)>H(f)(x 0)(x− x 0).

If we then solve for the critical point of this function, we obtain:

x∗ = x0 −H(f)(x0)−1∇xf(x0).

When the function can be locally approximated as quadratic, iteratively updat-

ing the approximation and jumping to the minimum of the approximation can
reach the critical point much faster than gradient descent would. This is a useful

property near a local minimum, but it can be a harmful property near a saddle
point. As discussed in Section 8.2.3, Newton’s method is only appropriate when
the nearby critical point is a minimum (all the eigenvalues of the Hessian are pos-
itive), whereas gradient descent can in principle escape a saddle point, although
it may take a lot of time if the negative eigenvalues are very small in magnitude,
producing a kind of plateau around the saddle point.

Optimization algorithms such as gradient descent that use only the gradient
are called first-order optimization algorithms. Optimization algorithms such as

2all its eigenvalues are negative
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Figure 4.4: A saddle point containing both positive and negative curvature. The function
in this example is f(x) = x21 − x22 . Along the axis corresponding to x1 , the function
curves upward. This axis is an eigenvector of the Hessian and has a positive eigenvalue.
Along the axis corresponding to x2, the function curves downward. This direction is
an eigenvector of the Hessian with negative eigenvalue. The name “saddle point” derives

from the saddle-like shape of this function. This is the quintessential example of a function
with a saddle point. Note that in more than one dimension, it is not necessary to have an
eigenvalue of 0 in order to get a saddle point: it is only necessary to have both positive
and negative eigenvalues. See Section 8.2.3 for a longer discussion of saddle points in
deep nets.
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Figure 4.5: Gradient descent fails to exploit the curvature information contained in the

Hessian matrix. Here we use gradient descent on a quadratic function whose Hessian
matrix has condition number 5 (curvature is 5 times larger in one direction than in some
other direction). The lines above the mesh indicate the path followed by gradient descent.
This very elongated quadratic function resembles a long canyon. Gradient descent wastes
time repeatedly descending canyon walls, because they are the steepest feature. Because
the step size is somewhat too large, it has a tendency to overshoot the bottom of the

function and thus needs to descend the opposite canyon wall on the next iteration. The
large positive eigenvalue of the Hessian corresponding to the eigenvector pointed in this
direction indicates that this directional derivative is rapidly increasing, so an optimization
algorithm based on the Hessian could predict that the steepest direction is not actually a
promising search direction in this context. Note that some recent results suggest that the

above picture is not representative for deep highly non-linear networks. See Section 8.2.4
for more on this subject.
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Newton’s method that also use the Hessian matrix are called second-order opti-
mization algorithms (Nocedal and Wright, 2006).

The optimization algorithms employed in most contexts in this book are ap-
plicable to a wide variety of functions, but come with almost no guarantees. This
is because the family of functions used in deep learning is quite complicated. In
many other fields, the dominant approach to optimization is to design optimiza-
tion algorithms for a limited family of functions. Perhaps the most successful
field of specialized optimization is convex optimization. Convex optimization al-
gorithms are able to provide many more guarantees, but are applicable only to

functions for which the Hessian is positive definite everywhere. Such functions
are well-behaved because they lack saddle points and all of their local minima are

necessarily global minima. However, most problems in deep learning are difficult
to express in terms of convex optimization. Convex optimization is used only as
a subroutine of some deep learning algorithms. Ideas from the analysis of convex
optimization algorithms can be useful for proving the convergence of deep learn-
ing algorithms. However, in general, the importance of convex optimization is
greatly diminished in the context of deep learning. For more information about
convex optimization, see Boyd and Vandenberghe (2004) or Rockafellar (1997).

4.4 Constrained Optimization

Sometimes we wish not only to maximize or minimize a function f(x) over all

possible values of x. Instead we may wish to find the maximal or minimal value
of f(x) for values of x in some set S. This is known as constrained optimiza-
tion. Points x that lie within the set S are called feasible points in constrained
optimization terminology.

One simple approach to constrained optimization is simply to modify gradient
descent taking the constraint into account. If we use a small constant step size ,
we can make gradient descent steps, then project the result back into S. If we use
a line search (see previous section), we can search only over step sizes  that yield
new x points that are feasible, or we can project each point on the line back into

the constraint region. When possible, this method can be made more efficient by
projecting the gradient into the tangent space of the feasible region before taking

the step or beginning the line search (Rosen, 1960).
A more sophisticated approach is to design a different, unconstrained opti-

mization problem whose solution can be converted into a solution to the original,
constrained optimization problem. For example, if we want to minimize f(x) for
x ∈ R2 with x constrained to have exactly unit L2 norm, we can instead minimize
g(θ) = f([cos θ, sin θ]T ) with respect to θ, then return [cos θ, sin θ] as the solution
to the original problem. This approach requires creativity; the transformation
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between optimization problems must be designed specifically for each case we
encounter.

The Karush–Kuhn–Tucker (KKT) approach 3 provides a very general solu-
tion to constrained optimization. With the KKT approach, we introduce a new
function called the generalized Lagrangian or generalized Lagrange function.

To define the Lagrangian, we first need to describe S in terms of equations
and inequalities. We want a description of S in terms of m functions gi and n
functions hj so that S = {x | ∀i, gi(x) = 0 and ∀j, hj(x) ≤ 0}. The equations
involving gi are called the equality constraints and the inequalities involving h j

are called inequality constraints.
We introduce new variables λi and α j for each constraint, these are called the

KKT multipliers. The generalized Lagrangian is then defined as

L(x,λ,α) = f(x) +
X

i

λ i gi(x) +
X

j

αjhj(x).

We can now solve a constrained minimization problem using unconstrained
optimization of the generalized Lagrangian. Observe that, so long as at least one
feasible point exists and f(x) is not permitted to have value ∞, then

min
x

max
λ

max
α,α≥0

L(x,λ,α).

has the same optimal objective function value and set of optimal points x as

min
x∈S

f(x).

This follows because any time the constraints are satisfied,

max
λ

max
α,α≥0

L(x,λ,α) = f(x),

while any time a constraint is violated,

max
λ

max
α,α≥0

L(x,λ,α) = ∞.

These properties guarantee that no infeasible point will ever be optimal, and that
the optimum within the feasible points is unchanged.

To perform constrained maximization, we can construct the generalized La-

grange function of −f(x), which leads to this optimization problem:

min
x

max
λ

max
α,α≥0

−f(x) +
X

i

λigi(x) +
X

j

αjh j(x).

3The KKT approach generalizes the method of Lagrange multipliers which only allows equal-
ity constraints
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We may also convert this to a problem with maximization in the outer loop:

max
x

min
λ

min
α,α≥0

f(x) +
X

i

λ igi (x) −
X

j

αjh j(x).

Note that the sign of the term for the equality constraints does not matter; we
may define it with addition or subtraction as we wish, because the optimization

is free to choose any sign for each λi .
The inequality constraints are particularly interesting. We say that a con-

straint hi(x) is active if h i(x
∗) = 0. If a constraint is not active, then the solution

to the problem is the same whether or not that constraint exists. Because an in-
active h i has negative value, then the solution to minxmaxλ maxα,α≥0 L(x,λ,α)
will have αi = 0. We can thus observe that at the solution, αh(x) = 0. In
other words, for all i, we know that at least one of the constraints αi ≥ 0 and
hi(x) ≤ 0 must be active at the solution. To gain some intuition for this idea, we
can say that either the solution is on the boundary imposed by the inequality and
we must use its KKT multiplier to influence the solution to x, or the inequality

has no influence on the solution and we represent this by zeroing out its KKT
multiplier.

The properties that the gradient of the generalized Lagrangian is zero, all
constraints on both x and the KKT multipliers are satisfied, and α  h(x) =
0 are called the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn
and Tucker, 1951). Together, these properties describe the optimal points of

constrained optimization problems.
In the case where there are no inequality constraints, the KKT approach

simplifies to the method of Lagrange multipliers. For more information about the
KKT approach, see Nocedal and Wright (2006).

4.5 Example: Linear Least Squares

Suppose we want to find the value of x that minimizes

f(x) =
1

2
||Ax− b|| 22.

There are specialized linear algebra algorithms that can solve this problem effi-
ciently. However, we can also explore how to solve it using gradient-based opti-
mization as a simple example of how these techniques work.

First, we need to obtain the gradient:

∇xf(x) = A>(Ax− b) = A>Ax−A>b.

We can then follow this gradient downhill, taking small steps. See Algo-
rithm 4.1 for details.
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Algorithm 4.1 An algorithm to minimize f(x) = 1
2 ||Ax − b||22 with respect to

x using gradient descent.

Set , the step size, and δ, the tolerance, to small, positive numbers.

while ||A>Ax−A>b||2 > δ do
x← x − 


A>Ax−A>b



end while

One can also solve this problem using Newton’s method. In this case, because
the true function is quadratic, the quadratic approximation employed by Newton’s
method is exact, and the algorithm converges to the global minimum in a single

step.
Now suppose we wish to minimize the same function, but subject to the con-

straint x >x ≤ 1. To do so, we introduce the Lagrangian

L(x, λ) = f(x) + λ

x>x− 1


.

We can now solve the problem

min
x

max
λ,λ≥0

L(x, λ).

The solution to the unconstrained least squares problem is given by x = A+b.

If this point is feasible, then it is the solution to the constrained problem. Oth-
erwise, we must find a solution where the constraint is active. By differentiating
the Lagrangian with respect to x, we obtain the equation

A>Ax−A>b+ 2λx = 0.

This tells us that the solution will take the form

x = (A>A+ 2λI)−1b.

The magnitude of λ must be chosen such that the result obeys the constraint.
We can find this value by performing gradient ascent on λ. To do so, observe

∂

∂λ
L(x, λ) = x> x− 1.

When the norm of x exceeds 1, this derivative is positive, so to ascend the gradient
and increase the Lagrangian with respect to λ, we increase λ. This will in turn
shrink the optimal x. The process continues until x has the correct norm and the
derivative on λ is 0.
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Chapter 5

Machine Learning Basics

Deep learning is a specific kind of machine learning. In order to understand deep
learning well, one must have a solid understanding of the basic principles of ma-
chine learning. This chapter provides a brief course in the most important general
principles that will be applied throughout the rest of the book. Novice readers or
those that want a wider perspective are encouraged to consider machine learning

textbooks with a more comprehensive coverage of the fundamentals, such as Mur-
phy (2012) or Bishop (2006). If you are already familiar with machine learning

basics, feel free to skip ahead to Section 5.13. That section covers some perspec-
tives on traditional machine learning techniques that have strongly influenced the
development of deep learning algorithms.

5.1 Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data. But
what do we mean by learning? A popular definition of learning in the context of
computer programs is “A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure
P , if its performance at tasks in T , as measured by P , improves with experience

E” (Mitchell, 1997). One can imagine a very wide variety of experiences E, tasks
T , and performance measures P , and we do not make any attempt in this book
to provide a formal definition of what may be used for each of these entities.
Instead, the following sections provide intuitive descriptions and examples of the
different kinds of tasks, performance measures, and experiences that can be used
to construct machine learning algorithms.
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5.1.1 The Task, T

Machine learning is mostly interesting because of the tasks we can accomplish
with it. From an engineering point of view, machine learning allows us to tackle

tasks that are too difficult to solve with fixed programs written and designed by
human beings. From a scientific and philosophical point of view, machine learning
is interesting because understanding it allows us to understand the principles that

underlie intelligent behavior, and intelligent behavior is defined as being able to
accomplish certain tasks.

In this relatively formal definition of the word “task,” the process of learning
itself is not the task. Learning is our means of attaining the ability to perform
the task. For example, if we want a robot to be able to walk, then walking is
the task. We could program the robot to learn to walk, or we could attempt to
directly write a program that specifies how to walk manually.

Many kinds of tasks can be solved with machine learning. Some of the most

common machine learning tasks include the following:

• Classification: In this type of task, the computer program is asked to specify
which of k categories some input belongs to. To solve this task, the learning
algorithm is usually asked to produce a function f : Rn → {1, . . . , k} which
may then be applied to any input. Here the output of f (x) can be inter-
preted as an estimate of the category that x belongs to. There are other
variants of the classification task, for example, where f outputs a probabil-
ity distribution over classes. An example of a classification task is object

recognition, where the input is an image (usually described as a set of pixel
brightness values), and the output is a numeric code identifying the object

in the image. For example, the Willow Garage PR2 robot is able to act
as a waiter that can recognize different kinds of drinks and deliver them
to people on command (Goodfellow et al., 2010). Modern object recogni-
tion is best accomplished with deep learning (Krizhevsky et al., 2012a; Ioffe
and Szegedy, 2015). Object recognition is the same basic technology that
allows computers to recognize faces (Taigman et al., 2014), which can be
used to automatically tag people in photo collections and allow computers
to interact more naturally with their users.

• Classification with missing inputs : Classification becomes more challenging
if the computer program is not guaranteed that every measurement in its
input vector will always be provided. In order to solve the classification
task, the learning algorithm only has to define a single function mapping
from a vector input to a categorical output. When some of the inputs
may be missing, rather than providing a single classification function, the
learning algorithm must learn a set of functions. Each function corresponds
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to classifying x with a different subset of its inputs missing. This kind
of situation arises frequently in medical diagnosis, because many kinds of
medical tests are expensive or invasive. One way to efficiently define such
a large set of functions is to learn a probability distribution over all of
the relevant variables, then solve the classification task by marginalizing
out the missing variables. With n input variables, we can now obtain all
2n different classification functions needed for each possible set of missing
inputs, but we only need to learn a single function describing the joint
probability distribution. See Goodfellow et al. (2013b) for an example of

a deep probabilistic model applied to such a task in this way. Many of
the other tasks described in this section can also be generalized to work

with missing inputs; classification with missing inputs is just one example
of what machine learning can do.

• Regression : In this type of task, the computer program is asked to predict a
numerical value given some input. To solve this task, the learning algorithm
is asked to output a function f : Rn → R. This type of task is similar to
classification, except that the format of output is different. An example of
a regression task is the prediction of the expected claim amount that an
insured person will make (used to set insurance premia), or the prediction
of future prices of securities. These kinds of predictions are also used for
algorithmic trading.

• Transcription : In this type of task, the machine learning system is asked to
observe a relatively unstructured representation of some kind of data and
transcribe it into discrete, textual form. For example, in optical character
recognition, the computer program is shown a photograph containing an
image of text and is asked to return this text a sequence of characters (e.g.
in ASCII or Unicode format). Google Street View uses deep learning to

process address numbers in this way Goodfellow et al. (2014d). Another
example is speech recognition, where the computer program is provided

an audio waveform and emits a sequence of characters or word ID codes
describing the words that were spoken in the audio recording. Deep learning
is a crucial component of modern speech recognition systems used at major
companies including Microsoft, IBM and Google (Hinton et al., 2012b).

• indexTranslation Translation: In a translation task, the input already con-
sists of a sequence of symbols in some language, and the computer program
must convert this into a sequence of symbols in another language. This is
commonly applied to natural languages, such as to translate from English
to French. Deep learning has recently begun to have an important impact
on this kind of task (Sutskever et al., 2014a; Bahdanau et al., 2014).
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• Structured output tasks involve any task where the output is a vector con-
taining important relationships between the different elements. This is a
broad category, and includes the transcription and translation tasks de-
scribed above, but also many other tasks. One example is parsing—mapping
a natural language sentence into a tree that describes its grammatical struc-
ture and the relative role of its constituents. See Collobert (2011) for an
example of deep learning applied to a parsing task. Another example is
pixel-wise segmentation of images, where the computer program assigns ev-
ery pixel in an image to a specific category. For example, deep learning can

be used to annotate the locations of roads in aerial photographs (Mnih and
Hinton, 2010). The output need not have its form mirror the structure of

the input as closely as in these annotation-style tasks. For example, in an
image captioning, the computer program observes an image and outputs a
natural language sentence describing the image (Kiros et al., 2014a,b; Mao
et al., 2015; Vinyals et al., 2015; Donahue et al., 2014; Karpathy and Li,
2015; Fang et al., 2015; Xu et al., 2015a). These tasks are called struc-
tured output tasks because the program must output several values that
are all tightly inter-related. For example, the words produced by an image
captioning program must form a valid sentence.

• Anomaly detection: In this type of task, the computer program sifts through
a set of events or objects, and flags some of them as being unusual or atypi-

cal. An example of an anomaly detection task is credit card fraud detection.
By modeling your purchasing habits, a credit card company can detect mis-

use of your cards. If a thief steals your credit card or credit card information,
the thief’s purchases will often come from a different probability distribution
over purchase types than your own. The credit card company can prevent
fraud by placing a hold on an account as soon as that card has been used
for an uncharacteristic purchase.

• Synthesis and sampling: In this type of task, the machine learning algorithm
is asked to generate new examples that are similar to those in the training
data. This can be useful for media applications where it can be expensive
or boring for an artist to generate large volumes of content by hand. For ex-
ample, video games can automatically generate textures for large objects or

landscapes, rather than requiring an artist to manually label each pixel (Luo
et al., 2013). In some cases, we want the sampling or synthesis procedure

to generate some specific kind of output given the input. For example, in a
speech synthesis task, we provide a written sentence and ask the program
to emit an audio waveform containing a spoken version of that sentence.
This is a kind of structured output task, but with the added qualification
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that there is no single correct output for each input, and we explicitly desire
a large amount of variation in the output, in order for the output to seem
more natural and realistic.

• Imputation of missing values: In this type of task, the machine learning

algorithm is given a new example x ∈ Rn, but with some entries xi of
x missing. The algorithm must provide a prediction of the values of the

missing entries.

• Denoising: In this type of task, the machine learning algorithm is given
in input a corrupted example x̃ ∈ Rn obtained by an unknown corruption
process from a clean example x ∈ Rn . The learner must predict the clean
example x from its corrupted version x̃, or more generally predict the con-
ditional probability distribution P (x | x̃).

• Density or probability function estimation: In the density estimation prob-
lem, the machine learning algorithm is asked to learn a function pmodel :
Rn → R, where pmodel(x) can be interpreted as a probability density func-
tion (if x is continuous) or a probability function (if x is discrete) on the
space that the examples were drawn from. To do such a task well (we will
specify exactly what that means when we discuss performance measures P ),
the algorithm needs to learn the structure of the data it has seen. It must
know where examples cluster tightly and where they are unlikely to occur.

Most of the tasks described above require that the learning algorithm has at
least implicitly captured the structure of the probability distribution. Den-

sity estimation allows us to explicitly capture that distribution. In principle,
we can then perform computations on that distribution in order to solve the
other tasks as well. For example, if we have performed density estimation to
obtain a probability distribution p(x), we can use that distribution to solve
the missing value imputation task. If a value xi is missing, then we know the

distribution over it is given by p(xi | x−i) . In practice, density estimation
does not always allow us to solve all of these related tasks, because in many

cases the required operations on p(x) are computationally intractable.

Of course, many other tasks and types of tasks are possible. The types of tasks
we listed here are only intended to provide examples of what machine learning

can do, not to define a rigid taxonomy of tasks.

5.1.2 The Performance Measure, P

In order to evaluate the abilities of a machine learning algorithm, we must design
a quantitative measure of its performance. Usually this performance measure P
is specific to the task T being carried out by the system.
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For tasks such as classification, classification with missing inputs, and tran-
scription, we often measure the accuracy of the model. In the simplest case this is
just the proportion of examples for which the model produces the correct output.
For tasks such as density estimation, we can measure the probability the model
assigns to some examples.

Usually we are interested in how well the machine learning algorithm performs
on data that it has not seen before, since this determines how well it will work
when deployed in the real world. We therefore evaluate these performance mea-
sures using a test set of data that is separate from the data used for training the

machine learning system.
The choice of performance measure may seem straightforward and objective,

but it is often difficult to choose a performance measure that corresponds well to
the desired behavior of the system.

In some cases, this is because it is difficult to decide what should be mea-
sured. For example, when performing a transcription task, should we measure
the accuracy of the system at transcribing entire sequences, or should we use a
more fine-grained performance measure that gives partial credit for getting some
elements of the sequence correct? When performing a regression task, should we
penalize the system more if it frequently makes medium-sized mistakes or if it
rarely makes very large mistakes? These kinds of design choices depend on the

application.
In other cases, we know what quantity we would ideally like to measure, but

measuring it is impractical. For example, this arises frequently in the context of
density estimation. Many of the best probabilistic models represent probability
distributions only implicitly. Computing the actual probability value assigned
to a specific point in space is intractable. In these cases, one must design an
alternative criterion that still corresponds to the design objectives, or design a
good approximation to the desired criterion.

5.1.3 The Experience, E

Machine learning algorithms can be broadly categorized as unsupervised or su-
pervised by what kind of experience they are allowed to have during the learning
process.

Most of the learning algorithms in this book can be understood as being
allowed to experience an entire dataset. A dataset is a collection of many objects
called examples, with each example containing many features that have been
objectively measured. Sometimes we will also call examples data points.

One of the oldest datasets studied by statisticians and machine learning re-
searchers is the Iris dataset (Fisher, 1936). It is a collection of measurements of
different parts of 150 iris plants. Each individual plant corresponds to one exam-
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ple. The features within each example are the measurements of each of the parts
of the plant: the sepal length, sepal width, petal length, and petal width. The
dataset also records which species each plant belonged to. Three different species
are represented in the dataset.

Unsupervised learning algorithms experience a dataset containing many fea-
tures, then learn useful properties of the structure of this dataset. In the context
of deep learning, we usually want to learn the entire probability distribution that
generated a dataset, whether explicitly as in density estimation or implicitly for
tasks like synthesis or denoising. Some other unsupervised learning algorithms

perform other roles, like dividing the dataset into clusters of similar examples.
Supervised learning algorithms experience a dataset containing features, but

each example is also associated with a label or target. For example, the Iris
dataset is annotated with the species of each iris plant. A supervised learning
algorithm can study the Iris dataset and learn to classify iris plants into three
different species based on their measurements.

Roughly speaking, unsupervised learning involves observing several examples
of a random vector x, and attempting to implicitly or explicitly learn the proba-
bility distribution p(x), or some interesting properties of that distribution, while
supervised learning involves observing several examples of a random vector x and
an associated value or vector y, and learning to predict y from x, e.g. estimating

p(y | x). The term supervised learning originates from the view of the target
y being provided by an instructor or teacher that shows the machine learning

system what to do. In unsupervised learning, there is no instructor or teacher,
and the algorithm must learn to make sense of the data without this guide.

Unsupervised learning and supervised learning are not formally defined terms,
and the lines between them are often blurred. Many machine learning technologies
can be used to perform both tasks. For example, the chain rule of probability
states that for a vector x ∈ R

n, the joint distribution can be decomposed as

p(x) = Πn
i=1p(x i | x1, . . . , xi−1).

This decomposition means that we can solve the ostensibly unsupervised problem
of modeling p(x) by splitting it into n supervised learning problems. Alternatively,
we can solve the supervised learning problem of learning p(y | x) by using tra-
ditional unsupervised learning technologies to learn the joint distribution p(x, y)

and inferring

p(y | x) =
p(x, y)P
y0 p(x, y

0)
.

Though unsupervised learning and supervised learning are not completely formal
or distinct concepts, they do help to roughly categorize some of the things we
do with machine learning algorithms. Traditionally, people refer to regression,
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classification, and structured output problems as supervised learning. Density
estimation in support of other tasks is usually considered unsupervised learning.

Some machine learning algorithms do not just experience a fixed dataset.
For example, reinforcement learning algorithms interact with an environment, so
there is a feedback loop between the learning system and its experiences. Such
algorithms are beyond the scope of this book.

Most machine learning algorithms simply experience a dataset. A dataset can
be described in many ways. In all cases, a dataset is a collection of examples.
Each example is a collection of observations called features collected from a dif-

ferent time or place. If we wish to make a system for recognizing objects from
photographs, we might use a machine learning algorithm where each example is a

photograph, and the features within the example are the brightness values of each
of the pixels within the photograph. If we wish to perform speech recognition,
we might collect a dataset where each example is a recording of a person saying
a word or sentence, and each of the features is the amplitude of the sound wave
at a particular moment in time.

One common way of describing a dataset is with a design matrix. A design
matrix is a matrix containing a different example in each row. Each column of the
matrix corresponds to a different feature. For instance, the Iris dataset contains
150 examples with four features for each example. This means we can represent

the dataset with a design matrix X ∈ R
150×4 , where Xi,1 is the sepal length

of plant i, Xi,2 is the sepal width of plant i, etc. We will describe most of the

learning algorithms in this book in terms of how they operate on design matrix
datasets.

Of course, to describe a dataset as a design matrix, it must be possible to
describe each example as a vector, and each of these vectors must be the same size.
This is not always possible. For example, if you have a collection of photographs
with different widths and heights, then different photographs will contain different
numbers of pixels, so not all of the photographs may be described with the same
length of vector. Different sections of this book describe how to handle different
types of heterogeneous data. In cases like these, rather than describing the dataset
as a matrix with m rows, we will describe it as a set containing m elements, e.g.

{x(1),x(2) , . . . ,x(m)}. This notation does not imply that any two example vectors
x(i) and x(j) have the same size.

In the case of supervised learning, the example contains a label or target as
well as a collection of features. For example, if we want to use a learning algorithm
to perform object recognition from photographs, we need to specify which object
appears in each of the photos. We might do this with a numeric code, with 0
signifying a person, 1 signifying a car, 2 signifying a cat, etc. Often when working
with a dataset containing a design matrix of feature observations X, we also
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provide a vector of labels y, with yi providing the label for example i.
Of course, sometimes the label may be more than just a single number. For

example, if we want to train a speech recognition system to transcribe entire
sentences, then the label for each example sentence is a sequence of words.

Just as there is no formal definition of supervised and unsupervised learning,
there is no rigid taxonomy of datasets or experiences. The structures described
here cover most cases, but it is always possible to design new ones for new appli-
cations.

5.2 Example: Linear Regression

In the previous section, we saw that a machine learning algorithm is an algorithm
that is capable of improving a computer program’s performance at some task via
experience. Now it is time to define some specific machine learning algorithms.

Let’s begin with an example of a simple machine learning algorithm: linear
regression. In this section, we will only describe what the linear regression algo-
rithm does. We wait until later sections of this chapter to justify the algorithm
and show more formally that it actually works.

As the name implies, linear regression solves a regression problem. In other
words, the goal is to build a system that can take a vector x ∈ R

n as input and
predict the value of a scalar y ∈ R as its output. In the case of linear regression,
the output is a linear function of the input. Let ŷ be the value that our model
predicts y should take on. We define the output to be

ŷ = w>x

where w ∈ Rn is a vector of parameters.
Parameters are values that control the behavior of the system. In this case, wi

is the coefficient that we multiply by feature x i before summing up the contribu-
tions from all the features. We can think of w as a set of weights that determine
how each feature affects the prediction. If a feature xi receives a positive weight
wi , then increasing the value of that feature increases the value of our prediction
ŷ. If a feature receives a negative weight, then increasing the value of that feature
decreases the value of our prediction. If a feature’s weight is large in magnitude,

then it has a large effect on the prediction. If a feature’s weight is zero, it has no
effect on the prediction.

We thus have a definition of our task T : to predict y from x by outputting

ŷ = w>x. Next we need a definition of our performance measure, P .
Let’s suppose that we have a design matrix of m example inputs that we will

not use for training, only for evaluating how well the model performs. We also
have a vector of regression targets providing the correct value of y for each of
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these examples. Because this dataset will only be used for evaluation, we call it
the test set. Let’s refer to the design matrix of inputs as X (test) and the vector
of regression targets as y(test) .

One way of measuring the performance of the model is to compute the mean
squared error of the model on the test set. If ŷ(test) is the predictions of the model
on the test set, then the mean squared error is given by

MSEtest =
1

m

X

i

(ŷ(test) − y(test))2i .

Intuitively, one can see that this error measure decreases to 0 when ŷ(test) = y(test).
We can also see that

MSE test =
1

m
||̂y(test) − y(test) ||22,

so the error increases whenever the Euclidean distance between the predictions

and the targets increases.
To make a machine learning algorithm, we need to design an algorithm that

will improve the weights w in a way that reduces MSE test when the algorithm
is allowed to gain experience by observing a training set (X(train),y (train) ). One
intuitive way of doing this (which we will justify later) is just to minimize the
mean squared error on the training set, MSEtrain.

To minimize MSEtrain, we can simply solve for where its gradient is 0:

∇wMSEtrain = 0

⇒ ∇w
1

m
||ŷ(train) − y(train)||22 = 0

⇒
1

m
∇w||X (train)w − y(train)||22 = 0

⇒ ∇w(X(train)w − y(train) )>(X (train)w − y (train)) = 0

⇒ ∇w(w>X (train)>X(train)w − 2w>X (train)>y (train) + y (train)>y(train)) = 0

⇒ 2X(train)>X (train)w − 2X(train)>y(train) = 0

⇒ w = (X(train)>X(train))−1X(train)>y(train) (5.1)

The system of equations defined by Eq. 5.1 is known as the normal equations.
Solving these equations constitutes a simple learning algorithm. For an example
of the linear regression learning algorithm in action, see Fig. 5.1.

It’s worth noting that the term linear regression is often used to refer to a
slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

ŷ = w>x + b
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Figure 5.1: Consider this example linear regression problem, with a training set consisting
of 5 data points, each containing one feature. This means that the weight vector w
contains only a single parameter to learn, w1. (Left) Observe that linear regression learns
to set w 1 such that the line y = w1x comes as close as possible to passing through all the

training points. (Right) The plotted point indicates the value of w1 found by the normal
equations, which we can see minimizes the mean squared error on the training set.

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension
to affine functions means that the plot of the model’s predictions still looks like
a line, but it need not pass through the origin. We will frequently use the term
“linear” when referring to affine functions throughout this book.

Linear regression is of course an extremely simple and limited learning al-
gorithm, but it provides an example of how a learning algorithm can work. In
the subsequent sections we will describe some of the basic principles underlying
learning algorithm design and demonstrate how these principles can be used to
build more complicated learning algorithms.

5.3 Generalization, Capacity, Overfitting and Under-

fitting

The central challenge in machine learning is that we must perform well on new,
previously unseen inputs—not just those on which our model was trained. The
ability to perform well on previously unobserved inputs is called generalization.

Typically, when training a machine learning model, we have access to a train-
ing set, we can compute some error measure on the training set called the training
error, and we reduce this training error. So far, what we have described is simply
an optimization problem. What separates machine learning from optimization is
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that we want the generalization error to be low as well. The generalization error
is defined as the expected value of the error on a new input. Here the expectation
is taken across different possible inputs, drawn from the distribution of inputs we
expect the system to encounter in practice.

We typically estimate the generalization error of a machine learning model by
measuring its performance on a test set of examples that were collected separate
from the training set.

In our linear regression example, we trained the model by minimizing the
training error,

1

m(train)
||X(train)w − y (train)|| 22,

but we actually care about the test error, 1
m(test)

||X(test)w − y(test)||22.
How can we affect performance on the test set when we only get to observe

the training set? The field of statistical learning theory provides some answers. If
the training and the test set are collected arbitrarily, there is indeed little we can
do. If we are allowed to make some assumptions about how the training and test
set are collected, then we can make some progress.

We typically make a set of assumptions known collectively as the i.i.d. as-

sumptions. These assumptions are that the examples in each dataset are indepen-
dent from each other, and that the train set and test set are identically distributed,

drawn from the same probability distribution as each other. We call that shared
underlying distribution the data generating distribution, or data generating pro-
cess (which is particularly relevant if the examples are not independent). This

probabilistic framework allows us to mathematically study the relationship be-
tween training error and test error.

One immediate connection we can observe between the training and test error
is that for a randomly selected model, the two have the same expected value.

Suppose we have a probability distribution p(x, y) and we sample from it repeat-
edly to generate the train set and the test set. For some fixed value w, then

the expected training set error under this sampling process is exactly the same
as the expected test set error under this sampling process. The only difference
between the two conditions is the name we assign to the dataset we sample. From

this observation, we can see that it is natural for there to be some relationship
between training and test error under these assumptions.

Of course, when we use a machine learning algorithm, we do not fix the
parameters ahead of time, then sample both datasets. We sample the training
set, then use it to choose the parameters to reduce training set error, then sample
the test set. Under this process, the expected test error is greater than or equal to
the expected value of training error. The factors determining how well a machine
learning algorithm will perform are its ability to:
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1. Make the training error small.

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning:
underfitting and overfitting. Underfitting occurs when the model is not able to

obtain a sufficiently low error value on the training set. Overfitting occurs when
the gap between the training error and test error is too large.

We can control whether a model is more likely to overfit or underfit by altering
its capacity. Informally, a model’s capacity is its ability to fit a wide variety of
functions. Models with low capacity may struggle to fit the training set. Models

with high capacity can overfit, i.e., memorize properties of the training set that

do not serve them well on the test set.
One way to control the capacity of a learning algorithm is by choosing its

hypothesis space, the set of functions that the learning algorithm is allowed to
choose as being the solution. For example, the linear regression algorithm has the

set of all linear functions of its input as its hypothesis space. We can generalize
linear regression to include polynomials, rather than just linear functions, in its
hypothesis space. Doing so increases the model’s capacity.

A polynomial of degree one gives us the linear regression model with which
we are already familiar, with prediction

ŷ = b +wx.

By introducing x2 as another feature provided to the linear regression model, we
can learn a model that is quadratic as a function of x:

ŷ = b +w 1x +w2 x
2 .

Note that this is still a linear function of the parameters, so we can still use the
normal equations to train the model in closed form. We can continue to add more

powers of x as additional features, for example to obtain a polynomial of degree
9:

ŷ = b +
9X

i=1

wix
i .

Machine learning algorithms will generally perform best when their capacity
is appropriate in regard to the true complexity of the task they need to perform
and the amount of training data they are provided with. Models with insufficient
capacity are unable to solve complex tasks. Model with high capacity can solve
complex tasks, but when their capacity is higher than needed to solve the present
task they may overfit.
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Fig. 5.2 shows this principle in action. We compare a linear, quadratic, and
degree-9 predictor attempting to fit a problem where the true underlying func-
tion is quadratic. The linear function is unable to capture the curvature in the
true underlying problem, so it underfits. The degree-9 predictor is capable of
representing the correct function, but it is also capable of representing infinitely
many other functions that pass exactly through the training points, because we
have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched the true structure of the

task so it generalizes well to new data.

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center) A
quadratic function fit to the data generalizes well to unseen points. It does not suffer

from a significant amount of overfitting or underfitting. (Right) A polynomial of degree
9 fit to the data suffers from overfitting. Here we used the Moore-Penrose pseudo-inverse
to solve the underdetermined normal equations. The solution passes through all of the
training points exactly, but we have not been lucky enough for it to extract the correct
structure. It now has a deep valley in between two training points that does not appear
in the true underlying function. It also increases sharply on the left side of the data,
while the true function decreases in this area.

Here we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters asso-
ciated with those features). There are many other ways of controlling the capacity
of a machine learning algorithm, which we will explore in the sections ahead.

Many of these ideas date back to Occam’s razor (c. 1287-1347), also known as
the principle of parsimony, which states that among competing hypotheses (here,
read functions that could explain the observed data), one should choose the “sim-
pler” one. This idea was formalized and made more precise in the 20th century by
the founders of statistical learning theory (Vapnik and Chervonenkis, 1971; Vap-
nik, 1982; Blumer et al., 1989; Vapnik, 1995). This body of work provides various

102



CHAPTER 5. MACHINE LEARNING BASICS

Capacity

training

error

generalization
error

Error

generalization gap

optimal
capacity

Overfitting zoneUnderfitting zone

Figure 5.3: Typical relationship between capacity (horizontal axis) and both training
(bottom curve, dotted) and generalization (or test) error (top curve, bold). At the left end
of the graph, training error and generalization error are both high. This is the underfitting
regime. As we increase capacity, training error decreases, but the gap between training
and generalization error increases. Eventually, the size of this gap outweighs the decrease
in training error, and we enter the overfitting regime, where capacity is too large, above
the optimal capacity.

means of quantifying model capacity and showing that the discrepancy between
training error and generalization error is bounded by a quantity that grows with

the ratio of capacity to number of training examples (Vapnik and Chervonenkis,
1971; Vapnik, 1982; Blumer et al., 1989; Vapnik, 1995). These bounds provide

intellectual justification that machine learning algorithms can work, but they are
rarely used in practice when working with deep learning algorithms. This is in
part because the bounds are often quite loose, and in part because it can be quite
difficult to determine the capacity of deep learning algorithms.

Typically, training error decreases until it asymptotes to the minimum pos-

sible error value as model capacity increases (assuming your error measure has
a minimum value). Typically, generalization error has a U-shaped curve as a
function of model capacity. This is illustrated in Figure 5.3.

Training and generalization error also vary as the size of the training set varies.
See Fig. 5.4 for an illustration. The figure introduces the notion of parametric
and non-parametric learning algorithms. Parametric ones have a fixed maximum
capacity (their capacity can still be reduced by various means, such as a poor
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optimization procedure), and they are called like this because they have a fixed-
size parameter vetor. On the other hand, non-parametric learners are allowed
to set their capacity based on the given data, i.e., the number of parameters is
something that can be determined after the data is observed, and typically more
data allows a greater capacity, i.e., more parameters. Note that it is possible
for the model to have optimal capacity and yet still have a large gap between
training and generalization error. In this situation, we can only reduce this gap
by gathering more training examples.

It’s worth mentioning that capacity is not just determined by which model

we use. The model specifies which family of functions the learning algorithm can
choose from when varying the parameters in order to reduce a training objective.

This is called the representational capacity of the model. In many cases, finding
the best function within this family is a very difficult optimization problem. In
practice, the learning algorithm does not actually find the best function, just one
that significantly reduces the training error. These additional restrictions mean
that the model’s effective capacity may be less than its representational capacity.

5.4 The No Free Lunch Theorem

Although learning theory, sketched above, suggests that it is possible to generalize,
one should consider a serious caveat, discussed here. Generally speaking, inductive
reasoning, or inferring general rules from a limited set of examples, is not logically
valid. To logically infer a rule describing every member of a set, one must have

information about every member of that set. One may wonder then how the
claims that machine learning can generalize well are logically valid.

In part, machine learning avoids this problem by offering only probabilistic
rules, rather than the entirely certain rules used in purely logical reasoning. Ma-
chine learning promises to find rules that are probably correct about most members
of the set they concern.

Unfortunately, even this does not resolve the entire problem. The no free
lunch theorem for machine learning (Wolpert, 1996) states that, averaged over
all possible data generating distributions, every classification algorithm has the
same error rate when classifying previously unobserved points. In other words,
in some sense, no machine learning algorithm is universally any better than any

other. The most sophisticated algorithm we can conceive of has the same average
performance (over all possible tasks) as merely predicting that every point belongs

to the same class.
Fortunately, these results hold only when we average over all possible data

generating distributions. If we make assumptions about the kinds of probability
distributions we encounter in real-world applications, then we can design learning
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Training error at fixed capacity

Generalization error at fixed capacity

Generalization error at optimal capacity

Asymptotic error at optimal (non-parametric) capacity

Asymptotic error at fixed (parametric) capacity

Figure 5.4: This plot shows the effect of the dataset size on the train and test error of
the model, as well as on the optimal model capacity. Note that the y-axis is used to show

two different values which are not actually comparable—error, and capacity. If we choose
a single model with fixed capacity (red), known as a parametric learning algorithm and
retrain it with different amounts of training data, then the training error will increase as

the size of the training set increases. This is because larger datasets are harder to fit.
Simultaneously, the test error will decrease, because fewer incorrect hypotheses will be
consistent with the training data. Ultimately the train and test error will converge. If
we instead consider a learning algorithm that can adapt its capacity with training set
size, then the optimal capacity (black) increases with the number of training examples,
and reaches an asymptote which only depends on the required complexity for the task to
be learned. This kind of learning algorithm is called non-parametric. The generalization
error of the optimal capacity model (green) decreases and approaches an asymptote,
called the Bayes error (the error made by an oracle that knows the data generating
distribution). Usually the asymptotic error is greater than zero because there is some
noise in the true distribution that the model is asked to capture.
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algorithms that perform well on these distributions.
This means that the goal of machine learning research is not to seek a universal

learning algorithm or the absolute best learning algorithm. Instead, our goal is
to understand what kinds of distributions are relevant to the “real world” that
an AI agent experiences, and what kinds of machine learning algorithms perform
well on data drawn from the kinds of data generating distributions we care about.

5.5 Regularization

The no free lunch theorem implies that we must design our machine learning

algorithms to perform well on a specific task. We do so by building a set of

preferences into the learning algorithm. When these preferences are aligned with
the learning problems we ask the algorithm to solve, it performs better.

So far, the only method of modifying a learning algorithm we have discussed
is to increase or decrease the model’s capacity by adding or removing functions
from the hypothesis space of solutions the learning algorithm is able to choose. We
gave the specific example of increasing or decreasing the degree of a polynomial
for a regression problem. The view we have described so far is oversimplified.

The behavior of our algorithm is strongly affected not just by how large we
make the set of functions allowed in its hypothesis space, but by the specific
identity of those functions. The learning algorithm we have studied so far, linear
regression, has a hypothesis space consisting of the set of linear functions of its
input. These linear functions can be very useful for problems where the relation-

ship between inputs and outputs truly is close to linear. They are less useful for
problems that behave in a very non-linear fashion. For example, linear regression

would not perform very well if we tried to use it to predict sin(x) from x. We can
thus control the performance of our algorithms by choosing what kind of functions
we allow them to draw solutions from, as well as by controlling the amount of
these functions.

We can also give a learning algorithm a preference for one solution in its
hypothesis space to another. This means that both functions are eligible, but one
is preferred. The unpreferred solution may only be chosen if it fits the training
data significantly better than the preferred solution.

For example, we can modify the training criterion for linear regression to

include weight decay. To perform linear regression with weight decay, we minimize
not only the mean squared error on the training set, but instead a criterion J (w)

that expresses a preference for the weights to have smaller squared L2 norm.
Specifically,

J(w) = MSEtrain + λw>w,

where λ is a value chosen ahead of time that controls the strength of our preference
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for smaller weights. When λ = 0, we impose no preference, and larger λ forces the
weights to become smaller. Minimizing J(w) results in a choice of weights that
make a tradeoff between fitting the training data and being small. This gives
us solutions that have a smaller slope, or put weight on fewer of the features.
As an example of how we can control a model’s tendency to overfit or underfit
via weight decay, we can train a high-degree polynomial regression model with
different values of λ. See Fig. 5.5 for the results.

Figure 5.5: We fit a high-degree polynomial regression model to our example training set
from Fig. 5.2. The true function is quadratic, but here we use only models with degree 9.
We vary the amount of weight decay to prevent these high-degree models from overfitting.
(Left) With very large λ, we can force the model to learn a function with no slope at
all. This underfits because it can only represent a constant function. (Center) With a

medium value of λ, the learning algorithm recovers a curve with the right general shape.
Even though the model is capable of representing functions with much more complicated
shape, weight decay has encouraged it to use a simpler function described by smaller
coefficients. (Right) With weight decay approaching zero (i.e., using the Moore-Penrose
pseudo-inverse to solve the underdetermined problem with minimal regularization), the
degree-9 polynomial overfits significantly, as we saw in Fig. 5.2.

Expressing preferences for one function over another is a more general way

of controlling a model’s capacity than including or excluding members from the
hypothesis space. We can think of excluding a function from a hypothesis space
as expressing an infinitely strong preference against that function.

In our weight decay example, we expressed our preference for linear functions
defined with smaller weights explicitly, via an extra term in the criterion we

minimize. There are many other ways of expressing preferences for different

solutions, both implicitly and explicitly. Together, these different approaches
are known as regularization. Regularization is any modification we make
to a learning algorithm that is intended to reduce its generalization

error but not its training error. Regularization is one of the central concerns KEY
IDEAof the field of machine learning, rivalled in its importance only by optimization.

The no free lunch theorem has made it clear that there is no best machine
learning algorithm, and in particular, no best form of regularization. Instead we
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must choose a form of regularization that is well-suited to the particular task
we want to solve. The philosophy of deep learning in general and this book in
particular is that a very wide range of tasks (such as all of the intellectual tasks
that people can do) may all be solved effectively using very general-purpose forms
of regularization.

5.6 Hyperparameters, Validation Sets and Cross-Validation

Most machine learning algorithms have several settings that we can use to control
the behavior of the learning algorithm. These settings are called hyperparameters.

The values of hyperparameters are not adapted by the learning algorithm itself

(though we can design a nested learning procedure where one learning algorithm
learns the best hyperparameters for another learning algorithm).

In the polynomial regression example we saw in Fig. 5.2, there is a single
hyperparameter: the degree of the polynomial, which acts as a capacity hyper-
parameter. The λ value used to control the strength of weight decay is another
example of a hyperparameter.

Sometimes a setting is chosen to be a hyperparameter that the learning algo-
rithm does not learn because it is difficult to optimize. More frequently, we do
not learn the hyperparameter because it is not appropriate to learn that hyper-
parameter on the training set. This applies to all hyperparameters that control
model capacity. If learned on the training set, such hyperparameters would al-
ways choose the maximum possible model capacity, resulting in overfitting (refer

to Figure 5.3). For example, we can always fit the training set better with a
higher degree polynomial, and a weight decay setting of λ = 0..

To solve this problem, we need a validation set of examples that the training
algorithm does not observe.

Earlier we discussed how a held-out test set, composed of examples coming
from the same distribution as the training set, can be used to estimate the general-
ization error of a learner, after the learning process has completed. It is important
that the test examples are not used in any way to make choices about the model,
including its hyperparameters. For this reason, no example from the test set can
be used in the validation set.

For this reason, we always construct the validation set from the training data.

Specifically, we split the training data into two disjoint subsets. One of these
subsets is used to learn the parameters. The other subset is our validation set,

used to estimate the generalization error during or after training, allowing for the
hyperparameters to be updated accordingly. The subset of data used to learn
the parameters is still typically called the training set, even though this may
be confused with the larger pool of data used for the entire training process.
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The subset of data used to guide the selection of hyperparameters is called the
validation set. Since the validation set is used to “train” the hyperparameters,
the validation set error will underestimate the test set error, though typically by
a smaller amount than the training error. Typically, one uses about 80% of the
data for training and 20% for validation.

In practice, when the same test set has been used repeatedly to evaluate
performance of different algorithms over many years, and especially if we consider
all the attempts from the scientific community at beating the reported state-of-
the-art performance on that test set, we end up having optimistic evaluations with

the test set as well. Benchmarks can thus become stale and then do not reflect
the true field performance of a trained system. Thankfully, the community tends

to move on to new (and usually more ambitious and larger) benchmark datasets.

5.6.1 Cross-Validation

One issue with the idea of splitting the dataset into train/test or train/validation/test
subsets is that only a small fraction of examples are used to evaluate generaliza-
tion. The consequence is that there is a lot of statistical uncertainty around the
estimated average test error, making it difficult to claim that algorithm A works
better than algorithm B on the given task.

With large datasets with hundreds of thousands of examples or more, this
is not a serious issue, but when the dataset is too small, there are alternative

procedures, which allow one to use all of the examples in the estimation of the
mean test error, at the price of increased computational cost. These procedures

are based on the idea of repeating the training / testing computation on different
randomly chosen subsets or splits of the original dataset. The most common of
these is the k-fold cross-validation procedure, in which a partition of the dataset
is formed by splitting it in k non-overlapping subsets. Then k train/test splits
can be obtained by keeping each time the i-th subset as a test set and the rest as a
training set. The average test error across all these k training/testing experiments

can then be reported. One problem is that there exists no unbiased estimators of

the variance of such average error estimators (Bengio and Grandvalet, 2004), but
approximations are typically used.

If model selection or hyperparameter optimization is required, things get more
computationally expensive: one can recurse the k-fold cross-validation idea, in-
side the training set. So we can have an outer loop that estimates test error and
provides a “training set” for a hyperparameter-free learner, calling it k times to
“train”. That hyperparameter-free learner can then split its received training set
by k-fold cross-validation into internal training/validation subsets (for example,
splitting into k − 1 subsets is convenient, to reuse the same test blocks as the
outer loop), call a hyperparameter-specific learner for each choice of hyperparam-
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eter value on each of the training partition of this inner loop, and compute the
validation error by averaging across the k − 1 validation sets the errors made by
the k−1 hyperparameter-specific learners trained on each of the internal training
subsets.

5.7 Estimators, Bias, and Variance

The field of statistics gives us many tools that can be used to achieve the machine
learning goal of solving a task not only on the training set but also to generalize.
Foundational concepts such as parameter estimation, bias and variance are useful

to formally characterize notions of generalization, underfitting and overfitting.

5.7.1 Point Estimation

Point estimation is the attempt to provide the single “best” prediction of some
quantity of interest. In general the quantity of interest can be a single parameter
or a vector of parameters in some parametric model, such as the weights in our
linear regression example in Section 5.2, but it can also be a whole function.

In order to distinguish estimates of parameters from their true value, our
convention will be to denote a point estimate of a parameter θ by θ̂.

Let {x(1), . . . ,x(m) } be a set of m independent and identically distributed
(i.i.d.) data points. A point estimator is any function of the data:

θ̂m = g(x(1), . . . ,x(m)). (5.2)

In other words, any statistic1 is a point estimate. Notice that no mention is made

of any correspondence between the estimator and the parameter being estimated.
There is also no constraint that the range of g(x(1) , . . . ,x(m)) should correspond
to that of the true parameter.

This definition of a point estimator is very general and allows the designer
of an estimator great flexibility. What distinguishes “just any” function of the
data from most of the estimators that are in common usage is their properties.
For now, we take the frequentist perspective on statistics. That is, we assume
that the true parameter value θ is fixed but unknown, while the point estimate
θ̂ is a function of the data. Since the data is drawn from a random process, any

function of the data is random. Therefore θ̂ is a random variable.

Point estimation can also refer to the estimation of the relationship between
input and target variables. We refer to these types of point estimates as function

estimators.

1A statistic is a function of the data, typically of the whole training set, such as the mean.
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Function Estimation As we mentioned above, sometimes we are interested in
performing function estimation (or function approximation). Here we are trying
to predict a variable (or vector) y given an input vector x (also called the co-
variates). We consider that there is a function f (x) that describes the relationship
between y and x. For example, we may assume that y = f (x)+, where  stands
for the part of y that is not predictable from x.

In function estimation, we are interested in approximating f with a model or
estimate ˆf . Note that we are really not adding anything new here to our notion of
a point estimator, the function estimator f̂ is simply a point estimator in function

space.
The linear regression example we discussed above in Section. 5.2 and the

polynomial regression example discussed in Section. 5.3 are both examples of
function estimation where we estimate a model f̂ of the relationship between an
input x and target y.

In the following we will review the most commonly studied properties of point
estimators and discuss what they tell us about these estimators.

As θ̂ and f̂ are random variables (or vectors, or functions), they are distributed

according to some probability distribution. We refer to this distribution as the

sampling distribution. When we discuss properties of the estimator, we are really
describing properties of the sampling distribution.

5.7.2 Bias

The bias of an estimator is defined as:

bias(θ̂m) = E(θ̂m ) − θ (5.3)

where the expectation is over the data (seen as samples from a random variable)
and θ is the true underlying value of θ according to the data generating distribu-
tion. An estimator θ̂m is said to be unbiased if bias(θ̂m ) = 0, i.e., if E(θ̂m) = θ.
An estimator θ̂m is said to be asymptotically unbiased if limm→∞bias( θ̂m ) = 0,
i.e., if lim m→∞E(θ̂m ) = θ.

Example: Bernoulli Distribution Consider a set of samples {x(1) , . . . , x(m)}
that are independently and identically distributed according to a Bernoulli dis-
tribution, x(i) ∈ {0, 1}, where i ∈ [1,m]. The Bernoulli p.m.f. (probability mass

function, or probability function) is given by P (x(i); θ) = θx
(i)

(1 − θ)(1−x(i)) .
We are interested in knowing if the estimator θ̂m = 1

m

P

m
i=1x

(i) is biased.
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bias(̂θm) = E[θ̂m ] − θ

= E

"
1

m

mX

i=1

x(i)

#
− θ

=
1

m

mX

i=1

E

h
x(i)
i
− θ

=
1

m

mX

i=1

1X

x(i)=0


x(i) θx

(i)
(1 − θ) (1−x(i))


− θ

=
1

m

mX

i=1

(θ) − θ

= θ − θ = 0

Since bias(θ̂) = 0, we say that our estimator θ̂ is unbiased.

Example: Gaussian Distribution Estimator of the Mean Now, consider a
set of samples {x(1), . . . , x(m)} that are independently and identically distributed
according to a Gaussian (Normal) distribution (x(i) ∼ Gaussian(µ, σ2), where
i ∈ [1,m]). The Gaussian p.d.f. (probability density function) is given by

p(x(i) ;µ, σ2) = 1√
2πσ2

exp

−1

2
(x(i) −µ)2

σ2


.

A common estimator of the Gaussian mean parameter is known as the sample
mean:

µ̂m =
1

n

mX

i=1

x(i) (5.4)

To determine the bias of the sample mean, we are again interested in calculating
its expectation:

bias(µ̂m) = E[µ̂m] − µ

= E

"
1

m

mX

i=1

x (i)

#
− µ

=

 
1

m

mX

i=1

E

h
x(i)
i!

− µ

=

 
1

m

mX

i=1

µ

!

− µ

= µ − µ = 0
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Thus we find that the sample mean is an unbiased estimator of Gaussian mean
parameter.

Example: Gaussian Distribution Estimators of the Variance Sticking
with the Gaussian family of distributions. We consider two different estimators
of the variance parameter σ 2. We are interested in knowing if either estimator is
biased.

The first estimator of σ2 we consider is known as the sample variance:

σ̂ 2
m =

1

m

mX

i=1


x(i) − µ̂m

2
, (5.5)

where µ̂m is the sample mean, defined above. More formally, we are interested in

computing
bias(σ̂2m) = E[σ̂2m] − σ 2

We now simplify the term E[σ̂2m ]

E[σ̂2m] = E

"
1

m

mX

i=1


x (i)− µ̂m

2
#

= E

"
1

m

mX

i=1

(x(i))2− 2x(i) µ̂m + µ̂2m

#

=
1

m

mX

i=1

E

h
(x (i))2

i
− 2E



x (i) 1

m

mX

j=1

x(j)



+ E







 1

m

mX

j=1

x(j)




 

1

m

mX

k=1

x(k)

!



=
1

m

mX

i=1





1 − 2

m


E

h
(x(i))2

i
− 2

m

X

j6=i

E

h
x(i)x (j)

i
+

1

m 2

mX

j=1

E

h
(x(j))2

i

+
1

m2

mX

j=1

X

k6=j

E

h
x(j)x(k)

i




=
1

m

mX

i=1


(
m − 2

m
)(µ 2+ σ2) − 2(m − 1)

m
(µ2 ) +

1

m
(µ2 + σ2) +

(m − 1)

m
(µ2 )



=
m − 1

m
σ2

So the bias of σ̂2m) = −σ2/m, and therefore the sample variance is a biased

estimator.
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We now consider a modified estimator of the variance sometimes called the
unbiased sample variance:

σ̃ 2
m =

1

m − 1

mX

i=1


x(i) − µ̂ m

2
(5.6)

As the name suggests this estimator is unbiased, that is, we find that E[σ̃ 2
m ] = σ2:

E[σ̃2m] = E

"
1

m − 1

mX

i=1


x(i)− µ̂ m

2
#

=
m

m − 1
E[σ̂ 2

m]

=
m

m − 1


m − 1

m
σ2


= σ2 .

We have two estimators: one is biased and the other is not. While unbiased
estimators are clearly desirable, they are not always the “best” estimators. As we
will see we often use biased estimators that possess other important properties.

5.7.3 Variance

Another property of the estimator that we might want to consider is how much
we expect it to vary as a function of the data sample. Just as we computed the
expectation of the estimator to determine its bias, we can compute its variance.

Var( θ̂) = E[θ̂2 ] −E[θ̂] 2 (5.7)

The variance of an estimator provides a measure of how we would expect the
estimate we compute from data to vary as we independently resample the dataset

from the underlying data generating process. Just as we might like an estimator
to exhibit low bias we would also like it to have relatively low variance.

We can also define the standard error (se) of the estimator as

se( θ̂) =
q

Var[θ̂] (5.8)

Example: Bernoulli Distribution Let’s once again consider a set samples

({x(1), . . . , x(m)}) drawn independently and identically from a Bernoulli distri-

bution (recall P (x(i); θ) = θx
(i)

(1 − θ)(1−x (i))). This time we are interested in
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computing the variance of the estimator θ̂m = 1
m

Pm
i=1 x

(i) .

Var

θ̂m


= Var

 
1

m

mX

i=1

x(i)

!

=
1

m2

mX

i=1

Var

x(i)


=
1

m2

mX

i=1

θ(1 − θ)

=
1

m2
mθ(1 − θ)

=
1

m
θ(1 − θ)

Note that the variance of the estimator decreases as a function of m, the num-
ber of examples in the dataset. This is a common property of popular estimators
that we will return to when we discuss consistency (see Sec. 5.7.5).

Example: Gaussian Distribution Estimators of the Variance We again

consider a set of samples {x (1), . . . , x(m)} independently and identically distributed
according to a Gaussian distribution (x(i) ∼ Gaussian(µ, σ 2), where i ∈ [1,m]).

We now consider the variance of the two estimators of the variance: the sample
variance,

σ̂2m =
1

m

mX

i=1


x(1) − µ̂m

2
, (5.9)

and the unbiased sample variance,

σ̃ 2
m =

1

m − 1

mX

i=1


x(1) − µ̂m

2
. (5.10)

In order to determine the variance of these estimators we will take advantage
of a known relationship between the sample variance and the Chi Squared distri-
bution, ppecifically, that m−1

σ 2
σ̂ 2 happens to be χ2 distributed. We can then use

this together with the fact that the variance of a χ2 random variable with m− 1

degrees of freedom is 2(m − 1).

Var


m − 1

σ2
σ̃2


= 2(m − 1)

(m − 1)2

σ4
Var


σ̃2


= 2(m − 1)

Var



σ̃2



=
2σ 4

(m − 1)
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By noticing that σ̂2 = m−1
m σ̃ 2, and using σ̃2’s relationship to the χ 2 distribution,

it is straightforward to show that Var

σ̂2


= 2(m−1)σ 4

m2 .

To derive this last relation, we used the fact that that Var

σ̃2


=


m
m−1

2
Var


σ̂2

,

that is Var

σ̃2

> Var


σ̂ 2

. So while the bias of σ̃2 is smaller than the bias of

σ̂ 2 , the variance of σ̃2 is greater.

5.7.4 Trading off Bias and Variance and the Mean Squared Error

Bias and variance measure two different sources of error in an estimator. Bias
measures the expected deviation from the true value of the function or parameter.
Variance on the other hand, provides a measure of the deviation from the true
value that any particular sampling of the data is likely to cause.

What happens when we are given a choice between two estimators, one with
more bias and one with less variance? How do we choose between them? For

example, let’s imagine that we are interested in approximating the function shown

in Fig. 5.2 and we are only offered the choice between a model with large bias
and one that suffers from large variance. How do we choose between them?

In machine learning, perhaps the most common and empirically successful way

to negotiate this kind of trade-off, in general is by cross-validation, discussed in

Section 5.6.1. Alternatively, we can also compare the mean squared error (MSE)
of the estimates:

MSE = E[ θ̂n− θ]2

= Bias(θ̂ n)2 + Var( θ̂n) (5.11)

The MSE measures the overall expected deviation—in a squared error sense—

between the estimator and the true value of the parameter θ. As is clear from Eq.
5.11, evaluating the MSE incorporates both the bias and the variance. Desirable
estimators are those with small MSE and these are estimators that manage to
keep both their bias and variance somewhat in check.

The relationship between bias and variance is tightly linked to the machine

learning concepts of capacity, underfitting and overfitting discussed in Section.

5.3. In the case where generalization error is measured by the MSE (where
bias and variance are meaningful components of generalization error), increas-
ing capacity tends to increase variance and decrease bias. This is illustrated in
Figure 5.6, where we see again the U-shaped curve of generalization error as a

function of of capacity, as in Section 5.3 and Figure 5.3.

Example: Gaussian Distribution Estimators of the Variance In the last
section we saw that when we compared the sample variance, σ̂2, and the unbiased
sample variance, σ̃2, we see that while σ̂2 has higher bias, σ̃ 2has higher variance.

116



CHAPTER 5. MACHINE LEARNING BASICS

Capacity

bias generalization
error variance

optimal
capacity

Overfitting zoneUnderfitting zone

Figure 5.6: As capacity increases (x-axis), bias (dotted) decreases and variance (dashed)
increases, yielding another U-shaped curve for generalization error (bold curve). If we
vary capacity along one axis, there is an optimal capacity, with underfitting when the
capacity is below this optimum and overfitting when it is above.

The mean squared error offers a way of balancing the tradeoff between bias
and variance and suggest which estimator we might prefer. For σ̂ 2, the mean
squared error is given by:

MSE(σ̂2m) = Bias(σ̂2
m )2+ Var(σ̂ 2

m) (5.12)

=


−σ2

m

2
+

2(m − 1)σ4

m2
(5.13)

=


1 + 2(m − 1)

m2


σ4 (5.14)

=


2m − 1

m2


σ4 (5.15)

The mean squared error of the unbiased alternative is given by:

MSE(σ̃2m) = Bias(σ̃ 2
m)2 + Var(σ̃2m) (5.16)

= 0 +
2σ4

(m − 1)
(5.17)

=
2

(m − 1)
σ4. (5.18)

Comparing the two, we see that the MSE of the unbiased sample variance, σ̃ 2
m , is

actually higher than the MSE of the (biased) sample variance, σ̂ 2
m . This implies

that despite incurring bias in the estimator σ̂2
m, the resulting reduction in variance

more than makes up for the difference, at least in a mean squared sense.
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5.7.5 Consistency

As we have already discussed, sometimes we may wish to choose an estimator
that is biased. For example, in order to minimize the variance of the estimator.

However we might still wish that, as the number of data points in our dataset
increases, our point estimates converge to the true value of the parameter. More
formally, we would like that limn→∞ θ̂n

p→ θ.2 This condition is known as consis-

tency 3 and ensures that the bias induced by the estimator is assured to diminish
as the number of data examples grows.

Asymptotic unbiasedness is not equivalent to consistency. For example, con-
sider estimating the mean parameter µ of a normal distribution N (µ, σ2), with
a dataset consisting of n samples: {x 1, . . . , xn}. We could use the first sample
x1 of the dataset as an unbiased estimator: θ̂ = x1, In that case, E( θ̂n) = θ so
the estimator is unbiased no matter how many data points are seen. This, of
course, implies that the estimate is asymptotically unbiased. However, this is not

a consistent estimator as it is not the case that θ̂n → θ as n → ∞.

5.8 Maximum Likelihood Estimation

In the previous section we discussed a number of common properties of estima-

tors but we never mentioned where these estimators come from. In this section,
we discuss one of the most common approaches to deriving estimators: via the
maximum likelihood principle.

Consider a set of m independent examples X = (x(1) , . . . ,x(m)) with x(i) ∼
P (x) independently, where P (x) is the true but unknown data generating distri-

bution. More generally, the data may not need to be sampled independently, so we
have a data generating process which produces the sequence X, i.e., X ∼ P (X).

Consider a family of probability functions P , parameterized by θ, over the
same space, i.e., P (x;θ) maps any configuration x to a real number estimating
the true probability P (x), or more generally (in the non-independent case), we
have a P (X; θ) that returns the probability of any whole sequence X.

The maximum likelihood estimator for θ is then defined as

θML = arg max
θ

P (X; θ). (5.19)

2The symbol
p
→ means that the convergence is in probability, i.e. for any  > 0, P (| θ̂n − θ| >

) → 0 as n → ∞.
3This is sometime referred to as weak consistency, with strong consistency referring to the

almost sure convergence of θ̂ to θ.
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In the i.i.d. scenario, because of the i.i.d. assumptions, we can rewrite

Pθ (X) =

nY

i=1

P (x(i) ; θ). (5.20)

Note that sometimes we make our model assume that the examples are i.i.d. even
though we know they are not, because it simplifies the model (which sometimes

mean that better generalization can be achieved), so this is a modeling choice and
not necessarily an assumption on the true data generating process. Combining the

above two equations and noting that the logarithm of the arg max is the arg max
of the logarithm, we obtain the ordinary maximum likelihood estimator under a

model that assumes i.i.d. examples:

θML = arg max
θ

mX

i=1

logP (x(i); θ). (5.21)

This formulation is convenient because it corresponds to an objective func-
tion that is additive in the examples, something that is exploited in numerical
optimization methods such as stochastic gradient descent (Section 8.3.2), which

is heavily used for deep learning. In practice, we will often use numerical opti-
mization to approximately maximize the likelihood, so we will not have the true

maximum likelihood estimator, but something that approximates it.
There is an interesting connection between the objective function for maxi-

mum likelihood, on the right hand side of Eq. 5.21, and the notion KL divergence
introduced in Section 3.9 with Eq. 3.3. The KL divergence compares a candidate
distribution Q with a target distribution P . If we replace Q by the empirical
distribution, we obtain the average negative log-likelihood plus the entropy of Q,
which is a constant as far as P is concerned:

DKL(QkP ) = E x∼Q


log
Q(x)

P (x)


(5.22)

= Ex∼Q[− logP (x)] + Ex∼Q[logQ(x)] (5.23)

(5.24)

= Ex∼Q[− logP (x)] −H[Q] (5.25)

= −
1

m

mX

i=1

logP (x(i)) − logm (5.26)

where Eq. 5.22 is the definition of KL divergence, Eq. 5.23 splits it into two terms,
the first one being the cross entropy between Q and P (with Q as the reference)
and second one being the entropy of Q (see Eq. 3.2). Eq. 5.25 is then obtained by
taking Q as the empirical distribution (Eq. 3.4), and we obtain Eq. 5.26, which is
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the average negative log-likelihood plus a constant. Hence maximizing likelihood
is minimizing the cross entropy between the empirical distribution and the model
as well as minimizing the KL divergence between these two distributions. Note
that when we make Q the data generating distribution, we obtain the generaliza-
tion or expected negative log-likelihood.

5.8.1 Conditional Log-Likelihood and Mean Squared Error

The maximum likelihood estimator can readily be generalized to the case where
our goal is not to estimate a probability function but rather a conditional proba-

bility, e.g., P (y | x; θ), to predict y given x. This is actually the most common
situation where we do supervised learning (Section 5.10), i.e., the examples are
pairs (x,y). If X represents all our inputs and Y all our observed targets, then

the conditional maximum likelihood estimator is

θML = arg max
θ

P (Y | X; θ). (5.27)

If the examples are assumed to be i.i.d., then this can be decomposed into

θML = arg max
θ

mX

i=1

logP (y (i) | x(i); θ). (5.28)

Example: Linear Regression Let us consider as an example the special case
of linear regression, introduced earlier in Section 5.2. In that case, the conditional
density of y, given x = x, is a Gaussian with mean µ(x) that is a learned function
of x, with unconditional variance σ 2. Since the examples are assumed to be i.i.d.,
the conditional log-likelihood (Eq. 5.27) becomes

logP (Y |X; θ) =
mX

i=1

logP (y(i) | x(i); θ) =
mX

i=1

−1

2σ 2
||ŷ (i)−y (i) ||2 −m logσ−m

2
log(2π)

where ŷ(i) = µ(x(i) ) is the output of the linear regression on the i-th input x(i)

and m is the dimension of the y vectors. Comparing the above with the mean
squared error (Section 5.2) we immediately see that if σ is fixed, maximizing the

above is equivalent (up to an additive and a multiplicative constant that do not
change the value of the optimal parameter) to minimizing the training set mean
squared error, i.e.,

MSEtrain =
1

m

mX

i=1

||ŷ(i) − y(i)||2 .

Note that the MSE is an average rather than a sum, which is more practical from
a numerical point of view (so you can compare MSEs of sets of different sizes
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more easily). In practice, researchers reporting log-likelihoods and conditional
log-likelihoods also tend to report the per-example average log-likelihood, for the
very same reason. The exponential of the average log-likelihood is also called the
perplexity and is used in language modeling applications.

Whereas in the case of linear regression we have µ(x) = w·x, the above equally
applies to other forms of regression, e.g., with a neural network predicting with
µ(x) the expected value of y given x.

5.8.2 Properties of Maximum Likelihood

The main appeal of the maximum likelihood estimator is that it can be shown
to be the best estimator asymptotically, as the number of examples m → ∞, in
terms of its rate of convergence as m increases.

The maximum likelihood estimator has the property of consistency (see Sec. 5.7.5
above), i.e., as more training are considered, the estimator converges to the best

one in some sense. There are other inductive principles besides the maximum
likelihood estimator, many of which share the property of being consistent esti-
mators. However, there is the question of how many training examples one needs
to achieve a particular generalization error, or equivalently what estimation error
one gets for a given number of training examples, also called efficiency. This is
typically studied in the parametric case (like in linear regression) where our goal
is to estimate the value of a parameter (and assuming it is possible to identify

the true parameter), not the value of a function. A way to measure how close
we are to the true parameter is by the expected mean squared error, computing

the squared difference between the estimated and true parameter values, where
the expectation is over m training samples from the data generating distribution.
That parametric mean squared error decreases as m increases, and for m large,
the Cramér-Rao lower bound (Rao, 1945; Cramér, 1946) shows that no consistent
estimator has a lower mean squared error than the maximum likelihood estimator.

For these reasons (consistency and efficiency), the maximum likelihood induc-

tion principle is often considered the preferred one in machine learning, modulo

slight adjustments such as described in the next Section, to better deal with
the non-asymptotic case where the number of examples is small enough to yield
overfitting behavior.

5.9 Bayesian Statistics and Prior Probability Distri-
butions

So far we have discussed approaches based on estimating a single value of θ, then
making all predictions thereafter based on that one estimate. Another approach is
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to consider all possible values of θ when making a prediction. Bayesian statistics
provides a natural and theoretically elegant way to carry out this approach.

Historically, statistics has become divided between two communities. One of
these communities is known as frequentist statistics or orthodox statistics. The
other is known as Bayesian statistics. The difference is mainly one of world view
but can have important practical implications.

As discussed in Sec. 5.7.1, the frequentist perspective is that the true param-
eter value θ is fixed but unknown, while the point estimate θ̂ is a random variable
on account of it being a function of the data (which are seen as random).

The Bayesian perspective on statistics is quite different and, in some sense,
more intuitive. The Bayesian uses probability to reflect degrees of certainty of

states of knowledge. The data is directly observed and so is not random. On the
other hand, the true parameter θ is unknown or uncertain and thus is represented
as a random variable.

Before observing the data, we represent our knowledge of θ using the prior
probability distribution, p(θ) (sometimes referred to as simply ’the prior’). Gener-
ally, the prior distribution is quite broad (i.e. with high entropy) to reflect a high
degree of uncertainty in the value of θ before observing any data. For example, we
might assume a priori that θ lies in some finite range or volume, with a uniform
distribution. Many priors instead reflect a preference for “simpler” solutions (such

as smaller magnitude coefficients, or a function that is closer to being constant).
Now consider that we have a set of data samples {x(1), . . . , x (m)}. We can

recover the effect of data on our belief about θ by combining the data likelihood
p(x(1), . . . , x(m) | θ) with the prior via Bayes’ rule:

p(θ | x(1), . . . , x (m)) =
p(x(1), . . . , x(m) | θ)p(θ)
p(x(1), . . . , x(m))

(5.29)

If the data is at all informative about the value of θ, the posterior distribution
p(θ | x(1), . . . , x(m)) will have less entropy (will be more ‘peaky’) than the prior

p(θ).
Relative to maximum likelihood estimation, Bayesian estimation offers two

important differences. First, unlike the maximum likelihood point estimate of
θ, the Bayesian makes decision with respect to a full distribution over θ. For
example, after observing m examples, the predicted distribution over the next

data sample, x (m+1), is given by

p(x(m+1) | x(1) , . . . , x(m) ) =

Z
p(x(m+1) | θ)p(θ | x(1), . . . , x(m)) dθ (5.30)

Here each value of θ with positive probability density contributes to the prediction
of the next example, with the contribution weighted by the posterior density itself.
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After having observed {x(1) , . . . , x (m)}, if we are still quite uncertain about the
value of θ, then this uncertainty is incorporated directly into any predictions we
might make.

In Sec. 5.7, we discussed how the frequentist statistics addresses the uncer-
tainty in a given point estimator of θ by evaluating its variance. The variance of
the estimator is an assessment of how the estimate might change will alternative
samplings of the observed (or training) data. The Bayesian answer to the ques-
tion of how to deal with the uncertainty in the estimator is to simply integrate
over it, which tends to protect well against overfitting.

The second important difference between the Bayesian approach to estimation
and the Maximum Likelihood approach is due to the contribution of the Bayesian

prior distribution. The prior has an influence by shifting probability mass density
towards regions of the parameter space that are preferred a priori. In practice,
the prior often expresses a preference for models that are simpler or more smooth.
One important effect of the prior is to actually reduce the uncertainty (or entropy)
in the posterior density over θ.

We have already noted that combining the prior, p(θ), with the data likelihood
p(x(1), . . . , x(m) | θ) results in a distribution that is less entropic (more peaky) than
the prior. This is just the result of a basic property of probability distributions:
Entropy(product of two densities) ≤ Entropy(either density). This implies that

the posterior density on θ is also less entropic than the data likelihood alone
(when viewed and normalized as a density over θ). The hypothesis space with the

Bayesian approach is, to some extent, more constrained than that with an ML
approach. Thus we expect a contribution of the prior to be a further reduction
in overfitting as compared to ML estimation.

Example: Linear Regression Here we consider the Bayesian estimation ap-
proach to learning the linear regression parameters. In linear regression, we learn
a linear mapping from an input vector x ∈ R n to predict the value of a scalar

y ∈ R. The prediction is parametrized by the vector w ∈ R
n:

ŷ = w> x.

Given a set ofm training samples (X (train),y(train)), we can express the prediction
of y over the entire training set as:

ŷ(train) = X(train)w.

Expressed as a Gaussian conditional distribution on y(train), we have

p(y(train) |X(train),w) = N (y (train);X (train)>w, I)

∝ exp


−1

2
(y(train)−X (train)w)> (y(train) −X (train)w)


,
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where we will follow the standard MSE formulation in assuming that the Gaussian
variance on y is one. In what follows, to reduce the notational burden, we refer
to (X (train),y(train)) as simply (X,y).

To determine the posterior distribution over the model parameter vector w,
we first need to specify a prior distribution. The prior should reflect our naive
belief about the value of these parameters. While it is sometimes difficult or
unnatural to express our prior beliefs in terms of the parameters of the model, in
practice we typically assume a fairly broad distribution expressing a high degree
of uncertainty about θ in our prior belief.

For real-valued parameters it is common to use a Gaussian as a prior distri-
bution:

p(w) = N (w;µ0 ,Λ0 ) ∝ exp


−1

2
(w − µ0 )>Λ−1

0 (w − µ0 )



where µ0 and Λ0 are the prior distribution mean vector and covariance matrix
(inverse of covariance matrix) respectively.4

With the prior thus specified, we can now proceed in determining the posterior
distribution over the model parameters.

p(w |X,y) ∝ p(y |X,w)p(w)

∝ exp


−1

2
(y −Xw)>(y −Xw)


exp


−1

2
(w − µ0)>Λ−1

0 (w − µ0)


∝ exp


−1

2


−2y>Xw +w>X>Xw +w>Λ−1

0 w − 2µ>0 Λ−1
0 w



We now make the substitutions Λm =

X>X + Λ −1

0

−1
and

µm = Λm


X>y + Λ−1

0 µ0


into the derivation of the posterior (and complete the

square) to get:

p(w |X,y) ∝ exp


− 1

2
(w − µm)>Λ−1

m (w − µm ) +
1

2
µ>

mΛ−1
m µm


(5.31)

∝ exp


−

1

2
(w − µm)>Λ−1

m (w − µm )


. (5.32)

In the above, we have dropped all terms that do not include the parameter vector
w. In Eq. 5.32, we recognize that the posterior distribution has the form of
a Gaussian distribution with mean vector µm and covariance matrix Λm. It is
interesting to note that this justifies our dropping all terms unrelated to w, since
we know that the posterior distribution must be normalized and, as a Gaussian,

4Unless there is a reason to assume a particular covariance structure, we typically assume a

diagonal covariance matrix Λ0= diag(λ 0).
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we know what that normalization constant must be (where n is the dimension of
the input):

p(w |X(train) ,y(train)) =
1p

(2π)n |Λ m|
exp


−1

2
(w − µm)>Λ−1

m (w − µm )


.

(5.33)

5.9.1 Maximum A Posteriori (MAP) Estimation

While, in principle, we can use the full Bayesian posterior distribution over the pa-
rameter θ as our estimate of this parameter, it is still often desirable to have a sin-
gle point estimate (for example, most operations involving the Bayesian posterior

for most interesting models are intractable and must be heavily approximated).
Rather than simply returning to the maximum likelihood estimate, we can still
gain some of the benefit of the Bayesian approach by allowing the prior to influ-
ence the choice of the point estimate. One rational way to do this is to choose
the maximum a posteriori (MAP) point estimate. The MAP estimate chooses

the point of maximal posterior probability (or maximal probability density in the
more common case of continuous θ).

θMAP = arg max
θ

p(θ | x) = arg max
θ

log p(x | θ) + log p(θ) (5.34)

We recognize, above on the right hand side, log p(x | θ), i.e. the standard log-
likelihood term and log p(θ) corresponding to the prior distribution.

As discussed above the advantage brought by introducing the influence of the
prior on the MAP estimate is to leverage information other than that contained
in the training data. This additional information helps to reduce the variance in
the MAP point estimate (in comparison to the ML estimate). However, it does
so at the price of increased bias.

Example: Regularized Linear Regression We discussed above the Bayesian

approach to linear regression. Given a set of m training samples of input out-
put pairs: (X(train),y (train)), we can express the prediction of y over the entire
training set as:

ŷ(train) = X(train)w.

where prediction is parametrized by the vector w ∈ R
n .

Recall from Sec. 5.8.1 that the maximum likelihood estimate for the model
parameters is given by:

ŵML = (X (train)>X(train))−1X(train)>y(train) (5.35)
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For the sake of comparison to the maximum likelihood solution, we will make
the simplifying assumption that the prior covariance matrix is scalar: Λ0 = λ0I.
As mentioned previously, in practice, this is a very common form of prior distri-
bution. We will also assume that µ0 = 0. This is also a very common assumption
in practice and corresponds to acknowledging that a priori, we do not know if
the features of x have a positive or negative correlation with y. Adding these
assumptions, the MAP estimate of the model parameters (corresponding to the
mean of the Gaussian posterior density, in Eq. 5.32) becomes:

ŵMAP = ΛmX
(train)> y(train) (5.36)

where µ0 and Λ0 are the prior mean and covariance respectively and Λm is the
posterior covariance and is given by:

Λm =

X(train)>X(train) + λ−1

0 I
−1

(5.37)

Comparing Eqs. 5.35 and 5.36, we see that the MAP estimate amounts to a
weighted combination of the prior maximum probability value, µ0 , and the ML
estimate. As the variance of the prior distribution tends to infinity, the MAP
estimate reduces to the ML estimate. As the variance of the prior tends to zero,
the MAP estimate tends to zero (actually it tends to µ0 which here is assumed
to be zero).

We can make the model capacity tradeoff between the ML estimate and the
MAP estimate more explicit by analyzing the bias and variance of these estimates.

It is relatively easy to show that the ML estimate is unbiased, i.e. that
E[ŵML] = w and that it has a variance given by:

Var(wML ) = (X(train)>X(train))−1 (5.38)

In order to derive the bias of the MAP estimate, we need to calculate the
expectation:

E[ŵMAP] = E[ΛmX
(train)>y(train)]

= E
h
ΛmX

(train)>

X(train)w + 

i

= Λ m


X(train)>X (train)w


+ ΛmX

(train)>E []

=

X(train)>X(train) + λ−1

0 I
−1
X (train)>X(train)w, (5.39)

We see that while the expected value of the ML estimate is the true parameter
value w (i.e. the parameters that we assume generated the data); the expected
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value of the MAP estimate is a weighted average of w and the prior mean µ. We
comput the bias as:

Bias( ŵMAP) = E[ŵMAP ] −w

= −

λ0X

(train)>X (train) + I
−1

w.

Since the bias is not zero, we can conclude that the MAP estimate is biased, and

as expected we can see that as the variance of the prior λ0 → ∞, the bias tends
to zero. As the variance of the prior λ 0→ 0, the bias tends to w.

In order to compute the variance, we use the identity Var( θ̂) = E
h
θ̂ 2
i
−E

h
θ̂
i2

.

So before computing the variance we need to compute E

ŵMAPŵ>

MAP


:

E

h
ŵMAPŵ

>
MAP

i
= E

h
ΛmX

(train)>ŷ (train)y (train)>X(train)Λm

i

= E


ΛmX

(train)>

X

(train)
w + 


X

(train)
w + 

 >
X

(train)
Λm



= ΛmX
(train)>X (train)ww>X (train)>X(train)Λm

+ ΛmX
(train)>E

h
>

i
X (train)Λm

= ΛmX
(train)>X (train)ww>X (train)>X(train)Λm

+ ΛmX
(train)>X(train)Λm

= E[ŵMAP ]E[ŵMAP ]> +X(train)>X(train)Λm

With E

ŵMAPŵ

>
MAP


thus computed, the variance of the MAP estimate of

our linear regression model is given by:

Var(ŵMAP ) = E
h
ŵMAP ŵ

>
MAP

i
− E [ŵMAP]E

h
ŵ>MAP

i

= E[ŵMAP]E[ŵMAP]> + ΛmX
(train)>X (train)Λm − E[ ŵMAP]E[ŵMAP]>

= ΛmX
(train)>X(train) Λm

=

X(train)>X(train) + λ−1

0
I
−1
X (train)>X(train)

×

X(train)>X(train) + λ−1

0 I
−1

(5.40)

It is perhaps difficult to compare Eqs. 5.38 and 5.40. But if we assume that

w is one-dimensional (along with x), it becomes a bit easier to see that, as long

as λ0 is bounded, then Var(ŵML) = 1Pm
i=1x

2
i
> Var(ŵMAP ) =

λ0
Pm

i=1 x 2i

(1+λ0
Pm

i=1x
2
i )
2.

From the above analysis we can see that the role of the prior in the MAP
estimate is to trade increased bias for a reduction in variance. The goal, of
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course, is to try to avoid overfitting. The incurred bias is a consequence of the
reduction in model capacity caused by limiting the space of hypotheses to those
with significant probability density under the prior.

Many regularized estimation strategies, such as maximum likelihood learning
regularized with weight decay, can be interpreted as making the MAP approxi-
mation to Bayesian inference. This view applies when the regularization consists
of adding an extra term to the objective function that corresponds to logp(θ).
Not all such regularizer terms correspond to MAP Bayesian inference. For exam-
ple, some regularizer terms may not be the logarithm of a probability distribution.

Other regularization terms depend on the data, which of course a prior probability
distribution is not allowed to do.

5.10 Supervised Learning

Supervised learning algorithms are, roughly speaking, learning algorithms that
learn to associate some input with some output, given a training set of examples
of inputs x and outputs y.

5.10.1 Probabilistic Supervised Learning

Most supervised learning algorithms in this book are based on estimating a proba-
bility distribution p(y | x). We can do this simply by using maximum conditional

likelihood estimation (Sec. 5.8.1) – or just maximum likelihood for short – to find
the best parameter vector θ for a parametric family of distributions p(y | x;θ).

We have already seen that linear regression corresponds to the family p(y |
x;θ) = N (y | θ>x, I). We can generalize linear regression to the classification
scenario by defining a different family of probability distributions. If we have two
classes, class 0 and class 1, then we need only specify the probability of one of
these classes. The probability of class 1 determines the probability of class 0,
because these two values must add up to 1.

The normal distribution over real-valued numbers that we used for linear
regression is parameterized in terms of a mean. Any value we supply for this

mean is valid. A distribution over a binary variable is slightly more complicated,
because its mean must always be between 0 and 1. One way to solve this problem
is to use the logistic sigmoid function to squash the output of the linear function
into the interval (0, 1) and interpret that value as a probability:

p(y = 1 | x;θ) = σ(θ>x).

This approach is known as logistic regression (a somewhat strange name since we
use the model for classification rather than regression).
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In the case of linear regression, we were able to find the optimal weights
by solving the normal equations. Logistic regression is somewhat more difficult.
There is no closed-form solution for its optimal weights. Instead, we must search
for them by maximizing the log-likelihood. We can do this by minimizing the
negative log-likelihood (NLL) using gradient descent.

This same strategy can be applied to essentially any supervised learning prob-
lem, by writing down a parametric family of probability of conditional distribu-
tions over the right kind of input and output variables.

5.10.2 Support Vector Machines

One of the most influential approaches to supervised learning is the support vector
machine (Boser et al., 1992; Cortes and Vapnik, 1995). This model is similar to

logistic regression in that it is driven by a linear functionw>x+b. Unlike logistic
regression, the support vector machine does not provide probabilities, but only

outputs a class identity.
One key innovation associated with support vector machines is the kernel trick.

The kernel trick consists of observing that many machine learning algorithms can
be written exclusively in terms of dot products between examples. For example,
it can be shown that the linear function used by the support vector machine can
be re-written as

w>x + b = b+
mX

i=1

αix
>x(i)

where x(i) is a training example and α is a vector of coefficients. Rewriting the
learning algorithm this way allows us to replace x by the output of a given feature
function φ(x) and the dot product with a function k(x,x(i)) = φ(x)>φ(x (i)) called
a kernel.

We can then make predictions using the function

f (x) = b +
X

i

α ik(x,x
(i)). (5.41)

This function is linear in the space that φ maps to, but non-linear as a function

of x.
The kernel trick is powerful for two reasons. First, it allows us to learn models

that are non-linear as a function of x using convex optimization techniques that
are guaranteed to converge efficiently. This is only possible because we consider φ

fixed and only optimize α, i.e., the optimization algorithm can view the decision
function as being linear in a different space. Second, the kernel function k need not
be implemented in terms of explicitly applying the φ mapping and then applying
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the dot product. The dot product in φ space might be equivalent to a non-
linear but computationally less expensive operation in x space. For example, we
could design an infinite-dimensional feature mapping φ(x) over the non-negative
integers. Suppose that this mapping returns a vector containing x ones followed
by infinitely many zeros. Explicitly constructing this mapping, or taking the dot
product between two such vectors, costs infinite time and memory. But we can
write a kernel function k(x, x(i)) = min(x, x(i)) that is exactly equivalent to to
this infinite-dimensional dot product. The most commonly used kernel is the
Gaussian kernel

k(u,v) = N (u − v; 0, σ 2I) (5.42)

where N (x;µ,Σ) is the standard normal density. This kernel corresponds to the
dot product k(u,v) = φ(x)>φ(x) on an infinite-dimensional feature space φ and
also has an interpretation as a similarity function, acting like a kind of template
matching.

Support vector machines are not the only algorithm that can be enhanced

using the kernel trick. Many linear models can be enhanced in this way. This
category of algorithms is known as kernel machines or kernel methods.

A major drawback to kernel machines is that the cost of learning the α coeffi-

cients is quadratic in the number of training examples. A related problem is that
the cost of evaluating the decision function is linear in the number of training

examples, because the i-th example contributes a term αik(x,x
(i)) to the deci-

sion function. Support vector machines are able to mitigate this by learning an α
vector that contains mostly zeros. Classifying a new example then requires eval-
uating the kernel function only for the training examples that have non-zero α i.
These training examples are known as support vectors. Another major drawback
of common kernel machines (such as those using the Gaussian kernel) is more

statistical and regards their difficulty in generalizing to complex variations far
from the training examples, as discussed in Section 5.13.

The analysis of the statistical limitations of support vector machines with

general purpose kernels like the Gaussian kernels actually motivated the rebirth
of neural networks through deep learning. Support vector machines and other

kernel machines have often been viewed as a competitor to deep learning (though
some deep networks can in fact be interpreted as support vector machines with
learned kernels). The current deep learning renaissance began when deep net-
works were shown to outperform support vector machines on the MNIST bench-
mark dataset (Hinton et al., 2006). One of the main reasons for the current
popularity of deep learning relative to support vector machines is the fact that
the cost of training kernel machines usually scales quadratically with the number

of examples in the training set. For a deep network of fixed size, the memory cost

of training is constant with respect to training set size (except for the memory
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needed to store the examples themselves) and the runtime of a single pass through
the training set is linear in training set size. These asymptotic results meant that
kernelized SVMs dominated while datasets were small, but deep models currently
dominate now that datasets are large.

5.11 Unsupervised Learning

Whereas supervised learning is geared at a very specific task such as predicting
a variable y given a variable x from the observed data, unsupervised learning
tries to extract more general-purpose statistical structure from the data. In fact,

several more advanced forms unsupervised learning can be thought of as the rather

general task of extracting all the possible information from the observed data. Let
us call the observed data z (which could correspond to a pair (x,y) or maybe to
observing just x alone), corresponding to the joint observation of many individual
variables z1, z2 , z3 , then some unsupervised learning procedures basically amount
to learning what it takes to be able to predict any subset of the variables given
any other subset.

Unsupervised learning can also be seen as the types of learning algorithms
that extract potentially useful information from inputs x alone, without any pre-
specified label y. The objective is then to use the extracted information later, for
some supervised task involving the prediction of y given x. This would be a form
of semi-supervised learning, in which we combine unlabeled examples (with only
examples of x) with labeled examples (with (x, y) pairs).

Learning a representation of data A classic unsupervised learning task is to
find the ‘best’ representation of the data. By ‘best’ we can mean different things,
but generally speaking we are looking for a representation that preserves as much

information about x as possible while obeying some penalty or constraint aimed
at keeping the representation simpler or more accessible than x itself.

There are multiple ways of defining a simpler representation, some of the
most common include lower dimensional representations, sparse representations

and independent representations. Low-dimensional representations attempt to
compress as much information about x as possible in a smaller representation.
Sparse representations generally embed the dataset into a high-dimensional rep-

resentation5 where the number of non-zero entries is small. This results in an
overall structure of the representation that tends to distribute data along the
axes of the representation space. Independent representations attempt to dis-

entangle the sources of variation underlying the data distribution such that the

5sparse representations often use over-complete representations: the representation dimension
is greater than the original dimensionality of the data.
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dimensions of the representation are statistically independent.
Of course these three criteria are certainly not mutually exclusive. Low-

dimensional representations often yield elements that are more-or-less mutually
independent. This happens because the pressure to encode as much information
about the data x as possible into a low-dimensional representation drives the el-
ements of this representation to be more independent. Any dependency between
the variables in f(x) is evidence of redundancy and implies that the representation
f (x) could have captured more information about x.

The notion of representation is one of the central themes of deep learning

and therefore one of the central themes in this book. Chapter 16 discusses some
of the qualities we would like in our learned representations, along with specific

representation learning algorithms more powerful than the simple one presented
next, Principal Components Analysis.

5.11.1 Principal Components Analysis

In the remainder of this section we will consider one of the most widely used un-
supervised learning methods: Principle Components Analysis (PCA). PCA is an
orthogonal, linear transformation of the data that projects it into a representation
where the elements are uncorrelated (shown in Figure 5.7).

Z =XWx 1

x 2

x
 1

x
 2

z 2

z  1

Figure 5.7: Illustration of the data representation learned via PCA.

In section 2.12, we saw that we could learn a one-dimensional representation
that best reconstructs the original data (in the sense of mean squared error) and

that this representation actually corresponds to the first principal component of
the data. Thus we can use PCA as a simple and effective dimensionality reduction

method that preserves as much of the information in the data as possible (again,
as measured by least-squares reconstruction error). In the following, we will
take a look at other properties of the PCA representation. Specifically, we will
study how the PCA representation can be said to decorrelate the original data
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representation X.
Let us consider the n×m-dimensional design matrix X. We will assume that

the data has a mean of zero, E[x] = 0. If this is not the case, the data can easily
be centered (mean removed). The unbiased sample covariance matrix associated
with X is given by:

Var[x] =
1

n − 1
X>X (5.43)

One important aspect of PCA is that it finds a representation (through linear
transformation) z = Wx where Var[z] is diagonal. To do this, we will make use

of the singular value decomposition (SVD) of X: X = UΣW >, where Σ is an

n×m-dimensional rectangular diagonal matrix with the singular values of X on
the main diagonal, U is an n×nmatrix whose columns are orthonormal (i.e. unit
length and orthogonal) and W is an m×m matrix also composed of orthonormal
column vectors.

Using the SVD of X, we can re-express the variance of X as:

Var[x] =
1

n − 1
X>X (5.44)

=
1

n − 1
(UΣW>)>UΣW > (5.45)

=
1

n − 1
WΣ>U >UΣW> (5.46)

=
1

n − 1
WΣ2W >, (5.47)

where we use the orthonormality of U (U>U = I) and define Σ 2 as an m ×m-

dimensional diagonal matrix with the squares of the singular values of X on the
diagonal, i.e. the ith diagonal elements is given by Σ2

i,i. This shows that if we
take z = Wx, we can ensure that the covariance of z is diagonal as required.

Var[z] =
1

n − 1
Z >Z (5.48)

=
1

n − 1
W >X>XW (5.49)

=
1

n − 1
WW >Σ2WW > (5.50)

=
1

n − 1
Σ2 (5.51)

Similar to our analysis of the variance of X above, we exploit the orthonormality

of W (i.e., W >W = I). Our use of SVD to solve for the PCA components of X
(i.e. elements of z) reveals an interesting connection to the eigen-decomposition
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of a matrix related to X. Specifically, the columns of W are the eigenvectors of
the n × n-dimensional matrix X >X.

The above analysis shows that when we project the data x to z, via the linear
transformation W , the resulting representation has a diagonal covariance matrix
(as given by Σ2 ) which immediately implies that the individual elements of z are
mutually uncorrelated.

This ability of PCA to transform data into a representation where the ele-
ments are mutually uncorrelated is a very important property of PCA. It is a
simple example of a representation that attempt to disentangle the unknown fac-

tors of variation underlying the data. In the case of PCA, this disentangling takes
the form of finding a rotation of the input space (mediated via the transformation

W ) that aligns the principal axes of variance with the basis of the new represen-
tation space associated with z, as illustrated in Fig. 5.7. While correlation is
an important category of dependency between elements of the data, we are also
interested in learning representations that disentangle more complicated forms of
feature dependencies. For this, we will need more than what can be done with a
simple linear transformation. These issues are discussed below in Sec. 5.13 and
later in detail in Chapter 16.

5.12 Weakly Supervised Learning

Weakly supervised learning is another class of learning methods that stands be-
tween supervised and unsupervised learning. It refers to a setting where the

datasets consists of (x, y) pairs, as in supervised learning, but where the labels
y are either unreliably present (i.e. with missing values) or noisy (i.e. where the

label given is not the true label).
Methods for working with weakly labeled data have recently grown in impor-

tance due to the—largely untapped—potential for using large quantities of readily
available weakly labeled data in a transfer learning paradigm to help solve prob-
lems where large, clean datasets are hard to come-by. The Internet has become
a major source of this kind of noisy data.

For example, although we would like to train a computer vision system with
labels indicating the presence and location of every object (and which pixels
correspond to which object) in every image, such labeling is very human-labor

intensive. Instead, we want to take advantage of images for which only the main
object is identified, like the ImageNet dataset (Deng et al., 2009), or worse, of

video for which some general and high-level semantic spoken caption is approx-
imately temporally aligned with the corresponding frames of the video, like the
DVS data (Descriptive Video service) which has recently been released (Torabi
et al., 2015).
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5.13 The Curse of Dimensionality and Statistical Lim-
itations of Local Generalization

The number of variable configurations grows exponentially with the number of
variables, i.e., with dimension, which brings up a statistical form of the curse
of dimensionality, introduced in the next section. Many non-parametric learning
algorithms, such as kernel machines with a Gaussian kernel, rely on a simple pref-
erence over functions which corresponds to an assumption of smoothness or local
constancy. As argued in Section 5.13.2 that follows, this allows these algorithms to
generalize near the training examples, but does not allow them to generalize in a

non-trivial way far from them: the number of ups and downs that can be captured
is limited by the number of training examples. This is particularly problematic

with high-dimensional data, because of the curse of dimensionality. In order to

reduce that difficulty, researchers have introduced the idea of dimensionality re-
duction and manifold learning, introduced in Section 5.13.3. This motivates the
introduction of additional a priori about the task to be learned, as well as the
idea of learning to better represent the data, the topic which constitutes the bulk
of the rest of this book.

5.13.1 The Curse of Dimensionality

Many machine learning problems become exceedingly difficult when the number
of dimensions in the data is high. This phenomenon is known as the curse of
dimensionality. Of particular concern is that the number of possible distinct con-

figurations of the variables of interest increases exponentially as the dimensionality
increases.
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Figure 5.8: As the number of relevant dimensions of the data increases (from left to right),
the number of configurations of interest may grow exponentially. In the figure we first
consider one-dimensional data (left), i.e., one variable for which we only care to distinguish
10 regions of interest. With enough examples falling within each of these regions (cells,
in the figure), learning algorithms can easily generalize correctly, i.e., estimate the value
of the target function within each region (and possibly interpolate between neighboring
regions). With 2 dimensions (center), but still caring to distinguish 10 different values of
each variable, we need to keep track of up to 10×10=100 regions, and we need at least
that many examples to cover all those regions. With 3 dimensions (right) this grows to
103 = 1000 regions and at least that many examples. For d dimensions and V values to
be distinguished along each axis, it looks like we need O(V d) regions and examples. This
is an instance of the curse of dimensionality. However, note that if the data distribution is
concentrated on a smaller set of regions, we may actually not need to cover all the possible
regions, only those where probability is non-negligible. Figure graciously provided by, and
with authorization from, Nicolas Chapados.

The curse of dimensionality rears its ugly head in many places in computer

science, and especially so in machine learning.
One challenge posed by the curse of dimensionality is a statistical challenge.

As illustrated in Figure 5.8, a statistical challenge arises because the number of
possible configurations of the variables of interest is much larger than the number

of training examples. To understand the issue, let us consider that the input space
is organized into a grid, like in the figure. In low dimensions we can describe this

space with a low number of grid cells that are mostly occupied by the data. The
least we can assume about the data generating distribution is that our learner
should provide the same answer to two examples falling in the same grid cell.
It is a form of local constancy assumption, a notion that we develop further in

the next section. When generalizing to a new data point, we can usually tell
what to do simply by inspecting the training examples that lie in the same cell
as the new input. For example, if estimating the probability density at some
point x, we can just return the number of training examples in the same unit

volume cell as x, divided by the total number of training examples. If we wish to

136



CHAPTER 5. MACHINE LEARNING BASICS

classify an example, we can return the most common class of training examples
in the same cell. If we are doing regression we can average the target values
observed over the examples in that cell. But what about the cells for which
we have seen no example? Because in high-dimensional spaces the number of
configurations is going to be huge, much larger than our number of examples,
most configurations will have no training example associated with it. How could
we possibly say something meaningful about these new configurations? A simple
answer is to extend the local constancy assumption into a smoothness assumption,
as explained next.

5.13.2 Smoothness and Local Constancy A Priori Preference

As argued previously, and especially in high-dimensional spaces (because of the

curse of dimensionality introduced above), machine learning algorithms need pri-
ors, i.e., a preference over the space of solutions, in order to generalize to new

configurations not seen in the training set. The specification of these preferences
includes the choice of model family, as well as any regularizer or other aspects
of the algorithm that influence the final outcome of training. We consider here

a particular family of preferences which underlie many classical machine learning
algorithms, and which we call the smoothness prior or the local constancy prior.

We find that when the function to be learned has many ups and downs, and this

is typically the case in high-dimensional spaces because of the curse of dimen-
sionality (see above), then the smoothness prior is insufficient to achieve good
generalization. We argue that more assumptions are needed in order to gener-
alize better, in this setting. Deep learning algorithms typically introduce such
additional assumptions. This starts with the classical multi-layer neural networks

studied in the next chapter (Chapter 6), and in Chapter 16 we return to the ad-
vantages that representation learning, distributed representations and depth can
bring towards generalization, even in high-dimensional spaces.

Different smoothness or local constancy priors can be expressed, but what
they basically say is that the target function or distribution of interest f∗ is such
that

f ∗(x) ≈ f ∗(x + ) (5.52)

for most configurations x and small change . In other words, if we know a

good answer (e.g., for an example x) then that answer is probably good in the
neighborhood of x, and if we have several good answers in some neighborhood we
would combine them (e.g., by some form of averaging or interpolation) to produce
an answer that agrees with them as much as possible.

An example of locally constant family of functions is the histogram, which
breaks the input space into a number of distinguishable regions or “bins” in which
any x can fall, and produces a constant output within each region. Another
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example of piecewise constant learned function is what we obtain with k-nearest
neighbors predictors, where f (x) is constant in some region R containing all the
points x that have the same set of k nearest neighbors from the training set. If we
are doing classification and k=1, f (x) is just the output class associated with the
nearest neighbor of x in the training set. If we are doing regression, f(x) is the
average of the outputs associated with the k nearest neighbors of x. Note that
in both cases, for k = 1, the number of distinguishable regions of cannot be more
than the number of training examples. See Murphy (2012); Bishop (2006) or other
machine learning textbooks for more material on histograms and nearest-neighbor

classifiers.

Figure 5.9: Illustration of interpolation and kernel-based methods, which construct a
smooth function by interpolating in various ways between the training examples (circles),
which act like knot points controlling the shape of the implicit regions that separate them
as well as the values to output within each region. Depending on the type of kernel, one
obtains a piecewise constant (histogram-like, in dotted red), a piecewise linear (dashed
black) or a smoother kernel (bold blue). The underlying assumption is that the target
function is as smooth or locally as constant as possible. This assumption allows to
generalize locally, i.e., to extend the answer known at some point x to nearby points, and
this works very well so long as, like in the figure, there are enough examples to cover
most of the ups and downs of the target function.

To obtain even more smoothness, we can interpolate between neighboring

training examples, as illustrated in Figure 5.9. For example, non-parametric ker-
nel density estimation methods and kernel regression methods construct a learned

function f of the form of Eq. 5.41 for classification or regression, or alternatively,
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e.g., in the Parzen regression estimator, of the form

f (x) = b +
nX

i=1

αi
k(x,x(i) )P

n
j=1 k(x, x

(j))
.

If the kernel function k is discrete (e.g. 0 or 1), then this can include the above
cases where f is piecewise constant and a discrete set of regions (no more than
one per training example) can be distinguished. However, better results can often
be obtained if k is smooth, e.g., the Gaussian kernel from Eq. 5.42. With k a local
kernel (Bengio et al., 2006a; Bengio and LeCun, 2007b; Bengio, 2009)6 , we can
think of each x(i) as a template and the kernel function as a similarity function
that matches a template and a test example.

With the Gaussian kernel, we do not have a piecewise constant function but
instead a continuous and smooth function. In fact, the choice of k can be shown
to correspond to a particular form of smoothness. Equivalently, we can think of
many of these estimators as the result of smoothing the empirical distribution
by convolving it with a function associated with the kernel, e.g., the Gaussian

kernel density estimator is the empirical distribution convolved with the Gaussian
density.

Although in classical non-parametric estimators the αi of Eq. 5.41 are fixed

(e.g. to 1/n for density estimation and to y(i) for supervised learning from ex-
amples (x(i) , y(i))), they can be optimized, and this is the basis of more modern

non-parametric kernel methods (Schölkopf and Smola, 2002) such as the Sup-

port Vector Machine (Boser et al., 1992; Cortes and Vapnik, 1995) (see also Sec-

tion 5.10.2).
However, as illustrated in Figure 5.9, even though these smooth kernel meth-

ods generalize better, the main thing that has changed is that one can basically
interpolate between the neighboring examples, in some space associated with the

kernel. One can then think of the training examples as control knots which locally
specify the shape of each region and the associated output.

6i.e., with k(u,v) large when u = v and decreasing as they get farther apart
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Figure 5.10: Decision tree (right) and how it cuts the input space into regions, with a
constant output in each region (left). Each node of the tree (circle or square) is associated

with a region (the entire space for the root node, with the empty string identifier).
Internal nodes (circles) split their region in two, in this case (the most common) via

an axis aligned cut. Leaf nodes (squares) are associated with an “answer”, such as the
average target output for the training examples that fall in the corresponding region.
Each node is displayed with a binary string identifier corresponding to its position in
the tree, obtained by adding a bit to its parent (0=choose left or top, 1=choose right or
bottom). Note that the result is a piecewise-constant function, and note how the number
of regions (pieces) cannot be greater than the number of examples, hence it is not possible
to learn a function that has more ups and downs than the number of training examples.

Another type of non-parametric learning algorithm that also breaks the input
space into regions and has separate parameters for each region is the decision

tree (Breiman et al., 1984) and its many variants. We give a brief account here
and illustrate decision trees in Figure 5.10, but please refer as needed to Murphy
(2012); Bishop (2006) or other machine learning textbooks for more material on
decision trees. Each node of the decision tree is associated with a region in the
input space, and internal nodes breaks that region into one sub-region for each
child of the node (typically using an axis-aligned cut). Typically, a constant
output f (n(x)) is returned by the decision tree predictor for any x falling in the
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region associated with a particular leaf node n(x). Because each example only
informs the region in which it falls about which output to produce, one cannot
have more regions than training examples. If the target function can be well
approximated by cutting the input space into N regions (with a different answer
in each region), then at least N examples are needed (and a multiple of N is
needed to achieve some level of statistical confidence in the predicted output).
All this is also true if the tree is used for density estimation (the output is simply
an estimate of the density within the region, which can be obtained by the ratio of
the number of training examples in the region by the region volume) or whether

a non-constant (e.g. linear) predictor is associated with each leaf (then more
examples are needed within each leaf node, but the relationship between number

of regions and number of examples remains linear). We examine below how this
may hurt the generalization ability of decision trees and other learning algorithms
that are based only on the smoothness or local constancy priors, when the input
is high-dimensional, i.e., because of the curse of dimensionality.

In all cases, the smoothness assumption (Eq. 5.52) allows the learner to gen-
eralize locally. Since we assume that the target function obeys f ∗(x) ≈ f∗(x+ )
most of the time for small , we can generalize the empirical distribution (or the
(x, y) training pairs) to the neighborhood of the training examples. If (x (i), y(i) )
is a supervised (input,target) training example, then we expect f∗ (x(i)) ≈ y (i),

and therefore if x is a near neighbor of x(i) , we expect that f∗(x) ≈ y (i). By con-
sidering more neighbors, we can obtain better generalization, by better executing

the smoothness assumption.
In general, to distinguish O(N ) regions in input space, all of these meth-

ods require O(N ) examples (and typically there are O(N ) parameters associated
with the O(N ) regions). This is illustrated in Figure 5.11 in the case of a nearest-
neighbor or clustering scenario, where each training example can be used to define
one region. Is there a way to represent a complex function that has many more
regions to be distinguished than the number of training examples? Clearly, as-
suming only smoothness of the underlying function will not allow a learner to do
that. For example, imagine that the target function is a kind of checkerboard,
i.e., with a lot of variations, but a simple structure to them, and imagine that

the number of training examples is substantially less than the number of black
and white regions. Based on local generalization and the smoothness or local
constancy prior, we could get the correct answer within a constant-colour region,
but we could not correctly predict the checkerboard pattern. The only thing that
an example tells us, with this prior, is that nearby points should have the same
colour, and the only way to get the checkerboard right is to cover all of its cells
with at least one example.

The smoothness assumption and the associated non-parametric learning algo-
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Figure 5.11: Illustration of how non-parametric learning algorithms that exploit only the
smoothness or local constancy priors typically break up the input space into regions, with
examples in those regions being used both to define the region boundaries and what the
output should be within each region. The figure shows the case of clustering or 1-nearest-
neighbor classifiers, for which each training example (cross of a different color) defines a
region or a template (here, the different regions form a Voronoi tessellation). The number
of these contiguous regions cannot grow faster than the number of training examples. In
the case of a decision tree, the regions are recursively obtained by axis-aligned cuts within
existing regions, but for these and for kernel machines with a local kernel (such as the
Gaussian kernel), the same property holds, and generalization can only be local: each
training example only informs the learner about how to generalize in some neighborhood
around it.
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rithms work extremely well so long as there are enough examples to cover most of
the ups and downs of the target function. This is generally true when the function
to be learned is smooth enough, which is typically the case for low-dimensional
data. And if it is not very smooth (we want to distinguish a huge number of
regions compared to the number of examples), is there any hope to generalize
well?

Both of these questions are answered positively in Chapter 16. The key insight
is that a very large number of regions, e.g., O(2N ), can be defined with O(N )
examples, so long as we introduce some dependencies between the regions via ad-

ditional priors about the underlying data generating distribution. In this way, we
can actually generalize non-locally (Bengio and Monperrus, 2005; Bengio et al.,

2006b). A neural network can actually learn a checkerboard pattern. Similarly,
some recurrent neural networks can learn the n-bit parity (at least for some not
too large values of n). Of course we could also solve the checkerboard task by
making a much stronger assumption, e.g., that the target function is periodic.
However, neural networks can generalize to a much wider variety of structures,
and indeed our AI tasks have structure that is much too complex to be limited
to periodicity, so we want learning algorithms that embody more general-purpose
assumptions. The core idea in deep learning is that we assume that the data was
generated by the composition of factors or features, potentially at multiple levels

in a hierarchy. These apparently mild assumptions allow an exponential gain in
the relationship between the number of examples and the number of regions that

can be distinguished, as discussed in Chapter 16. Priors that are based on com-
positionality, such as arising from learning distributed representations and from
a deep composition of representations, can give an exponential advantage, which
can hopefully counter the exponential curse of dimensionality. Chapter 16 dis-
cusses these questions from the angle of representation learning and the objective
of disentangling the underlying factors of variation.

5.13.3 Manifold Learning and the Curse of Dimensionality

We consider here a particular type of machine learning task called manifold learn-
ing. Although they have been introduced to reduce the curse of dimensionality.
We will argue that they allow one to visualize and highlight how the smoothness
prior is not sufficient to generalize in high-dimensional spaces. Chapter 17 is de-
voted to the manifold perspective on representation learning and goes in much
greater details in this topic as well as in actual manifold learning algorithms based
on neural networks.

A manifold is a connected region, i.e., a set of points, associated with a neigh-
borhood around each point, which makes it locally look like a Euclidean space.
The notion of neighbor implies the existence of transformations that can be ap-
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plied to move on the manifold from one position to a neighboring one. Although
there is a formal mathematical meaning to this term, in machine learning it tends
to be used more loosely to talk about a connected set of points that can be well
approximated by considering only a small number of degrees of freedom, or di-
mensions, embedded in a higher-dimensional space. Each dimension corresponds
to a local direction of variation, i.e., moving along the manifold in some direction.
The manifolds we talk about in machine learning are subsets of points, also called
a submanifold, of the embedding space (which is also a manifold).

Manifold learning algorithms assume that the data distribution is concen-

trated in a small number of dimensions, i.e., that the set of high-probability con-
figurations can be approximated by a low-dimensional manifold. Figure 5.7 (left)

illustrates a distribution that is concentrated near a linear manifold (the manifold
is along a 1-dimensional straight line). Manifold learning was introduced in the
case of continuous-valued data and the unsupervised learning setting, although
this probability concentration idea can be generalized to both discrete data and
the supervised learning setting: the key assumption remains that probability mass
is highly concentrated.

Is this assumption reasonable? It seems to be true for almost all of the AI
tasks such as those involving images, sounds, and text. To be convinced of this we
will invoke (a) the observation that probability mass is concentrated and (b) the

observed objects can generally be transformed into other plausible configurations
via some small changes (which indicates a notion of direction of variation while

staying on the “manifold”). For (a), consider that if the assumption of probabil-
ity concentration was false, then sampling uniformly at random from in the set
of all configurations (e.g., uniformly in R

n ) should produce probable (data-like)
configurations reasonably often. But this is not what we observe in practice. For
example, generate pixel configurations for an image by independently picking the
grey level (or a binary 0 vs 1) for each pixel. What kind of images do you get?
You get “white noise” images, that look like the old television sets when no signal
is coming in, as illustrated in Figure 5.12 (left). What is the probability that
you would obtain something that looks like a natural image, with this procedure?
Almost zero, because the set of probable configurations (near the manifold of

natural images) occupies a very small volume out of the total set of pixel con-
figurations. Similarly, if you generate a document by picking letters randomly,
what is the probability that you will get a meaningful English-language text? Al-
most zero, again, because most of the long sequences of letters do not correspond
to a natural language sequence: the distribution of natural language sequences
occupies a very small volume in the total space of sequences of letters.
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Figure 5.12: Sampling images uniformly at random, e.g., by randomly picking each pixel
according to a uniform distribution, gives rise to white noise images such as illustrated on
the left. Although there is a non-zero probability to generate something that looks like a
natural image (like those on the right), that probability is exponentially tiny (exponential
in the number of pixels!). This suggests that natural images are very “special”, and that
they occupy a tiny volume of the space of images.

The above thought experiments, which are in agreement with the many exper-
imental results of the manifold learning literature, e.g. (Cayton, 2005; Narayanan
and Mitter, 2010; Schölkopf et al., 1998; Roweis and Saul, 2000; Tenenbaum

et al., 2000; Brand, 2003; Belkin and Niyogi, 2003; Donoho and Grimes, 2003;
Weinberger and Saul, 2004), clearly establish that for a large class of datasets of
interest in AI, the manifold hypothesis is true: the data generating distribution
concentrates in a small number of dimensions, as in the cartoon of Figure 17.4,

from Chapter 17. That chapter explores the relationships between representation

learning and manifold learning: if the data distribution concentrates on a smaller
number of dimensions, then we can think of these dimensions as natural coordi-
nates for the data, and we can think of representation learning algorithms as ways

to map the input space to a new and often lower-dimensional space which captures
the leading dimensions of variation present in the data as axes or dimensions of

the representation.
An initial hope of early work on manifold learning (Roweis and Saul, 2000;

Tenenbaum et al., 2000) was to reduce the effect of the curse of dimensionality,
by first reducing the data to a lower dimensional representation (e.g. mapping
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(x1, x 2) to z1 in Figure 5.7 (right)), and then applying ordinary machine learning
in that transformed space. This dimensionality reduction can be achieved by
learning a transformation (generally non-linear, unlike with PCA introduced in
Section 5.11.1) of the data that is invertible for most training examples, i.e., that
keeps the information in the input example. It is only possible to reconstruct input
examples from their low-dimensional representation because they lie on a lower-
dimensional manifold, of course. This is basically how auto-encoders (Chapter 15)
are trained.

The hope was that by non-linearly projecting the data in a new space of lower

dimension, we would reduce the curse of dimensionality by only looking at rel-
evant dimensions, i.e., a smaller set of regions of interest (cells, in Figure 5.8).

This can indeed be the case, however, as discussed in Chapter 17, the manifolds
can be highly curved and have a very large number of twists, requiring still a very
large number of regions to be distinguished (every up and down of each corner of
the manifold). And even if we were to reduce the dimensionality of an input from
10000 (e.g. 100×100 binary pixels) to 100, 2100 is still too large to hope cover-
ing with a training set. This still rules out the use of purely local generalization
(i.e., the smoothness prior only) to model such manifolds, as discussed in Chap-
ter 17 around Figure 17.4 and 17.5. It may also be that although the effective
dimensionality of the data could be small, some examples could fall outside of the

main manifold and that we do not want to systematically lose that information.
A sparse representation then becomes a possible way to represent data that is

mostly low-dimensional, although occasionally occupying more dimensions. This
can be achieved with a high-dimensional representation whose elements are 0 most
of the time. We can see that the effective dimension (the number of non-zeros)
then can change depending on where we are in input space, which can be useful.
Sparse representations are discussed in Section 15.8.

The next part of the book introduces specific deep learning algorithms that
aim at discovering representations that are useful for some task, i.e., trying to
extract the directions of variations that matter for the task of interest, often in a
supervised setting. The last part of the book concentrates more on unsupervised
representation learning algorithms, which attempt to capture all of the directions

of variation that are salient in the data distribution.
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Part II

Modern Practical Deep
Networks
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This part of the book summarizes the state of modern deep learning as it is
used to solve practical applications.

Deep learning has a long history and many aspirations. Several approaches
have been proposed that have yet to entirely bear fruit. Several ambitious goals
have yet to be realized. These less-developed branches of deep learning appear in
the final part of the book.

This part focuses only on those approaches that are essentially working tech-
nologies that are already used heavily in industry.

Modern deep learning provides a very powerful framework for supervised learn-

ing. By adding more layers and more units within a layer, a deep network can
represent functions of increasing complexity. Most tasks that consist of mapping

an input vector to an output vector, and that are easy for a person to do rapidly,
can be accomplished via deep learning, given sufficiently large model and dataset
of labeled training examples. Other tasks, that can not be described as associat-
ing one vector to another, or that are difficult enough that to do them a person
would require time to think and reflect, remain beyond the scope of deep learning
for now.

This part of the book describes the core parametric function approximation
technology that is behind nearly all modern practical applications of deep learn-
ing. Our description includes details such as, how to efficiently model specific

kinds of inputs, how to process image inputs with convolutional networks as well
as how to process sequence inputs with recurrent and recursive networks. More-

over, we provide guidance for how to preprocess the data for various tasks and
how to choose the values of the various settings that govern the behavior of these
algorithms.

These chapters are the most important for a practitioner – someone who wants
to begin implementing and using deep learning algorithms to solve real-world
problems today.

148



Chapter 6

Feedforward Deep Networks

6.1 From Fixed Features to Learned Features

In Chapter 5 we considered linear regression, linear classifiers and logistic regres-
sion, and introduced kernel machines, all of which involve a fixed set of features
on which a linear predictor is trained. These models perform non-linear trans-
formations of data, but the non-linear part is pre-defined. How can we learn

non-linear transformations of the data that create a new feature space? How can
we automate feature learning? This is what neural networks with hidden layers

allow us to do.
Feedforward supervised neural networks were among the first and most suc-

cessful learning algorithms (Rumelhart et al., 1986e,c). They are also called
deep networks, multi-layer perceptron (MLP), or simply neural networks and
the vanilla architecture with a single hidden layer is illustrated in Figure 6.1. A
deeper version is obtained by simply having more hidden layers. Each hidden
layer corresponds to a new learned representation of the input vector, trained
towards some objective, such as making it easier to produce desired answers in
output.

MLPs can learn powerful non-linear transformations: in fact, with enough

hidden units they can represent arbitrarily complex but smooth functions (see
Section 6.5). This is achieved by composing simpler but still non-linear learned

transformations. By transforming the data non-linearly into a new space, a classi-
fication problem that was not linearly separable (not solvable by a linear classifier)
can become separable, as illustrated in Figure 6.2.

6.1.1 Estimating Conditional Statistics

To gently move from linear predictors to non-linear ones, let us consider the

squared error loss function studied in the previous chapter, where the learning
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V

W

Figure 6.1: Vanilla (shallow) MLP, with one sigmoid hidden layer, computing vector-
valued hidden unit vector h = sigmoid(c+Wx) with weight matrix W and offset vector
c. The output vector is obtained via another learned affine transformation ŷ = b+ V h,
with weight matrix V and output offset vector b. The vector of hidden unit values h

provides a new set of features, i.e., a new representation, derived from the raw input x.

task is the estimation of the expected value of y given x. In the context of linear
regression, the conditional expectation of y is used as the mean of a Gaussian

distribution that we fit with maximum likelihood. We can generalize linear re-
gression to regression via any function f by defining the mean squared error of

f :
E[||y − f(x)||2]

where the expectation is over the training set during training, and over the data
generating distribution to obtain generalization error.

We can generalize its interpretation beyond the case where f is linear or
affine, uncovering an interesting property: minimizing it yields an estimator of

the conditional expectation of the output variable y given the input variable x,
i.e.,

arg min
f∈H

Ep(x,y)[||y − f(x)||2] = Ep(x,y)[y|x]. (6.1)

provided that our set of function H contains Ep(x,y)[y | x]. (If you would like to
work out the proof yourself, it is easy to do using calculus of variations, which we
describe in Chapter 19.4.2).

Similarly, we can generalize conditional maximum likelihood (introduced in
Section 5.8.1) to other distributions than the Gaussian, as discussed below when

defining the objective function for MLPs.
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Figure 6.2: Each layer of a trained neural network non-linearly transforms its input,
distorting the space so that the task becomes easier to perform, e.g., linear classification
in the new feature space, in the above figures. Top: a vanilla neural network with 2 hidden

units in its single hidden layer can transform the 2-D input space (shown in the blue and
pink square figure) so that the examples from the two classes (shown as the points on the
red and blue curves) become linearly separable (the red and blue curves correspond to the
“manifold” near which examples concentrate, while the red and pink areas correspond to
the regions where the neural network classifies an input as either blue or red). Bottom:
with a larger hidden layer (100 here), the MNIST digit images (with 28 × 28 = 784
pixels) can be transformed so that the classes (each shown with a different color) can be
much more easily classified by the output layer (over 10 digit categories). Both figures
are reproduced with permission by Chris Olah from http://colah.github.io/, where
many more insightful visualizations can be found.
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6.2 Formalizing and Generalizing Neural Networks

In addition to covering the basics of such networks, this chapter introduces a
general formalism for gradient-based optimization of parametrized families of
functions, often in the context of conditional maximum likelihood criteria (Sec-
tion 6.3).

MLPs bring together a number of important machine learning concepts al-
ready introduced in the previous chapters:

• Define a parametrized family of functions fθ describing how the learner
will behave on new examples, i.e., what output the learned function fθ(x)

will produce given some input x. Training consists in choosing the parame-
ter θ (usually represented by a vector) given some training examples (x, y)
sampled from an unknown data generating distribution P (X,Y ).

• Define a loss function L describing what scalar loss L(ŷ,y) is associated
with each supervised example (x,y), as a function of the learner’s output
ŷ = fθ(x) and the target output y.

• Define a training criterion and a regularizer. The objective of train-
ing is ideally to minimize the expected loss EX ,Y [L(fθ(X),Y )] over X,Y
sampled from the unknown data generating distribution P (X,Y ). However
this is not possible because the expectation makes use of the true underlying
P (X,Y ) but we only have access to a finite number of training examples,

i.e. of pairs (X,Y ). Instead, one defines a training criterion which usually
includes an empirical average of the loss over the training set, plus some

additional terms (called regularizers) which enforce some preferences over
the choices of θ.

• Define an optimization procedure to approximately minimize the training
criterion1. The simplest such optimization procedure is a variant of gradient
descent (gradient descent was introduced in Section 4.3) called stochastic
gradient descent, described in Section 8.3.2.

Example 6.2.1 illustrates these concepts for the case of a vanilla neural network
for regression.

In chapter 16, we consider generalizations of the above framework to the
unsupervised and semi-supervised cases, where Y may not exist or may not always
be present. An unsupervised loss can then be defined solely as a function of the

input x and some function fθ(x) that one wishes to learn.

1It is generally not possible to analytically obtain a global minimum of the training criterion,
so iterative numerical optimization methods are used instead.
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Example 6.2.1. Vanilla (Shallow) Multi-Layer Neural Network
for Regression

Based on the above definitions, we could pick the family of input-output
functions to be

fθ(x) = b+ V sigmoid(c+Wx),

illustrated in Figure 6.1, where sigmoid(a) = 1/(1 + e−a) is applied
element-wise, the input is the vector x ∈ Rni , the hidden layer outputs
are the elements of the vector h = sigmoid(c+Wx) with nh entries, the
parameters are θ = (b,c, V ,W ) (with θ also viewed as the flattened vec-

torized version of the tuple) with b ∈ R
no a vector the same dimension as

the output (no), c ∈ Rnh of the same dimension as h (number of hidden

units), V ∈ Rno×nh and W ∈ Rnh ×ni being weight matrices.
The loss function for this classical example could be the squared error
L( ŷ,y) = ||ŷ − y||2 (see Section 6.1.1 discussing how it makes ŷ an esti-
mator of E[Y | x]). The regularizer could be the ordinary L2 weight decay
||ω||2 = (

P
ijW

2
ij +

P
kiV

2
ki), where we define the set of weights ω as the

concatenation of the elements of matrices W and V . The L2 weight de-

cay thus penalizes the squared norm of the weights, with λ a scalar that is
larger to penalize stronger weights, thus yielding smaller weights. Com-

bining the loss function and the regularizer gives the training criterion,
which is the objective function during training:

J (θ) = λ||ω||2 +
1

n

nX

t=1

||y (t) − (b + V sigmoid(c +Wx(t)))||2.

where (x (t),y (t)) is the t-th training example, an (input,target) pair. Fi-
nally, the classical training procedure in this example is stochastic gradi-
ent descent, which iteratively updates θ according to

ω ← ω− 

2λω + ∇ωL(fθ(x(t) ),y(t))



β ← β− ∇βL(fθ (x
(t)

),y
(t)

),

where β = (b, c) contains the offset2 parameters, ω = (W , V ) the weight

matrices,  is a learning rate and t is incremented after each training
example, modulo n. Section 6.4 shows how gradients can be computed

efficiently thanks to backpropagation.
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6.3 Parametrizing a Learned Predictor

There are many ways to define the family of input-output functions, loss function,
regularizer and optimization procedure, and the most common ones are described
below, while more advanced ones are left to later chapters, in particular Chap-
ters 10 and 15.

6.3.1 Family of Functions

A motivation for the family of functions defined by multi-layer neural networks
is to compose simple transformations in order to obtain highly non-linear ones. In

particular, MLPs compose affine transformations and element-wise non-linearities.
As discussed in Section 6.5 below, with the appropriate choice of parameters,
multi-layer neural networks can in principle approximate any smooth function,
with more hidden units allowing one to achieve better approximations.

A multi-layer neural network with more than one hidden layer can be de-
fined by generalizing the above structure, e.g., as follows, where we chose to use
hyperbolic tangent3 activation functions instead of sigmoid activation functions:

h k = tanh(bk + W k h k−1)

where h 0 = x is the input of the neural net, hk (for k > 0) is the output of the
k-th hidden layer, which has weight matrix W k and offset (or bias) vector bk . If
we want the output fθ(x) to lie in some desired range, then we typically define
an output non-linearity (which we did not have in the above Example 6.2.1). The
non-linearity for the output layer is generally different from the tanh, depending
on the type of output to be predicted and the associated loss function (see below).

There are several other non-linearities besides the sigmoid and the hyperbolic
tangent which have been successfully used with neural networks. In particular,
we introduce some piece-wise linear units below such as the the rectified linear
unit (max(0, b+w ·x)) and the maxout unit (maxi(bi+W:,i ·x)) which have been

particularly successful in the case of deep feedforward or convolutional networks.
A longer discussion of these can be found in Section 6.7.

These and other non-linear neural network activation functions commonly
found in the literature are summarized below. Most of them are typically com-
bined with an affine transformation a = b+Wx and applied element-wise:

h = φ(a) ⇔ hi = φ(ai) = φ(bi +Wi,:x). (6.2)

3which is linearly related to the sigmoid via tanh(x) = 2 × sigmoid(2x) − 1 and typically

yields easier optimization with stochastic gradient descent (Glorot and Bengio, 2010).
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• Rectifier or rectified linear unit (ReLU) or positive part: transfor-
mation of the output of the previous layer: φ(a) = max(0, a), also written
φ(a) = (a)+ .

• Hyperbolic tangent: φ(a) = tanh(a).

• Sigmoid: φ(a) = 1/(1 + e−a).

• Softmax: This is a vector-to-vector transformation φ(a) = softmax(a) =

eai/
P

j e
aj such that

P
i φ i(a) = 1 and φi (a) > 0, i.e., the softmax output

can be considered as a probability distribution over a finite set of outcomes.
Note that it is not applied element-wise but on a whole vector of “scores”.
It is mostly used as output non-linearity for predicting discrete probabilities
over output categories. See definition and discussion below, around Eq. 6.4.

• Radial basis function or RBF unit: this one is not applied after a general
affine transformation but acts on x using a different form that corresponds
to a template matching, i.e., hi = exp


−||wi − x||2/σ2

i


(or typically with

all the σ i set to the same value). This is heavily used in kernel SVMs (Boser

et al., 1992; Schölkopf et al., 1999) and has the advantage that such units
can be easily initialized (Powell, 1987; Niranjan and Fallside, 1990) as a

random (or selected) subset of the input examples, i.e., wi = x(t) for some
assignment of examples t to hidden unit templates i.

• Softplus: φ(a) = log(1 + ea). This is a smooth version of the rectifier,
introduced in Dugas et al. (2001) for function approximation and in Nair
and Hinton (2010a) in RBMs. Glorot et al. (2011a) compared the softplus
and rectifier and found better results with the latter, in spite of the very
similar shape and the differentiability and non-zero derivative of the softplus
everywhere, contrary to the rectifier.

• Hard tanh: this is shaped similarly to the tanh and the rectifier but unlike

the latter, it is bounded, φ(a) = max(−1,min(1, a)). It was introduced
by Collobert (2004).

• Absolute value rectification: φ(a) = |a| (may be applied on the affine
dot product or on the output of a tanh unit). It is also a rectifier and has
been used for object recognition from images (Jarrett et al., 2009a), where
it makes sense to seek features that are invariant under a polarity reversal
of the input illumination.

• Maxout: this is discussed in more detail in Section 6.7. It generalizes the
rectifier but introduces multiple weight vectors wi (called filters) for each

hidden unit. hi = maxi (bi +wi · x).

155



CHAPTER 6. FEEDFORWARD DEEP NETWORKS

This is not an exhaustive list but covers most of the non-linearities and unit
computations seen in the deep learning and neural nets literature. Many variants
are possible.

As discussed in Section 6.4, the structure (also called architecture) of the
family of input-output functions can be varied in many ways, which calls for a
generic principle for efficiently computing gradients, described in that section.

For example, a common variation is to connect layers that are not adjacent, with
so-called skip connections, which are found in the visual cortex (where the word

“layer” should be replaced by the word “area”). Other common variations depart

from a full connectivity between adjacent layers. For example, each unit at layer k

may be connected to only a subset of units at layer k−1. A particular case of such
form of sparse connectivity is discussed in chapter 9 with convolutional networks.
In general, the set of connections between units of the whole network only needs
to form a directed acyclic graph in order to define a meaningful computation
(see the flow graph formalism below, Section 6.4). When units of the network
are connected to themselves through a cycle, one has to properly define what
computation is to be done, and this is what is done in the case of recurrent
networks, treated in Chapter 10. Another example of non-full connectivity is the
deep recurrent network, Section 10.4.

6.3.2 Loss Function and Conditional Log-Likelihood

In the 80’s and 90’s the most commonly used loss function was the squared error

L(fθ(x),y) = ||fθ(x) − y||2 . As discussed in Section 6.1.1, if f is unrestricted
(non-parametric), minimizing the expected value of the loss function over some

data-generating distribution P (x,y) yields f (x) = E[y | x = x], the true condi-
tional expectation of y given x. This tells us what the neural network is trying to

learn. Replacing the squared error by an absolute value makes the neural network
try to estimate not the conditional expectation but the conditional median4.

However, when y is a discrete label, i.e., for classification problems, other loss
functions such as the Bernoulli negative log-likelihood5 have been found to be
more appropriate than the squared error. In the case where y ∈ {0, 1} is binary
this gives

L(fθ (x), y) = −y log fθ(x) − (1 − y) log(1 − fθ (x)) (6.3)

also known as cross entropy objective function. It can be shown that the optimal
(non-parametric) f minimizing this criterion is f (x) = P (y = 1 | x). In other
words, when training the conditional log-likelihood objective function, we are

4Showing this is another interesting exercise.
5 This is often called cross entropy in the literature, even though the term cross entropy,

defined at Eq. 5.23, should also apply to many other losses that can be viewed as negative

log-likelihood, discussed below in more detail.
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training the neural net output to estimate conditional probabilities as well as
possible in the sense of the KL divergence (see Section 3.9, Eq. 3.3). Note that
in order for the above expression of the criterion to make sense, f θ(x) must be
strictly between 0 and 1 (an undefined or infinite value would otherwise arise).
To achieve this, it is common to use the sigmoid as non-linearity for the output
layer, which matches well with the Binomial negative log-likelihood criterion6. As

explained below (Softmax subsection), the cross entropy criterion allows gradients
to pass through the output non-linearity even when the neural network produces

a confidently wrong answer, unlike the squared error criterion coupled with a

sigmoid or softmax non-linearity.

Learning a Conditional Probability Model

More generally, one can define a loss function as corresponding to a conditional
log-likelihood, i.e., the negative log-likelihood (NLL) criterion

LNLL (fθ(x),y) = − logP (y = y | x = x;θ).

See Section 5.8.1 (and the one before) which shows that this criterion corresponds
to minimizing the KL divergence between the model P of the conditional prob-

ability of y given x and the data generating distribution Q, approximated here
by the finite training set, i.e., the empirical distribution of pairs (x,y). Hence,

minimizing this objective, as the amount of data increases, yields an estimator of
the true conditional probability of y given x.

For example, if y is a continuous random variable and we assume that, given
x, it has a Gaussian distribution with mean fθ (x) and variance σ2, then

− log P (y | x;θ) =
1

2
(f θ(x) − y)2/σ2 + log(2πσ2).

Up to an additive and multiplicative constant (which would give the same choice
of θ), minimizing this negative log-likelihood is therefore equivalent to minimizing
the squared error loss. Once we understand this principle, we can readily general-
ize it to other distributions, as appropriate. For example, it is straightforward to
generalize the univariate Gaussian to the multivariate case, and under appropriate
parametrization consider the variance to be a parameter or even a parametrized

function of x (for example with output units that are guaranteed to be positive,
or forming a positive definite matrix, as outlined below, Section 6.3.2).

6In reference to statistical models, this “match” between the loss function and the output
non-linearity is similar to the choice of a link function in generalized linear models (McCullagh
and Nelder, 1989).
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Similarly, for discrete variables, the Binomial negative log-likelihood criterion
corresponds to the conditional log-likelihood associated with the Bernoulli distri-
bution (also known as cross entropy) with probability p = fθ(x) of generating
y = 1 given x = x (and probability 1 − p of generating y = 0):

LNLL = − log P (y | x; θ) = −1y=1 log p − 1y=0 log(1 − p)
= −y log fθ(x) − (1 − y) log(1 − fθ (x)).

where 1y=1 is the usual binary indicator.

Softmax

When y is discrete and has a finite domain (say {1, . . . ,N}) but is not binary,
the Bernoulli distribution is extended to the multinoulli distribution (defined in
Section 3.10.2). This distribution is specified by a vector of N − 1 probabilities
whose sum is less or equal to 1, each element of which provides the probability
pi = P (y = i | x). Equivalently, one can (more conveniently) specify a vector of
N probabilities whose sum is exactly 1. The softmax non-linearity was designed

for this purpose (Bridle, 1990):

p = softmax(a) ⇐⇒ pi =
eaiP
j
eaj
, (6.4)

where typically a = b+Wh is the vector of scores whose elements a i are associ-
ated with each category i, with larger relative scores yielding exponentially larger
probabilities. The corresponding loss function is therefore LNLL(p, y) = − log py.

Note how minimizing this loss will push ay up (increase the score ay associated
with the correct label y) while pushing down ai for i 6= y (decreasing the score

of the other labels, in the context x). The first effect comes from the numerator
of the softmax while the second effect comes from the normalizing denominator.
These forces cancel on a specific example only if py = 1 and they cancel in average
over examples (say sharing the same x) if pi equals the fraction of times that y = i

for this value x. To see this, consider the gradient with respect to the scores a:

∂

∂ak
LNLL(p, y) =

∂

∂ak
(− log py) =

∂

∂ak
(−ay + log

X

j

eaj )

= −1y=k +
e ak

P
j e

aj

= pk − 1y=k or

∂

∂a
LNLL(p, y) = (p − e y) (6.5)

158



CHAPTER 6. FEEDFORWARD DEEP NETWORKS

where e y = [0, . . . ,0, 1,0, . . . , 0] is the one-hot vector with a 1 at position y.
Examples that share the same x share the same a, so the average gradient on a
over these examples is 0 when the average of the above expression cancels out,
i.e., p = E y[ey | x] where the expectation is over these examples. Thus the
optimal pi for these examples is the average number of times that y = i among
those examples. Over an infinite number of examples, we would obtain that the

gradient is 0 when pi perfectly estimates the true P (y = i | x). What the above
gradient decomposition teaches us as well is the division of the total gradient into

(1) a term due to the numerator (the ey) and dependent on the actually observed

target y and (2) a term independent of y but which corresponds to the gradient of
the softmax denominator. The same principles and the role of the normalization

constant (or “partition function”) can be seen at play in the training of Markov
Random Fields, Boltzmann machines and RBMs, in Chapter 13.

Note other interesting properties of the softmax. First of all, the gradient
with respect to a does not saturate, i.e., the gradient does not vanish when the
output probabilities approach 0 or 1 (a very confident model), except when the
model is providing the correct answer. Specifically, let us consider the case where
the correct label is i, i.e. y = i. The element of the gradient associated with an
erroneous label, say j 6= i, is

∂

∂aj
LNLL(p, y) = pj . (6.6)

So if the model correctly predicts a low probability that the y = j, i.e. that
pj ≈ 0, then the gradient is also close to zero. But if the model incorrectly
and confidently predicts that j is the correct class, i.e., pj ≈ 1, there will be a
strong push to reduce aj . Conversely, if the model incorrectly and confidently
predicts that the correct class y should have a low probability, i.e., p y ≈ 0, there
will be a strong push (a gradient of about -1) to push ay up. One way to see
these is to imagine doing gradient descent on the aj ’s themselves (that is what
backprop is really based on): the update on aj would be proportional to minus one

times the gradient on aj, so a positive gradient on a j (e.g., incorrectly confident
that pj ≈ 1) pushes aj down, while a negative gradient on aj (e.g., incorrectly

confident that py ≈ 0) pushes ay up. In fact note how ay is always pushed up
because py − 1 y=y = py − 1 < 0, and the other scores aj (for j 6= y) are always

pushed up, because their gradient is pj > 0.
There are other loss functions such as the squared error applied to softmax (or

sigmoid) outputs (which was popular in the 80’s and 90’s) which have vanishing
gradient when an output unit saturates (when the derivative of the non-linearity
is near 0), even if the output is completely wrong (Solla et al., 1988). This may be
a problem because it means that the parameters will basically not change, even

though the output is wrong.
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To see how the squared error interacts with the softmax output, we need to
introduce a one-hot encoding of the label, y = ei = [0, . . . ,0, 1, 0, . . . ,0], i.e for
the label y = i, we have y i = 1 and yj = 0,∀j 6= i. We will again consider that
we have the output of the network to be p = softmax(a), where, as before, a is
the input to the softmax function ( e.g. a = b + Wh with h the output of the
last hidden layer).

For the squared error loss L2(p(a),y) = ||p(a) − y||2, the gradient of the loss
with respect to the input vector to the softmax, a, is given by:

∂

∂ai
L2(p(a),y) =

∂L(p(a),y)

∂p(a)

∂p(a)

∂ai

=
X

j

2(pj (a) − yj )pj(1i=j − p i). (6.7)

So if the model incorrectly predicts a low probability for the correct class y = i,
i.e., if py = pi ≈ 0, then the score for the correct class, ay, does not get pushed
up in spite of a large error, i.e., ∂

∂ay
L2(p(a),y) ≈ 0. For this reason, practitioners

prefer to use the negative log-likelihood (cross entropy) criterion, with the softmax
non-linearity (as well as with the sigmoid non-linearity), rather than applying the
squared error criterion to these probabilities.

Another property that could potentially be interesting is that the softmax out-
put is invariant under additive changes of its input vector: softmax(a) = softmax(a + b)

when b is a scalar added to all the elements of vector a. Finally, it is interesting
to think of the softmax as a way to create a form of competition between the units
(typically output units, but not necessarily) that participate in it: the softmax
function reinforces strongest filter output ai∗ (because the exponential increases
faster for larger values) and the other units that get inhibited. This is analogous
to the lateral inhibition that is believed to exist between nearby neurons in cortex,
and at the extreme (when the ai ’s are large in magnitude) it becomes a form of
winner-take-all (one of the outputs is nearly 1 and the others are nearly 0). A
more computationally expensive form of competition is found with sparse coding,
described in Section 19.3.

Neural Net Outputs as Parameters of a Conditional Distribution

In general, for any parametric probability distribution p(y | ω) with param-
eters ω, we can construct a conditional distribution p(y | x) by making ω a
parametrized function of x, and learning that function:

p(y | ω = fθ(x))

where fθ(x) is the output of a predictor, x is its input, and y can be thought

of as a “target”. The use of the word “target” comes from the common cases of
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classification and regression, where fθ(x) is really a prediction associated with
random variable y, or with its expected value. However, in general ω = fθ(x)
may contain parameters of the distribution of y other than its expected value.
For example, it could contain its variance or covariance, in the case where y is
conditionally Gaussian. In the above examples, with the squared error loss, ω is
the mean of the Gaussian which captures the conditional distribution of y (which

means that the variance is considered fixed, not a function of x). In the common
classification case, ω contains the probabilities associated with the various events

of interest.

Once we view things in this way, if we apply the principle of maximum likeli-
hood in the conditional case (Section 5.8.1), we automatically get as the natural

cost function the negative log-likelihood L(x, y) = − log p(y | ω = fθ(x)). Be-
sides the expected value of y, there could be other parameters of the conditional
distribution of y that control the distribution of y, given x. For example, we
may wish to learn the variance of a conditional Gaussian for y, given x, and that
variance could be a function that varies with x or that is a constant with respect
to x. If the variance σ 2 of y given x is not a function of x, its maximum likelihood
value can be computed analytically because the maximum likelihood estimator of
variance is simply the empirical mean of the squared difference between observa-

tions y and their expected value (here estimated by fθ (x)). In the scalar case,
we could estimate σ as follows:

σ2 ← 1

n

nX

i=1

(y (t) − fθ(x(t)))2 (6.8)

where (t) indicates the t-th training example (x(t) ,y(t)). In other words, the
conditional variance can simply be estimated from the mean squared error. If
y is a d-vector and the conditional covariance is σ 2 times the identity, then the
above formula should be modified as follows, again by setting the gradient of the
log-likelihood with respect to σ to zero:

σ 2 ← 1

nd

nX

i=1

||y(t) − fθ (x(t))||2. (6.9)

In the multivariate case with a diagonal covariance matrix with entries σ2
i, we

obtain

σ 2
i ←

1

n

nX

i=1

(y (t)
i

− fθ,i(x
(t) ))2. (6.10)

In the multivariate case with a full covariancae matrix, we have

Σ ← 1

n

n

Xi=1

(y(t)
i − fθ,i(x

(t)))(y(t)
i − fθ,i(x

(t)))> (6.11)
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If the variance Σ(x) is a function of x, there is in general no analytic solution
the maximizing the likelihood, but we can compute the gradient of the objective
function with respect to the parameters θ that contribute to definining the map-
ping from the input x to Σ(x). If Σ(x) is diagonal or scalar, only positivity must
be enforced, e.g., using the softplus non-linearity:

σ i(x) = softplus(gθ (x)).

where gθ(x) may be a neural network that takes x as input. A positive non-
linearity may also be useful in the case where σ is a function of x, if we do not

seek the maximum likelihood solution (for example we do not have immediate
observed targets associated with that Gaussian distribution, because the sam-

ples from the Gaussian are used as input for further computation). Then we can
make the free parameter ω defining the variance the argument of the positive non-
linearity, e.g., σi(x) = softplus(ω i). If the covariance is full and conditional, then
a parametrization must be chosen that guarantees positive-definiteness of the pre-
dicted covariance matrix. This can be achieved by writing Σ(x) = B(x)B>(x),
where B is an unconstrained square matrix. One practical issue if the the matrix
is full is that computing the likelihood is expensive, requiring O(d 3) computation

for the determinant and inverse of Σ(x) (or equivalently, and more commonly
done, its eigendecomposition or that of B(x)).

Besides the Gaussian, a simple and common example is the case where y is

binary (i.e. Bernoulli distributed), where it is enough to specify ω = p(y = 1 | x).
In the multinoulli case (multiple discrete values), ω is generally specified by a
vector of probabilities (one per possible discrete value) summing to 1, e.g., via

the softmax non-linearity discussed above.
Another interesting and powerful example of output distribution for neural

networks is the mixture model, and in particular the Gaussian mixture model,
introduced in Section 3.10.5. Neural networks that compute the parameters of
a mixture model were introduced in Jacobs et al. (1991); Bishop (1994). In the
case of the Gaussian mixture model with N components,

p(y | x) =

NX

i=1

p(c = i | x)N (y | µi (x),Σi (x)).

The neural network must have three kinds of outputs, p(c = i | x), µi(x), and
Σi(x), which must satisfy different constraints:

1. Mixture components p(c = i | x): these form a multinoulli distribution
over the N different components associated with latent7 variable c, and can

7c is called latent because we do not observe it in the data: given input x and target y, it
is not 100% clear which Gaussian component was responsible for y, but we can imagine that y

was generated by picking one of them, and make that unobserved choice a random variable.
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typically be obtained by a softmax over an N-vector, to guarantee that
these outputs are positive and sum to 1.

2. Means µ i(x): these indicate the center or mean associated with the i-th
Gaussian component, and are unconstrained (typically with no non-linearity

at all for these output units). If y is a d-vector, then the network must
output an N × d matrix containing all these N d-vectors.

3. Covariances Σi(x): these specify the covariance matrix for each component

i. For the general case of an unconditional (does not depend on x) but full
covariance matrix, see Eq. 6.11 to set it by maximum likelihood. In many
models the variance is both unconditional and diagonal (like assumed with

Eq. 6.10) or even scalar (like assumed with Eq. 6.8 or 6.9).

It has been reported that gradient-based optimization of conditional Gaussian
mixtures (on the output of neural networks) can be finicky, in part because one
gets divisions (by the variance) which can be numerically unstable (when some

variance gets to be small for a particular example, yielding very large gradients).
One solution is to clip gradients (see Section 10.7.6 and Mikolov (2012); Pascanu
and Bengio (2012); Graves (2013); Pascanu et al. (2013a)), while another is to

scale the gradients heuristically (Murray and Larochelle, 2014).

Multiple Output Variables

When y is actually a tuple formed by multiple random variables y = (y1 ,y2, . . . ,yk ),
then one has to choose an appropriate form for their joint distribution, conditional

on x = x. The simplest and most common choice is to assume that the y i are
conditionally independent, i.e.,

p(y1,y2, . . . ,yk | x) =

kY

i=1

p(yi | x).

This brings us back to the single variable case, especially since the log-likelihood
now decomposes into a sum of terms log p(yi | x). If each p(yi | x) is separately
parametrized (e.g. a different neural network), then we can train these neural

networks independently. However, a more common and powerful choice assumes
that the different variables yi share some common factors, given x, that can be
represented in some hidden layer of the network (such as the top hidden layer).

See Sections 6.6 and 7.12 for a deeper treatment of the notion of underlying factors

of variation and multi-task training: each (x,yi) pair of random variables can be
associated with a different learning task, but it might be possible to exploit what

these tasks have in common. See also Figure 7.6 illustrating these concepts.
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If the conditional independence assumption is considered too strong, what can
we do? At this point it is useful to step back and consider everything we know
about learning a joint probability distribution. Since any probability distribution
p(y;ω) parametrized by parameters ω can be turned into a conditional distri-
bution p(y | x;θ) (by making ω a function ω = fθ (x) parametrized by θ), we
can go beyond the simple parametric distributions we have seen above (Gaussian,

Bernoulli, multinoulli), and use more complex joint distributions. If the set of
values that y can take is small enough (e.g., we have 8 binary variables yi, i.e., a

joint distribution involving 2 8 = 256 possible values), then we can simply model

all these joint occurences as separate values, e.g., with a softmax and multinoulli
over all these configurations. However, when the set of values that yi can take

cannot be easily enumerated and the joint distribution is not unimodal or fac-
torized, we need other tools. The third part of this book is about the frontier of
research in deep learning, and much of it is devoted to modeling such complex
joint distributions, also called graphical models: see Chapters 13, 18, 19, 20. In
particular, Section 12.5 discusses how sophisticated joint probability models with
parameters ω can be coupled with neural networks that compute ω as a function
of inputs x, yielding structured output models conditioned with deep learning.

6.3.3 Training Criterion and Regularizer

TODO: the next few paragraphs seem reference-heavy. are they really saying
anything on their own, or is just a reminder to study these concepts in Ch. 5 suf-

ficient? listing too many specific sections of Ch.5 can be distracting/overwhelming
The loss function (often interpretable as a negative log-likelihood) tells us

what we would like the learner to capture. Maximizing the conditional log-
likelihood of model P over the true distribution Q, i.e., minimizing the expected

loss EQ(x,y) [− log p(y | x);θ] = EQ(x,y)[L(fθ(x),y)], makes p(y | x;θ) estimate
the true Q(y | x) associated with the unknown data generating distribution,
within the boundaries of what the chosen family of functions allows. See the end
of Section 5.8 and Section 5.8.1 for a longer discussion. In practice we cannot
minimize this expectation because we do not know p(x, y) and because comput-
ing and minimizing this integral exactly would generally be intractable. Instead

we are going to approximately minimize a training criterion J (θ) based on the
empirical average of the loss (over the training set). The simplest such criterion
is the average training loss 1

n

Pn
t=1 L(fθ(x(t)),y(t)), where the training set is a

set of n examples (x (t),y(t) ). However, better results can often be achieved by

crippling the learner and preventing it from simply finding the best θ that mini-
mizes the average training loss. This means that we combine the evidence coming

from the data (the training set average loss) with some a priori preference on
the different values that θ or fθ can take (the regularizer). If this concept (and
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the related concepts of generalization, overfitting and underfitting) are not clear,
please return to Sections 5.3 and 5.5 for a refresher.

TODO: next several paragraphs have serious redundancy with other sections,
e.g. regularization.tex and ml.tex if we do keep this detailed of a discussion
here, make sure it’s clear that weight decay only affects the weights, not all the
“parameters’ as this says now.

The most common regularizer is simply an additive term equal to a regu-
larization coefficient λ times the squared norm of the parameters8, ||θ||22. This

regularizer is often called the weight decay or L2 weight decay or shrinkage

because adding the squared L2 norm to the training criterion pushes the weights
towards zero, in proportion to their magnitude. For example, when using stochas-

tic gradient descent, each step of the update with regularizer term λ
2 ||θ||

2 would
look like

θ ← θ− ∇θL(fθ(x),y) − λθ
where  is the learning rate (see Section 4.3). This can be rewritten

θ ← θ(1 − λ) − ∇θL(fθ(x),y)

where we see that the first term systematically shaves off a small proportion of θ
before adding the gradient.

Another commonly used regularizer is the so-called L1 regularizer, which adds
to the training criterion a term proportional to the L1 (absolute value) norm,

|θ|1 =
P

i
|θi |. The L1 regularizer also prefers values that are small, but whereas

the L2 weight decay has only a weak preference for 0 compared to small but
non-zero values, the L1 regularizer continues pushing the parameters towards
0 with a constant gradient even when they get very small. As a consequence,
it tends to bring some of the parameters to exactly 0 (how many depends on
how large the regularization coefficient λ is chosen). When optimizing with an
approximate iterative and noisy method such as stochastic gradient descent, no
actual 0 is obtained, but near-zero values observed. On the other hand, the L1
regularizer tolerates large values of some parameters (only additively removing
a small quantity compared to the situation without regularization) whereas the

L2 weight decay aggressively punishes and prevents large parameter values. The
L1 and L2 regularizers can be combined, as in the so-called elastic net (Zou and

Hastie, 2005), and this is commonly done in deep networks 9.
Note how in the context of maximum likelihood, regularizers can generally be

interpreted as Bayesian priors p(θ) on the parameters θ or on the learned function,

8In principle, one could have different priors on different parameters, e.g., it is common to treat

the output weights with a separate regularization coefficient, but the more hyperparameters, the
more difficult is their optimization, discussed in Chapter 11.
9See the Deep Learning Tutorials at http://deeplearning.net/tutorial/gettingstarted.

html#l1-and-l2-regularization
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as discussed in Chapter 5.9. Later in this book we discuss regularizers that are
data-dependent (i.e., cannot be expressed easily as a pure prior on parameters),
such as the contractive penalty (Chapter 15) as well as regularization methods
that are difficult to interpret simply as added terms in the training criterion, such
as dropout (Section 7.11).

6.3.4 Optimization Procedure

Once a training criterion is defined, we enter the realm of iterative optimization

procedures, with the slight twist that if possible we want to monitor held-out
performance (for example the average loss on a validation set, which usually does
not include the regularizing terms) and not just the value of the training crite-
rion. Monitoring the validation set performance allows one to stop training at a
point where generalization is estimated to be the best among the training itera-
tions. This is called early stopping and is a standard machine learning technique,

discussed in Sec. 7.7.
Section 4.3 has already covered the basics of gradient-based optimization.

The simplest such technique is stochastic gradient descent (with minibatches), in

which the parameters are updated after computing the gradient of the average
loss over a minibatch of examples (e.g. 128 examples) and making an update in

the direction opposite to that gradient (or opposite to some accumulated average
of such gradients, i.e., the momentum technique, reviewed in Section 8.3.3). The
most commonly used optimization procedures for multi-layer neural networks and

deep learning in general are either variants of stochastic gradient descent (typi-
cally with minibatches), second-order methods (the most commonly used being

L-BFGS and nonlinear conjugate gradients) applied on large minibatches (e.g.
of size 10000) or on the whole training set at once, or natural gradient meth-

ods (Amari, 1997; Park et al., 2000; Le Roux et al., 2008; Pascanu and Bengio,
2013). Exact second-order and natural gradient methods are computationally
too expensive for large neural networks because they involve matrices of dimen-
sion equal to the square of the number of parameters. Approximate methods are
discussed in Section 8.4.

On smaller datasets or when computing can be parallelized, second-order

methods have a computational advantage because they are easy to parallelize
and can still perform many updates per unit of time. On larger datasets (and in
the limit of an infinite dataset, i.e., a stream of training examples) one cannot
afford to wait for seeing the whole dataset before making an update, so that fa-

vors either stochastic gradient descent variants (possibly with minibatches to take
advantage of fast or parallelized implementations of matrix-matrix products) or
second-order methods with minibatches.

A more detailed discussion of issues arising with optimization methods in deep
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learning can be found in Chapter 8. Note that black-box optimization techniques
are not the only tools to improve the optimization of deep networks. Many design
choices in the construction of the family of functions, loss function and regularizer
can have a major impact on the difficulty of optimizing the training criterion.
Furthermore, instead of using generic optimization techniques, one can design
optimization procedures that are specific to the learning problem and chosen

architecture of the family of functions, for example by initializing the parameters
of the final optimization routine from the result of a different optimization (or a

series of optimizations, each initialized from the previous one). Because of the

non-convexity of the training criterion, the initial conditions can make a very
important difference, and this is what is exploited in the various pre-training

strategies, Sections 8.6.4 and 16.1, as well as with curriculum learning (Bengio
et al., 2009), Section 8.7.

6.4 Flow Graphs and Back-Propagation

The term back-propagation is often misunderstood as meaning the whole learning
algorithm for multi-layer neural networks. Actually it just means the method for
computing gradients in such networks. Furthermore, it is generally understood as
something very specific to multi-layer neural networks, but once its derivation is

understood, it can easily be generalized to arbitrary functions (for which comput-
ing a gradient is meaningful), and we describe this generalization here, focusing

on the case of interest in machine learning where the output of the function to
differentiate (e.g., the loss L or the training criterion J ) is a scalar and we are in-
terested in its derivative with respect to a set of parameters (considered to be the
elements of a vector θ), or equivalently, a set of inputs10 . The partial derivative
of J with respect to θ (called the gradient) tells us whether θ should be increased
or decreased in order to decrease J , and is a crucial tool in optimizing the train-
ing objective. It can be readily proven that the back-propagation algorithm has
optimal computational complexity in the sense that there is no algorithm that
can compute the gradient faster (in the O(·) sense, i.e., up to an additive and

multiplicative constant).
The basic idea of the back-propagation algorithm is that the partial derivative

of the cost J with respect to parameters θ can be decomposed recursively by taking
into consideration the composition of functions that relate θ to J , via intermediate
quantities that mediate that influence, e.g., the activations of hidden units in a
deep neural network.

10It is useful to know which inputs contributed most to the output or error made, and the sign

of the derivative is also interesting in that context.
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6.4.1 Chain Rule

The basic mathematical tool for considering derivatives through compositions of
functions is the chain rule, illustrated in Figure 6.3. The partial derivative ∂y

∂x
measures the locally linear influence of a variable x on another one y, while we

denote ∇ θJ for the gradient vector of a scalar J with respect to some vector of
variables θ. If x influences y which influences z, we are interested in how a tiny

change in x propagates into a tiny change in z via a tiny change in y. In our case
of interest, the “output” is the cost, or objective function z = J (g(θ)), we want
the gradient with respect to some parameters x = θ, and there are intermediate
quantities y = g(θ) such as neural net activations. The gradient of interest can

then be decomposed, according to the chain rule, into

∇ θJ (g(θ)) = ∇g(θ)J (g(θ))
∂g(θ)

∂θ
(6.12)

which works also when J , g or θ are vectors rather than scalars (in which case
the corresponding partial derivatives are understood as Jacobian matrices of the
appropriate dimensions). In the purely scalar case we can understand the chain
rule as follows: a small change in θ will propagate into a small change in g(θ) by

getting multiplied by
∂g(θ)
∂θ . Similarly, a small change in g(θ) will propagate into

a small change in J(g(θ)) by getting multiplied by ∇ g(θ)J (g(θ)). Hence a small

change in θ first gets multiplied by
∂g(θ)
∂θ to obtain the change in g(θ) and this

then gets multiplied by ∇g(θ)J (g(θ)) to obtain the change in J (g(θ)). Hence the

ratio of the change in J (g(θ)) to the change in θ is the product of these partial
derivatives.

Figure 6.3: The chain rule, illustrated in the simplest possible case, with z a scalar
function of y, which is itself a scalar function of x. A small change ∆x in x gets turned
into a small change ∆y in y through the partial derivative

∂y
∂x, from the first-order Taylor

approximation of y(x), and similarly for z(y). Plugging the equation for ∆y into the
equation for ∆z yields the chain rule.

Now, if g is a vector, we can rewrite the above as follows:

∇θJ (g(θ)) =

Xi

∂J(g(θ))

∂gi(θ)

∂gi(θ)

∂θ
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Figure 6.4: Top: The chain rule, when there are two intermediate variables y1 and y 2
between x and z, creating two paths for changes in x to propagate and yield changes in
z. Bottom: more general case, with n intermediate variables y 1 to yn.

which sums over the influences of θ on J (g(θ)) through all the intermediate
variables gi(θ). This is illustrated in Figure 6.4 with x = θ, yi = gi(θ), and
z = J (g(θ)).

6.4.2 Back-Propagation in an MLP

Whereas example 6.2.1 illustrated the case of of an MLP with a single hidden
layer let us consider in this section back-propagation for an ordinary but deep
MLP, i.e., like the above vanilla MLP but with several hidden layers. For this
purpose, we will recursively apply the chain rule illustrated in Figure 6.4. The

algorithm proceeds by first computing the gradient of the cost J with respect to
output units, and these are used to compute the gradient of J with respect to the

top hidden layer activations, which directly influence the outputs. We can then
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Algorithm 6.1 Forward computation associated with input x for a deep neural
network with ordinary affine layers composed with an arbitrary elementwise dif-
ferentiable (almost everywhere) non-linearity f . There are M such layers, each
mapping their vector-valued input hk to a pre-activation vector ak via a weight
matrix W (k) which is then transformed via f into hk+1 . The input vector x
corresponds to h0 and the predicted outputs ŷ corresponds to hM . The cost
function L(ŷ,y) depends on the output ŷ and on a target y (see Section 6.3.2
for examples of loss functions). The loss may be added to a regularizer Ω (see
Section 6.3.3 and Chapter 7) to obtain the example-wise cost J . Algorithm 6.2
shows how to compute gradients of J with respect to parameters W and b. For

computational efficiency on modern computers (especially GPUs), it is important
to implement these equations minibatch-wise, i.e., h(k) (and similary a(k)) should

really be a matrix whose second dimension is the example index in the minibatch.
Accordingly, y and ŷ should have an additional dimension for the example index
in the minibatch, while J remains a scalar, i.e., the average of the costs over all
the minibatch examples.

h0 = x

for k = 1 . . . ,M do
a(k) = b(k) +W (k)h(k−1)

h(k) = f (a(k) )
end for
ŷ = h(M)

J = L(ŷ,y) + λΩ

continue computing the gradients of lower level hidden units one at a time in the
same way The gradients on hidden and output units can be used to compute the
gradient of J with respect to the parameters (e.g. weights and biases) of each

layer (i.e., that directly contribute to the output of that layer).
Algorithm 6.1 describes in matrix-vector form the forward propagation com-

putation for a classical multi-layer network with M layers, where each layer com-
putes an affine transformation (defined by a bias vector b(k) and a weight matrix
W (k) ) followed by a non-linearity f . In general, the non-linearity may be dif-

ferent on different layers, and this is typically the case for the output layer (see

Section 6.3.1). Hence each unit at layer k computes an output h
(k)
i as follows:

a
(k)
i = b

(k)
i +

X

j

W
(k)
ij h

(k−1)
j

h
(k)

i = f (a(k))v (6.13)

where we separate the affine transformation from the non-linear activation oper-
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Algorithm 6.2 Backward computation for the deep neural network of Algo-
rithm 6.1, which uses in addition to the input x a target y. This computation
yields the gradients on the activations a(k) for each layer k, starting from the
output layer and going backwards to the first hidden layer. From these gradi-
ents, which can be interpreted as an indication of how each layer’s output should
change to reduce error, one can obtain the gradient on the parameters of each
layer. The gradients on weights and biases can be immediately used as part of a
stochastic gradient update (performing the update right after the gradients have
been computed) or used with other gradient-based optimization methods.

After the forward computation, compute the gradient on the output layer:
g ← ∇ŷJ = ∇ ŷL(ŷ, y) + λ∇ ŷΩ
(typically Ω is only a function of parameters not activations, so the last term
would be zero)
for k = M down to 1 do

Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):
g ← ∇a(k)J = g  f 0 (a(k))
Compute gradients on weights and biases (including the regularization term,

where needed):
∇b (k)J = g + λ∇b(k)Ω
∇

W(k)J = g h(k−1)> + λ∇
W (k)Ω

Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:

g ← ∇h(k−1)J = W (k)> g
end for

ations for ease of exposition of the back-propagation computations.
These are described in matrix-vector form by Algorithm 6.2 and proceed from

the output layer towards the first hidden layer, as outlined above.

6.4.3 Back-Propagation in a General Flow Graph

In this section we call the intermediate quantities between inputs (parameters
θ) and output (cost J) of the graph nodes u j (indexed by j) and consider the

general case in which they form a directed acyclic graph that has J as its final
node uN, that depends of all the other nodes uj . The back-propagation algorithm
exploits the chain rule for derivatives to compute ∂J

∂uj
when ∂J

∂ui
has already been

computed for successors ui of uj in the graph, e.g., the hidden units in the next

layer downstream. This recursion can be initialized by noting that ∂J
∂uN

= ∂J
∂J = 1

and at each step only requires to use the partial derivatives associated with each

arc of the graph, ∂ui

∂uj
, when u i is a successor of uj .
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uj

ai

u1

…

…

fi

ui = fi(ai)

uN

u2

Figure 6.5: Illustration of recursive forward computation, where at each node ui we
compute a value ui = fi(ai), with a i being the list of values from parents u j of node
ui. Following Algorithm 6.3, the overall inputs to the graph are u1 . . . , uM (e.g., the

parameters we may want to tune during training), and there is a single scalar output uN
(e.g., the loss which we want to minimize).

Algorithm 6.3 Flow graph forward computation. Each node computes numerical
value ui by applying a function fi to its argument list ai that comprises the values

of previous nodes u j, j < i, with j ∈ parents(i). The input to the flow graph is
the vector x, and is set into the first M nodes u1 to uM . The output of the flow
graph is read off the last (output) node uN .

for i = 1 . . . , M do

ui ← xi
end for

for i = M + 1 . . . ,N do
ai ← (u j)

j∈parents(i)

ui ← fi(ai )

end for
return uN
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More generally than multi-layered networks, we can think about decomposing
a function J (θ) into a more complicated graph of computations. This graph is
called a flow graph. Each node u i of the graph denotes a numerical quantity
that is obtained by performing a computation requiring the values uj of other
nodes, with j < i. The nodes satisfy a partial order which dictates in what order
the computation can proceed. In practical implementations of such functions

(e.g. with the criterion J (θ) or its value estimated on a minibatch), the final
computation is obtained as the composition of simple functions taken from a

given set (such as the set of numerical operations that the numpy library can

perform on arrays of numbers).

u1

u2

u3

Figure 6.6: Illustration of indirect effect and direct effect of variable u1 on variable u 3 in a

flow graph, which means that the derivative of u3 with respect to u1 must include the sum
of two terms, one for the direct effect (derivative of u3 with respect to its first argument)
and one for the indirect effect through u2 (involving the product of the derivative of u 3
with respect to u2 times the derivative of u2 with respect to u1). Forward computation of
ui’s (as in Figure 6.5) is indicated with upward full arrows, while backward computation
(of derivatives with respect to ui’s, as in Figure 6.7) is indicated with downward dashed
arrows.

We will define the back-propagation in a general flow-graph, using the follow-

ing generic notation: ui = f i (ai ), where ai is a list of arguments for the application
of fi to the values uj for the parents of i in the graph: ai = (uj )

j∈parents(i)
. This

is illustrated in Figure 6.5.
The overall computation of the function represented by the flow graph can

thus be summarized by the forward computation algorithm, Algorithm 6.3.
In addition to having some code that tells us how to compute fi(ai) for some

values in the vector ai, we also need some code that tells us how to compute
its partial derivatives, ∂fi(ai )

∂aik
with respect to any immediate argument a ik. Let

k = π(i, j) denote the index of uj in the list ai. Note that uj could influence ui

through multiple paths. Whereas ∂ui

∂uj
would denote the total gradient adding up

all of these influences, ∂fi (ai)
∂aik

only denotes the derivative of fi with respect to its
specific k-th argument, keeping the other arguments fixed, i.e., only considering

the influence through the arc from uj to u i . In general, when manipulating
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partial derivatives, one should keep clear in one’s mind (and implementation) the
notational and semantic distinction between a partial derivative that includes all
paths and one that includes only the immediate effect of a function’s argument
on the function output, with the other arguments considered fixed. For example
consider f3 (a3,1, a3,2) = ea 3,1+a3,2 and f2(a 2,1) = a22,1, while u 3 = f3(u2 , u1) and
u2 = f2(u1 ), illustrated in Figure 6.6. The direct derivative of f3 with respect

to its argument a3,2 is
∂f 3
∂a3,2

= e a3,1 +a3,2 while if we consider the variables u 3

and u1 to which these correspond, there are two paths from u1 to u3, and we

obtain as derivative the sum of partial derivatives over these two paths, ∂u3
∂u1

=

eu1+u2(1 + 2u1 ). The results are different because ∂u3
∂u1

involves not just the direct
dependency of u3 on u1 but also the indirect dependency through u2 .

…

…

∂uN
∂uN

= 1

∂uN
∂uj

∂uN

∂ui

Figure 6.7: Illustration of recursive backward computation, where we associate to each
node j not just the values uj computed in the forward pass (Figure 6.5, bold upward
arrows) but also the gradient ∂uN

∂uj
with respect to the output scalar node uN . These

gradients are recursively computed in exactly the opposite order, as described in Algo-
rithm 6.4 by using the already computed ∂uN

∂u i
of the children i of j (dashed downward

arrows).

Armed with this understanding, we can define the back-propagation algorithm

as follows, in Algorithm 6.4, which would be computed after the forward prop-
agation (Algorithm 6.3) has been performed. Note the recursive nature of the

application of the chain rule, in Algorithm 6.4: we compute the gradient on node
j by re-using the already computed gradient for children nodes i, starting the
recurrence from the trivial ∂uN

∂uN
= 1 that sets the gradient for the output node.

This is illustrated in Figure 6.7.

This recursion is a form of efficient factorization of the total gradient, i.e.,
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Algorithm 6.4 Back-propagation computation of a flow graph (full, upward ar-
rows, Figs.6.7 and 6.5), which itself produces an additional flow graph (dashed,
backward arrows). See the forward propagation in a flow-graph (Algorithm 6.3,
to be performed first) and the required data structure. In addition, a quantity
∂u N

∂ui
needs to be stored (and computed) at each node, for the purpose of gradient

back-propagation. Below, the notation π(i, j) is the index of uj as an argument to

fi. The back-propagation algorithm efficiently computes
∂u N

∂ui
for all i’s (travers-

ing the graph backwards this time), and in particular we are interested in the

derivatives of the output node uN with respect to the “inputs” u1. . . , uM (which

could be the parameters, in a learning setup). The cost of the overall computa-
tion is proportional to the number of arcs in the graph, assuming that the partial

derivative associated with each arc requires a constant time. This is of the same
order as the number of computations for the forward propagation.

∂uN
∂uN

← 1
for j = N − 1 down to 1 do

∂u N

∂uj ←
P

i:j∈parents(i)
∂uN

∂ui
∂fi(ai )

∂a i,π(i,j)

end for

return


∂uN

∂ui

M

i=1

it is an application of the principles of dynamic programming 11. Indeed, the
derivative of the output node with respect to any node can also be written down
in this intractable form:

∂uN

∂ui
=

X

paths uk1 ...,uk n: k1=i,kn=N

nY

j=2

∂ukj
∂ukj−1

where the paths uk1 . . . , ukn go from the node k1 = i to the final node kn = N

in the flow graph and
∂uk j

∂ukj−1
refers only to the immediate derivative considering

uk j−1 as the argument number π(k j, kj−1) of akj into ukj, i.e.,

∂ukj

∂ukj−1

=
∂f kj (akj )

∂akj ,π(kj ,kj−1)

.

Computing the sum as above would be intractable because the number of possible

paths can be exponential in the depth of the graph. The back-propagation algo-
rithm is efficient because it employs a dynamic programming strategy to reuse

11 Here we refer to “dynamic programming” in the sense of table-filling algorithms that avoid
re-computing frequently used subexpressions. In the context of machine learning, “dynamic
programming” can also refer to iterating Bellman’s equations. That is not the kind of dynamic

programming we refer to here.
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rather than re-compute partial sums associated with the gradients on intermediate
nodes.

Although the above was stated as if the ui’s were scalars, exactly the same
procedure can be run with ui’s being tuples of numbers (more easily represented
by vectors). In that case the equations remain valid, and the multiplication of
scalar partial derivatives becomes the multiplication of a row vector of gradients
∂u N

∂ui
with a Jacobian of partial derivatives associated with the j → i arc of the

graph, ∂f i(a i)
∂ai,π(i,j)

. In the case where minibatches are used during training, u i would

actually be a whole matrix (the extra dimension being for the examples in the
minibatch). This would then turn the basic computation into matrix-matrix

products rather than matrix-vector products, and the former can be computed
much more efficiently than a sequence of matrix-vector products (e.g. with the
BLAS library), especially so on modern computers and GPUs, that rely more and
more on parallelization through many cores (the processing for each example in
the minibatch can essentially be done in parallel).

6.4.4 Symbolic Back-propagation and Automatic Differentiation

The algorithm for generalized back-propagation (Alg. 6.4) was presented with the
interpretation that actual computations take place at each step of the algorithm.
This generalized form of back-propagation is just a particular way to perform
automatic differentiation (Rall, 1981) in computational flow graphs defined by
Algorithm 6.3. Automatic differentiation automatically obtains derivatives of a
given expression and has numerous uses in machine learning (Baydin et al., 2015).
As an alternative (and often as a debugging tool) derivatives could be obtained
by numerical methods based on measuring the effects of small changes, called
numerical differentiation (Lyness and Moler, 1967). For example, a finite differ-
ence approximation of the gradient follows from the definition of derivative as a
ratio of the change in output that results in a change in input, divided by the
change in input. Methods based on random perturbations also exist which ran-

domly jiggle all the input variables (e.g. parameters) and associate these random
input changes with the resulting overall change in the output variable in order to

estimate the gradient (Spall, 1992). However, for obtaining a gradient (i.e., with
respect to many variables, e.g., parameters of a neural network), back-propagation
has two advantages over numerical differentiation: (1) it performs exact computa-

tion (up to machine precision), and (2) it is computationally much more efficient,
obtaining all the required derivatives in one go. Instead, numerical differentiation
methods either require to redo the forward propagation separately for each pa-

rameter (keeping the other ones fixed) or they yield stochastic estimators (from
a random perturbation of all parameters) whose variances grows linearly with
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the number of parameters. Automatic differentiation of a function with d inputs
and m outputs can be done either by carrying derivatives forward, or carrying
them backwards. The former is more efficient when d < m and the latter is more
efficient when d > m. In our use case, the output is a scalar (the cost), and the
backwards approach, called reverse accumulation, i.e., back-propagation, is much
more efficient than the approach of propagating derivatives forward in the graph.

Although Algorithm 6.4 can be seen as a form of automatic differentiation, it
has another interpretation: each step symbolically specifies how gradient compu-

tation could be done, given a symbolic specification of the function to differenti-

ate, i.e., it can be used to perform symbolic differentiation. Whereas automatic
differentiation manipulates and outputs numbers, given a symbolic expression

(the program specifying the function to be computed and differentiated), sym-
bolic differentiation manipulates and outputs symbolic expressions, i.e., pieces of
program, producing a symbolic expression for computing the derivatives. The
popular Torch library 12 for deep learning, as well as most other open source deep
learning libraries are a limited form of doing automatic differentiation restricted
to the “programs” obtained by composing a predefined set of operations, each cor-
responding to a “module”. The set of these modules is designed such that many
neural network architectures and computations can be performed by composing

the building blocks represented by each of these modules. Each module is defined
by two main functions, (1) one that computes the outputs y of the module given
its inputs x, e.g., with an “fprop” function

y = module.fprop(x),

and (2), one that computes the gradient ∂J
∂x

of a scalar (typically the minibatch

cost J) with respect to the inputs x, given the gradient ∂J
∂y with respect to the

outputs, e.g., with a “bprop” function

∂J

∂x
= module.bprop


∂J

∂y


.

The bprop function thus implicitly knows the Jacobian of the x to y mapping,
∂y
∂x , at x, and knows how to multiply it with a given vector, which for the back-

propagation computation will be the gradient on the output, ∂J
∂y

, i.e., it computes

∂J

∂x
=
∂y

∂x

>∂J

∂y

if we take the convention that gradient vectors are column vectors. In practice,

implementations work in parallel over a whole minibatch (transforming matrix-
vector operations into matrix-matrix operations) and may operate on objects

12See torch.ch.
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which are not vectors (maybe higher-order tensors like those involved with im-
ages or sequences of vectors). Furthermore, the bprop function does not have to
explicitly compute the Jacobian matrix ∂y

∂x and perform an actual matrix mul-
tiplication: it can do that matrix multiplication implicitly, which is often more
efficient. For example, if the true Jacobian is diagonal, then the actual number
of computations required is much less than the size of the Jacobian matrix.

To keep computations efficient and avoid the overhead of the glue required to
compose modules together, neural net packages such as Torch define modules that

perform coarse-grained operations such as the cross-entropy loss, a convolution,

the affine operation associated with a fully-connected neural network layer, or a
softmax. It means that if one wants to write differentiable code for some compu-

tation that is not covered by the existing set of modules, one has to write their
own code for a new module, providing both the code for fprop and the code for
bprop. This is in contrast with standard automatic differentiation systems, which
know how to compute derivatives through all the operations in a general-purpose
programming language such as C.

Instead interpreting of Algorithm 6.4 as a recipe for backwards automatic dif-
ferentation, it can be interpreted as a recipe for backwards symbolic differentation,
and this is what the Theano (Bergstra et al., 2010b; Bastien et al., 2012) library 13

is doing. Like Torch, it only covers a predefined set of operations (i.e., a language
that is a subset of usual programming languages), but it is a much larger and fine-
grained set of operations, covering most of the operations on tensors and linear

algebra defined in Python’s numpy library of numerical computation. It is thus
very rare that a user would need to write a new module for Theano, except if they
want to provide an alternative implementation (say, more efficient or numerically
stable in some cases). An immediate advantage of symbolic differentiation is that
because it maps symbolic expressions to symbolic expressions, it can be applied
multiple times and yield high-order derivatives. Another immediate advantage
is that it can take advantage of the other tools of symbolic computation (Buch-

berger et al., 1983), such as simplification (to make computation faster and more
memory-efficient) and transformations that make the computation more numer-
ically stable (Bergstra et al., 2010b). These simplification operations make it

still very efficient in terms of computation and memory usage even with a set of

fine-grained operations such as individual tensor additions and multiplications.
Theano also provides a compiler of the resulting expressions into C for CPUs and
GPUs, i.e., the same high-level expression can be implemented in different ways
depending of the underlying hardware.

13See http://deeplearning.net/software/theano/.
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6.4.5 Back-propagation Through RandomOperations and Graph-
ical Models

Whereas traditional neural networks perform deterministic computation, they

can be extended to perform stochastic computation. In this case, we can think of
the network as defining a sampling process that deterministically transforms some
random values. We can then apply backpropagation as usual, with the underlying

random values as inputs to the network.
As an example, let us consider the operation consisting of drawing samples

zfrom a Gaussian distribution with mean µ and variance σ2 :

z ∼ N (µ,σ2 ).

Because an individual sample of z is not produced by a function, but rather by
a sampling process whose output changes every time we query it, it may seem
counterintuitive to take the derivatives of z with respect to the parameters of
its distribution, µ and σ2 . However, we can rewrite the sampling process as
transforming an underlying random value eta ∼ N (0, 1) to obtain a sample from

the desired distribution:
z = µ + ση (6.14)

We are now able to backpropagate through the sampling operation, by regard-
ing it as a deterministic operation with an extra input. Crucially, the extra input
is a random variable whose distribution is not a function of any of the variables

whose derivatives we want to calculate. The result tells us how an infinitesi-
mal change in µ or σ would change the output if we could repeat the sampling

operation again with the same value of η.
Being able to backpropagate through this sampling operation allows us to

incorporate it into a larger graph; e.g. we can compute the derivatives of some loss
function J (z). Moreover, we can introduce functions that shape the distribution,
e.g. µ = f(x; θ) and σ = g(x;θ) and use back-propagation through this functions
to derive ∇θJ (z).

The principal used in this Gaussian sampling example is true in general, i.e.,

given a value z sampled from distribution p(z | ω) whose parameters ω may
depend on other quantities of interest, we can rewrite

z ∼ p(z | ω)

as

z = f (ω,η)

where η is a source of randomness that is independent of any of the variables that

influence ω. TODO– add discussion of discrete random variables, REINFORCE.
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it is true that you can express the generation process this way for any variable,
but for discrete variables it can be pointless since the gradient of the thresholding
operation is zero or undefined everywhere. in that case you can fall back to
REINFORCE and the expected loss

In neural network applications, we typically choose η to be drawn from some
simple distribution, such as a unit uniform or unit Gaussian distribution, and

achieve more complex distributions by allowing the deterministic portion of the
network to reshape its input. This is actually how the random generators for

parametric distributions are implemented in software, i.e., by performing opera-

tions on approximately independent sources of noise (such as random bits). So
long as the function f in the above equation is differentiable with respect to ω,

we can back-propagate through the sampling operation.
The idea of propagating gradients or optimizing through stochastic operations

is old (Price, 1958; Bonnet, 1964), first used for machine learning in the context
of reinforcement learning (Williams, 1992), variational approximations (Opper
and Archambeau, 2009), and more recently, stochastic or generative neural net-
works (Bengio et al., 2013a; Kingma, 2013; Kingma and Welling, 2014b,a; Rezende
et al., 2014; Goodfellow et al., 2014c). Many networks, such as denoising autoen-
coders or networks regularized with dropout, are also naturally designed to take

noise as an input without requiring any special reparameterization to make the
noise independent from the model.

6.5 Universal Approximation Properties and Depth

A linear model, mapping from features to outputs via matrix multiplication, can
by definition represent only linear functions. It has the advantage of being easy
to train because many loss functions result in a convex optimization problem
when applied to linear models. Unfortunately, we often want to learn non-linear
functions.

At first glance, we might presume that learning a non-linear function requires
designing a specialized model family for the kind of non-linearity we want to

learn. However, it turns out that feedforward networks with hidden layers provide
a universal approximation framework. Specifically, the universal approximation

theorem (Hornik et al., 1989; Cybenko, 1989) states that a feedforward network
with a linear output layer and at least one hidden layer with any “squashing”
activation function (such as the logistic sigmoid activation function) can approxi-
mate any Borel measurable function from one finite-dimensional space to another

with any desired non-zero amount of error, provided that the network is given
enough hidden units. The derivatives of the feedforward network can also approx-
imate the derivatives of the function arbitrarily well (Hornik et al., 1990). The
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concept of Borel measurability is beyond the scope of this book; for our purposes
it suffices to say that any continuous function on a closed and bounded subset of
Rn is Borel measurable and therefore may be approximated by a neural network.
A neural network may also approximate any function mapping from any finite
dimensional discrete space to another.

The universal approximation theorem means that regardless of what function

we are trying to learn, we know that a large MLP will be able to represent this
function. However, we are not guaranteed that the training algorithm will be

able to learn that function. Even if the MLP is able to represent the function,

learning can fail for two different reasons. First, the optimization algorithm used
for training may not be able to find the value of the parameters that corresponds

to the desired function. Second, the training algorithm might choose the wrong
function due to overfitting. Recall from Chapter 5.4 that the “no free lunch”
theorem shows that there is no universal machine learning algorithm. Even though
feedforward networks provide a universal system for representing functions, there
is no universal procedure for examining a training set and choosing the right set
of functions among the family of functions our approximator can represent: there
could be many functions within our family that fit well the data and we need to
choose one (this is basically the overfitting scenario).

Another but related problem facing our universal approximation scheme is
the size of the model needed to represent a given function. The universal ap-
proximation theorem says that there exists a network large enough to achieve any

degree of accuracy we desire, but it does not say how large this network will be.
Barron (1993) provides some bounds on the size of a single-layer network needed
to approximate a broad class of functions. Unfortunately, in the worse case, an
exponential number of hidden units (to basically record every input configuration
that needs to be distinguished) may be required. This is easiest to see in the
binary case: the number of possible binary functions on vectors v ∈ {0, 1} n is
22n and selecting one such function requires 2n bits, which will in general require

O(2n ) degrees of freedom.
In summary, a feedforward network with a single layer is sufficient to represent

any function, but it may be infeasibly large and may fail to learn and generalize

correctly. Both of these failure modes suggest that we may want to use deeper

models.
First, we may want to choose a model with more than one hidden layer in

order to avoid needing to make the model infeasibly large. There exist families
of functions which can be approximated efficiently by an architecture with depth
greater than some value d, but require a much larger model if depth is restricted
to be less than or equal to d. In many cases, the number of hidden units required
by the shallow model is exponential in n. Such results have been proven for logic
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gates (H̊astad, 1986), linear threshold units with non-negative weights (H̊astad
and Goldmann, 1991), polynomials (Delalleau and Bengio, 2011) organized as
deep sum-product networks (Poon and Domingos, 2011), and more recently, for
deep networks of rectifier units (Pascanu et al., 2013b). Of course, there is no
guarantee that the kinds of functions we want to learn in applications of machine
learning (and in particular for AI) share such a property.

We may also want to choose a deep model for statistical reasons. Any time
we choose a specific machine learning algorithm, we are implicitly stating some

set of prior beliefs we have about what kind of function the algorithm should

learn. Choosing a deep model encodes a very general belief that the function
we want to learn should involve composition of several simpler functions. This

can be interpreted from a representation learning point of view as saying that
we believe the learning problem consists of discovering a set of underlying factors
of variation that can in turn be described in terms of other, simpler underlying
factors of variation. Alternately, we can interpret the use of a deep architecture
as expressing a belief that the function we want to learn is a computer program
consisting of multiple steps, where each step makes use of the previous step’s
output. These intermediate outputs are not necessarily factors of variation, but
can instead be analogous to counters or pointers that the network uses to organize

its internal processing. Empirically, greater depth does seem to result in better
generalization for a wide variety of tasks (Bengio et al., 2007b; Erhan et al., 2009;
Bengio, 2009; Mesnil et al., 2011; Goodfellow et al., 2011; Ciresan et al., 2012;

Krizhevsky et al., 2012b; Sermanet et al., 2013; Farabet et al., 2013a; Couprie
et al., 2013; Kahou et al., 2013; Goodfellow et al., 2014d; Szegedy et al., 2014a).
See Fig. 6.8 for an example of some of these empirical results. This suggests that
that using deep architectures does indeed express a useful prior over the space of
functions the model learn.

This is related to our desire to choose a deep model for statistical reasons. Any
time we choose a specific machine learning algorithm, we are implicitly stating

some set of prior beliefs we have about what kind of function the algorithm should
learn. Choosing a deep model encodes a very general belief that the function we
want to learn should involve composition of several simpler functions. This can

be interpreted from a representation learning point of view as saying that we

believe the learning problem consists of discovering a set of underlying factors
of variation that can in turn be described in terms of other, simpler underlying
factors of variation. Alternately, we can interpret the use of a deep architecture
as expressing a belief that the function we want to learn is a computer program
consisting of multiple steps, where each step makes use of the previous step’s
output. These intermediate outputs are not necessarily factors of variation, but
can instead be analogous to counters or pointers that the network uses to organize
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Figure 6.8: Empirical results showing that deeper networks generalize better when used

to transcribe multi-digit numbers from photographs of addresses. Reproduced with per-
mission from Goodfellow et al. (2014d). Left) The test set accuracy consistently increases
with increasing depth. Right) This effect cannot be explained simply by the model being
larger; one can also increase the model size by increasing the width of each layer. The test
accuracy cannot be increased nearly as well by increasing the width, only by increasing
the depth. This suggests that using a deep model expresses a useful preference over the
space of functions the model can learn. Specifically, it expresses a belief that the function
should consist of many simpler functions composed together. This could result either
in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).
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its internal processing. Empirically, greater depth does seem to result in better
generalization for a wide variety of tasks (Bengio et al., 2007a; Erhan et al., 2009;
Bengio, 2009; Mesnil et al., 2011; Goodfellow et al., 2011; Ciresan et al., 2012;
Krizhevsky et al., 2012b; Sermanet et al., 2013; Farabet et al., 2013a; Couprie
et al., 2013; Kahou et al., 2013; Goodfellow et al., 2014d; Szegedy et al., 2014a).
See Fig. 6.8 for an example of some of these empirical results. This suggests that

that using deep architectures does indeed express a useful prior over the space of
functions the model learn.

6.6 Feature / Representation Learning

Let us consider again the single layer networks such as the perceptron, linear

regression and logistic regression: such linear models are appealing because train-
ing them involves a convex optimization problem14, i.e., an optimization problem
with some convergence guarantees towards a global optimum, irrespective of ini-
tial conditions. Simple and well-understood optimization algorithms are available
in this case. However, this limits the representational capacity too much: many
tasks, for a given choice of input representation x (the raw input features), cannot
be solved by using only a linear predictor. What are our options to avoid that

limitation?

1. One option is to use a kernel machine (Williams and Rasmussen, 1996;
Schölkopf et al., 1999), i.e., to consider a fixed mapping from x to φ(x),

where φ(x) is of much higher dimension. In this case, fθ(x) = b+ w · φ(x)
can be linear in the parameters (and in φ(x)) and optimization remains
convex (or even analytic). By exploiting the kernel trick, we can compu-
tationally handle a high-dimensional φ(x) (or even an infinite-dimensional

one) so long as the kernel k(u,v) = φ(u) · φ(v) (where · is the appropriate

dot product for the space of φ(·)) can be computed efficiently. If φ(x) is
of high enough dimension, we can always have enough capacity to fit the
training set, but generalization is not at all guaranteed: it will depend on

the appropriateness of the choice of φ as a feature space for our task. Kernel
machines theory clearly identifies the choice of φ to the choice of a prior.

This leads to kernel engineering, which is equivalent to feature engineer-
ing, discussed next. The other type of kernel (that is very commonly used)

embodies a very broad prior, such as smoothness, e.g., the Gaussian (or
RBF) kernel k(u, v) = exp


−||u− v||/σ2


. Unfortunately, this prior may

be insufficient, i.e., too broad and sensitive to the curse of dimensionality,

as introduced in Section 5.13.1 and developed in more detail in Chapter 16.

14or even one for which an analytic solution can be computed, with linear regression or the

case of some Gaussian process regression models
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2. Another option is to manually engineer the representation or features φ(x).
Most industrial applications of machine learning rely on hand-crafted fea-
tures and most of the research and development effort (as well as a very
large fraction of the scientific literature in machine learning and its applica-
tions) goes into designing new features that are most appropriate to the task
at hand. Clearly, faced with a problem to solve and some prior knowledge

in the form of representations that are believed to be relevant, the prior
knowledge can be very useful. This approach is therefore common in prac-

tice, but is not completely satisfying because it involves a very task-specific

engineering work and a laborious never-ending effort to improve systems by
designing better features. If there were some more general feature learning

approaches that could be applied to a large set of related tasks (such as
those involved in AI), we would certainly like to take advantage of them.
Since humans seem to be able to learn a lot of new tasks (for which they
were not programmed by evolution), it seems that such broad priors do
exist. This whole question is discussed in a lot more detail in Bengio and
LeCun (2007a), and motivates the third option.

3. The third option is to learn the features, or learn the representation. In a
sense, it allows one to interpolate between the almost agnostic approach
of a kernel machine with a general-purpose smoothness kernel (such as
RBF SVMs and other non-parametric statistical models) and full designer-
provided knowledge in the form of a fixed representation that is perfectly

tailored to the task. This is equivalent to the idea of learning the kernel, ex-
cept that whereas most kernel learning methods only allow very few degrees

of freedom in the learned kernel, representation learning methods such as
those discussed in this book (including multi-layer neural networks) allow

the feature function φ(·) to be very rich (with a number of parameters that
can be in the millions or more, depending on the amount of data available).
This is equivalent to learning the hidden layers, in the case of a multi-layer
neural network. Besides smoothness (which comes for example from reg-

ularizers such as weight decay), other priors can be incorporated in this
feature learning. The most celebrated of these priors is depth, discussed

above (Section 6.5). Other priors are discussed in Chapter 16.

This whole discussion is clearly not specific to neural networks and supervised
learning, and is one of the central motivations for this book.
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6.7 Piecewise Linear Hidden Units

Most of the recent improvement in the performance of deep neural networks can be
attributed to increases in computational power and the size of datasets. The ma-
chine learning algorithms involved in recent state-of-the-art systems have mostly
existed since the 1980s, with a few recent conceptual advances contributing sig-
nificantly to increased performance.

One of the main algorithmic improvements that has had a significant impact

is the use of piecewise linear units, such as absolute value rectifiers and rectified
linear units. Such units consist of two linear pieces and their behavior is driven
by a single weight vector. Jarrett et al. (2009b) observed that “using a rectifying

non-linearity is the single most important factor in improving the performance of a
recognition system” among several different factors of neural network architecture
design.

For small datasets, Jarrett et al. (2009b) observed that rectifying non-linearities
is even more important than learning the weights of the hidden layers. Random

weights are sufficient to propagate useful information through a rectified linear
network, allowing the classifier layer at the top to learn how to map different
feature vectors to class identities.

When more data is available, learning becomes relevant because it can extract
more knowledge from it, and learning typically beats fixed or random settings of
parameters. Glorot et al. (2011b) showed that learning is far easier in deep
rectified linear networks than in deep networks that have curvature or two-sided

saturation in their activation functions. Because the behavior of the unit is linear
over half of its domain, it is easy for an optimization algorithm to tell how to im-

prove the behavior of a unit, even when the unit’s activations are far from optimal.
Just as piecewise linear networks are good at propagating information forward,
back-propagation in such a network is also piecewise linear and propagates infor-
mation about the error derivatives to all of the gradients in the network. Each

piecewise linear function can be decomposed into different regions corresponding

to different linear pieces. When we change a parameter of the network, the result-
ing change in the network’s activity is linear until the point that it causes some

unit to go from one linear piece to another. Traditional units such as sigmoids
are more prone to discarding information due to saturation both in forward prop-
agation and in back-propagation, and the response of such a network to a change
in a single parameter may be highly nonlinear even in a small neighborhood.

Glorot et al. (2011b) motivate rectified linear units from biological considera-

tions. The half-rectifying non-linearity was intended to capture these properties
of biological neurons: 1) For some inputs, biological neurons are completely in-
active. 2) For some inputs, a biological neuron’s output is proportional to its
input. 3) Most of the time, biological neurons operate in the regime where they

186



CHAPTER 6. FEEDFORWARD DEEP NETWORKS

are inactive (e.g., they should have sparse activations).
One drawback to rectified linear units is that they cannot learn via gradient-

based methods on examples for which their activation is zero. This problem
can be mitigated by initializing the biases to a small positive number, but it is
still possible for a rectified linear unit to learn to de-activate and then never be
activated again. Goodfellow et al. (2013a) introduced maxout units and showed

that maxout units can successfully learn in conditions where rectified linear units
become stuck. Maxout units are also piecewise linear, but unlike rectified linear

units, each piece of the linear function has its own weight vector, so whichever

piece is active can always learn. Due to the greater number of weight vectors,
maxout units typically need extra regularization such as dropout, though they can

work satisfactorily if the training set is large and the number of pieces per unit
is kept low (Cai et al., 2013). Maxout units have a few other benefits. In some
cases, one can gain some statistical and computational advantages by requiring
fewer parameters. Specifically, if the features captured by n different linear filters
can be summarized without losing information by taking the max over each group
of k features, then the next layer can get by with k times fewer weights. Because
each unit is driven by multiple filters, maxout units have some redundancy that
helps them to resist forgetting how to perform tasks that they were trained on in

the past. Neural networks trained with stochastic gradient descent are generally
believed to suffer from a phenomenon called catastrophic forgetting but maxout
units tend to exhibit only mild forgetting (Goodfellow et al., 2014a). Maxout

units can also be seen as learning the activation function itself rather than just
the relationship between units. With large enough k, a maxout unit can learn to
approximate any convex function with arbitrary fidelity. In particular, maxout
with two pieces can learn to implement the rectified linear activation function or
the absolute value rectification function.

This same general principle of using linear behavior to obtain easier opti-
mization also applies in other contexts besides deep linear networks. Recurrent

networks can learn from sequences and produce a sequence of states and outputs.
When training them, one needs to propagate information through several time
steps, which is much easier when some linear computations (with some directional

derivatives being of magnitude near 1) are involved. One of the best-performing

recurrent network architectures, the LSTM, propagates information through time
via summation–a particular straightforward kind of such linear activation. This
is discussed further in Section 10.7.4.

In addition to helping to propagate information and making optimization
easier, piecewise linear units also have some nice properties that can make them
easier to regularize. This is discussed further in Section 7.11.

Sigmoidal non-linearities still perform well in some contexts and are required
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when a hidden unit must compute a number guaranteed to be in a bounded
interval (like in the (0,1) interval), but piecewise linear units are now by far the
most popular kind of hidden units.

6.8 Historical Notes

Section 1.2 already gave an overview of the history of neural networks and deep

learning. Here we focus on historical notes regarding back-propagation and the
connectionist ideas that are still at the heart of today’s research in deep learning.

The chain rule was invented in the 17th century (Leibniz, 1676; L’Hôpital,
1696) and gradient descent in the 19th centry (Cauchy, 1847b). Efficient applica-

tions of the chain rule which exploit the dynamic programming structure described
in this chapter are found already in the 1960’s and 1970’s, mostly for control ap-
plications (Kelley, 1960; Bryson and Denham, 1961; Dreyfus, 1962; Bryson and
Ho, 1969; Dreyfus, 1973) but also for sensitivity analysis (Linnainmaa, 1976).

Bringing these ideas to the optimization of weights of artificial neural networks
with continuous-valued outputs was introduced by Werbos (1981) and rediscov-
ered independently in different ways as well as actually simulated successfully
by LeCun (1985); Parker (1985); Rumelhart et al. (1986a). In particular, Rumel-
hart et al. (1986a) and a corresponding chapter (Rumelhart et al., 1986b) in the

PDP book (Rumelhart et al., 1986d) greatly contributed to popularize the idea
of back-propagation and initiated a very active period of research in multi-layer

neural networks. However, the ideas put forward by the authors of that book and
in particular by Rumelhart and Hinton go much beyond back-propagation. They
include crucial ideas about the possible computational implementation of several
central aspects of cognition and learning, which came under the name of “con-
nectionism” because of the importance given the connections between neurons as
the locus of learning and memory. In particular, these ideas include the notion of
distributed representation, introduced in Chapter 1 and developed a lot more in
part III of this book, with Chapter 16, which is at the heart of the generalization
ability of neural networks. As discussed with the historical survey in Section 1.2,

the boom of AI and machine learning research which followed on the connec-
tionist ideas reached a peak in the early 1990’s, as far as neural networks are

concerned, while other machine learning techniques become more popular in the
late 1990’s and remained so for the first decade of this century. Neural networks
research in the AI and machine learning community almost vanished then, only
to be reborn ten years later (starting in 2006) with a novel focus on the depth of

representation and the current wave of research on deep learning. In addition to
back-propagation and distributed representations, the connectionists brought the
idea of iterative inference (they used different words), viewing neural computation
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in the brain as a way to look for a configuration of neurons that best satisfy all
the relevant pieces of knowledge implicitly captured in the weights of the neural
network. This view turns out to be central in the topics covered in part III of
this book regarding probabilistic models and inference.
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Chapter 7

Regularization

TODO - generalize our definition of Regularization
A central problem in machine learning is how to make an algorithm that will

perform well not just on the training data, but also on new inputs. The main
strategy for achieving good generalization is known as regularization. Regular-
ization is any component of the model, training process or prediction procedure

which is included to account for limitations of the training data, including its
finiteness. There are many regularization strategies. Some put extra constraints

on a machine learning model, such as adding restrictions on the parameter val-
ues. Some add extra terms in the cost function that one might consider a soft
constraint on the parameter values. If chosen carefully, these extra constraints
and penalties can lead to improved performance on the test set, either by encod-
ing prior knowledge into the model, or by forcing the optimization process into
a simpler model class that promotes generalization. Other forms of regulariza-
tion, known as ensemble methods, combine multiple hypotheses that explain the
training data. Sometimes regularization also helps to make an underdetermined
problem determined.

This chapter builds on the concepts of generalization, overfitting, underfitting,

bias and variance introduced in Chapter 5. If you are not already familiar with
these notions, please refer to that chapter before continuing with the more advance

material presented here.
Regularizers work by trading increased bias for reduced variance. An effec-

tive regularizer is one that makes a profitable trade, that is it reduces variance
significantly while not overly increasing the bias. When we discussed general-
ization and overfitting in Chapter 5, we focused on three situations, where the
model family being trained either (1) excluded the true data generating process—
corresponding to underfitting and inducing bias, or (2) matched to the true data
generating process—the “just right” model space, or (3) includes the generating
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process but also many other possible generating processes—the regime where vari-
ance dominates the estimation error (e.g. as measured by the MSE—see Section.
5.7).

Note that, in practice, an overly complex model family does not necessarily
include (or even come close to) the target function or the true data generating
process. We almost never have access to the true data generating process so
we can never know if the model family being estimated includes the generating
process or not. But since, in deep learning, we are often trying to work with
data such as images, audio sequences and text, we can probably safely assume

that our model family does not include the data generating process. We can
assume that—to some extent – we are always trying to fit a square peg (the data

generating process) into a round hole (our model family) and using the data to
do that as best we can.

What this means is that controlling the complexity of the model is not going
to be a simple question of finding the model of the right size, i.e. the right
number of parameters. Instead, we might find—and indeed in practical deep
learning scenarios, we almost always do find – that the best fitting model (in the
sense of minimizing generalization error) is one that possesses a large number of
parameters that are not entirely free to span their domain.

As we will see there are a great many forms of regularization available to the

deep learning practitioner. In fact, developing more effective regularizers has been
one of the major research efforts in the field.

Most machine learning tasks can be viewed in terms of learning to represent
a function f̂(x) parametrized by a vector of parameters θ. The data consists of
inputs x(i) and (for some tasks) targets y(i) for i ∈ {1, . . . , n}. In the case of
classification, each y(i) is an integer class label in {1, . . . , k}. For regression tasks,
each y(i) is a real number. In the case of a density estimation task, there are no
targets. We may group these examples into a design matrix X and a vector of
targets y.

In deep learning, we are mainly interested in the case where f̂(x) has a large
number of parameters and as a result possesses a high capacity to fit relatively
complicated functions. This means that deep learning algorithms either require

very large datasets so that the data can fully specify such complicated models, or
they require careful regularization. In practice, most models and tasks exist on a

spectrum between these two extremes.

7.1 Regularization from a Bayesian Perspective

The Bayesian perspective on statistical inference offers a useful framework in
which to consider many common methods of regularization. As we discussed in
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Sec. 5.9, Bayesian estimation theory takes a fundamentally different approach
to model estimation than the frequentist view by considering that the model
parameters themselves are uncertain and therefore should be considered random
variables.

There are a number of immediate consequences of assuming a Bayesian world
view. The first is that if we are using probability distributions to assess uncer-
tainty in the model parameters then we should be able to express our uncertainty
about the model parameters before we see any data. This is the role of the prior
distribution. The second consequence is that, when using the model to make pre-

dictions about outcomes, one should ideally integrate over the uncertainty over
the parameter values.

There is a deep connection between the Bayesian perspective on estimation
and the process of regularization. This is not surprising since at the root both
are concerned with making predictions relative to the true data generating dis-
tribution while taking into account the finiteness of the data. What this means
is that both are open to combining information sources. that is, both are in-
terested in combining the information that can be extracted from the training
data with other, or “prior” sources of information. As we will see, many forms of
regularization can be given a Bayesian interpretation.

If we consider a dataset {x(1), . . . , x(m)}, we recover the posterior distribution

on the model parameter θ by combining the data likelihood p(x(1) , . . . , x(m) | θ)
with the prior.

log p(θ | x(1), . . . , x(m)) ∝ log p(θ) +
X

i

log p(x(i) | θ) (7.1)

In the context of maximum likelihood learning, the introduction of the prior dis-
tribution plays the some role as a regularizer in that it can be seen as a term
added to the objective function that is added in hopes of achieving better gen-
eralization and despite of its detrimental effect on the likelihood of the training
data (the optimum of which would be achieved by considering only the last term
above).

In the following section, we will detail how the addition of a prior is equiv-

alent to certain regularization strategies. However we must be a bit careful in
establishing the relationship between the prior and a regularizer. Regularizers

are more general than priors. Priors are distributions and as such are subject
to constraints such as they must always be positive and must sum to one over
their domain. Regularizers have no such explicit constraints. Another problem
in interpreting all regularizers as priors is that the equivalence implies the overly
restrictive constraint that all unregularized objective functions be interpretable
as log-likelihood functions. Nevertheless, it remains true that many of the most
popular forms of regularization can be equated to a Bayesian prior.
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7.2 Classical Regularization: Parameter Norm Penalty

Regularization has been used for decades prior to the advent of deep learning.
Statistical and machine learning models traditionally represented simpler func-
tions. Because the functions themselves had less capacity, the regularization did
not need to be as sophisticated. We use the term classical regularization to refer
to the techniques used in the general machine learning and statistics literature.

Most classical regularization approaches are based on limiting the capacity

of models, such as neural networks, linear regression, or logistic regression, by
adding a parameter norm penalty Ω(θ) to the loss function J . We denote the

regularized loss function by J̃ :

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ) (7.2)

where α is a hyperparameter that weighs the relative contribution of the norm
penalty term, Ω, relative to the standard loss function J(x; θ). The hyperparam-
eter α should be a non-negative real number, with α = 0 corresponding to no
regularization, and larger values of α corresponding to more regularization.

When our training algorithm minimizes the regularized loss function J̃ it will

decrease both the original loss J on the training data and some measure of the
size of the parameters θ (or some subset of the parameters). Different choices for

the parameter norm Ω can result in different solutions being preferred. In this
section, we discuss the effects of the various norms when used as penalties on the
model parameters.

Before delving into the regularization behavior of different norms, we note that
for neural networks, we typically choose to use a parameter norm penalty Omega
that only penalizes the interaction weights, i.e we leave the offsets unregularized.
The offsets typically require less data to fit accurately than the weights. Each
weight specifies how two variables interact, and requires observing both variables
in a variety of conditions to fit well. Each offset controls only a single variable.
This means that we do not induce too much variance by leaving the offsets un-

regularized. Also, regularizing the offsets can introduce a significant amount of
underfitting.

7.2.1 L2 Parameter Regularization

One of the simplest and most common kind of classical regularization is the L2

parameter norm penalty.1 , Ω(θ) = 1
2kθk

2
2. This form of regularization is also

1More generally, we could consider regularizing the parameters to a parameter value w(o)

that is perhaps not zero. In that case the L 2 penalty term would be Ω(θ) = 1
2 ||θ − θ(o)||22 =

1
2

P
i (θ i− θ

(o)
i )2. Since it is far more common to consider regularizing the model parameters to

zero, we will focus on this special case in our exposition.
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known as ridge regression. It is readily applicable to neural networks, where it is
known as weight decay. In the context of neural networks, the penalty is equal
to the sum of the squared L2 of all of the weight vectors. Typically, we use a
different coefficient α for the weights at each layer of the network. This coefficient
should be tuned using a validation set.

We can gain some insight into the behavior of weight decay regularization
by considering the gradient of the regularized loss function. To simplify the
presentation, we assume no offset term, so θ is just w. Such a model has the
following gradient of the loss:

∇wJ̃(w;X, y) = αw + ∇wJ(w;X, y) (7.3)

We will further simplify the analysis by considering a quadratic approximation

to the loss function in the neighborhood of the empirically optimal value of the
weights w∗ . (If the loss is truly quadratic, as in the case of fitting a linear
regression model with mean squared error, then the approximation is perfect).

Ĵ(θ) = J(w∗) +
1

2
(w −w∗ )>H(w −w∗) (7.4)

where H is the Hessian matrix of J with respect to w evaluated at w∗. There is
no first order term in this quadratic approximation, because w∗ is defined to be a

minimum, where the gradient vanishes. Likewise, because w∗ is a minimum, we
can conclude that H is positive semi-definite.

∇wĴ(w) = H(w −w∗). (7.5)

If we replace the exact gradient in equation 7.3 with the approximate gradient
in equation 7.5, we can write an equation for the location of the minimum of the
regularized loss function:

αw +H(w −w∗ ) = 0 (7.6)

(H +αI)w = Hw ∗ (7.7)

w̃ = (H +αI)−1Hw ∗ (7.8)

The presence of the regularization term moves the optimum from w ∗ to w̃.
As α approaches 0, w̃ approaches w ∗. But what happens as α grows? Because
H is real and symmetric, we can decompose it into a diagonal matrix Λ and

an ortho-normal basis of eigenvectors, Q, such that H = QΛQ> . Aplying the
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w1

w2

w∗

w̃

Figure 7.1: An illustration of the effect of L2 (or weight decay) regularization on the value
of the optimal w. The solid elipses represent contours of equal value of the unregularized
objective. The dotted circles represent contours of equal value of the L2 regularizer. At
the point w̃, these competing objectives reach an equilibrium.

decomposition to equation 7.8, we obtain:

w = (QΛQ> + αI)−1QΛQ>w∗

=
h
Q(Λ +αI)Q>

i−1

QΛQ>w∗

= Q(Λ +αI)−1ΛQ>w∗ ,

Q>w = (Λ +αI)−1ΛQ>w ∗. (7.9)

If we interpret the Q>w as rotating our parameters w into the basis as defined

by the eigenvectors Q of H , then we see that the effect of weight decay is to
rescale the coefficients of eigenvectors. Specifically the ith component is rescaled

by a factor of
λi

λi+α . (You may wish to review how this kind of scaling works, first
explained in Fig. 2.3).

Along the directions where the eigenvalues of H are relatively large, for ex-
ample, where λ i  α, the effect of regularization is relatively small. However,
components with λi  α will be shrunk to have nearly zero magnitude. This
effect is illustrated in Fig. 7.1

Only directions along which the parameters contribute significantly to reduc-
ing the loss are preserved relatively intact. In directions that do not contribute to
reducing the loss, a small eigenvalue of the Hessian tell us that movement in this
direction will not significantly increase the gradient. Components of the weight
vector corresponding to such unimportant directions are decayed away through

the use of the regularization throughout training. This effect of suppressing con-

tributions to the parameter vector along these principle directions of the Hessian
H is captured in the concept of the effective number of parameters, defined to be
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γ =
X

i

λi

λ i + α
. (7.10)

As α is increased, the effective number of parameters decreases.
Another way to gain some intuition for the effect of L2 regularization is to

consider its effect on linear regression. The unregularized objective function for
linear regression is the sum of squared errors:

(Xw − y)> (Xw − y).

When we add L2 regularization, the objective function changes to

(Xw − y)>(Xw − y) +
1

2
αw>w.

This changes the normal equations for the solution from

w = (X>X)−1X>y

to
w = (X>X + αI)−1X>y.

We can see L 2 regularization causes the learning algorithm to “perceive” the
input X as having higher variance, which makes it shrink the weights on features
whose covariance with the output target is low compared to this added variance.

TODO–make sure the chapter includes maybe a table showing relationships
between early stopping, priors, constraints, penalties, and adding noise? e.g. look
up L1 penalty and it tells you what prior it corresponds to scratchwork thinking
about how to do it:

L2 penalty L2 constraint add noise early stopping Gaussian prior L1 penalty
L1 constraint Laplace prior Max-norm penalty

7.2.2 L
1 Regularization

While L2 weight decay is the most common form of weight decay, there are other
ways to penalize the size of the model parameters. Another option is to use L1

regularization.
Formally, L 1 regularization on the model parameter w is defined as:

Ω(θ) = ||w||1 =
X

i

|wi|. (7.11)
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That is, as the sum of absolute values of the individual parameters. 2 We will now
consider the effect of L1 regularization on the simple linear model, with no offset
term, that we considered in our analysis of L2 regularization. In particular, we are
interested in delineating the differences between L1 and L 2 forms of regularization.
Thus, if we consider the gradient (actually the sub-gradient) on the regularized
objective function J̃(w;X, y), we have:

∇wJ̃(w;X, y) = βsign(w) +∇wJ(X, y;w) (7.12)

where sign(w) is simply sign of w applied element-wise.
By inspecting Eqn. 7.12, we can see immediately that the effect of L1 regu-

larization is quite different from that of L2 regularization. Specifically, we can see

that the regularization contribution to the gradient no longer scales linearly with

w, instead it is a constant factor with a sign equal to sign(w). One consequence
of this form of the gradient is that we will not necessarily see clean solutions
to quadratic forms of ∇w J(X, y;w) as we did for L2 regularization. Instead,
the solutions are going to be much more aligned to the basis space in which the
problem is embedded.

For the sake of comparison with L2 regularization, we will again consider a
simplified setting of a quadratic approximation to the loss function in the neigh-
borhood of the empirical optimum w∗ . (Once again, if the loss is truly quadratic,
as in the case of fitting a linear regression model with mean squared error, then
the approximation is perfect). The gradient of this approximation is given by

∇wĴ(w) = H(w −w∗). (7.13)

where, again, H is the Hessian matrix of J with respect to w evaluated at w ∗.
We will also make the further simplifying assumption that the Hessian is diagonal,
H = diag([γ1 , . . . , γN ]), where each γi > 0. With this rather restrictive assump-
tion, the solution of the minimum of the L1 regularized loss function decomposes
into a system of equations of the form:

J̃(w;X, y) =
1

2
γi(wi −w∗

i )2 + β|wi|.

Which admits an optimal solution (for each dimension i) in the following form:

wi = sign(w ∗
i) max(|w ∗

i| −
β

γi
, 0)

2As with L2 regularization, we could consider regularizing the parameters to a value that is
not zero, but instead to some parameter value w (o). In that case the L1 regularization would
introduce the term Ω(θ) = ||w −w (o)||1 = β

P
i |wi −w

(o)
i |.
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w1

w2

w∗

w̃

w1

w2

w∗

w̃

Figure 7.2: An illustration of the effect of L 1 regularization (RIGHT) on the value of the
optimal W , in comparison to the effect of L

2
regularization (LEFT).

Let’s consider the situation where w∗
i > 0 for all i, there are two possible out-

comes. Case 1: w∗
i ≤ β

γi
, here the optimal value of wi under the regularized

objective is simply wi = 0, this occurs because the contribution of J(w;X, y) to
the regularized objective J̃(w;X, y) is overwhelmed—in direction i, by the L1

regularization which pushes the value of wi to zero. Case 2: w∗
i >

β
γi

, here the
regularization does not move the optimal value of w to zero but instead it just
shifts it in that direction by a distance equal to β

γ i
. This is illustrated in Fig. 7.2.

In comparison to L2 regularization, L1 regularization results in a solution that

is more sparse. Sparsity in this context implies that there are free parameters
of the model that—through L 1 regularization—with an optimal value (under the
regularized objective) of zero. As we discussed, for each element i of the parameter
vector, this happened when w∗

i ≤ β
γi

. Comparing this to the situation for L2

regularization, where (under the same assumptions of a diagonal Hessian H) we
get wL2 = γi

γi+α
w∗ , which is nonzero as long as w∗ is nonzero.

In Fig. 7.2, we see that even when the optimal value of w is nonzero, L1

regularization acts to punish small values of parameters just as harshly as larger
values, leading to optimal solutions with more parameters having value zero and
more larger valued parameters.

The sparsity property induced by L1 regularization has been used extensively
as a feature selection mechanism. In particular, the well known LASSO Tibshirani
(1995) (least absolute shrinkage and selection operator) model integrates an L1

penalty with a linear model and a least squares cost function. Finally, L1 is
known as the only norm that is both sparsifying and convex for non-degenerative

problems 3 .

3For degenerative problems, where more than one solution exists, L2 regularization can find

the “sparse” solution in the sense that redundant parameters shrink to zero.
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7.2.3 Bayesian Interpretation of the Parameter Norm Penalty

Parameter norm penalties are often amenable to being interpreted as a Bayesian
prior. Recall that parameter norm penalties are effected by adding a term Ω(w)

to the unregularized loss function J .

J̃(w;X, y) = J(w;X, y) +αΩ(w) (7.14)

where α is a hyperparameter that weighs the relative contribution of the norm
penalty term.

We can view the minimization of the regularized loss function above as equiv-

alent to finding the maximum a posteriori (MAP) estimate of the parameters:
log p(w |X ,y) ∝ log p(y |X ,w) + logp(w), where the inregularized J(w;X, y)
is taken as the log likelihood and the regularization term αΩ(w) plays the role of
the parameter prior distribution. Difference choices of regularizers correspond to
different priors.

In the case ofL2 regularization, minimizing withαΩ(w) = α
2
kwk22, is function-

ally equivalent to maximizing the log of the posterior distribution (or minimizing
the negative log posterior) where the prior is given by a Gaussian distribution.

log p(w;µ,Σ) = −
1

2
(w − µ)>Σ−1 (w − µ)−

1

2
log |Σ| −

d

2
log(2π)

where d is the dimension of w. Ignoring terms that are not function of w (and
therefore do not effect the MAP value), we can see that the by choosing µ = 0 and
Σ−1 = αI, we recover the functional form of L2 regularization: log p(w;µ,Σ) ∝
α
2 kwk

2
2 . Thus L2 regularization can be considered assuming independent Gaussian

prior distibutions over all the model parameters, each with precision (i.e. the
inverse of variance) α.

For L1 regularization, minimizing with αΩ(w) = αP
i
kwik, is equivalent to

maximizing the log of the posterior distribution with independent Laplace distri-

butions (also known as a double-sided exponential distribution) as priors over the
individual elements of w.

log p(w;µ, η) =
X

i

Laplace(µi , ηi) =
X

i

− |wi − µi|
ηi

− log (2ηi)

One again we can ignore the second term here because it does not depend on the
elements of w, so L1 regularization is equivalent to MAP estimate with a prior
given by

P
i Laplace(0, λ−1 ).
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7.3 Classical Regularization as Constrained Optimiza-

tion

Classical regularization adds a penalty term to the training objective:

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ).

Recall from Sec. 4.4 that we can minimize a function subject to constraints by

constructing a generalized Lagrange function (see 4.4), consisting of the original
objective function plus a set of penalties. Each penalty is a product between
a coefficient, called a Karush–Kuhn–Tucker (KKT) multiplier 4 , and a function
representing whether the constraint is satisfied. If we wanted to constrain Ω(θ) to
be less than some constant k, we could construct a generalized Lagrange function

L(θ, α;X ,y) = J(θ;X, y) +α(Ω(θ) − k).

The solution to the constrained problem is given by

θ∗ = min
θ

max
α,α≥0

L(θ, α).

Solving this problem requires modifying both θ and α. Specifically, α must
increase whenever ||θ||p > k and decrease whenever ||θ||p < k. However, after we

have solved the problem, we can fix α∗ and view the problem as just a function
of θ:

θ∗ = min
θ

L(θ, α∗ ) = min
θ
J(θ;X, y) +α∗Ω(θ).

This is exactly the same as the regularized training problem of minimizing J̃ .
Note that the value of α ∗ does not directly tell us the value of k. In principle, one
can solve for k, but the relationship between k and α∗ depends on the form of
J . We can thus think of classical regularization as imposing a constraint on the
weights, but with an unknown size of the constraint region. Larger α will result in
a smaller constraint region, and smaller α will result in a larger constraint region.

Sometimes we may wish to use explicit constraints rather than penalties. As
described in Sec. 4.4, we can modify algorithms such as stochastic gradient descent
to take a step downhill on J(θ) and then project θ back to the nearest point that
satisfies Ω(θ) < k. This can be useful if we have an idea of what value of k
is appropriate and do not want to spend time searching for the value of α that

corresponds to this k.
Another reason to use explicit constraints and reprojection rather than enforc-

ing constraints with penalties is that penalties can cause non-convex optimization

4KKT multipliers generalize Lagrange multipliers to allow for inequality constraints.
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procedures to get stuck in local minima corresponding to small θ. When training
neural networks, this usually manifests as neural networks that train with several
“dead units”. These are units that do not contribute much to the behavior of the
function learned by the network because the weights going into or out of them are
all very small. When training with a penalty on the norm of the weights, these
configurations can be locally optimal, even if it is possible to significantly reduce
J by making the weights larger. (This concern about local minima obviously does
not apply when J̃ is convex)

Finally, explicit constraints with reprojection can be useful because they im-

pose some stability on the optimization procedure. When using high learning
rates, it is possible to encounter a positive feedback loop in which large weights

induce large gradients which then induce a large update to the weights. If these
updates consistently increase the size of the weights, then θ rapidly moves away
from the origin until numerical overflow occurs. Explicit constraints with repro-
jection allow us to terminate this feedback loop after the weights have reached a
certain magnitude. Hinton et al. (2012c) recommend using constraints combined
with a high learning rate to allow rapid exploration of parameter space while
maintaining some stability.

TODO how L2 penalty is equivalent to L2 constraint (with unknown value),
L1 penalty is equivalent to L1 constraint maybe move the earlier L2 regularization

figure to here, now that the sublevel sets will make more sense? show the shapes
induced by the different norms separate L2 penalty on each hidden unit vector

is different from L2 penalty on all theta; is equivalent to a penalty on the max
across columns of the column norms

7.4 Regularization and Under-Constrained Problems

In some cases, regularization is necessary for machine learning problems to be
properly defined. Many linear models in machine learning, including linear re-
gression and PCA, depend on inverting the matrix X>X. This is not possible
whenever X>X is singular. This matrix can be singular whenever the data truly

has no variance in some direction, or when there are fewer examples (rows of X)
than input features (columns of X). In this case, many forms of regularization
correspond to invertingX>X+αI instead. This regularized matrix is guaranteed

to be invertible.
These linear problems have closed form solutions when the relevant matrix is

invertible. It is also possible for a problem with no closed form solution to be
underdetermined. For example, consider logistic regression applied to a problem

where the classes are linearly separable. If a weight vector w is able to achieve
perfect classification, then 2w will also achieve perfect classification and higher
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likelihood. An iterative optimization procedure like stochastic gradient descent
will continually increase the magnitude of w and, in theory, will never halt. In
practice, a numerical implementation of gradient descent will eventually reach
sufficiently large weights to cause numerical overflow, at which point its behavior
will depend on how the programmer has decided to handle values that are not
real numbers.

Most forms of regularization are able to guarantee the convergence of iterative
methods applied to underdetermined problems. For example, weight decay will
cause gradient descent to quit increasing the magnitude of the weights when the

slope of the likelihood is equal to the weight decay coefficient. Likewise, early
stopping based on the validation set classification rate will cause the training

algorithm to terminate soon after the validation set classification accuracy has
stopped increasing. Even if the problem is linearly separable and there is no
overfitting, the validation set classification accuracy will eventually saturate to
100%, resulting in termination of the early stopping procedure.

The idea of using regularization to solve underdetermined problems extends
beyond machine learning. The same idea is useful for several basic linear algebra
problems.

As we saw in Chapter 2.9, we can solve underdetermined linear equations
using the Moore-Penrose pseudoinverse.

One definition of the pseudo-inverse X+ of a matrix X is to perform linear
regression with an infinitesimal amount of L2 regularization:

X+ = lim
α&0

(X>X > + αI)−1X>.

When a true inverse for X exists, then w = X +y returns the weights that
exactly solve the regression problem. When X is not invertible because no ex-
act solution exists, this returns the w corresponding to the least possible mean
squared error. When X is not invertible because many solutions exactly solve
the regression problem, this returns w with the minimum possible L2 norm.

Recall that the Moore-Penrose pseudoinverse can be computed easily using
the singular value decomposition. Because the SVD is robust to underdetermined
problems resulting from too few observations or too little underlying variance,
it is useful for implementing stable variants of many closed-form linear machine

learning algorithms. The stability of these algorithms can be viewed as a result of
applying the minimum amount of regularization necessary to make the problem
become determined.
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7.5 Dataset Augmentation

The best way to make a machine learning model generalize better is to train it
on more data. Of course, in practice, the amount of data we have is limited. One
way to get around this problem is to create more fake data. For some machine
learning tasks, it is reasonably straightforward to create new fake data.

This approach is easiest for classification. A classifier needs to take a compli-
cated, high dimensional input x and summarize it with a single category identity

y. This means that the main task facing a classifier is to be invariant to a wide
variety of transformations. We can generate new (x, y) pairs easily just by trans-

forming the x inputs in our training set.
This approach is not as readily applicable to many other tasks. For example,

it is difficult to generate new fake data for a density estimation task unless we

have already solved the density estimation problem.
Dataset augmentation has been a particularly effective technique for a spe-

cific classification problem: object recognition. Images are high dimensional and
include an enormous variety of factors of variation, many of which can be easily

simulated. Operations like translating the training images a few pixels in each
direction can often greatly improve generalization, even if the model has already

been designed to be partially translation invariant by using convolution and pool-
ing. Many other operations such as rotating the image or scaling the image have
also proven quite effective. One must be careful not to apply transformations that
are relevant to the classification problem. For example, optical character recogni-

tion tasks require recognizing the difference between ’b’ and ’d’ and the difference

between ’6’ and ’9’, so horizontal flips and 180◦ rotations are not appropriate
ways of augmenting datasets for these tasks. There are also transformations that
we would like our classifiers to be invariant to, but which are not easy to perform.
For example, out-of-plane rotation can not be implemented as a simple geometric
operation on the input pixels.

For many classification and even some regression tasks, the task should still be

possible to solve even if random noise is added to the input. Neural networks prove
not to be very robust to noise, however (Tang and Eliasmith, 2010). One way to

improve the robustness of neural networks is simply to train them with random
noise applied to their inputs. This same approach also works when the noise is
applied to the hidden units, which can be seen as doing dataset augmentation
at multiple levels of abstraction. Poole et al. (2014) recently showed that this
approach can be highly effective provided that the magnitude of the noise is
carefully tuned. Dropout, a powerful regularization strategy that will be described
in Sec. 7.11, can be seen as a process of constructing new inputs by multiplying
by noise.

In a multilayer network, it can often be beneficial to apply transformations
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such as noise to the hidden units, as well as the inputs. This can be viewed as
augmenting the dataset as seen by the deeper layers.

When reading machine learning research papers, it is important to take the
effect of dataset augmentation into account. Often, hand-designed dataset aug-
mentation schemes can dramatically reduce the generalization error of a machine
learning technique. It is important to look for controlled experiments. When
comparing machine learning algorithm A and machine learning algorithm B, it
is necessary to make sure that both algorithms were evaluated using the same
hand-designed dataset augmentation schemes. If algorithm A performs poorly

with no dataset augmentation and algorithm B performs well when combined with
numerous synthetic transformations of the input, then it is likely the synthetic

transformations and not algorithm B itself that cause the improved performance.
Sometimes the line is blurry, such as when a new machine learning algorithm
involves injecting noise into the inputs. In these cases, it’s best to consider how
generally applicable to the new algorithm is, and to make sure that pre-existing
algorithms are re-run in as similar of conditions as possible.

TODO– tangent propagation NOTE: there is already some coverage of Tanget-
Prop in manifold.tex, it may not be necessary to exhaustively describe all known
forms of regularization in this chapter

7.6 Classical Regularization as Noise Robustness

In the machine learning litterature, there have been two ways that noise has been
used as part of a regularization strategy. The first and most popular way is by
adding noise to the input. While this can be interpreted simply as form of dataset
augmentation (as described above in Sec. 7.5), we can also interpret it as being

equivalent to more traditional forms of regularization.
The second way that noise has been used in the service of regularizing models

is by adding it to the weights. This technique has been used primarily in the
context of recurrent neural networks (Jim et al., 1996; Graves, 2011a). This can
been interpreted as a stochastic implementation of a Bayesian inference over the

weights. Under the Bayesian treatment of learning would consider the model
weights to be uncertain and representable via a probability distribution that re-
flects this uncertainty. Adding noise to the weights is a practical, stochatic way

to reflect this uncertainty (Graves, 2011a).
In this section, we review these two strategies and provide some insight into

now noise can act to regularize the model.
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7.6.1 Injecting Noise at the Input

Some classical regularization techniques can be derived in terms of training on
noisy inputs. 5. Let us consider a regression setting, where we are interested in

learning a model ŷ(x) that maps a set of features x to a scalar. The cost function
we will use is the least-squares error between the model prediction ŷ(x) and the
true value y:

J = Ep(x,y)


(ŷ(x) − y)

2

, (7.15)

where we are given a dataset ofm input / output pairs {(x(1) , y(1)), . . . , (x(m), y(m))}.

Our training objective is to minimize the loss function, which in this case is given
by the least-squares error between the model prediction ŷ(x) and the true label

y ( where y(x) = [y (1)(x), . . . , y(m)(x)]).
Now consider that with each input presentation to the model we also include

a random perturbation  ∼ (0, νI), so that the error function becomes

J̃x = E p(x,y,)


(ŷ(x + ) − y)2



= E p(x,y,)


ŷ 2 (x + ) − 2yŷ(x + ) + y2



= E p(x,y,)


ŷ 2 (x + )


− 2E p(x,y,)[yŷ(x + )] +E p(x,y,)


y2


(7.16)

Assuming small noise, we can consider the taylor series expansion of ŷ(x + )
around ŷ(x).

ŷ(x + ) = ŷ(x) + >∇x ŷ(x) +
1

2
>∇2

x ŷ(x) +O(3 ) (7.17)

Substituting this approximation for ŷ(x+) into the objective function (Eq. 7.16)
and using the fact that Ep()[] = 0 and that Ep()[

>] = νI to simplify6, we get:

J̃ x ≈ Ep(x,y,)

"
ŷ(x) + >∇xŷ(x) +

1

2
>∇ 2

xŷ(x)

2
#

− 2Ep(x,y,)


yŷ(x) + y>∇ xyŷ(x) +

1

2
y>∇2

xŷ(x)


+ Ep(x,y,)


y2


= Ep(x,y,)


(ŷ(x) − y)2


+ Ep(x,y,)


ŷ(x)>∇ 2

xŷ(x) +

>∇xŷ(x)

2
+ O(3)



− 2Ep(x,y,)


1

2
y>∇2

xŷ(x)



= J + νEp(x,y)


(ŷ(x) − y)∇2

xŷ(x)


+ νEp(x,y)


k∇x ŷ(x)k2


(7.18)

5The analysis in this section is mainly based on that in Bishop (1995a,b)
6In this derivation we have used two properties of the trace operator: (1) that a scalar is

equal to its trace; (2) that, for a square matrix AB, Tr(AB) = Tr(BA). These are discussed in
Sec. 2.10.
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If we consider minimizing this objective function, by taking the functional gradient
of ŷ(x) and setting the result to zero, we can see that

ŷ(x) = Ep(y|x)[y] +O(ν).

This implies that the expectation in the second last term in Eq. 7.18, Ep(x,y)


(ŷ(x) − y)∇2

x ŷ(x)


reduces to O(ν) because the expectation of the difference (ŷ(x)−y) is reduces to
O(ν).

This leaves us with the objective function of the form

J̃x = Ep(x,y)


(ŷ(x) − y)2


+ νE p(x,y)


k∇xŷ(x)k2 + O(ν2).

For small ν, the minimization of J with added noise on the input (with covariance
νI) is equivalent to minimization of J with an additional regularization term given
by νE p(x,y)


k∇x ŷ(x)k2


.

Considering the behavior of this regularization term, we note that it has the
effect of penalizing large gradients of the function ŷ(x). That is, it has the effect
of reducing the sensitivity of the output of the network with respect to small
variations in its input x. We can interpret this as attempting to build in some

local robustness into the model and thereby promote generalization. We note also
that for linear networks, this regularization term reduces to simple weight decay

(as discussed in Sec. 7.2.1).

7.6.2 Injecting Noise at the Weights

Rather than injecting noise as part of the input, one could also consider adding

noise directly to the model parameters. As we shall see, this can also be in-
terpreted as equivalent (under some assumptions) to a more traditional form of
regularization. Adding noise to the weights has been shown to be a effective regu-

larization strategy in the context of recurrent neural networks7 Jim et al. (1996);

Graves (2011b). In the following, we will present an analysis of the effect of weight
noise on a standard feedforward neural network (as introduced in Chapter 6).

As we did in the last section, we again consider the regression setting, where
we wish to train a function ŷ(x) that maps a set of features x to a scalar using
the least-squares cost function between the model predictions ŷ(x) and the true
values y:

J = Ep(x,y)


(ŷ(x) − y)2


. (7.19)

We again assume we are given a dataset ofm input / output pairs {(x(1), y(1)), . . . , (x(m), y (m))}.
We now assume that with each input presentation we also include a random

perturbation W ∼ (0, ηI) of the network weights. Let us imagine that we have

7Recurrent neural networks will be discussed in detail in Chapter 10
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a standard L-layer MLP, we denote the perturbed model as ŷW (x). Despite the
injection of noise, we are still interested in minimizing the squared error of the
output of the network. The objective function thus becomes:

J̃W = Ep(x,y,
W

)


(ŷW ) − y)2



= Ep(x,y,
W

)


ŷ2W

(x) − 2yŷW(x) + y2


(7.20)

Assuming small noise, we can consider the taylor series expansion of ŷW (x)
around the unperturbed function ŷ(x).

ŷW(x) = ŷ(x) + 
>
W∇W ŷ(x) +

1

2

>
W ∇2

W ŷ(x)W + O(
3
W) (7.21)

From here, we follow the same basic strategy that was laid-out in the pervious
section in analyzing the effect of adding noise to the input. That is, we substitute

the taylor series expansion of ŷW (x) into the objective function in Eq. 7.20.

J̃W ≈ Ep(x,y,W )

"
ŷ(x) + >W∇W ŷ(x) +

1

2
>W∇2

W ŷ(x)W

2#

Ep(x,y,W )


−2y


ŷ(x) + >W ∇W ŷ(x) +

1

2
>W ∇2

W ŷ(x)W


+ Ep(x,y,W )


y2


= Ep(x,y,W )

h
(ŷ(x) − y)2

i
− 2Ep(x,y,W )


1

2
y>W∇2

W ŷ(x)



+ Ep(x,y,W )


ŷ(x)

>
W ∇2

W ŷ(x)W +


>
W∇W ŷ(x)

2
+ O(

3
W )


. (7.22)

(7.23)

Where we have used the fact that E W)W = 0 to drop terms that are linear in

W . Incorporating the assumption that EW)
2
W = ηI , we have:

J̃W ≈ J + νEp(x,y)


(ŷ(x) − y)∇2

W ŷ(x)


+ νEp(x,y)


k∇W ŷ(x)k2


(7.24)

Again, if we consider minimizing this objective function, we can see that the
optimal value of ŷ(x) is:

ŷ(x) = Ep(y|x)[y] +O(η),

implying that the expectation in the middle term in Eq. 7.24, Ep(x,y)


(ŷ(x) − y)∇2

W
ŷ(x)


,

reduces to O(η) because the expectation of the difference (ŷ(x)− y) is reduces to
O(η).

This leaves us with the objective function of the form

J̃W = Ep(x,y)



(ŷ(x) − y)2



+ ηE p(x,y)



k∇W ŷ(x)k2



+ O(η2 ).
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For small η, the minimization of J with added weight noise (with covariance
ηI) is equivalent to minimization of J with an additional regularization term:
ηEp(x,y)


k∇Wŷ(x)k2


. This form of regularization encourages the parameters to

go to regions of parameter space that have relatively small gradients. In other
words, it pushes the model into regions where the model is relatively insensitive
to small variations in the weights. Regularization strategies with this kind of
behaviour have been considered before TODO restore this broken citation when
it is fixed In the simplified case of linear regression (where, for instance, (̂y)(x) =
w>x + b), this regularization term collapses into ηEp(x)


kxk 2


, which is not a

function of parameters and therefore does not contribute to the gradient of J̃W
w.r.t the model parameters.

7.7 Early Stopping as a Form of Regularization

When training large models with high capacity, we often observe that training
error decreases steadily over time, but validation set error begins to rise again.

See Fig. 7.3 for an example of this behavior. This behavior occurs very reliably.
This means we can obtain a model with better validation set error (and thus,

hopefully better test set error) by returning to the parameter setting at the point

in time with the lowest validation set error. Instead of running our optimization
algorithm until we reach a (local) minimum, we run it until the error on the

validation set has not improved for some amount of time. Every time the error
on the validation set improves, we store a copy of the model parameters. When
the training algorithm terminates, we return these parameters, rather than the
latest parameters. This procedure is specified more formally in Alg. 7.1.

This strategy is known as early stopping. It is probably the most commonly
used form of regularization in deep learning. Its popularity is due both to its
effectiveness and its simplicity.

One way to think of early stopping is as a very efficient hyperparameter se-
lection algorithm. In this view, the number of training steps is just another
hyperparameter. We can see in Fig. 7.3 that this hyperparameter has a U-shaped

validation set performance curve, just like most other model capacity control pa-
rameters. In this case, we are controlling the effective capacity of the model by

determining how many steps it can take to fit the training set precisely. Most of
the time, setting hyperparameters requires an expensive guess and check process,
where we must set a hyperparameter at the start of training, then run training

for several steps to see its effect. The “training time” hyperparameter is unique
in that by definition a single run of training tries out many values of the hyperpa-
rameter. The only significant cost to choosing this hyperparameter automatically
via early stopping is running the validation set evaluation periodically during
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Figure 7.3: Learning curves showing how the negative log likelihood loss changes over
time. In this example, we train a maxout network on MNIST, regularized with dropout.
Observe that the training loss decreases consistently over time, but the validation set loss
eventually begins to increase again.
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Algorithm 7.1 The early stopping meta-algorithm for determining the best

amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the
validation set.

Let n be the number of steps between evaluations.

Let p be the “patience,” the number of times to observe worsening validation
set error before giving up.
Let θo be the initial parameters.

θ ← θo
i← 0
j ← 0

v ←∞
θ∗ ← θ
i∗ ← i
while j < p do

Update θ by running the training algorithm for n steps.

i← i + n
v0 ← ValidationSetError(θ)

if v0 < v then
j ← 0
θ∗ ← θ
i∗ ← i

v ← v0

else
j ← j + 1

end if
end while
Best parameters are θ∗, best number of training steps is i∗

training.

An additional cost to early stopping is the need to maintain a copy of the best
parameters. This cost is generally negligible, because it is acceptable to store

these parameters in a slower and larger form of memory (for example, training
in GPU memory, but storing the optimal parameters in host memory or on a

disk drive). Since the best parameters are written to infrequently and never read
during training, these occasional slow writes are have little effect on the total
training time.

Early stopping is a very inobtrusive form of regularization, in that it requires
no change the underlying training procedure, the objective function, or the set of
allowable parameter values. This means that it is easy to use early stopping with-
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out damaging the learning dynamics. This is in contrast to weight decay, where
one must be careful not to use too much weight decay and trap the network in a
bad local minima corresponding to a solution with pathologically small weights.

Early stopping may be used either alone or in conjunction with other regu-
larization strategies. Even when using regularization strategies that modify the
objective function to encourage better generalization, it is rare for the best gen-
eralization to occur at a local minimum of the training objective.

Early stopping requires a validation set, which means some training data is not
fed to the model. To best exploit this extra data, one can perform extra training

after the initial training with early stopping has completed. In the second, extra
training step, all of the training data is included. There are two basic strategies

one can use for this second training procedure.
One strategy is to initialize the model again and retrain on all of the data.

In this second training pass, we train for the same number of steps as the early
stopping procedure determined was optimal in the first pass. There are some
subtleties associated with this procedure. For example, there is not a good way
of knowing whether to retrain for the same number of parameter updates or the
same number of passes through the dataset. On the second round of training,
each pass through the dataset will require more parameter updates because the
training set is bigger. Usually, if overfitting is a serious concern, you will want to

retrain for the same number of epochs, rather than the same number of parameter
udpates. If the primary difficulty is optimization rather than generalization, then

retraining for the same number of parameter updates makes more sense (but it’s
also less likely that you need to use a regularization method like early stopping
in the first place). This algorithm is described more formally in Alg. 7.2.

Algorithm 7.2 A meta-algorithm for using early stopping to determine how long
to train, then retraining on all the data.

Let X(train) and y(train) be the training set

Split X(train) and y(train) into X(subtrain), y(subtrain) , X(valid) , y(valid)

Run early stopping (Alg. 7.1) starting from random θ using X(subtrain) and
y(subtrain) for training data and X (valid) and y (valid) for validation data. This
returns i∗, the optimal number of steps.
Set θ to random values again
Train on X(train) and y(train) for i∗ steps.

Another strategy for using all of the data is to keep the parameters obtained
from the first round of training and then continue training but now using all of the
data. At this stage, we now no longer have a guide for when to stop in terms of a
number of steps. Instead, we can monitor the loss function on the validation set,
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w1

w2

w∗

w̃ w(τ )

w1

w2

w∗

Figure 7.4: An illustration of the effect of early stopping (Right) as a form of regularization
on the value of the optimal w, as compared to L2 regularization (Left) discussed in
Sec. 7.2.1.

and continue training until it falls below the value of the training set objective at
which the early stopping procedure halted. This strategy avoids the high cost of
retraining the model from scratch, but is not as well-behaved. For example, there
is not any guarantee that the objective on the validation set will ever reach the

target value, so this strategy is not even guaranteed to terminate. This procedure
is presented more formally in Alg. 7.3.

Algorithm 7.3 A meta-algorithm for using early stopping to determining at

what objective value we start to overfit, then continuing training.

Let X(train) and y(train) be the training set
Split X(train) and y(train) into X(subtrain), y(subtrain) , X(valid) , y(valid)

Run early stopping (Alg. 7.1) starting from random θ using X(subtrain) and

y(subtrain) for training data and X (valid) and y (valid) for validation data. This
updates θ
← J(θ,X(subtrain), y(subtrain))
while J(θ,X(valid), y (valid)) >  do

Train on X(train) and y(train) for n steps.
end while

Early stopping and the use of surrogate loss functions: A useful property
of early stopping is that it can help to mitigate the problems caused by a mismatch

between the surrogate loss function whose gradient we follow downhill and the
underlying performance measure that we actually care about. For example, 0-
1 classification loss has a derivative that is zero or undefined everywhere, so it
is not appropriate for gradient-based optimization. We therefore train with a
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surrogate such as the log likelihood of the correct class label. However, 0-1 loss
is inexpensive to compute, so it can easily be used as an early stopping criterion.
Often the 0-1 loss continues to decrease for long after the log likelihood has begun
to worsen on the validation set. TODO: figures. in figures/regularization, I have
extracted the 0-1 loss but only used the nll for the regularization chapter’s figures.

Early stopping is also useful because it reduces the computational cost of the
training procedure. It is a form of regularization that does not require adding
additional terms to the surrogate loss function, so we get the benefit of regular-
ization without the cost of any additional gradient computations. It also means

that we do not spend time approaching the exact local minimum of the surrogate
loss.

How early stopping acts as a regularizer: So far we have stated that early

stopping is a regularization strategy, but we have only backed up this claim by
showing learning curves where the validation set error has a U-shaped curve.
What is the actual mechanism by which early stopping regularizes the model?8

Early stopping has the effect of restricting the optimization procedure to a
relatively small volume of parameter space in the neighborhood of the initial

parameter value θo . More specifically, imagine taking τ optimization steps (cor-
responding to τ training iterations) and taking η as the learning rate. We can

view the product ητ as the reciprocal of a regularization parameter. Assuming the
gradient is bounded, restricting both the number of iterations and the learning
rate limits the volume of parameter space reachable from θo .

Indeed, we can show how — in the case of a simple linear model with a

quadratic error function and simple gradient descent—early stopping is equivalent
to L2 regularization as seen in Section 7.2.1.

In order to compare with classical L2 regularization, we again consider the
simple setting where we will take as the parameters to be optimized as θ =w and
we take a quadratic approximation to the objective function J in the neighborhood
of the empirically optimal value of the weights w∗.

Ĵ(θ) = J(w ∗) +
1

2
(w −w∗) >H(θ − θ∗) (7.25)

where, as before, H is the Hessian matrix of J with respect to w evaluated at

w∗ . Given the assumption that w∗ is a minimum of J(w), we can consider that
H is positive semi-definite and that the gradient is given by:

∇wĴ(w) = H(w −w∗). (7.26)

8Material for this section was taken from Bishop (1995a); Sjöberg and Ljung (1995), for
further details regarding the interpretation of early-stopping as a regularizer, please consult
these works.
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Let us consider initial parameter vector chosen at the origin, i.e. w(0) = 0.
We will consider updating the parameters via gradient descent:

w(τ ) = w(τ−1) − η∇ wJ(w(τ−1)) (7.27)

= w(τ−1) − ηH(w(τ−1) −w∗) (7.28)

w(τ ) −w∗ = (I − ηH)(w(τ−1) −w∗) (7.29)

Let us now consider this expression in the space of the eigenvectors of H , i.e.
we will again consider the eigendecomposition of H : H = QΛQ>, where Λ is a
diagonal matrix and Q is an ortho-normal basis of eigenvectors.

w (τ ) −w∗ = (I − ηQΛQ> )(w(τ−1) −w∗)

Q>(w(τ ) −w∗) = (I − ηΛ)Q>(w(τ−1) −w∗)

Assuming w0 = 0, and that |1 − ηλi| < 1, we have after τ training updates,
(TODO: derive the expression below).

Q>w (τ )= [I − (I − ηΛ)τ]Q>w ∗. (7.30)

Now, the expression for Q>w̃ in Eqn. 7.9 for L2 regularization can rearrange as:

Q>w̃ = (Λ +αI)−1ΛQ>w∗

Q
>
w̃ = [I − (Λ +αI)

−1
α]Q

>
w

∗
(7.31)

Comparing Eqns 7.30 and 7.31, we see that if

(I − ηΛ) τ = (Λ +αI)−1α,

then L 2 regularization and early stopping can be seen to be equivalent (at least
under the quadratic approximation of the objective function). Going even further,
by taking logs and using the series expansion for log(1+x), we can conclude that

if all λi are small (i.e. ηλi  1 and λ i/α 1) then

τ ≈ 1/ηα. (7.32)

That is, under these assumptions, the number of training iterations τ plays a role
inversely proportional to the L 2 regularization parameter.

Parameter values corresponding to directions of significant curvature (of the
loss) are regularized less than directions of less curvature. Of course, in the context
of early stopping, this really means that parameters that correspond to directions
of significant curvature tend to learn early relative to parameters corresponding
to directions of less curvature.
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7.8 Parameter Tying and Parameter Sharing

TODO(Aaron): start with bayesian perspective (parameters should be close), add
practical constraints to get parameter sharing.

Thus far, in this chapter, when we have discussed adding constraints or penal-
ties to the parameters, we have always does so with respect to a fixed region or
point. For example, L2 regularization (or weight decay) penalizes model param-
eters for deviating from the fixed value of zero.

Sometimes rather than apply a penalty for deviation from a fixed point in
parameter space, we wish to express our prior knowledge about

Convolutional Neural Networks By far the most popular and extensive use

of parameter sharing occurs in the convolutional neural networks (CNNs). CNNs

will be discussed in detail in Chapter 9, here we note only how they take advantage
of parameter sharing.

CNNs, as we know them today, were originally developed for application to
computer visionLeCun et al. (1989). Natural images have a particular statistical
property that they are invariant under 2-dimensional translation (in the image

plane). This property is a natural consequence of the image generation process:
the same scene can be photographed twice with the center of one image being a
translation of the center of the other image (i.e. there is no natural origin in the
image plane). CNNs were designed to take this property into account by sharing

parameters across the image plane. If the image shares its statistical structure

across the image plane, then so too should the model. Feature detectors found to
be useful in one region should be generalized across all regions.

Parameter sharing has allowed CNNs to dramatically lower the number of

unique model parameters and have allowed them to significantly increase network

sizes without requiring a corresponding increase in training data. It remains one
of the best examples of how to effectively incorporate domain knowledge into the
network architecture.

7.9 Sparse Representations

TODO(Aaron) Most deep learning models have some concept of representations.

7.10 Bagging and Other Ensemble Methods

Bagging (short for bootstrap aggregating) is a technique for reducing generalization
error by combining several models (Breiman, 1994). The idea is to train several

different models separately, then have all of the models vote on the output for
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test examples. This is an example of a general strategy in machine learning
called model averaging. Techniques employing this strategy are known as ensemble
methods.

The reason that model averaging works is that different models will usually
make different errors on the test set to some extent.

Consider for example a set of k regression models. Suppose that each model
makes an error i on each example, with the errors drawn from a zero-mean mul-
tivariate normal distribution with variances E[2i ] = v and covariances E[ij ] = c.
Then the error made by the average prediction of all the ensemble models is
1
k

P
i i . The expected squared error is

E[

 
1

k

X

i

i

!2

]

=
1

k2
E[
X

i



2i +
X

j 6=i

 ij



]

1

k
v +

k − 1

k
c.

In the case where the errors are perfectly correlated and c = v, this reduces to
v, and the model averaging does not help at all. But in the case where the errors
are perfectly uncorrelated and c = 0, then the expected error of the ensemble is
only 1

k
v. This means that the expected squared error of the ensemble decreases

linearly with the ensemble size. In other words, on average, the ensemble will per-

form at least as well as any of its members, and if the members make independent
errors, the ensemble will perform significantly better than of its members.

Different ensemble methods construct the ensemble of models in different

ways. For example, each member of the ensemble could be formed by training a
completely different kind of model using a different algorithm or cost function.

Bagging is a method that allows the same kind of model and same kind of training
algorithm and cost function to be reused several times.

Specifically, bagging involves constructing k different datasets. Each dataset
has the same number of examples as the original dataset, but each dataset is
constructed by sampling with replacement from the original dataset. This means
that, with high probability, each dataset is missing some of the examples from
the original dataset and also contains several duplicate examples. Model i is then

trained on dataset i. The differences between which examples are included in
each dataset result in differences between the trained models. See Fig. 7.5 for an

example.
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8

8

First ensemble member

Second ensemble member

Original dataset

First resampled dataset

Second resampled dataset

Figure 7.5: A cartoon depiction of how bagging works. Suppose we train an ’8’ detector
on the dataset depicted above, containing an ’8’, a ’6’, and a ’9’. Suppose we make
two different resampled datasets. The bagging training procedure is to construct each of

these datasets by sampling with replacement. The first dataset omits the ’9’ and repeats
the ’8’. On this dataset, the detector learns that a loop on top of the digit corresponds
to an ’8’. On the second dataset, we repeat the ’9’ and omit the ’6’. In this case, the
detector learns that a loop on the bottom of the digit corresponds to an ’8’. Each of these
individual classification rules is brittle, but if we average their output then the detector
is robust, achieving maximal confidence only when both loops of the ’8’ are present.
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Neural networks reach a wide enough variety of solution points that they can
often benefit from model averaging even if all of the models are trained on the same
dataset. Differences in random initialization, random selection of minibatches,
differences in hyperparameters, or different outcomes of non-deterministic imple-
mentations of neural networks are often enough to cause different members of the
ensemble to make partially independent errors.

Model averaging is an extremely powerful and reliable method for reducing
generalization error. Its use is usually discouraged when benchmarking algorithms
for scientific papers, because any machine learning algorithm can benefit substan-

tially from model averaging at the price of increased computation and memory.
For this reason, benchmark comparisons are usually made using a single model.

Machine learning contests are usually won by methods using model averag-
ing over dozens of models. A recent prominent example is the Netflix Grand
Prize (Koren, 2009).

Not all techniques for constructing ensembles are designed to make the en-
semble more regularized than the individual models. For example, a technique
called boosting constructs an ensemble with higher capacity than the individual
models.

7.11 Dropout

Because deep models have a high degree of expressive power, they are capable of

overfitting significantly. While this problem can be solved by using a very large
dataset, large datasets are not always available. Dropout (Srivastava et al., 2014)
provides a computationally inexpensive but powerful method of regularizing a
broad family of models.

Dropout can be thought of as a method of making bagging practical for neu-
ral networks. Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each model is a neural
network, since training and evaluating a neural network is costly in terms of run-
time and storing a neural network is costly in terms of memory. Dropout provides

an inexpensive approximation to training and evaluating a bagged ensemble of
exponentially many neural networks.

Specifically, dropout trains the ensemble consisting of all sub-networks that

can be formed by removing units from an underlying base network. In most mod-
ern neural networks, based on a series of affine transformations and nonlinearities,
we can effective remove a unit from a network by multiplying its state by zero.
This procedure requires some slight modification for models such as radial basis

function networks, which take the difference between the unit’s state and some
reference value. Here, we will present the dropout algorithm in terms of multipli-
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cation by zero for simplicity, but it can be trivially modified to work with other
operations that remove a unit from the network.

TODO–describe training algorithm, with reference to bagging TODO– include
figures from IG’s job talk TODO– training doesn’t rely on the model being prob-
abilistic TODO– describe inference algorithm, with reference to bagging TODO–
inference does rely on the model being probabilistic. and specifically, exponential
family?

For many classes of models that do not have nonlinear hidden units, the weight
scaling inference rule is exact. For a simple example, consider a softmax regression

classifier with n input variables represented by the vector v:

P (y = y | v) = softmax

W>v + b



y
.

We can index into the family of sub-models by element-wise multiplication of the
input with a binary vector d:

P (y = y | v; d) = softmax

W >(d  v) + b



y
.

The ensemble predictor is defined by re-normalizing the geometric mean over all
ensemble members’ predictions:

Pensemble(y = y | v) =
P̃ensemble(y = y | v)P
y 0 P̃ensemble (y = y0 | v)

(7.33)

where

P̃ensemble (y = y | v) = 2
n

s Y

d∈{0,1}n
P (y = y | v; d).

To see that the weight scaling rule is exact, we can simplify P̃ensemble :

P̃ensemble(y = y | v) = 2 n

s Y

d∈{0,1}n

P (y = y | v; d)

= 2 n

s Y

d∈{0,1}n

softmax (W>(d  v) + b)y

= 2n

vuut
Y

d∈{0,1}n

exp

W >

y,:(d  v) + b


P
y0 exp


W >

y0 ,:
(d  v) + b



=

2n
qQ

d∈{0,1} n exp

W>

y,:(d  v) + b


2
n

rQ
d∈{0,1}n

P
y0 exp


W>

y0 ,:(d  v) + b
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Because P̃ will be normalized, we can safely ignore multiplication by factors that
are constant with respect to y:

P̃ ensemble(y = y | v) ∝ 2 n

s Y

d∈{0,1}n
exp


W >

y,:(d  v) + b


= exp



 1

2n

X

d∈{0,1}n
W>

y,: (d  v) + b





= exp


1

2
W >

y,:v + b



Substituting this back into equation 7.33 we obtain a softmax classifier with
weights 1

2
W .

The weight scaling rule is also exact in other settings, including regression
networks with conditionally normal outputs, and deep networks that have hidden

layers without nonlinearities. However, the weight scaling rule is only an approxi-
mation for deep models that have non-linearities, and this approximation has not
been theoretically characterized. Fortunately, it works well, empirically. Good-
fellow et al. (2013a) found empirically that for deep networks with nonlinearities,
the weight scaling rule can work better (in terms of classification accuracy) than
Monte Carlo approximations to the ensemble predictor, even if the Monte Carlo
approximation is allowed to sample up to 1,000 sub-networks.

Srivastava et al. (2014) showed that dropout is more effective than other stan-
dard computationally inexpensive regularizers, such as weight decay, filter norm

constraints, and sparse activity regularization. Dropout may also be combined
with more expensive forms of regularization such as unsupervised pretraining to
yield an improvement. As of this writing, the state of the art classification error

rate on the permutation invariant MNIST dataset (not using any prior knowledge

about images) is attained by a classifier that uses both dropout regularization and
deep Boltzmann machine pretraining. However, combining dropout with unsu-
pervised pretraining has not become a popular strategy for larger models and

more challenging datasets.
One advantage of dropout is that it is very computationally cheap. Using

dropout during training requires only O(n) computation per example per update,
to generate n random binary numbers and multiply them by the state. Depending
on the implementation, it may also require O(n) memory to store these binary

numbers until the backpropagation stage. Running inference in the trained model
has the same cost per-example as if dropout were not used, though we must pay

the cost of dividing the weights by 2 once before beginning to run inference on
examples.
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One significant advantage of dropout is that it does not significantly limit
the type of model or training procedure that can be used. It works well with
nearly any model that uses a distributed representation and can be trained with
stochastic gradient descent. This includes feedforward neural networks, proba-
bilistic models such as restricted Boltzmann machines (Srivastava et al., 2014),
and recurrent neural networks (Pascanu et al., 2014a). This is very different from
many other neural network regularization strategies, such as those based on un-
supervised pretraining or semi-supervised learning. Such regularization strategies
often impose restrictions such as not being able to use rectified linear units or

max pooling. Often these restrictions incur enough harm to outweigh the benefit
provided by the regularization strategy.

Though the cost per-step of applying dropout to a specific model is negligible,
the cost of using dropout in a complete system can be significant. This is because
the size of the optimal model (in terms of validation set error) is usually much
larger, and because the number of steps required to reach convergence increases.
This is of course to be expected from a regularization method, but it does mean
that for very large datasets (as a rough rule of thumb, dropout is unlikely to be
beneficial when more than 15 million training examples are available, though the
exact boundary may be highly problem dependent) it is often preferable not to
use dropout at all, just to speed training and reduce the computational cost of

the final model.
When extremely few labeled training examples are available, dropout is less

effective. Bayesian neural networks (Neal, 1996) outperform dropout on the Alter-
native Splicing Dataset (Xiong et al., 2011) where fewer than 5,000 examples are
available (Srivastava et al., 2014). When additional unlabeled data is available,
unsupervised feature learning can gain an advantage over dropout.

TODO– ”Dropout Training as Adaptive Regularization” ? (Wager et al.,
2013) TODO–perspective as L2 regularization TODO–connection to adagrad?
TODO–semi-supervised variant TODO–Baldi paper (Baldi and Sadowski, 2013)
TODO–DWF paper (Warde-Farley et al., 2014) TODO–using geometric mean
is not a problem TODO–dropout boosting, it’s not just noise robustness TODO–
what was the conclusion about mixability (DWF)?

The stochasticity used while training with dropout is not a necessary part
of the model’s success. It is just a means of approximating the sum over all

sub-models. Wang and Manning (2013) derived analytical approximations to
this marginalization. Their approximation, known as fast dropout resulted in
faster convergence time due to the reduced stochasticity in the computation of
the gradient. This method can also be applied at test time, as a more principled
(but also more computationally expensive) approximation to the average over
all sub-networks than the weight scaling approximation. Fast dropout has been
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used to match the performance of standard dropout on small neural network
problems, but has not yet yielded a significant improvement or been applied to a
large problem.

Dropout has inspired other stochastic approaches to training exponentially
large ensembles of models that share weights. DropConnect is a special case of
dropout where each product between a single scalar weight and a single hidden
unit state is considered a unit that can be dropped (Wan et al., 2013). Stochastic
pooling is a form of randomized pooling (see chapter 9.3) for building ensembles
of convolutional networks with each convolutional network attending to different

spatial locations of each feature map. So far, dropout remains the most widely
used implicit ensemble method.

TODO–improved performance with maxout units and probably ReLUs

7.12 Multi-Task Learning

Multi-task learning (Caruana, 1993) is a way to improve generalization by pooling
the examples (i.e., constraints) arising out of several tasks.

Figure 7.6 illustrates a very common form of multi-task learning, in which dif-
ferent supervised tasks (predicting Yi given X) share the same input X, as well as
some intermediate-level representation capturing a common pool of factors. The
model can generally be divided into two kinds of parts and associated parameters:

1. Task-specific parameters (which only benefit from the examples of their task
to achieve good generalization). Example: upper layers of a neural network,

in Figure 7.6.

2. Generic parameters, shared across all the tasks (which benefit from the
pooled data of all the tasks). Example: lower layers of a neural network, in
Figure 7.6.

Improved generalization and generalization error bounds (Baxter, 1995) can be
achieved because of the shared parameters, for which statistical strength can be
greatly improved (in proportion with the increased number of examples for the

shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between

the differents tasks are valid, i.e., that there is something shared across some of

the tasks.
From the point of view of deep learning, the underlying prior regarding the

data is the following: among the factors that explain the variations observed in
the data associated with the different tasks, some are shared across two or more

tasks.
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7.13 Adversarial Training

In many cases, neural networks have begun to reach human performance when
evaluated on an i.i.d. test set.. It is natural therefore to wonder whether these
models have obtained a true human-level understanding of these tasks. In order
to probe the level of understanding a network has of the underlying task, we
can search for examples that the model misclassifies. Szegedy et al. (2014b)
found that even neural networks that perform at human level accuracy have a

nearly 100% error rate on examples that are intentionally constructed by using
an optimization procedure to search for an input x0 near a data point x such that
the model output is very different at x0. In many case, x 0 can be so similar to x

that a human observer cannot tell the difference between the original example and
the adversarial example, but the network can make highly different predictions.

See Fig. 7.7 for an example.
Adversarial examples have many implications, for example, in computer secu-

rity, that are beyond the scope of this chapter. However, they are interesting in
the context of regularization because one can reduce the error rate on the original

i.i.d. test set by training on adversarially perturbed examples from the training
set (Szegedy et al., 2014b).

Goodfellow et al. (2014b) showed that one of the primary causes of these ad-
versarial examples is excessive linearity. Neural networks are built out of primarily
linear building blocks, and in some empirical experiments the overall function they
implement proves to be highly linear as a result. These linear functions are easy

to optimize. Unfortunately, the value of a linear function can change very rapidly

if it has numerous inputs. If we change each input by , then a linear function
with weights w can change by as much as |w|, which can be a very large amount
of w is high-dimensional. Adversarial training discourages this highly sensitive
locally linear behavior by encouraging the network to be locally constant in the
neighborhood of the training data. This can be seen as a way of introducing the
local smoothness prior into supervised neural nets.

This phenomenon helps to illustrate the power of using a large function family
in combination with aggressive regularization. Purely linear models, like logistic

regression, are not able to resist adversarial examples because they are forced to
be linear. Neural networks are able to represent functions that can range from
nearly linear to nearly locally constant and thus have the flexibility to capture
linear trends in the training data while still learning to resist local perturbation.
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X

Y1 Y2

h1 h2 h3

Figure 7.6: Multi-task learning can be cast in several ways in deep learning frameworks
and this figure illustrates the common situation where the tasks share a common input but
involve different target random variables. The lower layers of a deep network (whether

it is supervised and feedforward or includes a generative component with downward
arrows) can be shared across such tasks, while task-specific parameters can be learned
on top of a shared representation (associated respectively with h1 and h2 in the figure).
The underlying assumption is that there exist a common pool of factors that explain the
variations in the input X , while each task is associated with a subset of these factors. In
the figure, it is additionally assumed that top-level hidden units are specialized to each
task, while some intermediate-level representation is shared across all tasks. Note that
in the unsupervised learning context, it makes sense for some of the top-level factors to
be associated with none of the output tasks (h 3): these are the factors that explain some
of the input variations but are not relevant for these tasks.
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+ .007 × =

x sign(∇xJ(θ,x, y))
x +

 sign(∇x J(θ,x, y))

“panda” “nematode” “gibbon”
57.7%

confidence
8.2% confidence

99.3 %

confidence

Figure 7.7: A demonstration of adversarial example generation applied to GoogLeNet
(Szegedy et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose

elements are equal to the sign of the elements of the gradient of the cost function with
respect to the input, we can change GoogLeNet’s classification of the image. Reproduced
with permission from Goodfellow et al. (2014b).
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Chapter 8

Optimization for Training
Deep Models

Deep learning algorithms involve optimization in many contexts. For example, we
often solve optimization problems analytically in order to prove that an algorithm
has a certain property. Inference in a probabilistic model can be cast as an
optimization problem. Of all of the many optimization problems involved in deep

learning, the most difficult is neural network training. It is quite common to
invest days to months of time on hundreds on machines in order to solve even a

single instance of the neural network training problem. Because this problem is
so important and so expensive, a specialized set of optimization techniques have
been developed for solving it. This chapter presents these optimization techniques
for neural network training.

If you’re unfamiliar with the basic principles of gradient-based optimization,
we suggest reviewing Chapter 4. That chapter includes a brief overview of nu-
merical optimization in general.

This chapter focuses on one particular case of optimization: minimizing a cost
function J(X (train),θ) with respect to the model parameters θ.

8.1 Optimization for Model Training

Optimization algorithms used for training of deep models differ from traditional
optimization algorithms in several ways. Machine learning usually acts indirectly—
we care about some performance measure P that we do not know how to directly
influence, so instead we reduce some cost function J(θ) in hope that it will improve
P . This is in contrast to pure optimization, where minimizing J is a goal in and
of itself. Optimization algorithms for training deep models also typically include
some specialization on the specific structure of machine learning cost functions.
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8.1.1 Empirical Risk Minimization

Suppose that we have input feature x, targets y, and some loss function L(x, y).
Our ultimate goal is to minimize Ex,y∼p(x,y)[L(x, y)]. This quantity is known as

the risk. If we knew the true distribution p(x, y), this would be an optimization
task solveable by an optimization algorithm. However, when we do not know
p(x, y) but only have a training set of samples from it, we have a machine learning

problem.
The simplest way to convert a machine learning problem back into an opti-

mization problem is to minimize the expected loss on the training set. This means
replacing the true distribution p(x, y) with the empirical distribution p̂(x, y) de-
fined by the training set. We now minimize the empirical risk

Ex,y∼p̂(x,y)[L(x, y)] =
1

m

mX

i=1

L(x(i), y(i))

where m is the number of training examples.
This process is known as empirical risk minimization. In this setting, machine

learning is still very similar to straightforward optimization. Rather than opti-
mizing the risk directly, we optimize the empirical risk, and hope that the risk
decreases significantly as well. A variety of theoretical results establish conditions
under which the true risk can be expected to decrease by various amounts.

However, empirical risk minimization is prone to overfitting. Models with
high capacity can simply memorize the training set. In many cases, empirical

risk minimization is not really feasible. The most effective modern optimization
algorithms are based on gradient descent, but many useful loss functions, such
as 0-1 loss, have no useful derivatives (the derivative is either zero or undefined
everywhere). These two problems mean that, in the context of deep learning, we
rarely use empirical risk minimization. Instead, we must use a slightly different
approach, in which the quantity that we actually optimize is even more different
from the quantity that we truly want to optimize.

TODO– make sure 0-1 loss is defined and in the index

8.1.2 Surrogate Loss Functions

TODO–coordinate with Yoshua / coordinate with MLP / ML chapters do we use
term loss function = map from a specific example to a real number or do we use it
interchangeably with objective function / cost function? it seems some literature
uses ”loss function” in a very general sense while others use it to mean specifically
a single-example cost that you can take the expectation of, etc. this terminology
seems a bit sub-optimal since it relies a lot on using English words with essentially
the same meaning to represent different things with precise technical meanings
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are ”surrogate loss functions” specifically replacing the cost for an individual
examples, or does this also include things like minimizing the empirical risk rather
than the true risk, adding a regularization term to the likelihood terms, etc.?

TODO– in some cases, surrogate loss function actually results in being able
to learn more. for example, test 0-1 loss continues to decrease for a long time
after train 0-1 loss has reached zero when training using log likelihood surrogate

In some cases, using a surrogate loss function allows us to extract more infor-
mation

8.1.3 Generalization

TODO– SGD on an infinite dataset optimizes the generalization error directly
(note that SGD is not introduced until later so this will need to be presented
carefully) TODO–

A very important difference between optimization in general and optimization
as we use it for training algorithms is that training algorithms do not usually
halt at a local minimum. Instead, using a regularization method known as early
stopping (see Sec. 7.7), they halt whenever overfitting begins to occur. This

is often in the middle of a wide, flat region, but it can also occur on a steep
part of the surrogate loss function. This is in contrast to general optimization,

where converge is usually defined by arriving at a point that is very near a (local)
minimum.

8.1.4 Batches and Minibatches

One aspect of machine learning algorithms that separates them from general
optimization algorithms is that the objective function usually decomposes as a
sum over the training examples. Optimization algorithms for machine learning
typically compute each update to the parameters based on a subset of the terms
of the objective function, not based on the complete objective function itself.

For example, maximum likelihood estimation problems decompose into a sum
over each example: TODO equation, using same format as in original maximum

likelihood section, which isn’t written yet
TODO stochastic gradient descent see 8.3.2
TODO examples can be redundant, so best computational efficiency comes

from minibatches TODO too small of batch size -¿ bad use of multicore architec-
tures TODO issues with Hessian being different for different batches, etc. TODO
importance of shuffling shuffle-once versus shuffle per epoch todo: define the term
“epoch”
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8.1.5 Data Parallelism

TODO asynch implementations, hogwild, distbelief

8.2 Challenges in Optimization

8.2.1 Local Minima

TODO check whether this is already covered in numerical.tex

8.2.2 Ill-Conditioning

TODO this is definitely already covered in numerical.tex

8.2.3 Plateaus, Saddle Points, and Other Flat Regions

The long-held belief that neural networks are hopeless to train because they are
fraught with local minima has been one of the reasons for the “neural networks
winter” in the 1995-2005 decade. Indeed, one can show that there may be an
exponentially large number of local minima, even in the simplest neural network

optimization problems (Sontag and Sussman, 1989; Brady et al., 1989; Gori and
Tesi, 1992).

Theoretical work has shown that saddle points (and the flat regions surround-
ing them) are important barriers to training neural networks, and may be more
important than local minima.

Explain (Dauphin et al., 2014; Choromanska et al., 2014)

8.2.4 Cliffs and Exploding Gradients

Whereas the issues of ill-conditioning and saddle points discussed in the previous
sections arise because of the second-order structure of the objective function (as

a function of the parameters), neural networks involve stronger non-linearities
which do not fit well with this picture. In particular, the second-order Taylor
series approximation of the objective function yields a symmetric view of the
landscape around the minimum, oriented according to the axes defined by the
principal eigenvectors of the Hessian matrix. (TODO: REFER TO A PLOT
FROM THE ILL-CONDITIONING SECTION WITH COUNTOURS OF VAL-
LEY). Second-order methods and momentum or gradient-averaging methods in-
troduced in Section 8.4 are able to reduce the difficulty due to ill-conditioning by
increasing the size of the steps in the low-curvature directions (the “valley”, in
Figure 8.1) and decreasing the size of the steps in the high-curvature directions

(the steep sides of the valley, in the figure).
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Figure 8.1: The traditional view of the optimization difficulty in neural networks is
inspired by the ill-conditioning problem in quadratic optimization: some directions have

a high curvature (second derivative), corresponding to the rising sides of the valley, and
other directions have a low curvature, corresponding to the smooth slope of the valley.
Most second-order methods, as well as momentum or gradient averaging methods are
meant to address that problem, by increasing the step size in the direction of the valley
(where it’s most paying in the long run to go) and decreasing it in the directions of steep
rise, which would otherwise lead to oscillations. The objective is to smoothly go down,
staying at the bottom of the valley.

However, although classical second order methods can help, as shown in Fig-
ure 8.2, due to higher order derivatives, the objective function may have a lot
more non-linearity, which often does not have the nice symmetrical shapes that
the second-order “valley” picture builds in our mind. Instead, there are cliffs
where the gradient rises sharply. When the parameters approach a cliff region,

the gradient update step can move the learner towards a very bad configuration,
ruining much of the progress made during recent training iterations.
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Figure 8.2: Contrary to what is shown in Figure 8.1, the cost function for highly non-
linear deep neural networks or for recurrent neural networks is typically not made of
symmetrical sides. As shown in the figure, there are sharp non-linearities that give rise
to very high derivatives in some places. When the parameters get close to such a cliff
region, a gradient descent update can catapult the parameters very far, possibly ruining
a lot of the optimization work that had been done. Figure graciously provided by Razvan
Pascanu (Pascanu, 2014).

As illustrated in Figure 8.3, the cliff can be dangerous whether we approach it
from above or from below, but fortunately there are some fairly straightforward
heuristics that allow one to avoid its most serious consequences. The basic idea

is to limit the size of the jumps that one would make. Indeed, one should keep
in mind that when we use the gradient to make an update of the parameters, we
are relying on the assumption of infinitesimal moves. There is no guarantee that
making a finite step of the parameters θ in the direction of the gradient will yield
an improvement. The only thing that is guaranteed is that a small enough step

in that direction will be helpful. As we can see from Figure 8.3, in the presence
of a cliff (and in general in the presence of very large gradients), the decrease

in the objective function expected from going in the direction of the gradient is
only valid for a very small step. In fact, because the objective function is usually
bounded in its actual value (within a finite domain), when the gradient is large at
θ, it typically only remains like this (especially, keeping its sign) in a small region
around θ. Otherwise, the value of the objective function would have to change
a lot: if the slope was consistently large in some direction as we would move in
that direction, we would be able to decrease the objective function value by a
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very large amount by following it, simply because the total change is the integral
over some path of the directional derivatives along that path.

Figure 8.3: To address the presence of cliffs such as shown in Figure 8.2, a useful heuristic
is to clip the magnitude of the gradient, only keeping its direction if its magnitude is above
a threshold (which is a hyperparameter, although not a very critical one). This helps to

avoid the destructive big moves which would happen when approaching the cliff, either
from above or from below. Figure graciously provided by Razvan Pascanu (Pascanu,
2014).

The gradient clipping heuristics are described in more detail in Section 10.7.6.
The basic idea is to bound the magnitude of the update step, i.e., not trust the
gradient too much when it is very large in magnitude. The context in which such
cliffs have been shown to arise in particular is that of recurrent neural networks,
when considering long sequences, as discussed in the next section.

8.2.5 Vanishing and Exploding Gradients - An Introduction to
the Issue of Learning Long-Term Dependencies

Parametrized dynamical systems such as recurrent neural networks (Chapter 10)

face a particular optimization problem which is different but related to that of
training very deep networks. We introduce this issue here and refer to reader to
Section 10.7 for a deeper treatment along with a discussion of approaches that
have been proposed to reduce this difficulty.

Exploding or Vanishing Product of Jacobians

The simplest explanation of the problem, which is shared among very deep nets
and recurrent nets, is that in both cases the final output is the composition of a
large number of non-linear transformations. Even though each of these non-linear
stages may be relatively smooth (e.g. the composition of an affine transformation
with a hyperbolic tangent or sigmoid), their composition is going to be much
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“more non-linear”, in the sense that derivatives through the whole composition
will tend to be either very small or very large, with more ups and downs. TODO:
the phrase ”ups and downs” has a connotation of specifically good things and bad
things happening over time, use a different phrase. this section is also sloppily
conflating many different ideas, just having both areas of large derivatives and
small derivatives does not mean there are lots of ups and downs, consider the
function (1 − x ∗ y)2, which has small derivatives near the origin and the global
minima, much larger derivatives in between This arises simply because the Jaco-
bian (matrix of derivatives) of a composition is the product of the Jacobians of

each stage, i.e., if
f = fT ◦ fT−1 ◦ . . . , f2 ◦ f1

then the Jacobian matrix of derivatives of f(x) with respect to its input vector x
is the product

f 0 = f0Tf
0
T−1 . . . , f

0
2f1 (8.1)

where

f 0 =
∂f(x)

∂x

and

f 0t =
∂ft(at)

∂at

where at = ft−1(ft−2(. . . , f2 (f1(x)))), i.e. composition has been replaced by
matrix multiplication. This is illustrated in Figure 8.4. TODO: the above sentence
is incredibly long, split it up and probably put the definitions in the opposite order.

It also seems strange to say composition is ”replaced” by matrix multiplication,
more like composition in forward prop implies matrix multiplication in backprop

!! ="!!

…"
Figure 8.4: When composing many non-linearities (like the activation non-linearity in a
deep or recurrent neural network), the result is highly non-linear, typically with most
of the values associated with a tiny derivative, some values with a large derivative, and

many ups and downs (not shown here).

TODO: can we avoid using capital letters for scalars here? (T) In the scalar
case, we can imagine that multiplying many numbers together tends to be either

very large or very small. In the special case where all the numbers in the product
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have the same value α, this is obvious, since αT goes to 0 if α < 1 and goes to
∞ if α > 1, as T increases. The more general case of non-identical numbers be
understood by taking the logarithm of these numbers, considering them to be
random, and computing the variance of the sum of these logarithms. Clearly,
although some cancellation can happen, the variance grows with T , and in fact
if those numbers are independent, the variance grows linearly with T , i.e., the
size of the sum (which is the standard deviation) grows as

√
T , which means that

the product grows roughly as eT (consider the variance of log-normal variate X
if logX is normal with mean 0 and variance T ).

It would be interesting to push this analysis to the case of multiplying square
matrices instead of multiplying numbers, but one might expect qualitatively sim-

ilar conclusions, i.e., the size of the product somehow grows with the number of
matrices, and that it grows exponentially. In the case of matrices, one can get
a new form of cancellation due to leading eigenvectors being well aligned or not.

The product of matrices will blow up only if, among their leading eigenvectors
with eigenvalue greater than 1, there is enough “in common” (in the sense of the

appropriate dot products of leading eigenvectors of one matrix and another).
However, this analysis was for the case where these numbers are independent.

In the case of an ordinary recurrent neural network (developed in more detail in
Chapter 10), these Jacobian matrices are highly related to each other. Each layer-

wise Jacobian is actually the product of two matrices: (a) the recurrent matrixW
and (b) the diagonal matrix whose entries are the derivatives of the non-linearities
associated with the hidden units, which vary depending on the time step. This

makes it likely that successive Jacobians have similar eigenvectors, making the
product of these Jacobians explode or vanish even faster.

Consequence for Recurrent Networks: Difficulty of Learning Long-
Term Dependencies

The consequence of the exponential convergence of these products of Jacobians
towards either very small or very large values is that it makes the learning of
long-term dependencies particularly difficult, as we explain below and was inde-
pendently introduced in Hochreiter (1991) and Bengio et al. (1993, 1994) for the
first time.

TODO: why the capital F? Can we use lowercase instead? This also appears
in rnn.tex Consider a fairly general parametrized dynamical system (which in-
cludes classical recurrent networks as a special case, as well as all their known

variants), processing a sequence of inputs, x1, . . . , xt, . . ., involving iterating over
the transition operator:

st = Fθ (st−1, xt ) (8.2)

where st is called the state of the system and Fθ is the recurrent function that
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maps the previous state and current input to the next state. The state can be
used to produce an output via an output function,

ot = gω(st), (8.3)

TODO: could we avoid the capital T? and a loss Lt is computed at each time step

t as a function of o t and possibly of some targets yt. Let us consider the gradient
of a loss LT at time T with respect to the parameters θ of the recurrent function
Fθ. One particular way to decompose the gradient ∂LT

∂θ
using the chain rule is the

following:

∂LT

∂θ
=
X

t≤T

∂LT

∂st

∂s t

∂θ

∂LT

∂θ
=
X

t≤T

∂LT

∂sT

∂sT

∂st

∂Fθ (st−1, xt)

∂θ
(8.4)

where the last Jacobian matrix only accounts for the immediate effect of θ as a
parameter of Fθ when computing st = Fθ(st−1 , x t), i.e., not taking into account

the indirect effect of θ via s t−1 (otherwise there would be double counting and the
result would be incorrect). To see that this decomposition is correct, please refer

to the notions of gradient computation in a flow graph introduced in Section 6.4,
and note that we can construct a graph in which θ influences each st, each of
which influences L T via sT . Now let us note that each Jacobian matrix ∂sT

∂st
can

be decomposed as follows:

∂sT
∂s t

=
∂sT
∂sT−1

∂sT−1

∂sT−2
. . .
∂st+1

∂st
(8.5)

which is of the same form as Eq. 8.1 discussed above, i.e., which tends to either
vanish or explode.

As a consequence, we see from Eq. 8.4 that ∂LT
∂θ is a weighted sum of terms

over spans T −t, with weights that are exponentially smaller (or larger) for longer-
term dependencies relating the state at t to the state at T . As shown in Bengio
et al. (1994), in order for a recurrent network to reliably store memories, the Ja-
cobians ∂st

∂st−1
relating each state to the next must have a determinant that is less

than 1 (i.e., yielding to the formation of attractors in the corresponding dynam-
ical system). Hence, when the model is able to capture long-term dependencies
it is also in a situation where gradients vanish and long-term dependencies have
an exponentially smaller weight than short-term dependencies in the total gradi-
ent. It does not mean that it is impossible to learn, but that it might take a
very long time to learn long-term dependencies, because the signal about these
dependencies will tend to be hidden by the smallest fluctuations arising from
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short-term dependencies. In practice, the experiments in Bengio et al. (1994)
show that as we increase the span of the dependencies that need to be captured,
gradient-based optimization becomes increasingly difficult, with the probability
of successful learning rapidly reaching 0 after only 10 or 20 steps in the case of
the vanilla recurrent net and stochastic gradient descent (Section 8.3.2).

For a deeper treatment of the dynamical systems view of recurrent networks,
consider Doya (1993); Bengio et al. (1994); Siegelmann and Sontag (1995), with a
review in Pascanu et al. (2013a). Section 10.7 discusses various approaches that
have been proposed to reduce the difficulty of learning long-term dependencies

(in some cases allowing one to reach to hundreds of steps), but it remains one of
the main challenges in deep learning.

8.3 Optimization Algorithms

In Sec. 6.4, we discussed the backpropagation algorithm (backprop): that is,
how to efficiently compute the gradient of the loss with-respect-to the model
parameters. The backpropagation algorithm does not specify how we use this
gradient to update the weights of the model.

In this section we introduce a number of gradient-based learning algorithms
that have been proposed to optimize the parameters of deep learning models.

Deep learning

8.3.1 Gradient Descent

Gradient descent is the most basic gradient-based algorithms one might apply to
train a deep model. The algorithm involves updating the model parameters θ (in

the case of a deep neural network, these parameters would include the weights
and biases associated with each layer) with a small step in the direction of the
gradient of the loss function (including any regularization terms). For the case of
supervised learning with data pairs [x(t) ,y(t) ] we have:

θ ← θ + ∇θ

X

t

L(f(x(t);θ),y(t);θ), (8.6)

where  is the learning rate, an optimization hyperparameter that controls the size
of the step the the parameters take in the direction of the gradient. Of course,
following the gradient in this way is only guaranteed to reduce the loss in the
limit as → 0.

TODO: orphaned phrase on next line, was this a note for a thing to do or was

it a typo? learning rates
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8.3.2 Stochastic Gradient Descent

One aspect of machine learning algorithms that separates them from general
optimization algorithms is that the objective function usually decomposes as a

sum over the training examples. Optimization algorithms for machine learning
typically compute each update to the parameters based on a subset of the terms
of the objective function, not based on the complete objective function itself.

For example, maximum likelihood estimation problems decompose into a sum
over each example:

TODO equation, using same format as in original maximum likelihood section,
which isn’t written yet

More general, we are really interested in minimizing the expected loss with the
expectation taken with respect to the data distribution, i.e. EX ,Y [L(fθ(X),Y )],

with X,Y ∼ P (X,Y ). As discussed in Sec. 6.2, we replace this expectation
with an average over the training data (eg. for n examples):

expected loss =
1

n

nX

t=1

L(f(x(t)),y (t)) (8.7)

This form of the loss implies that the gradient also consists of an average of the

gradient contributions for each data point:

∂

∂θ
expected loss =

1

n

nX

t=1

L(f(x (t)),y(t)) (8.8)

Now
So we can interpret the right hand side of Eqn. 8.8 as an estimator of the

gradient of the expected loss. Seen in this light, it’s reasonble to think about the
properties of this estimator, such as its mean and variance.

Provided that there are a relatively large number of examples in the training
set, computing the gradient over all examples in the training dataset – also known
as batch gradient descent – would yeild a relatively small variance on the estimate

In application to training deep learning models, straightforward gradient de-
scent – where each gradient step involves computing the gradient for all training

examples – is well known to be inefficient. This is especially true when we are
dealing with large datasets.

TODO stochastic gradient descent
TODO examples can be redundant, so best computational efficiency comes

from minibatches TODO too small of batch size -¿ bad use of multicore architec-
tures TODO issues with Hessian being different for different batches, etc.

TODO importance of shuffling shuffle-once versus shuffle per epoch todo: de-
fine the term “epoch”

discuss learning rates.

237



CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

Algorithm 8.1 Stochastic gradient descent (SGD) update at time t

Require: Learning rate η.
Require: Initial parameter θ

while Stopping criterion not met do
Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}.
Set g = 0
for t = 1 to m do

Compute gradient estimate: g ← g + ∇θL(f(x(t);θ),y(t))
end for
Apply update: θ ← θ − ηg

end while

8.3.3 Momentum

While stochastic gradient descent remains a very popular optimization strategy,
learning with it can sometimes be slow. This is especially true in situations
where there the gradient is small, but consistent across minibatches. From the
consistency of the gradient, we know that we can afford to take larger steps in this
direction, yet we have no way of really knowing when we are in such situations.

The Momentum method Polyak (1964) is designed to accelerate learning, es-
pecially in the face of small and consistent gradients. The intuition behind mo-

mentum, as the name suggests, is derived from a physical interpretation of the
optimization process. Imagine you have a small ball (think marble) that rep-
resents the current position in parameter space (for our purposes here we can
imagine a 2-D parameter space). Now consider that the ball is on a gentle slope,
while the instantaneous force pulling the ball down hill is relatively small, their
contributions combine and the downhill velocity of the ball gradually begins to
increase over time. The momentum method is designed to inject this kind of
downhill acceleration into gradient-based optimization. TODO: explain effect of
drag on the marble and why it should be linear drag

Formally, we introduce a variable v that plays the role of velocity (or momen-
tum) that accumulates gradient. The update rule is given by:

v ← +αv + η∇θ

 
1

n

nX

t=1

L(f(x(t);θ),y(t))

!

θ ← θ + v

where the
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Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate η, momentum parameter α.
Require: Initial parameter θ, initial velocity v.

while Stopping criterion not met do
Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}.
Set g = 0
for t = 1 to m do

Compute gradient estimate: g ← g + ∇θL(f(x(t);θ),y(t))
end for
Compute velocity update: v ← αv − ηg
Apply update: θ ← θ + v

end while

Nesterov momentum Sutskever et al. (2013) introduced a variant of the mo-

mentum algorithm that was inspired by Nesterov.

v ← +αv + η∇θ

 
1

n

nX

t=1

L(f(x(t);θ + αv),y (t) )

!
,

θ ← θ + v,

where the parameters α and η play a similar role as in the standard momentum

method. The difference betwee Nesterov momentum and standard momentum is
where the gradient is evaluated.

Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate η, momentum parameter α.
Require: Initial parameter θ, initial velocity v.

while Stopping criterion not met do
Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}.
Apply interim update: θ ← θ + αv
Set g = 0

for t = 1 to m do

Compute gradient (at interim point): g ← g + ∇θL(f(x(t) ;θ),y(t))
end for
Compute velocity update: v ← αv − ηg
Apply update: θ ← θ + v

end while

8.3.4 Adagrad
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Algorithm 8.4 The Adagrad algorithm

Require: Global learning rate η,

Require: Initial parameter θ
Initialize gradient accumulation variable r = 0,
while Stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}.
Set g = 0
for t = 1 to m do

Compute gradient: g ← g + ∇θL(f(x(t) ;θ),y(t))
end for
Accumulate gradient: r ← r + g2

Compute update: ∆θ ← − η√
r
g. % ( 1√

r
applied element-wise)

Apply update: θ ← θ + ∆θt
end while

8.3.5 RMSprop

Algorithm 8.5 The RMSprop algorithm

Require: Global learning rate η, decay rate ρ.
Require: Initial parameter θ

Initialize accumulation variables r = 0
while Stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}.
Set g = 0
for t = 1 to m do

Compute gradient: g ← g + ∇θL(f(x(t) ;θ),y(t))
end for
Accumulate gradient: r ← ρr + (1 − ρ)g2

Compute parameter update: ∆θ = − η√
r

 g. % ( 1√
r

applied element-wise)

Apply update: θ ← θ + ∆θ
end while

8.3.6 Adadelta

8.3.7 No Pesky Learning Rates
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Algorithm 8.6 RMSprop algorithm with Nesterov momentum

Require: Global learning rate η, decay rate ρ, momentum para α.

Require: Initial parameter θ, initial velocity v.
Initialize accumulation variable r = 0
while Stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}.
Compute interim update: θ ← θ + αv
Set g = 0

for t = 1 to m do
Compute gradient: g ← g + ∇θL(f(x(t) ;θ),y(t))

end for

Accumulate gradient: r ← ρr + (1 − ρ)g2
Compute velocity update: v ← αv − η√

r
 g. % ( 1√

r
applied element-wise)

Apply update: θ ← θ + v
end while

8.4 Approximate Natural Gradient and Second-Order
Methods

8.5 Conjugate Gradients

8.6 BFGS

TONGA and “actual” NG, links with HF.

8.6.1 New

8.6.2 Optimization Strategies and Meta-Algorithms

8.6.3 Coordinate Descent

In some cases, it may be possible to solve an optimization problem quickly by
breaking it into separate pieces. If we minimize f(x) with respect to a single
variable xi, then minimize it with respect to another variable xj and so on, we are
guaranteed to arrive at a (local) minimum. This practice is known as coordinate
descent, because we optimize one coordinate at a time. More generally, block
coordinate descent refers to minimizing with respect to a subset of the variables
simultaneously. The term “coordinate descent” is often used to refer to block
coordinate descent as well as the strictly individual coordinate descent.
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Algorithm 8.7 The Adadelta algorithm

Require: Decay rate ρ, constant 

Require: Initial parameter θ
Initialize accumulation variables r = 0, s = 0,
while Stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}.
Set g = 0
for t = 1 to m do

Compute gradient: g ← g + ∇θL(f(x(t) ;θ),y(t))
end for
Accumulate gradient: r ← ρr + (1 − ρ)g2

Compute update: ∆θ = −
√
s+√
r+
g % (operations applied element-wise)

Accumulate update: s ← ρs + (1 − ρ) [∆θ]2

Apply update: θ ← θ + ∆θ
end while

Coordinate descent makes the most sense when the different variables in the

optimization problem can be clearly separated into groups that play relatively
isolated roles, or when optimization with respect to one group of variables is
significantly more efficient than optimization with respect to all of the variables.
For example, the objective function most commonly used for sparse coding is not
convex. However, we can divide the inputs to the training algorithm into two

sets: the dictionary parameters and the code representations. Minimizing the
objective function with respect to either one of these sets of variables is a convex

problem. Block coordinate descent thus gives us an optimization strategy that
allows us to use efficient convex optimization algorithms.

Coordinate descent is not a very good strategy when the value of one variable
strongly influences the optimal value of another variable, as in the function f(x) =
(x 1 − x2)2 + α


x21 + y21


where α is a positive constant. As α approaches 0,

coordinate descent ceases to make any progress at all, while Newton’s method

could solve the problem in a single step.

8.6.4 Greedy Supervised Pre-training

TODO
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Algorithm 8.8 The vSGD-1 algorithm from Schaul et al. (2012)

Require: Initial parameter θ0
Initialize accumulation variables q = 0, r = 0,s = 0
while Stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}.
Initialize the gradient g = 0
for t = 1 to m do

Compute gradient: g ← g + ∇θL(f(x(t) ;θ),y(t))
end for
Accumulate gradient: q ← ρq + (1 − ρ)g
Accumulate squared gradient: r ← ρr + (1 − ρ)g2

Accumulate: s ← ρs + (1 − ρ)
bbprop(θ)(j)

i



estimate learning rate (element-wise calc.): η∗ ← q
2

sr

Update memory size: ρ ←

q2

r
− 1
−1

(1 − ρ)
Compute update: ∆θ = −η∗ g
% All operations above should be interpreted as element-wise.
Apply update: θ ← θ + ∆θ

end while

8.7 Hints, Global Optimization and Curriculum Learn-

ing

Most of the work on numerical optimization for machine learning and deep learn-
ing in particular is focused on local descent, i.e., on how to locally improve the
objective function efficiently. What the experiments with different initialization

strategies tell us is that local descent methods can get stuck, presumably near a
local minimum or near a saddle point, i.e., where gradients are small, so that the
initial value of the parameters can matter a lot.

As an illustration of this issue, consider the experiments reported by Gülçehre

and Bengio (2013), where a learning task is setup so that if the lower half of the
deep supervised network is pre-trained with respect to an appropriate sub-task,

the whole network can learn to solve the overall task, whereas random initializa-

tion almost always fails. In these experiments, we know that the overall task can
be decomposed into two tasks (1) (identifying the presence of different objects
in an input image and (2) verifying whether the different objects detected are of
the same class or not. Each of these two tasks (object recognition, exclusive-or)
are known to be learnable, but when we compose them, it is much more difficult
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Algorithm 8.9 Conjugate gradient method

Require: Initial parameters θ0
Initialize ρ0 = 0
while stopping criterion not met do

Initialize the gradient g = 0
for t = 1 to n % loop over the training set. do

Compute gradient: g ← g + ∇θL(f(x(t) ;θ),y(t))
end forbackpropagation)

Compute βt =
(gt−g t−1)>g t

g>t−1 gt−1
(Polak — Ribìere)

Compute search direction: ρt = −gt + βtρt−1

Perform line search to find: η∗ = argminη J(θt + ηρt)

Apply update: θt+1 = θt + η∗ρt
end while

Algorithm 8.10 BFGS method

Require: Initial parameters θ0
Initialize inverse Hessian M0 = I
while stopping criterion not met do

Compute gradient: gt = ∇J(θt) (via batch backpropagation)
Compute φ = gt − gt−1, ∆ = θ t − θt−1

Approx H−1: M t = Mt−1+


1 + φ>M t−1φ

∆>φ


φ>φ

∆>φ
−

∆φ>M t−1+Mt−1φ∆>

∆>φ



Compute search direction: ρt = M tgt
Perform line search to find: η∗ = argminη J(θt + ηρt)
Apply update: θt+1 = θt + η∗ρt

end while

to optimize the neural network (including a large variety of architectures), while

other methods such as SVMs, boosting and decision trees also fail. This is an
instance where the optimization difficulty was solved by introducing prior knowl-
edge in the form of hints, specifically hints about what the intermediate layer in

a deep net should be doing. We have already seen in Section 8.6.4 that a useful
strategy is to ask the hidden units to extract features that are useful to the super-

vised task at hand, with greedy supervised pre-training. In section 16.1 we will
discuss an unsupervised version of this idea, where we ask the intermediate layers
to extract features that are good explaining the variations in the input, without
reference to a specific supervised task. Another related line of work is the Fit-
Nets (Romero et al., 2015), where the middle layer of 5-layer supervised teacher
network is used as a hint to be predicted by the middle layer of a much deeper
student network (11 to 19 layers). In that case, additional parameters are intro-
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duced to regress the middle layer of the 5-layer teacher network from the middle
layer of the deeper student network. The lower layers of the student networks
thus get two objectives: help the outputs of the student network accomplish their
task, as well as predict the intermediate layer of the teacher network. Although
a deeper network is usually more difficult to optimize, it can generalize better (it
has to extract these more abstract and non-linear features). Romero et al. (2015)
were motivated by the fact that a deep student network with a smaller number
of hidden units per layer can have a lot less parameters (and faster computation)
than a fatter shallower network and yet achieve the same or better generalization,

thus allowing a trade-off between better generalization (with 3 times fewer pa-
rameters) and faster test-time computation (up to 10 fold, in the paper, using a

very thin and deep network with 35 times less parameters). Without the hints on
the hidden layer, the student network performed very poorly in the experiments,
both on the training and test set.

These drastic effects of initialization and hints to middle layers bring forth
the question of what is sometimes called global optimization (Horst et al., 2000),

the main subject of this section. The objective of global optimization methods is
to find better solutions than local descent minimizers, i.e., ideally find a global
minimum of the objective function and not simply a local minimum. If one could
restart a local optimization method from a very large number of initial conditions,

one could imagine that the global minimum could be found, but there are more
efficient approaches.

Two fairly general approaches to global optimization are continuation meth-

ods (Wu, 1997), a deterministic approach, and simulated annealing (Kirkpatrick
et al., 1983), a stochastic approach. They both proceed from the intuition that
if we sufficiently blur a non-convex objective function (e.g. convolve it with a

Gaussian) whose global minima arae not at infinite values, then it becomes con-
vex, and finding the global optimum of that blurred objective function should be
much easier. As illustrated in Figure 8.5, by gradually changing the objective
function from a very blurred easy to optimize version to the original crisp and
difficult objective function, we are actually likely to find better local minima. In
the case of simulated annealing, the blurring occurs because of injecting noise.

With injected noise, the state of the system can sometimes go uphill, and thus
does not necessarily get stuck in a local minimum. With a lot of noise, the ef-

fective objective function (averaged over the noise) is flatter and convex, and if
the amount of noise is reduced sufficiently slowly, then one can show convergence
to the global minimum. However, the annealing schedule (the rate at which the
noise level is decreased, or equivalently the temperature is decreased when you
think of the physical annealing analogy) might need to be extremely slow, so an
NP-hard optimization problem remains NP-hard.
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Track local minima 

 

Final solution 

 

Easy to find minimum 

Figure 8.5: Optimization based on continuation methods: start by optimizing a smoothed
out version of the target objective function (possibly convex), then gradually reduce
the amount of smoothing while tracking the local optimum. This approach tends to
find better local minima than a straight local descent approach on the target objective
function. Curriculum learning (starting from easy examples and gradually introducing
with higher probability more difficult examples) can be justified under that light (Bengio
et al., 2009).

Continuation methods have been extremely successful in recent years: see a
recent overview of recent literature, especially for AI applications in Mobahi and

Fisher III (2015). Continuation methods define a family of objective functions,

indexed by a single scalar index λ, with an easy to optimize objective function at
one end (usually convex, say λ = 1) and the target objective at the other end (say
λ = 0). The idea is to first find the solution for the easy problem (λ = 1) and

then gradually decrease λ towards the more difficult objectives, while tracking the
minimum.

Curriculum learning (Bengio et al., 2009) was introduced as a general strat-
egy for machine learning that is inspired by how humans learn, starting by learn-

ing to solve simple tasks, and then exploiting what has been learned to learn
slightly more difficult and abstract tasks, etc. It was justified as a continua-
tion method (Bengio et al., 2009) in the context of deep learning, where it was

previously observed that the optimization problem can be challenging. Experi-
ments showed that better results could be obtained by following a curriculum, in

particular on a large-scale neural language modeling task. One view on curricu-
lum learning introduced in that paper is that a particular intermediate objective
function corresponds to a reweighing on the examples: initially the easy to learn
examples are given more weights or a higher probability, and harder examples
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see their weight or probability gradually increased as the learner gets sufficiently
ready to learn them. The idea of curriculum learning to help train difficult to
optimize models has been taken up successfully not only in natural language
tasks (Spitkovsky et al., 2010; Collobert et al., 2011a; Mikolov et al., 2011b; Tu
and Honavar, 2011) but also in computer vision (Kumar et al., 2010; Lee and
Grauman, 2011; Supancic and Ramanan, 2013). It was also found to be con-
sistent with the way in which humans teach (Khan et al., 2011): they start by
showing easier and more prototypical examples and then help the learner refine
the decision surface with the less obvious cases. In agreement with this, it was

found that such strategies are more effective when teaching to humans (Basu and
Christensen, 2013).

Another important contribution to research on curriculum learning arose in
the context of training recurrent neural networks to capture long-term dependen-
cies (Zaremba and Sutskever, 2014): it was found that much better results were

obtained with a stochastic curriculum, in which a random mix of easy and difficult
examples is always presented to the learner, but where the average proportion of

the more difficult examples (here, those with longer-term dependencies) is grad-
ually increased. Instead, with a deterministic curriculum, no improvement over
the baseline (ordinary training from the fully training set) was observed.
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Chapter 9

Convolutional Networks

Convolutional networks (also known as convolutional neural networks or CNNs)
are a specialized kind of neural network for processing data that has a known,

grid-like topology. Examples include time-series data, which can be thought of as
a 1D grid taking samples at regular time intervals, and image data, which can be
thought of as a 2D grid of pixels. Convolutional networks have been tremendously

successful in practical applications (the specifics of several of these applications
will be explained in Chapter 12.2.2). The name “convolutional neural network”

indicates that the network employs a mathematical operation called convolution.
Convolution is a specialized kind of linear operation. Convolutional networks
are simply neural networks that use convolution in place of general
matrix multiplication in at least one of their layers. KEY

IDEAIn this chapter, we will first describe what convolution is. Next, we will
explain the motivation behind using convolution in a neural network. We will
then describe an operation called pooling, which almost all convolutional networks
employ. Usually, the operation used in a convolutional neural network does not
correspond precisely to the definition of convolution as used in other fields such
as engineering or pure mathematics. We will describe several variants on the

convolution function that are widely used in practice for neural networks. We
will also show how convolution may be applied to many kinds of data, with

different numbers of dimensions. We then discuss means of making convolution
more efficient. We conclude with comments about the role convolutional networks
have played in the history of deep learning.

9.1 The Convolution Operation

In its most general form, convolution is an operation on two functions of a real-
valued argument. To motivate the definition of convolution, let’s start with ex-
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amples of two functions we might use.
Suppose we are tracking the location of a spaceship with a laser sensor. Our

laser sensor provides a single output x(t), the position spaceship at time t. Both
x and t are real-valued, i.e., we can get a different reading from the laser sensor
at any instant in time.

Now suppose that our laser sensor is somewhat noisy. To obtain a less noisy
estimate of the spaceship’s position, we would like to average together several
measurements. Of course, more recent measurements are more relevant, so we
will want this to be a weighted average that gives more weight to recent measure-

ments. We can do this with a weighting function w(a), where a is the age of a
measurement. If we apply such a weighted average operation at every moment,

we obtain a new function s providing a smoothed estimate of the position of the
spaceship:

s(t) =

Z
x(a)w(t − a)da

This operation is called convolution. The convolution operation is typically

denoted with an asterisk:

s(t) = (x ∗w)(t)

In our example, w needs to be a valid probability density function, or the
output is not a weighted average. Also, w needs to be 0 for all negative argu-

ments, or it will look into the future, which is presumably beyond our capabilities.
These limitations are particular to our example though. In general, convolution
is defined for any functions for which the above integral is defined, and may be
used for other purposes besides taking weighted averages.

In convolutional network terminology, the first argument (in this example,
the function x) to the convolution is often referred to as the input and the second
argument (in this example, the function w) as the kernel. The output is sometimes
referred to as the feature map.

In our example, the idea of a laser sensor that can provide measurements at
every instant in time is not realistic. Usually, when we work with data on a

computer, time will be discretized, and our sensor will provide data at regular
intervals. In our example, it might be more realistic to assume that our laser

provides one measurement once per second. t can then take on only integer
values. If we now assume that x and w are defined only on integer t, we can
define the discrete convolution:

s[t] = (x ∗w)(t) =
∞X

a=−∞
x[a]w[t − a]

TODO: synch w/Yoshua and Aaron about how to handle this kind of indexing.
Add an integer-domain function line to notation.tex?
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In machine learning applications, the input is usually a multidimensional array
of data and the kernel is usually a multidimensional array of learn-able param-
eters. We will refer to these multidimensional arrays as tensors. Because each
element of the input and kernel must be explicitly stored separately, we usually
assume that these functions are zero everywhere but the finite set of points for
which we store the values. This means that in practice we can implement the
infinite summation as a summation over a finite number of array elements.

Finally, we often use convolutions over more than one axis at a time. For
example, if we use a two-dimensional image I as our input, we probably also

want to use a two-dimensional kernel K:

s[i, j] = (I ∗K)[i, j] =
X

m

X

n

I[m, n]K[i−m, j − n]

Note that convolution is commutative, meaning we can equivalently write:

s[i, j] = (I ∗K)[i, j] =
X

m

X

n

I[i−m, j − n]K[m, n]

Usually the latter view is more straightforward to implement in a machine

learning library, because there is less variation in the range of valid values of m
and n.

While the commutative property is useful for writing proofs, it is not usually
an important property of a neural network implementation. Instead, many neural
network libraries implement a related function called the cross-correlation, which
is the same as convolution but without flipping the kernel:

s[i, j] = (I ∗K)[i, j] =
X

m

X

n

I[i+m, j + n]K[m, n]

Many machine learning libraries implement cross-correlation but call it convo-
lution. In this text we will follow this convention of calling both operations
convolution, and specify whether we mean to flip the kernel or not in contexts

where kernel flipping is relevant.
See Fig. 9.1 for an example of convolution (without kernel flipping) applied

to a 2-D tensor.
Discrete convolution can be viewed as multiplication by a matrix. However,

the matrix has several entries constrained to be equal to other entries. For exam-
ple, for univariate discrete convolution, each row of the matrix is constrained to be
equal to the row above shifted by one element. This is known as a Toeplitz matrix.
In two dimensions, a doubly block circulant matrix corresponds to convolution. In
addition to these constraints that several elements be equal to each other, con-
volution usually corresponds to a very sparse matrix (a matrix whose entries are
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Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-
left element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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mostly equal to zero). This is because the kernel is usually much smaller than
the input image. Viewing convolution as matrix multiplication usually does not
help to implement convolution operations, but it is useful for understanding and
designing neural networks. Any neural network algorithm that works with matrix
multiplication and does not depend on specific properties of the matrix structure
should work with convolution, without requiring any further changes to the neural
network. Typical convolutional neural networks do make use of further special-
izations in order to deal with large inputs efficiently, but these are not strictly
necessary from a theoretical perspective.

9.2 Motivation

Convolution leverages three important ideas that can help improve a machine
learning system: sparse interactions, parameter sharing, and equivariant repre-
sentations. Moreover, convolution provides a means for working with inputs of
variable size. We now describe each of these ideas in turn.

Traditional neural network layers use a matrix multiplication to describe the
interaction between each input unit and each output unit. This means every
output unit interacts with every input unit. Convolutional networks, however,
typically have sparse interactions (also referred to as sparse connectivity or sparse

weights). This is accomplished by making the kernel smaller than the input. For
example, when processing an image, the input image might have thousands or

millions of pixels, but we can detect small, meaningful features such as edges
with kernels that occupy only tens or hundreds of pixels. This means that we
need to store fewer parameters, which both reduces the memory requirements of
the model and improves its statistical efficiency. It also means that computing the
output requires fewer operations. These improvements in efficiency are usually
quite large. If there are m inputs and n outputs, then matrix multiplication
requires m × n parameters and the algorithms used in practice have O(m × n)
runtime (per example). If we limit the number of connections each output may
have to k, then the sparsely connected approach requires only k × n parameters

and O(k × n) runtime. For many practical applications, it is possible to obtain
good performance on the machine learning task while keeping k several orders of

magnitude smaller than m. For graphical demonstrations of sparse connectivity,
see Fig. 9.2 and Fig. 9.3. In a deep convolutional network, units in the deeper
layers may indirectly interact with a larger portion of the input, as shown in
Fig. 9.4. This allows the network to efficiently describe complicated interactions
between many variables by constructing such interactions from simple building
blocks that each describe only sparse interactions.

Parameter sharing refers to using the same parameter for more than one func-
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Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, X3, and

also highlight the output units in S that are affected by this unit. (Left) When S is
formed by convolution with a kernel of width 3, only three outputs are affected by X3.
(Right) When S is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by X3. TODO: make sure fig uses latest notation

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, S3,
and also highlight the input units in X that affect this unit. These units are known

as the receptive field of S3. (Left) When S is formed by convolution with a kernel of
width 3, only three inputs affect S3 . (Right) When S is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect S3. TODO: make sure fig uses
latest notation
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Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases
if the network includes architectural features like strided convolution or pooling. This
means that even though direct connections in a convolutional net are very sparse, units
in the deeper layers can be indirectly connected to all or most of the input image.
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Figure 9.5: Parameter sharing: We highlight the connections that use a particular pa-
rameter in two different models. (Left) We highlight uses of the central element of a
3-element kernel in a convolutional model. Due to parameter sharing, this single param-
eter is used at all input locations. (Right) We highlight the use of the central element of

the weight matrix in a fully connected model. This model has no parameter sharing so
the parameter is used only once.

tion in a model. In a traditional neural net, each element of the weight matrix
is used exactly once when computing the output of a layer. It is multiplied by
one element of the input, and then never revisited. As a synonym for parameter

sharing, one can say that a network has tied weights, because the value of the
weight applied to one input is tied to the value of a weight applied elsewhere. In
a convolutional neural net, each member of the kernel is used at every position of
the input (except perhaps some of the boundary pixels, depending on the design
decisions regarding the boundary). The parameter sharing used by the convolu-
tion operation means that rather than learning a separate set of parameters for
every location, we learn only one set. This does not affect the runtime of forward
propagation–it is still O(k×n)–but it does further reduce the storage requirements
of the model to k parameters. Recall that k is usual several orders of magnitude
less than m. Since m and n are usually roughly the same size, k is practically

insignificant compared to m× n. Convolution is thus dramatically more efficient
than dense matrix multiplication in terms of the memory requirements and sta-

tistical efficiency. For a graphical depiction of how parameter sharing works, see
Fig. 9.5.

As an example of both of these first two principles in action, Fig. 9.6 shows

how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
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Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)). In
the case of convolution, if we let g be any function that translate the input, i.e.,
shifts it, then the convolution function is equivariant to g. For example, define
g(x) such that for all i, g(x)[i] = x[i − 1]. This shifts every element of x one
unit to the right. If we apply this transformation to x, then apply convolution,
the result will be the same as if we applied convolution to x, then applied the
transformation to the output. When processing time series data, this means that
convolution produces a sort of timeline that shows when different features appear
in the input. If we move an event later in time in the input, the exact same

representation of it will appear in the output, just later in time. Similarly with
images, convolution creates a 2-D map of where certain features appear in the

input. If we move the object in the input, its representation will move the same
amount in the output. This is useful for when we know that same local function
is useful everywhere in the input. For example, when processing images, it is
useful to detect edges in the first layer of a convolutional network, and an edge
looks the same regardless of where it appears in the image. This property is not

always useful. For example, if we want to recognize a face, some portion of the
network needs to vary with spatial location, because the top of a face does not
look the same as the bottom of a face–the part of the network processing the top
of the face needs to look for eyebrows, while the part of the network processing

the bottom of the face needs to look for a chin.
Note that convolution is not equivariant to some other transformations, such

as changes in the scale or rotation of an image. Other mechanisms are necessary
for handling these kinds of transformations.

Finally, some kinds of data cannot be processed by neural networks defined by
matrix multiplication with a fixed-shape matrix. Convolution enables processing
of some of these kinds of data. We discuss this further in section 9.8.

9.3 Pooling

A typical layer of a convolutional network consists of three stages (see Fig. 9.7).

In the first stage, the layer performs several convolutions in parallel to produce a
set of presynaptic activations. In the second stage, each presynaptic activation is

run through a nonlinear activation function, such as the rectified linear activation
function. This stage is sometimes called the detector stage. In the third stage,
we use a pooling function to modify the output of the layer further.

A pooling function replaces the output of the net at a certain location with a
summary statistic of the nearby outputs. For example, the max pooling operation
reports the maximum output within a rectangular neighborhood. Other popular
pooling functions include the average of a rectangular neighborhood, the L2 norm
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Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on
the left. This shows the strength of all of the vertically oriented edges in the input
image, which can be a useful operation for object detection. Both images are 280 pixels

tall. The input image is 320 pixels wide while the output image is 319 pixels wide.
This transformation can be described by a convolution kernel containing 2 elements, and
requires 319 × 280 × 3 = 267, 960 floating point operations (two multiplications and one
addition per output pixel) to compute. To describe the same transformation with a matrix
multiplication would take 320 × 280 × 319 × 280, or over 8 billion, entries in the matrix,
making convolution 4 billion times more efficient for representing this transformation. The
straightforward matrix multiplication algorithm performs over 16 billion floating point
operations, making convolution roughly 60,000 times more efficient computationally. Of
course, most of the entries of the matrix would be zero. If we stored only the nonzero
entries of the matrix, then both matrix multiplication and convolution would require the

same number of floating point operations to compute. The matrix would still need to
contain 2 × 319 × 280 = 178, 640 entries. Convolution is an extremely efficient way of
describing transformations that apply the same linear transformation of a small, local
region across the entire input. (Photo credit: Paula Goodfellow)
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Figure 9.7: The components of a typical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. Left) In this terminology,

the convolutional net is viewed as a small number of relatively complex layers, with each
layer having many “stages.” In this terminology, there is a one-to-one mapping between
kernel tensors and network layers. In this book we generally use this terminology. Right)
In this terminology, the convolutional net is viewed as a larger number of simple layers;
every step of processing is regarded as a layer in its own right. This means that not every
“layer” has parameters.
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Figure 9.8: Max pooling introduces invariance. Left: A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinearity. The top
row shows the outputs of max pooling, with a stride of 1 between pooling regions and a
pooling region width of 3. Right: A view of the same network, after the input has been
shifted to the right by 1 pixel. Every value in the bottom row has changed, but only
half of the values in the top row have changed, because the max pooling units are only
sensitive to the maximum value in the neighborhood, not its exact location.

of a rectangular neighborhood, or a weighted average based on the distance from
the central pixel.

In all cases, pooling helps to make the representation become invariant to
small translations of the input. This means that if we translate the input by

a small amount, the values of most of the pooled outputs do not change. See
Fig. 9.8 for an example of how this works. Invariance to local translation

can be a very useful property if we care more about whether some
feature is present than exactly where it is. For example, when determining KEY

IDEAwhether an image contains a face, we need not know the location of the eyes with
pixel-perfect accuracy, we just need to know that there is an eye on the left side

of the face and an eye on the right side of the face. In other contexts, it is more
important to preserve the location of a feature. For example, if we want to find a
corner defined by two edges meeting at a specific orientation, we need to preserve

the location of the edges well enough to test whether they meet.
The use of pooling can be viewed as adding an infinitely strong prior that

the function the layer learns must be invariant to small translations. When this
assumption is correct, it can greatly improve the statistical efficiency of the net-
work.

Pooling over spatial regions produces invariance to translation, but if we pool
over the outputs of separately parametrized convolutions, the features can learn

which transformations to become invariant to (see Fig. 9.9).

Because pooling summarizes the responses over a whole neighborhood, it is
possible to use fewer pooling units than detector units, by reporting summary
statistics for pooling regions spaced k pixels apart rather than 1 pixel apart.

See Fig. 9.10 for an example. This improves the computational efficiency of the
network because the next layer has roughly k times fewer inputs to process. When
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Figure 9.9: Example of learned invariances: If each of these filters drive units that appear

in the same max-pooling region, then the pooling unit will detect “5”s in any rotation.
By learning to have each filter be a different rotation of the “5” template, this pooling
unit has learned to be invariant to rotation. This is in contrast to translation invariance,
which is usually achieved by hard-coding the net to pool over shifted versions of a single
learned filter.

0.1 1. 0.2

1. 0.2

0.1

0.1

0.0 0.1

Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
3 and a stride between pools of 2. This reduces the representation size by a factor of 2,
which reduces the computational and statistical burden on the next layer. Note that the
final pool has a smaller size, but must be included if we do not want to ignore some of
the detector units.

the number of parameters in the next layer is a function of its input size (such as
when the next layer is fully connected and based on matrix multiplication) this

reduction in the input size can also result in improved statistical efficiency and
reduced memory requirements for storing the parameters.

TODO: figure resembling http://deeplearning.net/tutorial/lenet.html#the-full-model-
e.g. show a representative example of a net with multiple layers, different numbers
of filters at each layer, different spatial sizes as you go deeper

For many tasks, pooling is essential for handling inputs of varying size. For
example, if we want to classify images of variable size, the input to the classifi-
cation layer must have a fixed size. This is usually accomplished by varying the

size of and offset between pooling regions so that the classification layer always
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receives the same number of summary statistics regardless of the input size. For
example, the final pooling layer of the network may be defined to output four sets
of summary statistics, one for each quadrant of an image, regardless of the image
size. TODO: add figure showing a classifier network with a fully connected layer,
and then one with global average pooling.

Some theoretical work gives guidance as to which kinds of pooling one should
use in various situations (Boureau et al., 2010). It is also possible to dynamically
pool features together, for example, by running a clustering algorithm on the
locations of interesting features (Boureau et al., 2011). This approach yields a

different set of pooling regions for each image. Another approach is to learn a
single pooling structure that is then applied to all images (Jia et al., 2012).

Pooling can complicate some kinds of neural network architectures that use
top-down information, such as Boltzmann machines and autoencoders. These
issues will be discussed further when we present these types of networks. Pooling
in convolutional Boltzmann machines is presented in Chapter 20.7. The inverse-
like operations on pooling units needed in some differentiable networks will be

covered in Chapter 20.9.6.

9.4 Convolution and Pooling as an Infinitely Strong

Prior

Recall the concept of a prior probability distribution from Chapter 5.3. This is a
probability distribution over the parameters of a model that encodes our beliefs
about what models are reasonable, before we have seen any data.

Priors can be considered weak or strong depending on how concentrated the
probability density in the prior is. A weak prior is a prior distribution with high

entropy, such a Gaussian distribution with high variance. Such a prior allows the
data to move the parameters more or less freely. A strong prior has very low
entropy, such as a Gaussian distribution with low variance. Such a prior plays a
more active role in determining where the parameters end up.

An infinitely strong prior places zero probability on some parameters and says
that these parameter values are completely forbidden, regardless of how much
support the data gives to those values.

We can imagine a convolutional net as being similar to a fully connected net,
but with an infinitely strong prior over its weights. This infinitely strong prior

says that the weights for one hidden unit must be identical to the weights of its
neighbor, but shifted in space. The prior also says that the weights must be zero,

except for in the small, spatially contiguous receptive field assigned to that hidden
unit. Overall, we can think of the use of convolution as introducing an infinitely
strong prior probability distribution over the parameters of a layer. This prior
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says that the function the layer should learn contains only local interactions and
is equivariant to translation. Likewise, the use of pooling is in infinitely strong
prior that each unit should be invariant to small translations.

Of course, implementing a convolutional net as a fully connected net with an
infinitely strong prior would be extremely computationally wasteful. But thinking
of a convolutional net as a fully connected net with an infinitely strong prior can
give us some insights into how convolutional nets work.

This view of convolution and pooling as an infinitely strong prior gives a few
insights into how convolution and pooling work.

One key insight is that convolution and pooling can cause underfitting. Like
any prior, convolution and pooling are only useful when the assumptions made

by the prior are reasonably accurate. If a task relies on preserving precision
spatial information, then using pooling on all features can cause underfitting.
(Some convolution network architectures (Szegedy et al., 2014a) are designed to
use pooling on some channels but not on other channels, in order to get both
highly invariant features and features that will not underfit when the translation

invariance prior is incorrect) When a task involves incorporating information from
very distant locations in the input, then the prior imposed by convolution may
be inappropriate.

Another key insight from this view is that we should only compare convolu-

tional models to other convolutional models in benchmarks of statistical learning
performance. Models that do not use convolution would be able to learn even

if we permuted all of the pixels in the image. For many image datasets, there
are separate benchmarks for models that are permutation invariant and must dis-
cover the concept of topology via learning, and models that have the knowledge
of spatial relationships hard-coded into them by their designer.

9.5 Variants of the Basic Convolution Function

When discussing convolution in the context of neural networks, we usually do
not refer exactly to the standard discrete convolution operation as it is usually

understood in the mathematical literature. The functions used in practice differ
slightly. Here we describe these differences in detail, and highlight some useful

properties of the functions used in neural networks.
First, when we refer to convolution in the context of neural networks, we usu-

ally actually mean an operation that consists of many applications of convolution
in parallel. This is because convolution with a single kernel can only extract one
kind of feature, albeit at many spatial locations. Usually we want each layer of
our network to extract many kinds of features, at many locations.

Additionally, the input is usually not just a grid of real values. Rather, it is a
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grid of vector-valued observations. For example, a color image has a red, green,
and blue intensity at each pixel. In a multilayer convolutional network, the input
to the second layer is the output of the first layer, which usually has the output
of many different convolutions at each position. When working with images, we
usually think of the input and output of the convolution as being 3-D tensors, with
one index into the different channels and two indices into the spatial coordinates
of each channel. (Software implementations usually work in batch mode, so they
will actually use 4-D tensors, with the fourth axis indexing different examples in
the batch)

Note that because convolutional networks usually use multi-channel convolu-
tion, the linear operations they are based on are not guaranteed to be commu-

tative, even if kernel-flipping is used. These multi-channel operations are only
commutative if each operation has the same number of output channels as input
channels.

Assume we have a 4-D kernel tensor K with element Ki,j,k,l giving the con-
nection strength between a unit in channel i of the output and a unit in channel

j of the input, with an offset of k rows and l columns between the output unit
and the input unit. Assume our input consists of observed data V with element
V i,j,k giving the value of the input unit within channel i at row j and column k.
Assume our output consists of Z with the same format as V. If Z is produced by

convolving K across V without flipping K, then

Zi,j,k =
X

l,m,n

Vl,j+m,k+nKi,l,m,n

where the summation over l, m, and n is over all values for which the tensor
indexing operations inside the summation is valid.

We may also want to skip over some positions of the kernel in order to reduce
the computational cost (at the expense of not extracting our features as finely).
We can think of this as downsampling the output of the full convolution function.
If we want to sample only every s pixels in each direction in the output, then we
can defined a downsampled convolution function c such that:

Zi,j,k = c(K,V, s)i,j,k =
X

l,m,n

[Vl,j×s+m,k×s+nKi,l,m,n] . (9.1)

We refer to s as the stride of this downsampled convolution. It is also possible
to define a separate stride for each direction of motion. TODO add a figure for
this

One essential feature of any convolutional network implementation is the abil-
ity to implicitly zero-pad the input V in order to make it wider. Without this
feature, the width of the representation shrinks by the kernel width - 1 at each
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layer. Zero padding the input allows us to control the kernel width and the size of
the output independently. Without zero padding, we are forced to choose between
shrinking the spatial extent of the network rapidly and using small kernels–both
scenarios that significantly limit the expressive power of the network. See Fig. 9.11
for an example.

Three special cases of the zero-padding setting are worth mentioning. One is
the extreme case in which no zero-padding is used whatsoever, and the convolution
kernel is only allowed to visit positions where the entire kernel is contained entirely
within the image. In MATLAB terminology, this is called valid convolution. In

this case, all pixels in the output are a function of the same number of pixels in
the input, so the behavior of an output pixel is somewhat more regular. However,

the size of the output shrinks at each layer. If the input image is of size m×m and
the kernel is of size k×k, the output will be of size m−k+1×m−k+1. The rate
of this shrinkage can be dramatic if the kernels used are large. Since the shrinkage
is greater than 0, it limits the number of convolutional layers that can be included
in the network. As layers are added, the spatial dimension of the network will

eventually drop to 1 × 1, at which point additional layers cannot meaningfully
be considered convolutional. Another special case of the zero-padding setting
is when just enough zero-padding is added to keep the size of the output equal
to the size of the input. MATLAB calls this same convolution. In this case,

the network can contain as many convolutional layers as the available hardware
can support, since the operation of convolution does not modify the architectural

possibilities available to the next layer. However, the input pixels near the border
influence fewer output pixels than the input pixels near the center. This can
make the border pixels somewhat underrepresented in the model. This motivates
the other extreme case, which MATLAB refers to as full convolution, in which
enough zeroes are added for every pixel to be visited k times in each direction,
resulting in an output image of sizem+k−1×m+k−1. In this case, the output
pixels near the border are a function of fewer pixels than the output pixels near
the center. This can make it difficult to learn a single kernel that performs well
at all positions in the convolutional feature map. Usually the optimal amount of
zero padding (in terms of test set classification accuracy) lies somewhere between

“valid” and “same” convolution.
In some cases, we do not actually want to use convolution, but rather locally

connected layers. In this case, the adjacency matrix in the graph of our MLP is
the same, but every connection has its own weight, specified by a 6-D tensor W.
The indices into W are respectively: i, the output channel, j, the output row, k,
the output column, l, the input channel, m, the row offset within the input, and
n, the column offset within the input. The linear part of a locally connected layer
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Figure 9.11: The effect of zero padding on network size: Consider a convolutional network
with a kernel of width six at every layer. In this example, do not use any pooling, so
only the convolution operation itself shrinks the network size. Top) In this convolutional
network, we do not use any implicit zero padding. This causes the representation to
shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only
able to have three convolutional layers, and the last layer does not ever move the kernel,

so arguably only two of the layers are truly convolutional. The rate of shrinking can
be mitigated by using smaller kernels, but smaller kernels are less expressive and some
shrinking is inevitable in this kind of architecture. Bottom) By adding five implicit zeroes
to each layer, we prevent the representation from shrinking with depth. This allows us
to make an arbitrarily deep convolutional network.
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Figure 9.12: TODO

is then given by

Zi,j,k =
X

l,m,n

[Vl,j+m,k+nwi,j,k,l,m,n] .

This is sometimes also called unshared convolution, because it is a similar opera-
tion to discrete convolution with a small kernel, but without sharing parameters
across locations.

TODO: Mehdi asks for a local convolution figure, showing layers in 1D topol-

ogy and comparing it to fully connected layer
Locally connected layers are useful when we know that each feature should

be a function of a small part of space, but there is no reason to think that the
same feature should occur across all of space. For example, if we want to tell if
an image is a picture of a face, we only need to look for the mouth in the bottom
half of the image.

It can also be useful to make versions of convolution or locally connected layers
in which the connectivity is further restricted, for example to constraint that each
output channel i be a function of only a subset of the input channels l. TODO:
explain more, this paragraph just kind of dies. include a figure

Tiled convolution (Gregor and LeCun, 2010; Le et al., 2010) offers a compro-

mise between a convolutional layer and a locally connected layer. Rather than
learning a separate set of weights at every spatial location, we learn a set of kernels

that we rotate through as we move through space. This means that immediately
neighboring locations will have different filters, like in a locally connected layer,

but the memory requirements for storing the parameters will increase only by a
factor of the size of this set of kernels, rather than the size of the entire output

feature map. See Fig. 9.12 for a graphical depiction of tiled convolution.
To define tiled convolution algebraically, let k be a 6-D tensor, where two of

the dimensions correspond to different locations in the output map. Rather than
having a separate index for each location in the output map, output locations
cycle through a set of t different choices of kernel stack in each direction. If t is
equal to the output width, this is the same as a locally connected layer.

Z i,j,k =
X

l,m,n

Vl,j+m,k+nKi,l,m,n,j%t,k%t

It is straightforward to generalize this equation to use a different tiling range
for each dimension.

Both locally connected layers and tiled convolutional layers have an interesting
interaction with max-pooling: the detector units of these layers are driven by
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different filters. If these filters learn to detect different transformed versions of
the same underlying features, then the max-pooled units become invariant to the
learned transformation (see Fig. 9.9). Convolutional layers are hard-coded to be
invariant specifically to translation.

Other operations besides convolution are usually necessary to implement a
convolutional network. To perform learning, one must be able to compute the
gradient with respect to the kernel, given the gradient with respect to the outputs.
In some simple cases, this operation can be performed using the convolution
operation, but many cases of interest, including the case of stride greater than 1,

do not have this property.
Convolution is a linear operation and can thus be described as a matrix mul-

tiplication (if we first reshape the input tensor into a flat vector). The matrix
involved is a function of the convolution kernel. The matrix is sparse and each
element of the kernel is copied to several elements of the matrix. It is not usually
practical to implement convolution in this way, but it can be conceptually useful
to think of it in this way.

Multiplication by the transpose of the matrix defined by convolution is also a
useful operation. This is the operation needed to backpropagate error derivatives
through a convolutional layer, so it is needed to train convolutional networks
that have more than one hidden layer. This same operation is also needed to

compute the reconstruction in a convolutional autoencoder (or to perform the
analogous role in a convolutional RBM, sparse coding model, etc.). Like the

kernel gradient operation, this input gradient operation can be implemented using
a convolution in some cases, but in the general case requires a third operation to be
implemented. Care must be taken to coordinate this transpose operation with the
forward propagation. The size of the output that the transpose operation should
return depends on the zero padding policy and stride of the forward propagation
operation, as well as the size of the forward propagation’s output map. In some
cases, multiple sizes of input to forward propagation can result in the same size
of output map, so the transpose operation must be explicitly told what the size
of the original input was.

It turns out that these three operations–convolution, backprop from output

to weights, and backprop from output to inputs–are sufficient to compute all of
the gradients needed to train any depth of feedforward convolutional network,

as well as to train convolutional networks with reconstruction functions based
on the transpose of convolution. See (Goodfellow, 2010) for a full derivation
of the equations in the fully general multi-dimensional, multi-example case. To
give a sense of how these equations work, we present the two dimensional, single
example version here.

Suppose we want to train a convolutional network that incorporates strided
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convolution of kernel stack K applied to multi-channel image V with stride s is
defined by c(K,V, s) as in equation 9.1. Suppose we want to minimize some loss
function J(V,K). During forward propagation, we will need to use c itself to
output Z, which is then propagated through the rest of the network and used
to compute J. . During backpropagation, we will receive a tensor G such that
Gi,j,k = ∂

∂Zi,j,k
J(V,K).

To train the network, we need to compute the derivatives with respect to the
weights in the kernel. To do so, we can use a function

g(G,V, s) i,j,k,l =
∂

∂Ki,j,k,l
J(V,K) =

X

m,n

Gi,m,n Vj,m×s+k,n×s+l .

If this layer is not the bottom layer of the network, we’ll need to compute the
gradient with respect to V in order to backpropagate the error farther down. To

do so, we can use a function

h(K,G, s)i,j,k =
∂

∂Vi,j,k
J(V,K) =

X

l,m|s×l+m=j

X

n,p|s×n+p=k

X

q

Kq,i,m,pGi,l,n.

We could also use h to define the reconstruction of a convolutional autoen-
coder, or the probability distribution over visible given hidden units in a convo-
lutional RBM or sparse coding model. Suppose we have hidden units H in the
same format as Z and we define a reconstruction

R = h(K,H, s).

In order to train the autoencoder, we will receive the gradient with respect
to R as a tensor E. To train the decoder, we need to obtain the gradient with
respect to K. This is given by g(H,E, s). To train the encoder, we need to obtain
the gradient with respect to H. This is given by c(K,E, s). It is also possible to
differentiate through g using c and h, but these operations are not needed for the
backpropagation algorithm on any standard network architectures.

Generally, we do not use only a linear operation in order to transform from the
inputs to the outputs in a convolutional layer. We generally also add some bias

term to each output before applying the nonlinearity. This raises the question
of how to share parameters among the biases. For locally connected layers it is
natural to give each unit its own bias, and for tiled convolution, it is natural to
share the biases with the same tiling pattern as the kernels. For convolutional
layers, it is typical to have one bias per channel of the output and share it across
all locations within each convolution map. However, if the input is of known,

fixed size, it is also possible to learn a separate bias at each location of the output
map. Separating the biases may slightly reduce the statistical efficiency of the
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model, but also allows the model to correct for differences in the image statistics
at different locations. For example, when using implicit zero padding, detector
units at the edge of the image receive less total input and may need larger biases.

9.6 Structured Outputs

TODO show diagram of an exclusively convolutional net, like for image inpainting
or segmentation (Farabet? Collobert?)

9.7 Convolutional Modules

TODO history of ReLU -¿ maxout -¿ NIN -¿ inception

9.8 Data Types

The data used with a convolutional network usually consists of several channels,

each channel being the observation of a different quantity at some point in space
or time. See Table 9.1 for examples of data types with different dimensionalities
and number of channels.

So far we have discussed only the case where every example in the train
and test data has the same spatial dimensions. One advantage to convolutional

networks is that they can also process inputs with varying spatial extents. These
kinds of input simply cannot be represented by traditional, matrix multiplication-
based neural networks. This provides a compelling reason to use convolutional

networks even when computational cost and overfitting are not significant issues.
For example, consider a collection of images, where each image has a different

width and height. It is unclear how to apply matrix multiplication. Convolution
is straightforward to apply; the kernel is simply applied a different number of
times depending on the size of the input, and the output of the convolution
operation scales accordingly. Sometimes the output of the network is allowed to

have variable size as well as the input, for example if we want to assign a class
label to each pixel of the input. In this case, no further design work is necessary.

In other cases, the network must produce some fixed-size output, for example if
we want to assign a single class label to the entire image. In this case we must
make some additional design steps, like inserting a pooling layer whose pooling
regions scale in size proportional to the size of the input, in order to maintain a
fixed number of pooled outputs.

Note that the use of convolution for processing variable sized inputs only makes

sense for inputs that have variable size because they contain varying amounts of
observation of the same kind of thing–different lengths of recordings over time,
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Single channel Multi-channel

1-D Audio waveform: The axis we
convolve over corresponds to
time. We discretize time and
measure the amplitude of the
waveform once per time step.

Skeleton animation data:
Animations of 3-D computer-
rendered characters are gen-
erated by altering the pose of
a “skeleton” over time. At
each point in time, the pose
of the character is described
by a specification of the angles

of each of the joints in the
character’s skeleton. Each chan-

nel in the data we feed to the
convolutional model represents
the angle about one axis of one
joint.

2-D Audio data that has been pre-
processed with a Fourier trans-
form: We can transform the au-
dio waveform into a 2D tensor
with different rows correspond-

ing to different frequencies and
different columns corresponding

to different points in time. Using
convolution in the time makes
the model equivariant to shifts in

time. Using convolution across
the frequency axis makes the
model equivariant to frequency,
so that the same melody played
in a different octave produces
the same representation but at a
different height in the network’s

output.

Color image data: One channel
contains the red pixels, one the
green pixels, and one the blue
pixels. The convolution kernel
moves over both the horizontal

and vertical axes of the image,
conferring translation equivari-

ance in both directions.

3-D Volumetric data: A common

source of this kind of data
is medical imaging technology,
such as CT scans.

Color video data: One axis cor-

responds to time, one to the
height of the video frame, and
one to the width of the video
frame.

Table 9.1: Examples of different formats of data that can be used with convolutional
networks.
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different widths of observations over space, etc. Convolution does not make sense
if the input has variable size because it can optionally include different kinds
of observations. For example, if we are processing college applications, and our
features consist of both grades and standardized test scores, but not every ap-
plicant took the standardized test, then it does not make sense to convolve the
same weights over both the features corresponding to the grades and the features
corresponding to the test scores.

9.9 Efficient Convolution Algorithms

Modern convolutional network applications often involve networks containing

more than one million units. Powerful implementations exploiting parallel com-
putation resources, as discussed in Chapter 12.1 are essential. However, in many
cases it is also possible to speed up convolution by selecting an appropriate con-
volution algorithm.

Convolution is equivalent to converting both the input and the kernel to the
frequency domain using a Fourier transform, performing point-wise multiplication
of the two signals, and converting back to the time domain using an inverse
Fourier transform. For some problem sizes, this can be faster than the naive
implementation of discrete convolution.

When a d-dimensional kernel can be expressed as the outer product of d
vectors, one vector per dimension, the kernel is called separable. When the kernel

is separable, naive convolution is inefficient. It is equivalent to compose d one-
dimensional convolutions with each of these vectors. The composed approach
is significantly faster than performing one k-dimensional convolution with their
outer product. The kernel also takes fewer parameters to represent as vectors.
If the kernel is w elements wide in each dimension, then naive multidimensional
convolution requires O(wd) runtime and parameter storage space, while separable
convolution requires O(w × d) runtime and parameter storage space. Of course,
not every convolution can be represented in this way.

Devising faster ways of performing convolution or approximate convolution

without harming the accuracy of the model is an active area of research. Even
techniques that improve the efficiency of only forward propagation are useful

because in the commercial setting, it is typical to devote many more resources to
deployment of a network than to its training.

9.10 Random or Unsupervised Features

Typically, the most expensive part of convolutional network training is learning
the features. The output layer is usually relatively inexpensive due to the small
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number of features provided as input to this layer after passing through several
layers of pooling. When performing supervised training with gradient descent,
every gradient step requires a complete run of forward propagation and backward
propagation through the entire network. One way to reduce the cost of convo-
lutional network training is to use features that are not trained in a supervised
fashion.

There are two basic strategies for obtaining convolution kernels without su-
pervised training. One is to simply initialize them randomly. The other is to
learn them with an unsupervised criterion. This approach allows the features to

be determined separately from the classifier layer at the top of the architecture.
One can then extract the features for the entire training set just once, essentially

constructing a new training set for the last layer. Learning the last layer is then
typically a convex optimization problem, assuming the last layer is something like
logistic regression or an SVM.

Random filters often work surprisingly well in convolutional networks (Jar-
rett et al., 2009b; Saxe et al., 2011; Pinto et al., 2011; Cox and Pinto, 2011).

Saxe et al. (2011) showed that layers consisting of convolution following by pool-
ing naturally become frequency selective and translation invariant when assigned
random weights. They argue that this provides an inexpensive way to choose the
architecture of a convolutional network: first evaluate the performance of several

convolutional network architectures by training only the last layer, then take the
best of these architectures and train the entire architecture using a more expensive

approach.
An intermediate approach is to learn the features, but using methods that

do not require full forward and back-propagation at every gradient step. As
with multilayer perceptrons, we use greedy layer-wise unsupervised pretraining,
to train the first layer in isolation, then extract all features from the first layer
only once, then train the second layer in isolation given those features, and so on.
The canonical example of this is the convolutional deep belief network (Lee et al.,
2009). Convolutional networks offer us the opportunity to take this strategy one
step further than is possible with multilayer perceptrons. Instead of training an
entire convolutional layer at a time, we can actually train a small but densely-

connected unsupervised model (such as PSD, described in Chapter 15.8.2, or
k-means) of a single image patch. We can then use the weight matrices from this

patch-based model to define the kernels of a convolutional layer. This means that
it is possible to use unsupervised learning to train a convolutional network without
ever using convolution during the training process. Using this approach, we can
train very large models and incur a high computational cost only at inference
time (Ranzato et al., 2007b; Jarrett et al., 2009b; Kavukcuoglu et al., 2010a;
Coates et al., 2013).
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As with other approaches to unsupervised pretraining, it remains difficult to
tease apart the cause of some of the benefits seen with this approach. Unsuper-
vised pretraining may offer some regularization relative to supervised training,
or it may simply allow us to train much larger architectures due to the reduced
computational cost of the learning rule.

9.11 The Neuroscientific Basis for Convolutional Net-

works

Convolutional networks are perhaps the greatest success story of biologically in-
spired artificial intelligence. Though convolutional networks have been guided
by many other fields, some of the key design principles of neural networks were

drawn from neuroscience.

The history of convolutional networks begins with neuroscientific experiments
long before the relevant computational models were developed. Neurophysiol-
ogists David Hubel and Torsten Wiesel collaborated for several years to deter-
mine many of the most basic facts about how the mammalian vision system
works (Hubel and Wiesel, 1959, 1962, 1968). Their accomplishements were even-

tually recognized with a Nobel Prize. Their findings that have had the greatest
influence on contemporary deep learning models were based on recording the

activity of individual neurons in cats. By anesthetizing the cat, they could im-
mobilize the cat’s eye and observe how neurons in the cat’s brain responded to
images projected in precise locations on a screen in front of the cat.

Their worked helped to characterize many aspects of brain function that are

beyond the scope of this book. From the point of view of deep learning, we can
focus on a simplified, cartoon view of brain function.

In this simplified view, we focus on a part of the brain called V1, also known
as the primary visual cortex. V1 is the first area of the brain that begins to
perform significantly advanced processing of visual input. In this cartoon view,
images are formed by light arriving in the eye and stimulating the retina, the
light-sensitive tissue in the back of the eye. The neurons in the retina perform
some simple preprocessing of the image but do not substantially alter the way it
is represented. The image then passes through the optic nerve and a brain region

called the lateral geniculate nucleus. The main role, as far as we are concerned
here, of both of these anatomical regions is primarily just to carry the signal from

the eye to V1, which is located at the back of the head.
A convolutional network layer is designed to capture three properties of V1:

1. V1 is arranged in a spatial map. It actually has a two-dimensional struc-
ture mirroring the structure of the image in the retina. For example, light
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arriving at the lower half of the retina affects only the corresponding half of
V1. Convolutional networks capture this property by having their features
defined in terms of two dimensional maps.

2. V1 contains many simple cells. A simple cell’s activity can to some extent be
characterized by a linear function of the image in a small, spatially localized
receptive field. The detector units of a convolutional network are designed

to emulate these properties of simple cells. V1 also contains many complex

cells. These cells respond to features that are similar to those detected by
simple cells, but complex cells are invariant to small shifts in the position

of the feature. This inspires the pooling units of convolutional networks.
Complex cells are also invariant to some changes in lighting that cannot

be captured simply by pooling over spatial locations. These invariances
have inspired some of the cross-channel pooling strategies in convolutional
networks, such as maxout units (Goodfellow et al., 2013a).

Though we know the most about V1, it is generally believed that the same
basic principles apply to other brain regions. In our cartoon view of the visual

system, the basic strategy of detection followed by pooling is repeatedly applied
as we move deeper into the brain. As we pass through multiple anatomical layers
of the brain, we eventually find cells that respond to some specific concept and are

invariant to many transformations of the input. These cells have been nicknamed
“grandmother cells”— the idea is that a person could have a neuron that activates

when seeing an image of their grandmother, regardless of whether she appears in
the left or right side of the image, whether the image is a close-up of her face or
zoomed out shot of her entire body, whether she is brightly lit, or in shadow, etc.

These grandmother cells have been shown to actually exist in the human brain,
in a region called the medial temporal lobe (Quiroga et al., 2005). Researchers
tested whether individual neurons would respond to photos of famous individuals,
and found what has come to be called the “Halle Berry neuron”: an individual
neuron that is activated by the concept of Halle Berry. This neuron fires when
a person sees a photo of Halle Berry, a drawing of Halle Berry, or even text

containing the words “Halle Berry.” Of course, this has nothing to do with Halle
Berry herself; other neurons responded to the presence of Bill Clinton, Jennifer

Aniston, etc.
These medial temporal lobe neurons are somewhat more general than modern

convolutional networks, which would not automatically generalize to identifying
a person or object when reading its name. The closest analog to a convolutional
network’s last layer of features is a brain area called the inferotemporal cortex
(IT). When viewing an object, information flows from the retina, through the

LGN, to V1, then onward to V2, then V4, then IT. This happens within the first
100ms of glimpsing an object. If a person is allowed to continue looking at the
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object for more time, then information will begin to flow backwards as the brain
uses top-down feedback to update the activations in the lower level brain areas.
However, if we interrupt the person’s gaze, and observe only the firing rates that
result from the first 100ms of mostly feed-forward activation, then IT proves to be
very similar to a convolutional network. Convolutional networks can predict IT
firing rates, and also perform very similarly to (time limited) humans on object
recognition tasks (DiCarlo, 2013).

That being said, there are many differences between convolutional networks
and the mammalian vision system. Some of these differences are well known

to computational neuroscientists, but outside the scope of this book. Some of
these differences are not yet known, because many basic questions about how the

mamalian vision system works. As a brief list:

• The human eye is mostly very low resolution, except for a tiny patch called
the fovea. The fovea only observes an area about the size of a thumbnail
held at arms length. Though we feel as if we can see an entire scene in high
resolution, this is an illusion created by the subconscious part of our brain,
as it stitches together several glimpses of small areas. Most convolutional
networks actual receive large full resolution photographs as input.

• The human visual system is integrated with many other senses, such as
hearing, and factors like our moods and thoughts. Convolutional networks
so far are purely visual.

• The human visual system does much more than just recognize objects. It is

able to understand entire scenes including many objects and relationships
between objects, and processes rich 3-D geometric information needed for
our bodies to interface with the world. Convolutional networks have been
applied to some of these problems but these applications are in their infancy.

• Even simple brain areas like V1 are heavily impacted by feedback from
higher levels. Feedback has been explored extensively in neural network
models but has not yet been shown to offer a compelling improvement.

• While feed-forward IT firing rates capture much of the same information as
convolutional network features, it’s not clear how similar the intermediate

computations are. The brain probably uses very different activation and
pooling functions. An individual neuron’s activation probably is not well-
characterized by a single linear filter response. A recent model of V1 involves
multiple quadratic filters for each neuron (Rust et al., 2005). Indeed our

cartoon picture of “simple cells” and “complex cells” might create a non-
existent distinction; simple cells and complex cells might both be the same
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kind of cell but with their “parameters” enabling a continuum of behaviors
ranging from what we call “simple” to what we call “complex.”

It’s also worth mentioning that neuroscience has told us relatively little about
how to train convolutional networks. Model structures inspired by the work of
Hubel and Wiesel date back to the Neocognitron (Fukushima, 1980) but the
Neocognitron relied on a relatively heuristic learning algorithm. Convolutional
networks did not begin to work well until they were combined with the backprop-
agation algorithm (LeCun et al., 1989), which was not inspired by any neurosci-
entific observation and is considered by some to be biologically implausible.

So far we have described how simple cells are roughly linear and selective for
certain features, complex cells are more non-linear and become invariant to some

transformations of these simple cell features, and stacks of layers that alternative
between selectivity and invariance can yield grandmother cells for very specific
phenomena. We have not yet described precisely what these individual cells
detect. In a deep, nonlinear network, it can be difficult to understand the function
of individual cells. Simple cells in the first layer are easier to analyze, because
their responses are driven by a linear function. In an artificial neural network,

we can just display an image of the kernel to see what the corresponding channel
of a convolutional layer responds to. In a biological neural network, we do not
have access to the weights themselves. Instead, we put an electrode in the neuron

itself, display several samples of white noise images in front of the animal’s retina,
and record how each of these samples causes the neuron to activate. We can then
fit a linear model to these responses in order to obtain an approximation of the
neuron’s weights. This approach is known as reverse correlation (Ringach and
Shapley, 2004).

Reverse correlation shows us that most V1 cells have weights that are described
by Gabor functions. The Gabor function describes the weight at a 2-D point in
the image. We can think of an image as being a function of 2-D coordinates,
I(x, y). Likewise, we can think of a simple cell as sampling the image at a set of
locations, defined by a set of x coordinates X and a set of y coordinates, Y, and

applying weights that are also a function of the location, w(x, y). From this point
of view, the response of a simple cell to an image is given by

s(I) =
X

x∈X

X

y∈Y
w(x, y)I(x, y).

Specifically, w(x, y) takes the form of a Gabor function:

w(x, y;α, βx, βy, f, φ,x0 , y0, τ) = α exp

−βxx

02− βyy
02 cos(fx0 + φ),

where
x0 = (x− x0) cos(τ) + (y − y0) sin(τ)
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and
y0 = −(x− y0 ) sin(τ) + (y − y0 ) cos(τ).

Here, α, βx , βy, f, φ, x0, y0, and τ are parameters that control the properties

of the Gabor function. Fig. 9.13 shows some examples of Gabor functions with
different settings of these parameters.

The parameters x0, y 0, and τ define a coordinate system. We translate and
rotate x and y to form x0 and y0. Specifically, the simple cell will respond to
image features centered at the point (x 0, y0), and it will respond to changes in
brightness as we move along a line rotated τ radians from the horizontal.

Viewed as a function of x0 and y0 , the function w then responds to changes in

brightness as we move along the x0 axis. It has two important factors: one is a
Gaussian function and the other is a cosine function.

The Gaussian factor α exp

−βxx 02− βy y

02 can be seen as a gating term that
ensures the simple cell will only respond to values near where x0 and y0 are both
zero, in other words, near the center of the cell’s receptive field. The scaling
factor α adjusts the total magnitude of the simple cell’s response, while βx and
βy control how quickly its receptive field falls off.

The cosine factor cos(fx0+φ) controls how the simple cell responds to changing

brightness along the x0 axis. The parameter f controls the frequency of the cosine
and φ controls its phase offset.

Altogether, this cartoon view of simple cells means that a simple cell responds
to a specific spatial frequency of brightness in a specific direction at a specific
location. They are most excited when the wave of brightness in the image has the
same phase as the weights (i.e., when the image is bright where the weights are
positive and dark where the weights are negative) and are most inhibited when
the wave of brightness is fully out of phase with the weights (i.e., when the image
is dark where the weights are positive and bright where the weights are negative).

The cartoon view of a complex cell is that it computes the L2 norm of the
2-D vector containing two simple cell’s responses: c(I) =

p
s0(I)2 + s1 (I)2. An

important special case occurs when s1 has all of the same parameters as s0 except

for φ, and φ is set such that s1 is one quarter cycle out of phase with s0. In this
case, s0 and s 1 form a quadrature pair. A complex cell defined in this way responds

when the Gaussian reweighted image I(x, y) exp(−β xx
02 − βyy

02) contains a high
amplitude sinusoidal wave with frequency f in direction τ near (x0, y0), regardless
of the phase offset of this wave. In other words, the complex cell is invariant to
small translations of the image in direction τ, or to negating the image (replacing

black with white and vice versa).
Some of the most striking correspondences between neuroscience and machine

learning come from visually comparing the features learned by machine learning
models with those employed by V1. Olshausen and Field (1996) showed that
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Figure 9.13: Gabor functions with a variety of parameter settings. White indicates
large positive weight, black indicates large negative weight, and the background gray
corresponds to zero weight. Left) Gabor functions with different values of the parameters

that control the coordinate system: x0 , y0 , and τ . Each gabor function in this grid is
assigned a value of x0 and y0 proportional to its position in its grid, and τ is chosen so that
each Gabor is sensitive to the direction radiating out from the center of the grid. For the
other two plots, x0 , y0, and τ are fixed to zero. Center) Gabor functions with different
Gaussian scale parameters betax and βy. Gabor functions are arranged in increasing

width (decreasing βx) as we move left to right through the grid, and increasing height
(decreasing βy) as we move top to bottom. For the other two plots, the β values are fixed
to 1.5× the image width. Right) Gabor functions with different sinusoid parameters f
and φ. As we move top to bottom, f increases, and as we move left to right, φ increases.
For the other two plots, φ is fixed to 0 and f is fixed to 5× the image width.
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Figure 9.14: Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are reminiscent
of the Gabor functions known to be present in primary visual cortex. Left) Weights
learned by an unsupervised learning algorithm (spike and slab sparse coding) applied to
small image patches. Right) Convolution kernels learned by the first layer of a fully
supervised convolutional maxout network. Neighboring pairs of filters drive the same
maxout unit.

a simple unsupervised learning algorithm, sparse coding, learns features with re-

ceptive fields similar to those of simple cells. Since then, we have found that
an extremely wide variety of statistical learning algorithms learn features with
Gabor-like functions when applied to natural images. This includes most deep

learning algorithms, which learn these features in their first layer. Fig. 9.14 shows
some examples. Because so many different learning algorithms learn edge detec-

tors, it is difficult to conclude that any specific learning algorithm is the “right”
model of the brain just based on the features that it learns (though it can cer-
tainly be a bad sign if an algorithm does not learn some sort of edge detector
when applied to natural images). These features are an important part of the
statistical structure of natural images and can be recovered by many different
approaches to statistical modeling. See Hyvärinen et al. (2009) for a review of
the field of natural image statistics.
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9.12 Convolutional Networks and the History of Deep

Learning

Convolutional networks have played an important role in the history of deep

learning. They are a key example of a successful application of insights obtained
by studying the brain to machine learning applications. They were also some of
the first deep models to perform well, long before arbitrary deep models were
considered viable. Convolutional networks were also some of the first neural
networks to solve important commercial applications and remain at the forefront
of commercial applications of deep learning today. TODO conv nets were some

of first working deep backprop nets
It is not entirely clear why convolutional networks succeeded when general

backpropagation networks were considered to have failed. It may simply be that
convolutional networks were more computationally efficient than fully connected
networks, so it was easier to run multiple experiments with them and tune their
implementation and hyperparameters. Larger networks also seem to be easier

to train. With modern hardware, fully connected networks appear to perform
reasonably on many tasks, even when using datasets that were available and

activation functions that were popular during the times when fully connected
networks were believed not to work well. It may be that the primary barriers
to the success of neural networks were psychological. Whatever the case, it is

fortunate that convolutional networks performed well and paved the way to the
acceptance of neural networks in general.

TODO early commercial applications (possibly just ref to applications chap-
ter) TODO contests won with conv nets TODO current commerical applications
(possibly just ref to applications chapter)
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Chapter 10

Sequence Modeling: Recurrent
and Recursive Nets

One of the early ideas found in machine learning and statistical models of the 80’s
is that of sharing parameters1 across different parts of a model, allowing to extend
and apply the model to examples of different forms and generalize across them,
e.g. with examples of different lengths, in the case of sequential data. This can be

found in hidden Markov models (HMMs) (Rabiner and Juang, 1986), which were
the dominant technique for speech recognition for about 30 years. These models

of sequences are described a bit more in Section 10.8.3 and involve parameters,
such as the state-to-state transition matrix P (st | st−1), which are re-used for
every time step t, i.e., the above probability depends only on the value of st and
st−1 but not on t as such. This allows one to model variable length sequences,
whereas if we had specific parameters for each value of t, we could not generalize
to sequence lengths not seen during training, nor share statistical strength across
different sequence lengths and across different positions in time. Such sharing is
particularly important when, like in speech, the input sequence can be stretched
non-linearly, i.e., some parts (like vowels) may last longer in different examples. It

means that the absolute time step at which an event occurs is meaningless: it only
makes sense to consider the event in some context that somehow captures what

has happened before. This sharing across time can also be found in a recurrent
neural network (Rumelhart et al., 1986c) or RNN 2: the same weights are used
for different instances of the artificial neurons at different time steps, allowing us
to apply the network to input sequences of different lengths. This idea is made

1see Section 7.8 for an introduction to the concept of parameter sharing
2Unfortunately, the RNN acronym is sometimes also used for denoting Recursive Neural

Networks. However, since the RNN acronym has been around for much longer, we suggest

keeping this acronym for Recurrent Neural Networks.
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more explicit in the early work on time-delay neural networks (Lang and Hinton,
1988; Waibel et al., 1989), where a fully connected network is replaced by one with
local connections that are shared across different temporal instances of the hidden
units. Such networks are the ancestors of convolutional neural networks, covered
in more detail in Section 9. Recurrent nets are covered below in Section 10.2. As
shown in Section 10.1 below, the flow graph (a notion introduced in Section 6.4
in the case of MLPs) associated with a recurrent network is structured like a
chain, as explained next. Recurrent neural networks have been generalized into
recursive neural networks, in which the structure can be more general, i.e., and

it is typically viewed as a tree. Recursive neural networks are discussed in more
detail in Section 10.5. For a good textbook on RNNs, see Graves (2012).

10.1 Unfolding Flow Graphs and Sharing Parameters

A flow graph is a way to formalize the structure of a set of computations, such
as those involved in mapping inputs and parameters to outputs and loss. Please
refer to Section 6.4 for a general introduction. In this section we explain the idea
of unfolding a recursive or recurrent computation into a flow graph that has a
repetitive structure, typically corresponding to a chain of events.

For example, consider the classical form of a dynamical system:

st = fθ(st−1) (10.1)

where st is called the state of the system. The unfolded flow graph of such a
system looks like in Figure 10.1.

stst1 st+1

f✓ f✓ f✓ f✓

Figure 10.1: Classical dynamical system equation 10.1 illustrated as an unfolded flow
graph. Each node represents the state at some time t and function fθ maps the state at
t to the state at t+ 1. The same parameters (the same function fθ) is used for all time
steps.

As another example, let us consider a dynamical system driven by an external

signal xt,
st = fθ(st−1,xt) (10.2)

illustrated in Figure 10.2, where we see that the state now contains informa-
tion about the whole past sequence, i.e., the above equation implicitly defines a
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function
st = gt(x t,xt−1,xt−2, . . . ,x2,x1) (10.3)

which maps the whole past sequence (xt,xt−1,xt−2 , . . . ,x2 ,x1 ) to the current

state. Equation 10.2 is actually part of the definition of a recurrent net. We
can think of st as a kind of summary of the past sequence of inputs up to t.

Note that this summary is in general necessarily lossy, since it maps an arbitrary
length sequence (xt,xt−1 ,xt−2 , . . . ,x2,x 1) to a fixed length vector st. Depending
on the training criterion, this summary might selectively keep some aspects of
the past sequence with more precision than other aspects. For example, if the
RNN is used in statistical language modeling, typically to predict the next word
given previous words, it may not be necessary to distinctly keep track of all
the bits of information, only those required to predict the rest of the sentence.
The most demanding situation is when we ask st to be rich enough to allow
one to approximately recover the input sequence, as in auto-encoder frameworks

(Chapter 15).
If we had to define a different function g t for each possible sequence length

(imagine a separate neural network, each with a different input size), each with
its own parameters, we would not get any generalization to sequences of a size not
seen in the training set. Furthermore, one would need to see a lot more training
examples, because a separate model would have to be trained for each sequence
length, and it would need a lot more parameters (proportionally to the size of the
input sequence). It could not generalize what it learns from what happens at a
position t to what could happen at a position t0 6= t. By instead defining the state
through a recurrent formulation as in Eq. 10.2, the same parameters are used for
any sequence length, allowing much better generalization properties.

stst1 st+1

x tx t1 x t+1x

s

unfoldf✓
f✓ f✓ f✓

Figure 10.2: Left: input processing part of a recurrent neural network, seen as a circuit.
The black square indicates a delay of 1 time step. Right: the same seen as an unfolded
flow graph, where each node is now associated with one particular time instance.

Equation 10.2 can be drawn in two different ways. One is in a way that is
inspired by how a physical implementation (such as a real neural network) might
look like, i.e., like a circuit which operates in real time, as in the left of Figure 10.2.
The other is as a flow graph, in which the computations occurring at different
time steps in the circuit are unfolded as different nodes of the flow graph, as in
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the right of Figure 10.2. What we call unfolding is the operation that maps a
circuit as in the left side of the figure to a flow graph with repeated pieces as
in the right side. Note how the unfolded graph now has a size that depends on
the sequence length. The black square indicates a delay of 1 time step on the
recurrent connection, from the state at time t to the state at time t + 1.

The other important observation to make from Figure 10.2 is that the same
parameters (θ) are shared over different parts of the graph, corresponding here to
different time steps.

10.2 Recurrent Neural Networks

Armed with the ideas introduced in the previous section, we can design a wide
variety of recurrent circuits, which are compact and simple to understand visu-
ally. As we will explain, we can automatically obtain their equivalent unfolded
graph, which are useful computationally and also help focus on the idea of in-
formation flow forward in time (computing outputs and losses) and backward in
time (computing gradients).

x tx t1 x t+1x

unfold

V W
W

W W W

V V V

U U U U

s

o

st1

ot1 ot

st st+1

ot+1

Figure 10.3: Left: vanilla recurrent network circuit with hidden-to-hidden recurrence,
seen as a circuit, with weight matrices U, V , W for the three different kinds of con-
nections (input-to-hidden, hidden-to-output, and hidden-to-hidden, respectively). Each
circle indicates a whole vector of activations. Right: the same seen as an time-unfolded
flow graph, where each node is now associated with one particular time instance.

Some of the early circuit designs for recurrent neural networks are illustrated
in Figures 10.3, 10.4 and 10.6. Figure 10.3 shows the vanilla recurrent network

whose equations are laid down below in Eq. 10.4, and which has been shown to
be a universal approximation machine for sequences, i.e., able to implement a
Turing machine (Siegelmann and Sontag, 1991; Siegelmann, 1995; Hyotyniemi,
1996). On the other hand, the network with output recurrence shown in

The vanilla recurrent network of Figure 10.3 corresponds to the following for-

ward propagation equations, if we assume that hyperbolic tangent non-linearities
are used in the hidden units and softmax is used in output (for classification
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xtxt−1 xt+1x

unfold

V W

W

W W WV V V

U U U U

o ot−1 o t o t+1

h ht−1 ht ht+1

y

L L t−1 L t+1L t

y ty t−1 y t+1

Figure 10.4: Left: RNN circuit whose recurrence is only through the output. Right:
computational flow graph unfolded in time. At each t, the input is xt , the hidden layer
activations ht, the output ot, the target y t and the loss Lt. Such an RNN is less powerful
(can express a smaller set of functions) than those in the family represented by Figure 10.3
but may be easier to train because they can exploit “teacher forcing”, i.e., constraining
some of the units involved in the recurrent loop (here the output units) to take some
target values during training. This architecture is less powerful because the only state
information (carrying the information about the past) is the previous prediction. Un-
less the prediction is very high-dimensional and rich, this will usually miss important

information from the past.

problems):

at = b +Wst−1 + Uxt

st = tanh(at )

ot = c +V s t

pt = softmax(ot) (10.4)

where the parameters are the bias vectors b and c along with the weight matrices
U , V and W , respectively for input-to-hidden, hidden-to-output, and hidden-
to-hidden connections. This is an example of a recurrent network that maps an
input sequence to an output sequence of the same length. The total loss for a

given input/target sequence pair (x,y) would then be just the sum of the losses
over all the time steps, e.g.,

L(x, y) =
X

t

Lt =
X

t

− logpyt (10.5)

where y t is the category that should be associated with time step t in the output
sequence.

Figure 10.4 has a more limited memory or state, which is its output, i.e., the
prediction of the previous target, which potentially limits its expressive power, but

also makes it easier to train. Indeed, the “intermediate state” of the corresponding
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unfolded deep network is not hidden anymore: targets are available to guide this
intermediate representation, which should make it easier to train. In general,
the state of the RNN must be sufficiently rich to store a summary of the past
sequence that is enough to properly predict the future target values. Constraining
the state to be the visible variable y t itself is therefore in general not enough to
learn most tasks of interest, unless, given the sequence of inputs xt, y t contains all
the required information about the past y’s that is required to predict the future
y’s.

P (yt | ht)

ht

xt

ŷ t⇠ P(yt | ht)

(xt, yt) :
next input/output training pair

y t

Figure 10.5: Illustration of teacher forcing for RNNs, which comes out naturally from the
log-likelihood training objective (such as in Eq. 10.5). There are two ways in which the
output variable can be fed back as input to update the next state ht: what is fed back
is either the sample ŷt generated from the RNN model’s output distribution P (yt | ht)
(dashed arrow) or the actual “correct” output y t coming from the training data (dotted
arrow) (xt, yt). The former is what is done when one generates a sequence from the
model, and the latter is teacher forcing and what is done during training.

Teacher forcing is the training process in which the fed back inputs are not the
predicted outputs but the targets themselves, as illustrated in Figure 10.5. The
disadvantage of strict teacher forcing is that if the network is going to be later
used in an open-loop mode, i.e., with the network outputs (or samples from the
output distribution) fed back as input, then the kind of inputs that the network
will have seen during training could be quite different from the kind of inputs that

it will see at test time when the network is run in generative mode, potentially
yielding very poor generalizations. One way to mitigate this problem is to train

with both teacher-forced inputs and with free-running inputs, e.g., predicting the
correct target a number of steps in the future through the unfolded recurrent
output-to-input paths. In this way, the network can learn to take into account
input conditions (such as those it generates itself in the free-running mode) not
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seen during training and how to map the state back towards one that will make
the network generate proper outputs after a few steps. Another approach (Bengio
et al., 2015) to mitigate the gap between the generative mode of RNNs and how
they are trained (with teacher forcing, i.e., maximum likelihood) randomly chooses
to use generated values or actual data values as input, and exploits a curriculum
learning strategy to gradually use more of the generated values as input.

xtx t−1 x t+1

W
U U U

ht−1 ht ht+1

W

V

U
W W …"

LT

yT

oT

hT

x T

Figure 10.6: Time-Unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (like in the figure) or the gradient on the output o t can be obtained by
back-propagating from further downstream modules.

10.2.1 Computing the Gradient in a Recurrent Neural Network

Using the generalized back-propagation algorithm (for arbitrary flow graphs) in-
troduced in Section 6.4, one can obtain the so-called Back-Propagation Through
Time (BPTT) algorithm. Once we know how to compute gradients, we can in
principle apply any of the general-purpose gradient-based techniques to train an

RNN. These general-purpose techniques were introduced in Section 4.3 and de-
veloped in greater depth in Chapter 8.

Let us thus work out how to compute gradients by BPTT for the RNN equa-
tions above (Eqs. 10.4 and 10.5). The nodes of our flow graph will be the sequence
of xt ’s, st’s, o t’s, L t’s, and the parameters U , V , W , b, c. For each node a we
need to compute the gradient ∇aL recursively, based on the gradient computed
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at nodes that follow it in the graph. We start the recursion with the nodes
immediately preceding the final loss

∂L

∂Lt
= 1

and the gradient on the outputs i at time step t, for all i, t:

∂L

∂oti
=
∂L

∂Lt

∂Lt

∂oti
= pt,i − 1i,yt

and work our way backwards, starting from the end of the sequence, say T , at

which point sT only has oT as descendent:

∇sTL = ∇oT L
∂oT
∂sT

= ∇oTLV .

Note how the above equation is vector-wise and corresponds to ∂L
∂s Tj

=
P

i
∂L

∂o Ti
V ij,

scalar-wise. We can then iterate backwards in time to back-propagate gradients
through time, from t = T − 1 down to t = 1, noting that s t (for t < T ) has as
descendents both ot and st+1:

∇st
L = ∇st+1

L
∂st+1

∂st
+ ∇ot

L
∂ot
∂st

= ∇st+1
L diag(1 − s2t+1 )W + ∇ot

LV

where diag(1 − s2t+1) indicates the diagonal matrix containing the elements 1 −
s2t+1,i, i.e., the derivative of the hyperbolic tangent associated with the hidden
unit i at time t + 1.

Once the gradients on the internal nodes of the flow graph are obtained, we
can obtain the gradients on the parameter nodes, which have descendents at all
the time steps:

∇c L =
X

t

∇ot L
∂ot

∂c
=
X

t

∇o t
L

∇b L =
X

t

∇st L
∂st

∂b
=
X

t

∇stL diag(1 − s2t )

∇V L =
X

t

∇ot L
∂ot

∂V
=
X

t

∇o tL s
>
t

∇W L =
X

t

∇st

∂s t

∂W
=
X

t

∇st L diag(1 − s2t )s>t−1

Note in the above (and elsewhere) that whereas ∇s tL refers to the full influence

of s t through all paths from st to L, ∂s t

∂W or ∂st

∂b refers to the immediate effect
of the denominator on the numerator, i.e., when we consider the denominator
as a parent of the numerator and only that direct dependency is accounted for.
Otherwise, we would get “double counting” of derivatives.
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10.2.2 Recurrent Networks as Generative Directed Acyclic Mod-
els

Up to here, we have not clearly stated what the losses Lt associated with the

outputs ot of a recurrent net should be. It is because there are many possible ways
in which RNNs can be used. In this section, we consider the most common case

where the RNN models a probability distribution over a sequence of observations.
When we consider a predictive log-likelihood training objective such as Eq. 10.5,

we are training the RNN to estimate the conditional distribution of the next se-
quence element yt given the past inputs xs and targets ys (for s < t). As we
show below, this corresponds to viewing the RNN as a directed graphical model,
a notion introduced in Section 3.14. In this case, the set of random variables of
interest is the sequence of yt’s (given the sequence of xt’s), and we are modeling

the joint probability of the yt ’s given the xt ’s.
To keep things simple for starters, let us assume that there are no condi-

tioning input sequence in addition to the output sequence, i.e., that the target
output at the next time step is the next input. The random variable of interest is

thus the sequence of vectors X = (x 1,x2 , . . . ,xT), and we parametrize the joint
distribution of these vectors via

P (X) = P (x1 , . . . ,xT) =
TY

t=1

P (x t | xt−1 ,xt−2, . . . ,x1 ) (10.6)

using the chain rule of conditional probabilities (Section 3.6), and where the right-
hand side of the bar is empty for t = 1, of course. Hence the negative log-likelihood
of X according to such a model is

L =
X

t

Lt

where
L t = − logP (xt | xt−1,xt−2, . . . ,x 1).

In general directed graphical models, xt can be predicted using only a subset of its
predecessors (x1 , . . . ,xt−1). However, for RNNs, the graphical model is generally
fully connected, not removing any dependency a priori. This can be achieved

efficiently through the recurrent parametrization, such as in Eq. 10.2, since st
is trained to summarize whatever is required from the whole previous sequence
(Eq. 10.3).

Hence, instead of cutting statistical complexity by removing arcs in the di-
rected graphical model for (x 1, . . . ,xT), as is done in most of the work on di-
rected graphical models, the core idea of recurrent networks is that we intro-
duce a state variable which decouples all the past and future observations, but
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we make that state variable a function of the past, through the recurrence,
Eq. 10.2. Consequently, the number of parameters required to parametrize P (xt |
xt−1,xt−2, . . . ,x1) does not grow exponentially with t (as it would if we parametrized
that probability by a straight probability table, when the data is discrete) but
remains constant with t. It only grows with the dimension of the state st . The
price to be paid for that great advantage is that optimizing the parameters may
be more difficult, as discussed below in Section 10.7. The decomposition of the
likelihood thus becomes:

P (x) =
TY

t=1

P (xt | gt(x t−1,xt−2, . . . ,x1))

where
st = gt(xt ,xt−1 ,xt−2 , . . . ,x2,x1) = fθ(st−1 ,xt).

Note that if the self-recurrence function fθ is learned, it can discard some of the
information in some of the past values xt−k that are not needed for predicting
the future data. In fact, because the state generally has a fixed dimension smaller
than the length of the sequences (times the dimension of the input), it has to
discard some information. However, we leave it to the learning procedure to
choose what information to keep and what information to throw away.

The above decomposition of the joint probability of a sequence of variables
into ordered conditionals precisely corresponds to the sequence of computations

performed by an RNN. The target at each time step t is the next element in the
sequence, while the input at each time step is the previous element in the sequence
(with all previous inputs summarized in the state), and the output is interpreted
as parametrizing the probability distribution of the target given the state. This
is illustrated in Figure 10.7.

If the RNN is actually going to be used to generate sequences, one must also
incorporate in the output information allowing to stochastically decide when to

stop generating new output elements. This can be achieved in various ways. In
the case when the output is a symbol taken from a vocabulary, one can add a
special symbol corresponding to the end of a sequence. When that symbol is
generated, a complete sequence has been generated. The target for that special
symbol occurs exactly once per sequence, as the last target after the last output

element xT . In general, one may train a binomial output associated with that
stopping variable, for example using a sigmoid output non-linearity and the cross
entropy loss, i.e., again negative log-likelihood for the event “end of the sequence”.

Another kind of solution is to model the integer T itself, through any reasonable
parametric distribution, and use the number of time steps left (and possibly the
number of time steps since the beginning of the sequence) as extra inputs at
each time step. Thus we would have decomposed P (x1. . . ,x T ) into P (T ) and
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xtxt−1 xt+1

W
W W W

V V V

U U U

st−1

ot−1 ot

st st+1

ot+1

Lt+1Lt−1 Lt

xt+2
Figure 10.7: A generative recurrent neural network modeling P (x1 , . . . ,xT), able to gen-
erate sequences from this distribution. Each element x t of the observed sequence serves
both as input (for the current time step) and as target (for the previous time step). The
output ot encodes the parameters of a conditional distribution P (x t+1 | x1, . . . ,x t) =
P (x t+1 | o t) for xt+1 , given the past sequence x1 . . . ,xt . The loss Lt is the negative
log-likelihood associated with the output prediction (or more generally, distribution pa-
rameters) ot , when the actual observed target is xt+1. In training mode, one measures
and minimizes the sum of the losses over observed sequence(s) x. In generative mode, xt
is sampled from the conditional distribution P (xt+1 | x1, . . . ,x t) = P (xt+1 | ot ) (dashed

arrows) and then that generated sample x t+1 is fed back as input for computing the next
state st+1 , the next output ot+1, and generating the next sample x t+2, etc.
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P (x1 . . . ,xT | T ). In general, one must therefore keep in mind that in order to
fully generate a sequence we must not only generate the x t’s, but also the sequence
length T , either implicitly through a series of continue/stop decisions (or a special
“end-of-sequence” symbol), or explicitly through modeling the distribution of T
itself as an integer random variable.

If we take the RNN equations of the previous section (Eq. 10.4 and 10.5),
they could correspond to a generative RNN if we simply make the target yt equal
to the next input xt+1 (and because the outputs are the result of a softmax, it
must be that the input sequence is a sequence of symbols, i.e., xt is a symbol or

bounded integer).
Other types of data can clearly be modeled in a similar way, following the

discussions about the encoding of outputs and the probabilistic interpretation of
losses as negative log-likelihoods, in Sections 5.8 and 6.3.2.

10.2.3 RNNs to Represent Conditional Probability Distributions

In general, as discussed in Section 6.3.2 (see especially the end of that section, in
Subsection 6.3.2 ), when we can represent a parametric probability distribution
P (y | ω), we can make it conditional by making ω a function of the desired
conditioning variable:

P (y | ω = f (x)).

In the case of an RNN, this can be achieved in different ways, and we review here

the most common and obvious choices.
If x is a fixed-size vector, then we can simply make it an extra input of the

RNN that generates the y sequence. Some common ways of providing an extra
input to an RNN are:

1. as an extra input at each time step, or

2. as the initial state s 0, or

3. both.

In general, one may need to add extra parameters (and parametrization) to map
x = x into the “extra bias” going either into only s0, into the other st (t > 0),

or into both. The first (and most commonly used) approach is illustrated in

Figure 10.8.
As an example, we could imagine that x is encoding the identity of a phoneme

and the identity of a speaker, and that y represents an acoustic sequence corre-
sponding to that phoneme, as pronounced by that speaker.

Consider the case where the input x is a sequence of the same length as the
output sequence y, and the yt’s are independent of each other when the past
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st−1

ot−1 ot

st st+1

ot+1

Lt+1Lt−1 Lt

yt+2yt+1yt−1 yt

xt
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Figure 10.8: A conditional generative recurrent neural network maps a fixed-length vector
x into a distribution over sequences Y. Each element yt of the observed output sequence
serves both as input (for the current time step) and, during training, as target (for the
previous time step). The generative semantics are the same as in the unconditional case
(Fig. 10.7). The only difference is that the state is now conditioned on the input x,
and the same parameters (weight matrix R in the figure) is used at every time step
to parametrize that dependency. Although this was not discussed in Fig. 10.7, in both

figures one should note that the length of the sequence must also be generated (unless
known in advance). This could be done by a special binary output unit that encodes the
fact that the next output is the last.
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xtxt−1 xt+1
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st−1

ot−1 ot

st st+1

ot+1

Lt+1Lt−1 Lt

xt+2

yt+2yt+1yt−1 ytR R R R

Figure 10.9: A conditional generative recurrent neural network mapping a variable-length
sequence x into a distribution over sequences y of the same length. This architecture
assumes that the yt’s are causally related to the xt ’s, i.e., that we want to predict the
yt’s only using the past x t’s. Note how the prediction of yt+1 is based on both the past
x’s and the past y’s. The dashed arrows indicate that yt can be generated by sampling
from the output distribution ot−1 . When yt is clamped (known), it is used as a target
in the loss L t−1 which measures the log-probability that yt would be sampled from the
distribution o t−1.
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input sequence is given, i.e., P (yt | yt−1, . . . , y1, x) = P (yt | xt, x t−1, . . . , x1). We
therefore have a causal relationship between the xt ’s and the predictions of the
yt’s, in addition to the independence of the yt’s, given x. Under these (pretty
strong) assumptions, we can return to Fig. 10.3 and interpret the t-th output ot

as parameters for a conditional distribution for yt , given xt , xt−1, . . . , x1 .
If we want to remove the conditional independence assumption, we can do so

by making the past yt’s inputs into the state as well. That situation is illustrated
in Fig. 10.9.

xtx t−1 x t+1

ht−1 ht ht+1

gt−1 gt+1gt

otot−1 ot+1

L t+1Lt−1 Lt

ytyt−1 yt+1

Figure 10.10: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y, with loss L t at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t, the output units ot can benefit from a relevant summary of the past in its ht
input and from a relevant summary of the future in its gt input.

10.3 Bidirectional RNNs

All of the recurrent networks we have considered up to now have a “causal”
structure, meaning that the state at time t only captures information from the
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past, x1, . . . ,xt . However, in many applications we want to output at time t a
prediction regarding an output which may depend on the whole input sequence.
For example, in speech recognition, the correct interpretation of the current sound
as a phoneme may depend on the next few phonemes because of co-articulation
and potentially may even depend on the next few words because of the linguistic
dependencies between nearby words: if there are two interpretations of the current
word that are both acoustically plausible, we may have to look far into the future
(and the past) to disambiguate them. This is also true of handwriting recognition
and many other sequence-to-sequence learning tasks.

Bidirectional recurrent neural networks (or bidirectional RNNs) were invented
to address that need (Schuster and Paliwal, 1997). They have been extremely

successful (Graves, 2012) in applications where that need arises, such as hand-
writing (Graves et al., 2008; Graves and Schmidhuber, 2009), speech recogni-

tion (Graves and Schmidhuber, 2005; Graves et al., 2013) and bioinformatics (Baldi
et al., 1999).

As the name suggests, the basic idea behind bidirectional RNNs is to combine
a forward-going RNN and a backward-going RNN. Figure 10.10 illustrates the

typical bidirectional RNN, with h t standing for the state of the forward-going
RNN and g t standing for the state of the backward-going RNN. This allows the
units ot to compute a representation that depends on both the past and the future
but is most sensitive to the input values around time t, without having to specify

a fixed-size window around t (as one would have to do with a feedforward network,
a convolutional network, or a regular RNN with a fixed-size look-ahead buffer).

This idea can be naturally extended to 2-dimensional input, such as images,
by having four RNNs, each one going in one of the four directions: up, down,
left, right. At each point (i, j) of a 2-D grid, an output o i,j could then compute a
representation that would capture mostly local information but could also depend

on long-range inputs, if the RNN are able to learn to carry that information.

10.4 Deep Recurrent Networks

The computation in most RNNs can be decomposed into three blocks of param-
eters and associated transformations:

1. from input to hidden state,

2. from previous hidden state to next hidden state, and

3. from hidden state to output,

where the first two are actually brought together to map the input and previous
state into the next state. With the vanilla RNN architecture (such as in Fig-
ure 10.3), each of these three blocks is associated with a single weight matrix.
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In other words, when the network is unfolded, each of these uncorresponds to a
shallow transformation, i.e., a single layer within a deep MLP.
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Figure 10.11: A recurrent neural network can be made deep in many ways. First, the
hidden recurrent state can be broken down into groups organized hierarchically (left).
Second, deeper computation (e.g., an MLP in the figure) can be introduced in the input-
to-hidden, hidden-to-hidden, and hidden-to-output parts (Middle). However, this may

lengthen the shortest path linking different time steps, but this can be mitigated by
introduced skip connections (Right). Figures from Pascanu et al. (2014a) with permission.

Would it be advantageous to introduce depth in each of these operations? Ex-
perimental evidence (Graves et al., 2013; Pascanu et al., 2014a) strongly suggests
so, and this is in agreement with the idea that we need enough depth in order
to perform the required mappings. See also (Schmidhuber, 1992; El Hihi and

Bengio, 1996; Jaeger, 2007a) for earlier work on deep RNNs.
El Hihi and Bengio (1996) first introduced the idea of decomposing the hidden

state of an RNN into multiple groups of units that would operate at different

time scales. Graves et al. (2013) were the first to show a significant benefit of
decomposing the state of an RNN into groups of hidden units, with a restricted
connectivity between the groups, e.g., as in Figure 10.11 (left). Indeed, if there

were no restriction at all and no pressure for some units to represent a slower time
scale, then having N groups of M hidden units would be equivalent to having a
single group of NM hidden units. Koutnik et al. (2014) showed how the multiple
time scales idea from El Hihi and Bengio (1996) can be advantageous on several
sequential learning tasks: each group of hidden unit is updated at a different

multiple of the time step index.

We can also think of the lower layers in this hierarchy as playing a role in
transforming the raw input into a representation that is more appropriate, at
the higher levels of the hidden state. Pascanu et al. (2014a) go a step further
and propose to have a separate MLP (possibly deep) for each of the three blocks
enumerated above, as illustrated in Figure 10.11 (middle). It makes sense to
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allocate enough capacity in each of these three steps, but having a deep state-to-
state transition may also hurt: it makes the shortest path from an event at time
t to an event at time t 0 > t longer. For example if a one-hidden-layer MLP is
used for the state-to-state transition, we have doubled the length of that path,
compared with a vanilla RNN. However, as argued by Pascanu et al. (2014a), this
can be mitigated by introducing skip connections in the hidden-to-hidden path,
as illustrated in Figure 10.11 (right).
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Figure 10.12: A recursive network has a computational graph that generalizes that of
the recurrent network from a chain to a tree. In the figure, a variable-size sequence
x1 ,x2 , . . . can be mapped to a fixed-size representation (the output o), with a fixed
number of parameters (e.g. the weight matrices U , V , W ). The figure illustrates a

supervised learning case in which some target y is provided which is associated with the
whole sequence.
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10.5 Recursive Neural Networks

Recursive net represent yet another generalization of recurrent networks, with
a different kind of computational graph, which this time looks like a tree. The

typical computational graph for a recursive network is illustrated in Figure 10.12.
Recursive neural networks were introduced by Pollack (1990) and their potential
use for learning to reason were nicely laid down by Bottou (2011). Recursive
networks have been successfully applied in processing data structures as input to

neural nets (Frasconi et al., 1997, 1998), in natural language processing (Socher
et al., 2011a,c, 2013) as well as in computer vision (Socher et al., 2011b).

One clear advantage of recursive net over recurrent nets is that for a sequence

of the same length N, depth can be drastically reduced from N to O(logN ). An
open question is how to best structure the tree, though. One option is to have a
tree structure which does not depend on the data, e.g., a balanced binary tree.
Another is to use an external method, such as a natural language parser (Socher

et al., 2011a, 2013). Ideally, one would like the learner itself to discover and infer
the tree structure that is appropriate for any given input, as suggested in Bottou

(2011).
Many variants of the recursive net idea are possible. For example, in Frasconi

et al. (1997, 1998), the data is associated with a tree structure in the first place,

and inputs and/or targets with each node of the tree. The computation performed

by each node does not have to be the traditional artificial neuron computation
(affine transformation of all inputs followed by a monotone non-linearity). For
example, Socher et al. (2013) propose using tensor operations and bilinear forms,

which have previously been found useful to model relationships between con-
cepts (Weston et al., 2010; Bordes et al., 2012) when the concepts are represented
by continuous vectors (embeddings).

10.6 Auto-Regressive Networks

One of the basic ideas behind recurrent networks is that of directed graphical
models with a twist: we decompose a probability distribution as a product of

conditionals without explicitly cutting any arc in the graphical model, but instead

reducing complexity by parametrizing the transition probability in a recursive
way that requires a fixed (and not exponential) number of parameters, due to a

form of parameter sharing (see Section 7.8 for an introduction to the concept).

Instead of reducing P (x t | xt−1 , . . . ,x1 ) to something like P (xt | xt−1, . . . ,x t−k)
(assuming the k previous ones as the parents), we keep the full dependency but
we parametrize the conditional efficiently in a way that does not grow with t,

exploiting parameter sharing. When the above conditional probability distribu-
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tion is in some sense stationary, i.e., the relation between the past and the next
observation does not depend on t, only on the values of the past observations,
then this form of parameter sharing makes a lot of sense, and for recurrent nets
it allows to use the same model for sequences of different lengths.

Auto-regressive networks are similar to recurrent networks in the sense that
we also decompose a joint probability over the observed variables as a product of
conditionals of the form P (x t | xt−1, . . . ,x1) but we drop the form of parameter
sharing that makes these conditionals all share the same parametrization. This
makes sense when the variables are not elements of a translation-invariant se-

quence, but instead form an arbitrary tuple without any particular ordering that
would correspond to a translation-invariant form of relationship between variables

at position k and variables at position k0 . Such models have been called fully-
visible Bayes networks (Frey et al., 1996) and used successfully in many forms,

first with logistic regression for each conditional distribution (Frey, 1998) and
then with neural networks (Bengio and Bengio, 2000b; Larochelle and Murray,
2011). In some forms of auto-regressive networks, such as NADE (Larochelle and
Murray, 2011), described in Section 10.6.3 below, we can re-introduce a form of

parameter sharing that is different from the one found in recurrent networks, but
that brings both a statistical advantage (less parameters) and a computational
advantage (less computation). Although we drop the sharing over time, as we see
below in Section 10.6.2, using a deep learning concept of reuse of features, we can

share features that have been computed for predicting x t−k with the sub-network
that predicts x t.
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Figure 10.13: An auto-regressive network predicts the i-th variable from the i−1 previous
ones. Left: corresponding graphical model (which is the same as that of a recurrent
network). Right: corresponding computational graph, in the case of the logistic auto-
regressive network, where each prediction has the form of a logistic regression, i.e., with i
free parameters (for the i−1 weights associated with i−1 inputs, and an offset parameter).
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10.6.1 Logistic Auto-Regressive Networks

Let us first consider the simplest auto-regressive network, without hidden units,
and hence no sharing at all. Each P (xt | xt−1, . . . ,x1) is parametrized as a linear

model, e.g., a logistic regression. This model was introduced by Frey (1998) and
has O(T2) parameters when there are T variables to be modeled. It is illustrated

in Figure 10.13, showing both the graphical model (left) and the computational
graph (right).

A clear disadvantage of the logistic auto-regressive network is that one cannot
easily increase its capacity in order to capture more complex data distributions. It
defines a parametric family of fixed capacity, like the linear regression, the logistic
regression, or the Gaussian distribution. In fact, if the variables are continuous,
one gets a linear auto-regressive model, which is thus another way to formulate
a Gaussian distribution, i.e., only capturing pairwise interactions between the
observed variables.

x 1#
x2# x3#

x4#

P(x1 )# P(x2|x1)#
P(x3|x2#,x1 )#

P(x
4
|x

3#
,#x

2#
,x

1
)
#

#

h1#
h
2# h3#

Figure 10.14: A neural auto-regressive network predicts the i-th variable x i from the i− 1
previous ones, but is parametrized so that features (groups of hidden units denoted hi)
that are functions of x1, . . . ,xi can be reused in predicting all of the subsequent variables
xi+1 ,x i+2, . . ..

10.6.2 Neural Auto-Regressive Networks

Neural Auto-Regressive Networks have the same left-to-right graphical model as

logistic auto-regressive networks (Figure 10.13, left) but a different parametriza-
tion that is at once more powerful (allowing to extend the capacity as needed and
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approximate any joint distribution) and can improve generalization by introduc-
ing a parameter sharing and feature sharing principle common to deep learning in
general. The first paper on neural auto-regressive networks by Bengio and Bengio
(2000b) (see also Bengio and Bengio (2000a) for the more extensive journal ver-
sion) were motivated by the objective to avoid the curse of dimensionality arising
out of traditional non-parametric graphical models, sharing the same structure
as Figure 10.13 (left). In the non-parametric discrete distribution models, each
conditional distribution is represented by a table of probabilities, with one entry
and one parameter for each possible configuration of the variables involved. By

using a neural network instead, two advantages are obtained:

1. The parametrization of each P (x t | xt−1, . . . ,x1) by a neural network with

(t − 1) × k inputs and k outputs (if the variables are discrete and take
k values, encoded one-hot) allows to estimate the conditional probability
without requiring an exponential number of parameters (and examples),
yet still allowing to capture high-order dependencies between the random
variables.

2. Instead of having a different neural network for the prediction of each x t , a

left-to-right connectivity illustrated in Figure 10.14 allows to merge all the

neural networks into one. Equivalently, it means that the hidden layer fea-
tures computed for predicting xt can be reused for predicting xt+k (k > 0).
The hidden units are thus organized in groups that have the particular-
ity that all the units in the t-th group only depend on the input values
x1, . . . ,xt . In fact the parameters used to compute these hidden units are
jointly optimized to help the prediction of all the variables xt ,xt+1,xt+2 , . . ..

This is an instance of the reuse principle that makes multi-task learning and
transfer learning successful with neural networks and deep learning in gen-

eral (See Sections 7.12 and 16.2).

Each P (x t | x t−1 , . . . ,x1) can represent a conditional distribution by having
outputs of the neural network predict parameters of the conditional distribution
of xt , as discussed in Section 6.3.2. Although the original neural auto-regressive
networks were initially evaluated in the context of purely discrete multivariate
data (e.g., with a sigmoid - Bernoulli case - or softmax output - multinoulli

case) it is straightforward to extend such models to continuous variables or joint
distributions involving both discrete and continuous variables, as for example with
RNADE introduced below (Uria et al., 2013).
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Figure 10.15: NADE (Neural Auto-regressive Density Estimator) is a neural auto-
regressive network, i.e., the hidden units are organized in groups hj so that only the
inputs x1, . . . ,xi participate in computing hi and predicting P (xj | xj−1 , . . . ,x1), for
j > i. The particularity of NADE is the use of a particular weight sharing pattern: the
same W 0

jki= Wki is shared (same color and line pattern in the figure) for all the weights
outgoing from x i to the k-th unit of any group j ≥ i. The vector (W1i,W 2i, . . .) is denoted
W :,i here.

10.6.3 NADE

A very successful recent form of neural auto-regressive network was proposed
by Larochelle and Murray (2011). The architecture is basically the same as for
the original neural auto-regressive network of Bengio and Bengio (2000b) except

for the introduction of a weight-sharing scheme: as illustrated in Figure 10.15.
The parameteres of the hidden units of different groups j are shared, i.e., the

weights W 0
jki from the i-th input xi to the k-th element of the j-th group of

hidden unit hjk (j ≥ i) are shared:

W 0
jki = Wki

with (W1i, W 2i, . . .) denotedW :,i in Figure 10.15.
This particular sharing pattern is motivated in Larochelle and Murray (2011)

by the computations performed in the mean-field inference3 of an RBM, when only

3Here, unlike in Section 13.5, the inference is over some of the input variables that are missing,
given the observed ones.

303



CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

the first i inputs are given and one tries to infer the subsequent ones. This mean-
field inference corresponds to running a recurrent network with shared weights
and the first step of that inference is the same as in NADE. The only difference
is that with the proposed NADE, the output weights are not forced to be simply
transpose values of the input weights (they are not tied). One could imagine
actually extending this procedure to not just one time step of the mean-field
recurrent inference but to k steps, as in Raiko et al. (2014).

Although the neural auto-regressive networks and NADE were originally pro-
posed to deal with discrete distributions, they can in principle be generalized to

continuous ones by replacing the conditional discrete probability distributions (for
P (xj | x j−1 , . . . ,x1 )) by continuous ones and following general practice to pre-

dict continuous random variables with neural networks (see Section 6.3.2) using
the log-likelihood framework. A fairly generic way of parametrizing a continuous

density is as a Gaussian mixture, and this avenue has been successfully evaluated
for the neural auto-regressive architecture with RNADE (Uria et al., 2013). One
interesting point to note is that stochastic gradient descent can be numerically
ill-behaved due to the interactions between the conditional means and the condi-

tional variances (especially when the variances become small). Uria et al. (2013)
have used a heuristic to rescale the gradient on the component means by the
associated standard deviation which seems to have helped optimizing RNADE.

Another very interesting extension of the neural auto-regressive architectures

gets rid of the need to choose an arbitrary order for the observed variables (Mur-
ray and Larochelle, 2014). The idea is to train the network to be able to cope with

any order by randomly sampling orders and providing the information to hidden
units specifying which of the inputs are observed (on the - right - conditioning
side of the bar) and which are to be predicted and are thus considered missing
(on the - left - side of the conditioning bar). This is nice because it allows to use

a trained auto-regressive network to perform any inference (i.e. predict or sample
from the probability distribution over any subset of variables given any subset)
extremely efficiently. Finally, since many orders are possible, the joint probability
of some set of variables can be computed in many ways (n! for n variables), and
this can be exploited to obtain a more robust probability estimation and bet-
ter log-likelihood, by simply averaging the log-probabilities predicted by different

randomly chosen orders. In the same paper, the authors propose to consider deep
versions of the architecture, but unfortunately that immediately makes computa-
tion as expensive as in the original neural auto-regressive neural network (Bengio
and Bengio, 2000b). The first layer and the output layer can still be computed in

O(nh) multiply-add operations, as in the regular NADE, where h is the number
of hidden units (the size of the groups hi, in Figures 10.15 and 10.14), whereas it
is O(n 2h) in Bengio and Bengio (2000b). However, for the other hidden layers,
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the computation is O(n2h2) if every “previous” group at layer l participates in
predicting the “next” group at layer l + 1, assuming n groups of h hidden units
at each layer. Making the i-th group at layer l+1 only depend on the i-th group,
as in Murray and Larochelle (2014) at layer l reduces it to O(nh2), which is still
h times worse than the regular NADE.

10.7 Facing the Challenge of Long-Term Dependen-

cies

The mathematical challenge of learning long-term dependencies in recurrent net-

works was introduced in Section 8.2.5. The basic problem is that gradients prop-

agated over many stages tend to either vanish (most of the time) or explode
(rarely, but with much damage to the optimization). Even if we assume that the
parameters are such that the recurrent network is stable (can store memories,
with gradients not exploding), the difficulty with long-term dependencies arises
from the exponentially smaller weights given to long-term interactions (involving

the multiplication of many Jacobians) compared short-term ones. See Hochreiter
(1991); Doya (1993); Bengio et al. (1994); Pascanu et al. (2013a) for a deeper
treatment.

In this section we discuss various approaches that have been proposed to
alleviate this difficulty with learning long-term dependencies.

10.7.1 Echo State Networks: Choosing Weights to Make Dynam-
ics Barely Contractive

The recurrent weights and input weights of a recurrent network are those that
define the state representation captured by the model, i.e., how the state st (hid-
den units vector) at time t (Eq. 10.2) captures and summarizes information from
the previous inputs x1,x2, . . . ,xt . Since learning the recurrent and input weights
is difficult, one option that has been proposed (Jaeger and Haas, 2004; Jaeger,

2007b; Maass et al., 2002) is to set those weights such that the recurrent hid-
den units do a good job of capturing the history of past inputs, and only learn

the ouput weights. This is the idea that was independently proposed for Echo
State Networks or ESNs (Jaeger and Haas, 2004; Jaeger, 2007b) and Liquid State
Machines (Maass et al., 2002). The latter is similar, except that it uses spik-
ing neurons (with binary outputs) instead of the continuous valued hidden units

used for ESNs. Both ESNs and liquid state machines are termed reservoir com-
puting (Lukoševičius and Jaeger, 2009) to denote the fact that the hidden units

form of reservoir of temporal features which may capture different aspects of the
history of inputs.
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One way to think about these reservoir computing recurrent networks is that
they are similar to kernel machines: they allow to map an arbitrary length se-
quence (the history of inputs up to time t) into a fixed-length vector (the recurrent
state s t), on which a linear predictor (typically a linear regression) can be applied
to solve the problem of interest. The training criterion is therefore convex in the
parameters (which are just the output weights) and can actually be solved online
in the linear regression case (using online updates for linear regression (Jaeger,
2003)).

The important question is therefore: how do we set the input and recurrent

weights so that a rich set of histories can be represented in the recurrent neural
network state? The answer proposed in the reservoir computing literature is to

make the dynamical system associated with the recurrent net nearly on the edge of
chaos, i.e., with values around 1 (or slightly above) for the leading singular value

of the Jocobian of the state-to-state transition function. As alluded to in 8.2.5, an
important characteristic of a recurrent network is the eigenvalue spectrum of the
Jacobians J(t) = ∂st

∂st−1
, and in particular the spectral radius of J (t) , i.e., its largest

eigenvalue. If it is greater than 1, the dynamics can diverge, meaning that small

differences in the state value at t can yield a very large difference at T later in the
sequence. To see this, consider the simpler case where the Jacobian matrix J does
not change with t. If a change ∆s in the state at t is aligned with an eigenvector v
of J with eigenvalue λ > 1, then the small change ∆s becomes λ∆s after one time

step, and λN ∆s after N time steps. If λ > 1 this makes the change exponentially
large. With a non-linear map, the Jacobian keeps changing and the dynamics is

more complicated but what remains is that a small initial variation can turn into
a large variation after a number of steps. In general, the recurrent dynamics are
bounded (for example, if the hidden units use a bounded non-linearity such as
the hyperbolic tangent) so that the change after N steps must also be bounded.

Instead when the largest eigenvalue λ < 1, we say that the map from t to t+ 1
is contractive: a small change gets contracted, becoming smaller after each time
step. This necessarily makes the network forgetting information about the long-
term past, but it also makes its dynamics stable and easier to use.

What has been proposed to set the weights of reservoir computing machines
is to make the Jacobians slightly contractive. This is achieved by making the

spectral radius of the weight matrix large but slightly less than 1. However,
in practice, good results are often found with a spectral radius of the recurrent
weight matrix being slightly larger than 1, e.g., 1.2 (Sutskever, 2012; Sutskever
et al., 2013). Keep in mind that with hyperboling tangent units, the maximum

derivative is 1, so that in order to guarantee a Jacobian spectral radius less than
1, the weight matrix should have spectral radius less than 1 as well. However,
most derivatives of the hyperbolic tangent will be less than 1, which may explain
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Sutskever’s empirical observation.
More recently, it has been shown that the techniques used to set the weights in

ESNs could be used to initialize the weights in a fully trainable recurrent network
(e.g., trained using back-propagation through time), helping to learn long-term
dependencies (Sutskever, 2012; Sutskever et al., 2013). In addition to setting the
spectral radius to 1.2, Sutskever sets the recurrent weight matrix to be initially
sparse, with only 15 non-zero input weights per hidden unit.

Note that when some eigenvalues of the Jacobian are exactly 1, information
can be kept in a stable way, and back-propagated gradients neither vanish nor

explode. The next two sections show methods to make some paths in the unfolded
graph correspond to “multiplying by 1” at each step, i.e., keeping information for

a very long time.

10.7.2 Combining Short and Long Paths in the Unfolded Flow
Graph

An old idea that has been proposed to deal with the difficulty of learning long-
term dependencies is to use recurrent connections with long delays. Whereas
the ordinary recurrent connections are associated with a delay of 1 (relating the

state at t with the state at t+ 1), it is possible to construct recurrent networks
with longer delays (Bengio, 1991), following the idea of incorporating delays in
feedforward neural networks (Lang and Hinton, 1988) in order to capture temporal

structure (with Time-Delay Neural Networks, which are the 1-D predecessors of
Convolutional Neural Networks, discussed in Chapter 9).
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Figure 10.16: A recurrent neural networks with delays, in which some of the connections
reach back in time to more than one time step. Left: connectivity of the recurrent net,

with square boxes indicating the number of time delays associated with a connection.
Right: unfolded recurrent network. In the figure there are regular recurrent connections
with a delay of 1 time step (W1) and recurrent connections with a delay of 3 time steps
(W3 ). The advantage of these longer-delay connections is that they allow to connect past
states to future states through shorter paths (3 times shorter, here), going through these
longer delay connections (in red).

As we have seen in Section 8.2.5, gradients will vanish exponentially with
respect to the number of time steps. If we have recurrent connections with a

time-delay of d, then instead of the vanishing or explosion going as O(λT ) over
T time steps (where λ is the largest eigenvalue of the Jacobians ∂st

∂s t−1
), the un-

folded recurrent network now has paths through which gradients grow as O(λT/d)
because the number of effective steps is T/d. This allows the learning algorithm

to capture longer dependencies although not all long-term dependencies may be
well represented in this way. This idea was first explored in Lin et al. (1996) and

is illustrated in Figure 10.16.

10.7.3 Leaky Units and a Hierarchy of Different Time Scales

A related idea in order to obtain paths on which the product of derivatives is close
to 1 is to have units with linear self-connections and a weight near 1 on these
connections. The strength of that linear self-connection corresponds to a time

scale and thus we can have different hidden units which operate at different time

scales (Mozer, 1992). Depending on how close to 1 these self-connection weights
are, information can travel forward and gradients backward with a different rate
of “forgetting” or contraction to 0, i.e., a different time scale. One can view this
idea as a smooth variant of the idea of having different delays in the connections
presented in the previous section. Such ideas were proposed in Mozer (1992);
ElHihi and Bengio (1996), before a closely related idea discussed in the next
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section of gating these self-connections in order to let the network control at what
rate each unit should be contracting.

The idea of leaky units with a self-connection actually arises naturally when
considering a continuous-time recurrent neural network such as

ṡ iτ i = −s i+ σ(bi +Ws+ Ux)

where σ is the neural non-linearity (e.g., sigmoid or tanh), τi> 0 is a time constant
and ṡi indicates the temporal derivative of unit si. A related equation is

ṡi τi = −si + (bi +Wσ(s) +Ux)

where the state vector s (with elements si ) now represents the pre-activation of
the hidden units.

When discretizing in time such equations (which changes the meaning of τ ),
one gets

st+1,i − st,i = −
st,i
τ i

+
1

τ i
σ(bi +Wst + Uxt)

st+1,i = (1 − 1

τi
)st,i +

1

τi
σ(b i +Wst + Ux t). (10.7)

We see that the new value of the state is a convex linear combination of the old
value and of the value computed based on current inputs and recurrent weights,
if 1 ≤ τi < ∞. When τi = 1, there is no linear self-recurrence, only the non-
linear update which we find in ordinary recurrent networks. When τi > 1, this
linear recurrence allows gradients to propagate more easily. When τi is large, the
state changes very slowly, integrating the past values associated with the input

sequence.
By associating different time scales τi with different units, one obtains different

paths corresponding to different forgetting rates. Those time constants can be
fixed manually (e.g., by sampling from a distribution of time scales) or can be

learned as free parameters, and having such leaky units at different time scales
appears to help with long-term dependencies (Mozer, 1992; Pascanu et al., 2013a).
Note that the time constant τ thus corresponds to a self-weight of (1 − 1

τ), but
without any non-linearity involved in the self-recurrence.

Consider the extreme case where τ → ∞: because the leaky unit just averages
contributions from the past, the contribution of each time step is equivalent and

there is no associated vanishing or exploding effect. An alternative is to avoid the
weight of 1

τi
in front of σ(bi +Wst +Uxt), thus making the state sum all the past

values when τi is large, instead of averaging them.
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10.7.4 The Long-Short-Term-Memory Architecture and Other
Gated RNNs

Whereas in the previous section we consider creating paths where derivatives

neither vanish nor explode too quickly by introducing self-loops, leaky units have
self-weights that are not context-dependent: they are fixed, or learned, but remain

constant during a whole test sequence.

+ X

X

X

input

input gate

forget gate

output gate

output

state

self-loop

Figure 10.17: Block diagram of the LSTM recurrent network “cell”. Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.

An input feature is computed with a regular artificial neuron unit, and its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid non-linearity, while
the input unit can have any squashing non-linearity. The state unit can also be used as
extra input to the gating units. The black square indicates a delay of 1 time unit.

It is worthwhile considering the role played by leaky units: they allow to

accumulate information (e.g. evidence for a particular feature or category) over a

long duration. However, once that information gets used, it might be useful for
the neural network to forget the old state. For example, if a sequence is made of
subsequences and we want a leaky unit to accumulate evidence inside each sub-

subsequence, we need a mechanism to forget the old state by setting it to zero

and starting to count from fresh. Instead of manually deciding when to clear the
state, we want the neural network to learn to decide when to do it.
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LSTM

This clever idea of conditioning the forgetting on the context is a core contribution
of the Long-Short-Term-Memory (LSTM) algorithm (Hochreiter and Schmidhu-

ber, 1997), described below. Several variants of the LSTM are found in the
literature (Hochreiter and Schmidhuber, 1997; Graves, 2012; Graves et al., 2013;

Graves, 2013; Sutskever et al., 2014a) but the principle is always to have a linear
self-loop through which gradients can flow for long durations. By making the
weight of this self-loop gated (controlled by another hidden unit), the time scale
of integration can be changed dynamically (even for fixed parameters, but based
on the input sequence). The LSTM has been found extremely successful in a num-
ber of applications, such as unconstrained handwriting recognition (Graves et al.,
2009), speech recognition (Graves et al., 2013; Graves and Jaitly, 2014), hand-
writing generation (Graves, 2013), machine translation (Sutskever et al., 2014a),
image to text conversion (captioning) (Kiros et al., 2014b; Vinyals et al., 2014b;

Xu et al., 2015b) and parsing (Vinyals et al., 2014a).
The LSTM block diagram is illustrated in Figure 10.17. The corresponding

forward (state update equations) are follows, in the case of the vanilla recurrent
network architecture. Deeper architectures have been successfully used in Graves
et al. (2013); Pascanu et al. (2014a). Instead of a unit that simply applies a
squashing function on the affine transformation of inputs and recurrent units,
LSTM networks have “LSTM cells”. Each cell has the same inputs and outputs
as a vanilla recurrent network, but has more parameters and a system of gating
units that controls the flow of information. The most important component is the
state unit s t that has a linear self-loop similar to the leaky units described in the
previous section, but where the self-loop weight (or the associated time constant)

is controlled by a forget gate unit h
f
t,i (for time step t and cell i), that sets this

weight to a value between 0 and 1 via a sigmoid unit:

h
f
t,i = sigmoid(b

f
i +

X

j

U
f
ijxt,j +

X

j

W
f
ijht,j ). (10.8)

where xt is the current input vector and ht is the current hidden layer vector,
containing the outputs of all the LSTM cells, and bf ,Uf , Wf are respectively
biases, input weights and recurrent weights for the forget gates. The LSTM cell

internal state is thus updated as follows, following the pattern of Eq. 10.7, but
with a conditional self-loop weight hft,i :

st+1,i = hf
t,i
st,i + he

t,iσ(bi +
X

j

U ijxt,j +
X

j

Wijh t,j). (10.9)

b, U and W respectively the biases, input weights and recurrent weights into
the LSTM cell, and the external input gate unit he

t,i is computed similarly to the
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forget gate (i.e., with a sigmoid unit to obtain a gating value between 0 and 1),
but with its own parameters:

he
t,i = sigmoid(bei +

X

j

Ue
ijxt,j +

X

j

W e
ijht,j). (10.10)

The output h t+1,i of the LSTM cell can also be shut off, via the output gate ho
t,i

,
which also uses a sigmoid unit for gating:

h t+1,i = tanh(st+1,i)ho
t,i

ho
t,i = sigmoid(boi +

X

j

Uo
ijxt,j +

X

j

W o
ijht,j ) (10.11)

which has parameters bo, U o , Wo for its biases, input weights and recurrent
weights, respectively. Among the variants, one can choose to use the cell state s t,i

as an extra input (with its weight) into the three gates of the i-th unit, as shown

in Figure 10.17. This would require three additional parameters.
LSTM networks have been shown to learn long-term dependencies more easily

than vanilla recurrent architectures, first on artificial data sets designed for test-
ing the ability to learn long-term dependencies Bengio et al. (1994); Hochreiter
and Schmidhuber (1997); Hochreiter et al. (2000), then on challenging sequence
processing tasks where state-of-the-art performance was obtained (Graves, 2012;
Graves et al., 2013; Sutskever et al., 2014a).

Other Gated RNNs

Which pieces of the LSTM architecture are actually necessary? What other suc-
cessful architectures could be designed that allow the network to dynamically
control the time scale and forgetting behavior of different units?

Some answers to these questions are given with the recent work on gated
RNNs, which was successfully used in reaching the MOSES state-of-the-art for

English-to-French machine translation (Cho et al., 2014). The main difference

with the LSTM is that a single gating unit simultaneously controls the forgetting
factor and the decision to update the state unit, which is natural if we consider the

continuous-time interpretation of the self-weight of the state, as in the equation

for leaky units, Eq. 10.7. The update equations are the following:

h t+1,i= h u
t,iht,i + (1 − hut,i)σ(bi +

X

j

Uijxt,j +
X

j

Wij h
r
t,jh t,j). (10.12)

where g u stands for “update” gate and gr for “reset” gate. Their value is defined

as usual:
hut,i = sigmoid(bui +

Xj

U u
ij xt,j +

Xj

W u
ijh t,j) (10.13)
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and
hr

t,i = sigmoid(bri +
X

j

Ur
ijxt,j +

X

j

W r
ijht,j). (10.14)

Many more variants around this theme can be designed. For example the reset
gate (or forget gate) output could be shared across a number of hidden units. Or

the product of a global gate (covering a whole group of units, e.g., a layer) and a
local gate (per unit) could be used to combine global control and local control.

In addition, as discussed in the next section, different ways of making such
RNNs “deeper” are possible.

10.7.5 Better Optimization

A central optimization difficulty with RNNs regards the learning of long-term
dependencies (Hochreiter, 1991; Bengio et al., 1993, 1994). This difficulty has

been explained in detail in Section 8.2.5. The gist of the problem is that the
composition of the non-linear recurrence with itself over many many time steps
yields a highly non-linear function whose derivatives (e.g. of the state at T w.r.t.

the state at t < T , i.e. the Jacobian matrix ∂sT

∂st
) tend to either vanish or explode

as T−t increases, because it is equal to the product of the state transition Jacobian
matrices ∂st+1

∂st )
If it explodes, the parameter gradient ∇θL also explodes, yielding gradient-

based parameter updates that are poor. A simple solution to this problem is

discussed in the next section (Sec. 10.7.6). However, as discussed in Bengio et al.
(1994), if the state transition Jacobian matrix has eigenvalues that are larger than
1 in magnitude, then it can yield to “unstable” dynamics, in the sense that a bit
of information cannot be stored reliably for a long time in the presence of input
“noise”. Indeed, the state transition Jacobian matrix eigenvalues indicate how a
small change in some direction (the corresponding eigenvector) will be expanded
(if the eigenvalue is greater than 1) or contracted (if it is less than 1).

If the eigenvalues of the state transition Jacobian are less than 1, then deriva-
tives associated with long-term effects tend to vanish as T − t increases, making

them exponentially smaller in magnitude (as components of the total gradient)
then derivatives associated with short-term effects. This therefore makes it diffi-
cult (but not impossible) to learn long-term dependencies.

An interesting idea proposed in Martens and Sutskever (2011) is that at the

same time as first derivatives are becoming smaller in directions associated with

long-term effects, so may the higher derivatives. In particular, if we use a second-

order optimization method (such as the Hessian-free method of Martens and
Sutskever (2011)), then we could differentially treat different directions: divide
the small first derivative (gradient) by a small second derivative, while not scaling
up in the directions where the second derivative is large (and hopefully, the first
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derivative as well). Whereas in the scalar case, if we add a large number and a
small number, the small number is “lost”, in the vector case, if we add a large
vector with a small vector, it is still possible to recover the information about
the direction of the small vector if we have access to information (such as in the
second derivative matrix) that tells us how to rescale appropriately each direction.

One disadvantage of many second-order methods, including the Hessian-free
method, is that they tend to be geared towards “batch” training rather than
“stochastic” updates (where only one or a small minibatch of examples are exam-
ined before a parameter update is made). Although the experiments on recurrent

networks applied to problems with long-term dependencies showed very encour-
aging results in Martens and Sutskever (2011), it was later shown that similar

results could be obtained by much simpler methods (Sutskever, 2012; Sutskever
et al., 2013) involving better initialization, a cheap surrogate to second-order op-

timization (a variant on the momentum technique, Section 8.4), and the clipping
trick described below.

10.7.6 Clipping Gradients

As discussed in Section 8.2.4, strongly non-linear functions such as those com-
puted by a recurrent net over many time steps tend to have derivatives that can

be either very large or very small in magnitude. This is illustrated in Figures 8.2
and 8.3, in which we see that the objective function (as a function of the param-
eters) has a “landscape” in which one finds “cliffs”: wide and rather flat regions
separated by tiny regions where the objective function changes quickly, forming

a kind of cliff.
The difficulty that arises is that when the parameter gradient is very large,

a gradient descent parameter update could throw the parameters very far, into
a region where the objective function is larger, wasting a lot of the work that
had been down to reach the current solution. This is because gradient descent is
hinged on the assumption of small enough steps, and this assumption can easily
be violated when the same learning rate is used for both the flatter parts and the

steeper parts of the landscape.
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Figure 10.18: Example of the effect of gradient clipping in a recurrent network with two
paramters w and b. Vertical axis is the objective function to minimize. Note the cliff

where the gradient explodes and from where gradient descent can get pushed very far.
Clipping the gradient when its norm is above a threshold (Pascanu et al., 2013a) prevents
this catastrophic outcome and helps training recurrent nets with long-term dependencies
to be captured.

A simple type of solution has been in used by practitioners for many years:

clipping the gradient. There are different instances of this idea (Mikolov, 2012;
Pascanu et al., 2013a). One option is to clip the gradient element-wise (Mikolov,
2012). Another is to clip the norm of the gradient (Pascanu et al., 2013a).The
latter has the advantage that it guarantees that each step is still in the gradient
direction, but experiments suggest that both forms work similarly. Even simply
taking a random step when the gradient magnitude is above a threshold tends to
work almost as well.

10.7.7 Regularizing to Encourage Information Flow

Whereas clipping helps dealing with exploding gradients, it does not help with
vanishing gradients. To address vanishing gradients and better capture long-term
dependencies, we discussed the idea of creating paths in the computational graph
of the unfolded recurrent architecture along which the product of gradients asso-

ciated with arcs is near 1. One approach to achieve this is with LSTM and other
self-loops and gating mechanisms, described above in Section 10.7.4. Another idea
is to regularize or constrain the parameters so as to encourage “information flow”.
In particular, we would like the gradient vector ∇s tL being back-propagated to
maintain its magnitude (even if there is only a loss at the end of the sequence),
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i.e., we want

∇stL
∂st
∂s t−1

to be as large as
∇stL.

With this objective, Pascanu et al. (2013a) propose the following regularizer:

Ω =
X

t





|∇s tL
∂st

∂st−1

 |
||∇ stL| |

− 1





2

. (10.15)

It looks like computing the gradient of this regularizer is difficult, but Pascanu

et al. (2013a) propose an approximation in which we consider the back-propagated
vectors ∇stL as if they were constants (for the purpose of this regularizer, i.e., no

need to back-prop through them). The experiments with this regularizer suggest
that, if combined with the norm clipping heuristic (which handles gradient explo-
sion), it can considerably increase the span of the dependencies that an RNN can

learn. Because it keeps the RNN dynamics on the edge of explosive gradients, the

gradient clipping is particularly important: otherwise gradient explosion prevents
learning to succeed.

10.7.8 Organizing the State at Multiple Time Scales

Another promising approach to handle long-term dependencies is the old idea
of organizing the state of the RNN at multiple time-scales (El Hihi and Bengio,
1996), with information flowing more easily through long distances at the slower
time scales. This is illustrated in Figure 10.19.

Figure 10.19: Example of a multi-scale recurrent net architecture (unfolded in time), with
higher levels operating at a slower time scale. Information can flow unhampered (either
forward or backward in time) over longer durations at the higher levels, thus creating
long-paths (such as the red dotted path) through which long-term dependencies between
elements of the input/output sequence can be captured.

There are different ways in which a group of recurrent units can be forced to
operate at different time scales. One option is to make the recurrent units leaky
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(as in Eq. 10.7), but to have different groups of units associated with different
fixed time scales. This was the proposal in Mozer (1992) and has been successfully
used in Pascanu et al. (2013a). Another option is to have explicit and discrete
updates taking place at different times, with a different frequency for different
groups of units, as in Figure 10.19. This is the approach of El Hihi and Bengio
(1996); Koutnik et al. (2014) and it also worked well on a number of benchmark
datasets.

10.8 Handling Temporal Dependencies with N-Grams,

HMMs, CRFs and Other Graphical Models

This section regards probabilistic approches to sequential data modeling which
have often been viewed as in competition with RNNs, although RNNs can be seen
as a particular form of dynamical Bayes nets (as directed graphical models with
deterministic latent variables).

10.8.1 N-grams

N-grams are non-parametric estimators of conditional probabilities based on count-
ing relative frequencies of occurence, and they have been the core building block of
statistical language modeling for many decades (Jelinek and Mercer, 1980; Katz,
1987; Chen and Goodman, 1999). Like RNNs, they are based on the product rule
(or chain rule) decomposition of the joint probability into conditionals, Eq. 10.6,
which relies on estimates P (xt | xt−1, . . . , x1) to compute P (x1, . . . , xT). What is
particular of n-grams is that

1. they estimate these conditional probabilities based only on the last n − 1
values (to predict the next one)

2. they assume that the data is symbolic, i.e., xt is a symbol taken from a
finite alphabet V (for vocabulary), and

3. the conditional probability estimates are obtained from frequency counts
of all the observed length-n subsequences, hence the names unigram (for
n=1), bigram (for n=2), trigram (for n=3), and n-gram in general.

The maximum likelihood estimator for these conditional probabilities is simply
the relative frequency of occurence of the left hand symbol in the context of the

right hand symbols, compared to all the other possible symbols in V:

P (xt | xt−1, . . . , xt−n+1) =
#{xt, x t−1, . . . , xt−n+1 }

P
x t∈V#{xt, xt−1 , . . . , xt−n+1 }

(10.16)
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where #{a, b, c} denotes the cardinality of the set of tuples (a, b, c) in the training
set, and where the denominator is also a count (if border effects are handled
properly).

A fundamental limitation of the above estimator is that it is very likely to be
zero in many cases, even though the tuple (x t, xt−1, . . . , xt−n+1) may show up in
the test set. In that case, the test log-likelihood would be infinitely bad (−∞). To
avoid that catastrophic outcome, n-grams employ some form of smoothing, i.e.,
techniques to shift probability mass from the observed tuples to unobserved ones
that are similar (a central idea behind most non-parametric statistical methods).

See Chen and Goodman (1999) for a review and empirical comparisons. One
basic technique consists in assigning a non-zero probability mass to any of the

possible next symbol values. Another very popular idea consists in backing off,
or mixing (as in mixture model), the higher-order n-gram predictor with all the

lower-order ones (with smaller n). Back-off methods look-up the lower-order n-
grams if the frequency of the context xt−1, . . . , xt−n+1 is too small, i.e., considering
the contexts xt−1 , . . . , xt−n+k , for increasing k, until a sufficiently reliable estimate
is found.

Another interesting idea that is related to neural language models (Section 12.4)
is to break up the symbols into classes (by some form of clustering) and back-up
to, or mix with, less precise models that only consider the classes of the words
in the context (i.e. aggregating statistics from a larger portion of the training

set). One can view the word classes as a very impoverished learned representa-
tion of words which help to generalize (across words of the same class). What

distributed representations (e.g. neural word embeddings) bring is a richer notion
of similarity by which individual words keep their own identity (instead of being
undistinguishible from the other words in the same class) and yet share learned
attributes with other words with which they have some elements in common (but

not all). This kind of richer notion of similarity makes generalization more specific
and the representation not necessarily lossy, unlike with word classes.

10.8.2 Efficient Marginalization and Inference for Temporally Struc-
tured Outputs by Dynamic Programming

Many temporal modeling approaches can be cast in the following framework,
which also includes hybrids of neural networks with HMMs and conditional ran-

dom fields (CRFs), first introduced in Bottou et al. (1997); LeCun et al. (1998b)
and later developed and applied with great success in Graves et al. (2006); Graves
(2012) with the Connectionist Temporal Classification (CTC) approach, as well
as in Do and Artières (2010) and other more recent work (Farabet et al., 2013b;

Deng et al., 2014). These ideas have been rediscovered in a simplified form (lim-
iting the input-output relationship to a linear one) as CRFs (Lafferty et al., 2001),
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i.e., undirected graphical models whose parameters are linear functions of input
variables. In section 10.9 we consider in more detail the neural network hybrids
and the “graph transformer” generalizations of the ideas presented below.

All these approaches (with or without neural nets in the middle) concern the
case where we have an input sequence (discrete or continuous-valued) {x t} and
a symbolic output sequence {yt} (typically of the same length, although shorter
output sequences can be handled by introducing “empty string” values in the
output). Generalizations to non-sequential output structure have been introduced
more recently (e.g. to condition the Markov Random Fields sometimes used to

model structural dependencies in images (Stewart et al., 2007)), at the loss of
exact inference (the dynamic programming methods described below).

Optionally, one also considers a latent variable sequence {s t} that is also dis-
crete and inference needs to be done over {st}, either via marginalization (sum-

ming over all possible values of the state sequence) or maximization (picking
exactly or approximately the MAP sequence, with the largest probability). If
the state variables st and the target variables yt have a 1-D Markov structure to
their dependency, then computing likelihood, partition function and MAP values

can all be done efficiently by exploiting dynamic programming to factorize the
computation. On the other hand, if the state or output sequence dependencies
are captured by an RNN, then there is no finite-order Markov property and no
efficient and exact inference is generally possible. However, many reasonable ap-

proximations have been used in the past, such as with variants of the beam search
algorithm (Lowerre, 1976). The idea of beam search is that one maintains a set

of promising candidate paths that end at some time step t. For each additional
time step, one considers extensions to t+1 of each of these paths and then prunes
those with the worse overall cumulative score (up to t + 1). The beam size is the
number of candidates that are kept. See Section 10.9.1 for more details on beam

search.
The application of the principle of dynamic programming in these setups is the

same as what is used in the Forward-Backward algorithm (detailed more around
Eq. 10.20), for graphical models and HMMs (detailed more in Section 10.8.3) and
the Viterbi algorithm detailed below (Eq. 10.22). For both of these algorithms, we
are trying to sum (Forward-Backward algorithm) or maximize (Viterbi algorithm)

over paths the probability or score associated with each path.
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…

Figure 10.20: Example of a temporally structured output graph, as can be found in CRFs,
HMMs, and neural net hybrids. Each node corresponds to a particular value of an output
random variable at a particular point in the output sequence (contrast with a graphical
model representation, where each node corresponds to a random variable). A path from
the source node to the sink node (e.g. red bold arrows) corresponds to an interpretation of

the input as a sequence of output labels. The dynamic programming recursions that are
used for computing likelihood (or conditional likelihood) or performing MAP inference
(finding the best path) involve sums or maximizations over sub-paths ending at one of
the particular interior nodes.

Let G be a directed acyclic graph whose paths correspond to the sequences
that can be selected (for MAP) or summed over (marginalized for computing a
likelihood), as illustrated in Figure 10.20. In the above example, let zt represent
the choice variable (e.g., s t and yt in the above example), and each arc with score
a corresponds to a particular value of zt in its Markov context. In the language

of undirected graphical models, if a is the score associated with an arc from the
node for z t−1 = j to the one for z t = i, then a is minus the energy of a term
of the energy function associated with the event 1zt−1 =j,zt=i and the associated
information from the input x (e.g. some value of xt ).

Hidden Markov models are based on the notion of Markov chain, which is

covered in much more detail in Section 14.1. A Markov chain is a sequence of
random variables z1 , . . . zT , and for our purposes the main property of a Markov
chain chain of order 1 is that the current value of zt contains enough information

about the previous values z1, . . . z t−1 in order to predict the distribution of the next
random variable, zt+1 . In our context, we can make the z’s conditioned on some
x, the order 1 Markov property then means that P (zt | zt−1 , zt−2, . . . , z1,x) =
P (zt | zt−1 ,x), where x is conditioning information (the input sequence). When
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we consider a path in that space, i.e. a sequence of values, we draw a graph with a
node for each discrete value of zt, and if it is possible to transition from zt−1 = j to
z t = i we draw an arc between these two nodes. Hence, the total number of nodes
in the graph would be equal to the length of the sequence, T , times the number of
values of z t, n, and the number of arcs of the graph would be up to Tn2 (if every
value of z t can follow every value of zt−1, although in practice the connectivity is
often much smaller because not all transitions are typically feasible). A score a
is computed for each arc (which may include some component that only depends
on the source or only on the destination node), as a function of the conditioning

information x. The inference or marginalization problems involve performing the
following computations.

For the marginalization task, we want to compute the sum over all complete
paths (e.g. from source to sink) of the product along the path of the exponentiated

scores associated with the arcs on that path:

m(G) =
X

path∈G

Y

a∈path
ea (10.17)

where the product is over all the arcs on a path (with score a), and the sum is
over all the paths associated with complete sequences (from beginning to end of
a sequence). m(G) may correspond to a likelihood, numerator or denominator of
a probability. For example,

P ({zt } ∈ Y | x) =
m(GY)

m(G)
(10.18)

where GY is the subgraph of G which is restricted to sequences that are compatible
with some target answer Y.

For the inference task, we want to compute

π(G) = arg max
path∈G

Y

a∈path
ea = arg max

path∈G

X

a∈path
a

v(G) = max
path∈G

X

a∈path

a

where π(G) is the most probable path and v(G) is its log-score or value, and again
the set of paths considered includes all of those starting at the beginning and
ending at the end the sequence.

The principle of dynamic programming is to recursively compute intermediate
quantities that can be reused efficiently so as to avoid actually going through an
exponential number of computations, e.g., though the exponential number of
paths to consider in the above sums or maxima. Note how it is already at play
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in the underlying efficiency of back-propagation (or back-propagation through
time), where gradients w.r.t. intermediate layers or time steps or nodes in a flow
graph can be computed based on previously computed gradients (for later layers,
time steps or nodes). Here it can be achieved by considering to restrictions of the
graph to those paths that end at a node n, which we denote Gn . Gn

Y indicates
the additional restriction to subsequences that are compatible with the target
sequence Y , i.e., with the beginning of the sequence Y .

…

Figure 10.21: Illustration of the recursive computation taking place for inference or

marginalization by dynamic programming. See Figure 10.20. These recursions involve
sums or maximizations over sub-paths ending at one of the particular interior nodes (red
in the figure), each time only requiring to look up previously computed values at the
predecessor nodes (green).

We can thus perform marginalization efficiently as follows, and illustrated in
Figure 10.21. This is a generalization of the so-called Forward-Backward algo-
rithm for HMMs

m(G) =
X

n∈final(G)
m(Gn) (10.19)

where final(G) is the set of final nodes in the graph G, and we can recursively
compute the node-restricted sum via

m(Gn) =
X

n 0∈pred(n)
m(Gn0

)ean0,n (10.20)

where pred(n) is the set of predecessors of node n in the graph and am,n is the
log-score associated with the arc from m to n. It is easy to see that expanding
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the above recursion recovers the result of Eq. 10.17.
Similarly, we can perform efficient MAP inference (also known as Viterbi

decoding) as follows.

v(G) = max
n∈final(G)

v(Gn ) (10.21)

and
v(G n) = max

m∈pred(n)
v(G m) + am,n. (10.22)

To obtain the corresponding path, it is enough to keep track of the argmax asso-

ciated with each of the above maximizations and trace back π(G) starting from

the nodes in final(G). For example, the last element of π(G) is

n
∗ ← arg max

n∈final(G)
v(Gn

)

and (recursively) the argmax node before n∗ along the selected path is a new n ∗,

n∗← arg max
m∈pred(n∗ )

v(Gm) + am,n∗ ,

etc. Keeping track of these n ∗ along the way gives the selected path. Proving
that these recursive computations yield the desired results is straightforward and
left as an exercise.

10.8.3 HMMs

Hidden Markov Models (HMMs) are probabilistic models of sequences that were

introduced in the 60’s (Baum and Petrie, 1966) along with the E-M algorithm
(Section 19.2). They are very commonly used to model sequential structure, in
particular having been since the mid 80’s and until recently the technological

core of speech recognition systems (Rabiner and Juang, 1986; Rabiner, 1989).
Just like RNNs, HMMs are dynamic Bayes nets (Koller and Friedman, 2009),
i.e., the same parameters and graphical model structure are used for every time
step. Compared to RNNs, what is particular to HMMs is that the latent variable

associated with each time step (called the state) is discrete, with a separate set of

parameters associated with each state value. We consider here the most common
form of HMM, in which the Markov chain is of order 1, i.e., the state st at time

t, given the previous states, only depends on the previous state st−1:

P (st | st−1 , st−2, . . . , s1) = P (st | st−1),

which we call the transition or state-to-state distribution. Generalizing to higher-
order Markov chains is straightforward: for example, order-2 Markov chains can
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be mapped to order-1 Markov chains by considering as order-1 “states” all the
pairs (st = i, s t−1 = j).

Given the state value, a generative probabilistic model of the visible variable
xt is defined, that specifies how each observation xt in a sequence (x1,x2 , . . . ,xT )
can be generated, via a model P (x t | st). Two kinds of parameters are distin-
guished: those that define the transition distribution, which can be given by a
matrix

Aij = P (s t = i | st−1 = j),

and those that define the output model P (xt | st). For example, if the data are
discrete and xt is a symbol xt, then another matrix can be used to define the
output (or emission) model:

Bki = P (xt = k | st = i).

Another common parametrization for P (xt | st = i), in the case of continuous
vector-valued x t, is the Gaussian mixture model, where we have a different mix-
ture (with its own means, covariances and component probabilities) for each state

s t = i. Alternatively, the means and covariances (or just variances) can be shared
across states, and only the component probabilities are state-specific.

The overall likelihood of an observed sequence is thus

P (x1,x2 , . . . ,xT ) =
X

s1,s2,...,sT

Y

t

P (x t | st)P (st | s t−1). (10.23)

In the language established earlier in Section 10.8.2, we have a graph G with
one node n per time step t and state value i, i.e., for s t = i, and one arc between
each node n (for 1s t=i) and its predecessors m for 1 st−1 =j (when the transition

probability is non-zero, i.e., P (st = i | st−1 = j) 6= 0). Following Eq. 10.23, the
log-score am,n for the transition between m and n would then be

am,n = log P (xt | st = i) + log P (st = i | s t−1 = j).

As explained in Section 10.8.2, this view gives us a dynamic programming
algorithm for computing the likelihood (or the conditional likelihood given some

constraints on the set of allowed paths), called the forward-backward or sum-

product algorithm, in time O(kNT ) where T is the sequence length, N is the
number of states and k the average in-degree of each node.

Although the likelihood is tractable and could be maximized by a gradient-

based optimization method, HMMs are typically trained by the E-M algorithm
(Section 19.2), which has been shown to converge rapidly (approaching the rate of
Newton-like methods) in some conditions (if we view the HMM as a big mixture,
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then the condition is for the final mixture components to be well-separated, i.e.,
have little overlap) (Xu and Jordan, 1996).

At test time, the sequence of states that maximizes the joint likelihood

P (x 1,x2, . . . ,xT , s1, s2 , . . . , sT)

can also be obtained using a dynamic programming algorithm (called the Viterbi
algorithm). This is a form of inference (see Section 13.5) that is called MAP

(Maximum A Posteriori) inference because we want to find the most probable
value of the unobserved state variables given the observed inputs. Using the same
definitions as above (from Section 10.8.2) for the nodes and log-score of the graph

G in which we search for the optimal path, the Viterbi algorithm corresponds to
the recursion defined by Eq. 10.22.

If the HMM is structured in such a way that states have a meaning associated

with labels of interest, then from the MAP sequence one can read off the associated

labels. When the number of states is very large (which happens for example with
large-vocabulary speech recognition based on n-gram language models), even the

efficient Viterbi algorithm becomes too expensive, and approximate search must
be performed. A common family of search algorithms for HMMs is the beam
search algorithm (Lowerre, 1976) (Section 10.9.1).

More details about speech recognition are given in Section 12.3. An HMM
can be used to associate a sequence of labels (y 1, y2, . . . , yN ) with the input
(x1,x2, . . . ,xT), where the output sequence is typically shorter than the input

sequence, i.e., N < T . Knowledge of (y1, y 2, . . . , yN) constrains the set of com-
patible state sequences (s1, s2, . . . , sT), and the generative conditional likelihood

P (x1,x2 , . . . ,xT | y1, y2 , . . . , yN ) =
X

s1 ,s2 ,...,sT∈S(y1 ,y2,...,yN )

Y

t

P (xt | st)P (s t | s t−1).

(10.24)
can be computed using the same forward-backward technique, and its logarithm
maximized during training, as discussed above.

Various discriminative alternatives to the generative likelihood of Eq. 10.24

have been proposed (Brown, 1987; Bahl et al., 1987; Nadas et al., 1988; Juang and
Katagiri, 1992; Bengio et al., 1992a; Bengio, 1993; Leprieur and Haffner, 1995;
Bengio, 1999a), the simplest of which is simply P (y1 , y2, . . . , yN | x1,x2 , . . . ,xT ),
which is obtained from Eq. 10.24 by Bayes rule, i.e., involving a normalization

over all sequences, i.e., the unconstrained likelihood of Eq. 10.23:

P (y1 , y2 , . . . , yN | x1,x2 , . . . ,xT) =
P (x 1 ,x2 , . . . ,xT | y1, y2, . . . , yN)P (y1, y2, . . . , yN)

P (x1,x2, . . . ,xT)
.

Both the numerator and denominator can be formulated in the framework of the
previous section (Eqs. 10.18-10.20), where for the numerator we merge (add) the
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log-scores coming from the structured output output model P (y1 , y2, . . . , yN) and
from the input likelihood model P (x1,x2, . . . ,xT | y1, y2, . . . , yN). Again, each
node of the graph corresponds to a state of the HMM at a particular time step
t (which may or may not emit the next output symbol y i), associated with an
input vector x t. Instead of making the relationship to the input the result of a
simple parametric form (Gaussian or multinomial, typically), the scores can be
computed by a neural network (or any other parametrized differential function).
This gives rise to discriminative hybrids of search or graphical models with neural
networks, discussed below, Section 10.9.

10.8.4 CRFs

Whereas HMMs are typically trained to maximize the probability of an input
sequence x given a target sequence y and correspond to a directed graphical
model, Conditional Random Fields (CRFs) (Lafferty et al., 2001) are undirected
graphical models that are trained to maximize the joint probability of the target

variables, given input variables, P (y | x). CRFs are special cases of the graph
transformer model introduced in Bottou et al. (1997); LeCun et al. (1998b), where
neural nets are replaced by affine transformations and there is a single graph
involved. TODO: explain what a graph transformer actually is

Many applications of CRFs involve sequences and the discussion here will be
focused on this type of application, although applications to images (e.g. for
image segmentation) are also common. Compared to other graphical models,
another characteristic of CRFs is that there are no latent variables. The general

equation for the probability distribution modeled by a CRF is basically the same
as for fully visible (not latent variable) undirected graphical models, also known as

Markov Random Fields (MRFs, see Section 13.2.2), except that the “potentials”
(terms of the energy function) are parametrized functions of the input variables,
and the likelihood of interest is the posterior probability P (y | x).

As in many other MRFs, CRFs often have a particular connectivity structure
in their graph, which allows one to perform learning or inference more efficiently.

In particular, when dealing with sequences, the energy function typically only has
terms that relate neighboring elements of the sequence of target variables. For
example, the target variables could form a homogenous4 Markov chain of order

k (given the input variables). A typical linear CRF example with binary outputs

4meaning that the same parameters are used for every time step
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would have the following structure:

P (y = y | x) =
1

Z
exp



X

t

yt (b +
X

j

wixtj ) +
kX

i=1

yt yt−i(ui +
X

j

vij xtj)





(10.25)

where Z is the normalization constant, which is the sum over all y sequences of the
numerator. In that case, the score marginalization framework of Section 10.8.2
and coming from Bottou et al. (1997); LeCun et al. (1998b) can be applied by
making terms in the above exponential correspond to scores associated with nodes
t of a graph G. If there were more than two output classes, more nodes per time
step would be required but the principle would remain the same. A more general
formulation for Markov chains of order d is the following:

P (y = y | x) =
1

Z
exp

 
X

t

dX

d0=0

fd0(yt , yt−1, . . . , yt−d 0, xt )

!
(10.26)

where fd0 computes a potential of the energy function, a parametrized function
of both the past target values (up to yt−d0 ) and of the current input value xt . For
example, as discussed below fd 0 could be the output of an arbitrary parametrized

computation, such as a neural network.
Although Z looks intractable, because of the Markov property of the model

(order 1, in the example), it is again possible to exploit dynamic programming to
compute Z efficiently, as per Eqs. 10.18-10.20). Again, the idea is to compute the

sub-sum for sequences of length t ≤ T (where T is the length of a target sequence
y), ending in each of the possible state values at t, e.g., yt = 1 and yt = 0 in the
above example. For higher order Markov chains (say order d instead of 1) and a

larger number of state values (say N instead of 2), the required sub-sums to keep
track of are for each element in the cross-product of d−1 state values, i.e., N d−1.
For each of these elements, the new sub-sums for sequences of length t + 1 (for
each of the N values at t + 1 and corresponding N max(0,d−2) past values for the

past d− 2 time steps) can be obtained by only considering the sub-sums for the
Nd−1 joint state values for the last d − 1 time steps before t+ 1.

Following Eq. 10.22, the same kind of decomposition can be performed to

efficiently find the MAP configuration of y’s given x, where instead of products
(sums inside the exponential) and sums (for the outer sum of these exponentials,
over different paths) we respectively have sums (corresponding to adding the sums
inside the exponential) and maxima (across the different competing “previous-
state” choices).
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Figure 10.22: Illustration of the stacking of graph transformers (right, c) as a generaliza-
tion of the stacking of convolutional layers (middle, b) or of regular feedforward layers
that transform fixed-size vectors (left, a). Figure reproduced with permission from the au-
thors of Bottou et al. (1997). Quoting from that paper, (c) shows that “multilayer graph
transformer networks are composed of trainable modules that operate on and produce
graphs whose args carry numerical information”.

10.9 Combining Neural Networks and Search

The idea of combining neural networks with HMMs or related search or alignment-
based components (such as graph transformers) for speech and handwriting recog-

nition dates from the early days of research on multi-layer neural networks (Bourlard
and Wellekens, 1990; Bottou et al., 1990; Bengio, 1991; Bottou, 1991; Haffner
et al., 1991; Bengio et al., 1992a; Matan et al., 1992; Bourlard and Morgan, 1993;

Bengio et al., 1995; Bengio and Frasconi, 1996; Baldi and Brunak, 1998) – and
see more references in Bengio (1999b). See also 12.5 for combining recurrent and
other deep learners with generative models such as CRFs, GSNs or RBMs.

The principle of efficient marginalization and inference for temporally struc-
tured outputs by exploiting dynamic programming (Sec. 10.8.2) can be applied

not just when the log-scores of Eqs. 10.17 and 10.19 are parameters or linear
functions of the input, but also when they are learned non-linear functions of the

input, e.g., via a neural network transformation, as was first done in Bottou et al.

(1997); LeCun et al. (1998b). These papers additionally introduced the powerful
idea of learned graph transformers, illustrated in Figure 10.22. In this context,

a graph transformer is a machine that can map a directed acyclic graph G in to
another graph Gout. Both input and output graphs have paths that represent
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Figure 10.23: Illustration of the input and output of a simple graph transformer that maps
a singleton graph corresponding to an input image to a graph representing hypothesized
segmentation hypotheses. Reproduced with permission from the authors of Bottou et al.
(1997).

hypotheses about the observed data.

For example, in the above papers, and as illustrated in Figure 10.23, a segmen-
tation graph transformer takes a singleton input graph (the image x) and outputs

a graph representing segmentation hypotheses (regarding sequences of segments

that could each contain a character in the image). Such a graph transformer could
be used as one layer of a graph transformer network for handwriting recognition
or document analysis for reading amounts on checks, as illustrated respectively

in Figures 10.24 and 10.25.
For example, after the segmentation graph transformer, a recognition graph

transformer could expand each node of the segmentation graph into a subgraph
whose arcs correspond to different interpretations of the segment (which char-
acter is present in the segment?). Then, a dictionary graph transformer takes

the recognition graph and expands it further by considering only the sequences
of characters that are compatible with sequences of words in the language of in-

terest. Finally, a language-model graph transformer expands sequences of word
hypotheses so as to include multiple words in the state (context) and weigh the

arcs according to the language model next-word log-probabilities.
Each of these transformations is parametrized and takes real-valued scores

on the arcs of the input graph into real-valued scores on the arcs of the output
graph. These transformations can be parametrized and learned by gradient-based

optimization over the whole series of graph transformers.

10.9.1 Approximate Search

Unfortunately, as in the above example, when the number of nodes of the graph
becomes very large (e.g., considering all previous n words to condition the log-
probability of the next one, for n large), even dynamic programming (whose
computation scales with the number of arcs) is too slow for practical applications
such as speech recognition or machine translation. A common example is when a
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Figure 10.24: Illustration of the graph transformer network that has been used for finding
the best segmentation of a handwritten word, for handwriting recognition. Reproduced
with permission from Bottou et al. (1997).
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Figure 10.25: Illustration of the graph transformer network that has been used for reading
amounts on checks, starting from the single graph containing the image of the graph
to the recognized sequences of characters corresponding to the amount on the graph,
with currency and other recognized marks. Note how the grammar graph transformer

composes the grammar graph (allowed sequences of characters) and the recognition graph
(with character hypotheses associated with specific input segments, on the arcs) into an
interpretation graph that only contains the recognition graph paths that are compatible
with the grammar. Reproduced with permission from Bottou et al. (1997).
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recurrent neural network is used to compute the arcs log-score, e.g., as in neural
language models (Section 12.4). Since the prediction at step t depends on all
t − 1 previous choices, the number of states (nodes of the search graph G) grows
exponentially with the length of the sequence. In that case, one has to resort to
approximate search.

Beam Search

In the case of sequential structures as discussed in this chapter, a common family
of approximate search algorithms is the beam search (Lowerre, 1976).

• Break the nodes of the graph into g groups containing only “comparable
nodes”, e.g., the group of nodes n for which the maximum length of the
paths ending at n is exactly t.

• Process these groups of nodes sequentially, keeping only at each step t a
selected subset St of the nodes (the “beam”), chosen based on the subset
St−1. Each node in St is associated with a score v̂(Gn) that represents an

approximation (a lower bound) on the maximum total log-score of the path
ending at the node, v(Gn) (defined in Eq. 10.22, Viterbi decoding).

• St is obtained by following all the arcs from the nodes in St−1, and sorting
all the resulting group t nodes n according to their estimated (lower bound)
score

v̂(Gn ) = max
n0∈St−1andn 0∈pred(n)

v̂(G n0) + an0,n ,

while keeping track of the argmax in order to trace back the estimated best
path. Only the k nodes with the highest log-score are kept and stored in
St, and k is called the beam width.

• The estimated best final node can be read off from maxn∈ST v̂(G
n) and the

estimated best path from the associated argmax choices made along the

way, just like in the Viterbi algorithm.

One problem with beam search is that the beam often ends up lacking in
diversity, making the approximation poor. For example, imagine that we have

two “types” of solutions, but that each type has exponentially many variants (as

a function of t), due, e.g., to small independent variations in ways in which the
type can be expressed at each time step t. Then, even though the two types may

have close best log-score up to time t, the beam could be dominated by the one
that wins slightly, eliminating the other type from the search, although later time
steps might reveal that the second type was actually the best one.
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Part III

Deep Learning Research
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This part of the book describes the more ambitious and advanced approaches
to deep learning, currently pursued by the research community.

In the previous parts of the book, we have shown how to solve supervised
learning problems—how to learn to map one vector to another, given enough
examples of the mapping.

Not all problems we might want to solve fall into this category. We may wish to
generate new examples, or determine how likely some point is, or handle missing
values and take advantage of a large set of unlabeled examples or examples from
related tasks. Many deep learning algorithms have been designed to tackle such

unsupervised learning problems, but none have truly solved the problem in the
same way that deep learning has largely solved the supervised learning problem

for a wide variety of tasks. In this part of the book, we describe the existing
approaches to unsupervised learning and some of the popular thought about how
we can make progress in this field.

Another shortcoming of the current state of the art for industrial applications
is that our learning algorithms require large amounts of supervised data to achieve
good accuracy. In this part of the book, we discuss some of the speculative
approaches to reducing the amount of labeled data necessary for existing models
to work well.

This section is the most important for a researcher—someone who wants to

understand the breadth of perspectives that have been brought to the field of
deep learning, and push the field forward towards true artificial intelligence.
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Chapter 13

Structured Probabilistic
Models for Deep Learning

Deep learning draws upon many modeling formalisms that researchers can use to
guide their design efforts and describe their algorithms. One of these formalisms is
the idea of structured probabilistic models. We have already discussed structured
probabilistic models briefly in Chapter 3.14. That brief presentation was sufficient

to understand how to use structured probabilistic models as a language to describe
some of the algorithms in part II of this book. Now, in part III, structured

probabilistic models are a key ingredient of many of the most important research
topics in deep learning. In order to prepare to discuss these research ideas, this
chapter describes structured probabilistic models in much greater detail. This
chapter is intended to be self-contained; the reader does not need to review the
earlier introduction before continuing with this chapter.

A structured probabilistic model is a way of describing a probability distribu-
tion, using a graph to describe which random variables in the probability distri-
bution interact with each other directly. Here we use “graph” in the graph theory
sense–a set of vertices connected to one another by a set of edges. Because the

structure of the model is defined by a graph, these models are often also referred
to as graphical models.

The graphical models research community is large and has developed many
different models, training algorithms, and inference algorithms. In this chap-
ter, we provide basic background on some of the most central ideas of graphical
models, with an emphasis on the concepts that have proven most useful to the
deep learning research community. If you already have a strong background in
graphical models, you may wish to skip most of this chapter. However, even a
graphical model expert may benefit from reading the final section of this chap-
ter, section 13.6, in which we highlight some of the unique ways that graphical
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models are used for deep learning algorithms. Deep learning practitioners tend to
use very different model structures, learning algorithms, and inference procedures
than are commonly used by the rest of the graphical models research community.
In this chapter, we identify these differences in preferences and explain the reasons
for them.

In this chapter we first describe the challenges of building large-scale proba-
bilistic models in section 13.1. Next, we describe how to use a graph to describe
the structure of a probability distribution in section 13.2. We then revisit the
challenges we described in section 13.1 and show how the structured approach to

probabilistic modeling can overcome these challenges in section 13.3. One of the
major difficulties in graphical modeling is understanding which variables need to

be able to interact directly, i.e., which graph structures are most suitable for a
given problem. We outline two approaches to resolving this difficulty by learning
about the dependencies in section 13.4. Finally, we close with a discussion of the
unique emphasis that deep learning practitioners place on specific approaches to
graphical modeling in section 13.6.

13.1 The Challenge of Unstructured Modeling

The goal of deep learning is to scale machine learning to the kinds of challenges

needed to solve artificial intelligence. This means being able to understand high-
dimensional data with rich structure. For example, we would like AI algorithms

to be able to understand natural images1, audio waveforms representing speech,
and documents containing multiple words and punctuation characters.

Classification algortihms can take such a rich high-dimensional input and sum-
marize it with a categorical label—what object is in a photo, what word is spoken
in a recording, what topic a document is about. The process of classification dis-
cards most of the information in the input and produces on a single output (or
a probability distribution over values of that single output). The classifier is also
often able to ignore many parts of the input. For example, when recognizing an
object in a photo, it is usually possible to ignore the background of the photo.

It is possible to ask probabilistic models to do many other tasks. These tasks
are often more expensive than classification. Some of them require producing

multiple output values. Most require a complete understanding of the entire
structure of the input, with no option to ignore sections of it. These tasks include

• Density estimation: given an input x, the machine learning system returns
an estimate of p(x). This requires only a single output, but it does require

1 A natural image is an image that might captured by a camera in a reasonably ordinary

environment, as opposed to synthetically rendered images, screenshots of web pages, etc.
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a complete understanding of the entire input. If even one element of the
vector is unusual, the system must assign it a low probability.

• Denoising: given a damaged or incorrectly observed input x̃, the machine
learning system returns an estimate of the original or correct x. For exam-
ple, the machine learning system might be asked to remove dust or scratches

from an old photograph. This requires multiple outputs (every element of
the estimated clean example x) and an understanding of the entire input

(since even one damaged area will still reveal the final estimate as being
damaged).

• Missing value imputation: given the observations of some elements of x,
the model is asked to return estimates of or a probability distribution over
some or all of the unobserved elements of x. This requires multiple outputs,

and because the model could be asked to restore any of the elements of x,
it must understand the entire input.

• Sampling: the model generates new samples from the distribution p(x).
Applications include speech synthesis, i.e. producing new waveforms that-
sound like natural human speech. This requires multiple output values and
a good model of the entire input. If the samples have even one element
drawn from the wrong distribution, then the sampling process is wrong.

For an example of the sampling tasks on small natural images, see Fig. 13.1.
Modeling a rich distribution over thousands or millions of random variables

is a challenging task, both computationally and statistically. Suppose we only
wanted to model binary variables. This is the simplest possible case, and yet
already it seems overwhelming. For a small, 32 × 32 pixel color (RGB) image,
there are 23072 possible binary images of this form. This number is over 10800

times larger than the estimated number of atoms in the universe.

In general, if we wish to model a distribution over a random vector x con-
taining n discrete variables capable of taking on k values each, then the naive

approach of representing P (x) by storing a lookup table with one probability
value per possible outcome requires kn parameters!

This is not feasible for several reasons:

• Memory: the cost of storing the representation : For all but very

small values of n and k, representing the distribution as a table will require
too many values to store.

• Statistical efficiency: As the number of parameters in a model increases,
so does the amount of training examples needed to choose the values of those
parameters using a statistical estimator. Because the table-based model has
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Figure 13.1: Probabilistic modeling of natural images. Top: Example 32 × 32 pixel color
images from the CIFAR-10 dataset (Krizhevsky and Hinton, 2009). Bottom: Samples
drawn from a structured probabilistic model trained on this dataset. Each sample appears
at the same position in the grid as the training example that is closest to it in Euclidean
space. This comparison allows us to see that the model is truly synthesizing new images,
rather than memorizing the training data. Contrast of both sets of images has been
adjusted for display. Figure reproduced with permission from (Courville et al., 2011).
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an astronomical number of parameters, it will require an astronomically
large training set to fit accurately. Any such model will overfit the training
set very badly.

• Runtime: the cost of inference: Suppose we want to perform an infer-
ence task where we use our model of the joint distribution P (x) to compute
some other distribution, such as the marignal distribution P (x1) or the con-
ditional distribution P (x2 | x1). Computing these distributions will require
summing across the entire table, so the runtime of these operations is as
high as the intractable memory cost of storing the model.

• Runtime: the cost of sampling: Likewise, suppose we want to draw a
sample from the model. The naive way to do this is to sample some value
u ∼ U (0, 1), then iterate through the table adding up the probability values
until they exceed u and return the outcome whose probability value was
added last. This requires reading through the whole table in the worst case,
so it has the same exponential cost as the other operations.

The problem with the table-based approach is that we are explicitly modeling
every possible kind of interaction between every possible subset of variables. The
probability distributions we encounter in real tasks are much simpler than this.
Usually, most variables influence each other only indirectly.

For example, consider modeling the finishing times of a team in a relay race.

Suppose the team consists of three runners, Alice, Bob, and Carol. At the start
of the race, Alice carries a baton and begins running around a track. After
completing her lap around the track, she hands the baton to Bob. Bob then runs
his own lap and hands the baton to Carol, who runs the final lap. We can model
each of their finishing times as a continuous random variable. Alice’s finishing
time does not depend on anyone else’s, since she goes first. Bob’s finishing time
depends on Alice’s, because Bob does not have the opportunity to start his lap
until Alice has completed hers. If Alice finishes faster, Bob will finish faster, all
else being equal. Finally, Carol’s finishing time depends on both her teammates.
If Alice is slow, Bob will probably finish late too, and Carol will have quite a late
starting time and thus is likely to have a late finishing time as well. However,

Carol’s finishing time depends only indirectly on Alice’s finishing time via Bob’s.

If we already know Bob’s finishing time, we won’t be able to estimate Carol’s
finishing time better by finding out what Alice’s finishing time was. This means
we can model the relay race using only two interactions: Alice’s effect on Bob,
and Bob’s effect on Carol. We can omit the third, indirect interaction between
Alice and Carol from our model.

Structured probabilistic models provide a formal framework for modeling only
direct interactions between random variables. This allows the models to have
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significantly fewer parameters which can in turn be estimated reliably from less
data. These smaller models also have dramatically reduced computation cost
in terms of storing the model, performing inference in the model, and drawing
samples from the model.

13.2 Using Graphs to Describe Model Structure

Structured probabilistc models use graphs (in the graph theory sense of “nodes”

or “vertices” connected by edges) to represent interactions between random vari-
ables. Each node represents a random variable. Each edge represents a direct
interaction. These direct interactions imply other, indirect interactions, but only
the direct interactions need to be explicitly modeled.

There is more than one way to describe the interactions in a probability dis-

tribution using a graph. In the following sections we describe some of the most
popular and useful approaches.

13.2.1 Directed Models

One kind of structured probabilistic model is the directed graphical model other-

wise known as the belief network or Bayesian network 2 (Pearl, 1985).
Directed graphical models are called “directed” because their edges are di-

rected, that is, they point from one vertex to another. This direction is repre-

sented in the drawing with an arrow. The direction of the arrow indicates which
variable’s probability distribution is defined in terms of the other’s. Drawing an
arrow from a to b means that we define the probability distribution over b via
a conditional distribution, with a as one of the variables on the right side of the
conditioning bar. In other words, the distribution over b depends on the value of
a.

Let’s continue with the relay race example from Section 13.1. Suppose we
name Alice’s finishing time t0, Bob’s finishing time t1, and Carol’s finishing time
t2. As we saw earlier, our estimate of t1 depends on t0. Our estimate of t2
depends directly on t1 but only indirectly on t0. We can draw this relationship

in a directed graphical model, illustrated in Fig. 13.2.
Formally, a directed graphical model defined on variables x is defined by a

directed acyclic graph G whose vertices are the random variables in the model, and
a set of local conditional probability distributions p(x i | PaG(xi)) where PaG(xi)

2 Judea Pearl suggested using the term Bayes Network when one wishes to “emphasize the

judgmental” nature of the values computed by the network, i.e. to highlight that they usually
represent degrees of belief rather than frequencies of events.
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t0 t1 t2

Alice Bob Carol

Figure 13.2: A directed graphical model depicting the relay race example. Alice’s finishing
time t 0 influences Bob’s finishing time t1 , because Bob does not get to start running until

Alice finishes. Likewise, Carol only gets to start running after Bob finishes, so Bob’s
finishing time t1 influences Carol’s finishing time t2 .

gives the parents of xi in G. The probability distribution over x is given by

p(x) = Πip(xi | PaG(xi)).

In our relay race example, this means that, using the graph drawn in Fig. 13.2,

p(t0, t1, t2 ) = p(t0 )p(t1 | t0)p(t 2 | t 1).

This is our first time seeing a structured probabilistic model in action. We
can examine the cost of using it, in order to observe how structured modeling has
many advantages relative to unstructured modeling.

Suppose we represented time by discretizing time ranging from minute 0 to

minute 10 into 6 second chunks. This would make t0, t1 , and t2 each be discrete
variables with 100 possible values. If we attempted to represent p(t0 , t1, t2) with a
table, it would need to store 999,999 values (100 values of t0 × 100 values of t1 ×
100 values of t2, minus 1, since the probability of one of the configurations is made
redundant by the constraint that the sum of the probabilities be 1). If instead,
we only make a table for each of the conditional probability distributions, then
the distribution over t0 requires 99 values, the table defining t1 given t0 requires
9900 values, and so does the table defining t2 and t1. This comes to a total of
19,899 values. This means that using the directed graphical model reduced our
number of parameters by a factor of more than 50!

In general, to model n discrete variables each having k values, the cost of the

single table approach scales like O(kn ), as we’ve observed before. Now suppose

we build a directed graphical model over these variables. If m is the maximum
number of variables appearing (on either side of the conditioning bar) in a single
conditional probability distribution, then the cost of the tables for the directed
model scales like O(km ). As long as we can design a model such that m << n,
we get very dramatic savings.

In other words, so long as each variable has few parents in the graph, the
distribution can be represented with very few parameters. Some restrictions on
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the graph structure (e.g. it is a tree) can also guarantee that operations like com-
puting marginal or conditional distributions over subsets of variables are efficient.

It’s important to realize what kinds of information can be encoded in the
graph, and what can’t be. The graph just encodes simplifying assumptions about
which variables are conditionally independent from each other. It’s also possible
to make other kinds of simplifying assumptions. For example, suppose we assume
Bob always runs the same regardless of how Alice performed. (In reality, Alice’s
performance probably influences Bob’s performance–depending on Bob’s person-
ality, if Alice runs especially fast in a given race, this might encourage Bob to

push hard and match her exceptional performance, or it might make him over-
confident and lazy). Then the only effect Alice has on Bob’s finishing time is

that we must add Alice’s finishing time to the total amount of time we think Bob
needs to run. This observation allows us to define a model with O(k) parameters
instead of O(k 2). However, note that t0 and t1 are still directly dependent with
this assumption, because t1 represents the absolute time at which Bob finishes,
not the total time he himself spends running. This means our graph must still
contain an arrow from t0 to t1. The assumption that Bob’s personal running time
is independent from all other factors cannot be encoded in a graph over t0 , t1,
and t 2. Instead, we encode this information in the definition of the conditional
distribution itself. The conditional distribution is no longer a k × k − 1 element

table indexed by t0 and t1 but is now a slightly more complicated formula using
only k − 1 parameters. The directed graphical model syntax does not place any

constraint on how we define our conditional distributions. It only defines which
variables they are allowed to take in as arguments.

13.2.2 Undirected Models

Directed graphical models give us one language for describing structured proba-
bilistic models. Another popular language is that of undirected models, otherwise
known as Markov random fields (MRFs) or Markov networks (Kindermann,

1980). As their name implies, undirected models use graphs whose edges are

undirected.
Directed models are most naturally applicable to situations where there is

a clear reason to draw each arrow in one particular direction. Often these are

situations where we understand the causality, and the causality only flows in one
direction. One such situation is the relay race example. Earlier runners affects
the finishing times of later runners; later runners do not affect the finishing times
of earlier runners.

Not all situations we might want to model have such a clear direction to
their interactions. When the interactions seem to have no intrinsic direction, or
to operate in both directions, it may be more appropriate to use an undirected
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hr hy hc

Figure 13.3: An undirected graph representing how your roommate’s health hr, your

health hy , and your work colleague’s health hc affect each other. You and your roommate
might infect each other with a cold, and you and your work colleague might do the same,
but assuming that your roommate and your colleague don’t know each other, they can
only infect each other indirectly via you.

model.
As an example of such a situation, suppose we want to model a distribution

over three binary variables: whether or not you are sick, whether or not your
coworker is sick, and whether or not your roommate is sick. As in the relay race

example, we can make simplifying assumptions about the kinds of interactions

that take place. Assuming that your coworker and your roommate do not know
each other, it is very unlikely that one of them will give the other a disease such
as a cold directly. This event can be seen as so rare that it is acceptable not
to model it. However, it is reasonably likely that either of them could give you
a cold, and that you could pass it on to the other. We can model the indirect

transmission of a cold from your coworker to your roommate by modeling the
transmission of the cold from your coworker to you and the transmission of the
cold from you to your roommate.

In this case, it’s just as easy for you to cause your roommate to get sick as

it is for your roommate to make you sick, so there is not a clean, uni-directional
narrative on which to base the model. This motivates using an undirected model.

As with directed models, if two nodes in an undirected model are connected by
an edge, then the random variables corresponding to those nodes interact with
each other directly. Unlike directed models, the edge in an undirected model has
no arrow, and is not associated with a conditional probability distribution.

Let’s call the random variable representing your health hy, the random variable
representing your roommate’s health hr , and the random variable representing
your colleague’s health h c. See Fig. 13.3 for a drawing of the graph representing
this scenario.

Formally, an undirected graphical model is a structured probabilistic model
defined on an undirected graph G. For each clique C in the graph 3, a factor φ(C)

(also called a clique potential) measures the affinity of the variables in that clique
for being in each of their possible joint states. The factors are constrained to be

3A clique of the graph is a subset of nodes that are all connected to each other by an edge of
the graph.
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non-negative. Together they define an unnormalized probability distribution

p̃(x) = ΠC∈G φ(C).

The unnormalized probability distribution is efficient to work with so long as
all the cliques are small. It encodes the idea that states with higher affinity are
more likely. However, unlike in a Bayesian network, there is little structure to the

definition of the cliques, so there is nothing to guarantee that multiplying them
together will yield a valid probability distribution. See Fig. 13.4 for an example
of reading factorization information from an undirected graph.

Our example of the cold spreading between you, your roommate, and your
colleague contains two cliques. One clique contains hy and hc . The factor for this
clique can be defined by a table, and might have values resembling these:

h y = 0 hy = 1

h c = 0 2 1
h c = 1 1 10

A state of 1 indicates good health, while a state of 0 indicates poor health
(having been infected with a cold). Both of you are usually healthy, so the
corresponding state has the highest affinity. The state where only one of you
is sick has the lowest affinity, because this is a rare state. The state where both of
you are sick (because one of you has infected the other) is a higher affinity state,
though still not as common as the state where both are healthy.

To complete the model, we would need to also define a similar factor for the
clique containing hy and hr.

13.2.3 The Partition Function

While the unnormalized probability distribution is guaranteed to be non-negative
everywhere, it is not guaranteed to sum or integrate to 1. To obtain a valid

probability distribution, we must use the corresponding normalized probability
distribution4:

p(x) =
1

Z
p̃(x)

where Z is the value that results in the probability distribution summing or
integrating to 1:

Z =

Z
p̃(x)dx.

4A distribution defined by normalizing a product of clique potentials is also called a Gibbs

distribution.
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You can think of Z as a constant when the φ functions are held constant. Note
that if the φ functions have parameters, then Z is a function of those parameters.
It is common in the literature to write Z with its arguments omitted to save space.
Z is known as the partition function, a term borrowed from statistical physics.

Since Z is an integral or sum over all possible joint assignments of the state
x it is often intractable to compute. In order to be able to obtain the normalized
probability distribution of an undirected model, the model structure and the
definitions of the φ functions must be conducive to computing Z efficiently. In
the context of deep learning, Z is usually intractable, and we must resort to

approximations. Such approximate algorithms are the topic of Chapter 18.
One important consideration to keep in mind when designing undirected mod-

els is that it is possible for Z not to exist. This happens if some of the variables
in the model are continuous and the integral of p̃ over their domain diverges. For
example, suppose we want to model a single scalar variable x ∈ R with a single
clique potential φ(x) = x2. In this case,

Z =

Z
x2dx.

Since this integral diverges, there is no probability distribution corresponding
to this choice of φ(x). Sometimes the choice of some parameter of the φ func-
tions determines whether the probability distribution is defined. For example,

for φ(x; β) = exp

−βx2


, the β parameter determines whether Z exists. Posi-

tive β results in a Gaussian distribution over x but all other values of β make φ
impossible to normalize.

One key difference between directed modeling and undirected modeling is that
directed models are defined directly in terms of probability distributions from the
start, while undirected models are defined more loosely by φ functions that are
then converted into probability distributions. This changes the intuitions one
must develop in order to work with these models. One key idea to keep in mind
while working with undirected models is that the domain of each of the variables
has dramatic effect on the kind of probability distribution that a given set of φ
functions corresponds to. For example, consider an n-dimensional vector-valued
random variable x and an undirected model parameterized by a vector of biases

b. Suppose we have one clique for each element of x, φi(xi) = exp(bix i). What

kind of probability distribution does this result in? The answer is that we don’t
have enough information, because we have not yet specified the domain of x. If
x ∈ Rn, then the integral defining Z diverges and no probability distribution
exists. If x ∈ {0, 1}n , then p(x) factorizes into n independent distributions,
with p(xi = 1) = sigmoid (bi). If the domain of x is the set of elementary basis
vectors ({[1, 0, . . . ,0], [0,1, . . . ,0], . . . , [0,0, . . . , 1]} ) then p(x) = softmax(b), so a
large value of bi actually reduces p(xj = 1) for j 6= i. Often, it is possible to
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A B C

D E F

Figure 13.4: This graph implies that p(A,B,C, D,E,F ) can be written as
1
ZφA,B (A,B)φB,C(B, C)φA,D (A,D)φB,E (B, E)φE,F (E,F ) for an appropriate choice of
the φ functions.

leverage the effect of a carefully chosen domain of a variable in order to obtain
complicated behavior from a relatively simple set of φ functions. We’ll explore a
practical application of this idea later, in Chapter 20.7.

13.2.4 Energy-Based Models

Many interesting theoretical results about undirected models depend on the as-
sumption that ∀x, p̃(x) > 0. A convenient way to enforce this to use an energy-
based model (EBM) where

p̃(x) = exp(−E(x)) (13.1)

and E(x) is known as the energy function. Because exp(z) is positive for all
z, this guarantees that no energy function will result in a probability of zero for
any state x. Being completely free to choose the energy function makes learn-
ing simpler. If we learned the clique potentials directly, we would need to use

constrained optimization, and we would need to arbitrarily impose some specific

minimal probability value. By learning the energy function, we can use uncon-
strained optimization 5, and the probabilities in the model can approach arbitrarily
close to zero but never reach it.

Any distribution of the form given by equation 13.1 is an example of a Boltz-
mann distribution. For this reason, many energy-based models are called Boltz-
mann machines. There is no accepted guideline for when to call a model an
energy-based model and when to call it a Boltzmann machines. The term Boltz-
mann machine was first introduced to describe a model with exclusively binary

variables, but today many models such as the mean-covariance restricted Boltz-
mann machine incorporate real-valued variables as well.

5For some models, we may still need to use constrained optimization to make sure Z exists.
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A B C

D E F

Figure 13.5: This graph implies that E(a, b, c, d, e, f) can be written as Ea,b (a,b) +

E b,c(b, c) +Ea,d(a,d) +Eb,e(b, e) +Ee,f(e, f) for an appropriate choice of the per-clique
energy functions. Note that we can obtain the φ functions in Fig. 13.4 by setting each φ
to the exp of the corresponding negative energy, e.g., φa,b(a,b) = exp (−E(a,b)).

Cliques in an undirected graph correspond to factors of the unnormalized

probability function. Because exp(a) exp(b) = exp(a+b), this means that different
cliques in the undirected graph correspond to the different terms of the energy

function. In other words, an energy-based model is just a special kind of Markov
network: the exponentiation makes each term in the energy function correspond
to a factor for a different clique. See Fig. 13.5 for an example of how to read the
form of the energy function from an undirected graph structure.

One part of the definition of an energy-based model serves no functional pur-
pose from a machine learning point of view: the − sign in Eq. 13.1. This −
sign could be incorporated into the definition of E, or for many functions E the
learning algorithm could simply learn parameters with opposite sign. The − sign
is present primarily to preserve compatibility between the machine learning liter-

ature and the physics literature. Many advances in probabilistic modeling were
originally developed by statistical physicists, for whom E refers to actual, phys-

ical energy and does not have arbitrary sign. Terminology such as “energy” and
“partition function” remains associated with these techniques, even though their
mathematical applicability is broader than the physics context in which they were
developed. Some machine learning researchers (e.g., Smolensky (1986), who re-
ferred to negative energy as harmony) have chosen to emit the negation, but this
is not the standard convention.

13.2.5 Separation and D-Separation

The edges in a graphical model tell us which variables directly interact. We often
need to know which variables indirectly interact. Some of these indirect interac-

tions can be enabled or disabled by observing other variables. More formally, we
would like to know which subsets of variables are conditionally independent from
each other, given the values of other subsets of variables.
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A S B A S B

(a) (b)

Figure 13.6: a) The path between random variable a and random variable b through s is
active, because s is not observed. This means that a and b are not separated. b) Here s
is shaded in, to indicate that it is observed. Because the only path between ra and b is
through s, and that path is inactive, we can conclude that a and b are separated given s.

A

B C

D

Figure 13.7: An example of reading separation properties from an undirected graph. Here
b is shaded to indicate that it is observed. Because observing b blocks the only path from
a to c, we say that a and c are separated from each other given b. The observation of b
also blocks one path between a and d, but there is a second, active path between them.
Therefore, a and d are not separated given b.

Identifying the conditional independences in a graph is very simple in the case
of undirected models. In this case, conditional independence implied by the graph
is called separation. We say that a set of variables A is separated from another set

of variables B given a third set of variables S if the graph structure implies that A
is independent from B given S. If two variables a and b are connected by a path

involving only unobserved variables, then those variables are not separated. If no
path exists between them, or all paths contain an observed variable, then they
are separated. We refer to paths involving only unobserved variables as “active”
and paths including an observed variable as “inactive.”

When we draw a graph, we can indicate observed variables by shading them
in. See Fig. 13.6 for a depiction of how active and inactive paths in an undirected
look when drawn in this way. See Fig. 13.7 for an example of reading separation
from an undirected graph.

Similar concepts apply to directed models, except that in the context of di-

rected models, these concepts are referred to as d-separation. The “d” stands for
“dependence.” D-separation for directed graphs is defined the same as separa-
tion for undirected graphs: We say that a set of variables A is d-separated from
another set of variables B given a third set of variables S if the graph structure
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implies that A is independent from B given S.
As with undirected models, we can examine the independences implied by

the graph by looking at what active paths exist in the graph. As before, two
variables are dependent if there is an active path between them, and d-separated
if no such path exists. In directed nets, determining whether a path is active is
somewhat more complicated. See Fig. 13.8 for a guide to identifying active paths
in a directed model. See Fig. 13.9 for an example of reading some properties from
a graph.

It is important to remember that separation and d-separation tell us only

about those conditional independences that are implied by the graph. There is
no requirement that the graph imply all independences that are present. In

particular, it is always legitimate to use the complete graph (the graph with all
possible edges) to represent any distribution. In fact, some distributions contain
independences that are not possible to represent with existing graphical notation.
Context-specific independences are independences that are present dependent on
the value of some variables in the network. For example, consider a model of three
binary variables, a, b, and c. Suppose that when a is 0, b and c are independent,
but when a is 1, b is deterministically equal to c. Encoding the behavior when
a = 1 requires an edge connecting b and c. The graph then fails to indicate that
b and c are independent when a = 0.

In general, a graph will never imply that an independence exists when it does
not. However, a graph may fail to encode an independence.

13.2.6 Converting Between Undirected and Directed Graphs

In common parlance, we often refer to certain model classes as being undirected
or directed. For example, we typically refer to RBMs as undirected and sparse

coding as directed. This way of speaking can be somewhat leading, because no
probabilistic model is inherently directed or undirected. Instead, some models
are most easily described using a directed graph, or most easily described using

an undirected graph.

Ever probability distribution can be represented by either a directed model
or by an undirected model. In the worst case, one can always represent any
distribution by using a “complete graph.” In the case of a directed model, the

complete graph is any directed acyclic graph where we impose some ordering
on the random variables, and each variable has all other variables that precede
it in the ordering as its ancestors in the graph. For an undirected model, the
complete graph is simply a graph containing a single clique encompassing all of
the variables.

Of course, the utility of a graphical model is that the graph implies that some
variables do not interact directly. The complete graph is not very useful because
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(a) (b)
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(c) (d)

Figure 13.8: All of the kinds of active paths of length two that can exist between random
variables a and rb. a) Any path with arrows proceeding directly from a to b or vice versa.
This kind of path becomes blocked if s is observed. We have already seen this kind of
path in the relay race example. b) a and b are connected by a common cause s. For

example, suppose s is a variable indicating whether or not there is a hurricane and a and
b measure the wind speed at two different nearby weather monitoring outposts. If we
observe very high winds at station a, we might expect to also see high winds at b. This
kind of path can be blocked by observing s. If we already know there is a hurricane, we
expect to see high winds at b, regardless of what is observed at a. A lower than expected
wind at a (for a hurricane) would not change our expectation of winds at b (knowing
there is a hurricane). However, if s is not observed, then a and b are dependent, i.e., the

path is inactive. c) a and b are both parents of s. This is called a V-structure or the
collider case, and it causes a and a to be related by the explaining away effect. In this
case, the path is actually active when s is observed. For example, suppose s is a variable
indicating that your colleague is not at work. The variable a represents her being sick,
while b represents her being on vacation. If you observe that she is not at work, you
can presume she is probably sick or on vacation, but it’s not especially likely that both
have happened at the same time. If you find out that she is on vacation, this fact is
sufficient to explain her absence, and you can infer that she is probably not also sick. d)
The explaining away effect happens even if any descendant of s is observed! For example,
suppose that c is a variable representing whether you have received a report from your
colleague. If you notice that you have not received the report, this increases your estimate
of the probability that she is not at work today, which in turn makes it more likely that
she is either sick or on vacation. The only way to block a path through a V-structure is
to observe none of the descendants of the shared child.
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A B

C

D E

Figure 13.9

From this graph, we can read out several d-separation properties. Examples
include:

• a and b are d-separated given the empty set.

• a and e are d-separated given c.

• d and e are d-separated given c.

We can also see that some variables are no longer d-separated when we observe
some variables:

• a and b are not d-separated given c.

• a and b are not d-separated given d.
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it does not imply any independences. TODO figure complete graph
When we represent a probability distribution with a graph, we want to choose

a graph that implies as many independences as possible, without implying any
independences that do not actually exist.

From this point of view, some distributions can be represented more effi-
ciently using directed models, while other distributions can be represented more
efficiently using undirected models. In other words, directed models can encode
some independences that undirected models cannot encode, and vice versa.

Directed models are able to use one specific kind of substructure that undi-

rected models cannot represent perfectly. This substructure is called an immoral-
ity. The structure occurs when two random variables a and b are both parents

of a third random variable c, and there is no edge directly connecting a and b
in either direction. (The name “immorality” may seem strange; it was coined in
the graphical models literature as a joke about unmarried parents) To convert a
directed model with graph D into an undirected model, we need to create a new
graph U . For every pair of variables x and y, we add an undirected edge connect-
ing x and y to U if there is a directed edge (in either direction) connecting x and
y in D or if x and y are both parents in D of a third variable z. The resulting U
is known as a moralized graph. See Fig. 13.10 for examples of converting directed
models to undirected models via moralization.

Likewise, undirected models can include substructures that no directed model
can represent perfectly. Specifically, a directed graph D cannot capture all of

the conditional independences implied by an undirected graph U if U contains a
loop of length greater than three, unless that loop also contains a chord. A loop
is a sequence of variables connected by undirected edges, with the last variable
in the sequence connected back to the first variable in the sequence. A chord is
a connection between any two non-consecutive variables in this sequence. If U
has loops of length four or greater and does not have chords for these loops, we
must add the chords before we can convert it to a directed model. Adding these
chords discards some of the independence information that was encoded in U .
The graph formed by adding chords to U is known as a chordal or triangulated
graph, because all the loops can now be described in terms of smaller, triangular
loops. To build a directed graph D from the chordal graph, we need to also assign

directions to the edges. When doing so, we must not create a directed cycle in

D, or the result does not define a valid directed probabilistic model. One way
to assign directions to the edges in D is to impose an ordering on the random

variables, then point each edge from the node that comes earlier in the ordering
to the node that comes later in the ordering. TODO point to fig

IG HERE
TODO: started this above, need to scrap some some BNs encode indepen-
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Figure 13.10: Examples of converting directed models to undirected models by construct-
ing moralized graphs. Left) This simple chain can be converted to a moralized graph
merely by replacing its directed edges with undirected edges. The resulting undirected
model implies exactly the same set of independences and conditional independences. Cen-
ter) This graph is the simplest directed model that cannot be converted to an undirected
model without losing some independences. This graph consists entirely of a single im-
morality. Because a and b are parents of c, they are connected by an active path when
c is observed. To capture this dependence, the undirected model must include a clique
encompassing all three variables. This clique fails to encode the fact that a⊥b. Right)
In general, moralization may add many edges to the graph, thus losing many implied
independences. For example, this sparse coding graph requires adding moralizing edges
between every pair of latent variables, thus introducing a quadratic number of new direct
dependences.
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dences that MNs can’t encode, and vice versa example of BN that an MN can’t
encode: A and B are parents of C A is d-separated from B given the empty set
The Markov net requires a clique over A, B, and C in order to capture the active
path from A to B when C is observed This clique means that the graph cannot
imply A is separated from B given the empty set example of a MN that a BN
can’t encode: A, B, C, D connected in a loop BN cannot have both A d-sep D
given B, C and B d-sep C given A, D

In many cases, we may want to convert an undirected model to a directed
model, or vice versa. To do so, we choose the graph in the new format that implies

as many independences as possible, while not implying any independences that
were not implied by the original graph.

To convert a directed model D to an undirected model U, we re
TODO: conversion between directed and undirected models

13.2.7 Marginalizing Variables out of a Graph

TODO: marginalizing variables out of a graph

13.2.8 Factor Graphs

Factor graphs are another way of drawing undirected models that resolve an am-
biguity in the graphical representation of standard undirected model syntax. In

an undirected model, the scope of every φ function must be a subset of some
clique in the graph. However, it is not necessary that there exist any φ whose
scope contains the entirety of every clique. Factor graphs explicitly represent the
scope of each φ function. Specifically, a factor graph is a graphical representation
of an undirected model that consists of a bipartite undirected graph. Some of the
nodes are drawn as circles. These nodes correspond to random variables as in a
standard undirected model. The rest of the nodes are drawn as squares. These
nodes correspond to the factors φ of the unnormalized probability distribution.
Variables and factors may be connected with undirected edges. A variable and a

factor are connected in the graph if and only if the variable is one of the argu-
ments to the factor in the unnormalized probability distribution. No factor may

be connected to another factor in the graph, nor can a variable be connected to a
variable. See Fig. 13.11 for an example of how factor graphs can resolve ambiguity
in the interpretation of undirected networks.

13.3 Advantages of Structured Modeling

TODO– note that we have already shown that some things are cheaper in the
sections where we introduce the modeling syntax
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Figure 13.11: An example of how a factor graph can resolve ambiguity in the interpre-
tation of undirected networks. a) An undirected network with a clique involving three
variables a, b, and c. b) A factor graph corresponding to the same undirected model.
This factor graph has one factor over all three variables. c) Another valid factor graph
for the same undirected model. This factor graph has three factors, each over only two
variables. Note that representation, inference, and learning are all asymptotically cheaper
in (c) compared to (b), even though both require the same undirected graph to represent.
TODO: make sure figure respects random variable notation

TODO: revisit each of the three challenges from sec:unstructured TODO:
hammer point that graphical models convey information by leaving edges out
TODO: need to show reduced cost of sampling, but first reader needs to know
about ancestral and gibbs sampling.... TODO: benefit of separating representa-
tion from learning and inference

13.4 Learning About Dependencies

We consider here two types of random variables: observed or “visible” variables
v and latent or “hidden” variables h. The observed variables v correspond to the
variables actually provided in the data set during training. h consists of variables
that are introduced to the model in order to help it explain the structure in v.
Generally the exact semantics of h depend on the model parameters and are
created by the learning algorithm. The motivation for this is twofold.

13.4.1 Latent Variables Versus Structure Learning

Often the different elements of v are highly dependent on each other. A good
model of v which did not contain any latent variables would need to have very
large numbers of parents per node in a Bayesian network or very large cliques in a

Markov network. Just representing these higher order interactions is costly–both

in a computational sense, because the number of parameters that must be stored
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in memory scales exponentially with the number of members in a clique, but also
in a statistical sense, because this exponential number of parameters requires a
wealth of data to estimate accurately.

There is also the problem of learning which variables need to be in such large
cliques. An entire field of machine learning called structure learning is devoted
to this problem . For a good reference on structure learning, see (Koller and
Friedman, 2009). Most structure learning techniques are a form of greedy search.
A structure is proposed, a model with that structure is trained, then given a score.
The score rewards high training set accuracy and penalizes model complexity.

Candidate structures with a small number of edges added or removed are then
proposed as the next step of the search, and the search proceeds to a new structure

that is expected to increase the score.
Using latent variables instead of adaptive structure avoids the need to perform

discrete searches and multiple rounds of training. A fixed structure over visible
and hidden variables can use direct interactions between visible and hidden units
to impose indirect interactions between visible units. Using simple parameter
learning techniques we can learn a model with a fixed structure that imputes the
right structure on the marginal p(v).

13.4.2 Latent Variables for Feature Learning

Another advantage of using latent variables is that they often develop useful

semantics.
As discussed in section 3.10.5, the mixture of Gaussians model learns a latent

variable that corresponds to which category of examples the input was drawn

from. This means that the latent variable in a mixture of Gaussians model can
be used to do classification.

In Chapter 15 we saw how simple probabilistic models like sparse coding learn
latent variables that can be used as input features for a classifier, or as coordinates
along a manifold. Other models can be used in this same way, but deeper models

and models with different kids of interactions can create even richer descriptions

of the input. Most of the approaches mentioned in sec. 13.4.2 accomplish feature
learning by learning latent variables. Often, given some model of v and h, it
turns out that E[h | v] TODO: uh-oh, is there a collision between set notation

and expectation notation? or argmaxhp(h, v) is a good feature mapping for v.
TODO: appropriate links to Monte Carlo methods chapter spun off from here
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13.5 Inference and Approximate Inference Over La-

tent Variables

As soon as we introduce latent variables in a graphical model, this raises the
question: how to choose values of the latent variables h given values of the visible
variables x? This is what we call inference, in particular inference over the latent
variables. The general question of inference is to guess some variables given others.

TODO: inference has definitely been introduced above... TODO: mention
loopy BP, show how it is very expensive for DBMs

TODO: briefly explain what variational inference is and reference approximate

inference chapter

13.5.1 Reparametrization Trick

Sometimes, in order to estimate the stochastic gradient of an expected loss over

some random variable h, with respect to parameters that influence h, we would
like to compute gradients through h, i.e., on the parameters that influenced the
probability distribution from which h was sampled. If h is continuous-valued,
this is generally possible by using the reparametrization trick, i.e., rewriting

h ∼ p(h | θ) (13.2)

as

h = f (θ, η) (13.3)

where η is some independent noise source of the appropriate dimension with
density p(η), and f is a continuous (differentiable almost everywhere) function.

Basically, the reparametrization trick is the idea that if the random variable to
be integrated over is continuous, we can back-propagate through the process that
gave rise to it in order to figure how to change that process.

For example, let us suppose we want to estimate the expected gradient

∂

∂θ

Z
L(h)p(h | θ)dh (13.4)

where the parameters θ influences the random variable h which in term influence
our loss L. A very efficient (Kingma and Welling, 2014b; Rezende et al., 2014)
way to achieve6 this is to perform the reparametrization in Eq. 13.3 and the

corresponding change of variable in the integral of Eq. 13.4, integrating over η
rather than h:

∂

∂θ

Z
L(f (θ, η))p(eta)dη. (13.5)

6compared to approaches that do not back-propagate through the generation of h
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We can now more easily enter the derivative in the integral, getting

g =

Z
∂L(f(θ, η))

∂θ
p(eta)dη.

Finally, we get a stochastic gradient estimator

ĝ =
∂L(f(θ, η))

∂θ

where we sampled η ∼ p(η) and E[ĝ] = g.
This trick was used by Bengio (2013); Bengio et al. (2013a) to train a neu-

ral network with stochastic hidden units. It was described at the same time
by Kingma (2013), but see the further developments in Kingma and Welling
(2014b). It was used to train generative stochastic networks (GSNs) (Bengio

et al., 2014a,b), described in Section 20.11, which can be viewed as recurrent
networks with noise injected both in input and hidden units (with each time step

corresponding to one step of a generative Markov chain). The reparametriza-
tion trick was also used to estimate the parameter gradient in variational auto-

encoders (Kingma and Welling, 2014a; Rezende et al., 2014; Kingma et al., 2014),
which are described in Section 20.9.3.

13.6 The Deep Learning Approach to Structured Prob-

abilistic Models

Deep learning practictioners generally use the same basic computational tools
as other machine learning practitioners who work with structured probabilistic
models. However, in the context of deep learning, we usually make different design
decisions about how to combine these tools, resulting in overall algorithms and
models that have a very different flavor from more traditional graphical models.

The most striking difference between the deep learning style of graphical model
design and the traditional style of graphical model design is that the deep learn-
ing style heavily emphasizes the use of latent variables. Deep learning models
typically have more latent variables than observed variables. Moreover, the prac-

titioner typically does not intend for the latent variables to take on any specific

semantics ahead of time— the training algorithm is free to invent the concepts it
needs to model a particular dataset. The latent variables are usually not very easy
for a human to interpret after the fact, though visualization techniques may allow
some rough characterization of what they represent. Complicated non-linear in-
teractions between variables are accomplished via indirect connections that flow
through multiple latent variables. By contrast, traditional graphical models usu-
ally contain variables that are at least occasionally observed, even if many of the
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variables are missing at random from some training examples. Complicated non-
linear interactions between variables are modeled by using higher-order terms,
with structure learning algorithms used to prune connections and control model
capacity. When latent variables are used, they are often designed with some spe-
cific semantics in mind—the topic of a document, the intelligence of a student,
the disease causing a patient’s symptoms, etc. These models are often much more
interpretable by human practitioners and often have more theoretical guarantees,
yet are less able to scale to complex problems and are not reuseable in as many
different contexts as deep models.

Another obvious difference is the kind of graph structure typically used in
the deep learning approach. This is tightly linked with the choice of inference

algorithm. Traditional approaches to graphical models typically aim to maintain
the tractability of exact inference. When this constraint is too limiting, a popular
exact inference algorithm is loopy belief propagation. Both of these approaches
often work well with very sparsely connected graphs. By comparison, very few
interesting deep models admit exact inference, and loopy belief propagation is al-
most never used for deep learning. Most deep models are designed to make Gibbs
sampling or variational inference algorithms, rather than loopy belief propagation,
efficient. Another consideration is that deep learning models contain a very large
number of latent variables, making efficient numerical code essential. As a result

of these design constraints, most deep learning models are organized into regu-
lar repeating patterns of units grouped into layers, but neighboring layers may

be fully connected to each other. When sparse connections are used, they usu-
ally follow a regular pattern, such as the block connections used in convolutional
models.

Finally, the deep learning approach to graphical modeling is characterized by
a marked tolerance of the unknown. Rather than simplifying the model until
all quantities we might want can be computed exactly, we increase the power of
the model until it is just barely possible to train or use. We often use models
whose marginal distributions cannot be computed, and are satisfied simply to
draw approximate samples from these models. We often train models with an
intractable objective function that we cannot even approximate in a reasonable
amount of time, but we are still able to approximately train the model if we can

efficiently obtain an estimate of the gradient of such a function. The deep learning

approach is often to figure out what the minimum amount of information we
absolutely need is, and then to figure out how to get a reasonable approximation

of that information as quickly as possible.
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Figure 13.12: An example RBM drawn as a Markov network

13.6.1 Example: The Restricted Boltzmann Machine

TODO: rework this section. Add pointer to Chapter 20.2. TODO what do we
want to exemplify here?

The restricted Boltzmann machine (RBM) (Smolensky, 1986) or harmonium
is an example of a model that TODO what do we want to exemplify here?

It is an energy-based model with binary visible and hidden units. Its energy
function is

E(v, h) = −b>v − c>h − v>Wh

where b, c, andW are unconstrained, real-valued, learnable parameters. The
model is depicted graphically in Fig. 13.12. As this figure makes clear, an impor-

tant aspect of this model is that there are no direct interactions between any two
visible units or between any two hidden units (hence the “restricted,” a general

Boltzmann machine may have arbitrary connections).
The restrictions on the RBM structure yield the nice properties

p(h | v) = Πip(hi | v)

and

p(v | h) = Πi p(vi | h).

The individual conditionals are simple to compute as well, for example

p(hi = 1 | v) = σ


v>W :,i + bi


.

Together these properties allow for efficient block Gibbs sampling, alternating
between sampling all of h simultaneously and sampling all of v simultaneously.
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Since the energy function itself is just a linear function of the parameters, it
is easy to take the needed derivatives. For example,

∂

∂Wi,j
Ev,hE(v, h) = −v ihj .

These two properties–efficient Gibbs sampling and efficient derivatives– make
it possible to train the RBM with stochastic approximations to ∇θ logZ.

13.6.2 The Computational Challenge with High-Dimensional Dis-
tributions

TODO: this whole section should probably just be cut, IG thinks YB has written

the same thing in 2-3 other places (ml.tex for sure, and maybe also manifolds.tex
and prob.tex, possibly others IG hasn’t read yet) YB doesn’t seem to have read
the intro part of this chapter which discusses these things in more detail, double
check to make sure there’s not anything left out above If this section is kept, it
needs cleanup, i.e. a instead A, etc. If this section is cut, need to search for refs
to it and move them to one of the other versions of it

High-dimensional random variables actually bring two challenges: a statistical

challenge and a computational challenge.
The statistical challenge was introduced in Section 5.13 and regards gener-

alization: the number of configurations we may want to distinguish can grow
exponentially with the number of dimensions of interest, and this quickly be-

comes much larger than the number of examples one can possibly have (or use

with bounded computational resources).
The computational challenge associated with high-dimensional distributions

arises because many algorithms for learning or using a trained model (especially
those based on estimating an explicit probability function) involve intractable
computations that grow exponentially with the number of dimensions.

With probabilistic models, this computational challenge arises because of in-
tractable sums (summing over an exponential number of configurations) or in-
tractable maximizations (finding the best out of an intractable number of config-
urations), discussed mostly in the third part of this book.

• Intractable inference: inference is discussed mostly in Chapter 19. It
regards the question of guessing the probable values of some variables A,
given other variables B, with respect to a model that captures the joint
distribution between A, B and C. In order to even compute such conditional

probabilities one needs to sum over the values of the variables C, as well as
compute a normalization constant which sums over the values of A and C.
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• Intractable normalization constants (the partition function): the
partition function is discussed mostly in Chapter 18. Normalizing constants
of probability functions come up in inference (above) as well as in learning.
Many probabilistic models involve such a constant. Unfortunately, the pa-
rameters (which we want to tune) influence that constant, and computing
the gradient of the partition function with respect to the parameters is
generally as intractable as computing the partition function itself. Monte-
Carlo Markov chain (MCMC) methods (Chapter 14) are often used to deal
with the partition function (computing it or its gradient) but they may also

suffer from the curse of dimensionality, when the number of modes of the
distribution of interest is very large, and these modes are well separated

(Section 14.2).

One way to confront these intractable computations is to approximate them,
and many approaches have been proposed, discussed in the chapters listed above.
Another interesting way would be to avoid these intractable computations alto-

gether by design, and methods that do not require such computations are thus
very appealing. Several generative models based on auto-encoders have been
proposed in recent years, with that motivation, and are discussed at the end of
Chapter 20.
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Chapter 14

Monte Carlo Methods

TODO plan organization of chapter (spun off from graphical models chapter)

14.1 Markov Chain Monte Carlo Methods

Drawing a sample x from the probability distribution p(x) defined by a struc-

tured model is an important operation. The following techniques are described
in (Koller and Friedman, 2009).

Sampling from an energy-based model is not straightforward. Suppose we
have an EBM defining a distribution p(a,b). In order to sample a, we must draw
it from p(a | b), and in order to sample b, we must draw it from p(b | a). It seems
to be an intractable chicken-and-egg problem. Directed models avoid this because
their G is directed and acyclical. In ancestral sampling one simply samples each of
the variables in topological order, conditioning on each variable’s parents, which
are guaranteed to have already been sampled. This defines an efficient, single-pass
method of obtaining a sample.

In an EBM, it turns out that we can get around this chicken and egg problem

by sampling using a Markov chain. A Markov chain is defined by a state x and
a transition distribution T (x0 | x). Running the Markov chain means repeatedly
updating the state x to a value x0 sampled from T (x0 | x).

Under certain distributions, a Markov chain is eventually guaranteed to draw
x from an equilibrium distribution π(x0), defined by the condition

∀x0, π(x0) =
X

x

T (rvx0 | x)π(x).

TODO– this vector / matrix view needs a whole lot more exposition only lit-
erally a vector / matrix when the state is discrete unpack into multiple sentences,
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the parenthetical is hard to parse is the term “stochastic matrix” defined any-
where? make sure it’s in the index at least whoever finishes writing this section
should also finish making the math notation consistent terms in this section need
to be in the index

We can think of π as a vector (with the probability for each possible value x
in the element indexed by x, π(x)) and T as a corresponding stochastic matrix
(with row index x0 and column index x), i.e., with non-negative entries that sum
to 1 over elements of a column. Then, the above equation becomes

Tπ = π

an eigenvector equation that says that π is the eigenvector of T with eigenvalue
1. It can be shown (Perron-Frobenius theorem) that this is the largest possible

eigenvalue, and the only one with value 1 under mild conditions (for example
T (x0 | x) > 0). We can also see this equation as a fixed point equation for the
update of the distribution associated with each step of the Markov chain. If we
start a chain by picking x0 ∼ p 0, then we get a distribution p1 = Tp0 after one
step, and pt = Tpt−1 = T tp0 after t steps. If this recursion converges (the chain
has a so-called stationary distribution), then it converges to a fixed point which
is precisely pt = π for t→ ∞, and the dynamical systems view meets and agrees
with the eigenvector view.

This condition guarantees that repeated applications of the transition sam-
pling procedure don’t change the distribution over the state of the Markov chain.

Running the Markov chain until it reaches its equilibrium distribution is called
“burning in” the Markov chain.

Unfortunately, there is no theory to predict how many steps the Markov chain
must run before reaching its equilibrium distribution1, nor any way to tell for sure
that this event has happened. Also, even though successive samples come from the
same distribution, they are highly correlated with each other, so to obtain multiple
samples one should run the Markov chain for many steps between collecting each
sample. Markov chains tend to get stuck in a single mode of π(x) for several
steps. The speed with which a Markov chain moves from mode to mode is called
its mixing rate. Since burning in a Markov chain and getting it to mix well may
take several sampling steps, sampling correctly from an EBM is still a somewhat

costly procedure.
TODO: mention Metropolis-Hastings

Of course, all of this depends on ensuring π(x) = p(x) . Fortunately, this
is easy so long as p(x) is defined by an EBM. The simplest method is to use
Gibbs sampling, in which sampling from T (x0 | x) is accomplished by selecting

1although in principle the ratio of the two leading eigenvalues of the transition operator gives

us some clue, and the largest eigenvalue is 1.
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Figure 14.1: Paths followed by Gibbs sampling for three distributions, with the Markov
chain initialized at the mode in both cases. Left) A multivariate normal distribution
with two independent variables. Gibbs sampling mixes well because the variables are
independent. Center) A multivariate normal distribution with highly correlated variables.
The correlation between variables makes it difficult for the Markov chain to mix. Because
each variable must be updated conditioned on the other, the correlation reduces the rate

at which the Markov chain can move away from the starting point. Right) A mixture of
Gaussians with widely separated modes that are not axis-aligned. Gibbs sampling mixes
very slowly because it is difficult to change modes while altering only one variable at a
time.

one variable xi and sampling it from p conditioned on its neighbors in G. It is
also possible to sample several variables at the same time so long as they are
conditionally independent given all of their neighbors.

TODO: discussion of mixing example with 2 binary variables that prefer to

both have the same state IG’s graphic from lecture on adversarial nets
TODO: refer to this figure in the text:

TODO: refer to this figure in the text

14.1.1 Markov Chain Theory

TODO
State Perron’s theorem
DEFINE detailed balance

14.1.2 Importance Sampling

TODO write this section

14.2 The Difficulty of Mixing BetweenWell-Separated

Modes
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Figure 14.2: An illustration of the slow mixing problem in deep probabilistic models.
Each panel should be read left to right, top to bottom. Left) Consecutive samples from
Gibbs sampling applied to a deep Boltzmann machine trained on the MNIST dataset.
Consecutive samples are similar to each other. Because the Gibbs sampling is performed
in a deep graphical model, this similarity is based more on semantic rather than raw visual
features, but it is still difficult for the Gibbs chain to transition from one mode of the

distribution to another, for example by changing the digit identity. Right) Consecutive
ancestral samples from a generative adversarial network. Because ancestral sampling
generates each sample independently from the others, there is no mixing problem.
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Chapter 15

Linear Factor Models and
Auto-Encoders

Linear factor models are generative unsupervised learning models in which we
imagine that some unobserved factors h explain the observed variables x through
a linear transformation. Auto-encoders are unsupervised learning methods that
learn a representation of the data, typically obtained by a non-linear paramet-

ric transformation of the data, i.e., from x to h, typically a feedforward neural
network, but not necessarily. They also learn a transformation going backwards

from the representation to the data, from h to x, like the linear factor models.
Linear factor models therefore only specify a parametric decoder, whereas auto-
encoder also specify a parametric encoder. Some linear factor models, like PCA,
actually correspond to an auto-encoder (a linear one), but for others the encoder
is implicitly defined via an inference mechanism that searches for an h that could
have generated the observed x.

The idea of auto-encoders has been part of the historical landscape of neural
networks for decades (LeCun, 1987; Bourlard and Kamp, 1988; Hinton and Zemel,
1994) but has really picked up speed in recent years. They remained somewhat

marginal for many years, in part due to what was an incomplete understanding of
the mathematical interpretation and geometrical underpinnings of auto-encoders,

which are developed further in Chapters 17 and 20.11.
An auto-encoder is simply a neural network that tries to copy its in-

put to its output. The architecture of an auto-encoder is typically decomposed KEY
IDEAinto the following parts, illustrated in Figure 15.1:

• an input, x

• an encoder function f

• a “code” or internal representation h = f(x)
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input!x!

code!h!

reconstruc,on!r!

Decoder.g!

Encoder.f!

Figure 15.1: General schema of an auto-encoder, mapping an input x to an output (called
reconstruction) r through an internal representation or code h. The auto-encoder has
two components: the encoder f (mapping x to h) and the decoder g (mapping h to r).

• a decoder function g

• an output, also called “reconstruction” r = g(h) = g(f(x))

• a loss function L computing a scalar L(r,x) measuring how good of a re-
construction r is of the given input x. The objective is to minimize the
expected value of L over the training set of examples {x}.

15.1 Regularized Auto-Encoders

Predicting the input may sound useless: what could prevent the auto-encoder
from simply copying its input into its output? In the 20th century, this was
achieved by constraining the architecture of the auto-encoder to avoid this, by
forcing the dimension of the code h to be smaller than the dimension of the input
x.

Figure 15.2 illustrates the two typical cases of auto-encoders: undercomplete
vs overcomplete, i.e., with the dimension of the representation h respectively
smaller vs larger than the input x. Whereas early work with auto-encoders, just
like PCA, uses the undercompleteness – i.e. a bottleneck in the sequence of layers

– to avoid learning the identity function, more recent work allows overcomplete
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input!x!

Code*bo,leneck!h:!

undercomplete*
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Encoder*

Decoder*
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Figure 15.2: Left: undercomplete representation (dimension of code h is less than di-
mension of input x). Right: overcomplete representation. Overcomplete auto-encoders
require some other form of regularization (instead of the constraint on the dimension of
h) to avoid the trivial solution where r = x for all x.

representations. What we have learned in recent years is that it is possible to

make the auto-encoder meaningfully capture the structure of the input distribu-
tion even if the representation is overcomplete, with other forms of constraint
or regularization. In fact, once you realize that auto-encoders can capture the
input distribution (indirectly, not as a an explicit probability function), you also
realize that it should need more capacity as one increases the complexity of the
distribution to be captured (and the amount of data available): it should not be
limited by the input dimension. This is a problem in particular with the shal-
low auto-encoders, which have a single hidden layer (for the code). Indeed, that
hidden layer size controls both the dimensionality reduction constraint (the code
size at the bottleneck) and the capacity (which allows to learn a more complex

distribution).
Besides the bottleneck constraint, alternative constraints or regularization

methods have been explored and can guarantee that the auto-encoder does some-
thing useful and not just learn some trivial identity-like function:

• Sparsity of the representation or of its derivative: even if the in-
termediate representation has a very high dimensionality, the effective local
dimensionality (number of degrees of freedom that capture a coordinate sys-
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tem among the probable x’s) could be much smaller if most of the elements
of h are zero (or any other constant, such that ||∂hi

∂x || is close to zero). When

||∂hi

∂x
|| is close to zero, hi does not participate in encoding local changes in

x. There is a geometrical interpretation of this situation in terms of mani-
fold learning that is discussed in more depth in Chapter 17. The discussion

in Chapter 16 also explains how an auto-encoder naturally tends towards

learning a coordinate system for the actual factors of variation in the data.
At least four types of “auto-encoders” clearly fall in this category of sparse
representation:

– Sparse coding (Olshausen and Field, 1996) has been heavily studied
as an unsupervised feature learning and feature inference mechanism.
It is a linear factor model rather than an auto-encoder, because it has
no explicit parametric encoder, and instead uses an iterative inference
instead to compute the code. Sparse coding looks for representations
that are both sparse and explain the input through the decoder. In-
stead of the code being a parametric function of the input, it is instead
considered like free variable that is obtained through an optimization,

i.e., a particular form of inference:

h∗ = f(x) = arg min
h

L(g(h),x)) + λΩ(h) (15.1)

where L is the reconstruction loss, f the (non-parametric) encoder, g
the (parametric) decoder, Ω(h) is a sparsity regularizer, and in practice
the minimization can be approximate. Sparse coding has a manifold
or geometric interpretation that is discussed in Section 15.8. It also
has an interpretation as a directed graphical model, described in more
details in Section 19.3. To achieve sparsity, the objective function to

optimize includes a term that is minimized when the representation has
many zero or near-zero values, such as the L1 penalty |h|1 =

P
i |hi|.

– An interesting variation of sparse coding combines the freedom to
choose the representation through optimization and a parametric en-

coder. It is called predictive sparse decomposition (PSD) (Kavukcuoglu
et al., 2008a) and is briefly described in Section 15.8.2.

– At the other end of the spectrum are simply sparse auto-encoders,
which combine with the standard auto-encoder schema a sparsity penalty
which encourages the output of the encoder to be sparse. These are
described in Section 15.8.1. Besides the L1 penalty, other sparsity
penalties that have been explored include the Student-t penalty (Ol-

shausen and Field, 1996; Bergstra, 2011), TODO: should the t be in
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math mode, perhaps? X

i

log(1 + α2h2i )

(i.e. where αhi has a Student-t prior density) and the KL-divergence
penalty (Lee et al., 2008; Goodfellow et al., 2009; Larochelle and Ben-
gio, 2008a)

−
X

i

(t logh i + (1 − t) log(1 − hi)),

with a target sparsity level t, for hi ∈ (0, 1), e.g. through a sigmoid
non-linearity.

– Contractive autoencoders (Rifai et al., 2011b), covered in Sec-
tion 15.10, explicitly penalize ||∂h∂x ||2F , i.e., the sum of the squared norm

of the vectors
∂h i(x)

∂x (each indicating how much each hidden unit hi

responds to changes in x and what direction of change in x that unit is
most sensitive to, around a particular x). With such a regularization
penalty, the auto-encoder is called contractive1 because the mapping
from input x to representation h is encouraged to be contractive, i.e.,

to have small derivatives in all directions. Note that a sparsity regu-
larization indirectly leads to a contractive mapping as well, when the
non-linearity used happens to have a zero derivative at h i = 0 (which
is the case for the sigmoid non-linearity).

• Robustness to injected noise or missing information: if noise is
injected in inputs or hidden units, or if some inputs are missing, while the
neural network is asked to reconstruct the clean and complete input, then it
cannot simply learn the identity function. It has to capture the structure
of the data distribution in order to optimally perform this reconstruction.

Such auto-encoders are called denoising auto-encoders and are discussed in
more detail in Section 15.9.

15.2 Denoising Auto-encoders

There is a tight connection between the denoising auto-encoders and the
contractive auto-encoders: it can be shown (Alain and Bengio, 2013) that

in the limit of small Gaussian injected input noise, the denoising recon-
struction error is equivalent to a contractive penalty on the reconstruction
function that maps x to r = g(f(x)). In other words, since both x and

1A function f(x) is contractive if ||f(x)−f(y)|| < ||x−y|| for nearby x and y, or equivalently

if its derivative ||f 0(x)|| < 1.
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x+ (where  is some small noise vector) must yield the same target output
x, the reconstruction function is encouraged to be insensitive to changes in
all directions . The only thing that prevents reconstruction r from simply
being a constant (completely insensitive to the input x), is that one also
has to reconstruct correctly for different training examples x. However, the
auto-encoder can learn to be approximately constant around training ex-
amples x while producing a different answer for different training examples.
As discussed in Section 17.4, if the examples are near a low-dimensional
manifold, this encourages the representation to vary only on the manifold

and be locally constant in directions orthogonal to the manifold, i.e., the
representation locally captures a (not necessarily Euclidean, not necessarily

orthogonal) coordinate system for the manifold. In addition to the denoising
auto-encoder, the variational auto-encoder (Section 20.9.3) and the gener-
ative stochastic networks (Section 20.11) also involve the injection of noise,
but typically in the representation-space itself, thus introducing the notion
of h as a latent variable.

• Pressure of a Prior on the Representation: an interesting way to
generalize the notion of regularization applied to the representation is to
introduce in the cost function for the auto-encoder a log-prior term

− logP (h)

which captures the assumption that we would like to find a representation
that has a simple distribution (if P(h) has a simple form, such as a fac-
torized distribution2), or at least one that is simpler than the original data
distribution. Among all the encoding functions f , we would like to pick one
that

1. can be inverted (easily), and this is achieved by minimizing some re-
construction loss, and

2. yields representations h whose distribution is “simpler”, i.e., can be
captured with less capacity than the original training distribution itself.

The sparse variants described above clearly fall in that framework. The vari-
ational auto-encoder (Section 20.9.3) provides a clean mathematical frame-
work for justifying the above pressure of a top-level prior when the objective

is to model the data generating distribution.

From the point of view of regularization (Chapter 7), adding the − logP (h)
term to the objective function (e.g. for encouraging sparsity) or adding a contrac-
tive penalty do not fit the traditional view of a prior on the parameters. Instead,

2all the sparse priors we have described correspond to a factorized distribution
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the prior on the latent variables acts like a data-dependent prior, in the sense that
it depends on the particular values h that are going to be sampled (usually from a
posterior or an encoder), based on the input example x. Of course, indirectly, this
is also a regularization on the parameters, but one that depends on the particular
data distribution.

15.3 Representational Power, Layer Size and Depth

Nothing in the above description of auto-encoders restricts the encoder or decoder
to be shallow, but in the literature on the subject, most trained auto-encoders

have had a single hidden layer which is also the representation layer or code3

For one, we know by the usual universal approximator abilities of single
hidden-layer neural networks that a sufficiently large hidden layer can represent
any function with a given accuracy. This observation justifies overcomplete auto-

encoders: in order to represent a rich enough distribution, one probably needs
many hidden units in the intermediate representation layer. We also know that
Principal Components Analysis (PCA) corresponds to an undercomplete auto-
encoder with no intermediate non-linearity, and that PCA can only capture a set
of directions of variation that are the same everywhere in space. This notion is
discussed in more details in Chapter 17 in the context of manifold learning.

For two, it has also been reported many times that training a deep neural

network, and in particular a deep auto-encoder (i.e. with a deep encoder and a

deep decoder) is more difficult than training a shallow one. This was actually a
motivation for the initial work on the greedy layerwise unsupervised pre-training
procedure, described below in Section 16.1, by which we only need to train a series
of shallow auto-encoders in order to initialize a deep auto-encoder. It was shown
early on (Hinton and Salakhutdinov, 2006) that, if trained properly, such deep
auto-encoders could yield much better compression than corresponding shallow or
linear auto-encoders (which are basically doing the same as PCA, see Section 15.6
below). As discussed in Section 16.7, deeper architectures can be in some cases
exponentially more efficient (both in terms of computation and statistically) than

shallow ones. However, because we can usefully pre-train a deep net by training
and stacking shallow ones, it makes it interesting to consider single-layer (or at

least shallow and easy to train) auto-encoders, as has been done in most of the
literature discussed in this chapter.

3as argued in this book, this is probably not a good choice, and we would like to independently
control the constraints on the representation, e.g. dimension and sparsity of the code, and the

capacity of the encoder.
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15.4 Reconstruction Distribution

The above “parts” (encoder function f , decoder function g, reconstruction loss

L) make sense when the loss L is simply the squared reconstruction error, but
there are many cases where this is not appropriate, e.g., when x is a vector of
discrete variables or when P(x | h) is not well approximated by a Gaussian distri-
bution 4. Just like in the case of other types of neural networks (starting with the
feedforward neural networks, Section 6.3.2), it is convenient to define the loss L

as a negative log-likelihood over some target random variables. This probabilistic
interpretation is particularly important for the discussion in Sections 20.9.3, 20.10
and 20.11 about generative extensions of auto-encoders and stochastic recurrent
networks, where the output of the auto-encoder is interpreted as a probability dis-
tribution P(x | h), for reconstructing x, given hidden units h. This distribution
captures not just the expected reconstruction but also the uncertainty about the
original x (which gave rise to h, either deterministically or stochastically, given
h). In the simplest and most ordinary cases, this distribution factorizes, i.e.,
P (x | h) =

Q
i P (xi | h). This covers the usual cases of xi | h being Gaussian (for

unbounded real values) and xi |h having a Bernoulli distribution (for binary values
xi), but one can readily generalize this to other distributions, such as mixtures
(see Sections 3.10.5 and 6.3.2).

Thus we can generalize the notion of decoding function g(h) to decoding dis-

tribution P (x | h). Similarly, we can generalize the notion of encoding function
f(x) to encoding distribution Q(h | x), as illustrated in Figure 15.3. We use

this to capture the fact that noise is injected at the level of the representation
h, now considered like a latent variable. This generalization is crucial in the
development of the variational auto-encoder (Section 20.9.3) and the generalized
stochastic networks (Section 20.11).

We also find a stochastic encoder and a stochastic decoder in the RBM, de-
scribed in Section 20.2. In that case, the encoding distribution Q(h | x) and
P (x | h) “match”, in the sense that Q(h | x) = P(h | x), i.e., there is a unique

joint distribution which has both Q(h | x) and P (x | h) as conditionals. This is
not true in general for two independently parametrized conditionals like Q(h | x)

and P (x | h), although the work on generative stochastic networks (Alain et al.,
2015) shows that learning will tend to make them compatible asymptotically (with
enough capacity and examples).

4See the link between squared error and normal density in Sections 5.8 and 6.3.2
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x

h

Q(h|x) P (x|h)

Figure 15.3: Basic scheme of a stochastic auto-encoder, in which both the encoder and
the decoder are not simple functions but instead involve some noise injection, meaning
that their output can be seen as sampled from a distribution, Q(h | x) for the encoder
and P (x | h) for the decoder. RBMs are a special case where P = Q (in the sense of
a unique joint corresponding to both conditinals) but in general these two distributions

are not necessarily conditional distributions compatible with a unique joint distribution
P (x,h).

15.5 Linear Factor Models

Now that we have introduced the notion of a probabilistic decoder, let us focus
on a very special case where the latent variable h generates x via a linear trans-
formation plus noise, i.e., classical linear factor models, which do not necessarily
have a corresponding parametric encoder.

The idea of discovering explanatory factors that have a simple joint distribu-
tion among themselves is old, e.g., see Factor Analysis (see below), and has been

explored first in the context where the relationship between factors and data is
linear, i.e., we assume that the data was generated as follows. First, sample the

real-valued factors,

h ∼ P(h), (15.2)

and then sample the real-valued observable variables given the factors:

x = Wh + b + noise (15.3)

where the noise is typically Gaussian and diagonal (independent across dimen-
sions). This is illustrated in Figure 15.4.
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P (x|h)

h ∼ P (h)

x =Wh+ b+ noise

Figure 15.4: Basic scheme of a linear factors model, in which we assume that an observed
data vector x is obtained by a linear combination of latent factors h, plus some noise.
Different models, such as probabilistic PCA, factor analysis or ICA, make different choices
about the form of the noise and of the prior P (h).

15.6 Probabilistic PCA and Factor Analysis

Probabilistic PCA (Principal Components Analysis), factor analysis and other
linear factor models are special cases of the above equations (15.2 and 15.3) and
only differ in the choices made for the prior (over latent, not parameters) and
noise distributions.

In factor analysis (Bartholomew, 1987; Basilevsky, 1994), the latent variable
prior is just the unit variance Gaussian

h ∼ N(0, I)

while the observed variables xi are assumed to be conditionally independent, given
h, i.e., the noise is assumed to be coming from a diagonal covariance Gaussian
distribution, with covariance matrix ψ = diag(σ2 ), with σ2 = (σ2

1, σ
2
2, . . .) a

vector of per-variable variances.
The role of the latent variables is thus to capture the dependencies between

the different observed variables x i. Indeed, it can easily be shown that x is just
a Gaussian-distribution (multivariate normal) random variable, with

x ∼ N(b,WW> + ψ)

where we see that the weights W induce a dependency between two variables xi

and xj through a kind of auto-encoder path, whereby xi influences ĥk = W kx

via w ki (for every k) and ĥk influences xj via w kj .
In order to cast PCA in a probabilistic framework, we can make a slight

modification to the factor analysis model, making the conditional variances σi
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equal to each other. In that case the covariance of x is just WW > +σ2 I, where
σ2 is now a scalar, i.e.,

x ∼ N(b,WW> + σ2I)

or equivalently
x = Wh + b + σz

where z ∼ N (0, I) is white noise. Tipping and Bishop (1999) then show an
iterative EM algorithm for estimating the parameters W and σ 2.

What the probabilistic PCA model is basically saying is that the covariance
is mostly captured by the latent variables h, up to some small residual recon-
struction error σ2. As shown by Tipping and Bishop (1999), probabilistic PCA
becomes PCA as σ → 0. In that case, the conditional expected value of h given
x becomes an orthogonal projection onto the space spanned by the d columns of
W , like in PCA. See Section 17.1 for a discussion of the “inference” mechanism

associated with PCA (probabilistic or not), i.e., recovering the expected value of
the latent factors hi given the observed input x. That section also explains the
very insightful geometric and manifold interpretation of PCA.

However, as σ → 0, the density model becomes very sharp around these d

dimensions spanned the columns ofW , as discussed in Section 17.1, which would
not make it a very faithful model of the data, in general (not just because the
data may live on a higher-dimensional manifold, but more importantly because
the real data manifold may not be a flat hyperplane - see Chapter 17 for more).

15.6.1 ICA

TODO: do we really want to put every linear factor model in the auto-encoder
chapter? if latent variable models are auto-encoders, what deep probabilistic
model would not be an auto-encoder? Independent Component Analysis (ICA)

is among the oldest representation learning algorithms (Herault and Ans, 1984;
Jutten and Herault, 1991; Comon, 1994; Hyvärinen, 1999; Hyvärinen et al., 2001).
It is an approach to modeling linear factors that seeks non-Gaussian projections of
the data. Like probabilistic PCA and factor analysis, it also fits the linear factor
model of Eqs. 15.2 and 15.3. What is particular about ICA is that unlike PCA
and factor analysis it does not assume that the latent variable prior is Gaussian.
It only assumes that it is factorized, i.e.,

P (h) =
Y

i

P (hi). (15.4)

Since there is no parametric assumption behind the prior, we are really in front
of a so-called semi-parametric model, with parts of the model being parametric
(P (x | h)) and parts being non-specified or non-parametric (P (h)). In fact, this
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typically yields to non-Gaussian priors: if the priors were Gaussian, then one
could not distinguish between the factors h and a rotation of h. Indeed, note
that if

h = Uz

with U an orthonormal (rotation) square matrix, i.e.,

z = U>h,

then, although h might have a Normal(0, I) distribution, the z also have a unit
covariance, i.e., they are uncorrelated:

V ar[z] = E[zz>] = E[U >hh>U ] = U>V ar[h]U =U>U = I .

In other words, imposing independence among Gaussian factors does not allow one
to disentangle them, and we could as well recover any linear rotation of these fac-
tors. It means that, given the observed x, even though we might assume the right
generative model, PCA cannot recover the original generative factors. However, if
we assume that the latent variables are non-Gaussian, then we can recover them,
and this is what ICA is trying to achieve. In fact, under these generative model

assumptions, the true underlying factors can be recovered (Comon, 1994). In fact,
many ICA algorithms are looking for projections of the data s = V x such that

they are maximally non-Gaussian. An intuitive explanation for these approaches
is that although the true latent variables h may be non-Gaussian, almost any
linear combination of them will look more Gaussian, because of the central limit
theorem. Since linear combinations of the xi’s are also linear combinations of
the hj’s, to recover the hj’s we just need to find the linear combinations that are
maximally non-Gaussian (while keeping these different projections orthogonal to
each other).

There is an interesting connection between ICA and sparsity, since the dom-
inant form of non-Gaussianity in real data is due to sparsity, i.e., concentration

of probability at or near 0. Non-Gaussian distributions typically have more mass
around zero, although you can also get non-Gaussianity by increasing skewness,
asymmetry, or kurtosis.

Like PCA can be generalized to non-linear auto-encoders described later in
this chapter, ICA can be generalized to a non-linear generative model, e.g., x =
f(h)+noise. See Hyvärinen and Pajunen (1999) for the initial work on non-linear
ICA and its successful use with ensemble learning by Roberts and Everson (2001);
Lappalainen et al. (2000).
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15.6.2 Sparse Coding as a Generative Model

One particularly interesting form of non-Gaussianity arises with distributions that
are sparse. These typically have not just a peak at 0 but also a fat tail5. Like the
other linear factor models (Eq. 15.3), sparse coding corresponds to a linear factor
model, but one with a “sparse” latent variable h, i.e., P (h) puts high probability

at or around 0. Unlike with ICA (previous section), the latent variable prior is
parametric. For example the factorized Laplace density prior is

P (h) =
Y

i

P (hi ) =
Y

i

λ

2
e−λ|h i| (15.5)

and the factorized Student-t prior is

P (h) =
Y

i

P (hi) ∝
Y

i

1

1 +
h 2i
ν

ν+1
2

. (15.6)

Both of these densities have a strong preference for near-zero values but, unlike

the Gaussian, accomodate large values. In the standard sparse coding models,
the reconstruction noise is assumed to be Gaussian, so that the corresponding
reconstruction error is the squared error.

Regarding sparsity, note that the actual value hi = 0 has zero measure under

both densities, meaning that the posterior distribution P (h | x) will not generate
values h = 0. However, sparse coding is normally considered under a maximum

a posteriori (MAP) inference framework, in which the inferred values of h are
those that maximize the posterior, and these tend to often be zero if the prior
is sufficiently concentrated around 0. The inferred values are those defined in
Eq. 15.1, reproduced here,

h = f(x) = arg min
h

L(g(h),x)) + λΩ(h)

where L(g(h),x) is interpreted as − logP (x | g(h)) and Ω(h) as − logP(h). This
MAP inference view of sparse coding and an interesting probabilistic interpreta-
tion of sparse coding are further discussed in Section 19.3.

To relate the generative model of sparse coding to ICA, note how the prior
imposes not just sparsity but also independence of the latent variables hi under
P (h), which may help to separate different explanatory factors, unlike PCA,
factor analysis or probabilistic PCA, because these rely on a Gaussian prior,
which yields a factorized prior under any rotation of the factors, multiplication
by an orthonormal matrix, as demonstrated in Section 15.6.1.

5with probability going to 0 as the values increase in magnitude at a rate that is slower than

the Gaussian, i.e., less than quadratic in the log-domain.
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See Section 17.2 about the manifold interpretation of sparse coding.
TODO: relate to and point to Spike-and-slab sparse coding (Goodfellow et al.,

2012) (section?)

15.7 Reconstruction Error as Log-Likelihood

Although traditional auto-encoders (like traditional neural networks) were intro-

duced with an associated training loss, just like for neural networks, that training
loss can generally be given a probabilistic interpretation as a conditional log-

likelihood of the original input x, given the reprensentation h.
We have already covered negative log-likelihood as a loss function in general

for feedforward neural networks in Section 6.3.2. Like prediction error for regular
feedforward neural networks, reconstruction error for auto-encoders does not have
to be squared error. When we view the loss as negative log-likelihood, we interpret
the reconstruction error as

L = − logP (x | h)

where h is the representation, which may generally be obtained through an en-
coder taking x as input.

x

f g

h = f(x)

L = − logP (x|g(f (x)))

Figure 15.5: The computational graph of an auto-encoder, which is trained to maximize
the probability assigned by the decoder g to the data point x, given the output of the
encoder h = f (x). The training objective is thus L = − logP (x | g(f(x))), which ends
up being squared reconstruction error if we choose a Gaussian reconstruction distribution
with mean g(f (x)), and cross-entropy if we choose a factorized Bernoulli reconstruction
distribution with means g(f(x)).
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An advantage of this view is that it immediately tells us what kind of loss
function one should use depending on the nature of the input. If the input is real-
valued and unbounded, then squared error is a reasonable choice of reconstruction
error, and corresponds to P (x | h) being Normal. If the input is a vector of
bits, then cross-entropy is a more reasonable choice, and corresponds to P (x |
h) =

Q
iP (x i | h) with xi | h being Bernoulli-distributed. We then view the

decoder g(h) as computing the parameters of the reconstruction distribution, i.e.,
P (x | h) = P(x | g(h)).

Another advantage of this view is that we can think about the training of

the decoder as estimating the conditional distribution P(x | h), which comes
handy in the probabilistic interpretation of denoising auto-encoders, allowing us

to talk about the distribution P (x) explicitly or implicitly represented by the
auto-encoder (see Sections 15.9, 20.9.3 and 20.10 for more details). In the same
spirit, we can rethink the notion of encoder from a simple function to a conditional
distribution Q(h | x), with a special case being when Q(h | x) is a Dirac at
some particular value. Equivalently, thinking about the encoder as a distribution
corresponds to injecting noise inside the auto-encoder. This view is developed
further in Sections 20.9.3 and 20.11.

15.8 Sparse Representations

Sparse auto-encoders are auto-encoders which learn a sparse representation, i.e.,

one whose elements are often either zero or close to zero. Sparse coding was in-
troduced in Section 15.6.2 as a linear factor model in which the prior P (h) on
the representation h = f(x) encourages values at or near 0. In Section 15.8.1, we
see how ordinary auto-encoders can be prevented from learning a useless identity
transformation by using a sparsity penalty rather than a bottleneck. The main
difference between a sparse auto-encoder and sparse coding is that sparse cod-
ing has no explicit parametric encoder, whereas sparse auto-encoders have one.
The “encoder” of sparse coding is the algorithm that performs the approximate
inference, i.e., looks for

h ∗(x) = arg max
h

logP (h | x) = arg min
h

||x − (b +Wh)||2
σ2

− logP(h) (15.7)

where σ2 is a reconstruction variance parameter (which should equal the average
squared reconstruction error6), and P (h) is a “sparse” prior that puts more prob-

6but can be lumped into the regularizer λ which controls the strength of the sparsity prior,

defined in Eq. 15.8, for example.
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ability mass around h = 0, such as the Laplacian prior, with factorized marginals

P (hi) =
λ

2
eλ|hi| (15.8)

or the Student-t prior, with factorized marginals

P (hi) ∝
1

(1 +
h2i
ν )

ν+1
2

. (15.9)

The advantages of such a non-parametric encoder and the sparse coding approach
over sparse auto-encoders are that

1. it can in principle minimize the combination of reconstruction error and

log-prior better than any parametric encoder,

2. it performs what is called explaining away (see Figure 13.8), i.e., it allows
to “choose” some “explanations” (hidden factors) and inhibits the others.

The disadvantages are that

1. computing time for encoding the given input x, i.e., performing inference
(computing the representation h that goes with the given x) can be sub-
stantially larger than with a parametric encoder (because an optimization
must be performed for each example x), and

2. the resulting encoder function could be non-smooth and possibly too non-

linear (with two nearby x’s being associated with very different h’s), po-
tentially making it more difficult for the downstream layers to properly

generalize.

In Section 15.8.2, we describe PSD (Predictive Sparse Decomposition), which
combines a non-parametric encoder (as in sparse coding, with the representation
obtained via an optimization) and a parametric encoder (like in the sparse auto-

encoder). Section 15.9 introduces the Denoising Auto-Encoder (DAE), which puts
pressure on the representation by requiring it to extract information about the

underlying distribution and where it concentrates, so as to be able to denoise a
corrupted input. Section 15.10 describes the Contractive Auto-Encoder (CAE),
which optimizes an explicit regularization penalty that aims at making the rep-
resentation as insensitive as possible to the input, while keeping the information

sufficient to reconstruct the training examples.
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15.8.1 Sparse Auto-Encoders

A sparse auto-encoder is simply an auto-encoder whose training criterion involves
a sparsity penalty Ω(h) in addition to the reconstruction error:

L = − logP (x | g(h)) + Ω(h) (15.10)

where g(h) is the decoder output and typically we have h = f(x), the encoder
output.

We can think of that penalty Ω(h) simply as a regularizer or as a log-prior

on the representations h. For example, the sparsity penalty corresponding to the
Laplace prior ( λ

2 e
−λ|hi|) is the absolute value sparsity penalty (see also Eq. 15.8

above):

Ω(h) = λ
X

i

|h i|

− logP (h) =
X

i

log
λ

2
+ λ|hi| = const + Ω(h) (15.11)

where the constant term depends only of λ and not h (which we typically ignore
in the training criterion because we consider λ as a hyperparameter rather than
a parameter). Similarly (as per Eq. 15.9), the sparsity penalty corresponding to
the Student-t prior (Olshausen and Field, 1997) is

Ω(h) =
X

i

ν + 1

2
log(1 +

h 2
i

ν
) (15.12)

where ν is considered to be a hyperparameter.
The early work on sparse auto-encoders (Ranzato et al., 2007a, 2008) con-

sidered various forms of sparsity and proposed a connection between sparsity
regularization and the partition function gradient in energy-based models (see
Section TODO). The idea is that a regularizer such as sparsity makes it difficult

for an auto-encoder to achieve zero reconstruction error everywhere. If we con-
sider reconstruction error as a proxy for energy (unnormalized log-probability of

the data), then minimizing the training set reconstruction error forces the energy
to be low on training examples, while the regularizer prevents it from being low
everywhere. The same role is played by the gradient of the partition function in
energy-based models such as the RBM (Section TODO).

However, the sparsity penalty of sparse auto-encoders does not need to have
a probabilistic interpretation. For example, Goodfellow et al. (2009) successfully
used the following sparsity penalty, which does not try to bring hi all the way
down to 0, but only towards some low target value such as ρ = 0.05.

Ω(h) =

X
i

ρ loghi + (1 − ρ) log(1 − h i) (15.13)
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where 0 < hi < 1, usually with hi = sigmoid(ai ). This is just the cross-entropy be-
tween the Bernoulli distributions with probability p = hi and the target Bernoulli
distribution with probability p = ρ.

One way to achieve actual zeros in h for sparse (and denoising) auto-encoders
was introduced in Glorot et al. (2011c). The idea is to use a half-rectifier (a.k.a.
simply as “rectifier”) or ReLU (Rectified Linear Unit, introduced in Glorot et al.
(2011b) for deep supervised networks and earlier in Nair and Hinton (2010a) in
the context of RBMs) as the output non-linearity of the encoder. With a prior
that actually pushes the representations to zero (like the absolute value penalty),

one can thus indirectly control the average number of zeros in the representation.
ReLUs were first successfully used for deep feedforward networks in Glorot et al.

(2011a), achieving for the first time the ability to train fairly deep supervised
networks without the need for unsupervised pre-training, and this turned out to
be an important component in the 2012 object recognition breakthrough with
deep convolutional networks (Krizhevsky et al., 2012b).

Interestingly, the “regularizer” used in sparse auto-encoders does not conform
to the classical interpretation of regularizers as priors on the parameters. That
classical interpretation of the regularizer comes from the MAP (Maximum A
Posteriori) point estimation (see Section 5.7.1) of parameters associated with
the Bayesian view of parameters as random variables and considering the joint
distribution of data x and parameters θ (see Section 5.9):

arg max
θ

P (θ | x) = arg max
θ

(logP (x | θ) + logP(θ))

where the first term on the right is the usual data log-likelihood term and the
second term, the log-prior over parameters, incorporates the preference over par-
ticular values of θ.

With regularized auto-encoders such as sparse auto-encoders and contractive
auto-encoders, instead, the regularizer corresponds to a log-prior over the repre-
sentation, or over latent variables. In the case of sparse auto-encoders, predictive
sparse decomposition and contractive auto-encoders, the regularizer specifies a
preference over functions of the data, rather than over parameters. This makes

such a regularizer data-dependent, unlike the classical parameter log-prior. Specif-
ically, in the case of the sparse auto-encoder, it says that we prefer an encoder

whose output produces values closer to 0. Indirectly (when we marginalize over
the training distribution), this is also indicating a preference over parameters, of
course.

15.8.2 Predictive Sparse Decomposition

TODO: we have too many forward refs to this section. There are 150 lines about
PSD in this section and at least 20 lines of forward references to this section
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in this chapter, some of which are just 100 lines away. Predictive sparse de-
composition (PSD) is a variant that combines sparse coding and a parametric
encoder (Kavukcuoglu et al., 2008b), i.e., it has both a parametric encoder and
iterative inference. It has been applied to unsupervised feature learning for ob-
ject recognition in images and video (Kavukcuoglu et al., 2009, 2010b; Jarrett
et al., 2009a; Farabet et al., 2011), as well as for audio (Henaff et al., 2011). The
representation is considered to be a free variable (possibly a latent variable if we
choose a probabilistic interpretation) and the training criterion combines a sparse
coding criterion with a term that encourages the optimized sparse representation

h (after inference) to be close to the output of the encoder f(x):

L = arg min
h


||x − g(h)||2 + λ|h|1 + γ||h − f(x)|| 2


(15.14)

where f is the encoder and g is the decoder. Like in sparse coding, for each

example x an iterative optimization is performed in order to obtain a representa-
tion h. However, because the iterations can be initialized from the output of the
encoder, i.e., with h = f(x), only a few steps (e.g. 10) are necessary to obtain
good results. Simple gradient descent on h has been used by the authors. After h

is settled, both g and f are updated towards minimizing the above criterion. The
first two terms are the same as in L1 sparse coding while the third one encourages
f to predict the outcome of the sparse coding optimization, making it a better
choice for the initialization of the iterative optimization. Hence f can be used as
a parametric approximation to the non-parametric encoder implicitly defined by
sparse coding. It is one of the first instances of learned approximate inference (see
also Sec. 19.6). Note that this is different from separately doing sparse coding
(i.e., training g) and then training an approximate inference mechanism f , since
both the encoder and decoder are trained together to be “compatible” with each
other. Hence the decoder will be learned in such a way that inference will tend

to find solutions that can be well approximated by the approximate inference.

TODO: this is probably too much forward reference, when we bring these things
in we can remind people that they resemble PSD, but it doesn’t really help the

reader to say that the thing we are describing now is similar to things they haven’t

seen yet A similar example is the variational auto-encoder, in which the encoder
acts as approximate inference for the decoder, and both are trained jointly (Sec-

tion 20.9.3). See also Section 20.9.4 for a probabilistic interpretation of PSD in
terms of a variational lower bound on the log-likelihood.

In practical applications of PSD, the iterative optimization is only used during
training, and f is used to compute the learned features. It makes computation
fast at recognition time and also makes it easy to use the trained features f as
initialization (unsupervised pre-training) for the lower layers of a deep net. Like
other unsupervised feature learning schemes, PSD can be stacked greedily, e.g.,
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training a second PSD on top of the features extracted by the first one, etc.

15.9 Denoising Auto-Encoders

The Denoising Auto-Encoder (DAE) was first proposed (Vincent et al., 2008,
2010) as a means of forcing an auto-encoder to learn to capture the data distribu-

tion without an explicit constraint on either the dimension or the sparsity of the

learned representation. It was motivated by the idea that in order to fully capture
a complex distribution, an auto-encoder needs to have at least as many hidden
units as needed by the complexity of that distribution. Hence its dimensionality
should not be restricted to the input dimension.

The principle of the denoising auto-encoder is deceptively simple and illus-
trated in Figure 15.6: the encoder sees as input a corrupted version of the input,
but the decoder tries to reconstruct the clean uncorrupted input.

x

x̃

C(x̃|x)

f g

L = − logP (x|g(f(x̃)))

h = f(x̃)

Figure 15.6: The computational graph of a denoising auto-encoder, which is trained to
reconstruct the clean data point x from its corrupted version x̃, i.e., to minimize the loss
L = − logP (x | g(f (x̃))), where x̃ is a corrupted version of the data example x, obtained
through a given corruption process C(x̃ | x).

Mathematically, and following the notations used in this chapter, this can be
formalized as follows. We introduce a corruption process C(x̃ | x) which repre-

sents a conditional distribution over corrupted samples x̃, given a data sample

x. The auto-encoder then learns a reconstruction distribution P (x | x̃) estimated
from training pairs (x, x̃), as follows:

1. Sample a training example x = x from the data generating distribution (the
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training set).

2. Sample a corrupted version x̃ = x̃ from the conditional distribution C(x̃ |
x = x).

3. Use (x, x̃) as a training example for estimating the auto-encoder reconstruc-
tion distribution P (x | x̃) = P (x | g(h)) with h the output of encoder f(x̃)

and g(h) the output of the decoder.

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood − logP(x | h), i.e.,
the denoising reconstruction error, using back-propagation to compute gradients,
just like for regular feedforward neural networks (the only difference being the
corruption of the input and the choice of target output).

We can view this training objective as performing stochastic gradient descent

on the denoising reconstruction error, but where the “noise” now has two sources:

1. the choice of training sample x from the data set, and

2. the random corruption applied to x to obtain x̃.

We can therefore consider that the DAE is performing stochastic gradient
descent on the following expectation:

−Ex∼Q(x)Ex̃∼C(x̃|x) logP (x | g(f(x̃)))

where Q(x) is the training distribution.
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C(x̃|x)

x

x̃

x̃

g(f(x̃)) ≈ E [x|x̃]

Figure 15.7: A denoising auto-encoder is trained to reconstruct the clean data point x
from it corrupted version x̃. In the figure, we illustrate the corruption process C(x̃ | x)

by a grey circle of equiprobable corruptions, and grey arrow for the corruption process)
acting on examples x (red crosses) lying near a low-dimensional manifold near which
probability concentrates. When the denoising auto-encoder is trained to minimize the
average of squared errors ||g(f (x̃)) −x||2 , the reconstruction g(f(x̃)) estimates E[x | x̃],
which approximately points orthogonally towards the manifold, since it estimates the
center of mass of the clean points x which could have given rise to x̃. The auto-encoder
thus learns a vector field g(f(x)) − x (the green arrows) and it turns out that this

vector field estimates the gradient field
∂ logQ(x)
∂x (up to a multiplicative factor that is the

average root mean square reconstruction error), where Q is the unknown data generating
distribution.

15.9.1 Learning a Vector Field that Estimates a Gradient Field

As illustrated in Figure 15.7, a very important property of DAEs is that their
training criterion makes the auto-encoder learn a vector field (g(f(x)) − x) that

estimates the gradient field (or score) ∂ log Q(x)
∂x , as per Eq. 15.15. A first result in

this direction was proven by Vincent (2011a), showing that minimizing squared

reconstruction error in a denoising auto-encoder with Gaussian noise was related
to score matching (Hyvärinen, 2005a), making the denoising criterion a regular-
ized form of score matching called denoising score matching (Kingma and LeCun,
2010a). Score matching is an alternative to maximum likelihood and provides a
consistent estimator. It is discussed further in Section 18.4. The denoising version
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is discussed in Section 18.5.
The connection between denoising auto-encoders and score matching was first

made (Vincent, 2011a) in the case where the denoising auto-encoder has a par-
ticular parametrization (one hidden layer, sigmoid activation functions on hidden
units, linear reconstruction), in which case the denoising criterion actually corre-
sponds to a regularized form of score matching on a Gaussian RBM (with binomial
hidden units and Gaussian visible units). The connection between ordinary auto-
encoders and Gaussian RBMs had previously been made by Bengio and Delalleau
(2009), which showed that contrastive divergence training of RBMs was related to

an associated auto-encoder gradient, and later by Swersky (2010), which showed
that non-denoising reconstruction error corresponded to score matching plus a

regularizer.
The fact that the denoising criterion yields an estimator of the score for gen-

eral encoder/decoder parametrizations has been proven (Alain and Bengio, 2012,
2013) in the case where the corruption and the reconstruction distributions are
Gaussian (and of course x is continuous-valued), i.e., with the squared error de-
noising error

||g(f(x̃)) − x||2

and corruption
C(x̃ = x̃|x) = N (x̃;µ = x,Σ = σ2I)

with noise variance σ2.
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Figure 15.8: Vector field learned by a denoising auto-encoder around a 1-D curved man-
ifold near which the data (orange circles) concentrates in a 2-D space. Each arrow is
proportional to the reconstruction minus input vector of the auto-encoder and points
towards higher probability according to the implicitly estimated probability distribution.
Note that the vector field has zeros at both peaks of the estimated density function (on

the data manifolds) and at troughs (local minima) of that density function, e.g., on the
curve that separates different arms of the spiral or in the middle of it.

More precisely, the main theorem states that g(f(x))−x

σ 2
is a consistent estimator

of
∂ log Q(x)

∂x
, where Q(x) is the data generating distribution,

g(f(x)) − x
σ2

→
∂ logQ(x)

∂x
, (15.15)

so long as f and g have sufficient capacity to represent the true score (and assum-

ing that the expected training criterion can be minimized, as usual when proving
consistency associated with a training objective).

Note that in general, there is no guarantee that the reconstruction g(f(x))
minus the input x corresponds to the gradient of something (the estimated score
should be the gradient of the estimated log-density with respect to the input
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x). That is why the early results (Vincent, 2011a) are specialized to particular
parametrizations where g(f(x)) − x is the derivative of something. See a more
general treatment by Kamyshanska and Memisevic (2015).

Although it was intuitively appealing that in order to denoise correctly one
must capture the training distribution, the above consistency result makes it
mathematically very clear in what sense the DAE is capturing the input distribu-
tion: it is estimating the gradient of its energy function (i.e., of its log-density),
i.e., learning to point towards more probable (lower energy) configurations. Fig-
ure 15.8 (see details of experiment in Alain and Bengio (2013)) illustrates this.

Note how the norm of reconstruction error (i.e. the norm of the vectors shown in
the figure) is related to but different from the energy (unnormalized log-density)

associated with the estimated model. The energy should be low only where the
probability is high. The reconstruction error (norm of the estimated score vector)
is low where probability is near a peak of probability (or a trough of energy), but
it can also be low at maxima of energy (minima of probability).

Section 20.10 continues the discussion of the relationship between denoising
auto-encoders and probabilistic modeling by showing how one can generate from
the distribution implicitly estimated by a denoising auto-encoder. Whereas (Alain
and Bengio, 2013) generalized the score estimation result of Vincent (2011a) to
arbitrary parametrizations, the result from Bengio et al. (2013b), discussed in
Section 20.10, provides a probabilistic – and in fact generative – interpretation to
every denoising auto-encoder.

15.10 Contractive Auto-Encoders

The Contractive Auto-Encoder or CAE (Rifai et al., 2011a,c) introduces an ex-
plicit regularizer on the code h = f(x), encouraging the derivatives of f to be as
small as possible:

Ω(h) =


∂f(x)

∂x


2

F

(15.16)

which is the squared Frobenius norm (sum of squared elements) of the Jacobian
matrix of partial derivatives associated with the encoder function. Whereas the

denoising auto-encoder learns to contract the reconstruction function (the com-
position of the encoder and decoder), the CAE learns to specifically contract the

encoder. See Figure 17.13 for a view of how contraction near the data points
makes the auto-encoder capture the manifold structure.

If it weren’t for the opposing force of reconstruction error, which attempts
to make the code h keep all the information necessary to reconstruct training
examples, the CAE penalty would yield a code h that is constant and does not
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depend on the input x. The compromise between these two forces yields an auto-
encoder whose derivatives

∂f (x)
∂x are tiny in most directions, except those that are

needed to reconstruct training examples, i.e., the directions that are tangent to
the manifold near which data concentrate. Indeed, in order to distinguish (and
thus, reconstruct correctly) two nearby examples on the manifold, one must assign
them a different code, i.e., f(x) must vary as x moves from one to the other, i.e.,
in the direction of a tangent to the manifold.

Figure 15.9: Average (over test examples) of the singular value spectrum of the Jacobian

matrix ∂f(x)
∂x

for the encoder f learned by a regular auto-encoder (AE) versus a contractive
auto-encoder (CAE). This illustrates how the contractive regularizer yields a smaller set

of directions in input space (those corresponding to large singular value of the Jacobian)
which provoke a response in the representation h while the representation remains almost
insensitive for most directions of change in the input.

What is interesting is that this penalty forces more strongly the representation
to be invariant in directions orthogonal to the manifold. This can be seen clearly

by comparing the singular value spectrum of the Jacobian ∂f (x)
∂x for different auto-

encoders, as shown in Figure 15.9. We see that the CAE manages to concentrate

the sensitivity of the representation in fewer dimensions than a regular (or sparse)
auto-encoder. Figure 17.3 illustrates tangent vectors obtained by a CAE on the
MNIST digits dataset, showing that the leading tangent vectors correspond to
small deformations such as translation. More impressively, Figure 15.10 shows
tangent vectors learned on 32×32 color (RGB) CIFAR-10 images by a CAE,
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compared to the tangent vectors by a non-distributed representation learner (a
mixture of local PCAs).

Figure 15.10: Illustration of tangent vectors (bottom) of the manifold estimated by a
contractive auto-encoder (CAE), at some input point (left, CIFAR-10 image of a dog).
See also Fig. 17.3. Each image on the right corresponds to a tangent vector, either
estimated by a local PCA (equivalent to a Gaussian mixture), top, or by a CAE (bottom).
The tangent vectors are estimated by the leading singular vectors of the Jacobian matrix
∂h
∂x

of the input-to-code mappiing. Although both local PCA and CAE can capture local
tangents that are different in different points, the local PCA does not have enough training
data to meaningful capture good tangent directions, whereas the CAE does (because it
exploits parameter sharing across different locations that share a subset of active hidden
units). The CAE tangent directions typically correspond to moving or changing parts of

the object (such as the head or legs), which corresponds to plausible changes in the input
image.

One practical issue with the CAE regularization criterion is that although it

is cheap to compute in the case of a single hidden layer auto-encoder, it becomes
much more expensive in the case of deeper auto-encoders. The strategy followed

by Rifai et al. (2011a) is to separately pre-train each single-layer auto-encoder

stacked to form a deeper auto-encoder. However, a deeper encoder could be
advantageous in spite of the computational overhead, as argued by Schulz and

Behnke (2012).
Another practical issue is that the contraction penalty on the encoder f could

yield useless results if the decoder g would exactly compensate (e.g. by being
scaled up by exactly the same amount as f is scaled down). In Rifai et al.
(2011a), this is compensated by tying the weights of f and g, both being of the
form of an affine transformation followed by a non-linearity (e.g. sigmoid), i.e.,
the weights of g and the transpose of the weights of f.
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Chapter 16

Representation Learning

What is a good representation? Many answers are possible, and this remains a
question to be further explored in future research. What we propose as answer
in this book is that in general, a good representation is one that makes further
learning tasks easy. In an unsupervised learning setting, this could mean that the
joint distribution of the different elements of the representation (e.g., elements of

the representation vector h) is one that is easy to model (e.g., in the extreme,
these elements are marginally independent of each other). But that would not

be enough: a representation that throws away all information (e.g., h = 0 for
all inputs x) is very easy to model but is also useless. Hence we want to learn a
representation that keeps the information (or at least all the relevant information,
in the supervised case) and makes it easy to learn functions of interest from this
representation.

In Chapter 1, we have introduced the notion of representation, the idea that
some representations were more helpful (e.g. to classify objects from images or
phonemes from speech) than others. As argued there, this suggests learning repre-
sentations in order to “select” the best ones in a systematic way, i.e., by optimizing
a function that maps raw data to its representation, instead of - or in addition

to - handcrafting them. This motivation for learning input features is discussed
in Section 6.6, and is one of the major side-effects of training a feedforward deep

network (treated in Chapter 6), typically via supervised learning, i.e., when one
has access to (input,target) pairs1, available for some task of interest. In the case
of supervised learning of deep nets, we learn a representation with the objective
of selecting one that is best suited to the task of predicting targets given inputs.

Whereas supervised learning has been the workhorse of recent industrial suc-
cesses of deep learning, the authors of this book believe that it is likely that a key

1typically obtained by labeling inputs with some target answer that we wish the computer

would produce
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element of future advances will be unsupervised learning of representations.
So how can we exploit the information in data if we don’t have labeled exam-

ples? Or too few? Pure supervised learning with few labeled examples can easily
overfit. On the other hand, humans (and other animals) can sometimes learn a
task from just one or very few examples. How is that possible? Clearly they must
rely on previously acquired knowledge, either innate or (more likely the case for
humans) via previous learning experience. Can we discover good representations
purely out of unlabeled examples? (this is treated in the first four sections of this
chapter). Can we combine unlabeled examples (which are often easy to obtain)

with labeled examples? (this is semi-supervised learning, Section 16.3). And what
if instead of one task we have many tasks that could share the same representa-

tion or parts of it? (this is multi-task learning, discussed in Section 7.12). What
if we have “training tasks” (on which enough labeled examples are available) as
well as “test tasks” (not known at the time of learning the representation, and for
which only very few labeled examples will be provided)? What if the test task is
similar but different from the training task? (this is transfer learning and domain
adaptation, discussed in Section 16.2).

16.1 Greedy Layerwise Unsupervised Pre-Training

Unsupervised learning played a key historical role in the revival of deep neural
networks, allowing for the first time to train a deep supervised network. We

call this procedure unsupervised pre-training, or more precisely, greedy layer-wise
unsupervised pre-training, and it is the topic of this section.

This recipe relies on a one-layer representation learning algorithm such as
those introduced in this part of the book, i.e., the auto-encoders (Chapter 15)
and the RBM (Section 20.2). Each layer is pre-trained by unsupervised learning,
taking the output of the previous layer and producing as output a new represen-
tation of the data, whose distribution (or its relation to other variables such as
categories to predict) is hopefully simpler.

Greedy layerwise unsupervised pre-training was introduced in Hinton et al.

(2006); Hinton and Salakhutdinov (2006); Bengio et al. (2007a); Ranzato et al.
(2007a). These papers are generally credited with founding the renewed interest in

learning deep models as it provided a means of initializing subsequent supervised
training and often led to notable performance gains when compared to models
trained without unsupervised pretraining, at least for the small kinds of datasets
(like the 60,000 examples of MNIST) used in these experiments.

It is called layerwise because it proceeds one layer at a time, training the
k-th layer while keeping the previous ones fixed. It is called unsupervised because

each layer is trained with an unsupervised representation learning algorithm. It
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is called greedy because the different layers are not jointly trained with respect
to a global training objective, which could make the procedure sub-optimal. In
particular, the lower layers (which are first trained) are not adapted after the
upper layers are introduced. However it is also called pre-training, because it is
supposed to be only a first step before a joint training algorithm is applied to fine-
tune all the layers together with respect to a criterion of interest. In the context
of a supervised learning task, it can be viewed as a regularizer (see Chapter 7)
and a sophisticated form of parameter initialization.

When we refer to pre-training we will be referring to a specific protocol with

two main phases of training: the pretraining phase and the fine-tuning phase.
No matter what kind of unsupervised learning algorithm or what model type you

employ, in the vast majority of cases, the overall training scheme is nearly the
same. While the choice of unsupervised learning algorithm will obviously impact
the details, in the abstract, most applications of unsupervised pre-training follows
this basic protocol.

As outlined in Algorithm 16.1, in the pretraining phase, the layers of the
model are trained, in order, in an unsupervised way on their input, beginning
with the bottom layer, i.e. the one in direct contact with the input data. Next,
the second lowest layer is trained taking the activations of the first layer hidden
units as input for unsupervised training. Pretraining proceeds in this fashion,

from bottom to top, with each layer training on the “output” or activations of
the hidden units of the layer below. After the last layer is pretrained, a supervised

layer is put on top, and all the layers are jointly trained with respect to the overall
supervised training criterion. In other words, the pre-training was only used to
initialize a deep supervised neural network (which could be a convolutional neural
network (Ranzato et al., 2007a)). This is illustrated in Figure 16.1.

However, greedy layerwise unsupervised pre-training can also be used as ini-
tialization for other unsupervised learning algorithms, such as deep auto-encoders (Hin-
ton and Salakhutdinov, 2006), deep belief networks (Hinton et al., 2006) (Sec-
tion 20.4), or deep Boltzmann machines (Salakhutdinov and Hinton, 2009a) (Sec-
tion 20.5).

As discussed in Section 8.6.4, it is also possible to have greedy layerwise su-

pervised pre-training, to help optimize deep supervised networks. This builds on
the premise that training a shallow network is easier than training a deep one,

which seems to have been validated in several contexts (Erhan et al., 2010).

16.1.1 Why Does Unsupervised Pre-Training Work?

What has been observed on several datasets starting in 2006 (Hinton et al., 2006;
Bengio et al., 2007a; Ranzato et al., 2007a) is that greedy layer-wise unsupervised
pre-training can yield substantial improvements in test error for classification
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Algorithm 16.1 Greedy layer-wise unsupervised pre-training protocol.
Given the following: Unsupervised feature learner L, which takes a training set
D of examples and returns an encoder or feature function f = L(D). The raw
input data is X, with one row per example and f(X) is the dataset used by the
second level unsupervised feature learner. In the case fine-tuning is performed, we
use a learner T which takes an initial function f, input examples X (and in the
supervised fine-tuning case, associated targets Y ), and returns a tuned function.
The number of stages is M .

D(0) = X
f ← Identity function
for k = 1 . . . , M do
f (k) = L(D)
f ← f(k) ◦ f

end for
if fine-tuning then

f ← T (f,X,Y )

end if

Return f

Figure 16.1: Illustration of the greedy layer-wise unsupervised pre-training scheme, in
the case of a network with 3 hidden layers. The protocol proceeds in 4 phases (one per
hidden layer, plus the final supervised fine-tuning phase), from left to right. For the
unsupervised steps, each layer (darker grey) is trained to learn a better representation of
the output of the previously trained layer (initially, the raw input). These representations
learned by unsupervised learning form the initialization of a deep supervised net, which
is then trained (fine-tuned) as usual (last phase, right), with all parameters being free to
change (darker grey).
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tasks. Later work suggested that the improvements were less marked (or not even
visible) when very large labeled datasets are available, although the boundary
between the two behaviors remains to be clarified, i.e., it may not just be an issue
of number of labeled examples but also how this relates to the complexity of the
function to be learned.

A question that thus naturally arises is the following: why and when does
unsupervised pre-training work? Although previous studies have mostly focused
on the case when the final task is supervised (with supervised fine-tuning), it is
also interesting to keep in mind that one gets improvements in terms of both

training and test performance in the case of unsupervised fine-tuning, e.g., when
training deep auto-encoders (Hinton and Salakhutdinov, 2006).

This “why does it work” question is at the center of the paper by Erhan et al.
(2010), and their experiments focused on the supervised fine-tuning case. They
consider different machine learning hypotheses to explain the results observed,
and attempted to confirm those via experiments. We summarize some of this
investigation here.

First of all, they studied the trajectories of neural networks during supervised
fine-tuning, and evaluated how different they were depending on initial conditions,
i.e., due to random initialization or due to performing unsupervised pre-training
or not. The main result is illustrated and discussed in Figures 16.2 and 16.2.

Note that it would not make sense to plot the evolution of parameters of these
networks directly, because the same input-to-output function can be represented

by different parameter values (e.g., by relabeling the hidden units). Instead,
this work plots the trajectories in function space, by considering the output of a
network (the class probability predictions) for a given set of test examples as a
proxy for the function computed. By concatenating all these outputs (over say
1000 examples) and doing dimensionality reduction on these vectors, we obtain
the kinds of plots illustrated in the figure.

The main conclusions of these kinds of plots are the following:

1. Each training trajectory goes to a different place, i.e., different trajectories
do not converge to the same place. These “places” might be in the vicinity of
a local minimum or as we understand it better now (Dauphin et al., 2014)

these are more likely to be an “apparent local minimum” in the region
of flat derivatives near a saddle point. This suggests that the number of

these apparent local minima is huge, and this also is in agreement with
theory (Dauphin et al., 2014; Choromanska et al., 2014).

2. Depending on whether we initialize with unsupervised pre-training or not,
very different functions (in function space) are obtained, covering regions
that do not overlap. Hence there is a qualitative effect due to unsupervised
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Figure 16.2: Illustrations of the trajectories of different neural networks in function space
(not parameter space, to avoid the issue of many-to-one mapping from parameter vector
to function), with different random initializations and with or without unsupervised pre-
training. Each plus or diamond point corresponds to a different neural network, at a
particular time during its training trajectory, with the function it computes projected to
2-D by t-SNE (van der Maaten and Hinton, 2008a) (this figure) or by Isomap (Tenenbaum
et al., 2000) (Figure 16.3). TODO: should the t be in math mode? Color indicates the
number of training epochs. What we see is that no two networks converge to the same
function (so a large number of apparent local minima seems to exist), and that networks
initialized with pre-training learn very different functions, in a region of function space
that does not overlap at all with those learned by networks without pre-training. Such
curves were introduced by Erhan et al. (2010) and are reproduced here with permission.
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Figure 16.3: See Figure 16.2’s caption. This figure only differs in the use of
Isomap (Tenenbaum et al., 2000) rather than t-SNE (van der Maaten and Hinton, 2008b)
for dimensionality reduction. Note that Isomap tries to preserve global relative distances
(and hence volumes), whereas t-SNE only cares about preserving local geometry and
neighborhood relationships. We see with the Isomap dimensionality reduction that the
volume in function space occupied by the networks with pre-training is much smaller (in
fact that volume gets reduced rather than increased, during training), suggesting that
the set of solutions enjoy smaller variance, which would be consistent with the observed
improvements in generalization error. Such curves were introduced by Erhan et al. (2010)
and are reproduced here with permission.
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Figure 16.4: Histograms presenting the test errors obtained on MNIST using denoising
auto-encoder models trained with or without pre-training (400 different initializations
each). Left: 1 hidden layer. Right: 4 hidden layers. We see that the advantage brought
by pre-training increases with depth, both in terms of mean error and in terms of the
variance of the error (w.r.t. random initialization).

TODO: figure credit saying these came from Erhan 2010....

pre-training.

3. With unsupervised pre-training, the region of space covered by the solutions
associated with different initializations shrinks as we consider more training

iterations, whereas it grows without unsupervised pre-training. This is only
apparent in the visualization of Figure 16.3, which attempts to preserve

volume. A larger region is bad for generalization (because not all these
functions can be the right one together), yielding higher variance. This is
consistent with the better generalization observed with unsupervised pre-
training.

Another interesting effect is that the advantage of pre-training seems to in-
crease with depth, as illustrated in Figure 16.4, with both the mean and the
variance of the error decreasing more for deeper networks.

An important question is whether the advantage brought by pre-training can
be seen as a form of regularizer (which could help test error but hurt training error)
or simply a way to find a better minimizer of training error (e.g., by initializing

near a better minimum of training error). The experiments suggest pre-training
actually acts as a regularizer, i.e., hurting training error at least in some cases

(with deeper networks). So if it also helps optimization, it is only because it
initializes closer to a good solution from the point of view of generalization, not
necessarily from the point of view of the training set.
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How could unsupervised pre-training act as regularizer? Simply by imposing
an extra constraint: the learned representations should not only be consistent
with better predicting outputs y but they should also be consistent with better
capturing the variations in the input x, i.e., modeling P(x). This is associated
implicitly with a prior, i.e., that P (y|x) and P (x) share structure, i.e., that
learning about P (x) can help to generalize better on P(y | x). Obviously this
needs not be the case in general, e.g., if y is an effect of x. However, if y is a cause
of x, then we would expect this a priori assumption to be correct, as discussed at
greater length in Section 16.4 in the context of semi-supervised learning.

A disadvantage of unsupervised pre-training is that it is difficult to choose
the capacity hyperparameters (such as when to stop training) for the pre-training

phases. An expensive option is to try many different values of these hyperpa-
rameters and choose the one which gives the best supervised learning error after
fine-tuning. Another potential disadvantage is that unsupervised pre-training
may require larger representations than what would be necessarily strictly for the
task at hand, since presumably, y is only one of the factors that explain x.

Today, as many deep learning researchers and practitioners have moved to
working with very large labeled datasets, unsupervised pre-training has become
less popular in favor of other forms of regularization such as dropout – to be
discussed in section 7.11. Nevertheless, unsupervised pre-training remains an

important tool in the deep learning toolbox and should particularly be considered
when the number of labeled examples is low, such as in the semi-supervised,

domain adaptation and transfer learning settings, discussed next.

16.2 Transfer Learning and Domain Adaptation

Transfer learning and domain adaptation refer to the situation where what has
been learned in one setting (i.e., distribution P1) is exploited to improve general-
ization in another setting (say distribution P2).

In the case of transfer learning, we consider that the task is different but many
of the factors that explain the variations in P1 are relevant to the variations that

need to be captured for learning P2. This is typically understood in a supervised
learning context, where the input is the same but the target may be of a different

nature, e.g., learn about visual categories that are different in the first and the
second setting. If there is a lot more data in the first setting (sampled from P1),
then that may help to learn representations that are useful to quickly generalize
when examples of P2 are drawn. For example, many visual categories share low-
level notions of edges and visual shapes, the effects of geometric changes, changes
in lighting, etc. In general, transfer learning, multi-task learning (Section 7.12),

and domain adaptation can be achieved via representation learning when there
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exist features that would be useful for the different settings or tasks, i.e., there
are shared underlying factors. This is illustrated in Figure 7.6, with shared lower
layers and task-dependent upper layers.

However, sometimes, what is shared among the different tasks is not the se-
mantics of the input but the semantics of the output, or maybe the input needs
to be treated differently (e.g., consider user adaptation or speaker adaptation).
In that case, it makes more sense to share the upper layers (near the output)
of the neural network, and have a task-specific pre-processing, as illustrated in
Figure 16.5.

h1 h2 h3

Y

X1 X2 X3

selection switch

Figure 16.5: Example of architecture for multi-task or transfer learning when the output
variable Y has the same semantics for all tasks while the input variable X has a different
meaning (and possibly even a different dimension) for each task (or, for example, each
user), called X1, X2 and X3 for three tasks in the figure. The lower levels (up to the
selection switch) are task-specific, while the upper levels are shared. The lower levels
learn to translate their task-specific input into a generic set of features.

In the related case of domain adaptation, we consider that the task (and the

optimal input-to-output mapping) is the same but the input distribution is slightly
different. For example, if we predict sentiment (positive or negative judgement)

associated with textual comments posted on the web, the first setting may refer to
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consumer comments about books, videos and music, while the second setting may
refer to televisions or other products. One can imagine that there is an underlying
function that tells whether any statement is positive, neutral or negative, but
of course the vocabulary, style, accent, may vary from one domain to another,
making it more difficult to generalize across domains. Simple unsupervised pre-
training (with denoising auto-encoders) has been found to be very successful for
sentiment analysis with domain adaptation (Glorot et al., 2011c).

A related problem is that of concept drift, which we can view as a form of
transfer learning due to gradual changes in the data distribution over time. Both

concept drift and transfer learning can be viewed as particular forms of multi-task
learning (Section 7.12). Whereas multi-task learning is typically considered in

the context of supervised learning, the more general notion of transfer learning is
applicable for unsupervised learning and reinforcement learning as well. Figure 7.6
illustrates an architecture in which different tasks share underlying features or
factors, taken from a larger pool that explain the variations in the input.

In all of these cases, the objective is to take advantage of data from a first
setting to extract information that may be useful when learning or even when
directly making predictions in the second setting. One of the potential advantages
of representation learning for such generalization challenges, and especially of
deep representation learning, is that it may considerably help to generalize by

extracting and disentangling a set of explanatory factors from data of the first
setting, some of which may be relevant to the second setting. In the case of

object recognition from an image, many of the factors of variation that explain
visual categories in natural images remain the same when we move from one set
of categories to another.

This discussion raises a very interesting and important question which is one
of the core questions of this book: what is a good representation? Is it possible to
learn representations that disentangle the underlying factors of variation? This
theme is further explored at the end of this chapter (Section 16.4 and beyond). We
claim that learning the most abstract features helps to maximize our chances of
success in transfer learning, domain adaptation, or concept drift. More abstract
features are more general and more likely to be close to the underlying causal

factor, i.e., be relevant over many domains, many categories, and many time
periods.

A good example of the success of unsupervised deep learning for transfer
learning is its success in two competitions that took place in 2011, with results
presented at ICML 2011 (and IJCNN 2011) in one case (Mesnil et al., 2011) (the
Transfer Learning Challenge, http://www.causality.inf.ethz.ch/unsupervised-learning.php)

and at NIPS 2011 (Goodfellow et al., 2011) in the other case (the Transfer Learn-
ing Challenge that was held as part of the NIPS’2011 workshop on Challenges in
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learning hierarchical models, https://sites.google.com/site/nips2011workshop/transfer-learning-challenge
In the first of these competitions, the experimental setup is the following.

Each participant is first given a dataset from the first setting (from distribution
P1), basically illustrating examples of some set of categories. The participants
must use this to learn a good feature space (mapping the raw input to some
representation), such that when we apply this learned transformation to inputs
from the transfer setting (distribution P2), a linear classifier can be trained and
generalize well from very few labeled examples. Figure 16.6 illustrates one of the
most striking results: as we consider deeper and deeper representations (learned

in a purely unsupervised way from data of the first setting P1), the learning curve
on the new categories of the second (transfer) setting P2 becomes much better, i.e.,

less labeled examples of the transfer tasks are necessary to achieve the apparently
asymptotic generalization performance.

An extreme form of transfer learning is one-shot learning or even zero-shot
learning or zero-data learning, where one or even zero example of the new task
are given.

One-shot learning (Fei-Fei et al., 2006) is possible because, in the learned
representation, the new task corresponds to a very simple region, such as a ball-
like region or the region around a corner of the space (in a high dimensional
space, there are exponentially many corners). This works to the extent that the

factors of variation corresponding to these invariances have been cleanly separated
from other factors, in the learned representation space, and we have somehow

learned which factors do and do not matter when discriminating objects of certain
categories.

Zero-data learning (Larochelle et al., 2008) and zero-shot learning (Richard Socher
and Ng, 2013) are only possible because additional information has been exploited
during training that provides representations of the “task” or “context”, helping
the learner figure out what is expected, even though no example of the new task
has ever been seen. For example, in a multi-task learning setting, if each task
is associated with a set of features, i.e., a distributed representation (that is al-
ways provided as an extra input, in addition to the ordinary input associated
with the task), then one can generalize to new tasks based on the similarity be-

tween the new task and the old tasks, as illustrated in Figure 16.7. One learns
a parametrized function from inputs to outputs, parametrized by the task repre-

sentation. In the case of zero-shot learning (Richard Socher and Ng, 2013), the
“task” is a representation of a semantic object (such as a word), and its repre-
sentation has already been learned from data relating different semantic objects
together (such as natural language data, relating words together). On the other

hand, for some of the tasks (e.g., words) one has data associating the variables
of interest (e.g., words, pixels in images). Thus one can generalize and associate
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Figure 16.6: Results obtained on the Sylvester validation set (Transfer Learning Chal-
lenge). From left to right and top to bottom, respectively 0, 1, 2, 3, and 4 pre-trained
layers. Horizontal axis is logarithm of number of labeled training examples on transfer
setting (test task). Vertical axis is Area Under the Curve, which reflects classification

accuracy. With deeper representations (learned unsupervised), the learning curves con-
siderably improve, requiring fewer labeled examples to achieve the best generalization.
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input x

task specification t

output ft(x)

Figure 16.7: Figure illustrating how zero-data or zero-shot learning is possible. The trick
is that the new context or task on which no example is given but on which we want a
prediction is represented (with an input t), e.g., with a set of features, i.e., a distributed
representation, and that representation is used by the predictor ft (x). If t was a one-hot
vector for each task, then it would not be possible to generalize to a new task, but with
a distributed representation the learner can benefit from the meaning of the individual

task features (as they influence the relationship between inputs x and targets y, say),
learned on other tasks for which examples are available.

images to words for which no labeled images were previously shown to the learner.
A similar phenomenon happens in machine translation (Klementiev et al., 2012;

Mikolov et al., 2013; Gouws et al., 2014): we have words in one language, and
the relationships between words can be learned from unilingual corpora; on the
other hand, we have translated sentences which relate words in one language with
words in the other. Even though we may not have labeled examples translating
word A in language X to word B in language Y, we can generalize and guess a
translation for word A because we have learned a distributed representation for
words in language X, a distributed representation for words in language Y, and
created a link (possibly two-way) relating the two spaces, via translation exam-
ples. Note that this transfer will be most successful if all three ingredients (the

two representations and the relations between them) are learned jointly.
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X

Y

Figure 16.8: Transfer learning between two domains corresponds to zero-shot learning.
A first set of data (dashed arrows) can be used to relate examples in one domain (top
left, X) and fix a relationship between their representations, a second set of data (dotted
arrows) can be used to similarly relate examples and their representation in the other
domain (bottom right, Y ), while a third dataset (full large arrows) anchors the two

representations together, with examples consisting of pairs (x, y) taken from the two
domains. In this way, one can for example associate an image to a word, even if no
images of that word were ever presented, simply because word-representations (top) and
image-representations (bottom) have been learned jointly with a two-way relationship
between them.

This is illustrated in Figure 16.8, where we see that zero-shot learning is a
particular form of transfer learning. The same principle explains how one can

perform multi-modal learning, capturing a representation in one modality, a rep-
resentation in the other, and the relationship (in general a joint distribution)

between pairs (x, y) consisting of one observation x in one modality and another
observation y in the other modality (Srivastava and Salakhutdinov, 2012). By
learning all three sets of parameters (from x to its representation, from y to its
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representation, and the relationship between the two representation), concepts in
one map are anchored in the other, and vice-versa, allowing one to meaningfully
generalize to new pairs.

16.3 Semi-Supervised Learning

As discussed in Section 16.1.1 on the advantages of unsupervised pre-training, un-
supervised learning can have a regularization effect in the context of supervised

learning. This fits in the more general category of combining unlabeled examples
with unknown distribution P (x) with labeled examples (x,y), with the objective

of estimating P (y | x). Exploiting unlabeled examples to improve performance
on a labeled set is the driving idea behind semi-supervised learning (Chapelle
et al., 2006). For example, one can use unsupervised learning to map X into a

representation (also called embedding) such that two examples x1 and x2 that
belong to the same cluster (or are reachable through a short path going through
neighboring examples in the training set) end up having nearby embeddings. One
can then use supervised learning (e.g., a linear classifier) in that new space and
achieve better generalization in many cases (Belkin and Niyogi, 2002; Chapelle
et al., 2003). A long-standing variant of this approach is the application of Prin-
cipal Components Analysis as a pre-processing step before applying a classifier

(on the projected data). In these models, the data is first transformed in a new
representation using unsupervised learning, and a supervised classifier is stacked

on top, learning to map the data in this new representation into class predictions.
Instead of having separate unsupervised and supervised components in the

model, one can consider models in which P(x) (or P (x, y)) and P (y | x) share
parameters (or whose parameters are connected in some way), and one can trade-
off the supervised criterion − logP (y | x) with the unsupervised or generative one
(− log P (x) or − logP (x,y)). It can then be seen that the generative criterion
corresponds to a particular form of prior (Lasserre et al., 2006), namely that the
structure of P(x) is connected to the structure of P(y | x) in a way that is cap-
tured by the shared parametrization. By controlling how much of the generative

criterion is included in the total criterion, one can find a better trade-off than
with a purely generative or a purely discriminative training criterion (Lasserre

et al., 2006; Larochelle and Bengio, 2008b).
In the context of deep architectures, a very interesting application of these

ideas involves adding an unsupervised embedding criterion at each layer (or only
one intermediate layer) to a traditional supervised criterion (Weston et al., 2008).
This has been shown to be a powerful semi-supervised learning strategy, and is
an alternative to the unsupervised pre-training approach described earlier in this

chapter, which also combine unsupervised learning with supervised learning.
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In the context of scarcity of labeled data (and abundance of unlabeled data),
deep architectures have shown promise as well. Salakhutdinov and Hinton (2008)
describe a method for learning the covariance matrix of a Gaussian Process, in
which the usage of unlabeled examples for modeling P (x) improves P (y | x)
quite significantly. Note that such a result is to be expected: with few labeled
samples, modeling P(x) usually helps, as argued below (Section 16.4). These
results show that even in the context of abundant labeled data, unsupervised pre-
training can have a pronounced positive effect on generalization: a somewhat
surprising conclusion.

16.4 Semi-Supervised Learning and Disentangling Un-
derlying Causal Factors

What we put forward as a hypothesis, going a bit further, is that an ideal repre-
sentation is one that disentangles the underlying causal factors of variation that
generated the observed data. Note that this may be different from “easy to model”,
but we further assume that for most problems of interest, these two properties
coincide: once we “understand” the underlying explanations for what we observe,
it generally becomes easy to predict one thing from others.

A very basic question is whether unsupervised learning on input variables x
can yield representations that are useful when later trying to learn to predict some
target variable y, given x. More generally, when does semi-supervised learning

work? See also Section 16.3 for an earlier discussion.
It turns out that the answer to this question is very different dependent on the

underlying relationship between x and y. Put differently, the question is whether
P (y | x), seen as a function of x has anything to do with P (x). If not, then

unsupervised learning of P (x) can be of no help to learn P (y | x). Consider
for example the case where P (x) is uniformly distributed and E[y | x] is some
function of interest. Clearly, observing x alone gives us no information about

P (y | x). As a better case, consider the situation where x arises from a mixture,
with one mixture component per value of y, as illustrated in Figure 16.9. If the
mixture components are well separated, then modeling P (x) tells us precisely
where each component is, and a single labeled example of each example will then
be enough to perfectly learn P(y | x). But more generally, what could make
P (y | x) and P (x) tied together?

If y is closely associated with one of the causal factors of x, then, as first argued

by Janzing et al. (2012), P(x) and P(y | x) will be strongly tied, and unsupervised
representation learning that tries to disentangle the underlying factors of variation
is likely to be useful as a semi-supervised learning strategy.

Consider the assumption that y is one of the causal factors of x, and let h
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y = 1 y = 2 y = 2

P (x)

x

Figure 16.9: Example of a density over x that is a mixture over three components. The
component identity is an underlying explanatory factor, y. Because the mixture compo-
nents (e.g., natural object classes in image data) are statistically salient, just modeling
P (x) in an unsupervised way with no labeled example already reveals the factor y.

represent all those factors. Then the true generative process can be conceived as
structured according to this directed graphical model, with h as the parent of x:

P (h,x) = P (x | h)P (h).

As a consequence, the data has marginal probability

P (x) =

Z
P (x | h)p(h)dh

or, in the discrete case (like in the mixture example above):

P (x) =
X

h

P (x | h)P(h).

From this straightforward observation, we conclude that the best possible model

of x (from a generalization point of view) is the one that uncovers the above
“true” structure, with h as a latent variable that explains the observed variations

in x. The “ideal” representation learning discussed above should thus recover
these latent factors. If y is one of them (or closely related to one of them), then
it will be very easy to learn to predict y from such a representation. We also
see that the conditional distribution of y given x is tied by Bayes rule to the

components in the above equation:

P (y | x) =
P (x | y)P (y)

P (x)
.
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Thus the marginal P (x) is intimately tied to the conditional P (y | x) and knowl-
edge of the structure of the former should be helpful to learn the latter, i.e.,
semi-supervised learning works. Furthermore, not knowing which of the factors
in h will be the one of the interest, say y = hi, an unsupervised learner should
learn a representation that disentangles all the generative factors hj from each
other, then making it easy to predict y from h.

In addition, as pointed out by Janzing et al. (2012), if the true generative
process has x as an effect and y as a cause, then modeling P (x | y) is robust to
changes in P (y). If the cause-effect relationship was reversed, it would not be true,

since by Bayes rule, P(x | y) would be sensitive to changes in P (y). Very often,
when we consider changes in distribution due to different domains, temporal non-

stationarity, or changes in the nature of the task, the causal mechanisms remain
invariant (“the laws of the universe are constant”) whereas what changes are the
marginal distribution over the underlying causes (or what factors are linked to
our particular task). Hence, better generalization and robustness to all kinds of
changes can be expected via learning a generative model that attempts to recover
the causal factors h and P (x | h).

16.5 Assumption of Underlying Factors and Distributed

Representation

A very basic notion that comes out of the above discussion and of the notion

of “disentangled factors” is the very idea that there are underlying factors that
generate the observed data. It is a core assumption behind most neural network

and deep learning research, more precisely relying on the notion of distributed
representation.

What we call a distributed representation is one which can express an ex-
ponentially large number of concepts by allowing to compose the activation of
many features. An example of distributed representation is a vector of n binary

features, which can take 2n configurations, each potentially corresponding to a
different region in input space. This can be compared with a symbolic represen-
tation, where the input is associated with a single symbol or category. If there
are n symbols in the dictionary, one can imagine n feature detectors, each corre-
sponding to the detection of the presence of the associated category. In that case
only n different configurations of the representation-space are possible, carving n

different regions in input space. Such a symbolic representation is also called a

one-hot representation, since it can be captured by a binary vector with n bits
that are mutually exclusive (only one of them can be active). These ideas are
developed further in the next section.

Examples of learning algorithms based on non-distributed representations in-
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clude:

• Clustering methods, including the k-means algorithm: only one cluster
“wins” the competition.

• k-nearest neighbors algorithms: only one template or prototype example is
associated with a given input.

• Decision trees: only one leaf (and the nodes on the path from root to leaf)
is activated when an input is given.

• Gaussian mixtures and mixtures of experts: the templates (cluster centers)
or experts are now associated with a degree of activation, which makes the
posterior probability of components (or experts) given input look more like
a distributed representation. However, as discussed in the next section,
these models still suffer from a poor statistical scaling behavior compared

to those based on distributed representations (such as products of experts
and RBMs).

• Kernel machines with a Gaussian kernel (or other similarly local kernel): al-
though the degree of activtion of each “support vector” or template example
is now continuous-valued, the same issue arises as with Gaussian mixtures.

• Language or translation models based on N-grams: the set of contexts (se-
quences of symbols) is partitioned according to a tree structure of suffixes
(e.g. a leaf may correspond to the last two words being w1 and w2), and
separate parameters are estimated for each leaf of the tree (with some shar-
ing being possible of parameters associated with internal nodes, between
the leaves of the sub-tree rooted at the same internal node).
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Figure 16.10: Illustration of how a learning algorithm based on a non-distributed repre-
sentation breaks up the input space into regions, with a separate set of parameters for
each region. For example, a clustering algorithm or a 1-nearest-neighbor algorithm asso-

ciates one template (colored X) to each region. This is also true of decision trees, mixture
models, and kernel machines with a local (e.g., Gaussian) kernel. In the latter algorithms,
the output is not constant by parts but instead interpolates between neighboring regions,
but the relationship between the number of parameters (or examples) and the number
of regions they can define remains linear. The advantage is that a different answer (e.g.,
density function, predicted output, etc.) can be independently chosen for each region.
The disadvantage is that there is no generalization to new regions, except by extending
the answer for which there is data, exploiting solely a smoothness prior. It makes it
difficult to learn a complicated function, with more ups and downs than the available
number of examples. Contrast this with a distributed representation, Figure 16.11.

An important related concept that distinguishes a distributed representation

from a symbolic one is that generalization arises due to shared attributes between
different concepts. As pure symbols, “ tt cat” and “dog” are as far from each
other as any other two symbols. However, if one associates them with a meaningful

distributed representation, then many of the things that can be said about cats
can generalize to dogs and vice-versa. This is what allows neural language models
to generalize so well (Section 12.4). Distributed representations induce a rich
similarity space, in which semantically close concepts (or inputs) are close in
distance, a property that is absent from purely symbolic representations. Of
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course, one would get a distributed representation if one would associated multiple
symbolic attributes to each symbol.

Figure 16.11: Illustration of how a learning algorithm based on a distributed repre-
sentation breaks up the input space into regions, with exponentially more regions than
parameters. Instead of a single partition (as in the non-distributed case, Figure 16.10),

we have many partitions, one per “feature”, and all their possible intersections. In the
example of the figure, there are 3 binary features C1, C2, and C3, each corresponding to
partitioning the input space in two regions according to a hyperplane, i.e., each is a linear
classifier. Each possible intersection of these half-planes forms a region, i.e., each region
corresponds to a configuration of the bits specifying whether each feature is 0 or 1, on
which side of their hyperplane is the input falling. If the input space is large enough, the
number of regions grows exponentially with the number of features, i.e., of parameters.
However, the way these regions carve the input space still depends on few parameters:
this huge number of regions are not placed independently of each other. We can thus
represent a function that looks complicated but actually has structure. Basically, the as-
sumption is that one can learn about each feature without having to see the examples for
all the configurations of all the other features, i.e., these features corespond to underlying
factors explaining the data.

Note that a sparse representation is a distributed representation where the
number of attributes that are active together is small compared to the total num-

ber of attributes. For example, in the case of binary representations, one might
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have only k  n of the n bits that are non-zero. The power of representation
grows exponentially with the number of active attributes, e.g., O(nk ) in the above
example of binary vectors. At the extreme, a symbolic representation is a very
sparse representation where only one attribute at a time can be active.

16.6 Exponential Gain in Representational Efficiency

from Distributed Representations

When and why can there be a statistical advantage from using a distributed
representation as part of a learning algorithm?

Figures 16.10 and 16.11 explain that advantage in intuitive terms. The argu-
ment is that a function that “looks complicated” can be compactly represented
using a small number of parameters, if some “structure” is uncovered by the

learner. Traditional “non-distributed” learning algorithms generalize only due to
the smoothness assumption, which states that if u ≈ v, then the target function f
to be learned has the property that f(u) ≈ f(v), in general. There are many ways
of formalizing such an assumption, but the end result is that if we have an exam-
ple (x, y) for which we know that f(x) ≈ y, then we choose an estimator f̂ that
approximately satisfies these constraints while changing as little as possible. This
assumption is clearly very useful, but it suffers from the curse of dimensionality:
in order to learn a target function that takes many different values (e.g. many
ups and downs) in a large number of regions2 , we may need a number of examples

that is at least as large as the number of distinguishible regions. One can think
of each of these regions as a category or symbol: by having a separate degree

of freedom for each symbol (or region), we can learn an arbitrary mapping from
symbol to value. However, this does not allow us to generalize to new symbols,

new regions.
If we are lucky, there may be some regularity in the target function, besides

being smooth. For example, the same pattern of variation may repeat itself many

times (e.g., as in a periodic function or a checkerboard). If we only use the
smoothness prior, we will need additional examples for each repetition of that
pattern. However, as discussed by Montufar et al. (2014), a deep architecture
could represent and discover such a repetition pattern and generalize to new in-
stances of it. Thus a small number of parameters (and therefore, a small number
of examples) could suffice to represent a function that looks complicated (in the

sense that it would be expensive to represent with a non-distributed architec-

ture). Figure 16.11 shows a simple example, where we have n binary features

2
e.g., exponentially many regions: in a d-dimensional space with at least 2 different values

to distinguish per dimension, we might want f to differ in 2d different regions, requiring O(2 d)

training examples.
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in a d-dimensional space, and where each binary feature corresponds to a linear
classifier that splits the input space in two parts. The exponentially large number
of intersections of n of the corresponding half-spaces corresponds to as many dis-
tinguishable regions that a distributed representation learner could capture. How
many regions are generated by an arrangement of n hyperplanes in Rd? This
corresponds to the number of regions that a shallow neural network (one hidden
layer) can distinguish (Pascanu et al., 2014b), which is

dX

j=0


n

j


= O(nd),

following a more general result from Zaslavsky (1975), known as Zaslavsky’s the-
orem, one of the central results from the theory of hyperplane arrangements.
Therefore, we see a growth that is exponential in the input size and polynomial
in the number of hidden units.

Although a distributed representation (e.g. a shallow neural net) can represent
a richer function with a smaller number of parameters, there is no free lunch: to
construct an arbitrary partition (say with 2d different regions) one will need a

correspondingly large number of hidden units, i.e., of parameters and of examples.
The use of a distributed representation therefore also corresponds to a prior, which

comes on top of the smoothness prior. To return to the hyperplanes examples of
Figure 16.11, we see that we are able to get this generalization because we can

learn about the location of each hyperplane with only O(d) examples: we do not
need to see examples corresponding to all O(n d) regions.

Let us consider a concrete example. Imagine that the input is the image of a
person, and that we have a classifier that detects whether the person is a child or
not, another that detects if that person is a male or a female, another that detects
whether that person wears glasses or not, etc. Keep in mind that these features are
discovered automatically, not fixed a priori. We can learn about the male vs female
distinction, or about the glasses vs no-classes case, without having to consider all
of the configurations of the n features. This form of statistical separability is
what allows one to generalize to new configurations of a person’s features that

have never been seen during training. It corresponds to the prior discussed above
regarding the existence of multiple underlying explanatory factors. This prior
is very plausible for most of the data distributions on which human intelligence
would be useful, but it may not apply to every possible distribution. However, this

apparently innocuous assumption buys us a lot, statistically speaking, because

it allows the learner to discover structure with a reasonably small number of
examples that would otherwise require exponentially more training data.

Another interesting result illustrating the statistical effect of a distributed rep-
resentations versus a non-distributed one is the mathematical analysis (Montufar
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and Morton, 2014) of products of mixtures (which include the RBM as a special
case) versus mixture of products (such as the mixture of Gaussians). The analy-
sis shows that a mixture of products can require an exponentially larger number
of parameters in order to represent the probability distributions arising out of a
product of mixtures.

16.7 Exponential Gain in Representational Efficiency

from Depth

In the above example with the input being an image of a person, it would not
be reasonable to expect factors such as gender, age, and the presence of glasses
to be detected simply from a linear classifier, i.e., a shallow neural network. The
kinds of factors that can be chosen almost independently in order to generate
data are more likely to be very high-level and related in highly non-linear ways to

the input. This demands deep distributed representations, where the higher level
features (seen as functions of the input) or factors (seen as generative causes) are

obtained through the composition of many non-linearities.
It turns out that organizing computation through the composition of many

non-linearities and a hierarchy of reused features can give another exponential
boost to statistical efficiency. Although 2-layer networks (e.g., with saturating
non-linearities, boolean gates, sum/products, or RBF units) can generally be

shown to be universal approximators3 , the required number of hidden units may
be very large. The main results on the expressive power of deep architectures

state that there are families of functions that can be represented efficiently with
a deep architecture (say depth k) but would require an exponential number of
components (with respect to the input size) with insufficient depth (depth 2 or
depth k − 1).

More precisely, a feedforward neural network with a single hidden layer is
a universal approximator (of Borel measurable functions) (Hornik et al., 1989;

Cybenko, 1989). Other works have investigated universal approximation of prob-
ability distributions by deep belief networks (Le Roux and Bengio, 2010; Montúfar
and Ay, 2011), as well as their approximation properties (Montúfar, 2014; Krause
et al., 2013).

Regarding the advantage of depth, early theoretical results have focused on
circuit operations (neural net unit computations) that are substantially differ-

ent from those being used in real state-of-the-art deep learning applications,
such as logic gates (H̊astad, 1986) and linear threshold units with non-negative

weights (H̊astad and Goldmann, 1991). More recently, Delalleau and Bengio

3with enough hidden units they can approximate a large class of functions (e.g. continuous
functions) up to some given tolerance level
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Figure 16.12: A sum-product network (Poon and Domingos, 2011) composes summing
units and product units, so that each node computes a polynomial. Consider the product
node computing x2x3: its value is reused in its two immediate children, and indirectly
incorporated in its grand-children. In particular, in the top node shown the product
x 2x3 would arise 4 times if that node’s polynomial was expanded as a sum of products.
That number could double for each additional layer. In general a deep sum of product
can represent polynomials with a number of min-terms that is exponential in depth,
and some families of polynomials are represented efficiently with a deep sum-product

network but not efficiently representable with a simple sum of products, i.e., a 2-layer
network (Delalleau and Bengio, 2011).

(2011) showed that a shallow network requires exponentially many more sum-
product hidden units4 than a deep sum-product network (Poon and Domingos,
2011) in order to compute certain families of polynomials. Figure 16.12 illus-
trates a sum-product network for representing polynomials, and how a deeper
network can be exponentially more efficient because the same computation can

be reused exponentially (in depth) many times. Note however that Martens and

Medabalimi (2014) showed that sum-product networks may be have limitations
in their expressive power, in the sense that there are distributions that can easily
be represented by other generative models but that cannot be efficiently repre-

sented under the decomposability and completeness conditions associated with
the probabilistic interpretation of sum-product networks (Poon and Domingos,
2011).

Closer to the kinds of deep networks actually used in practice (Pascanu et al.,
2014a; Montufar et al., 2014) showed that piecewise linear networks (e.g. ob-

tained from rectifier non-linearities or maxout units) could represent functions

4
Here, a single sum-product hidden layer summarizes a layer of product units followed by a

layer of sum units.
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Figure 16.13: An absolute value rectification unit has the same output for every pair
of mirror points in its input. The mirror axis of symmetry is given by the hyperplane
defined by the weights and bias of the unit. If one considers a function computed on
top of that unit (the green decision surface), it will be formed of a mirror image of a

simpler pattern, across that axis of symmetry. The middle image shows how it can be
obtained by folding the space around that axis of symmetry, and the right image shows
how another repeating pattern can be folded on top of it (by another downstream unit)
to obtain another symmetry (which is now repeated four times, with two hidden layers).
This is an intuitive explanation of the exponential advantage of deeper rectifier networks
formally shown in Pascanu et al. (2014a); Montufar et al. (2014).

with exponentially more piecewise-linear regions, as a function of depth, com-
pared to shallow neural networks. Figure 16.13 illustrates how a network with
absolute value rectification creates mirror images of the function computed on top

of some hidden unit, with respect to the input of that hidden unit. Each hidden
unit specifies where to fold the input space in order to create mirror responses

(on both sides of the absolute value non-linearity). By composing these folding
operations, we obtain an exponentially large number of piecewise linear regions
which can capture all kinds of regular (e.g. repeating) patterns.

More precisely, the main theorem in Montufar et al. (2014) states that the
number of linear regions carved out by a deep rectifier network with d inputs,
depth L, and n units per hidden layer, is

O

 
n

d

d(L−1)

n d

!
,

i.e., exponential in the depth L. In the case of maxout networks with k filters per

unit, the number of linear regions is

O

k(L−1)+d


.

16.8 Priors Regarding The Underlying Factors

To close this chapter, we come back to the original question: what is a good
representation? We proposed that an ideal representation is one that disentangles
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the underlying causal factors of variation that generated the data, especially those
factors that we care about in our applications. It seems clear that if we have direct
clues about these factors (like if a factor y = hi, a label, is observed at the same
time as an input x), then this can help the learner separate these observed factors
from the others. This is already what supervised learning does. But in general,
we may have a lot more unlabeled data than labeled data: can we use other
clues, other hints about the underlying factors, in order to disentangle them more
easily?

What we propose here is that indeed we can provide all kinds of broad priors

which are as many hints that can help the learner discover, identify and disen-
tangle these factors. The list of such priors is clearly not exhaustive, but it is a

starting point, and yet most learning algorithms in the machine learning litera-
ture only exploit a small subset of these priors. With absolutely no priors, we
know that it is not possible to generalize: this is the essence of the no-free-lunch
theorem for machine learning. In the space of all functions, which is huge, with
any finite training set, there is no general-purpose learning recipe that would
dominate all other learning algorithms. Whereas some assumptions are required,
when our goal is to build AI or understand human intelligence, it is tempting to
focus our attention on the most general and broad priors, that are relevant for
most of the tasks that humans are able to successfully learn.

This list was introduced in section 3.1 of Bengio et al. (2013c).

• Smoothness: we want to learn functions f s.t. x ≈ y generally implies

f(x) ≈ f(y). This is the most basic prior and is present in most machine
learning, but is insufficient to get around the curse of dimensionality, as

discussed abov and in Bengio et al. (2013c). below.

• Multiple explanatory factors: the data generating distribution is gener-
ated by different underlying factors, and for the most part what one learns
about one factor generalizes in many configurations of the other factors.

This assumption is behind the idea of distributed representations, dis-
cussed in Section 16.5 above.

• Depth, or a hierarchical organization of explanatory factors: the
concepts that are useful at describing the world around us can be defined in
terms of other concepts, in a hierarchy, with more abstract concepts higher
in the hierarchy, being defined in terms of less abstract ones. This is the

assumption exploited by having deep representations.

• Causal factors: the input variables x are consequences, effects, while the
explanatory factors are causes, and not vice-versa. As discussed above, this
enables the semi-supervised learning assumption, i.e., that P (x) is tied
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to P (y | x), making it possible to improve the learning of P (y | x) via
the learning of P (x). More precisely, this entails that representations that
are useful for P (x) are useful when learning P (y | x), allowing sharing of
statistical strength between the unsupervised and supervised learning tasks.

• Shared factors across tasks: in the context where we have many tasks,
corresponding to different yi’s sharing the same input x or where each task
is associated with a subset or a function fi (x) of a global input x, the as-
sumption is that each yi is associated with a different subset from a common
pool of relevant factors h. Because these subsets overlap, learning all the
P (yi | x) via a shared intermediate representation P(h | x) allows sharing
of statistical strength between the tasks.

• Manifolds: probability mass concentrates, and the regions in which it con-

centrates are locally connected and occupy a tiny volume. In the continuous
case, these regions can be approximated by low-dimensional manifolds that
a much smaller dimensionality than the original space where the data lives.

This is the manifold hypothesis and is covered in Chapter 17, especially
with algorithms related to auto-encoders.

• Natural clustering: different values of categorical variables such as object

classes5 are associated with separate manifolds. More precisely, the local
variations on the manifold tend to preserve the value of a category, and a

linear interpolation between examples of different classes in general involves
going through a low density region, i.e., P (x | y = i) for different i tend
to be well separated and not overlap much. For example, this is exploited
explicitly in the Manifold Tangent Classifier discussed in Section 17.5. This
hypothesis is consistent with the idea that humans have named categories
and classes because of such statistical structure (discovered by their brain
and propagated by their culture), and machine learning tasks often involves
predicting such categorical variables.

• Temporal and spatial coherence: this is similar to the cluster assump-
tion but concerns sequences or tuples of observations; consecutive or spa-
tially nearby observations tend to be associated with the same value of

relevant categorical concepts, or result in a small move on the surface of
the high-density manifold. More generally, different factors change at dif-
ferent temporal and spatial scales, and many categorical concepts of inter-
est change slowly. When attempting to capture such categorical variables,

this prior can be enforced by making the associated representations slowly

5 it is often the case that the y of interest is a category
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changing, i.e., penalizing changes in values over time or space. This prior
was introduced in Becker and Hinton (1992).

• Sparsity: for any given observation x, only a small fraction of the possible
factors are relevant. In terms of representation, this could be represented
by features that are often zero (as initially proposed by Olshausen and Field
(1996)), or by the fact that most of the extracted features are insensitive
to small variations of x. This can be achieved with certain forms of priors
on latent variables (peaked at 0), or by using a non-linearity whose value is
often flat at 0 (i.e., 0 and with a 0 derivative), or simply by penalizing the
magnitude of the Jacobian matrix (of derivatives) of the function mapping
input to representation. This is discussed in Section 15.8.

• Simplicity of Factor Dependencies: in good high-level representations,

the factors are related to each other through simple dependencies. The
simplest possible is marginal independence, P (h) =

Q
iP (hi ), but linear

dependencies or those captured by a shallow auto-encoder are also reason-

able assumptions. This can be seen in many laws of physics, and is assumed
when plugging a linear predictor or a factorized prior on top of a learned
representation.
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Chapter 17

The Manifold Perspective on
Representation Learning

Manifold learning is an approach to machine learning that is capitalizing on the
manifold hypothesis (Cayton, 2005; Narayanan and Mitter, 2010): the data gen-
erating distribution is assumed to concentrate near regions of low dimensionality.
The notion of manifold in mathematics refers to continuous spaces that locally

resemble Euclidean space, and the term we should be using is really submanifold,
which corresponds to a subset which has a manifold structure. The use of the

term manifold in machine learning is much looser than its use in mathematics,
though:

• the data may not be strictly on the manifold, but only near it,

• the dimensionality may not be the same everywhere,

• the notion actually referred to in machine learning naturally extends to

discrete spaces.

Indeed, although the very notions of a manifold or submanifold are defined
for continuous spaces, the more general notion of probability concentration ap-

plies equally well to discrete data. It is a kind of informal prior assumption about
the data generating distribution that seems particularly well-suited for AI tasks

such as those involving images, video, speech, music, text, etc. In all of these
cases the natural data has the property that randomly choosing configurations of
the observed variables according to a factored distribution (e.g. uniformly) are
very unlikely to generate the kind of observations we want to model. What is the
probability of generating a natural looking image by choosing pixel intensities
independently of each other? What is the probability of generating a meaning-
ful natural language paragraph by independently choosing each character in a

461



CHAPTER 17. THE MANIFOLD PERSPECTIVE ON REPRESENTATION LEARNING

⇓

Figure 17.1: Top: data sampled from a distribution in a high-dimensional space (one 2
dimensions shown for illustration) that is actually concentrated near a one-dimensional
manifold, which here is like a twisted string. Bottom: the underlying manifold that the
learner should infer.

string? Doing a thought experiment should give a clear answer: an exponentially
tiny probability. This is because the probability distribution of interest concen-

trates in a tiny volume of the total space of configurations. That means that to
the first degree, the problem of characterizing the data generating distribution

can be reduced to a binary classification problem: is this configuration probable
or not?. Is this a grammatically and semantically plausible sentence in English?
Is this a natural-looking image? Answering these questions tells us much more
about the nature of natural language or text than the additional information one
would have by being able to assign a precise probability to each possible sequence
of characters or set of pixels. Hence, simply characterizing where probability
concentrates is a fundamental importance, and this is what manifold learning
algorithms attempt to do. Because it is a where question, it is more about ge-
ometry than about probability distributions, although we find both views useful
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when designing learning algorithms for AI tasks.

tangent directions

tangent plane

Data on a curved manifold

Figure 17.2: A two-dimensional manifold near which training examples are concentrated,
along with a tangent plane and its associated tangent directions, forming a basis that
specify the directions of small moves one can make to stay on the manifold.

Figure 17.3: Illustration of tangent vectors of the manifold estimated by a contractive
auto-encoder (CAE), at some input point (top left, image of a zero). Each image on the
top right corresponds to a tangent vector. They are obtained by picking the dominant

singular vectors (with largest singular value) of the Jacobian
∂f(x)
∂x (see Section 15.10).

Taking the original image plus a small quantity of any of these tangent vectors yields
another plausible image, as illustrated in the bottom. The leading tangent vectors seem
to correspond to small deformations, such as translation, or shifting ink around locally in
the original image. Reproduced with permission from the authors of Rifai et al. (2011a).

In addition to the property of probability concentration, there is another one
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that characterizes the manifold hypothesis: when a configuration is probable it
is generally surrounded (at least in some directions) by other probable configura-
tions. If a configuration of pixels looks like a natural image, then there are tiny
changes one can make to the image (like translating everything by 0.1 pixel to the
left) which yield another natural-looking image. The number of independent ways
(each characterized by a number indicating how much or whether we do it) by
which a probable configuration can be locally transformed into another probable
configuration indicates the local dimension of the manifold. Whereas maximum
likelihood procedures tend to concentrate probability mass on the training ex-

amples (which can each become a local maximum of probability when the model
overfits), the manifold hypothesis suggests that good solutions instead concen-

trate probability along ridges of high probability (or their high-dimensional gen-
eralization) that connect nearby examples to each other. This is illustrated in
Figure 17.1.

What is most commonly learned to characterize a manifold is a representation
of the data points on (or near, i.e. projected on) the manifold. Such a representa-
tion for a particular example is also called its embedding. It is typically given by a
low-dimensional vector, with less dimensions than the “ambient” space of which
the manifold is a low-dimensional subset. Some algorithms (non-parametric man-
ifold learning algorithms, discussed below) directly learn an embedding for each

training example, while others learn a more general mapping, sometimes called
an encoder, or representation function, that maps any point in the ambient space

(the input space) to its embedding.
Another important characterization of a manifold is the set of its tangent

planes. At a point x on a d-dimensional manifold, the tangent plane is given by d

basis vectors that span the local directions of variation allowed on the manifold.
As illustrated in Figure 17.2, these local directions specify how one can change x
infinitesimally while staying on the manifold.

Manifold learning has mostly focused on unsupervised learning procedures
that attempt to capture these manifolds. Most of the initial machine learning re-
search on learning non-linear manifolds has focused on non-parametric methods
based on the nearest-neighbor graph. This graph has one node per training ex-

ample and edges connecting near neighbors. Basically, these methods (Schölkopf
et al., 1998; Roweis and Saul, 2000; Tenenbaum et al., 2000; Brand, 2003; Belkin

and Niyogi, 2003; Donoho and Grimes, 2003; Weinberger and Saul, 2004; Hinton
and Roweis, 2003; van der Maaten and Hinton, 2008a) associate each of these
nodes with a tangent plane that spans the directions of variations associated with
the difference vectors between the example and its neighbors, as illustrated in
Figure 17.4.

A global coordinate system can then be obtained through an optimization or
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Figure 17.4: Non-parametric manifold learning procedures build a nearest neighbor graph
whose nodes are training examples and arcs connect nearest neighbors. Various proce-
dures can thus obtain the tangent plane associated with a neighborhood of the graph,

and a coordinate system that associates each training example with a real-valued vector
position, or embedding. It is possible to generalize such a representation to new examples
by a form of interpolation. So long as the number of examples is large enough to cover
the curvature and twists of the manifold, these approaches work well. Images from the
QMUL Multiview Face Dataset (Gong et al., 2000).

solving a linear system. Figure 17.5 illustrates how a manifold can be tiled by a
large number of locally linear Gaussian-like patches (or “pancakes”, because the
Gaussians are flat in the tangent directions).
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Figure 17.5: If the tangent plane at each location is known, then they can be tiled to
form a global coordinate system or a density function. In the figure, each local patch
can be thought of as a local Euclidean coordinate system or as a locally flat Gaussian,
or “pancake”, with a very small variance in the directions orthogonal to the pancake and
a very large variance in the directions defining the coordinate system on the pancake.
The average of all these Gaussians would provide an estimated density function, as in the
Manifold Parzen algorithm (Vincent and Bengio, 2003) or its non-local neural-net based
variant (Bengio et al., 2006b).

tangent directions

tangent image

tangent directions

tangent image

shifted
image

high−contrast image

Figure 17.6: When the data are images, the tangent vectors can also be visualized like
images. Here we show the tangent vector associated with translation: it corresponds to
the difference between an image and a slightly translated version. This basically extracts
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However, there is a fundamental difficulty with such non-parametric neighborhood-
based approaches to manifold learning, raised in Bengio and Monperrus (2005):
if the manifolds are not very smooth (they have many ups and downs and twists),
one may need a very large number of training examples to cover each one of
these variations, with no chance to generalize to unseen variations. Indeed, these
methods can only generalize the shape of the manifold by interpolating between
neighboring examples. Unfortunately, the manifolds of interest in AI have many
ups and downs and twists and strong curvature, as illustrated in Figure 17.6. This
motivates the use of distributed representations and deep learning for capturing

manifold structure, which is the subject of this chapter.

Figure 17.7: Training examples of a face dataset – the QMUL Multiview Face
Dataset (Gong et al., 2000) – for which the subjects were asked to move in such a way as
to cover the two-dimensional manifold corresponding to two angles of rotation. We would
like learning algorithms to be able to discover and disentangle such factors. Figure 17.8
illustrates such a feat.

The hope of many manifold learning algorithms, including those based on deep
learning and auto-encoders, is that one learns an explicit or implicit coordinate
system for the leading factors of variation that explain most of the structure in
the unknown data generating distribution. An example of explicit coordinate
system is one where the dimensions of the representation (e.g., the outputs of the
encoder, i.e., of the hidden units that compute the “code” associated with the
input) are directly the coordinates that map the unknown manifold. Training

examples of a face dataset in which the images have been arranged visually on a

2-D manifold are shown in Figure 17.7, with the images laid down so that each
of the two axes corresponds to one of the two angles of rotation of the face.

However, the objective is to discover such manifolds, and Figure 17.8 illus-
trates the images generated by a variational auto-encoder (Kingma and Welling,
2014a) when the two-dimensional auto-encoder code (representation) is varied
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on the 2-D plane. Note how the algorithm actually discovered two independent
factors of variation: angle of rotation and emotional expression.

Another kind of interesting illustration of manifold learning involves the dis-
covery of distributed representations for words. Neural language models were
initiated with the work of Bengio et al. (2001c, 2003b), in which a neural network
is trained to predict the next word in a sequence of natural language text, given
the previous words, and where each word is represented by a real-valued vector,
called embedding or neural word embedding.

Figure 17.8: Two-dimensional representation space (for easier visualization), i.e., a Eu-
clidean coordinate system for Frey faces (left) and MNIST digits (right), learned by a
variational auto-encoder (Kingma and Welling, 2014a). Figures reproduced with permis-
sion from the authors. The images shown are not examples from the training set but

images x actually generated by the model P (x | h), simply by changing the 2-D “code”
h (each image corresponds to a different choice of “code” h on a 2-D uniform grid). On
the left, one dimension that has been discovered (horizontal) mostly corresponds to a
rotation of the face, while the other (vertical) corresponds to the emotional expression.
The decoder deterministically maps codes (here two numbers) to images. The encoder
maps images to codes (and adds noise, during training).

Figure 17.9 shows such neural word embeddings reduced to two dimensions
(originally 50 or 100) using the t-SNE non-linear dimensionality reduction algo-
rithm (van der Maaten and Hinton, 2008a). The figures zooms into different areas
of the word-space and illustrates that words that are semantically and syntacti-
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cally close end up having nearby embeddings.

Figure 17.9: Two-dimensional representation space (for easier visualization), of English
words, learned by a neural language model as in Bengio et al. (2001c, 2003b), with t-SNE
for the non-linear dimensionality reduction from 100 to 2. Different regions are zoomed
to better see the details. At the global level one can identify big clusters correspond-
ing to part-of-speech, while locally one sees mostly semantic similarity explaining the
neighborhood structure.

17.1 Manifold Interpretation of PCA and Linear Auto-
Encoders

The above view of probabilistic PCA as a thin “pancake” of high probability

is related to the manifold interpretation of PCA and linear auto-encoders, in
which we are looking for projections of x into a subspace that preserves as much
information as possible about x. This is illustrated in Figure 17.10. Let the
encoder be

h = f(x) = W>(x − µ)
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computing such a projection, a low-dimensional representation of h. With the
auto-encoder view, we have a decoder computing the reconstruction

x̂ = g(h) = b + V h.

Figure 17.10: Flat Gaussian capturing probability concentration near a low-dimensional
manifold. The figure shows the upper half of the “pancake” above the “manifold plane”
which goes through its middle. The variance in the direction orthogonal to the manifold
is very small (upward red arrow) and can be considered like “noise”, where the other
variances are large (larger red arrows) and correspond to “signal”, and a coordinate
system for the reduced-dimension data.

It turns out that the choices of linear encoder and decoder that minimize

reconstruction error

E[||x − x̂||2]

correspond to V = W , µ = b = E[x] and the rows of W form an orthonormal
basis which spans the same subspace as the principal eigenvectors of the covariance
matrix

C = E[(x − µ)(x − µ)>].

In the case of PCA, the rows of W are these eigenvectors, ordered by the magni-
tude of the corresponding eigenvalues (which are all real and non-negative). This
is illustrated in Figure 17.11.
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Figure 17.11: Manifold view of PCA and linear auto-encoders. The data distribution is
concentrated near a manifold aligned with the leading eigenvectors (here, this is just v1)
of the data covariance matrix. The other eigenvectors (here, just v2) are orthogonal to the
manifold. A data point (in red, x) is encoded into a lower-dimensional representation or
code h (here the scalar which indicates the position on the manifold, starting from h = 0).
The decoder (transpose of the encoder) maps h to the data space, and corresponds to a
point lying exactly on the manifold (green cross), the orthogonal projection of x on the
manifold. The optimal encoder and decoder minimize the sum of reconstruction errors
(difference vector between x and its reconstruction).

One can also show that eigenvalue λ i of C corresponds to the variance of x
in the direction of eigenvector v i. If x ∈ R

D and h ∈ R
d with d < D, then the

optimal reconstruction error (choosing µ, b, V and W as above) is

minE[||x − x̂||2] =
DX

i=d+1

λi.

Hence, if the covariance has rank d, the eigenvalues λd+1 to λD are 0 and recon-

struction error is 0.
Furthermore, one can also show that the above solution can be obtained by

maximizing the variances of the elements of h, under orthonormal W , instead of
minimizing reconstruction error.
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17.2 Manifold Interpretation of Sparse Coding

Sparse coding was introduced in Section 15.6.2 a linear factors generative model.
It also has an interesting manifold learning interpretation. The codes h inferred
with the above equation do not fill the space in which h lives. Instead, probability
mass is concentrated on axis-aligned subspaces: sets of values of h for which most
of the axes are set at 0. We can thus decompose h into two pieces of information:

• A binary pattern β which specifies which hi are non-zero, with Na =
P

i βi
the number of “active” (non-zero) dimensions.

• A variable-length real-valued vector α ∈ RNa which specifies the coordinates
for each of the active dimensions.

The pattern β can be viewed as specifying an Na -dimensional region in input

space (the set of x = Wh + b where hi = 0 if bi = 0). That region is actually a
linear manifold, an Na-dimensional hyperplane. All those hyperplanes go through
a “center” x = b. The vector α then specifies a Euclidean coordinate on that

hyperplane.
Because the prior P (h) is concentrated around 0, the probability mass of P (x)

is concentrated on the regions of these hyperplanes near x = b. Depending on
the amount of reconstruction error (output variance for P(x | g(h))), there is also
probability mass bleeding around these hyperplanes and making them look more
like pancakes. Each of these hyperplane-aligned manifolds and the associated
distribution is just like the ones we associate to probabilistic PCA and factor

analysis. The crucial difference is that instead of one hyperplane, we have 2d

hyperplanes if h ∈ Rd. Due to the sparsity prior, however, most of these flat

Gaussians are unlikely: only the ones corresponding to a small Na (with only
a few of the axes being active) are likely. For example, if we were to restrict

ourselves to only those values of b for which Na = k, then one would have


d
k



Gaussians. With this exponentially large number of Gaussians, the interesting

thing to observe is that the sparse coding model only has a number of parameters
linear in the number of dimensions of h. This property is shared with other
distributed representation learning algorithms described in this chapter, such as
the regularized auto-encoders.

17.3 The Entropy Bias from Maximum Likelihood

TODO: how the log-likelihood criterion forces a learner that is not able to gen-
eralize perfectly to yield an estimator that is much smoother than the target
distribution. Phrase it in terms of entropy, not smoothness.
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17.4 Manifold Learning via Regularized Auto-Encoders

Auto-encoders have been described in Section 15. What is their connection to
manifold learning? This is what we discuss here.

We denote f the encoder function, with h = f(x) the representation of x,
and g the decoding function, with x̂ = g(h) the reconstruction of x, although in
some cases the encoder is a conditional distribution q(h | x) and the decoder is a
conditional distribution P (x | h).

What all auto-encoders have in common, when they are prevented from sim-
ply learning the identity function for all possible input x, is that training them

involves a compromise between two “forces”:

1. Learning a representation h of training examples x such that x can be

approximately recovered from h through a decoder. Note that this needs

not be true for any x, only for those that are probable under the data
generating distribution.

2. Some constraint or regularization is imposed, either on the code h or on the
composition of the encoder/decoder, so as to make the transformed data
somehow simpler or to prevent the auto-encoder from achieving perfect
reconstruction everywhere. We can think of these constraints or regulariza-
tion as a preference for solutions in which the representation is as simple
as possible, e.g., factorized or as constant as possible, in as many directions

as possible. In the case of the bottleneck auto-encoder a fixed number of

representation dimensions is allowed, that is smaller than the dimension of
x. In the case of sparse auto-encoders (Section 15.8) the representation
elements h i are pushed towards 0. In the case of denoising auto-encoders

(Section 15.9), the encoder/decoder function is encouraged to be contrac-
tive (have small derivatives). In the case of the contractive auto-encoder
(Section 15.10), the encoder function alone is encouraged to be contractive,

while the decoder function is tied (by symmetric weights) to the encoder
function. In the case of the variational auto-encoder (Section 20.9.3), a

prior logP (h) is imposed on h to make its distribution factorize and con-
centrate as much as possible. Note how in the limit, for all of these cases,
the regularization prefers representations that are insensitive to the input.

Clearly, the second type of force alone would not make any sense (as would

any regularizer, in general). How can these two forces (reconstruction error on
one hand, and “simplicity” of the representation on the other hand) be recon-
ciled? The solution of the optimization problem is that only the variations that
are needed to distinguish training examples need to be represented. If the data
generating distribution concentrates near a low-dimensional manifold, this yields
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Figure 17.12: A regularized auto-encoder or a bottleneck auto-encoder has to reconcile
two forces: reconstruction error (which forces it to keep enough information to distinguish
training examples from each other), and a regularizer or constraint that aims at reducing
its representational ability, to make it as insensitive as possible to the input in as many
directions as possible. The solution is for the learned representation to be sensitive to
changes along the manifold (green arrow going to the right, tangent to the manifold) but
invariant to changes orthogonal to the manifold (blue arrow going down). This yields to
contraction of the representation in the directions orthogonal to the manifold.

representations that implicitly capture a local coordinate for this manifold: only

the variations tangent to the manifold around x need to correspond to changes
in h = f(x). Hence the encoder learns a mapping from the embedding space
x to a representation space, a mapping that is only sensitive to changes along

the manifold directions, but that is insensitive to changes orthogonal to the man-
ifold. This idea is illustrated in Figure 17.12. A one-dimensional example is

illustrated in Figure 17.13, showing that by making the auto-encoder contractive
around the data points (and the reconstruction point towards the nearest data
point), we recover the manifold structure (of a set of 0-dimensional manifolds in
a 1-dimensional embedding space, in the figure).

17.5 Tangent Distance, Tangent-Prop, and Manifold

Tangent Classifier

One of the early attempts to take advantage of the manifold hypothesis is the
Tangent Distance algorithm (Simard et al., 1993, 1998). It is a non-parametric

nearest-neighbor algorithm in which the metric used is not the generic Euclidean
distance but one that is derived from knowledge of the manifolds near which

probability concentrates. It is assumed that we are trying to classify examples
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Figure 17.13: If the auto-encoder learns to be contractive around the data points, with
the reconstruction pointing towards the nearest data points, it captures the manifold

structure of the data. This is a 1-dimensional version of Figure 17.12. The denoising
auto-encoder explicitly tries to make the derivative of the reconstruction function r(x)
small around the data points. The contractive auto-encoder does the same thing for the
encoder. Although the derivative of r(x) is asked to be small around the data points, it

can be large between the data points (e.g. in the regions between manifolds), and it has
to be large there so as to reconcile reconstruction error (r(x) ≈ x for data points x) and

contraction (small derivatives of r(x) near data points).

and that examples on the same manifold share the same category. Since the

classifier should be invariant to the local factors of variation that correspond
to movement on the manifold, it would make sense to use as nearest-neighbor

distance between points x1 and x2 the distance between the manifolds M1 and
M2 to which they respectively belong. Although that may be computationally
difficult (it would require an optimization, to find the nearest pair of points on
M1 and M2 ), a cheap alternative that makes sense locally is to approximate Mi

by its tangent plane at xi and measure the distance between the two tangents,
or between a tangent plane and a point. That can be achieved by solving a low-

dimensional linear system (in the dimension of the manifolds). Of course, this
algorithm requires one to specify the tangent vectors at any point

In a related spirit, the Tangent-Prop algorithm (Simard et al., 1992) proposes
to train a neural net classifier with an extra penalty to make the output f(x) of

the neural net locally invariant to known factors of variation. These factors of
variation correspond to movement of the manifold near which examples of the
same class concentrate. Local invariance is achieved by requiring

∂f (x)
∂x to be

orthogonal to the known manifold tangent vectors v i at x, or equivalently that
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the directional derivative of f at x in the directions vi be small:

regularizer = λ
X

i


∂f(x)

∂x
· v i

2

. (17.1)

Like for tangent distance, the tangent vectors are derived a priori, e.g., from the
formal knowledge of the effect of transformations such as translation, rotation,
and scaling in images. Tanget-Prop has been used not just for supervised learn-

ing (Simard et al., 1992) but also in the context of reinforcement learning (Thrun,
1995).

∂h

∂x∂f

∂x

Figure 17.14: Illustration of the main idea of the tangent-prop algorithm (Simard et al.,
1992) and manifold tangent classifier (Rifai et al., 2011d), which both regularize the
classifier output function f (x) (e.g. estimating conditional class probabilities given the
input) so as to make it invariant to the local directions of variations ∂h

∂x
(manifold tangent

directions). This can be achieved by penalizing the magnitude of the dot product of
all the rows of ∂h

∂x (the tangent directions) with all the rows of
∂f
∂x (the directions of

sensitivity of each output to the input). In the case of the tangent-prop algorithm, the
tangent directions are given a priori, whereas in the case of the manifold tangent classifier,

they are learned, with h(x) being the learned representation of the input x. The figure
illustrates two manifolds, one per class, and we see that the classifier output increases
the most as we move from one manifold to the other, in input space.

A more recent paper introduces the Manifold Tangent Classifier (Rifai et al.,

2011d), which eliminates the need to know the tangent vectors a priori, and
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instead uses a contractive auto-encoder to estimate them at any point. As we
have seen in the previous section and Figure 15.9, auto-encoders in general, and
contractive auto-encoders especially well, learn a representation h that is most
sensitive to the factors of variation present in the data x, so that the leading
singular vectors of ∂h

∂x correspond to the estimated tangent vectors. As illustrated
in Figure 15.10, these estimated tangent vectors go beyond the classical invariants
that arise out of the geometry of images (such as translation, rotation and scaling)
and include factors that must be learned because they are object-specific (such
as adding or moving body parts). The algorithm proposed with the manifold

tangent classifier is therefore simple: (1) use a regularized auto-encoder such
as the contractive auto-encoder to learn the manifold structure by unsupervised

learning (2) use these tangents to regularize a neural net classifier as in Tangent
Prop (Eq. 17.1). TODO Tangent Prop or Tangent-Prop?
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Chapter 18

Confronting the Partition
Function

TODO– make sure the book explains asymptotic consistency somewhere, add
links to it here

In Section 13.2.2 we saw that many probabilistic models (commonly known
as undirected graphical models) are defined by an unnormalized probability dis-

tribution p̃(x; θ) or energy function (Section 13.2.4)

E(x) = − log p̃(x). (18.1)

Because the analytic formulation of the model is via this energy function or un-
normalized probability, the complete formulation of the probability function or
probability density requires a normalization constant called partition function
Z(θ) such that

p(x; θ) =
1

Z(θ)
p̃(x; θ)

is a valid, normalized probability distribution. The partition function is an in-
tegral or sum over the unnormalized probability of all states. This operation is
intractable for many interesting models.

As we will see in chapter 20, many deep learning models are designed to have
a tractable normalizing constant, or are designed to be used in ways that do not

involve computing p(x) at all. However, other models directly confront the chal-
lenge of intractable partition functions. In this chapter, we describe techniques

used for training and evaluating models that have intractable partition functions.
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18.1 The Log-Likelihood Gradient of Energy-Based

Models

What makes learning by maximum likelihood particularly difficult is that the
partition function depends on the parameters, so that the log-likelihood gradient
has a term corresponding to the gradient of the partition function:

∂ log p(x; θ)

∂θ
= −

∂E(x)

∂θ
−

logZ(θ)

∂θ
. (18.2)

In the case where the energy function is analytically tractable (e.g., RBMs), the
difficult part is estimating the the gradient of the partition function. Unsurpris-

ingly, since computing Z itself is intractable, we find that computing its gradient
is also intractable, but the good news is that it corresponds to an expectation

over the model distribution, which can be estimated by Monte-Carlo methods.
Though the gradient of the log partition function is intractable to evaluate

accurately, it is straightforward to analyze algebraically. The derivatives we need
for learning are of the form

∂

∂θ
log p(x)

where θ is one of the parameters of p(x). These derivatives are given simply by

∂

∂θ
log p(x) =

∂

∂θ
(log p̃(x) − logZ) .

In this chapter, we are primarily concerned with the estimation of the term
on the right:

∂

∂θ
logZ

=
∂
∂θ
Z

Z

=
∂
∂θ

P
x p̃(x)

Z

=

P
x

∂
∂θ p̃(x)

Z
.

For models that guarantee p(x) > 0 for all x, we can substitute exp (log p̃(x))
for p̃(x):

=

P
x

∂
∂θ exp (log p̃(x))

Z

=

P
x exp (log p̃(x)) ∂

∂θ log p̃(x)

Z
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=

P
x p̃(x) ∂

∂θ log p̃(x)

Z

=
X

x

p(x)
∂

∂θ
log p̃(x)

= Ex∼p(x)
∂

∂θ
log p̃(x).

This derivation made use of summation over discrete x, but a similar result
applies using integration over continuous x. In the continuous version of the
derivation, we use Leibniz’s rule for differentiation under the integral sign to

obtain the identity
∂

∂θ

Z
p̃(x)dx =

Z
∂

∂θ
p̃(x)dx.

This identity is only applicable under certain regularity conditions on p̃ and
∂
∂θ p̃(x)1. Fortunately, most machine learning models of interest have these prop-

erties.
This identity

∂

∂θ
logZ = Ex∼p(x)

∂

∂θ
log p̃(x) (18.3)

is the basis for a variety of Monte Carlo methods for approximately maximizing
the likelihood of models with intractable partition functions.

Putting this result together with Eq. 18.2, we obtain the following well-known

decomposition of the gradient in terms of the gradient of the energy function on
the observed x and in average over the model distribution:

∂ − log p(x; θ)

∂θ
=
∂E(x)

∂θ
− Ex∼p(x)

∂

∂θ
E(x). (18.4)

The first term is called the positive phase contribution to the gradient and it cor-
responds to pushing the energy down on the “positive” examples and reinforcing

the interactions that are observed between random variables when x is observed,
while the second term is called the negative phase contribution to the gradient and

it corresponds to pushing the energy up everywhere else, with proportionally more
push where the model currently puts more probability mass. When a minimum
of the negative log-likelihood is found, the two terms must of course cancel each
other, and the only thing that prevents the model from putting probability mass
in exactly the same way as the training distribution is that it may be regularized
or have some constraints, e.g. be parametric.

1In measure theoretic terms, the conditions are: (i) p̃ must be a Lebesgue-integrable function
of x for every value of θ; (ii) ∂

∂θ
p̃(x) must exist for all θ and almost all x; (iii) There exists

an integrable function R(x) that bounds ∂
∂θ p̃(x) (i.e. such that | ∂∂θp̃(x)| ≤ R(x) for all θ and

almost all x).
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18.2 Stochastic Maximum Likelihood and Contrastive

Divergence

The naive way of implementing equation 18.3 is to compute it by burning in a set
of Markov chains from a random initialization every time the gradient is needed.
When learning is performed using stochastic gradient descent, this means the
chains must be burned in once per gradient step. This approach leads to the
training procedure presented in Algorithm 18.1. The high cost of burning in the
Markov chains in the inner loop makes this procedure computationally infeasible,
but this procedure is the starting point that other more practical algorithms aim

to approximate.

Algorithm 18.1 A naive MCMC algorithm for maximizing the log likelihood
with an intractable partition function using gradient ascent.

Set , the step size, to a small positive number

Set k, the number of Gibbs steps, high enough to allow burn in. Perhaps 100
to train an RBM on a small image patch.

while Not converged do
Sample a minibatch of m examples {x(1) , . . . ,x(m)} from the training set.
g ← 1

m

Pm
i=1 ∇θ log p̃(x(i);θ)

Initialize a set of m samples { x̃(1), . . . , x̃(m)} to random values (e.g., from
a uniform or normal distribution, or possibly a distribution with marginals

matched to the model’s marginals)
for i = 1 to k do

for j = 1 to m do
x̃(j) ← gibbs update(x̃(j) )

end for
end for
g ← g − 1

m

Pm
i=1 ∇θ log p̃( x̃(i) ;θ)

θ ← θ+ g
end while

We can view the MCMC approach to maximum likelihood as trying to achieve
balance between two forces, one pushing up on the model distribution where the
data occurs, and another pushing down on the model distribution where the model
samples occur. Fig. 18.1 illustrates this process. The two forces correspond to
maximizing log p̃ and minimizing logZ. In this chapter, we assume the positive
phase is tractable and may be performed exactly, but other chapters, especially

chapter 19 deal with intractable positive phases. In this chapter, we present
several approximations to the negative phase. Each of these approximations can
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Figure 18.1: The view of Algorithm 18.1 as having a “positive phase” and “negative
phase”. Left) In the positive phase, we sample points from the data distribution, and
push up on their unnormalized probability. This means points that are likely in the data
get pushed up on more. Right) In the negative phase, we sample points from the model
distribution, and push down on their unnormalized probability. This counteracts the
positive phase’s tendency to just add a large constant to the unnormalized probability
everywhere. When the data distribution and the model distribution are equal, the positive
phase has the same chance to push up at a point as the negative phase has to push down.
At this point, there is no longer any gradient (in expectation) and training must terminate.

be understood as making the negative phase computationally cheaper but also
making it push down in the wrong locations.

Because the negative phase involves drawing samples from the model’s distri-
bution, we can think of it as finding points that the model believes in strongly.
Because the negative phase acts to reduce the probability of those points, they are
generally considered to represent the model’s incorrect beliefs about the world.
They are frequently referred to in the literature as “hallucinations” or “fantasy

particles.” In fact, the negative phase has been proposed as a possible explana-
tion for dreaming in humans and other animals (Crick and Mitchison, 1983), the

idea being that the brain maintains a probabilistic model of the world and fol-
lows the gradient of log p̃ while experiencing real events while awake and follows
the negative gradient of log p̃ to minimize logZ while sleeping and experiencing
events sampled from the current model. This view explains much of the language
used to describe algorithms with a positive and negative phase, but it has not
been proven to be correct with neuroscientific experiments. In machine learning
models, it is usually necessary to use the positive and negative phase simultane-
ously, rather than in separate time periods of wakefulness and REM sleep. As

we will see in chapter 19.6, other machine learning algorithms draw samples from
the model distribution for other purposes and such algorithms could also provide
an account for the function of dream sleep.
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Given this understanding of the role of the positive and negative phase of
learning, we can attempt to design a less expensive alternative to Algorithm 18.1.
The main cost of the naive MCMC algorithm is the cost of burning in the Markov
chains from a random initialization at each step. A natural solution is to initialize
the Markov chains from a distribution that is very close to the model distribution,
so that the burn in operation does not take as many steps.

The contrastive divergence (CD, or CD-k to indicate CD with k Gibbs steps)
algorithm initializes the Markov chain at each step with samples from the data

distribution (Hinton, 2000). This approach is presented as Algorithm 18.2. Ob-
taining samples from the data distribution is free, because they are already avail-

able in the data set. Initially, the data distribution is not close to the model

distribution, so the negative phase is not very accurate. Fortunately, the positive
phase can still accurately increase the model’s probability of the data. After the
positive phase has had some time to act, the model distribution is closer to the
data distribution, and the negative phase starts to become accurate.

Algorithm 18.2 The contrastive divergence algorithm, using gradient ascent as

the optimization procedure.

Set , the step size, to a small positive number
Set k, the number of Gibbs steps, high enough to allow a Markov chain of
p(x; θ) to mix when initializedfrom pdata. Perhaps 1-20 to train an RBM on a

small image patch.
while Not converged do

Sample a minibatch of m examples {x(1) , . . . ,x(m)} from the training set.

g ← 1
m

Pm
i=1 ∇θ log p̃(x(i);θ)

for i = 1 to m do

x̃(i) ← x(i)

end for
for i = 1 to k do

for j = 1 to m do
x̃(j) ← gibbs update(x̃(j) )

end for
end for

g ← g − 1
m

Pm
i=1 ∇θ log p̃( x̃(i) ;θ)

θ ← θ+ g
end while

Of course, CD is still an approximation to the correct negative phase. The
main way that CD qualitatively fails to implement the correct negative phase
is that it fails to suppress “spurious modes” — regions of high probability that

are far from actual training examples. Fig. 18.2 illustrates why this happens.
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Essentially, it is because modes in the model distribution that are far from the data
distribution will not be visited by Markov chains initialized at training points,
unless k is very large.

Carreira-Perpiñan and Hinton (2005) showed experimentally that the CD es-
timator is biased for RBMs and fully visible Boltzmann machines, in that it
converges to different points than the maximum likelihood estimator. They argue
that because the bias is small, CD could be used as an inexpensive way to initial-
ize a model that could later be fine-tuned via more expensive MCMC methods.
Bengio and Delalleau (2009) showed that CD can be interpreted as discarding the
smallest terms of the correct MCMC update gradient, which explains the bias.

CD is useful for training shallow models like RBMs. These can in turn be

stacked to initialize deeper models like DBNs or DBMs. However, CD does not
provide much help for training deeper models directly. This is because it is difficult
to obtain samples of the hidden units given samples of the visible units. Since
the hidden units are not included in the data, initializing from training points

cannot solve the problem. Even if we initialize the visible units from the data,
we will still need to burn in a Markov chain sampling from the distribution over
the hidden units conditioned on those visible samples. Most of the approximate
inference techniques described in chapter 19 for approximately marginalizing out
the hidden units cannot be used to solve this problem. This is because all of the

approximate marginalization methods based on giving a lower bound on p̃ would
give a lower bound on logZ. We need to minimize logZ, and minimizing a lower
bound is not a useful operation.

The CD algorithm can be thought of as penalizing the model for having a
Markov chain that changes the input rapidly when the input comes from the
data. This means training with CD somewhat resembles autoencoder training.
Even though CD is more biased than some of the other training methods, it
can be useful for pre-training shallow models that will later be stacked. This is
because the earliest models in the stack are encouraged to copy more information
up to their latent variables, thereby making it available to the later models. This
should be thought of more of as an often-exploitable side effect of CD training
rather than a principled design advantage.

Sutskever and Tieleman (2010) showed that the CD update direction is not
the gradient of any function. This allows for situations where CD could cycle

forever, but in practice this is not a serious problem.
A different strategy that resolves many of the problems with CD is to initialize

the Markov chains at each gradient step with their states from the previous gradi-
ent step. This approach was first discovered under the name stochastic maximum
likelihood (SML) in the applied mathematics and statistics community (Younes,

1998) and later independently rediscovered under the name persistent contrastive
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Figure 18.2: An illustration of how the negative phase of contrastive divergence (Al-
gorithm 18.2) can fail to suppress spurious modes. A spurious mode is a mode that is
present in the model distribution but absent in the data distribution. Because contrastive
divergence initializes its Markov chains from data points and runs the Markov chain for
only a few steps, it is unlikely to visit modes in the model that are far from the data
points. This means that when sampling from the model, we will sometimes get samples

that do not resemble the data. It also means that due to wasting some of its probability
mass on these modes, the model will struggle to place high probability mass on the correct
modes. Note that this figure uses a somewhat simplified concept of distance–the spurious
mode is far from the correct mode along the number line in R. This corresponds to a
Markov chain based on making local moves with a single x variable in R. For most deep
probabilistic models, the Markov chains are based on Gibbs sampling and can make non-
local moves of individual variables but cannot move all of the variables simultaneously.
For these problems, it is usually better to consider the edit distance between modes,
rather than the Euclidean distance. However, edit distance in a high dimensional space
is difficult to depict in a 2-D plot.
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divergence (PCD, or PCD-k to indicate the use of k Gibbs steps per update) in
the deep learning community (Tieleman, 2008). See Algorithm 18.3. The basic
idea of this approach is that, so long as the steps taken by the stochastic gradi-
ent algorithm are small, then the model from the previous step will be similar
to the model from the current step. It follows that the samples from the previ-
ous model’s distribution will be very close to being fair samples from the current
model’s distribution, so a Markov chain initialized with these samples will not
require much time to mix.

Because each Markov chain is continually updated throughout the learning
process, rather than restarted at each gradient step, the chains are free to wander

far enough to find all of the model’s modes. SML is thus considerably more

resistant to forming models with spurious modes than CD is. Moreover, because
it is possible to store the state of all of the sampled variables, whether visible or
latent, SML provides an initialization point for both the hidden and visible units.
CD is only able to provide an initialization for the visible units, and therefore

requires burn-in for deep models. SML is able to train deep models efficiently.
Marlin et al. (2010) compared SML to many of the other criteria presented in this
chapter. They found that SML results in the best test set log likelihood for an
RBM, and if the RBM’s hidden units are used as features for an SVM classifier,
SML results in the best classification accuracy.

SML is vulnerable to becoming inaccurate if k is too small or  is too large
— in other words, if the stochastic gradient algorithm can move the model faster
than the Markov chain can mix between steps. There is no known way to test

formally whether the chain is successfully mixing between steps. Subjectively, if
the learning rate is too high for the number of Gibbs steps, the human operator
will be able to observe that there is much more variance in the negative phase
samples across gradient steps rather than across different Markov chains. For
example, a model trained on MNIST might sample exclusively 7s on one step.
The learning process will then push down strongly on the mode corresponding to
7s, and the model might sample exclusively 9s on the next step.

Care must be taken when evaluating the samples from a model trained with
SML. It is necessary to draw the samples starting from a fresh Markov chain

initialized from a random starting point after the model is done training. The
samples present in the persistent negative chains used for training have been

influenced by several recent versions of the model, and thus can make the model
appear to have greater capacity than it actually does.

Berglund and Raiko (2013) performed experiments to examine the bias and
variance in the estimate of the gradient provided by CD and SML. CD proves to
have low variance than the estimator based on exact sampling. SML has higher

variance. The cause of CD’s low variance is its use of the same training points
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Algorithm 18.3 The stochastic maximum likelihood / persistent contrastive
divergence algorithm using gradient ascent as the optimization procedure.

Set , the step size, to a small positive number

Set k, the number of Gibbs steps, high enough to allow a Markov chain of
p(x;θ+ g) toburn in, starting from samples from p(x;θ). Perhaps 1 for RBM
on a small image patch, or 5-50 for a morecomplicated model like a DBM.
Initialize a set of m samples {̃x(1), . . . , x̃(m)} to random values (e.g., from a uni-
form or normal distribution, or possibly a distribution with marginals matched
to the model’s marginals)
while Not converged do

Sample a minibatch of m examples {x(1) , . . . ,x(m)} from the training set.

g ← 1
m

Pm
i=1 ∇θ log p̃(x(i);θ)

for i = 1 to k do

for j = 1 to m do
x̃(j) ← gibbs update(x̃(j) )

end for
end for
g ← g − 1

m

Pm
i=1 ∇θ log p̃( x̃(i) ;θ)

θ ← θ+ g
end while

in both the positive and negative phase. If the negative phase is initialized from
different training points, the variance rises above that of the estimator based on
exact sampling.

TODO– FPCD? TODO– Rates-FPCD?
TODO– mention that all these things can be coupled with enhanced samplers,

which I believe are mentioned in the intro to graphical models chapter

One key benefit to the MCMC-based methods described in this section is that
they provide an estimate of the gradient of logZ , and thus we can essentially
decompose the problem into the log p̃ contribution and the logZ contribution.

We can then use any other method to tackle log p̃(x), and just add our negative
phase gradient onto the other method’s gradient. In particular, this means that
our positive phase can make use of methods that provide only a lower bound on

p̃. Most of the other methods of dealing with logZ presented in this chapter are
incompatible with bound-based positive phase methods.

487



CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

18.3 Pseudolikelihood

Monte Carlo approximations to the partition function and its gradient directly
confront the partition function. Other approaches sidestep the issue, by training
the model without computing the partition function. Most of these approaches
are based on the observation that it is easy to compute ratios of probabilities
in an unnormalized probabilistic model. This is because the partition function
appears in both the numerator and the denominator of the ratio and cancels out:

p(x)

p(y)
=

1
Z p̃(x)
1
Z p̃(y)

=
p̃(x)

p̃(y)
.

The pseudolikelihood is based on the observation that conditional probabilities

take this ratio-based form, and thus can be computed without knowledge of the

partition function. Suppose that we partition x into a, b, and c, where a contains
the variables we want to find the conditional distribution over, b contains the
variables we want to condition on, and c contains the variables that are not part
of our query.

p(a | b) =
p(a, p(b)

p(b)
=

p(a,b)P
a,c
p(a,b, c)

=
p̃(a,b)P

a,c
p̃(a,b, c)

.

This quantity requires marginalizing out a, which can be a very efficient operation
provided that a and c do not contain very many variables. In the extreme case, a

can be a single variable and c can be empty, making this operation require only
as many evaluations of p̃ as there are values of a single random variable.

Unfortunately, in order to compute the log likelihood, we need to marginalize
out large sets of variables. If there are n variables total, we must marginalize a
set of size n− 1. By the chain rule of probability,

log p(x) = log p(x1) + log p(x 2 | x1 ) + · · · + p(xn | x1:n−1 ).

In this case, we have made a maximally small, but c can be as large as x2:n.

What if we simply move c into b to reduce the computational cost? This yields
the pseudolikelihood (Besag, 1975) objective function:

nX

i=1

log p(xi | x−i).

If each random variable has k different values, this requires only k ×n evalu-
ations of p̃ to compute, as opposed to the kn evaluations needed to compute the
partition function.
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This may look like an unprincipled hack, but it can be proven that estimation
by maximizing the log pseudolikelihood is asymptotically consistent (Mase, 1995).
Of course, in the case of datasets that do not approach the large sample limit,
pseudolikelihood may display different behavior from the maximum likelihood
estimator.

It is possible to trade computational complexity for deviation from maximum
likelihood behavior by using the generalized pseudolikelihood estimator (Huang
and Ogata, 2002). The generalized pseudolikelihood estimator uses m different
sets S(i) , i = 1, . . . ,m of indices variables that appear together on the left side of
the conditioning bar. In the extreme case of m = 1 and S(1) = 1, . . . , n the gener-

alized pseudolikelihood recovers the log likelihood. In the extreme case of m = n

and S(i) = {i}, the generalized pseudolikelihood recovers the pseudolikelihood.
The generalized pseudolikelihood objective function is given by

mX

i=1

log p(xS(i) | x−S(i) ).

The performance of pseudolikelihood-based approaches depends largely on
how the model will be used. Pseudolikelihood tends to perform poorly on tasks
that require a good model of the full joint p(x), such as density estimation and

sampling. However, it can perform better than maximum likelihood for tasks
that require only the conditional distributions used during training, such as fill-
ing in small amounts of missing values. Generalized pseudolikelihood techniques

are especially powerful if the data has regular structure that allows the S index
sets to be designed to capture the most important correlations while leaving out

groups of variables that only have negligible correlation. For example, in natural

images, pixels that are widely separated in space also have weak correlation, so

the generalized pseudolikelihood can be applied with each S set being a small,
spatially localized window.

One weakness of the pseudolikelihood estimator is that it cannot be used with

other approximations that provide only a lower bound on p̃(x), such as variational
inference, which will be covered in chapter 19.4. This is because p̃ appears in the
denominator. A lower bound on the denominator provides only an upper bound

on the expression as a whole, and there is no benefit to maximizing an upper
bound. This makes it difficult to apply pseudolikelihood approaches to deep
models such as deep Boltzmann machines, since variational methods are one of
the dominant approaches to approximately marginalizing out the many layers of
hidden variables that interact with each other. However, pseudolikelihood is still

useful for deep learning, because it can be used to train single layer models, or
deep models using approximate inference methods that are not based on lower
bounds.
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Pseudolikelihood has a much greater cost per gradient step than SML, due
its explicit computation of all of the conditionals. However, generalized pseudo-
likelihood and similar criteria can still perform well if only one randomly selected
conditional is computed per example (Goodfellow et al., 2013b), thereby bringing
the computational cost down to match that of SML.

Though the pseudolikelihood estimator does not explicitly minimize logZ, it
can still be thought of as having something resembling a negative phase. The
denominators of each conditional distribution result in the learning algorithm
suppressing the probability of all states that have only one variable differing from
a training example.

18.4 Score Matching and Ratio Matching

Score matching (Hyvärinen, 2005b) provides another consistent means of training
a model without estimating Z or its derivatives. The strategy used by score
matching is to minimize the expected squared difference between the derivatives
of the model’s log pdf with respect to the input and the derivatives of the data’s
log pdf with respect to the input:

θ∗ = min
θ
J(θ) =

1

2
Ex||∇x log pmodel(x;θ) − ∇x log pdata(x)||22.

Because the ∇xZ = 0, this objective function avoids the difficulties associated
with differentiating the partition function. However, it appears to have another
difficult: it requires knowledge of the true distribution generating the training
data, pdata . Fortunately, minimizing J (θ) turns out to be equivalent to minimizing

J̃(θ) =
1

m

mX

i=1

nX

j=1

 
∂ 2

∂x2j
log pmodel (x;θ) +

1

2


∂

∂xi
log pmodel (x;θ)

2
!

where {x (1) , . . . ,x(m)} is the training set and n is the dimensionality of x.
Because score matching requires taking derivatives with respect to x, it is not

applicable to models of discrete data. However, the latent variables in the model
may be discrete.

Like the pseudolikelihood, score matching only works when we are able to eval-
uate log p̃(x) and its derivatives directly. It is not compatible with methods that

only provide a lower bound on log p̃(x), because we are not able to conclude any-
thing about the relationship between the derivatives and second derivatives of the

lower bound, and the relationship of the true derivatives and second derivatives
needed for score matching. This means that score matching cannot be applied to

estimating models with complicated interactions between the hidden units, such
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as sparse coding models or deep Boltzmann machines. Score matching can be
used to pretrain the first hidden layer of a larger model. Score matching has not
been applied as a pretraining strategy for the deeper layers of a larger model,
because the hidden layers of such models usually contain some discrete variables.

While score matching does not explicitly have a negative phase, it can be
viewed as a version of contrastive divergence using a specific kind of Markov
chain (Hyvärinen, 2007a). The Markov chain in this case is not Gibbs sampling,
but rather a different approach that makes local moves guided by the gradient.
Score matching is equivalent to CD with this type of Markov chain when the size
of the local moves approaches zero.

Lyu (2009) generalized score matching to the discrete case (but made an

error in their derivation that was corrected by Marlin et al. (2010)). Marlin
et al. (2010) found that generalized score matching (GSM) does not work in high
dimensional discrete spaces where the observed probability of many events is 0.

A more successful approach to extending the basic ideas of score matching

to discrete data is ratio matching (Hyvärinen, 2007b). Ratio matching applies
specifically to binary data. Ratio matching consists of minimizing the following
objective function:

J(RM)(θ) =
1

m

mX

i=1

nX

j=1




1

1 +
pmodel (x(i) ;θ)

pmodel (f(x(i) ,j);θ)





2

where f (x, j) return x with the bit at position j flipped. Ratio matching avoids
the partition function using the same trick as the pseudolikelihood estimator: in
a ratio of two probabilities, the partition function cancels out. Marlin et al.
(2010) found that ratio matching outperforms SML, pseudolikelihood, and GSM

in terms of the ability of models trained with ratio matching to denoise test set
images.

Like the pseudolikelihood estimator, ratio matching requires n evaluations of p̃
per data point, making its computational cost per update roughly n times higher
than that of SML.

Like the pseudolikelihood estimator, ratio matching can be thought of as push-
ing down on all fantasy states that have only one variable different from a training

example. Since ratio matching applies specifically to binary data, this means that
it acts on all fantasy states within Hamming distance 1 of the data.

Ratio matching can also be useful as the basis for dealing with high-dimensional
sparse data, such as word count vectors. This kind of data poses a challenge for
MCMC-based methods because the data is extremely expensive to represent in
dense format, yet the MCMC sampler does not yield sparse values until the model
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has learned to represent the sparsity in the data distribution. Dauphin and Ben-
gio (2013) overcame this issue by designing an unbiased stochastic approximation
to ratio matching. The approximation evaluates only a randomly selected subset
of the terms of the objective, and does not require the model to generate complete
fantasy samples.

18.5 Denoising Score Matching

In some cases we may wish to regularize score matching, by fitting a distribution

psmoothed(x) =

Z
pdata(x + y)q(y | x)dy

rather than the true pdata. This is especially useful because in practice we usually
do not have access to the true pdata but rather only an empirical distribution

defined by samples from it. Any consistent estimator will, given enough capac-
ity, make pmodel into a set of Dirac distributions centered on the training points.
Smoothing by q helps to reduce this problem, at the loss of the asymptotic consis-
tency property. Kingma and LeCun (2010b) introduced a procedure for perform-

ing regularized score matching with the smoothing distribution q being normally
distributed noise.

Surprisingly, some denoising autoencoder training algorithms correspond to

training energy-based models with denoising score matching (Vincent, 2011b).

The denoising autoencoder variant of the algorithm is significantly less compu-
tationally expensive than score matching. Swersky et al. (2011) showed how to
derive the denoising autoencoder for any energy-based model of real data. This
approach is known as denoising score matching (SMD).

18.6 Noise-Contrastive Estimation

Most techniques for estimating models with intractable partition functions do not

provide an estimate of the partition function. SML and CD estimate only the
gradient of the log partition function, rather than the partition function itself.
Score matching and pseudolikelihood avoid computing quantities related to the

partition function altogether.
Noise-contrastive estimation (NCE) (Gutmann and Hyvarinen, 2010) takes a

different strategy. In this approach, the probability distribution by the model is

represented explicitly as

log pmodel(x) = log p̃model (x; θ) + c,
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where c is explicitly introduced as an approximation of − logZ(θ). Rather than
estimating only θ, the noise contrastive estimation procedure treats c as just
another parameter and estimates θ and c simultaneously, using the same algorithm
for both. The resulting thus may not correspond exactly to a valid probability
distribution, but will become closer and closer to being valid as the estimate of c
improves.2

Such an approach would not be possible using maximum likelihood as the
criterion for the estimator. The maximum likelihood criterion would choose to set
c arbitrarily high, rather than setting c to create a valid probability distribution.

NCE works by reducing the unsupervised learning problem of estimating p(x)

to a supervised learning problem. This supervised learning problem is constructed

in such a way that maximum likelihood estimation in this supervised learning
problem defines an asymptotically consistent estimator of the original problem.

Specifically, we introduce a second distribution, the noise distribution pnoise(x).
The noise distribution should be tractable to evaluate and to sample from. We

can now construct a model over both x and a new, binary class variable y. In the
new joint model, we specify that

pjoint model (y = 1) =
1

2
,

pjoint model (x | y = 1) = pmodel(x),

and
pjoint model (x | y = 0) = pnoise(x).

In other words, y is a switch variable that determines whether we will generate x
from the model or from the noise distribution.

We can construct a similar joint model of training data. In this case, the
switch variable determines whether we draw x from the data or from the noise
distribution. Formally, ptrain(y = 1) = 1

2 , ptrain(x | y = 1) = pdata(x), and

ptrain(x | y = 0) = pnoise (x).
We can now just use standard maximum likelihood learning on the supervised

learning problem of fitting pjoint model to ptrain :

θ, c = arg max
θ,c

Ex,y∼ptrain log pjoint model (y | x).

It turns out that pjoint model is essentially a logistic regression model applied
to the difference in log probabilities of the model and the noise distribution:

p joint model(y = 1 | x) =
pmodel(x)

pmodel(x) + pnoise (x)

2NCE is also applicable to problems with a tractable partition function, where there is no

need to introduce the extra parameter c. However, it has generated the most interest as a means
of estimating models with difficult partition functions.
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=
1

1 +
pnoise(x)
pmodel(x)

=
1

1 + exp


log pnoise(x)
p model(x)



= σ


− log

pnoise(x)

pmodel (x)



= σ (log pmodel (x) − log pnoise(x)) .

NCE is thus simple to apply so long as log p̃model is easy to backpropagate
through, and, as specified above, noise is easy to evaluate (in order to evaluate
pjoint model) and sample from (in order to generate the training data).

NCE is most successful when applied to problems with few random variables,
but can work well even if those random variables can take on a high number of

values. For example, it has been successfully applied to modeling the conditional
distribution over a word given the context of the word (Mnih and Kavukcuoglu,

2013). Though the word may be drawn from a large vocabulary, there is only one
word.

When NCE is applied to problems with many random variables, it becomes
less efficient. The logistic regression classifier can reject a noise sample by identify-
ing any one variable whose value is unlikely. This means that learning slows down
greatly after pmodel has learned the basic marginal statistics. Imagine learning a
model of images of faces, using unstructured Gaussian noise as pnoise . If pmodel

learns about eyes, it can reject almost all unstructured noise samples without
having learned anything other facial features, such as mouths.

The constraint that pnoise must be easy to evaluate and easy to sample from
can be overly restrictive. When pnoise is simple, most samples are likely to be too

obviously distinct from the data to force pmodel to improve noticeably.
Like score matching and pseudolikelihood, NCE does not work if only a lower

bound on p̃ is available. Such a lower bound could be used to construct a lower
bound on p joint model(y = 1 | x), but it can only be used to construct an upper

bound on pjoint model (y = 0 | x), which appears in half the terms of the NCE
objective. Likewise, a lower bound on p noise is not useful, because it provides only
an upper bound on pjoint model(y = 1 | x).

TODO– put herding in this chapter? and if not, where to put it?

TODO– cite the Bregman divergence paper?

18.7 Estimating the Partition Function

While much of this chapter is dedicated to describing methods for working around

the unknown and intractable partition function Z(θ) associated with an undi-
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rected graphical model; in this section we will discuss several methods for directly
estimating the partition function.

Estimating the partition function can be important because we require it if
we wish to compute the normalized likelihood of data. This is often important in
evaluating the model, monitoring training performance, and comparing models
to each other.

For example, imagine we have two models: MA : pA(x; θA) = 1
ZA
p̃A(x; θA )

and MB : pB (x; θB) = 1
ZB
p̃B(x; θB). A common way to compare the mod-

els is to evaluate the likelihood of an i.i.d. test dataset of size Ntest : Dtest =
{x(t)

i }Ntest under both models. If
Q

t pA(x (t)θA) >
Q

t pB(x(t)θB) or equivalently

if
P

t ln pA (x(t)θA)−
P

t ln pB(x(t)θB ) > 0, then we say that MA is a better model

than MB (or, at least, it is a better model of the test set). More specifically, to
say that MA is better than MB, we need that:

X

t

ln pA(x(t)θA) −
X

t

ln pB (x(t)θB ) > 0

X

t


ln p̃A(x (t)θA ) − lnZ(θA )


−
X

t


ln p̃ B(x (t)θB) − lnZ(θB)


> 0

X

t


ln p̃A (x (t)θA ) − ln p̃B(x(t); θB )


−Ntest lnZ(θA) +Ntest lnZ(θB ) > 0

X

t

 
ln
p̃A (x(t); θA)

p̃B (x(t); θB )

!
−Ntest ln

Z(θA)

Z(θB)
> 0.

TODO: too much repetition of ”to know” TODO: be more specific about what

it means to ”compare”, does this mean to take the ratio of two likelihoods? In
order to compare two models we need to compare not only their unnormalized

probabilities, but also their partition functions. It is interesting to note that, in
order to compare these models, we do not actually need to know the value of their

partition function. We need only know their ratio. That is, we need to know their
relative value, up to some shared constant. If, however, we wanted to know the

actual probability of the test data under either MA or MB , we would need to
know the actual value of the partition functions. That said, if we knew the ratio
of two partition functions, R = Z(θB )

Z(θA )
, and we knew the actual value of just one

of the two, say Z(θA ), we can compute the value of the other:

Z(θB) = R× Z(θA) =
Z(θB )

Z(θA)
Z(θA)

We can make use of this observation to estimate the partition functions of
undirected graphical models.
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For a given probability distribution, say p 1(x), the partition function is defined
as

Z1 =

Z
p̃1 (x) dx (18.5)

where the integral is over the domain of x. Of course, in the case of discrete

x, we replace the integral with a sum. For convenience, we have suppressed the
dependency of both the partition functions and the unnormalized distributions
on the model parameters.

A simple way to estimate the partition function is to use a Monte Carlo method
such as simple importance sampling. Here we consider a proposal distribution,

say p0(x), from which we can sample and evaluate both its partition function Z0 ,

and its unnormalized distribution p̃0 (x).

Z1 =

Z
p̃1(x) dx

=

Z
p0 (x)

p0 (x)
p̃1(x) dx

= Z0

Z
p0(x)

p̃1(x)

p̃0(x)
dx

Z1

Z0
≈

KX

k=1

p̃(x(k))

p̃0(x(k))
s.t. : x (k) ∼ p0 (18.6)

In the last line, we make a Monte Carlo approximation of the integral using
samples drawn from p0(x) and then weigh each sample with the ratio of the
unnormalized p̃1 and the proposal p0 each evaluated at that sample.

If the distribution p0 is close to p1, this can be an effective way of estimating
the partition function (Minka, 2005). Unfortunately, most of the time p1 is both
complicated, i.e. multimodal, and defined over a high dimensional space. It is
difficult to find a tractable p0 that is simple enough to evaluate while still being
close enough to p1 to result in a high quality approximation. If p0 and p1 are not

close, most samples from p0 will have low probability under p1 and therefore make
(relatively) negligible contribution to the sum in Eq. 18.6. Having few samples
with significant weights in this sum will result in an estimator with high variance,
i.e. a poor quality estimator.

TODO: quantify this
We now turn to two related strategies developed to cope with the challeng-

ing task of estimating partition functions for complex distributions over high-

dimensional spaces: annealed importance sampling and Bennett’s ratio accep-
tance method. Both start with the simple importance sampling strategy intro-
duced above and both attempt to overcome the problem of the proposal p 0 being
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too far from p1 by introducing intermediate distributions that attempt to bridge
the gap between p0 and p1 .

18.7.1 Annealed Importance Sampling

TODO– describe how this is the main way of evaluating p(x) when you want
to get test set likelihoods but can’t be used for training TODO– also mention

Guillaume’s ”tracking the partition function” paper?
In situations where DKL(p0|p1) is large (i.e., where there is little overlap be-

tween p0 and p1), AIS attempts to bridge the gap by introducing intermediate
distributions. Consider a sequence of distributions pη0 , . . . , pηn , with 0 = η0 <
η1 < · · · < ηn−1 < ηn = 1 so that the first and last distributions in the sequence
are p0 and p1 respectively. We can now write the ratio Z1

Z0
as

Z1

Z0
=
Z1
Z0

Zη1

Zη1

· · ·
Zηn−1

Zηn−1

=
Zη 1
Z0

Zη2

Zη1
· · ·
Zη n−1

Zη n−2

Z1

Zηn−1

=
n−1Y

j=0

Zηj+1

Zηj

(18.7)

Provided the distributions pηj and pηj+1 , for all 0 ≤ j ≤ n − 1, are sufficiently

close, we can reliably estimate each of the factors
Zη j+1

Zηj
using simple importance

sampling and then use these to obtain an estimate of Z 1
Z 0

.
Where do these intermediate distributions come from? Just as the original

proposal distribution p0 is a design choice, so is the sequence of distributions
pη1 . . . pηn−1

. That is, it can be specifically constructed to suit the problem do-

main. One general-purpose and popular choice for the intermediate distributions
is to use the weighted geometric average of the target distribution p1 and the
starting proposal distribution (for which the partition function is known) p0:

pηj ∝ p ηj
1 p

1−η j

0 (18.8)

In order to sample from these intermediate distributions, we define a series of

Markov chain transition functions Tηj (x 0,x) that define the probability distribu-
tion of transitioning from x 0 to x. Tη j(x

0,x) is defined to leave pηj (x) invariant:

pηj (x) =

Z
pηj (x0 )Tηj(x

0 ,x) dx0 (18.9)
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These transitions may be constructed as any Markov chain Monte Carlo method
(e.g.. Metropolis-Hastings, Gibbs), including methods involving multiple scans or
other iterations.

The AIS sampling strategy is then to generate samples from p 0 and then use
the transition operators to sequentially generate samples from the intermediate
distributions until we arrive at samples from the target distribution p1:

• for k = 1 . . .K

– Sample x
(k)
η1 ∼ p0(x)

– Sample

vx
(k)
η2 ∼ Tη 1(x

(k)
η1 ,x)

– . . .

– Sample x
(k)
ηn−1 ∼ Tηn−2(x

(k)
ηn−2 ,x)

– Sample x
(k)
ηn ∼ T ηn−1(x

(k)
ηn−1 ,x)

• end

For sample k, we can derive the importance weight by chaining together the

importance weights for the jumps between the intermediate distributions given in
Eq. 18.7.

w(k) =
p̃η1(x

(k)
η 1 )

p̃0(x
(k)
0 )

p̃η2(x
(k)
η 2 )

p̃1(x
(k)
η1 )

. . .
p̃1 (x

(k)
1 )

p̃ηn−1
(x

(k)
ηn−1)

(18.10)

To avoid computational issues such as overflow, it is probably best to do the
computation in log space, i.e. lnw(k) = ln p̃η 1(x) − ln p̃0(x) + . . . .

With the sampling procedure thus define and the importance weights given

in Eq. 18.10, the estimate of the ratio of partition functions is given by:

Z1

Z0
≈ 1

K

KX

k=1

w(k) (18.11)

In order to verify that this procedure defines a valid importance sampling

scheme, we can show that the AIS procedure corresponds to simple importance

sampling on an extended state space with points sampled over the product space:
[xη1 , . . . ,xηn−1,x 1] Neal (2001).

We define the distribution over the extended space as:

p̃(xη1, . . . ,xηn−1 ,x1 ) = p̃1(x 1)T̃ηn−1 (x1,xηn−1)T̃η n−2(xηn−1 ,xηn−2 ) . . . T̃η1(xη2,xη 1 )
(18.12)
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where T̃a is the reverse of the transition operator defined by Ta (via an application
of Bayes’ rule):

T̃a(x,x0) =
p a(x0)

pa(x)
T a(x

0,x) =
p̃a(x0)

p̃ a(x)
Ta (x 0,x). (18.13)

Plugging the above into the expression for the joint distribution on the extended
state space given in Eq. 18.12, we get:

p̃(xη1 , . . . , xηn−1, x1)

= p̃1(x1)
p̃ηn−1(xηn−1 )

p̃ηn−1(x1 )
Tηn−1

(xηn−1
, x1 )

p̃ηn−2(xηn−2 )

p̃ηn−2(xηn−1 )
Tηn−2

(x ηn−2
, xηn−1

) . . .
p̃η1

(xη1 )

p̃η1 (xη2 )
Tη 1

(xη1 , xη2)

=
p̃1(x1)

p̃η n−1
(x 1)

T ηn−1 (xηn−1, x 1 )
p̃ηn−1

(xηn−1
)

p̃ηn−2
(xηn−1

)
Tηn−2(xη n−2, xη n−1 ) . . .

p̃ηn−2
(xη n−2

)

p̃η1(xη 2
)
Tη1(xη1, xη2)p̃η1(xη1)

(18.14)

If we now consider the sampling scheme given above as a means of generating
samples from a proposal distribution q over the extended state, with its distribu-

tion given by:

q(xη 1, . . . ,xηn−1
,x1) = p0(xη1)Tη1 (xη1,xη2 ) . . . Tηn−1

(xηn−1
,x1) (18.15)

We have a joint distribution on the extended space given by Eq. 18.14. Taking
q(xη1, . . . ,xηn−1 ,x1) as the proposal distribution on the extended state space from

which we will draw samples, it remains to determine the importance weights:

w (k) =
p̃(xη 1 , . . . ,xηn−1

,x1 )

q(xη 1 , . . . ,xηn−1 ,x1 )
=

p̃1(x
(k)
1 )

p̃ηn−1 (x
(k)
ηn−1)

. . .
p̃η2(x

(k)
η 2 )

p̃1(x
(k)
η 1 )

p̃η1 (x
(k)
η1 )

p̃0(x
(k)
0 )

(18.16)

These weights are the same as proposed for AIS. Thus we can interpret AIS as
simple importance sampling applied to an extended state and its validity follows
immediately from the validity of importance sampling.

Annealed importance sampling (AIS) was first discovered by Jarzynski (1997)

and then again, independently, by Neal (2001). It is currently the most common
way of estimating the partition function for undirected probabilistic models. The
reasons for this may have more to do with the publication of an influential paper
Salakhutdinov and Murray (2008) describing its application to estimating the
partition function of restricted Boltzmann machines and deep belief networks
than with any inherent advantage the method has over the other method described

below.
A discussion of the properties of the AIS estimator (e.g.. its variance and

efficiency) can be found in Neal (2001).
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18.7.2 Bridge Sampling

Bridge sampling Bennett (1976) is another method that, like AIS, addresses the
shortcomings of importance sampling; however it does so in a different but re-

lated manner. Rather than chaining together a series of intermediate distribu-
tions, bridge sampling relies on a single distribution p∗, known as the bridge,
to interpolate between a distribution with known partition function, p0, and a

distribution p1 for which we are trying to estimate the partition function Z1.
Bridge sampling estimates the ratio Z1/Z0 as the ratio of the expected impor-

tance weights between p̃0 and p̃∗ and between p̃1 and p̃∗ :

Z1

Z0
≈

KX

k=1

p̃∗(x
(k)
0 )

p̃0(x
(k)
0 )

,
KX

k=1

p̃ ∗(x
(k)
1 )

p̃ 1(x
(k)
1 )

(18.17)

If the bridge distribution p ∗ is chosen carefully to have a large overlap of support
with both p0 and p1, then bridge sampling can allow the distance between two
distributions (or more formally,DKL (p0|p1)) to be much larger than with standard

importance sampling.

It can be shown than the optimal bridging distribution is given by p
(opt)
∗ (x) ∝

p̃ 0(x)p̃1(x)
rp̃0(x)+p̃ 1(x)

where r = Z1 /Z0.
This appears to be an unworkable solution as it would seem to require the

very quantity we are trying to estimate, i.e. Z1 /Z0. However, it is possible to

start with a coarse estimate of r and use the resulting bridge distribution to refine
our estimate recursively Neal (2005).

TODO: illustration of the bridge distribution

18.7.3 Extensions

Linked importance sampling Both AIS and bridge sampling have their ad-

vantages. If DKL (p0|p1) is not too large (i.e. if p0 and p1 are sufficiently close)
bridge sampling can be a more effective means of estimating the ratio of partition
functions than AIS. If, however, the two distributions are too far apart for a sin-

gle distribution p∗ to bridge the gap then one can at least use AIS with potential
many intermediate distributions to span the distance between p 0 and p1. Neal

(2005) showed how his linked importance sampling method leveraged the power
of the bridge sampling strategy to bridge the intermediate distributions used in
AIS to significantly improve the overall partition function estimates.

Tracking the partition function while training Using a combination of

bridge sampling, AIS and parallel tempering, Desjardins et al. (2011) devised
a scheme to track the partition function of an RBM throughout the training
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process. The strategy is based on the maintenance of independent estimates of
the partition functions of the RBM at every temperature operating in the parallel
tempering scheme. The authors combined bridge sampling estimates of the ratios
of partition functions of neighboring chains (i.e. from parallel tempering) with
AIS estimates across time to come up with a low variance estimate of the partition
functions at every iteration of learning.
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Approximate inference

TODO: somewhere in this chapter, point out that variational inference implic-
itly defines a recurrent net, stochastic approximate inference implicitly defines a
stochastic recurrent net

Misplaced TODO: discussion of the different directions of the KL divergence,
and the effects on ignoring / preserving modes

Many probabilistic models are difficult to train because it is difficult to perform
inference in them. In the context of deep learning, we usually have a set of visible

variables v and a set of latent variables h. The challenge of inference usually refers
to the difficult problem of computing p(h | v) or taking expectations with respect
to it. Such operations are often necessary for tasks like maximum likelihood
learning.

Many simple graphical models with only one hidden layer, such as restricted
Boltzmann machines and probabilistic PCA are defined in a way that makes in-
ference operations like computing p(h | v) or taking expectations with respect to
it simple. Unfortunately, most graphical models with multiple layers of hidden
variables, such as deep belief networks and deep Boltzmann machines have in-
tractable posterior distributions. Exact inference requires an exponential amount

of time in these models. Even some models with only a single layer, such as sparse
coding, have this problem.

Intractable inference problems usually arise from interactions between latent
variables in a structured graphical model. See Fig. 19.1 for some examples. These
interactions may be due to direct interactions in undirected models or “explaining
away” interactions between mutual ancestors of the same visible unit in directed
models.
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Figure 19.1: Intractable inference problems are usually the result of interactions between
latent variables in a structured graphical model. These can be due to direct edges,
or due to paths that are activated when the child of a V-structure is observed. Left)
A semi-restricted Boltzmann machine with connections between hidden units. These
direct connections between latent variables make the posterior distribution complicated.
Center) A deep Boltzmann machine, organized into layers of variables without intra-
layer connections, still has an intractable posterior distribution due to the connections
between layers. Right) This directed model has interactions between latent variables
when the visible variables are observed, because ever two latent variables are co-parents.
Note that it is still possible to have these graph structures yet have tractable inference.
For example, probabilistic PCA has the graph structure shown in the right, yet simple

inference due to special properties of the specific conditional distributions it uses (linear-
Gaussian conditionals with mutually orthogonal basis vectors). MISPLACED TODO–
make sure probabilistic PCA is at least defined somewhere in the book
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19.1 Inference as Optimization

Many approaches to confronting the problem of difficult inference make use of the
observation that exact inference can be described as an optimization problem.

Specifically, assume we have a probabilistic model consisting of observed vari-
ables v and latent variables h. We would like to compute the log probability of
the observed data, log p(v;θ). Sometimes it is too difficult to compute log p(v;θ)
if it is costly to marginalize out h. Instead, we can compute a lower bound on it.

This bound is called the evidence lower bound (ELBO). Other names for this lower
bound include the negative variational free energy and the negative Helmholtz free

energy. Specifically, this lower bound is defined as TODO– figure out why I
was making q be bm in some but not all places

L(v,θ,q) = log p(v;θ) −DKL(q(h)kp(h | v; θ))

where q is an arbitrary probability distribution over h.
TODO: the below equations framebust It is straightforward to see that this

is a lower bound on log p(v):

ln p(v) = ln p(v) +
X

h

q(h | v) ln


p(v,h)

q(h | v)


−
X

h

q(h | v) ln


p(v,h)

q(h | v)



=
X

h

q(h | v) ln


p(v,h)

q(h | v)


−
X

h

q(h | v) ln


p(v,h)

q(h | v)


+
X

h

q(h | v) log p(v)

=
X

h

q(h | v) ln


p(v,h)

q(h | v)


−
X

h

q(h | v)


ln


p(v,h)

q(h | v)


− ln p(v)



=
X

h

q(h | v) ln


p(v,h)

q(h | v)


−
X

h

q(h | v) ln


p(v,h)

p(v)q(h | v)



=
X

h

q(h | v) ln


p(v,h)

q(h | v)


−
X

h

q(h | v) ln


p(h | v)

q(h | v)



= L(q) + KL(qkp)

Because the difference log p(v) and L(v,θ, q) is given by the KL-divergence and

because the KL-divergence is always non-negative, we can see that L always has
at most the same value as the desired log probability, and is equal to it if and
only if q is the same distribution as p(h | v).

Surprisingly, L can be considerably easier to compute for some distributions
q. Simple algebra shows that we can rearrange L into a much more convenient
form:

L(v,θ,q) = log p(v;θ) −DKL(q(h)kp(h | v; θ))
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= log p(v;θ) −Eh∼q
log q(h)

log p(h | v)

= log p(v;θ) −Eh∼q
log q(h)

log
p(h,v)
p(v)

= log p(v;θ) −Eh∼q [log q(h) − log p(h, v) + log p(v)]

= −Eh∼q [log q(h) − log p(h, v)] .

This yields the more canonical definition of the evidence lower bound,

L(v,θ,q) = Eh∼q [log p(h,v)] +H(q). (19.1)

The first term of L is known as the energy term. The second term is known
as the entropy term. For an appropriate choice of q, both terms can be easy to
compute. The only question is how close to p(h | v) the distribution q will be.
This determines how good of an approximation L will be for log p(v).

We can thus think of inference as the procedure for finding the q that max-
imizes L. Exact inference maximizes L perfectly. Throughout this chapter, we
will show how many forms of approximate inference are possible. No matter what

choice of q we use, L will give us a lower bound on the likelihood. We can get
tighter or looser bounds that are cheaper or more expensive to compute depending
on how we choose to approach this optimization problem. We can obtain a poorly

matched q but reduce the computational cost by using an imperfect optimization
procedure, or by using a perfect optimization procedure over a restricted family

of q distributions.

19.2 Expectation Maximization

Expectation maximization (EM) is a popular training algorithm for models with
latent variables. It consists of alternating between two steps until convergence:

• The E-step (Expectation step): Set q(h(i)) = p(h(i) | v(i);θ) for all indices i
of the training examples v(i) we want to train on (both batch and minibatch
variants are valid). By this we mean q is defined in terms of the current
value of θ; if we vary θ then p(h | v;θ) will change but q(h) will not.

• The M-step (Maximization step): Completely or partially maximize
P

i L(v(i),θ, q)
with respect to θ using your optimization algorithm of choice.

This can be viewed as a coordinate ascent algorithm to maximize L. On one
step, we maximize L with respect to q, and on the other, we maximize L with
respect to θ.
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Stochastic gradient ascent on latent variable models can be seen as a special
case of the EM algorithm where the M step consists of taking a single gradient
step. Other variants of the EM algorithm can make much larger steps. For some
model families, the M step can even be performed analytically, jumping all the
way to the optimal solution given the current q.

Even though the E-step involves exact inference, we can think of the EM
algorithm as using approximate inference in some sense. Specifically, the M-step
assumes that the same value of q can be used for all values of θ. This will introduce
a gap between L and the true log p(v) as the M-step moves further and further.

Fortunately, the E-step reduces the gap to zero again as we enter the loop for the
next time.

The EM algorithm is a workhorse of classical machine learning, and it can be
considered to be used in deep learning in the sense that stochastic gradient ascent
can be seen as EM with a very simple and small M step. However, because L
can not be analytically maximized for many interesting deep models, the more
general EM framework as a whole is typically not explored in the deep learning
research community.

TODO–cite the emview paper

19.3 MAP Inference: Sparse Coding as a Probabilis-
tic Model

TODO synch up with other sections on sparse coding
Many versions of sparse coding can be cast as probabilistic models. For ex-

ample, suppose we encode visible data v ∈ Rn with latent variables h ∈ Rm . We

can use a prior to encourage our latent code variables to be sparse:

p(h) = TODO.

We can define the visible units to be Gaussian with an affine transformation from
the code to the mean of the Gaussian:

v ∼ N (v | µ+Wh,β−1)

where β is a diagonal precision matrix to maintain tractability.
Computing p(h | v) is difficult. TODO explain why
One operation that we can do is perform maximum a posteriori (MAP) infer-

ence, which means solving the following optimization problem:

h∗ = arg max p(h | v).

This yields the familiar optimization problem
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TODO synch with other sparse coding sections, make sure the other sections
talk about using gradient descent, feature sign, ISTA, etc.

This shows that the popular feature extraction strategy for sparse coding can
be justified as having a probabilistic interpretation–it may be MAP inference in
this probabilistic model ( there are other probabilistic models that yield the same
optimization problem, so we cannot positively identify this specific model from
the feature extraction process ).

Excitingly, MAP inference of h given v also has an interpretation in terms
of maximizing the evidence lower bound. Specifically, MAP inference maximizes

L with respect to q under the constraint that q take the form form of a Dirac
distribution. During learning of sparse coding, we alternate between using convex

optimization to extract the codes, and using convex optimization to update W
to achieve the optimal reconstruction given the codes. This turns out to be
equivalent to maximizing L with respect to θ for the q that was obtained from
MAP inference. The learning algorithm can be thought of as EM restricted to
using a Dirac posterior. In other words, rather than performing learning exactly
using standard inference, we learn to maximize a bound on the true likelihood,
using exact MAP inference.

19.4 Variational Inference and Learning

One common difficulty in probabilistic modeling is that the posterior distribution

p(h | v) is infeasible to compute for many models with hidden variables h and
visible variables v. Expectations with respect to this distribution may also be
intractable.

Consider as an example the binary sparse coding model. In this model, the
input v ∈ Rn is formed by adding Gaussian noise to the sum of m different
components which can each be present or absent. Each component is switched
on or off by the corresponding hidden unit in h ∈ {0, 1}m:

p(hi = 1) = σ(b i)

p(v | h) = N (v |Wh, β−1 )

where b is a learn-able set of biases, W is a learn-able weight matrix, and β

is a learn-able, diagonal precision matrix.
Training this model with maximum likelihood requires taking the derivative

with respect to the parameters. Consider the derivative with respect to one of
the biases:

∂

∂bi
log p(v)
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=
∂

∂bi
p(v)

p(v)

=

∂
∂b i

P
h p(h,v)

p(v)

=
∂

∂bi

P
h p(h)p(v | h)

p(v)

=

P
h
p(v | h) ∂

∂b i
p(h)

p(v)

=
X

h

p(h | v)
∂

∂bi
p(h)

p(h)

=
X

h

p(h | v)
∂

∂bi
p(h)

p(h)

= Eh p(h|v)
∂

∂bi
log p(h).

This requires computing expectations with respect to p(h | v). Unfortunately,
p(h | v) is a complicated distribution. See Fig. 19.2 for the graph structure of
p(h,v) and p(h | v). The posterior distribution corresponds to the complete
graph over the hidden units, so variable elimination algorithms do not help us to
compute the required expectations any faster than brute force.

One solution to this problem is to use variational methods. Variational meth-
ods involve using a simple distribution q(h) to approximate the true, complicated

posterior p(h | v). The name “variational” derives from their frequent use of a
branch of mathematics called calculus of variations. However, not all variational
methods use calculus of variations.

TODO variational inference involves maximization of a BOUND TODO vari-
ational inference also usually involves a restriction on the function family

TODO

19.4.1 Discrete Latent Variables

TODO– BSC example
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h1 h2 h3

v
1

v
2

v
3

h4 h1

h
2

h3

h
4

Figure 19.2: The graph structure of a binary sparse coding model with four hidden units.
Left) The graph structure of p(h, v). Note that the edges are directed, and that every
two hidden units co-parents of every visible unit. Right) The graph structure of p(h | v).
In order to account for the active paths between co-parents, the posterior distribution
needs an edge between all of the hidden units.

19.4.2 Calculus of Variations

Many machine learning techniques are based on minimizing a function J(θ) by
finding the input vector θ ∈ R

n for which it takes on its minimal value. This can

be accomplished with multivariate calculus and linear algebra, by solving for the
critical points where ∇θJ(θ) = 0. In some cases, we actually want to solve for a

function f (x), such as when we want to find the probability density function over
some random variable. This is what calculus of variations enables us to do.

A function of a function f is known as a functional J [f]. Much as we can
take partial derivatives of a function with respect to elements of its vector-valued

argument, we can take functional derivatives, also known as variational derivatives
of a functional J[f ] with respect to respect to individual values of the function

f(x). The functional derivative of the functional J with respect to the value of
the function f at point x is denoted δ

δf(x)
J.

A complete formal development of functional derivatives is beyond the scope

of this book. For our purposes, it is sufficient to state that for differentiable

functions f(x) and differentiable functions g(y,x) with continuous derivatives,

that
δ

δf(x)

Z
g (f(x),x)dx =

∂

∂y
g(f(x),x). (19.2)

To gain some intuition for this identity, one can think of f(x) as being a vector
with uncountably many elements, indexed by a real vector x. In this (somewhat
incomplete view), the identity providing the functional derivatives is the same as
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we would obtain for a vector θ ∈ Rn indexed by positive integers:

∂

∂θi

X

j

g(θ j , j) =
∂

∂θ i
g(θi, i).

Many results in other machine learning publications are presented using the more
general Euler-Lagrange equation which allows g to depend on the derivatives of f

as well as the value of f , but we do not need this fully general form for the results
presented in this book.

To optimize a function with respect to a vector, we take the gradient of the
function with respect to the vector and solve for the point where every element

of the gradient is equal to zero. Likewise, we can optimize a functional by solving
for the function where the functional derivative at every point is equal to zero.

As an example of how this process works, consider the problem of finding the
probability distribution function over x ∈ R that has maximal Shannon entropy.
Recall that the entropy of a probability distribution p(x) is defined as

H[p] = −Exlog p(x).

For continuous values, the expectation is an integral:

H[p] = −
Z
p(x) log p(x)dx.

We cannot simply maximize H(x) with respect to the function p(x), because
the result might not be a probability distribution. Instead, we need to use La-
grange multipliers, to add a constraint that p(x) integrate to 1. Also, the entropy

increases without bound as the variance increases, so we can only search for the
distribution with maximal entropy for fixed variance σ 2. Finally, the problem
is underdetermined because the distribution can be shifted arbitrarily without

changing the entropy. To impose a unique solution, we add a constraint that the
mean of the distribution be µ. The Lagrangian functional for this optimization

problem is

L[p] = λ1

Z
p(x)dx− 1


+ λ2 (E[x] − µ) + λ3


E[(x− µ) 2] − σ2


+H[p]

=

Z 
λ1p(x) + λ2p(x)x+ λ3 p(x)(x− µ)2 − p(x) log p(x)


dx− λ1 − µλ 2− σ2λ3.

To minimize the Lagrangian with respect to p, we set the functional derivatives

equal to 0:

∀x, δ

δp(x)
L = λ1 + λ2x+ λ 3(x− µ)2 − 1 − log p(x) = 0.
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This condition now tells us the functional form of p(x). By algebraically re-
arranging the equation, we obtain

p(x) = exp

−λ1 − λ2x+ λ3 (x− µ)2+ 1


.

We never assumed directly that p(x) would take this functional form; we
obtained the expression itself by analytically minimizing a functional. To finish
the minimization problem, we must choose the λ values to ensure that all of our

constraints are satisfied. We are free to choose any λ values, because the gradient
of the Lagrangian with respect to the λ variables is zero so long as the constraints
are satisfied. To satisfy all of the constraints, we may set λ1 = log σ

√
2π, λ2 = 0,

and λ3 = − 1
2σ2

to obtain

p(x) = N (x | µ, σ2).

This is one reason for using the normal distribution when we do not know the
true distribution. Because the normal distribution has the maximum entropy, we
impose the least possible amount of structure by making this assumption.

What about the probability distribution function that minimizes the entropy?
It turns out that there is no specific function that achieves minimal entropy. As

functions place more mass on x = µ±σ and less on all other values of x, they lose
entropy. However, any function placing exactly zero mass on all but two points

does not integrate to one, and is not a valid probability distribution. There thus
is no single minimal entropy probability distribution function, much as there is
no single minimal positive real number.

19.4.3 Continuous Latent Variables

TODO: Gaussian example from IG’s thesis? TODO: S3C example

19.5 Stochastic Inference

TODO: Charlie Tang’s SFNNs? Is there anything else where sampling-based
inference actually gets used?

19.6 Learned Approximate Inference

TODO: wake-sleep algorithm
In chapter 18.2 we saw that one possible explanation for the role of dream

sleep in human beings and animals is that dreams could provide the negative
phase samples that Monte Carlo training algorithms use to approximate the neg-
ative gradient of the log partition function of undirected models. Another possible
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explanation for biological dreaming is that it is providing samples from p(h,v)
which can be used to train an inference network to predict h given v. In some
senses, this explanation is more satisfying than the partition function explanation.
Monte Carlo algorithms generally do not perform well if they are run using only
the positive phase of the gradient for several steps then with only the negative
phase of the gradient for several steps. Human beings and animals are usually
awake for several consecutive hours then asleep for several consecutive hours, and
it is not readily apparent how this schedule could support Monte Carlo training
of an undirected model. Learning algorithms based on maximizing L can be run

with prolonged periods of improving q and prolonged periods of improving θ,
however. If the role of biological dreaming is to train networks for predicting q,

then this explains how animals are able to remain awake for several hours (the
longer they are awake, the greater the gap between L and log p(v), but L will re-
main a lower bound) and to remain asleep for several hours (the generative model
itself is not modified during sleep) without damaging their internal models. Of
course, these ideas are purely speculative, and there is no hard evidence to sug-
gest that dreaming accomplishes either of these goals. Dreaming may also serve
reinforcement learning rather than probabilistic modeling, by sampling synthetic
experiences from the animal’s transition model, on which to train the animal’s

policy. Or sleep may serve some other purpose not yet anticipated by the machine
learning community.

TODO: DARN and NVIL? TODO: fast DBM inference

512



Chapter 20

Deep Generative Models

In this chapter, we present several of the specific kinds of generative models that
can be built and trained using the techniques presented in chapters 13, 18 and
19. All of these models represent probability distributions over multiple variables
in some way. Some allow the probability distribution function to be evaluated
explicitly. Others do not allow the evaluation of the probability distribution

function, but support operations that implicitly require knowledge of it, such as
sampling. Some of these models are structured probabilistic models described in

terms of graphs and factors, as described in chapter 13. Others can not easily be
described in terms of factors, but represent probability distributions nonetheless.

20.1 Boltzmann Machines

Boltzmann machines were originally introduced in Ackley et al. (1985) as a gen-
eral “connectionist” approach to learning arbitrary probability distributions over
binary vectors. Boltzmann Machines form the basis of a large number of popular
variants. Indeed, these variants have long ago surpassed the popularity of the

original and most general incarnation of the Boltzmann machine. In this section
we briefly introduce the general Boltzmann machine and discuss the issues that

come up when trying to train and perform inference in the model.
We define our Boltzmann machine over a d-dimensional binary random vector

x ∈ {0,1}d. The Boltzmann machine is an energy-based model1, meaning we
define the joint probability distribution over the model variable using an energy
function.

P (x) =
exp (−E(x))

Z
. (20.1)

Where E(x) is the energy function and Z is the partition function, that ensures

1For a general discussion of energy based models see Sec. 13.2.4
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Figure 20.1: Examples of models that may be built with restricted Boltzmann machines.
a) The restricted Boltzmann machine itself is an undirected graphical model based on a

bipartite graph. There are no connections among the visible units, nor any connections
among the hidden units. Typically every visible unit is connected to every hidden unit
but it is possible to construct sparsely connected RBMs such as convolutional RBMs. b)
A deep belief network is a hybrid graphical model involving both directed and undirected
connections. Like an RBM, it has no intra-layer connections. However, a DBN has
multiple hidden layers, and thus there are connections between hidden units that are in
separate layers. All of the local conditional probability distributions needed by the deep
belief network are copied directly from the local conditional probability distributions of
its constituent RBMs. Note that we could also represent the deep belief network with
a completely undirected graph, but it would need intra-layer connections to capture the
dependencies between parents. c) A deep Boltzmann machine is an undirected graphical
model with several layers of latent variables. Like RBMs and DBNs, DBMs lack intra-
layer connections. DBMs are less closely tied to RBMs than DBNs are. When initializing
a DBM from a stack of RBMs, it is necessary to modify the RBM parameters slightly.

Some kinds of DBMs may be trained without first training a set of RBMs.
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that the
P

xP (x) = 1. The energy function of the Boltzmann machine is given
by:

E(x) = −x>Ux− b>x, (20.2)

where U is the “weight” matrix of model parameters and b are the offsets for
each x.

In the general setting of the Boltzmann machine, we could consider that the

goal is that we are given a set of observations, each of which are d-dimensional and
that we are to use the joint probability distribution given in Eq. 20.1 describes

the joint probability distribution over the observed variables (also called visible
units). While this scenario is certainly viable, it does limit the kinds of inter-
actions between the observed variables to those described by the weight matrix.
Specifically it limits the model to 2nd-order interactions.

In the spirit of the “connectionist” approach to density modeling that origi-
nally inspired the Boltzmann machine, it is interesting to consider the case where
not all the variables are observed. In this case, the non-observed variables, or
latent variables can act similarly to hidden units in a multi-layer perceptron and
model higher-order interactions among the visible units.

Formally, we decompose the units into two subsets: the visible units xv and

the latent (or hidden) units xh . Without loss of generality, we can re-express the
energy function decomposing x into subsets xv and xh:

E(xv,xh) = −x>v Rxv − x>vWxh− x>hSxh − b>xv − c>xh, (20.3)

Boltzmann Machine Learning As a probabilistic model, it is natural to con-

sider maximum likelihood as the learning paradigm for Boltzmann machines. Ac-
cording to the ML paradigm, we are interested in choosing the parameters that

(locally) maximize the probability of the visible units over a dataset.

Consider a dataset of n examples Xv = [x
(1)
v , . . . ,x

(t)
v , . . . ,xn

v ]. Our goal is to
maximize the likelihood of this dataset under the Boltzmann machine. Assuming
the data is i.i.d, this amounts to maximizing the following:

`(θ) = logP (Xv) =
nX

t=1

logP (x(t)v ). (20.4)

Of course, our Boltzmann machine does not explicitly parametrize a distribution

over the visible units as P (x
(t)
v ), instead, as given in Eq. 20.3, it is parametrized

via an energy function to joint probability distribution over xv and xh, the hidden

units. In order to recover P (x
(t)
v ), we need to marginalize out the influence of xh.

P (x(t)
v ) =

X
xh

P (x(t)v ,x
(t)
h ) =

X
xh

1

Z
exp

n
−E(x(t)v ,x

(t)
h )

o
. (20.5)
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Combining Eqs. 20.4 and 20.5 gives us our objective function we wish to maxi-
mize. Unfortunately, because Z is a function of the model parameters, maximizing
likelihood function is not amenable to analytically solution. Instead we will do as
we do for the vast majority of deep learning models, we will follow the gradient of
our objective function. The Boltzmann machine likelihood gradient is given by:

∂

∂θ
`(θ) =

∂

∂θ

 
nX

t=1

"
1

Z
log
X

xh

exp
n
−E(x(t)

v ,x
(t)
h )
o#!

(20.6)

=
nX

t=1

∂

∂θ

"
log

X

xh

exp
n
−E(x(t)v ,x

(t)
h

)
o#

− ∂Z

∂θ
(20.7)

=
nX

t=1




X

x h

exp
n
−E(x

(t)
v ,x

(t)
h )
o

P
xh

exp
n
−E(x

(t)
v ,x

(t)
h )
o ∂

∂θ
E(x (t)

v ,x
(t)
h )



 −
∂Z

∂θ
(20.8)

20.2 Restricted Boltzmann Machines

Restricted Boltzmann machines are some of the most common building blocks

of deep probabilistic models. They are undirected probabilistic graphical models
containing a layer of observable variables and a single layer of latent variables.

RBMs may be stacked (one on top of the other) to form deeper models. See
Fig. 20.1 for some examples. In particular, Fig. 20.1a shows the graph structure
of an RBM itself. It is a bipartite graph: with no connections permitted between
any variables in the observed layer or between any units in the latent layer.

TODO– review and pointers to other sections of the book This should be the
main place where they are described in detail, earlier they are just an example of

undirected models or an example of a feature learning algorithm.
TODO: please use lower-case letter names for scalars, none of this D and N

stuff. do we even use these variable names anywhere, or do we just define them
and never refer back to them? if they are never used, delete them, don’t make
the reader hold variables in their head for no payoff

More formally, we will consider the observed layer to consist of a set of D
binary random variables which we refer to collectively with the vector v, where
the ith element, i.e. v i is a binary random variable. We will refer to the latent
or hidden layer of N random variables collectively as h, with the jth random
elements as h j.

Like the general Boltzmann machine, the restricted Boltzmann machine is an

energy-based model with the joint probability distribution specified by its energy
function:

P (v = v,h = h) =
1

Z
exp{−E(v,h)} .
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Where E(v,h) is the energy function that parametrizes the relationship between
the visible and hidden variables:

E(v,h) = −b>v − c>h − v>Wh, (20.9)

and the Z is the normalizing constant known as the partition function:

Z =
X

v

X

h

exp{−E(v,h)} .

For many undirected models, it is apparent from the definition of the partition
function Z that the naive method of computing Z (exhaustively summing over
all states) would be computationally intractable. However, it is still possible that
a more cleverly designed algorithm could exploit regularities in the probability
distribution to compute Z faster than the naive algorithm, so the exponential cost

of the naive algorithm is not a guarantee of the partiion function’s intractability.
In the case of restricted Boltzmann machines, there is actually a hardness result,
proven by Long and Servedio (2010).

20.2.1 Conditional Distributions

The intractable partition function Z, implies that the joint probability distribu-
tion is also intractable (in the sense that the normalized probability of a given
joint configuration of [v,h] is generally not available). However, due the bipartite
graph structure, the restricted Boltzmann machine has the very special property
that its conditional distributions P (h | v) and P (v | h) are factorial and relatively
simple to compute and sample from. Indeed, it is this property that has made
the RBM a relatively popular model for a wide range of applications including

image modeling (TODO CITE), speech processing (TODO CITE) and natural
language processing (TODO CITE).

Deriving the conditional distributions from the joint distribution is straight-
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forward.

p(h | v) = p(h,v)

p(v)

=
p(h,v)

p(v)

=
1

p(v)

1

Z
exp

n
b>v + c>h + v>Wh

o

=
1

Z 0 exp
n
c>h + v>Wh

o

=
1

Z 0 exp






nX

j=1

cjh j +
nX

j=1

v>W:,jh j






=
1

Z 0

nY

j=1

exp
n
cjhj + v

>
W :,jhj

o

Since we are conditioning on the visible units v, we can treat these as constants
w.r.t. the distribution p(h | v). The factorial nature of the conditional p(h | v)

follows immediately from our ability to wright the joint probability over the vector
h as the product of (unnormalized) distributions over the individual elements,

h j . It is now a simple matter of normalizing the distributions over the individual
binary hj .

P (hj = 1 | v) =
P̃ (h j = 1 | v)

P̃ (hj = 0 | v) +P̃ (h j = 1 | v)

=
exp


cj + v>W:,j



exp{0} + exp {cj + v>W:,j}

= sigmoid

cj + v>W:,j


. (20.10)

We can now express the full conditional over the hidden layer as the factorial
distribution:

P (h | v) =
nY

j=1

sigmoid

cj + v>W:,j


. (20.11)

A similar derivation will show that the other condition of interest to us, P (v |
h), is also a factorial distribution:

P (v | h) =

d

Y
i=1

sigmoid (bi +Wi,:h) . (20.12)
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20.2.2 RBM Gibbs Sampling

The factorial nature of these conditions is a very useful property of the RBM,
and allows us to efficiently draw samples from the joint distribution via a block

Gibbs sampling strategy (see section 14.1 for a more complete discussion of Gibbs
sampling methods).

Block Gibbs sampling simply refers to the situation where in each step of Gibbs
sampling, multiple variables (or a “block” of variables) are sampled jointly. In

the case of the RBM, each iteration of block Gibbs sampling consists of two steps.
Step 1: Sample h(l) ∼ P (h | v(l)). Due to the factorial nature of the conditionals,
we can simultaneously and independently sample from all the elements of h (l)

given v(l). Step 2: Sample v (l+1) ∼ P (v | h(l)). Again, the factorial nature
of the conditional P (v | h (l)) allows us can simultaneously and independently
sample from all the elements of v (l+1) given h(l).

20.3 Training Restricted Boltzmann Machines

Despite the simplicity of the RBM conditionals, training these models is not with-
out its complications. As a probabilistic model, a sensible inductive principle for
estimating the model parameters is maximum likelihood – though other possi-
bilities are certainly possible Marlin et al. (2010) and will be discussed later in
Sec. 20.3.3. In the following we derive the maximum likelihood gradient with

respect to the model parameters.
Let us consider that we have a batch (or minibatch) of n examples taken from

an i.i.d dataset (independently and identically distributed examples) {v(1), . . . ,v (t), . . . ,v(n)}.
The log likelihood under the RBM with parameters b (visible unit biases), c (hid-
den unit biases) and W (interaction weights) is given by:

`(W , b,c) =
nX

t=1

logP (v(t))

=
nX

t=1

log
X

h

P (v(t)n,:,h)

=

 
nX

t=1

log
X

h

exp
n
−E(v(t) ,h)

o!
− n logZ

=

 
nX

t=1

log
X

h

exp
n
−E(v(t) ,h)

o!
− n log

X

v,h

exp{−E(v,h)}

(20.13)
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In the last line of the equation above, we have used the definition of the partition
function.

To maximize the likelihood of the data under the restricted Boltzmann ma-
chine, we consider the gradient of the likelihood with respect to the model pa-
rameters, which we will refer to collectively as θ = {b,c,W}:

∇θ`(θ) = ∇θ

 
nX

t=1

log
X

h

exp
n
−E(v (t),h)

o!
− n

∂

∂θ
log
X

v,h

exp{−E(v,h)}

=

nX

t=1

P
h exp


−E(v (t),h)


∇θ − E(v(t) ,h)

P
h exp


−E(v(t) ,h)

 − n

P
v,h exp{−E(v,h)}∇θ − E(v,h)P

v,h exp{−E(v,h)}

=

nX

t=1

EP (h|v(t) )

h
∇ θ− E(v (t),h)

i
− nEP (v,h) [∇ θ − E(v,h)] (20.14)

As we can see from Eq. 20.14, the gradient of the log likelihood is specified as the
difference between two expectations of the gradient of the energy function, The
first expectation (the data term) is with respect to the product of the empirical
distribution over the data, P (v) = 1/n

Pn
t=1 δ(x − v (t)) 2 and the conditional

distribution P (h | v (t)). The second expectation (the model term) is with respect
to the joint model distribution P (v,h).

This difference between a data-driven term and a model-driven term is not
unique to RBMs, as discussed in some detail in Sec. 18.2, this is a general feature

of the maximum likelihood gradient for all undirected models.
We can complete the derivation of log-likelihood gradient by expanding the

term: ∇θ − E(v,h). We will consider first the gradient of the negative energy
function of W .

(20.15)

nablaW − E(v,h) =
∂

∂W


b>v + c>h + v>Wh



= hv
>

(20.16)

The gradients with respect to b and c are similarly derived:

∇b − E(v,h) = v,∇c − E(v,h) = h (20.17)

2As discussed in Sec. 3.10.4, we use the term empirical distribution to refer to a mixture over

delta functions placed on training examples
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Putting it all together we can the following equations for the gradients with
respect to the RBM parameters and given n training examples:

∇W `(W , b,c) =
nX

t=1

ĥ(t) v(t) > − NEP (v,h)

h
hv>

i

∇b`(W , b,c) =
nX

t=1

v(t)− nE P (v,h)[v]

∇c`(W , b,c) =
nX

t=1

ĥ
(t) − nEP (v,h) [h]

where we have defined ĥ(t) as

ĥ (t) = EP (h|v(t)) [h] = sigmoid

c + v(t)W


. (20.18)

While we are able to write down these expressions for the log-likelihood gra-
dient, unfortunately, in most situations of interest, we are not able to use them
directly to calculate gradients. The problem is the expectations over the joint
model distribution P(v,h). While we have conditional distributions P (v | h)

and P (h | v) that are easy to work with, the RBM joint distribution is not
amenable to analytic evaluation of the expectation EP (v,h) [f(v,h)].

This is bad news—it implies that in most cases it is impractical to compute
the exact log-likelihood gradient. Fortunately, as discussed in Sec. 18.2, there

are two widely used approximation strategies that have been applied to the train-

ing of RBM with some degree of success: contrastive divergence and stochastic
maximum likelihood.

In the following sections we discuss two different strategies to approximate this
gradient that have been applied to training the RBM. However, before getting into

the actual training algorithms, it is worth considering what general approaches
are available to us in approximating the log-likelihood gradient. As we mentioned,

our problem stems from the expectation over the joint distributionP (v,h), but we
know that we have access to factorial conditionals and that we can use these as the

basis of a Gibbs sampling procedure to recover samples form the joint distribution

(as discussed in Sec. 20.2.2). Thus, we can imagine using, for example, T MCMC
samples from P (v,h) to form a Monte Carlo estimate of the expectations over
the joint distribution:

EP (v,h) [f(v,h)] ≈ 1

T

TX

t=1

f(v (t),h (t)). (20.19)

There is a problem with this strategy that has to do with the initialization of the
MCMC chain. MCMC chains typically require a burn-in period, where the chain
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20.3.1 Contrastive Divergence Training of the RBM

As discussed in a more general context in Sec. 18.2, Contrastive divergence (CD)
seeks to approximate the expectation over the joint distribution with samples

drawn from short Gibbs sampling chains. CD deals with the typical requirement
for an extended burn-in sample sequence by initializing these chains at the data
points used in the data-dependent, conditional term. The result is a biased ap-
proximation of the log-likelihood gradient (Carreira-Perpiñan and Hinton, 2005;

Bengio and Delalleau, 2009; Fischer and Igel, 2011), that never-the-less has been
empirically shown to be effective. The constrastive divergence algorithm, as ap-
plied to RBMs, is given in Algorithm 20.1.

Algorithm 20.1 The contrastive divergence algorithm, using gradient ascent as
the optimization procedure.

Set , the step size, to a small positive number

Set k, the number of Gibbs steps, high enough to allow a Markov chain of

p(v; θ) to mix when initializedfrom pdata. Perhaps 1-20 to train an RBM on a
small image patch.
while Not converged do

Sample a minibatch of m examples from the training set {v(1), . . . ,v (m)}.
∆W ← 1

m

Pm
t=1 v

(t)ĥ (t) >

∆b ← 1
m

P
m
t=1v

(t)

∆c ← 1
m

Pm
t=1 ĥ

(t)

for t = 1 to m do
ṽ(t) ← v(t)

end for
for l = 1 to k do

for t = 1 to m do
h̃(t) sampled from

Qn
j=1 sigmoid


cj + ṽ (t) >W:,j


.

ṽ (t)sampled from
Qd

i=1 sigmoid

bi +W i,:h̃

(t)


.

end for

end for
h̄(t) ← sigmoid


c + ṽ (t) >W



∆W ← ∆W − 1
m

Pm
t=1 ṽ

(t)̄h(t) >

∆b ← ∆b− 1
m

Pm
t=1 ṽ

(t)

∆c ← ∆b− 1
m

Pm
t=1h̄

(t)

W ←W + ∆W

b← b+ ∆b

c← c+ ∆c

end while
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20.3.2 Stochastic Maximum Likelihood (Persistent Contrastive
Divergence) for the RBM

While contrastive divergence has been the most popular method of training

RBMs, the stochastic maximum likelihood (SML) algorithm (Younes, 1998; Tiele-
man, 2008) is known to be a competitive alternative – especially if we are inter-
ested in recovering the best possible generative model (i.e. achieving the highest
possible test set likelihood). As with CD, the general SML algorithm is described

in Sec. 18.2. Here we are concerned with how to apply the algorithm to training
an RBM.

In comparison to the CD algorithm, SML uses an alternative solution to the
problem of how to approximate the partition function’s contribution to the log-
likelihood gradient. Instead of initializing the k-step MCMC chain with the cur-
rent example from the training set, in SML we initialize the MCMC chain for
training iteration s with the last state of the MCMC chain from the last training

iteration (s−1). Assuming that the gradient updates to the model parameters do
not significantly change the model, the MCMC state of the last iteration should
be close to the equilibrium distribution at iteration s – minimizing the number of
“burn-in” MCMC steps needed to reach equilibrium at the current iteration. As
with CD, in practice we often use just one Gibbs step between learning iterations.

Algorithm 20.2 describes the SML algorithm as applied to RBMs.

TODO: include experimental examples, i.e. an RBM trained with CD on
MNIST

20.3.3 Other Inductive Principles

TODO:Other inductive principles have been used to train RBMs. In this section
we briefly discuss these.

20.4 Deep Belief Networks

Deep belief networks (DBNs) were one of the first successful non-convolutional
architectures. The introduction of deep belief networks in 2006 began the cur-
rent deep learning renaissance. Prior to the introduction of deep belief networks,
deep models were considered too difficult to optimize, due to the vanishing and
exploding gradient problems and the existence of plateaus, negative curvature,
and suboptimal local minima that can arise in neural network objective func-
tions. Kernel machines with convex objective functions dominated the research

landscape. Deep belief networks demonstrated that deep architectures can be
successful, by outperforming kernelized support vector machines on the MNIST

dataset (Hinton et al., 2006). Today, deep belief networks have mostly fallen out
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Algorithm 20.2 The stochastic maximum likelihood / persistent contrastive
divergence algorithm for training an RBM.

Set , the step size, to a small positive number
Set k, the number of Gibbs steps, high enough to allow a Markov chain of
p(v,h;θ+∆θ ) toburn in, starting from samples from p(v,h;θ). Perhaps 1 for

RBM on a small image patch.
Initialize a set of m samples {̃v (1), . . . , ṽ(m)} to random values (e.g., from a uni-
form or normal distribution, or possibly a distribution with marginals matched
to the model’s marginals)
while Not converged do

Sample a minibatch of m examples {v (1), . . . ,v(m)} from the training set.
∆W ← 1

m

Pm
t=1 ĥ

(t)v (t) >

∆b ← 1
m

Pm
t=1v

(t)

∆c ← 1
m

Pm
t=1 ĥ

(t)

for l = 1 to k do
for t = 1 to m do
h̃(t) sampled from

Qn
j=1 sigmoid


cj + ṽ (t) >W:,j


.

ṽ (t)sampled from
Qd

i=1
sigmoid


bi +W i,:h̃

(t)


.

end for
end for

∆W ← ∆W − 1
m

Pm
t=1 ṽ

(t)̃h(t) >

∆b ← ∆b− 1
m

Pm
t=1 ṽ

(t)

∆c ← ∆b− 1
m

Pm
t=1h̃

(t)

W ←W + ∆W

b← b+ ∆b

c← c+ ∆c

end while

of favor and are rarely used, even compared to other unsupervised or generative

learning algorithms, but they are still deservedly recognized for their important
role in deep learning history.

Deep belief networks are generative models with several layers of latent vari-

ables. The latent variables are typically binary, and the visible units may be
binary or real. There are no intra-layer connections. Usually, every unit in each
layer is connected to every unit in each neighboring layer, though it is possible to

construct more sparsely connected DBNs. The connections between the top two

layers are undirected. The connections between all other layers are directed, with
the arrows pointed toward the layer that is closest to the data. See Fig. 20.1b for

an example.
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A DBN with L hidden layers contains L weight matrices: W (1), . . . ,W (L). It
also contains L + 1 bias vectors: b(0) , . . . , b(L) with b(0) providing the biases for
the visible layer. The probability distribution represented by the DBN is given
by

p(h (L),h(L−1) ) ∝ exp

b (L)>h(L) + b(L−1)>h (L−1)+ h(L−1)>W(L)h(L)


,

p(h
(l)
i = 1 | h(l+1)

) = σ

b
(l)
i +W

(l+1)>
:,i h

(l+1)

∀i,∀l ∈ 1, . . . , L− 2,

p(v i = 1 | h(1)) = σ

b
(0)
i +W

(1)>
:,i h (1)


∀i.

In the cause of real-valued visible units, substitute

v ∼ N

v | b(0) +W(1)>h(1),β−1



with β diagonal for tractability. Generalizations to other exponential family vis-

ible units are straightforward, at least in theory. Note that a DBN with only one

hidden layer is just an RBM.
To generate a sample from a DBN, we first run several steps of Gibbs sampling

on the top two hidden layers. This stage is essentially drawing a sample from the
RBM defined by the top two hidden layers. We can then use a single pass of
ancestral sampling through the rest of the model to draw a sample from the

visible units.
Inference in a deep belief network is intractable due to the explaining away

effect within each directed layer, and due to the interaction between the two final
hidden layers. Evaluating or maximizing the standard evidence lower bound on
the log likelihood is also intractable, because the evidence lower bound takes the

expectation of cliques whose size is equal to the network width.
Evaluating or maximizing the log likelihood requires not just confronting the

problem of intractable inference to marginalize out the latent variables, but also
the problem of an intractable partition function within the undirected model of
the last two layers.

As a hybrid of directed and undirected models, deep belief networks encounter
many of the difficulties associated with both families of models. Because deep be-
lief networks are partially undirected, they require Markov chains for sampling

and have an intractable partition function. Because they are directed and gener-
ally consist of binary random variables, their evidence lower bound is intractable.

TODO–training procedure TODO–discriminative fine-tuning TODO–view of
MLP as variational inference with very loose bound comment on how this does
not capture intra-layer explaining away interactions comment on how this does
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not capture inter-layer feedback interactions TODO–quantitative analysis with
AIS TODO–wake sleep?

The term “deep belief network” is commonly used incorrectly to refer to any
kind of deep neural network, even networks without latent variable semantics. The
term “deep belief network” should refer specifically to models with undirected
connections in the deepest layer and directed connections pointing downward

between all other pairs of sequential layers.
The term “deep belief network” may also cause some confusion because the

term “belief network” is sometimes used to refer to purely directed models, while
deep belief networks contain an undirected layer. Deep belief networks also share
the acronym DBN with dynamic Bayesian networks, which are Bayesian networks
for representing Markov chains.

20.5 Deep Boltzmann Machines

A deep Boltzmann machine (DBM) is another kind of deep, generative model
(Salakhutdinov and Hinton, 2009a). Unlike the deep belief network (DBN), it
is an entirely undirected model. Unlike the RBM, the DBM has several layers

of latent variables (RBMs have just one). But like the RBM, within each layer,
each of the variables are mutually independent, conditioned on the variables in
the neighboring layers. See Fig. 20.2 for the graph structure.

Like RBMs and DBNs, DBMs typically contain only binary units – as we
assume in our development of the model – but it may sometimes contain real-

valued visible units.
A DBM is an energy-based model, meaning that the the joint probability

distribution over the model variables is parametrized by an energy function E. In
the case of a deep Boltzmann machine with one visible layer, v, and three hidden
layers, h(1) ,h(2)andh (3), the joint probability is given by:

P

v,h(1),h (2),h(3)


=

1

Z(θ)
exp


−E(v,h(1),h (2),h(3) ;θ)


. (20.20)

The DBM energy function is:

E(v,h(1) ,h(2),h (3);θ) = −v>W (1)h(1) − h(1)>W(2) h(2) − h(2)>W(3)h (3).

(20.21)
In comparison to the RBM energy function (Eq. 20.9), the DBM energy

function includes connections between the hidden units (latent variables) in the
form of the weight matrices (W(2) and W (3)). As we will see, these connections
have significant consequences for both the model behavior as well as how we go

about performing inference in the model.
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connections
(weights)

W (1)

W (2)

W (3)

hidden layers
(binary units)

visible layer
(binary units)

h(2)

h(1)

h(3)

v

Figure 20.2: The deep Boltzmann machine (offsets on all units are present but suppressed
to simplify notation).
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In comparison to fully connected Boltzmann machines (with every unit con-
nected to every other unit), the DBM offers some similar advantages as offered by
the RBM. Specifically, as illustrated in Fig. (TODO: include figure), the DBM
layers can be organized into a bipartiite graph, with odd layers on one side and
even layers on the other. This immediately implies that when we condition on the
variables in the even layer, the variables in the odd layers become conditionally

independent. Of course, when we condition on the variables in the odd layers,
the variables in the even layers also become conditionally independent.

We show this explicitly for the conditional distribution P (h (1) = 1 | v,h (2)),
in the case of a DBM with two hidden layers (of course, this result generalizes to
a DBM with any number of layers).

P (h(1) | v,h (2)) = P (h(1) ,v, h(2))

P (v,h(2) )

=
exp


v>W(1)h(1) + h(1)>W (2)h(2)


P1

h
(1)
1 =0

· · ·
P1

h
(1)
n =0

exp

v>W (1)h(1) + h(1)>W(2) h(2)



=
exp


v>W(1)h(1) + h(1)>W (2)h(2)


P1

h
(1)
1 =0

· · ·
P1

h
(1)
n =0 exp


v>W (1)h(1) + h(1)>W(2) h(2)



=
exp

Pn
j=1v

>W
(1)
:,j h

(1)
j + h

(1)>
j W

(2)
j,: h

(2)


P1

h
(1)

1
=0

· · ·
P1

h
(1)
n
=0 exp

Pn
j0=1 v

>W
(1)
:,j 0h

(1)
j0 + h

(1)>
j 0 W

(2)
j 0,: h

(2)


=

Q
j exp


v>W

(1)
:,j h

(1)
j + h

(1)>
j W

(2)
j,: h

(2)


P1

h
(1)
1 =0

· · ·P1

h
(1)
n =0

Q
j0

exp

v>W

(1)

:,j 0
h
(1)

j 0 + h
(1)>
j 0
W

(2)

j0,:
h(2)



=
Y

j

exp

v >W

(1)
:,j h

(1)
j + h

(1)>
j W

(2)
j,: h

(2)


P 1
h
(1)
j =0

exp

v>W

(1)
:,j h

(1)
j + h

(1)>
j W

(2)
j,: h

(2)


=
Y

j

exp

v>W

(1)
:,j h

(1)
j + h

(1)>
j W

(2)
j,: h

(2)


1 + exp

v>W

(1)
:,j +W

(2)
j,: h

(2)


=
Y

j

P (h
(1)
j | v,h (2)). (20.22)

From the above we can conclude that the conditional distribution for any
layer of the DBM conditioned on the neighboring layers, is fractorial (i.e. all

variables in the layer are conditionally independent). Further, we’ve shown that

528



CHAPTER 20. DEEP GENERATIVE MODELS

this conditional distribution is given by a logistic sigmoid function:

P (h
(1)
j = 1 | v,h(2)) =

exp

v>W

(1)
:,j +W

(2)
j,: h

(2)


1 + exp

v>W

(1)
:,j +W

(2)
j,: h

(2)


=
1

1 + exp

−v>W

(1)
:,j −W (2)

j,: h
(2)


= sigmoid

v>W (1)

:,j +W(2)
j,: h

(2)

. (20.23)

For the two layer DBM, the conditional distributions of the remaining two
layers (v,h(2) ) also factorize. That is P (v | h(1) ) =

Qd
i=1 P (vi | h (1)), where

P (v i = 1 | h (1)) = sigmoid

W(1)

i,: h
(1)

. (20.24)

Also, P (h (2) | h(1)) =
Qm

k=1 P (h
(2)
k | h(1) ), where

P (h
(2)
k = 1 | h(1)) = sigmoid


h(1)>W

(2)
:,k


. (20.25)

20.5.1 Interesting Properties

TODO: comparison to DBNs TODO: comparison to neuroscience (local learn-

ing) “most biologically plausible” TODO: description of easy mean field TODO:
description of sampling, comparison to general Boltzmann machines,DBNs

20.5.2 DBM Mean Field Inference

For the two hidden layer DBM, the conditional distributions, P (v | h(1)), P (h(1) |
v,h (2)), and P (h(2) | h(1)) are factorial, however the posterior distribution over all

the hidden units given the visible unit, i.e. P(h (1) ,h(2) | v), can be complicated.
This is, of course, due to the interaction weights W (2) between h (1) and h(2)

which render these variables mutually dependent, given an observed v.
So, like the DBN we are left to seek out methods to approximate the DBM

posterior distribution. However, unlike the DBN, the DBM posterior distribution

over their hidden units – while complicated – is easy to approximate with a varia-
tional approximation (as discussed in Sec. 19.1), specifically a mean field approx-

imation. The mean field approximation is a simple form of variational inference,

where we restrict the approximating distribution to fully factorial distributions.
In the context of DBMs, the mean field equations capture the bidirectional in-
teractions between layers. In this section we derive the iterative approximate
inference procedure originally introduced in Salakhutdinov and Hinton (2009a)
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In variational approximations to inference, we approach the task of approx-
imating a particular target distribution – in our case, the posterior distribution
over the hidden units given the visible units – by some reasonably simple family
of distributions. In the case of the mean field approximation, the approximat-
ing family is the set of distributions where the hidden units are conditionally
independent.

Let Q(h(1) ,h(2) | v) be the approximation of P (h(1),h (2) | v). The mean field
assumption implies that

Q(h(1),h (2) | v) =
nY

j=1

Q(h
(1)
j | v)

mY

k=1

Q(h
(2)
k | v). (20.26)

The mean field approximation attempts to find for every observation a mem-
ber of this family of distributions that “best fits” the true posterior P (h (1),h(2) |
v). By best fit, we specifically mean that we wish to find the approximation Q

that minimizes the KL-divergence with P , i.e. KL(QkP ) where:

KL(QkP ) =
X

h

Q(h (1),h (2) | v) log

 
Q(h (1),h (2) | v)

P (h (1),h (2) | v)

!
(20.27)

In general, we do not have to provide a parametric form of the approximating
distribution beyond enforcing the independence assumptions. The variational

approximation procedure is generally able to recover a functional form of the
approximate distribution. However, in the case of a mean field assumption on
binary hidden units (the case we are considering here) there is no loss of generality
by fixing a parametrization of the model in advance.

We parametrize Q as a product of Bernoulli distributions, that is we consider
the probability of each element of h(1) to be associated with a parameter. Specif-

ically, for each j ∈ {1, . . . , n}, ĥ
(1)
j = P (h

(1)
j = 1), where ĥ

(1)
j ∈ [0, 1] and for

each k ∈ {1, . . . ,m}, ĥ
(2)
k = P (h

(2)
k = 1), where ĥ

(2)
k ∈ [0,1]. Thus we have the

following approximation to the posterior:

Q(h (1),h(2) | v) =
nY

j=1

Q(h(1)j | v)
mY

k=1

Q(h (2)
k

| v)

=

nY

j=1

(ĥ
(1)
j )

h(1)
j (1 − ĥ

(1)
j )

(1−h(1)
j

) ×
mY

k=1

(ĥ
(2)
k )h

(2)

k (1 − ĥ
(2)
k )(1−h

(2)

k )

(20.28)

Of course, for DBMs with more layers the approximate posterior parametrization
can be extended in the obvious way.
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Now that we have specified our family of approximating distributions Q. It
remains to specify a procedure for choosing the member of this family that best
fits P . One way to do this is to explicitly minimize KL(QkP ) with respect to the
variational parameters of Q. We will approach the selection of Q from a slightly
different, but entirely equivalent, path. Rather than minimize KL(QkP ), we will
maximize the variational lower bound (or evidence lower bound: see Sec. 19.1),

which in the context of the 2-hidden-layer deep Boltzmann machine is given by:

L(Q) =
X

h(1),h(2)

Q(h(1) ,h(2) | v) log

 
P (v,h(1) ,h(2) ;θ)

q(h(1),h(2) | v)

!

= −
X

h(1),h (2)

Q(h(1) ,h(2) | v)E(v,h(1) ,h(2);θ)− logZ(θ) +H(Q), (20.29)

where Z(θ) is the DBM partition function and H(Q) is the entropy of the mean

field distribution.
We wish to maximize the variational lower bound in Eq. 20.29 with respect

to the mean field parameters of Q(h(1) ,h(2) | v). Substituting Eq. 20.28 for
Q(h(1),h(2) | v) in the variational lower bound, we get:

L(q) =
X

i

X

j 0

viW
(1)
ij0 ĥ

(1)
j 0 +

X

j0

X

k0

ĥ
(1)
j 0 W

(2)
j0k0ĥ

(2)
k 0 − lnZ(θ) + H(q). (20.30)

We maximize the above expression (Eq. 20.30) by taking deriatives with
respect to the variational parameters and solving for the system of fixed point

equations:

∂

∂ ĥ
(1)
j

L(q) = 0 ∀j ∈ {1, . . . , n}, ∂

∂ ĥ
(2)
k

L(q) = 0 ∀k ∈ {1, . . . , m}

The gradient with respect to, for example, ĥ
(1)
j is reasonable straightforward
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to evaluate:

∂

∂ĥ
(1)
j

L(q) =
∂

∂ĥ
(1)
j




X

i

X

j 0

viW
(1)
ij0 ĥ

(1)
j 0 +

X

j0

X

k0

ĥ
(1)
j0 W

(2)
j0 k0 ĥ

(2)
k 0 − lnZ(θ) + H(q)





=
∂

∂ĥ
(1)
j


X

i

X

j 0

viW
(1)
ij0 ĥ

(1)
j 0 +

X

j0

X

k0

ĥ
(1)
j0 W

(2)
j0 k0 ĥ

(2)
k 0 − lnZ(θ)

−
X

j 0


ĥ
(1)
j0

ln ĥ
(1)
j0

+ (1 − ĥ
(1)
j0

) ln(1 − ĥ
(1)
j0

)


−
X

k 0


ĥ(2)

k0
ln ĥ(2)

k 0 + (1 − ĥ(2)
k0

) ln(1 − ĥ(2)
k0 )
 #

=
X

i

viW
(1)
ij +

X

k0

W
(2)
jk0 ĥ

(2)
k0 − ln



 ĥ
(1)
j 0

1 − ĥ(1)
j 0



 ,

where in the second line, we have just expanded the terms involved in the entropy

H(q). Setting this derivative to zero and solving for ĥ
(1)
j , we have

∂

∂ĥ(1)j

L(q) = 0 =
X

i

vi W
(1)
ij

+
X

k0

W (2)
jk 0
ĥ(2)
k0

− ln

 
ĥ
(1)
j

1 − ĥ (1)
j

!

ĥ
(1)
j = sigmoid

 
X

i

v iW
(1)
ij +

X

k0

W
(2)
jk0 ĥ

(2)
k 0

!

A similar derivation leads to the other set of equations for the second hidden
layer variational parameters. Putting these together, we have the following system
of equations:

ĥ
(1)
j = sigmoid

 
X

i

viW
(1)
ij +

X

k0

W
(2)
jk0 ĥ

(2)
k0

!

, ∀j (20.31)

ĥ
(2)
k = sigmoid




X

j 0

W
(2)
j0k ĥ

(1)
j0



, ∀k (20.32)

At a fixed point of this system of equations, we have a local maximum of our
variational lower bound L(q). Thus they define a iterative algorithm where we

intersperse updates of ĥ
(1)
j (using Eq. 20.31) and updates of ĥ

(2)
k (using Eq.

20.32). So variational inference in the two hidden layer deep Boltzmann machine

amounts to iterating these update equations for ĥ
(1)
j and ĥ

(2)
k until convergence. In

practice, ≈ 10 iterations is usually sufficient. Extending approximate variational
inference to deeper DBMs is straightforward.

532



CHAPTER 20. DEEP GENERATIVE MODELS

20.5.3 DBM Parameter Learning

Because a deep Boltzmann machine contains restricted Boltzmann machines as
components, the hardness results for computing the partition function and sam-

pling that apply to restricted Boltzmann machines also apply to deep Boltzmann
machines. This means that evaluating the probability mass function of a Boltz-
mann machine requires approximate methods such as annealed importance sam-
pling. Likewise, training the model requires approximations to the gradient of the

log partition function. See chapter 18 for a general description of these methods.
The posterior distribution over the hidden units in a deep Boltzmann ma-

chine is intractable, due to the interactions between different hidden layers. This
means that we must use approximate inference during learning. The standard
approach is to use stochastic gradient ascent on the mean field lower bound, as
described in chapter 19. Mean field is incompatible with most of the methods for
approximating the gradients of the log partition function described in chapter 18.
Moreover, it has been observed that for contrastive divergence to work well, it is
important that the samples from the posterior (e.g., for the 2 hidden layer DBM:
P (h(1),h(2) | v)) be exact (Salakhutdinov and Hinton, 2009b). In the case of

the DBM, the intractability of the posterior means that we would have to run
a Gibbs sampler until the samples converged to samples from the true posterior
(i.e. until they “burned in”). Thus for the DBM, CD offers no speedup relative
to naive MCMC methods. Instead, DBMs are usually trained using a variant of
stochastic maximum likelihood. The negative phase samples can be generated
simply by running a Gibbs sampling chain that alternates between sampling the
odd-numbered layers and sampling the even-numbered layers.

Learning in the DBM can equivalently be considered as performing a varia-
tional form of the Expectation Maximization (EM) algorithm. Specifically, con-
sider the variational lower bound for the two-layer DBM (making the dependency
on the model parameters explicit):

L(Q,θ) =
X

i

X

j 0

v iW
(1)
ij 0 ĥ

(1)
j 0 +

X

j 0

X

k0

ĥ
(1)
j 0 W

(2)
j 0k0 ĥ

(2)
k0 − lnZ(θ) + H(Q).

This expression lower bounds the likelihood P(v | θ). So by maximizing this

bound we hope to improve the likelihood. Thus we can think of L(Q, θ) as a

surrogate objective function for the DBM. From this perspective it is natural
to consider a 2-step optimization procedure. In the first step (the E-step or

expectation step), we optimize L(Q,θ) with respect to the variational parameters.

In the case of the two-layer DBM this amounts to solving for ĥ (1) and ĥ (2) via
the iterative scheme introduced above. Then in the second step (the M-step or
maximization step), we optimize L(Q, θ) with respect to the model parameters
θ.
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Note that maximizing the variational lower bound with respect to the param-
eters does not guarantee that we improve the true likelihood P (v | θ) on every
step. 3 That said, in practice we often find that we are able to make progress in
training DBMs by maximizing the lower bound L(Q, θ).

Unlike the standard M-step we typically have as part of the EM algorithm, our
M-step will not actually maximize L(Q, θ) with respect to θ (holding Q fixed).

The presence of the partition function makes it impractical to solve the system of
equations ∇ θL(Q,θ) = 0 for θ. Instead we will be content to make incremental
progress toward this maximum by taking a small step in the direction of the
gradient ∇ θL(Q,θ). In the case of the 2-hidden layer DBM, this is given by:

∇θL(Q,θ) =
∂

∂θ




X

i

X

j0

viW
(1)
ij 0 ĥ

(1)
j 0 +

X

j0

X

k0

ĥ
(1)
j0 W

(2)
j0k 0ĥ

(2)
k0 − lnZ(θ) + H(Q)





=
∂

∂θ




X

i

X

j0

viW
(1)
ij 0 ĥ

(1)
j 0 +

X

j0

X

k0

ĥ
(1)
j0 W

(2)
j0k 0ĥ

(2)
k0



− ∂

∂θ
lnZ(θ)

(20.33)

The first term in Eq. 20.33 is straightforward, once the values of ĥ(1) and ĥ(2)

have been computed in the E-step. Our use of variation approximate inference
has rendered learning in the DBM as analogous to training in the RBM where

the likelihood gradient (Eq. 20.14) is also composed of a analytically tractable
term and a term involving the gradient of the partition function:

− nE
P (v,h(1) ,h(2) )

h
∇θ −E(v,h(1),h (2))

i
(20.34)

Similar to the RBM case, the partition function’s contribution to the gradient

of the variational lower bound is intractable. We approximate it using a varia-
tional version of stochastic maximum likelihood 4 (VSML) algorithm. The non-

variational version of stochastic maximum likelihood algorithm is discussed in
Sec. 18.2 and is applied to RBMs in Sec. 20.3.2.

Unlike in the RBM, the interaction between the hidden units of the DBM
precludes a direct application of the contrastive divergence training algorithm.
Specifically the issue is that, in the positive phase, in order to get samples from

3In standard EM we do have just a guarantee. The difference is that in the case of standard
EM we assume the true posterior is tractable and therefore we can set Q(h | v, θ

(t)
) = P(h |

v, θ(t)). Under these conditions the lower bound is tight, i.e. L(Q, θ) = P (v | θ)
4Salakhutdinov and Hinton (2009a) refer to this algorithm as persistent contrastive diver-

gence. We prefer to distinguish the variational version of the algorithm as applied to DBMs

from the original stochastic maximum likelihood algorithm that directly (though stochastically)
maximizes the likelihood rather than a lower bound on the likelihood as we are doing here.
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the posterior P (h | v), one may have to wait a significant amount of time for the
samples to “burn-in”. The necessity for this burn-in renders CD an impractical
algorithm for training CD. As far as we known, variants of CD that make use of
the variational approximation for the positive phase gradient approximation have
not been unexplored.

Variational stochastic maximum likelihood as applied to the DBM is given in

Algorithm 20.3. Recall that we have included the offset parameters in the weight
matrices W (1) and W (2) . Note that the Gibbs sampling in the negative phase of
the stochastic maximum likelihood algorithm can be divided into two blocks of
updates, one including all odd layers (including the visible layer) and the other
including all even layers. Due to the DBM connection pattern, given the even
layers, the distribution over the odd layers is factorial and thus can be sampled

simultaneously and independently as a block. Likewise given the odd layers, the
even layers can be sampled simultaneously and independently as a block.

20.5.4 Practical Training Strategies

Unfortunately, training a DBM using stochastic maximum likelihood (as described
above) from a random initialization usually results in failure. In some cases, the

model fails to learn to represent the distribution adequately. In other cases, the
DBM may represent the distribution well, but with no higher likelihood than
could be obtained with just an RBM. Note that a DBM with very small weights
in all but the first layer represents approximately the same distribution as an

RBM.
It is not clear exactly why this happens. When DBMs are initialized from a

pretrained configuration, training usually succeeds. See section 20.5.4 for details.
One possibility is that it is difficult to coordinate the learning rate of the stochastic

gradient algorithm with the number of Gibbs steps used in the negative phase

of stochastic maximum likelihood. SML relies on the learning rate being small
enough relative to the number of Gibbs steps that the Gibbs chain can mix again

after each update to the model parameters. The distribution represented by
the model can change very rapidly during the earlier parts of training, and this
may make it difficult for the negative chains employed by SML to fully mix.
As described in section 20.5.5, multi-prediction deep Boltzmann machines avoid
the potential inaccuracy of SML by training with a different objective function
that is less principled but easier to compute. Another possible explanation for

the failure of joint training with mean field and SML is that the Hessian matrix
could be poorly conditioned. This perspective motivates centered deep Boltzmann

machines, presented in section 20.5.6, which modify the model family in order to
obtain a better conditioned Hessian matrix.

535



CHAPTER 20. DEEP GENERATIVE MODELS

c) d)b)a)

Figure 20.3: The deep Boltzmann machine training procedure used to obtain the state of
the art classification accuracy on the MNIST dataset (Srivastava et al., 2014; Salakhutdi-
nov and Hinton, 2009a). TODO: this is not state of the art anymore, just best DBM result
a) Train an RBM by using CD to approximately maximize logP (v). b) Train a second
RBM that models h(1) and y by using CD-k to approximately maximize logP (h(1), y)
where h(1) is drawn from the first RBM’s posterior conditioned on the data. Increase
k from 1 to 20 during learning. c) Combine the two RBMs into a DBM. Train it to
approximately maximize logP(v, y) using stochastic maximum likelihood with k = 5. d)
Delete y from the model. Define a new set of features h(1) and h (2) that are obtained
by running mean field inference in the model lacking y. Use these features as input to an
MLP whose structure is the same as an additional pass of mean field, with an additional
output layer for the estimate of y. Initialize the MLP’s weights to be the same as the
DBM’s weights. Train the MLP to approximately maximize logP(y | v) using stochastic

gradient descent and dropout. Figure reprinted from (Goodfellow et al., 2013b).

Layerwise Pretraining

The original and most popular method for overcoming the joint training problem

of DBMs is greedy layerwise pretraining. In this method, each layer of the DBM is
trained in isolation as an RBM. The first layer is trained to model the input data.

Each subsequent RBM is trained to model samples from the previous RBM’s

posterior distribution. After all of the RBMs have been trained in this way, they
can be combined to form a DBM. The DBM may then be trained with PCD.

Typically PCD training will only make a small change in the model’s parameters
and its performance as measured by the log likelihood it assigns to the data, or
its ability to classify inputs.

Note that this greedy layerwise training procedure is not just coordinate as-
cent. It bears some passing resemblance to coordinate ascent because we optimize
one subset of the parameters at each step. However, in the case of the greedy

layerwise training procedure, we actually use a different objective function at each

step.

TODO: details of combining stacked RBMs into a DBM TODO: partial mean
field negative phase
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20.5.5 Multi-Prediction Deep Boltzmann Machines

TODO– cite stoyanov TODO

20.5.6 Centered Deep Boltzmann Machines

TODO
This chapter has described the tools needed to fit a very broad class of proba-

bilistic models. Which tool to use depends on which aspects of the log-likelihood

are problematic.
For the simplest distributions p, the log likelihood is tractable, and the model

can be fit with a straightforward application of maximum likelihood estimation
and gradient ascent as described in chapter

In this chapter, I’ve shown what to do in two different difficult cases. If Z is in-
tractable, then one may still use maximum likelihood estimation via the sampling
approximation techniques described in section 18.2. If p(h | v) is intractable, one
may still train the model using the negative variational free energy rather than
the likelihood, as described in 19.4.

It is also possible that both of these difficulties will arise. An example of this

occurs with the deep Boltzmann machine (Salakhutdinov and Hinton, 2009b),
which is essential a sequence of RBMs composed together. The model is depicted

graphically in Fig. 20.1c.
This model still has the same problem with computing the partition function

as the simpler RBM does. It has also discarded the restricted structure that

made P (h | v) easy to represent in the RBM. The typical way to train the DBM

is to minimize the variational free energy rather than maximize the likelihood.
Of course, the variational free energy still depends on the partition function, so
it is necessary to use sampling techniques to approximate its gradient.

TODO: k-NADE

20.6 Boltzmann Machines for Real-Valued Data

While Boltzmann machines were originally developed for use with binary data,
many applications such as image and audio modeling seem to require the ability
to represent probability distributions over real values. In some cases, it is possible
to treat real-valued data in the interval [0, 1] as representing the expectation of a
binary variable (TODO cite some examples). However, this is not a particularly

theoretically satisfying approach.
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Figure 20.4: TODO caption and label, reference from text Figure reprinted from (Good-
fellow et al., 2013b).
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20.6.1 Gaussian-Bernoulli RBMs

TODO– cite exponential family harmoniums? TODO– multiple ways of parametriz-
ing them (citations?)

20.6.2 mcRBMs

TODO–mcRBMs 5 TODO–HMC

20.6.3 mPoT Model

TODO–mPoT

20.6.4 Spike and Slab Restricted Boltzmann Machines

Spike and slab restricted Boltzmann machines (Courville et al., 2011) or ssRBMs

provide another means of modeling the covariance structure of real-valued data.

Compared to mcRBMs, ssRBMs have the advantage of requiring neither matrix
inversion nor Hamiltonian Monte Carlo methods.

The spike and slab RBM has two sets of hidden units: the spike units h which
are binary, and the slab units s which are real-valued. The mean of the visible

units conditioned on the hidden units is given by (h  s)W>. In other words,
each column W:,i defines a component that can be appear in the input. The cor-
responding spike variable h i determines whether that component is present at all.

The corresponding slab variable si determines the brightness of that component,
if it is present. When a spike variable is active, the corresponding slab variable

adds variance to the input along the axis defined by W:,i . This allows us to model

the covariance of the inputs. Fortunately, contrastive divergence and persistent
contrastive divergence with Gibbs sampling are still applicable. There is no need
to invert any matrix.

Gating by the spike variables means that the true marginal distribution over

h  s is sparse. This is different from sparse coding, where samples from the
model “almost never” (in the measure theoretic sense) contain zeros in the code,

and MAP inference is required to impose sparsity.
The primary disadvantage of the spike and slab restricted Boltzmann machine

is that some settings of the parameters can correspond to a covariance matrix
that is not positive definite. Such a covariance matrix places more unnormalized
probability on values that are farther from the mean, causing the integral over
all possible outcomes to diverge. Generally this issue can be avoided with simple

heuristic tricks. There is not yet any theoretically satisfying solution. Using

5The term “mcRBM” is pronounced by saying the name of the letters M-C-R-B-M; the ”mc”
is not pronounced like the “Mc” in “McDonald’s.”
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constrained optimization to explicitly avoid the regions where the probability is
undefined is difficult to do without being overly conservative and also preventing
the model from accessing high-performing regions of parameter space.

Qualitatively, convolutional variants of the ssRBM produce excellent samples
of natural images. Some examples are shown in Fig. 13.1.

The ssRBM allows for several extensions. Including higher-order interactions

and average-pooling of the slab variables (Courville et al., 2014) enables the model
to learn excellent features for a classifier when labeled data is scarce. Adding a
term to the energy function that prevents the partition function from becoming
undefined results in a sparse coding model, spike and slab sparse coding (Good-
fellow et al., 2013c), also known as S3C.

20.7 Convolutional Boltzmann Machines

As seen in chapter 9, extremely high dimensional inputs such as images place
great strain on the computation, memory, and statistical requirements of machine
learning models. Replacing matrix multiplication by discrete convolution with a
small kernel is the standard way of solving these problems for inputs that have

translation invariant spatial or temporal structure. Desjardins and Bengio (2008)
showed that this approach works well when applied to RBMs.

Deep convolutional networks usually require a pooling operation so that the

spatial size of each successive layer decreases. Feedforward convolutional networks
often use a pooling function such as the maximum of the elements to be pooled. It

is unclear how to generalize this to the setting of energy-based models. We could
introduce a binary pooling unit p over n binary detector units d and enforce
p = maxi di by setting the energy function to be ∞ whenever that constraint is
violated. This does not scale well though, as it requires evaluating 2n different
energy configurations to compute the normalization constant. For a small 3 × 3

pooling region this requires 2 9 = 512 energy function evaluations per pooling unit!
Lee et al. (2009) developed a solution to this problem called probabilistic max

pooling (not to be confused with “stochastic pooling,” which is a technique for

implicitly constructing ensembles of convolutional feedforward networks). The

strategy behind probabilistic max pooling is to constrain the detector units so
at most one may be active at a time. This means there are only n + 1 total
states (one state for each of the n detector units being on, and an additional state

corresponding to all of the detector units being off). The pooling unit is on if
and only if one of the detector units is on. The state with all units off is assigned

energy zero. We can think of this as describing a model with a single variable that
has n + 1 states, or equivalently as model that has n + 1 variables that assigns

energy ∞ to all but n + 1 joint assignments of variables.
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While efficient, probabilistic max pooling does force the detector units to be
mutually exclusive, which may be a useful regularizing constraint in some contexts
or a harmful limit on model capacity in other contexts. It also does not support
overlapping pooling regions. Overlapping pool regions are usually required to
obtain the best performance from feedforward convolutional networks, so this
constraint probably greatly reduces the performance of convolutional Boltzmann

machines.
Lee et al. (2009) demonstrated that probabilistic max pooling could be used

to build convolutional deep Boltzmann machines 6. This model is able to perform
operations such as filling in missing portions of its input. However, it has not
proven especially useful as a pretraining strategy for supervised learning, per-
forming similarly to shallow baseline models introduced by Pinto et al. (2008).

TODO: comment on partition function changing when you change the image
size, boundary issues

20.8 Other Boltzmann Machines

TODO–Conditional Boltzmann machine TODO-RNN-RBM TODO–discriminative
Boltzmann machine TODO–Heng’s class relevant and irrelevant Boltzmann ma-
chines TODO– Honglak’s recent work

20.9 Directed Generative Nets

So far in this chapter we have focused on undirected generative models, in the
deep learning context these are almost always parametrized via an energy function

E and possess an intractable partition function Z. The exception being the deep

belief net which can be characterized as a hybrid directed / undirected model.
As discussed in Chapter 13, directed graphical models make up a second

prominent class of graphical models. While directed graphical models have been
the very popular within the greater Machine Learning community, within the
smaller Deep Learning community they have until recently been overshadowed
by undirected models such as the RBM.

In this section we will consider some of the standard directed graphical models
that have traditionally associated with the deep learning community 7.

6
The publication describes the model as a ”deep belief network” but because it can be de-

scribed as a purely undirected model with tractable layer-wise mean field fixed point updates, it
best fits the definition of a deep Boltzmann machine.
7The list of directed graphical models that we cover here is inevitably going to be incomplete.

The choice of models we include has more to do their prominence within the Deep Learning
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TODO: sigmoid belief nets TODO: refer back to DBN TODO: sparse coding
(maybe drop this from the list, covered elsewhere) TODO: deconvolutional nets?
(AC votes for dropping this) TODO: refer back to S3C and BSC (binary sparse
coding) TODO: NADE will be in RNN chapter, refer back to it here make sure
k-NADE and multi-NADE are mentioned somewhere

TODO: refer to DARN and NVIL?

TODO: Stochastic Feedforward nets

20.9.1 Sigmoid Belief Nets

Sigmoid Belief Nets were originally conceived in response to the Neal (1992)
is one of the first

20.9.2 Differentiable Generator Nets

TODO describe how VAEs and GANs both use the same kind of generator net
cite the generating chairs paper to show how this generator net can be trained
with a procedure that isn’t explicitly unsupervised cite both Kevin and Zoubin’s
version of training a generator net with MMD

20.9.3 Variational Autoencoders

The variational autoencoder is model

L (20.35)

TODO

20.9.4 Variational Interpretation of PSD

TODO, develop the explanation of Sec. 9.1 of Bengio et al. (2013c).

20.9.5 Generative Adversarial Networks

TODO: do we want to still use the capital value function here? Should we say
it’s a functional? Note that the G is OK because it’s a distribution

Generative adversarial networks (TODO cite) are another kind of generative

model based on differentiable mappings from input noise to samples that resemble
the data. In this sense, they closely resemble variational autoencoders. However,
the training procedure is different, and generative model is not necessarily coupled

with an inference network. It is theoretically possible to train an inference network

community and the perceived impact that they have had on the community.
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using a strategy similar to the wake-sleep algorithm, but there is no need to infer
posterior variables during training.

Generative adversarial networks are based on game theory. A generator net-
work is trained to map input noise z to samples x. This function g(z) defines
the generative model. The distribution p(z) is not learned; it is simply fixed to
some distribution at the start of training (usually a very unstructured distribu-

tion such as a normal or uniform distribution). We can think of g(z) as defining
a conditional distribution

p(x | z) = N (x | g

z),

1

β
I


,

but in all learning rules we take limit as β → ∞ so we can treat g(z) itself as a
sample and ignore the parametrization of the output distribution.

The generator g is pitted against an adversary: a discriminator network d.
The discriminator network receives data or samples x as input and outputs its
estimate of the probability that x was sampled from the data rather than the
model. During training, d tries to maximize and g tries to minimize a value
function measuring the log probability of d being correct:

g∗ = arg min
g

max
d
V (g, d)

where
v(g, d) = Ex∼pdata log d(x) + Ex

P
pmodel log (1− d(x)) .

The optimization of g can be done simply by backpropagating through d then

g, so the learning process requires neither approximate inference nor approxima-
tion of a partition function gradient. In the case where maxd v(g, d) is convex
(such as the case where optimization is performed directly in the space of prob-
ability density functions) then the procedure is guaranteed to converge and is
asymptotically consistent. In practice, the procedure can be difficult to make

work, because it can be difficult to keep d optimized well enough to provide a
good estimate of how to update g at all times.

20.9.6 Convolutional Generative Networks

TODO– discuss convolutional generator nets (was GANs paper the first?) and
be sure to cover “unpooling” include the unpooling technique from generatoring
chairs paper, and include others if there are relevant others

20.10 A Generative View of Autoencoders

Many kinds of autoencoders can be viewed as probabilistic models. Different
autoencoders can be interpreted as probabilistic models in different ways.
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One of the first probabilistic interpretations of autoencoders was the view
denoising autoencoders as energy-based models trained using regularized score
matching. See Sections 15.9.1 and 18.5 for details. Since the early work (Vin-
cent, 2011a) made the connection with Gaussian RBMs, this gave denoising auto-
encoders with a particular parametrization a generative interpretation (they could
be sampled from using the MCMC sampling techniques for Gaussian RBMs) .

The next milestone in connecting auto-encoders with a generative interpreta-
tion came with the work of Rifai et al. (2012). It relied on the view of contractive
auto-encoders as estimators of the tangent of the manifold near which probability
concentrates, discussed in Section 15.10 (see also Figures 15.9, 17.3). In this con-
text, Rifai et al. (2012) demonstrated experimentally that good samples could
be obtained from a trained contractive auto-encoder by alternating encoding,

decoding, and adding noise in a particular way.
As discussed in Section 15.9.1, the application of the encoder/decoder pair

moves the input configuration towards a more probable one. This can be exploited

to actually sample from the estimated distribution. If you consider most Monte-
Carlo Markov Chain (MCMC) algorithms, they have two elements:

1. move from lower probability configurations towards higher probability con-

figurations, and

2. inject randomness so that the chain moves around (and does not stay stuck

at some peak of probability, or mode) and has a chance to visit every config-
uration in the whole space, with a relative frequency equal to its probability

under the underlying model.

So conceptually all one needs to do is to perform encode-decode operations (go
towards more probable configurations) as well as inject noise (to move around the

probable configurations), as hinted at in (Mesnil et al., 2012; Rifai et al., 2012).

20.10.1 Markov Chain Associated with any Denoising Auto-Encoder

The above discussion left open the question of what noise to inject and where, in
order to obtain a Markov chain that would generate from the distribution esti-
mated by the auto-encoder. Bengio et al. (2013b) showed how to construct such
a Markov chain for generalized denoising autoencoders. Generalized denoising au-
toencoders are specified by a denoising distribution for sampling an estimate of
the clean input given the corrupted input.
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xt

x̃t
ωt = g(ht)

ht = f(x̃t)

f g

P ( X |ω)
C(X̃ |X)

xt+1

Figure 20.5: Each step of the Markov chain associated with a trained denoising auto-
encoder, that generates the samples from the probabilistic model implicitly trained by

the denoising reconstruction criterion. Each step consists in (a) injecting corruption
C in state x, yielding x̃, (b) encoding it with f, yielding h = f( x̃), (c) decoding the
result with g, yielding parameters ω for the reconstruction distribution, and (d) given ω,
sampling a new state from the reconstruction distribution P(x | ω = g(f(x̃))). In the
typical squared reconstruction error case, g(h) = x̂, which estimates E[x | x̃], corruption
consists in adding Gaussian noise and sampling from P(x | ω) consists in adding another
Gaussian noise to the reconstruction x̂. The latter noise level should correspond to the

mean squared error of reconstructions, whereas the injected noise is a hyperparameter
that controls the mixing speed as well as the extent to which the estimator smoothes the
empirical distribution (Vincent, 2011b). In the figure, only the C and P conditionals
are stochastic steps (f and g are deterministic computations), although noise can also
be injected inside the auto-encoder, as in generative stochastic networks (Bengio et al.,
2014b)

Each step of the Markov chain that generates from the estimated distribution

consists of the following sub-steps, illustrated in Figure 20.5:

1. starting from the previous state x, inject corruption noise, sampling x̃ from
C (̃x | x).

2. Encode x̃ into h = f ( x̃).

3. Decode h to obtain the parameters ω = g(h) of P (x | ω = g(h)) = P(x | x̃).

4. Sample the next state x from P (x | ω = g(h)) = P (x | x̃).

The theorem states that if the auto-encoder P (x | x̃) forms a consistent estimator
of corresponding true conditional distribution, then the stationary distribution of
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the above Markov chain forms a consistent estimator (albeit an implicit one) of
the data generating distribution of x.

P (x̃|x)P (x̃|x)P (x̃|x)

P (x|x̃)

C 

Figure 20.6: Illustration of one step of the sampling Markov chain associated with a
denoising auto-encoder (see also Figure 20.5). In the figure, the data (black circles) are

sitting near a low-dimensional manifold (a spiral, here), and the two stochastic steps of
the Markov chain are first to corrupt x (clean image of dog, green circle) into x̃ (noisy
image of dog, blue circle) via C(x̃ | x) (here an isotropic Gaussian noise in green), and
then to sample a new x via the estimated denoising P(x | x̃). Note how there are many
possible x which could have given rise to x̃, and these all lie on the manifold in the

neighborhood of x̃, hence the flattened shape of P (x | x̃) (in blue). Modified from a
figure first created and graciously authorized by Jason Yosinski.

Figure 20.6 illustrates the sampling process of the DAE in a way that com-

plements Figure 20.5, with a specific imagined example. For a more elaborate

discussion of the probabilistic nature of denoising auto-encoders, and their gen-
eralization (Bengio et al., 2014b), Generative Stochastic Networks (GSNs), see

Section 20.11 below. In particular, the noise does not have to be injected only in

the input, and it could be injected anywhere along the chain. GSNs also gener-
alize DAEs by allowing the state of the Markov chain to be extended beyond the
visible variable x, to include also some latent variable h. Finally, Section 20.11
discusses training strategies for DAEs that are aimed at making it a better gen-
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erative model and not just a good feature learner.

Figure 20.7: Illustration of the effect of the walk-back training procedure, used for denois-
ing auto-encoders or GSNs in general. The objective is to remove spurious modes faster
by letting the Markov chain go towards them (along the red path, starting on the purple
data manifold and following the arrows plus noise), and then punishing the Markov chain
for this behavior (i.e., walking back to the right place) by telling the chain to return
towards the data manifold (reconstruct the original data).

20.10.2 Clamping and Conditional Sampling

Similarly to Boltzmann machines, denoising auto-encoders and GSNs can be used

to sample from a conditional distribution P (x f | xo), simply by clamping the

observed units xf and only resampling the free units xo given xf and the sampled
latent variables (if any). This has been introduced by Bengio et al. (2014b).

However, note that Proposition 1 of that paper is missing a condition: the
transition operator (defined by the stochastic mapping going from one state of

the chain to the next) should satisfy detailed balance, described in Section 14.1.1.
An experiment in clamping half of the pixels (the right part of the image) and

running the Markov chain on the other half is shown in Figure 20.8.
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Figure 20.8: Illustration of clamping the right half of the image and running the Markov
by resampling only the left half at each step. These samples come from a GSN trained
to reconstruct MNIST digits at each time step, i.e., using the walkback procedure.

20.10.3 Walk-Back Training Procedure

The walk-back training procedure was proposed by Bengio et al. (2013b) as a way
to speed-up the convergence of generative training of denoising auto-encoders.

Instead of performing a one-step encode-decode reconstruction, this procedure
consists in alternative multiple stochastic encode-decode steps (as in the genera-
tive Markov chain) initialized at a training example (just like with the contrastive
divergence algorithm, described in Sections 18.2) and 20.3.1) and penalizing the
last probabilistic reconstructions (or all of the reconstructions along the way).

It was shown in that paper that training with k steps is equivalent (in the
sense of achieving the same stationary distribution) as training with one step,
but practically has the advantage that spurious modes farther from the data can

be removed more efficiently, as illustrated in Figure 20.7.
Figure 20.9 illustrates the application of the walk-back procedure in a gener-

ative stochastic network, which is described in the next section.
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Figure 20.9: Left: graphical model of the generative Markov chain associated with a gen-
erative stochastic network (GSN). Right specific case where the latent variable is formed
of several layers, each connected to the one above and the one below, making the genera-
tive process very similar to Gibbs sampling in a deep Boltzmann machine (Salakhutdinov

and Hinton, 2009b). The walk-back training procedure is used, i.e., at every step the re-
construction probability distribution is pushed towards generating the training example
(which also initializes the chain).

20.11 Generative Stochastic Networks

Generative stochastic networks (Bengio et al., 2014b) or GSNs are generalizations
of denoising auto-encoders that include latent variables in the generative Markov
chain, in addition to the visible variables (usually denoted x). The generative
Markov chain looks like the one in Figure 20.10. An example of a GSN structured
like a deep Boltzmann machine and trained by the walk-back procedure is shown
in Figure 20.9.

X
2

X
0

X
1

H
0

H
1

H
2

Figure 20.10: Markov chain of a GSN (Generative Stochastic Network) with latent vari-
ables with H and visible variable X, i.e., an unfolding of the generative process with X k

and Hk at step k of the chain. TODO: please use h and x etc. throughout the GSN
section

A GSN is parametrized by two conditional probability distributions which
specify one step of the Markov chain:

1. P (X k | Hk) tells how to generate the next visible variable given the current
latent state. Such a “reconstruction distribution” is also found in denoising

auto-encoders, RBMs, DBNs and DBMs.

2. P (H k | Hk−1 ,Xk−1) tells how to update the latent state variable, given the

previous latent state and visible variable.
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Denoising auto-encoders and GSNs differ from classical probabilistic models
(directed or undirected) in that it parametrizes the generative process itself rather
than the mathematical specification of the joint distribution of visible and latent
variables. Instead, the latter is defined implicitly, if it exists, as the stationary
distribution of the generative Markov chain. The conditions for existence of the
stationary distribution are mild (basically, the chain mixes) but can be violated

by some choices of the transition distributions (for example, if they were deter-
ministic).

One could imagine different training criteria for GSNs. The one proposed and
evaluated by Bengio et al. (2014b) is simply reconstruction log-probability on the
visible units, just like for denoising auto-encoders. This is achieved by clamping
X0 = x to the observed example and maximizing the probability of generating x

at some subsequent time steps, i.e., maximizing logP (Xk = x | Hk), where Hk

is sampled from the chain, given X0 = x. In order to estimate the gradient of
logP (Xk = x | Hk) with respect to the other pieces of the model, Bengio et al.

(2014b) use the reparametrization trick, introduced in Section 13.5.1.
The walk-back training protocol (described in Section 20.10.3 was used (Bengio

et al., 2014b) to improve training convergence of GSNS.

20.11.1 Discriminant GSNs

Whereas the original formulation of GSNs (Bengio et al., 2014b) was meant for
unsupervised learning and implicitly modeling P (x) for observed data x, it is

possible to modify the framework to optimize P (y | x).
For example, Zhou and Troyanskaya (2014) generalize GSNs in this way, by

only back-propagating the reconstruction log-probability over the output vari-
ables, keeping the input variables fixed. They applied this successfully to model

sequences (protein secondary structure) and introduced a (one-dimensional) con-

volutional structure in the transition operator of the Markov chain. Keep in mind
that, for each step of the Markov chain, one generates a new sequence for each

layer, and that sequence is the input for computing other layer values (say the
one below and the one above) at the next time step, as illustrated in Figure 20.11.

Hence the Markov chain is really over the output variable (and associated
higher-level hidden layers), and the input sequence only serves to condition that
chain, with back-propagation allowing to learn how the input sequence can con-
dition the output distribution implicitly represented by the Markov chain. It is

therefore a case of using the GSN in the context of structured outputs, where
P (y | x) does not have a simple parametric form but instead the components of

y are statistically dependent of each other, given x, in complicated ways.
Zöhrer and Pernkopf (2014) considered a hybrid model that combines a su-

pervised objective (as in the above work) and an unsupervised objective (as in
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Figure 20.11: Markov chain arising out of a discriminant GSN, i.e., where a GSN is used
as a structured output model over a variable y, conditioned on an input X. Reproduced
with permission from Zhou and Troyanskaya (2014). The structure is as in a GSN (over
the output) but with computations being conditioned on the input X at each step.

the original GSN work), by simply adding (with a different weight) the super-

vised and unsupervised costs i.e., the reconstruction log-probabilities of y and x

respectively. Such a hybrid criterion had previously been introduced for RBMs
by Larochelle and Bengio (2008a). They show improved classification performance
using this scheme.

20.12 Methodological Notes

Researchers studying generative models often need to compare one generative
model to another, usually in order to demonstrate that a newly invented genera-
tive model is better at capturing some distribution than the pre-existing models.

This can be a difficult and subtle task. In many cases, we can not actually
evaluate the log probability of the data under the model, but only an approxi-

mation. In these cases, it’s important to think and communicate clearly about

exactly what is being measured. For example, suppose we can evaluate a stochas-
tic estimate of the log likelihood for model A, and a deterministic lower bound
on the log likelihood for model B. If model A gets a higher score than model B,

which is better? If we care about determining which model has a better internal
representation of the distribution, we actually cannot tell, unless we have some

way of determining how loose the bound for model B is. However, if we care about

how well we can use the model in practice, for example to perform anomaly de-
tection, then it is fair to say that model A is better based on a criterion specific

to the practical task of interest, e.g., based on ranking test examples and ranking
criterian such as precision and recall.

Another subtletly of evaluating generative models is that the evaluation met-
rics are often hard research problems in and of themselves. It can be very difficult
to establish that models are being compared fairly. For example, suppose we use
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AIS to estimate logZ in order to compute log p̃(x) − logZ for a new model we
have just invented. A computationally economical implementation of AIS may
fail to find several modes of the model distribution and underestimate Z, which
will result in us overestimating log p(x). It can thus be difficult to tell whether a
good likelihood estimate is due to a good model or a bad AIS implementation.

Other fields of machine learning usually allow for some variation in the pre-

processing of the data. For example, when comparing the accuracy of object
recognition algorithms, it is usually acceptable to preprocess the input images
slightly differently for each algorithm based on what kind of input requirements
it has. Generative modeling is different because changes in preprocessing, even
very small and subtle ones, are completely unacceptable. Any change to the input
data changes the distribution to be captured and fundamentally alters the task.

For example, multiplying the input by 0.1 will artificially increase likelihood by
10.

Issues with preprocessing commonly arise when benchmarking generative mod-

els on the MNIST dataset, one of the more popular generative modeling bench-
marks. MNIST consists of grayscale images. Some models treat MNIST images
as points in a real vector space, while others treat them as binary. Yet others

treat the grayscale values as probabilities for a binary samples. It is essential to
compare real-valued models only to other real-valued models and binary-valued
models only to other binary-valued models. Otherwise the likelihoods measured

are not on the same space. (For the binary-valued models, the log likelihood can
be at most 0., while for real-valued models it can be arbitrarily high, since it is
the measurement of a density) Among binary models, it is important to com-
pare models using exactly the same kind of binarization. For example, we might
binarize a gray pixel to 0 or 1 by thresholding at 0.5, or by drawing a random

sample whose probability of being 1 is given by the gray pixel intensity. If we use
the random binarization, we might binarize the whole dataset once, or we might

draw a different random example for each step of training and then draw multiple
samples for evaluation. Each of these three schemes yields wildly different like-
lihood numbers, and when comparing different models it is important that both
models use the same binarization scheme for training and for evaluation. In fact,
researchers who apply a single random binarization step share a file containing

the results of the random binarization, so that there is no difference in results

based on different outcomes of the binarization step.

Finally, in some cases the likelihood seems not to measure any attribute of
the model that we really care about. For example, real-valued models of MNIST
can obtain arbitrarily high likelihood by assigning arbitrarily low variance to
background pixels that never change. Models and algorithms that detect these

constant features can reap unlimited rewards, even though this is not a very useful
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thing to do. This strongly suggests a need for developing other ways of evaluating
generative models.

Although this is still an open question, this might be achieved by converting
the problem into a classification task. For example, we have seen that the NCE
method (Noise Contrastive Estimation, Section 18.6) compares the density of the
training data according to a learned unnormalized model with its density under

a background model. However, generative models do not always provide us with
an energy function (equivalently, an unnormalized density), e.g., deep Boltzmann
machines, generative stochastic networks, most denoising auto-encoders (that are
not guaranteed to correspond to an energy function), deep Belief networks, etc.
Therefore, it would be interesting to consider a classification task in which one
tries to distinguish the training examples from the generated examples. This is

precisely what is achieved by the discriminator network of generative adversarial
networks (Section 20.9.5). However, it would require an expensive operation
(training a discriminator) each time one would have to evaluate performance

553



CHAPTER 20. DEEP GENERATIVE MODELS

Algorithm 20.3 The variational stochastic maximum likelihood algorithm for

training a 2 hidden-layer DBM.

Set , the step size, to a small positive number

Set k, the number of Gibbs steps, high enough to allow a Markov chain of
p(v,h(1) ,h(2);θ+∆ θ) toburn in, starting from samples from p(v,h(1),h (2);θ).
Initialize three random matrices, Ṽ , H̃(1) and H̃ (2) each with m columns set
to random values (e.g., from bernoulli distributions, possibly with marginals

matched to the model’s marginals).
while Not converged (learning loop) do

Sample a minibatch of m examples from the training data and arrange them

as the columns of a matrix V =

v(1), . . . ,v (m)


from the training set.

while Not converged (Mean-field inference loop) do

H̃ (1) ← sigmoid

V>W (1) + H̃(2) >W (2) >


.

H̃ (2) ← sigmoid

H̃(1)W (2)


.

end while
∆W (1) ← 1

m
V Ĥ(1) >

∆W (2) ← 1
mĤ

(1)Ĥ (2) >

for l = 1 to k (Gibbs sampling) do
Gibbs block 1:
Ṽ sampled from

Qm
i=1

Qd
a=1 sigmoid


W (1)

a,: H̃
(2)
:,i


.

H̃ (2)sampled from
Qm

i=1

Qm
b=1sigmoid


H̃

(1) >
:,i W

(2)
:,b


.

Gibbs block 2:
H̃ (1)sampled from

Qm
i=1

Q n
j=1sigmoid


Ṽ >

:,iW
(1)
:,j +W

(2)
j,: H̃

(2)
:,i


.

end for
∆W (1) ← ∆W (1)− 1

m
V Ĥ(1) >

∆W (2) ← ∆W (2)− 1
mĤ

(1)Ĥ(2) >

W (1) ←W(1) + ∆W (1)

W (2) ←W(2) + ∆W (2)

end while
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à la reconnaissance de la parole. Ph.D. thesis, Université de Paris XI. 328
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Lp norm, 34
k-means, 271, 449
k-nearest neighbors, 449

, 273

Absolute value rectification, 155
Active constraint, 87
ADALINE, see Adaptive Linear Element
Adaptive Linear Element, 13, 20, 23
Adversarial example, 222
Affine, 99
AIS, see annealed importance sampling
Almost everywhere, 65
Ancestral sampling, 399
ANN, see Artificial neural network
Annealed importance sampling, 495, 531
Approximate inference, 392
Artificial intelligence, 1
Artificial neural network, see Neural net-

work
Asymptotically unbiased, 111
Audio, 268
Autoencoder, 4
Automatic differentiation, 176

Back-propagation, 167
Back-Propagation Through Time, 285
Bagging, 214
Bayes’ rule, 63, 64
Bayesian hyperparameter optimization, 335
Bayesian network, see directed graphical model
Bayesian probability, 48
Bayesian statistics,

boldindex122
Beam Search, 330

Beam search, 318
Belief network, see directed graphical model
Bernoulli distribution, 57
Bias, 111
Boltzmann distribution, 382
Boltzmann machine, 382
Boltzmann Machines, 511
BPTT, see Back-Propagation Through Time
Broadcasting, 29

CAE, see contractive auto-encoder
Calculus of variations, 507
Categorical distribution, see multinoulli dis-

tribution57
CD, see contrastive divergence
Centering trick (DBM), 535
Central limit theorem, 58
Chain rule of probability, 52
Chess, 2
Chord, 388
Chordal graph, 388
Classical dynamical system, 281
Classical regularization, 192
Classification, 90
Cliffs, 229
Clipping the gradient, 314
Clique potential, see factor (graphical model)
CNN, see convolutional neural network
Collider, see explaining away
Color images, 268
Computer vision, 344
Concept drift, 440
Conditional computation, see dynamically

structured nets, 343
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Conditional Computation in Neural Nets,
365

Conditional independence, vi, 52
Conditional probability, 51
Connectionism, 15, 338
Connectionist temporal classification, 318
consistency, 118
Constrained optimization, 85
Context-specific independence, 385
Continuation methods, 245
Contractive auto-encoder, 427, 476
Contractive autoencoders, 407
Contrast, 345
Contrastive divergence, 482, 531, 534
Convolution, 247, 538
Convolutional network, 14
Convolutional neural network, 247
Coordinate descent, 240, 534
Correlation, 53
Cost function, see objective function
Covariance, vi, 53
Covariance matrix, 54
Cross entropy, 119, 156
Cross-correlation, 249
Cross-validation, 109
CTC, see connectionist temporal classifica-

tion
Curriculum-learning, 245
curse of dimensionality, 135
Cyc, 2

D-separation, 384
DAE, see denoising auto-encoder
Data generating distribution, 100
Data generating process, 100
Data parallelism, 341
Dataset, 94
Dataset augmentation, 345, 349
DBM, see deep Boltzmann machine
Decision trees, 449
Decoder, 4
Deep belief network, 23, 500, 512, 521, 539
Deep Blue, 2
Deep Boltzmann machine, 20, 23, 500, 512,

524, 534, 539
Deep learning, 1, 5

Denoising auto-encoder, 421
Denoising autoencoders, 180
Denoising score matching, 490
Density estimation, 93
Derivative, vi, 76
Design matrix,

boldindex96
Detector layer, 255
Diagonal matrix, 36
Dirac delta function, 60
Directed graphical model, 66, 376
Directional derivative, 80
Distributed Representation, 448
Distributed representation, 15
domain adaptation, 438
Dot product, 30
Doubly block circulant matrix, 249
Dream sleep, 481, 510
DropConnect, 220
Dropout, 180, 217, 333, 334, 534
Dynamic structure, 343
Dynamically structured networks, 343

E-step, 503
Early stopping, 166, 207, 209–212
EBM, see energy-based model
Echo state network, 20, 23, 305
Effective number of parameters, 195
Efficiency, 121
Eigendecomposition, 37
Eigenvalue, 37
Eigenvector, 37
ELBO, see evidence lower bound
Element-wise product, see Hadamard prod-

uct, see Hadamard product
EM, see expectation maximization
Embedding, 464
Empirical distribution, 60
Empirical risk, 226
Empirical risk minimization, 226
Encoder, 4
Energy function, 382
Energy-based model, 382, 524
Ensemble methods, 215
Epoch, 227, 236
Equality constraint, 86
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Equivariance, 254
Error function, see objective function
ESN, see echo state network
Euclidean norm, 34
Euler-Lagrange equation, 508
Evidence lower bound, 502–505, 523
Example, 94
Expectation, 53
Expectation maximization, 503
Expected value, see expectation
Explaining away, 386

Factor (graphical model), 379
Factor analysis, 412
Factor graph, 390
Factors of variation, 4
Feature, 94
Finite differences, 337
Forward-Backward algorithm, 319
Fourier transform, 268, 270
Fovea, 274
Frequentist probability, 48
Frequentist statistics,

boldindex122
Functional derivatives, 507

Gabor function, 275
Gaussian distribution, see Normal distri-

bution58
Gaussian kernel, 130
Gaussian mixture, 61
GCN, see Global contrast normalization
Generalization, 99
Generalized Lagrange function, see Gener-

alized Lagrangian
Generalized Lagrangian, 86
Generative adversarial networks, 180
Gibbs distribution, 380
Gibbs sampling, 400
Global contrast normalization, 346
GPU, see Graphics processing unit
Gradient, 80
Gradient clipping, 314
Gradient descent, 80
Graph, v

Graph Transformer, 328

Graph transformer, 325
Graphical model, see structured probabilis-

tic model
Graphics processing unit, 339
Greedy layer-wise unsupervised pre-training,

431
Grid search, 335

Hadamard product, v, 30
Hard tanh, 155
Harmonium, see Restricted Boltzmann ma-

chine395
Harmony theory, 383
Helmholtz free energy, see evidence lower

bound
Hessian matrix, vi, 81
Hidden layer, 6
Hidden Markov model, 280
HMM, see hidden Markov model
Hyperbolic tangent, 155
Hyperparameters, 108, 333
Hypothesis space, 101, 106

i.i.d assumptions, 221
i.i.d., 110
i.i.d. assumptions, 100
Identity matrix, 31
Immorality, 388
Independence, vi, 52
Independent and identically distributed, 110
Independent component analysis, 413
Inequality constraint, 86
Inference, 375, 392, 500, 502–506, 509
Integral, vi
Invariance, 258
Isomap, 435

Jacobian matrix, vi, 65, 80
Joint probability, 49

Karush-Kuhn-Tucker conditions, 87
Karush–Kuhn–Tucker, 86
Kernel (convolution), 248, 249
Kernel machine, 449
Kernel trick, 129
KKT, see Karush–Kuhn–Tucker
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KKT conditions, see Karush-Kuhn-Tucker
conditions

KL divergence, see Kllback-Leibler diver-
gence55

Knowledge base, 2
Kullback-Leibler divergence, vi, 55

Lagrange multipliers, 86, 87, 508
Lagrangian, see Gneralized Lagrangian86
Latent variable, 408
LCN, see local contrast normalization
Leaky units, 308
Line search, 80
Linear combination, 33
Linear dependence, 33
Linear factor models, 411
Linear regression,

boldindex97, 99, 128
Liquid state machine, 305
Local conditional probability distribution,

376
Local contrast normalization, 347
Logistic regression, 2, 129
Logistic sigmoid, 7, 62
Long short-term memory, 309
Loop, 388
Loss function, see objective function
LSTM, 21, see lng short-term memory309

M-step, 503
Machine learning, 2
Main diagonal, 29
Manifold, 143
Manifold hypothesis, 460
Manifold hypothesis, 145
Manifold learning, 144, 460
Manifold Tangent Classifier, 475
MAP inference, 505
Marginal probability, 51
Markov chain, 320, 399
Markov network, see undirected model378
Markov property, 320
Markov random field, see undirected model378
Matrix, iv, v, 28
Matrix inverse, 32

Matrix product, 30

Max pooling, 255
Maximum likelihood, 118
Maxout, 155
Mean field, 531, 534
Mean squared error, 98
Measure theory, 64
Measure zero, 64
Method of steepest descent, see gradient de-

scent
Missing inputs, 90
Mixing (Markov chain), 401
Mixture distribution, 61
Mixture of experts, 449
MLP, see multilayer perception
MNIST, 534
Model averaging, 215
Model capacity, 333
Model compression, 342
Model parallelism, 341
Moore-Penrose Pseudoinverse, 40
Moore-Penrose pseudoinverse, 201
Moralized graph, 388
MP-DBM, see multi-prediction DBM
MRF (Markov Random Field), see undi-

rected model378
MSE, see mean squared error98
Multi-modal learning, 444
Multi-prediction DBM, 533, 535
Multi-task learning, 221, 440
Multilayer perception, 5
Multilayer perceptron, 23
Multinomial distribution, 57
Multinoulli distribution, 57

Naive Bayes, 2, 68
Nat, 55
natural image, 372
Negative definite, 82
Negative phase, 479, 481
Neocognitron, 14, 20, 23
Nesterov momentum, 237
Netflix Grand Prize, 217
Neural network, 12
Neuroscience, 13
Noise-contrastive estimation, 491
Non-parametric, 103
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Norm, vi, 34
Normal distribution, 58, 60
Normal equations, 195
Numerical differentiation, 176, see finite dif-

ferences

Object detection, 344
Object recognition, 344
Objective function, 76
Offset, 153
One-shot learning, 442
Orthodox statistics, see frequentist statis-

tics
Orthogonal matrix, 37
Orthogonality, 36
Overfitting, 333

Parallel distributed processing, 15
Parameter sharing, 251
Parameter tying , Parameter sharing214
Parametric, 103
Partial derivative, 80
Partition function, 381, 477, 531
PCA, see principal components analysis
PCD, see stochastic maximum likelihood
Perceptron, 13, 23
Perplexity, 121
Persistent contrastive divergence, see stochas-

tic maximum likelihood
Point Estimator, 110
Pooling, 247, 538
Positive definite, 81
Positive phase, 479, 481
Pre-training, 431
Precision (of a normal distribution), 58, 60
Predictive sparse decomposition, 271, 406,

418, 420
Preprocessing, 344
Primary visual cortex, 272
Principal components analysis, 42, 349, 412,

500
Principle components analysis, 132–134, 146
Prior probability distribution,

boldindex122
Probabilistic max pooling, 538

Probability density function, 50

Probability distribution, 49
Probability function estimation, 93
Probability mass function, 49
Product rule of probability, see chain rule

of probability
PSD, see predictive sparse decomposition
Pseudolikelihood, 486

Quadrature pair, 276

Radial basis function, 155
Random search, 335

Random variable, 48
Ratio matching, 490
RBF, 155
RBM, see restricted Boltzmann machine
Receptive field, 252
Rectified linear unit, 155
Rectifier, 155
Recurrent network, 23
Recurrent neural network, 283
Regression, 91
Regularization,

boldindex107, 107, 189, 333
Reinforcement learning, 180
ReLU, 155
Representation learning, 3
Restricted Boltzmann machine, 395, 500,

512, 514, 534, 535, 537, 538
Ridge regression, 193
Risk, 226

Sample mean, 112
Scalar, iv, v, 27
Score matching, 489
Second derivative, 81
Second derivative test, 81
Self-information, 55
Semi-supervised learning, 131, 445
Separable convolution, 270
Separation (probabilistic modeling), 384
Set, v
SGD, see stochastic gradient descent, see

stochastic gradient descent
Shannon entropy, vi, 55, 508
Sigmoid, vi, see logistic sigmoid, 155
Sigmoid belief network, 23
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Simple cell, 273
Simulated annealing, 245
Singular value, see singular value decompo-

sition
Singular value decomposition, 39, 133
Singular vector, see singular value decom-

position
SML, see stochastic maximum likelihood
Softmax, 155, 158
Softplus, vi, 62, 155
Spam detection, 2
Sparse coding, 406, 415, 500
Sparse representations, 417
Spearmint, 335
spectral radius, 306
Sphering, see Whitening, 347
Spike and slab restricted Boltzmann ma-

chine, 537
Square matrix, 33
ssRBM, see spike and slab restricted Boltz-

mann machine
Standard deviation, 53
Statistic, 110
Statistical learning theory, 100
Steepest descent, see gradient descent
Stochastic gradient descent, 13, 227, 236,

534
Stochastic maximum likelihood, 483, 531,

534
Stochastic pooling, 221
Structure learning, 392
Structured output, 91
Structured probabilistic model, 66, 371
Student-t, 407
Sum rule of probability, 51
Sum-product network, 455
Supervised learning,

boldindex95
Support vector machine, 129
Surrogate loss function, 226
SVD, see singular value decomposition
Symbolic differentiation, 177
Symmetric matrix, 36, 39

t-SNE, 435
Tangent Distance, 473

Tangent plane, 464
Tangent-Prop, 474
Tanh, 155
Teacher forcing, 284
Tensor, iv, v, 29
Test set, 100
Tiled convolution, 265
Toeplitz matrix, 249
Trace operator, 41
Training error, 99
Transcription, 91
Transfer learning, 438
Transpose, v, 29
Triangle inequality, 34
Triangulated graph, see chordal graph

Unbiased, 111
Undirected graphical model, 66
Undirected model, 378
Uniform distribution, 50
Unit norm, 36
Unit vector, 36
Universal approximation theorem, 180
Universal approximator, 454
Unnormalized probability distribution, 379
Unsupervised learning,

boldindex95, 131
Unsupervised pre-training, 431

V-structure, see explaining away
V1, 272
Variance, vi, 53
Variational autoencoder, 180
Variational derivatives, see functional deriva-

tives
Variational free energy, see evidence lower

bound
Vector, iv, v, 28
Visible layer, 6
Viterbi algorithm, 319
Viterbi decoding, 322
Volumetric data, 268

Weight decay, 106, 193, 334
Weights, 13, 97
Whitening, 347, 349
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ZCA, see zero-phase components analysis
Zero-data learning, 442
Zero-phase components analysis, 349
Zero-shot learning, 442
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