

 Navigation

 	
 index

 	
 modules |

 	Sphinx 1.3.1 documentation

 嗨!

 用户有曰:

 为这一伟大工具欢呼吧!总算出现一个令程序员愿意写文档的玩意儿了!

 Sphinx 是种令人可以轻松撰写出明智/优美的文档工具,
 由 Georg Brandl 在BSD 许可证下创造.

 Sphinx 已在支持是 the
 新版Python 文档的生成,
 也成为Python项目首选的文档工具,同时也对 C/C++ 工程有很好的支持;
 进一步的,也将对其它开发语言进行特殊支持.
 当然,本站就是使用 Sphnix
 从新结构化文本中架构而成!

 Sphnix还在继续开发. 下列特性工作良好,并在Python官方文档中有“体现”:

 	丰富的输出格式: HTML (包括M$帮助), LaTeX (为PDF输出), manual pages(man), 纯文本

 	完备的交叉引用: 语义化的标签,并对 函式,类,引文,术语以及类似片段消息可以自动化链接

 	明晰的分层结构: 轻松定义文档树,并自动化链接同级/父级/下级文章

 	美观的自动索引: 可自动生成美观的模块索引

 	精确的语法高亮: 基于 Pygments 自动生成语法高亮

 	开放的扩展: 支持代码块的自动测试,自动包含Python 的模块自述文档,等等

 Sphinx 使用新结构化文本
 作为标记语言,因而直接享受了来自Docutils
 为 reStructuredText 提供的多种工具和能力!

 Documentation

 	

 初尝

 基本作業概览

 内容

 完整索引

 	
 搜索

 搜索文档

 索引

 所有函式/类/条目

 有Sphnix 文档的PDF版本下载:
 基于 LaTeX Sphinx 的版本 ,
 以及 使用rst2pdf 生成的版本 .

 实例

 收集了那些
 使用Sphnix 的项目 文档入口链接.

 想查阅 Sphnix 源文档,点击任何一页的 “显示源文” 链接.

 请跟随由matplotlib开发人员组织的,非常简洁的教程,
 来体验如何运用 Sphnix 创建文档!

 这儿是当前文档的日文翻译,
 感谢Yoshiki Shibukawa.

 本文是 中文译本
 由 Zoom.Quiet 私人创建.

 获取 Sphinx

 Sphinx 释放有 easy-install支持的模块,
 可在 Python 模块索引中查阅到.

 所有代码可在水银仓库中克隆到:
 http://bitbucket.org/birkenfeld/sphinx/.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Sphinx 1.3.1 documentation

Sphinx 文档内容

	简介
	Conversion from other systems

	Use with other systems

	Prerequisites

	Usage

	Sphinx初尝
	配置文档资源

	定义文档结构

	追加内容

	运行构建

	文档对象

	基本配置

	自文档(Autodoc)

	更多相关主题 More topics to be covered

	使用 sphinx-build
	Makefile 配置

	reStructuredText 入门
	段落 Paragraphs

	行内标记 Inline markup

	列表和引用块 Lists and Quote-like blocks

	源代码 Source Code

	表格 Tables

	超链接 Hyperlinks

	章节 Sections

	直解标记 Explicit Markup

	指令 Directives

	图片 Images

	脚注 Footnotes

	引证 Citations

	替换 Substitutions

	注释 Comments

	源文本编码 Source encoding

	嗯嗯嗯 Gotchas

	Sphinx Markup Constructs
	The TOC tree

	Paragraph-level markup

	Table-of-contents markup

	Glossary

	Grammar production displays

	Showing code examples

	Inline markup

	Miscellaneous markup

	Sphinx 域
	What is a Domain?

	Basic Markup

	The Python Domain

	The C Domain

	The C++ Domain

	The Standard Domain

	The JavaScript Domain

	The reStructuredText domain

	More domains

	Available builders
	Serialization builder details

	The build configuration file
	General configuration

	Project information

	Options for internationalization

	Options for HTML output

	Options for epub output

	Options for LaTeX output

	Options for manual page output

	国际化

	HTML 样式支持
	Using a theme

	Builtin themes

	Creating themes

	模板
	Do I need to use Sphinx’ templates to produce HTML?

	Jinja/Sphinx Templating Primer

	Working with the builtin templates

	Sphinx 扩展
	Tutorial: Writing a simple extension

	Extension API

	Writing new builders

	Builtin Sphinx extensions

	Third-party extensions

	Sphinx Web 支持
	Web Support Quick Start

	The WebSupport Class

	Search Adapters

	Storage Backends

	Sphinx FAQ
	How do I...

	Using Sphinx with...

	Epub info

	中译
	动机

	工程

	聲明

	记要

	词汇表

	Changes in Sphinx
	Release 1.2 (in development)

	Release 1.1 (Oct 9, 2011)

	Release 1.0.9 (in development)

	Release 1.0.8 (Sep 23, 2011)

	Release 1.0.7 (Jan 15, 2011)

	Release 1.0.6 (Jan 04, 2011)

	Release 1.0.5 (Nov 12, 2010)

	Release 1.0.4 (Sep 17, 2010)

	Release 1.0.3 (Aug 23, 2010)

	Release 1.0.2 (Aug 14, 2010)

	Release 1.0.1 (Jul 27, 2010)

	Release 1.0 (Jul 23, 2010)

	Release 0.6.7 (Jun 05, 2010)

	Release 0.6.6 (May 25, 2010)

	Release 0.6.5 (Mar 01, 2010)

	Release 0.6.4 (Jan 12, 2010)

	Release 0.6.3 (Sep 03, 2009)

	Release 0.6.2 (Jun 16, 2009)

	Release 0.6.1 (Mar 26, 2009)

	Release 0.6 (Mar 24, 2009)

	Release 0.5.2 (Mar 24, 2009)

	Release 0.5.1 (Dec 15, 2008)

	Release 0.5 (Nov 23, 2008) – Birthday release!

	Release 0.4.3 (Oct 8, 2008)

	Release 0.4.2 (Jul 29, 2008)

	Release 0.4.1 (Jul 5, 2008)

	Release 0.4 (Jun 23, 2008)

	Release 0.3 (May 6, 2008)

	Release 0.2 (Apr 27, 2008)

	Release 0.1.61950 (Mar 26, 2008)

	Release 0.1.61945 (Mar 26, 2008)

	Release 0.1.61843 (Mar 24, 2008)

	Release 0.1.61798 (Mar 23, 2008)

	Release 0.1.61611 (Mar 21, 2008)

	Projects using Sphinx
	Documentation using the default theme

	Documentation using a customized version of the default theme

	Documentation using the sphinxdoc theme

	Documentation using another builtin theme

	Documentation using a custom theme/integrated in a site

	Homepages and other non-documentation sites

	Books produced using Sphinx

索引和目录

	Index

	Module Index

	Search Page

	词汇表

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

简介

This is the documentation for the Sphinx documentation builder. Sphinx is a
tool that translates a set of reStructuredText [http://docutils.sf.net/rst.html] source files into various output
formats, automatically producing cross-references, indices etc. That is, if
you have a directory containing a bunch of reST-formatted documents (and
possibly subdirectories of docs in there as well), Sphinx can generate a
nicely-organized arrangement of HTML files (in some other directory) for easy
browsing and navigation. But from the same source, it can also generate a
LaTeX file that you can compile into a PDF version of the documents, or a
PDF file directly using rst2pdf [http://rst2pdf.googlecode.com].

The focus is on hand-written documentation, rather than auto-generated API docs.
Though there is support for that kind of docs as well (which is intended to be
freely mixed with hand-written content), if you need pure API docs have a look
at Epydoc [http://epydoc.sf.net/], which also understands reST.

Conversion from other systems

This section is intended to collect helpful hints for those wanting to migrate
to reStructuredText/Sphinx from other documentation systems.

	Gerard Flanagan has written a script to convert pure HTML to reST; it can be
found at BitBucket [http://bitbucket.org/djerdo/musette/src/tip/musette/html/html2rest.py].

	For converting the old Python docs to Sphinx, a converter was written which
can be found at the Python SVN repository [http://svn.python.org/projects/doctools/converter]. It contains generic
code to convert Python-doc-style LaTeX markup to Sphinx reST.

	Marcin Wojdyr has written a script to convert Docbook to reST with Sphinx
markup; it is at Google Code [http://code.google.com/p/db2rst/].

Use with other systems

See the pertinent section in the FAQ list.

Prerequisites

Sphinx needs at least Python 2.4 or Python 3.1 to run, as well as the
docutils [http://docutils.sf.net/] and Jinja2 [http://jinja.pocoo.org/2/] libraries. Sphinx should work with docutils version 0.5
or some (not broken) SVN trunk snapshot. If you like to have source code
highlighting support, you must also install the Pygments [http://pygments.org/] library.

If you use Python 2.4 you also need uuid [http://pypi.python.org/pypi/uuid/].

Usage

See Sphinx初尝 for an introduction. It also contains links to more
advanced sections in this manual for the topics it discusses.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

Sphinx初尝

本文旨在给出一个教程样的概览,以便大家快速明了 Sphnix 如何使用,
点击绿色箭头的 “详细” 链接将进入对应操作的高级手册.

配置文档资源

包含所有文档原始文本的目录称作: 资源目录.
此目录也包含 Sphnix 配置文件 conf.py,
Sphnix 根据此文件的声明查阅和生成文档. [1]

Sphnix 内置了一个脚本 sphinx-quickstart
可以自动生成默认的 conf.py, 只需调用之

$ sphinx-quickstart

并回答几个问题. (注意,对 “autodoc” 回答 Yes.)

定义文档结构

假定已经用 sphinx-quickstart 生成了 资源目录 并包含了:file:conf.py
以及主文档 index.rst .
主控文档 作为欢迎页,也包含了”内容树索引”(或 toctree).
这是 Sphnix 对reStructuredText 增加的主要特性之一: 快速在层次文档中关联多个文件.

reStructuredText 指令s

toctree 是 reStructuredText 指令, 一种非常灵活的标记.
指令可以包含参数/选项和内容.

Arguments ~参数是紧跟在指令后,前缀两个冒号的名称.
每个指令都可以附加一个或多个参数.

Options ~ 选项在参数之后声明,使用 “字段列表” 格式.
比如说 maxdepth 就是 toctree 的可选择项之一.

Content 跟在选项之后,用一个空行引导.
每个指令各自决定是否包含内容和怎么使用.

指令的常见问题是
每行内容必须缩进到选项的同一层级

toctree 指令起初是空的内容,类似:

.. toctree::
 :maxdepth: 2

我们可以增补文档列表到 内容 区块

.. toctree::
 :maxdepth: 2

 intro
 tutorial
 ...

这样就可以精确的控制文档的内容树展示.
被包含的文档得使用 文档名s 进行声明,
即,省去后綴名,并不用正斜线前导的相对路径.

[image: more info] 参阅 the toctree directive.

现在可以创建 toctree 中列出的内容文件,并且他们的章节名也将就地逐层显示(高于”maxdepth”层次的章节),
同时,Sphnix 也理解包含文档的顺序.
(被包含的文件一樣可使用 toctree 指令)

追加内容

在Sphnix 源文件中,我们可以使用绝大多数 标准reStructuredText 的特性.
同时还有2 Sphnix 增补的一系列新功能.
例如,可以通过 ref 角色指令追加交叉引用(对所有输出都兼容).
当前的HTML输出版本文档中,就可以在侧栏通过 “Show Source” 链接查阅源文本;

[image: more info] 参考 reStructuredText 入门 学习reStructuredText ,
以及 Sphinx Markup Constructs 查阅所有 Sphnix 增补的标记.

运行构建

现在我们已添加了一些文件,就可以尝试进行首次文档编译了.
使用 sphinx-build 脚本进行调用

$ sphinx-build -b html sourcedir builddir

源目录*在 :term:`资源目录` ,*编译目录 是我们指定的期望编译输出的目标目录.
-b 选项可选择编译器; 当前实例Sphnix 将编译输出 HTML 文档.

[image: more info] 参考 使用 sphinx-build 可知所有 sphinx-build 支持的选项.

其实 sphinx-quickstart 脚本已经创建了 Makefile 以及 make.bat
可以令我们更加简单的随时进行编译,只要

$ make html

将在我们指定的目录中完成HTML 渲染. [2]
如果执行 make 时没有跟任何选项,将看到相关说明.

$ make
Please use `make <target>' where <target> is one of
 html to make standalone HTML files
 dirhtml to make HTML files called index.html in directories
 singlehtml to make one big HTML file
 text to make text files
 man to make manual pages
 pickle to make pickle files
 json to make json files
 htmlhelp to make HTML files and a HTML help project
 qthelp to make Qt help files and project
 devhelp to make Devhelp files and project
 epub to make an epub file
 latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter
 latexpdf to make LaTeX files and run pdflatex
 gettext to make PO message catalogs
 changes to make an overview over all changed/added/deprecated items
 linkcheck to check all external links for integrity

文档对象

一个Sphnix 的通用文档 objects 是 domain (域).
一个域是通过标记来创建和定义的一批自定文档对象.

大多数域就是Python域.
比如说内部函式 enumerate(), 我们可以直接应用到源文本中

.. py:function:: enumerate(sequence[, start=0])

 返回一个迭代对象,递归式处理字典结构的索引或是其它类似序列内容

呈现类似:

	
enumerate(sequence[, start=0])

	返回一个迭代对象,递归式处理字典结构的索引或是其它类似序列内容

这一指令的参数 signature ,是我们自行描述的文档内容,可以在行内给多个. [3]

Python 域名是作为默认域来尝试的,所以,不必在函式标记前聲明

.. function:: enumerate(sequence[, start=0])

 ...

执行结果和之前一样.

另外还有一系列的Py对象类型的文档指令,
比如 py:class 或是 py:method .
也有类型对象都可用的交叉引用的 role .
这类标记将创建一个文档链接给 enumerate()

:py:func:`enumerate` 函式可用作...

这儿可以检验一下效果: enumerate().

再次提示,这儿的 py: 可以忽略,效果一样.
我们不用关心真实的 enumerate() 文档在哪个文件中,
Sphnix 将找到它并正确链接上.

每个域,都是为某个特殊领域内容的良好输出,或是为参数什么的自动追加链接,比如说 C/C++ 域.

[image: more info] 参考 Sphinx 域 可知所有可用域以及指令/角色.

基本配置

之前提及我们使用 conf.py 脚本来控制 Sphinx 怎么处理文档.
实际上这是个标准的 Python 脚本,
对于高级用户:可以嵌入自个儿的特殊任务,比如: 变更 sys.path,
或是导入另外的模块自动探察当前的文档版本.

相关配置项已经由 sphinx-quickstart 在初始化时写入 conf.py
(使用 Py 的标准注释 # 将一些备选项,事先注释了)
要修订对应配置,只要先消除对应行的注释,并修订参数值就好.
想追加定制的参数,如果没由 sphinx-quickstart 预先生成,自个儿追加也就是了.

注意,要保持配置文件严格使用 Python 脚本语法,特别是 字串,数字,列表等等.
并且文件默认是以 UTF-0 编码保存的,已在首行进行聲明.
如果有参数值使用非ASCII 字串,就得使用Python 的 Unicode 聲明形式(project = u'Exposé')

[image: more info] 参考 The build configuration file 了解所有配置项.

自文档(Autodoc)

当想对 Python 代码进行文档化时,
通常的作法是将大量内容直接填入源代码各个文档字串位置.
Sphinx 支持直接从你的模块中摄取这类文档,
通过”自文档(autodoc)” extension (扩展,是个标准的Python 模块,可以为Sphinx 工程提供附加能力;-).

要使用 自文档(autodoc)扩展,
首先要在 conf.py 中激活,
通过在 extensions`配置项列表中包含 `‘sphinx.ext.autodoc’`` .
这样,你就有几个附加指令可用了.

例如,对函式 io.open() 进行文档化,你想从源代码中提取其特征和文档字串,可以写:

.. autofunction:: io.open

当然,也可以对整个类或是模块进行自动摄取,
使用同类的自文档指令:

.. automodule:: io
 :members:

自文档(autodoc)需要导入你的模块来加载文档字串,
所以,你得在配置文件 conf.py 的 sys.path 字段里,追加目标模块所在路径.

[image: more info] 参考 sphinx.ext.autodoc 获得完整的使用说明.

更多相关主题 More topics to be covered

	其它扩展 (math, intersphinx, viewcode, doctest)

	静态文件 Static files

	选择样式 Selecting a theme

	模板 Templating

	使用扩展 Using extensions

	编写扩展 Writing extensions

脚注

	[1]	这只是一般情况. 其实 conf.py 也可以部属在其它目录,
通过配置 configuration directory. 参考 使用 sphinx-build.

	[2]	译按: 更多情况,我们的确使用配置好的 make 命令;
只是对于中文用户,这里生成的 LaTeX 标签文本,并不能很好的生成PDF,这里的技巧另外分享 ;-)

	[3]	译按: 的确不明白,这儿作什么用的,俺一直没有用过...

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

使用 sphinx-build

sphinx-build 脚本用以进行 Sphinx 文档的构筑.
如下使用:

$ sphinx-build [options] sourcedir builddir [filenames]

sourcedir 指向 source directory,
而 builddir 是指构筑出的文档你想放置的目标路径.
多数情况,你用不到 filenames.

sphinx-build 脚本支持一系列参数:

	
-b buildername

	其中最重要的是: 指明使用什么构筑器.
常见的有:

	html

	构筑为 HTML 页面,这是默认构筑器.

	dirhtml

	构筑为 HTML 页面,不过输出到单一目录中,并为web发布制作为美化URL(不是 .html).

	singlehtml

	构筑为包含所有内容的单页HTML .

	htmlhelp, qthelp, devhelp, epub

	构筑为HTML 文件,并配合附加信息,打包成以上格式中指定的一种.

	latex

	构筑为 LaTeX 源码,以便使用 pdflatex 编译成 PDF 文档.

	man

	构筑为手册页面,使用UNIX系统中的 groff 格式.

	text

	构筑为纯文本文件.

	gettext

	构筑为 gettext-style 消息索引 (.pot 文档).

	doctest

	如果 doctest 扩展已激活,执行所有文档中的 doctests .

	linkcheck

	检查所有外部链接的完整性

参考 Available builders 列出所有Sphinx 内置的构筑器.
扩展可以拥有自个儿的构筑器.

	
-a

	一但设置,总是输出所有文件.
默认是只输出有更新的. (这一选项不是所有构筑器都支持)

	
-E

	不使用保存的 environment (缓存了所有交叉索引),而是重建一切.
默认是只读取和处置相对前次构筑有变化的文件.

	
-t tag

	
定义标签 tag. 这是有关 only 指令的,
将仅处理指定标签目录中的内容.

New in version 0.6.

	
-d path

	因为 Sphinx 在输出前将尽力读取和处理所有源文件,
处理中的源文件将缓存在 “doctree pickles”,通常会在构筑目录的 .doctrees 文件夹里.
这个参数可以由你选择缓存目录(.doctrees 文件夹可以为所有构筑器共享)

	
-c path

	不用到源文件目录找 conf.py ,
使用指定的配置文件.
注意在配置文件中提及的路径都是相对配置文件所在目录的,
所以,他们也应该在同一路径中.

New in version 0.3.

	
-C

	不寻找配置文件,使用参数 -D 给出的.

New in version 0.5.

	
-D setting=value

	覆盖配置文件 conf.py 中的设置.
该设置必须是一个字符串或字典值.
对于后者,可以这样来设置键值: - D latex_elements.docclass= scrartcl
对于布尔值用 0 或 1 .

Changed in version 0.6: 现在可以使用字典值了.

	
-A name=value

	对HTML 模板中的 name 绑定 value .

New in version 0.5.

	
-n

	以挑剔模式运行.目前,这将产生所有引用丢失的警告.

	
-N

	不要产生颜色输出
(在Windows,这不是个选项,因为根本没有)

	
-q

	不要输出任何信息.仅将报警和错误输出到标准错误.

	
-Q

	不要输出任何信息,包括控制警报.仅将报警和错误输出到标准错误.

	
-w file

	将警告(和错误)写入给定的文件,代替标准错误的输出.

	
-W

	将警告变为错误,这意味着只要遇到警告就会终止构筑, sphinx-build 的退出状态将是 1.

	
-P

	(仅在调试时有用) 在构筑文档时,发生未处理的异常就运行Python 调试器, pdb

你也可以在命令行中给定一个或多个文件名,以及构筑目录,
Sphinx 将尝试只对给出的文件(以及它们依赖的)进行构筑.

Makefile 配置

Makefile 和 make.bat 是由 sphinx-quickstart 创建的,
通常我们使用只有 -b 和 -d 选项的 program:sphinx-build 来完成文档构筑.
然而,他们支持以下自定义行为的选项:

	
PAPER

	配置项 latex_paper_size 的值

	
SPHINXBUILD

	替代 sphinx-build 的命令

	
BUILDDIR

	替代在 sphinx-quickstart 中指定的构筑目录.

	
SPHINXOPTS

	sphinx-build 的附加选项.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

reStructuredText 入门

本节简要介绍了 新结构化文本 ~ reStructuredText的 (reST)的概念和语法,
旨在提供足够的信息来帮助作者高效起草文件.
由于 reST 被设计成一个简单的,不显眼的标记语言,
所以,这不会花太长时间.

See also

权威 新结构化文本用户文档 [http://docutils.sourceforge.net/rst.html]
在文章的 “ref” 链接中,有reST 各种结构的描述可供参考.

段落 Paragraphs

段落(参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#paragraphs])是 reST 文章中最常见的文本块.
段落是由一个或多个空白分隔的文本块.
同Python中的约定,在 reST 中使用缩进来标识,
因此, 所有同级段落,必须左对齐,使用同级缩进.

行内标记 Inline markup

标准的reST 行内标记很简单:

	单星号: *文本* 得 强调 (斜体 对中文一般效果不好) ,

	双星号: **文本** 得 加重 (加黑),

	反引号: ``文本`` 得 代码引用.

If asterisks or backquotes appear in running text and could be confused with
inline markup delimiters, they have to be escaped with a backslash.

如果有星号或反引号出现在引用的文本,
就可能会弄乱内联标记分隔符,这时,可以用反斜杠来转义.

Be aware of some restrictions of this markup:
以下是知道这些标记的一些限制:

	不可叠用

	前后不能用空格: * text* 这样会出错,

	必须和周围文字用非单词隔离, 一般使用转义空白来完成: thisis\ *one*\ word

These restrictions may be lifted in future versions of the docutils.
docutils未来版本中,可能取消这些限制.

reST also allows for custom “interpreted text roles”’, which signify that the
enclosed text should be interpreted in a specific way. Sphinx uses this to
provide semantic markup and cross-referencing of identifiers, as described in
the appropriate section. The general syntax is :rolename:`content`.

reST 也支持自定”文本诠释规则”,
这意味着,任意由指定字符封闭的文本都可以用特定的方式来诠释.
Sphinx 就用这种形式来提供语义标记和交叉引用,
一般语法形如: :规则名:`内容`

Standard reST provides the following roles:
标准 reST 提供以下规则:

	emphasis [http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis] – *emphasis* 的替代拼写

	strong [http://docutils.sourceforge.net/docs/ref/rst/roles.html#strong] – **strong** 的替代拼写

	literal [http://docutils.sourceforge.net/docs/ref/rst/roles.html#literal] – ``literal`` 的替代拼写

	subscript [http://docutils.sourceforge.net/docs/ref/rst/roles.html#subscript] – 下标

	superscript [http://docutils.sourceforge.net/docs/ref/rst/roles.html#superscript] – 上标

	title-reference [http://docutils.sourceforge.net/docs/ref/rst/roles.html#title-reference] – 书籍/期刊/及其他材料的标题

参考: Inline markup Sphinx 追加的规则

列表和引用块 Lists and Quote-like blocks

List markup (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#bullet-lists]) is natural: just place an asterisk at
the start of a paragraph and indent properly. The same goes for numbered lists;
they can also be autonumbered using a # sign::
列表标记(参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#bullet-lists]): 只要自然的在段落的开始放置一个星号并正确缩进.
这同样适用于带编号的列表;
也可以使用``#``签署自动编号:

* This is a bulleted list.
* It has two items, the second
 item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the
parent list items by blank lines:

嵌套的列表是允许的但必须用空行同父列表分离开:

* this is
* a list

 * with a nested list
 * and some subitems

* and here the parent list continues

定义列表(参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists]) 如下创建:

term (up to a line of text)
 Definition of the term, which must be indented

 and can even consist of multiple paragraphs

next term
 Description.

Note that the term cannot have more than one line of text.
注意, 条目本身不能多行.

Quoted paragraphs (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#block-quotes]) are created by just indenting
them more than the surrounding paragraphs.
创建引用段落 (参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#block-quotes])只需要用缩进和其它段落区分即可.

线块 (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#line-blocks]) 是保留换行符的一种方法:

| These lines are
| broken exactly like in
| the source file.

还有其它特殊文本块形式是支持的:

	字段列表 (field lists 参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field-lists])

	选项列表 (option lists 参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#option-lists])

	引述文本块 (quoted literal blocks 参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#quoted-literal-blocks])

	文本测试块 (doctest blocks 参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#doctest-blocks])

源代码 Source Code

代码文本块 (参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#literal-blocks]) 由末尾是特殊标记 :: 的段落引发.
整个代码文本块必须缩进
(同所有的段落一样,使用空白行和周围文本完成分隔):

This is a normal text paragraph. The next paragraph is a code sample::

 It is not processed in any way, except
 that the indentation is removed.

 It can span multiple lines.

This is a normal text paragraph again.

:: 标记是智能处置的:

	如果作为一个独立段落出现,则和其它文本完全隔离

	如果它紧跟有空格,则将被删除不起作用

	如果它在非空白字符之前,则替换为普通的单一冒号

综上,前述示例中的第二段代码引用文本之前的一句会渲染为 “The next paragraph is a code sample:”

That way, the second sentence in the above example’s first paragraph would be
rendered as “The next paragraph is a code sample:”.

表格 Tables

支持两种表格.

网格表 (参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables]),
你不得不自行”绘制”表格的边框.看起来象这样:

+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+========================+============+==========+==========+
| body row 1, column 1 | column 2 | column 3 | column 4 |
+------------------------+------------+----------+----------+
| body row 2 | ... | ... | |
+------------------------+------------+----------+----------+

简单表 (参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables]) 容易点,

但是有限制:至少要有一列,而且,第一行不能包含多行文本,
看起来象这样:

===== ===== =======
A B A and B
===== ===== =======
False False False
True False False
False True False
True True True
===== ===== =======

超链接 Hyperlinks

外部链接 External links

Use `Link text <http://example.com/>`_ for inline web links. If the link
text should be the web address, you don’t need special markup at all, the parser
finds links and mail addresses in ordinary text.

用 `Link text <http://example.com/>`_ 来记录行内链接.
如果文字本身就是链接,
那不用作任何标记,解析器可以自动将链接和邮箱地址转换为超链接.

也可以单独定义链接目标用引用(参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#hyperlink-targets]),比如:

This is a paragraph that contains `a link`_.

.. _a link: http://example.com/

内部链接 Internal links

Internal linking is done via a special reST role provided by Sphinx, see the
section on specific markup, Cross-referencing arbitrary locations.

Sphinx 使用特殊 reST 规则支持内部链接,
详细参考 定义规则

章节 Sections

Section headers (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections]) are created by underlining (and
optionally overlining) the section title with a punctuation character, at least
as long as the text:

章节头部 (参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections])
由下线(也可有上线)和包含标点的标题 组合创建,
其中下线要至少等于标准文本的长度:

=================
This is a heading
=================

注意

中文标题的问题

在多数编辑器中,全角/半角中文/标点和E文字符的长度是完全没谱的,
所以,多数情况下,为保持一致性,译者建议统一使用固定长度的上下标线;
比如说78.

Normally, there are no heading levels assigned to certain characters as the
structure is determined from the succession of headings. However, for the
Python documentation, this convention is used which you may follow:
通常并没有对标题的层级指定明确的标线字符.
不过,对于 Pyhton 文档,可以使用如下约定:

	# 有上标线, 用以部分

	* 有上标线, 用以章节

	=, 用以小节

	-, 用以子节

	^, 用以子节的子节

	", 用以段落

Of course, you are free to use your own marker characters (see the reST
documentation), and use a deeper nesting level, but keep in mind that most
target formats (HTML, LaTeX) have a limited supported nesting depth.

当然,你可以自由的使用你自定的标识字符(参考 reST 文档),
并使用更加深的嵌套层次,
不过,考虑到兼容多种输出格式(HTML, LaTeX) 最好限制嵌套的深度.

提示

标题层次体验

从行文来说,结构化文本组织的文章,更加关注局部文本的结构清晰,
以整个图书来说,不建议设定太多的标题级别,一般而言**四级**足够了.

直解标记 Explicit Markup

“Explicit markup” (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#explicit-markup-blocks]) is used in reST for
most constructs that need special handling, such as footnotes,
specially-highlighted paragraphs, comments, and generic directives.

“直解标记” (Explicit markup, 参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#explicit-markup-blocks])
用以 reST 中需要特殊处理的各种内容,
如脚注,特殊高亮段落,注释,以及通用指令.

An explicit markup block begins with a line starting with .. followed by
whitespace and is terminated by the next paragraph at the same level of
indentation. (There needs to be a blank line between explicit markup and normal
paragraphs. This may all sound a bit complicated, but it is intuitive enough
when you write it.)

直解标记块由``..``开始,紧后跟空格以及跟随的同缩进的文本块.
(和正文间要有空白行来明确的加以区分.
可能听起来有点复杂,但当你书写时就能直观的体验到)

指令 Directives

A directive (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#directives]) is a generic block of explicit markup.
指令(ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#directives])就是一个标准的明确标记(Explicit Markup)块.
Besides roles, it is one of the extension mechanisms of reST, and Sphinx makes
heavy use of it.
除了规则,它是reST 的又一个扩展机制,
Sphinx 大量使用了指令.

Docutils 支持以下指令:

	警示 Admonitions: attention [http://docutils.sourceforge.net/docs/ref/rst/directives.html#attention], caution [http://docutils.sourceforge.net/docs/ref/rst/directives.html#caution], danger [http://docutils.sourceforge.net/docs/ref/rst/directives.html#danger],
error [http://docutils.sourceforge.net/docs/ref/rst/directives.html#error], hint [http://docutils.sourceforge.net/docs/ref/rst/directives.html#hint], important [http://docutils.sourceforge.net/docs/ref/rst/directives.html#important], note [http://docutils.sourceforge.net/docs/ref/rst/directives.html#note],
tip [http://docutils.sourceforge.net/docs/ref/rst/directives.html#tip], warning [http://docutils.sourceforge.net/docs/ref/rst/directives.html#warning] and the generic admonition [http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonition].
(多数样式目前仅支持 “note” 和 “warning” 好在都有针对的对象ID,很容易使用CSS进行定制 .)

	图像 Images:

	image [http://docutils.sourceforge.net/docs/ref/rst/directives.html#image] (参考后面的 Images_)

	figure [http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure] (配有标题和图例 的图片)

	其它行文元素 Additional body elements:

	contents [http://docutils.sourceforge.net/docs/ref/rst/directives.html#contents] (对诸如 本地文件 的内容表单)

	container [http://docutils.sourceforge.net/docs/ref/rst/directives.html#container] (配有定制 class 的容器,以便生成HTML 中的 <div>)

	rubric [http://docutils.sourceforge.net/docs/ref/rst/directives.html#rubric] (没有到相对段落关系的标题 a heading without relation to the document sectioning)

	topic [http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic], sidebar [http://docutils.sourceforge.net/docs/ref/rst/directives.html#sidebar] (特殊高亮的正文元素 special highlighted body elements)

	parsed-literal [http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal] (支持内嵌标记的文本块)

	epigraph [http://docutils.sourceforge.net/docs/ref/rst/directives.html#epigraph] (有可选归属行的引用文本块)

	highlights [http://docutils.sourceforge.net/docs/ref/rst/directives.html#highlights], pull-quote [http://docutils.sourceforge.net/docs/ref/rst/directives.html#pull-quote] (有他们自己class属性的文本块)

	compound [http://docutils.sourceforge.net/docs/ref/rst/directives.html#compound] (复合段落)

	特殊表格 Special tables:

	table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table] (有标题的表格)

	csv-table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table] (从csv数据生成的表格)

	list-table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table] (从列表数据生成的表格)

	特殊指令 Special directives:

	raw [http://docutils.sourceforge.net/docs/ref/rst/directives.html#raw] (包括原始文本的目标格式标记 include raw target-format markup)

	include [http://docutils.sourceforge.net/docs/ref/rst/directives.html#include] (从其它文件引入 reST)
– 在Sphinx, 当给定包含文件的绝对路径时,指令会从源代码目录为起点进行相对路径查找.

	class [http://docutils.sourceforge.net/docs/ref/rst/directives.html#class] (将 class 属性绑定到下一个元素) [1]

	HTML 专用 specifics:

	meta [http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta] (生成 HTML 中的 <meta> 标签)

	title [http://docutils.sourceforge.net/docs/ref/rst/directives.html#title] (覆盖文件标题)

	影响标记 Influencing markup:

	default-role [http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role] (设置新默认规则)

	role [http://docutils.sourceforge.net/docs/ref/rst/directives.html#role] (创建新规则)

由于这些指令都只能作用到单一文件,所以,更好的使用 Sphinx 的方式是设置 default_role.

不要 使用指令 sectnum [http://docutils.sourceforge.net/docs/ref/rst/directives.html#sectnum], header [http://docutils.sourceforge.net/docs/ref/rst/directives.html#header] 和 footer [http://docutils.sourceforge.net/docs/ref/rst/directives.html#footer].

Sphinx 增加的指令描述收集在: Sphinx Markup Constructs .

Basically, a directive consists of a name, arguments, options and content. (Keep
this terminology in mind, it is used in the next chapter describing custom
directives.) Looking at this example,
基本上一个指令由名称,参数,选项和内容组成.
(请记住这里提及的几个术语,
它们将在之后章节描述自定义指令)
从这个例子来看,:

.. function:: foo(x)
 foo(y, z)
 :module: some.module.name

 Return a line of text input from the user.

function 是指令名,
在头两行里给出了两个参数,
紧接着给出了一个 module 选项
(正如你所见,由冒号标明的 module 之后立即跟上参数)
选项​​必须缩进和指令内容有相同的缩进.

该指令的内容则是由一个空行和同样的缩进来接上.

图片 Images

reST 支持图片指令 (ref [http://docutils.sourceforge.net/docs/ref/rst/directives.html#image]), 这样使用:

.. image:: gnu.png
 (options)

在Sphinx 中使用时,
给入的文件名 (此处是 gnu.png) 必须是相对源文件目录的路径,
如果给的是绝对路径形式,也意味着对源文件顶层目录进行相对查找.
比如说, 文件 sketch/spam.rst 可以用路径 ../images/spam.png 或 /images/spam.png.
来引用图片 images/spam.png

Sphinx will automatically copy image files over to a subdirectory of the output
directory on building (e.g. the _static directory for HTML output.)
Sphinx 会自动将图片复制到构筑输出目录中的相关子目录
(e.g. HTML输出时的 _static 目录.)

Interpretation of image size options (width and height) is as follows:
if the size has no unit or the unit is pixels, the given size will only be
respected for output channels that support pixels (i.e. not in LaTeX output).
Other units (like pt for points) will be used for HTML and LaTeX output.

图片尺寸的解释选项 (width 和 height)有如下规约:
如果大小没给任何单位或单位是像素,
输出通道优先使用像素(换言之,非LaTeX输出).
其他单位(如 pt 或是 点) 将被用于HTML和LaTeX输出.

Sphinx extends the standard docutils behavior by allowing an asterisk for the
extension
Sphinx 扩展了标准 docutils 行为,支持如下的星号指代:

.. image:: gnu.*

Sphinx then searches for all images matching the provided pattern and determines
their type. Each builder then chooses the best image out of these candidates.
For instance, if the file name gnu.* was given and two files gnu.pdf
and gnu.png existed in the source tree, the LaTeX builder would choose
the former, while the HTML builder would prefer the latter.
Sphinx 会搜索所有匹配所提供模式的图片,
并确定它们的类型.
每个构筑器再从中选择最佳的图片.
例如,
如果给定文件名是 gnu.* ,
源代码树中有两个文件 gnu.pdf 和 gnu.png ,
LaTeX 构筑器会选择前者,
HTML 构筑器更倾向于后者.

Changed in version 0.4: 增加了文件名的星号后缀支持.

Changed in version 0.6: 开始支持绝对路径的图片

脚注 Footnotes

and add the footnote body at the bottom of the document after a
“Footnotes” rubric heading, like so::
脚注 (参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#footnotes]), 使用 [#name]_ 来标记位置,
并在文章底部 “Footnotes” 专栏之后追加脚注内容,如下使用:

Lorem ipsum [#f1]_ dolor sit amet ... [#f2]_

.. rubric:: Footnotes

.. [#f1] Text of the first footnote.
.. [#f2] Text of the second footnote.

You can also explicitly number the footnotes ([1]_) or use auto-numbered
footnotes without names ([#]_).
可以使用确切编号的脚注 (如: [1]_)
或是自动编号(用 [#]_).

引证 Citations

标准 reST 支持引证 (参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#citations]) ,
with the
additional feature that they are “global”, i.e. all citations can be referenced
from all files. Use them like so::
有额外的功能是 “global”,
换言之,引证能从所有文件来引用.
这样使用:

Lorem ipsum [Ref]_ dolor sit amet.

.. [Ref] Book or article reference, URL or whatever.

Citation usage is similar to footnote usage, but with a label that is not
numeric or begins with #.
引证 的使用基本和脚注相同,
不过使用的标签不是数字或是以 # 开始.

替换 Substitutions

reST 支持 “替换” (参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions]),
以 |name| 形式来定义替换的文本或是标记对象.
如脚注,可以在直解标记文本块中声明,形如:

.. |name| replace:: replacement *text*

或是:

.. |caution| image:: warning.png
 :alt: Warning!

详参 reST 替换参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions] .

If you want to use some substitutions for all documents, put them into
rst_prolog or put them into a separate file and include it into all
documents you want to use them in, using the include directive. (Be
sure to give the include file a file name extension differing from that of other
source files, to avoid Sphinx finding it as a standalone document.)

如果你对所有文件使用一组替换,
把它们置入 rst_prolog 或放入一个单独的文件,
并在所有相关文件中使用 incluse 指令引入,
(请将此定义文件,使用和内容文件不同的后缀,否则,Sphinx 将视其为独立文章来尝试解析)

Sphinx defines some default substitutions, see Substitutions.
Sphinx 本身有些默认替换,参考 Substitutions .

注释 Comments

所有直解标记文本块都不算有效的标记构成
Every explicit markup block which isn’t a valid markup construct (like the
footnotes above) is regarded as a comment (ref [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#comments]). For
example:

没有有效标记(如脚注)的直解标记文本块就是注释(参考 [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#comments])
例如:

.. This is a comment.

可以用缩进文本来进行多行注释:

..
 This whole indented block
 is a comment.

 Still in the comment.

源文本编码 Source encoding

Since the easiest way to include special characters like em dashes or copyright
signs in reST is to directly write them as Unicode characters, one has to
specify an encoding. Sphinx assumes source files to be encoded in UTF-8 by
default; you can change this with the source_encoding config value.

由于最简单的方式,是在 reST 中将包括特殊字符(如长划线或版权标记)都直接写成Unicode字符.
Sphinx 默认假设源文件是 utf-8 编码.
你可以用配置项 source_encoding 来指定别的编码.

嗯嗯嗯 Gotchas

There are some problems one commonly runs into while authoring reST documents:
通常运用 reST 进行撰写时会遇见几个问题:

	对在线标记的分隔: 如前所述,内联标记必须用非单词字符和周围的文字进行区隔,
要解决这个问题你必须使用反斜杠转义空格,详见 参考 [http://docutils.sf.net/docs/ref/rst/restructuredtext.html#inline-markup] .

	在线标记不能嵌套: 但是形如 *see :func:`foo`* 是没问题的.

Footnotes

	[1]	当默认域包含 class 指令时,该指令将被掩蔽,
因此 Sphinx 转而使用 rst-class.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

Sphinx Markup Constructs

Sphinx adds a lot of new directives and interpreted text roles to standard reST
markup [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]. This section contains the reference material for these facilities.

	The TOC tree
	Special names

	Paragraph-level markup

	Table-of-contents markup

	Glossary

	Grammar production displays

	Showing code examples
	Line numbers

	Includes

	Inline markup
	Cross-referencing syntax
	Cross-referencing arbitrary locations

	Cross-referencing documents

	Referencing downloadable files

	Cross-referencing other items of interest

	Other semantic markup

	Substitutions

	Miscellaneous markup
	File-wide metadata

	Meta-information markup

	Index-generating markup

	Including content based on tags

	Tables

More markup is added by Sphinx 域.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Markup Constructs

The TOC tree

Since reST does not have facilities to interconnect several documents, or split
documents into multiple output files, Sphinx uses a custom directive to add
relations between the single files the documentation is made of, as well as
tables of contents. The toctree directive is the central element.

	
.. toctree::

	This directive inserts a “TOC tree” at the current location, using the
individual TOCs (including “sub-TOC trees”) of the documents given in the
directive body. Relative document names (not beginning with a slash) are
relative to the document the directive occurs in, absolute names are relative
to the source directory. A numeric maxdepth option may be given to
indicate the depth of the tree; by default, all levels are included. [1]

Consider this example (taken from the Python docs’ library reference index):

.. toctree::
 :maxdepth: 2

 intro
 strings
 datatypes
 numeric
 (many more documents listed here)

This accomplishes two things:

	Tables of contents from all those documents are inserted, with a maximum
depth of two, that means one nested heading. toctree directives in
those documents are also taken into account.

	Sphinx knows that the relative order of the documents intro,
strings and so forth, and it knows that they are children of the shown
document, the library index. From this information it generates “next
chapter”, “previous chapter” and “parent chapter” links.

Entries

Document titles in the toctree will be automatically read from the
title of the referenced document. If that isn’t what you want, you can
specify an explicit title and target using a similar syntax to reST
hyperlinks (and Sphinx’s cross-referencing syntax). This
looks like:

.. toctree::

 intro
 All about strings <strings>
 datatypes

The second line above will link to the strings document, but will use the
title “All about strings” instead of the title of the strings document.

You can also add external links, by giving an HTTP URL instead of a document
name.

Section numbering

If you want to have section numbers even in HTML output, give the toctree a
numbered option. For example:

.. toctree::
 :numbered:

 foo
 bar

Numbering then starts at the heading of foo. Sub-toctrees are
automatically numbered (don’t give the numbered flag to those).

Numbering up to a specific depth is also possible, by giving the depth as a
numeric argument to numbered.

Additional options

If you want only the titles of documents in the tree to show up, not other
headings of the same level, you can use the titlesonly option:

.. toctree::
 :titlesonly:

 foo
 bar

You can use “globbing” in toctree directives, by giving the glob flag
option. All entries are then matched against the list of available
documents, and matches are inserted into the list alphabetically. Example:

.. toctree::
 :glob:

 intro*
 recipe/*
 *

This includes first all documents whose names start with intro, then all
documents in the recipe folder, then all remaining documents (except the
one containing the directive, of course.) [2]

The special entry name self stands for the document containing the
toctree directive. This is useful if you want to generate a “sitemap” from
the toctree.

You can also give a “hidden” option to the directive, like this:

.. toctree::
 :hidden:

 doc_1
 doc_2

This will still notify Sphinx of the document hierarchy, but not insert links
into the document at the location of the directive – this makes sense if you
intend to insert these links yourself, in a different style, or in the HTML
sidebar.

In the end, all documents in the source directory (or subdirectories)
must occur in some toctree directive; Sphinx will emit a warning if it
finds a file that is not included, because that means that this file will not
be reachable through standard navigation. Use unused_docs to
explicitly exclude documents from building, and exclude_trees to
exclude whole directories.

The “master document” (selected by master_doc) is the “root” of
the TOC tree hierarchy. It can be used as the documentation’s main page, or
as a “full table of contents” if you don’t give a maxdepth option.

Changed in version 0.3: Added “globbing” option.

Changed in version 0.6: Added “numbered” and “hidden” options as well as external links and
support for “self” references.

Changed in version 1.0: Added “titlesonly” option.

Changed in version 1.1: Added numeric argument to “numbered”.

Special names

Sphinx reserves some document names for its own use; you should not try to
create documents with these names – it will cause problems.

The special document names (and pages generated for them) are:

	genindex, modindex, search

These are used for the general index, the Python module index, and the search
page, respectively.

The general index is populated with entries from modules, all index-generating
object descriptions, and from index
directives.

The Python module index contains one entry per py:module directive.

The search page contains a form that uses the generated JSON search index and
JavaScript to full-text search the generated documents for search words; it
should work on every major browser that supports modern JavaScript.

	every name beginning with _

Though only few such names are currently used by Sphinx, you should not create
documents or document-containing directories with such names. (Using _ as
a prefix for a custom template directory is fine.)

Footnotes

	[1]	The maxdepth option does not apply to the LaTeX writer, where the
whole table of contents will always be presented at the begin of the
document, and its depth is controlled by the tocdepth counter, which
you can reset in your latex_preamble config value using
e.g. \setcounter{tocdepth}{2}.

	[2]	A note on available globbing syntax: you can use the standard shell
constructs *, ?, [...] and [!...] with the feature that
these all don’t match slashes. A double star ** can be used to match
any sequence of characters including slashes.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Markup Constructs

Paragraph-level markup

These directives create short paragraphs and can be used inside information
units as well as normal text:

	
.. note::

	An especially important bit of information about an API that a user should be
aware of when using whatever bit of API the note pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation.

Example:

.. note::

 This function is not suitable for sending spam e-mails.

	
.. warning::

	An important bit of information about an API that a user should be very aware
of when using whatever bit of API the warning pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation. This differs from note in that it is
recommended over note for information regarding security.

	
.. versionadded:: version

	This directive documents the version of the project which added the described
feature to the library or C API. When this applies to an entire module, it
should be placed at the top of the module section before any prose.

The first argument must be given and is the version in question; you can add
a second argument consisting of a brief explanation of the change.

Example:

.. versionadded:: 2.5
 The *spam* parameter.

Note that there must be no blank line between the directive head and the
explanation; this is to make these blocks visually continuous in the markup.

	
.. versionchanged:: version

	Similar to versionadded, but describes when and what changed in
the named feature in some way (new parameters, changed side effects, etc.).

	
.. deprecated:: vesion

	Similar to versionchanged, but describes when the feature was
deprecated. An explanation can also be given, for example to inform the
reader what should be used instead. Example:

.. deprecated:: 3.1
 Use :func:`spam` instead.

	
.. seealso::

	Many sections include a list of references to module documentation or
external documents. These lists are created using the seealso
directive.

The seealso directive is typically placed in a section just before any
sub-sections. For the HTML output, it is shown boxed off from the main flow
of the text.

The content of the seealso directive should be a reST definition list.
Example:

.. seealso::

 Module :py:mod:`zipfile`
 Documentation of the :py:mod:`zipfile` standard module.

 `GNU tar manual, Basic Tar Format <http://link>`_
 Documentation for tar archive files, including GNU tar extensions.

There’s also a “short form” allowed that looks like this:

.. seealso:: modules :py:mod:`zipfile`, :py:mod:`tarfile`

New in version 0.5: The short form.

	
.. rubric:: title

	This directive creates a paragraph heading that is not used to create a
table of contents node.

Note

If the title of the rubric is “Footnotes” (or the selected language’s
equivalent), this rubric is ignored by the LaTeX writer, since it is
assumed to only contain footnote definitions and therefore would create an
empty heading.

	
.. centered::

	This directive creates a centered boldfaced line of text. Use it as
follows:

.. centered:: LICENSE AGREEMENT

Deprecated since version 1.1: This presentation-only directive is a legacy from older versions. Use a
rst-class directive instead and add an appropriate style.

	
.. hlist::

	This directive must contain a bullet list. It will transform it into a more
compact list by either distributing more than one item horizontally, or
reducing spacing between items, depending on the builder.

For builders that support the horizontal distribution, there is a columns
option that specifies the number of columns; it defaults to 2. Example:

.. hlist::
 :columns: 3

 * A list of
 * short items
 * that should be
 * displayed
 * horizontally

New in version 0.6.

Table-of-contents markup

The toctree directive, which generates tables of contents of
subdocuments, is described in The TOC tree.

For local tables of contents, use the standard reST contents directive [http://docutils.sourceforge.net/docs/ref/rst/directives.html#contents].

Glossary

	
.. glossary::

	This directive must contain a reST definition list with terms and
definitions. The definitions will then be referencable with the term
role. Example:

.. glossary::

 environment
 A structure where information about all documents under the root is
 saved, and used for cross-referencing. The environment is pickled
 after the parsing stage, so that successive runs only need to read
 and parse new and changed documents.

 source directory
 The directory which, including its subdirectories, contains all
 source files for one Sphinx project.

New in version 0.6: You can now give the glossary directive a :sorted: flag that will
automatically sort the entries alphabetically.

Grammar production displays

Special markup is available for displaying the productions of a formal grammar.
The markup is simple and does not attempt to model all aspects of BNF (or any
derived forms), but provides enough to allow context-free grammars to be
displayed in a way that causes uses of a symbol to be rendered as hyperlinks to
the definition of the symbol. There is this directive:

	
.. productionlist:: [name]

	This directive is used to enclose a group of productions. Each production is
given on a single line and consists of a name, separated by a colon from the
following definition. If the definition spans multiple lines, each
continuation line must begin with a colon placed at the same column as in the
first line.

The argument to productionlist serves to distinguish different sets of
production lists that belong to different grammars.

Blank lines are not allowed within productionlist directive arguments.

The definition can contain token names which are marked as interpreted text
(e.g. sum ::= `integer` "+" `integer`) – this generates cross-references
to the productions of these tokens. Outside of the production list, you can
reference to token productions using token.

Note that no further reST parsing is done in the production, so that you
don’t have to escape * or | characters.

The following is an example taken from the Python Reference Manual:

.. productionlist::
 try_stmt: try1_stmt | try2_stmt
 try1_stmt: "try" ":" `suite`
 : ("except" [`expression` ["," `target`]] ":" `suite`)+
 : ["else" ":" `suite`]
 : ["finally" ":" `suite`]
 try2_stmt: "try" ":" `suite`
 : "finally" ":" `suite`

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Markup Constructs

Showing code examples

Examples of Python source code or interactive sessions are represented using
standard reST literal blocks. They are started by a :: at the end of the
preceding paragraph and delimited by indentation.

Representing an interactive session requires including the prompts and output
along with the Python code. No special markup is required for interactive
sessions. After the last line of input or output presented, there should not be
an “unused” primary prompt; this is an example of what not to do:

>>> 1 + 1
2
>>>

Syntax highlighting is done with Pygments [http://pygments.org] (if it’s
installed) and handled in a smart way:

	There is a “highlighting language” for each source file. Per default, this is
'python' as the majority of files will have to highlight Python snippets,
but the doc-wide default can be set with the highlight_language
config value.

	Within Python highlighting mode, interactive sessions are recognized
automatically and highlighted appropriately. Normal Python code is only
highlighted if it is parseable (so you can use Python as the default, but
interspersed snippets of shell commands or other code blocks will not be
highlighted as Python).

	The highlighting language can be changed using the highlight directive,
used as follows:

.. highlight:: c

This language is used until the next highlight directive is encountered.

	For documents that have to show snippets in different languages, there’s also
a code-block directive that is given the highlighting language
directly:

.. code-block:: ruby

 Some Ruby code.

The directive’s alias name sourcecode works as well.

	The valid values for the highlighting language are:

	none (no highlighting)

	python (the default when highlight_language isn’t set)

	guess (let Pygments guess the lexer based on contents, only works with
certain well-recognizable languages)

	rest

	c

	... and any other lexer name that Pygments supports.

	If highlighting with the selected language fails, the block is not highlighted
in any way.

Line numbers

If installed, Pygments can generate line numbers for code blocks. For
automatically-highlighted blocks (those started by ::), line numbers must be
switched on in a highlight directive, with the linenothreshold
option:

.. highlight:: python
 :linenothreshold: 5

This will produce line numbers for all code blocks longer than five lines.

For code-block blocks, a linenos flag option can be given to switch
on line numbers for the individual block:

.. code-block:: ruby
 :linenos:

 Some more Ruby code.

Includes

	
.. literalinclude:: filename

	Longer displays of verbatim text may be included by storing the example text in
an external file containing only plain text. The file may be included using the
literalinclude directive. [1] For example, to include the Python source file
example.py, use:

.. literalinclude:: example.py

The file name is usually relative to the current file’s path. However, if it
is absolute (starting with /), it is relative to the top source
directory.

Tabs in the input are expanded if you give a tab-width option with the
desired tab width.

The directive also supports the linenos flag option to switch on line
numbers, and a language option to select a language different from the
current file’s standard language. Example with options:

.. literalinclude:: example.rb
 :language: ruby
 :linenos:

Include files are assumed to be encoded in the source_encoding.
If the file has a different encoding, you can specify it with the
encoding option:

.. literalinclude:: example.py
 :encoding: latin-1

The directive also supports including only parts of the file. If it is a
Python module, you can select a class, function or method to include using
the pyobject option:

.. literalinclude:: example.py
 :pyobject: Timer.start

This would only include the code lines belonging to the start() method in
the Timer class within the file.

Alternately, you can specify exactly which lines to include by giving a
lines option:

.. literalinclude:: example.py
 :lines: 1,3,5-10,20-

This includes the lines 1, 3, 5 to 10 and lines 20 to the last line.

Another way to control which part of the file is included is to use the
start-after and end-before options (or only one of them). If
start-after is given as a string option, only lines that follow the first
line containing that string are included. If end-before is given as a
string option, only lines that precede the first lines containing that string
are included.

You can prepend and/or append a line to the included code, using the
prepend and append option, respectively. This is useful e.g. for
highlighting PHP code that doesn’t include the <?php/?> markers.

New in version 0.4.3: The encoding option.

New in version 0.6: The pyobject, lines, start-after and end-before options,
as well as support for absolute filenames.

New in version 1.0: The prepend and append options, as well as tab-width.

Footnotes

	[1]	There is a standard .. include directive, but it raises errors if the
file is not found. This one only emits a warning.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Markup Constructs

Inline markup

Sphinx uses interpreted text roles to insert semantic markup into documents.
They are written as :rolename:`content`.

Note

The default role (`content`) has no special meaning by default. You are
free to use it for anything you like, e.g. variable names; use the
default_role config value to set it to a known role.

See Sphinx 域 for roles added by domains.

Cross-referencing syntax

Cross-references are generated by many semantic interpreted text roles.
Basically, you only need to write :role:`target`, and a link will be created
to the item named target of the type indicated by role. The links’s text
will be the same as target.

There are some additional facilities, however, that make cross-referencing roles
more versatile:

	You may supply an explicit title and reference target, like in reST direct
hyperlinks: :role:`title <target>` will refer to target, but the link
text will be title.

	If you prefix the content with !, no reference/hyperlink will be created.

	If you prefix the content with ~, the link text will only be the last
component of the target. For example, :py:meth:`~Queue.Queue.get` will
refer to Queue.Queue.get but only display get as the link text.

In HTML output, the link’s title attribute (that is e.g. shown as a
tool-tip on mouse-hover) will always be the full target name.

Cross-referencing arbitrary locations

	
:ref:

	To support cross-referencing to arbitrary locations in any document, the
standard reST labels are used. For this to work label names must be unique
throughout the entire documentation. There are two ways in which you can
refer to labels:

	If you place a label directly before a section title, you can reference to
it with :ref:`label-name`. Example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

The :ref: role would then generate a link to the section, with the link
title being “Section to cross-reference”. This works just as well when
section and reference are in different source files.

Automatic labels also work with figures: given

.. _my-figure:

.. figure:: whatever

 Figure caption

a reference :ref:`my-figure` would insert a reference to the figure
with link text “Figure caption”.

The same works for tables that are given an explicit caption using the
table [http://docutils.sourceforge.net/docs/ref/rst/directives.html#table] directive.

	Labels that aren’t placed before a section title can still be referenced
to, but you must give the link an explicit title, using this syntax:
:ref:`Link title <label-name>`.

Using ref is advised over standard reStructuredText links to sections
(like `Section title`_) because it works across files, when section
headings are changed, and for all builders that support cross-references.

Cross-referencing documents

New in version 0.6.

There is also a way to directly link to documents:

	
:doc:

	Link to the specified document; the document name can be specified in
absolute or relative fashion. For example, if the reference
:doc:`parrot` occurs in the document sketches/index, then the link
refers to sketches/parrot. If the reference is :doc:`/people` or
:doc:`../people`, the link refers to people.

If no explicit link text is given (like usual: :doc:`Monty Python members
</people>`), the link caption will be the title of the given document.

Referencing downloadable files

New in version 0.6.

	
:download:

	This role lets you link to files within your source tree that are not reST
documents that can be viewed, but files that can be downloaded.

When you use this role, the referenced file is automatically marked for
inclusion in the output when building (obviously, for HTML output only).
All downloadable files are put into the _downloads subdirectory of the
output directory; duplicate filenames are handled.

An example:

See :download:`this example script <../example.py>`.

The given filename is usually relative to the directory the current source
file is contained in, but if it absolute (starting with /), it is taken
as relative to the top source directory.

The example.py file will be copied to the output directory, and a
suitable link generated to it.

Cross-referencing other items of interest

The following roles do possibly create a cross-reference, but do not refer to
objects:

	
:envvar:

	An environment variable. Index entries are generated. Also generates a link
to the matching envvar directive, if it exists.

	
:token:

	The name of a grammar token (used to create links between
productionlist directives).

	
:keyword:

	The name of a keyword in Python. This creates a link to a reference label
with that name, if it exists.

	
:option:

	A command-line option to an executable program. The leading hyphen(s) must
be included. This generates a link to a option directive, if it
exists.

The following role creates a cross-reference to the term in the glossary:

	
:term:

	Reference to a term in the glossary. The glossary is created using the
glossary directive containing a definition list with terms and
definitions. It does not have to be in the same file as the term markup,
for example the Python docs have one global glossary in the glossary.rst
file.

If you use a term that’s not explained in a glossary, you’ll get a warning
during build.

Other semantic markup

The following roles don’t do anything special except formatting the text
in a different style:

	
:abbr:

	An abbreviation. If the role content contains a parenthesized explanation,
it will be treated specially: it will be shown in a tool-tip in HTML, and
output only once in LaTeX.

Example: :abbr:`LIFO (last-in, first-out)`.

New in version 0.6.

	
:command:

	The name of an OS-level command, such as rm.

	
:dfn:

	Mark the defining instance of a term in the text. (No index entries are
generated.)

	
:file:

	The name of a file or directory. Within the contents, you can use curly
braces to indicate a “variable” part, for example:

... is installed in :file:`/usr/lib/python2.{x}/site-packages` ...

In the built documentation, the x will be displayed differently to
indicate that it is to be replaced by the Python minor version.

	
:guilabel:

	Labels presented as part of an interactive user interface should be marked
using guilabel. This includes labels from text-based interfaces such as
those created using curses or other text-based libraries. Any label
used in the interface should be marked with this role, including button
labels, window titles, field names, menu and menu selection names, and even
values in selection lists.

Changed in version 1.0: An accelerator key for the GUI label can be included using an ampersand;
this will be stripped and displayed underlined in the output (example:
:guilabel:`&Cancel`). To include a literal ampersand, double it.

	
:kbd:

	Mark a sequence of keystrokes. What form the key sequence takes may depend
on platform- or application-specific conventions. When there are no relevant
conventions, the names of modifier keys should be spelled out, to improve
accessibility for new users and non-native speakers. For example, an
xemacs key sequence may be marked like :kbd:`C-x C-f`, but without
reference to a specific application or platform, the same sequence should be
marked as :kbd:`Control-x Control-f`.

	
:mailheader:

	The name of an RFC 822-style mail header. This markup does not imply that
the header is being used in an email message, but can be used to refer to any
header of the same “style.” This is also used for headers defined by the
various MIME specifications. The header name should be entered in the same
way it would normally be found in practice, with the camel-casing conventions
being preferred where there is more than one common usage. For example:
:mailheader:`Content-Type`.

	
:makevar:

	The name of a make variable.

	
:manpage:

	A reference to a Unix manual page including the section,
e.g. :manpage:`ls(1)`.

	
:menuselection:

	Menu selections should be marked using the menuselection role. This is
used to mark a complete sequence of menu selections, including selecting
submenus and choosing a specific operation, or any subsequence of such a
sequence. The names of individual selections should be separated by
-->.

For example, to mark the selection “Start > Programs”, use this markup:

:menuselection:`Start --> Programs`

When including a selection that includes some trailing indicator, such as the
ellipsis some operating systems use to indicate that the command opens a
dialog, the indicator should be omitted from the selection name.

menuselection also supports ampersand accelerators just like
guilabel.

	
:mimetype:

	The name of a MIME type, or a component of a MIME type (the major or minor
portion, taken alone).

	
:newsgroup:

	The name of a Usenet newsgroup.

	
:program:

	The name of an executable program. This may differ from the file name for
the executable for some platforms. In particular, the .exe (or other)
extension should be omitted for Windows programs.

	
:regexp:

	A regular expression. Quotes should not be included.

	
:samp:

	A piece of literal text, such as code. Within the contents, you can use
curly braces to indicate a “variable” part, as in file. For
example, in :samp:`print 1+{variable}`, the part variable would be
emphasized.

If you don’t need the “variable part” indication, use the standard
``code`` instead.

There is also an index role to generate index entries.

The following roles generate external links:

	
:pep:

	A reference to a Python Enhancement Proposal. This generates appropriate
index entries. The text “PEP number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified PEP. You can
link to a specific section by saying :pep:`number#anchor`.

	
:rfc:

	A reference to an Internet Request for Comments. This generates appropriate
index entries. The text “RFC number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified RFC. You can
link to a specific section by saying :rfc:`number#anchor`.

Note that there are no special roles for including hyperlinks as you can use
the standard reST markup for that purpose.

Substitutions

The documentation system provides three substitutions that are defined by default.
They are set in the build configuration file.

	
|release|

	Replaced by the project release the documentation refers to. This is meant
to be the full version string including alpha/beta/release candidate tags,
e.g. 2.5.2b3. Set by release.

	
|version|

	Replaced by the project version the documentation refers to. This is meant to
consist only of the major and minor version parts, e.g. 2.5, even for
version 2.5.1. Set by version.

	
|today|

	Replaced by either today’s date (the date on which the document is read), or
the date set in the build configuration file. Normally has the format
April 14, 2007. Set by today_fmt and today.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Markup Constructs

Miscellaneous markup

File-wide metadata

reST has the concept of “field lists”; these are a sequence of fields marked up
like this:

:fieldname: Field content

A field list at the very top of a file is parsed by docutils as the “docinfo”,
which is normally used to record the author, date of publication and other
metadata. In Sphinx, the docinfo is used as metadata, too, but not displayed
in the output.

At the moment, these metadata fields are recognized:

	tocdepth

	The maximum depth for a table of contents of this file.

New in version 0.4.

	nocomments

	If set, the web application won’t display a comment form for a page generated
from this source file.

	orphan

	If set, warnings about this file not being included in any toctree will be
suppressed.

New in version 1.0.

Meta-information markup

	
.. sectionauthor:: name <email>

	Identifies the author of the current section. The argument should include
the author’s name such that it can be used for presentation and email
address. The domain name portion of the address should be lower case.
Example:

.. sectionauthor:: Guido van Rossum <guido@python.org>

By default, this markup isn’t reflected in the output in any way (it helps
keep track of contributions), but you can set the configuration value
show_authors to True to make them produce a paragraph in the
output.

	
.. codeauthor:: name <email>

	The codeauthor directive, which can appear multiple times, names the
authors of the described code, just like sectionauthor names the
author(s) of a piece of documentation. It too only produces output if the
show_authors configuration value is True.

Index-generating markup

Sphinx automatically creates index entries from all object descriptions (like
functions, classes or attributes) like discussed in Sphinx 域.

However, there is also explicit markup available, to make the index more
comprehensive and enable index entries in documents where information is not
mainly contained in information units, such as the language reference.

	
.. index:: <entries>

	This directive contains one or more index entries. Each entry consists of a
type and a value, separated by a colon.

For example:

.. index::
 single: execution; context
 module: __main__
 module: sys
 triple: module; search; path

The execution context

...

This directive contains five entries, which will be converted to entries in
the generated index which link to the exact location of the index statement
(or, in case of offline media, the corresponding page number).

Since index directives generate cross-reference targets at their location in
the source, it makes sense to put them before the thing they refer to –
e.g. a heading, as in the example above.

The possible entry types are:

	single

	Creates a single index entry. Can be made a subentry by separating the
subentry text with a semicolon (this notation is also used below to
describe what entries are created).

	pair

	pair: loop; statement is a shortcut that creates two index entries,
namely loop; statement and statement; loop.

	triple

	Likewise, triple: module; search; path is a shortcut that creates
three index entries, which are module; search path, search; path,
module and path; module search.

	module, keyword, operator, object, exception, statement, builtin

	These all create two index entries. For example, module: hashlib
creates the entries module; hashlib and hashlib; module. (These
are Python-specific and therefore deprecated.)

For index directives containing only “single” entries, there is a shorthand
notation:

.. index:: BNF, grammar, syntax, notation

This creates four index entries.

	
:index:

	While the index directive is a block-level markup and links to the
beginning of the next paragraph, there is also a corresponding role that sets
the link target directly where it is used.

The content of the role can be a simple phrase, which is then kept in the
text and used as an index entry. It can also be a combination of text and
index entry, styled like with explicit targets of cross-references. In that
case, the “target” part can be a full entry as described for the directive
above. For example:

This is a normal reST :index:`paragraph` that contains several
:index:`index entries <pair: index; entry>`.

New in version 1.1.

Including content based on tags

	
.. only:: <expression>

	Include the content of the directive only if the expression is true. The
expression should consist of tags, like this:

.. only:: html and draft

Undefined tags are false, defined tags (via the -t command-line option or
within conf.py) are true. Boolean expressions, also using
parentheses (like html and (latex or draft) are supported.

The format of the current builder (html, latex or text) is always
set as a tag.

New in version 0.6.

Tables

Use standard reStructuredText tables. They work fine in
HTML output, however there are some gotchas when using tables in LaTeX: the
column width is hard to determine correctly automatically. For this reason, the
following directive exists:

	
.. tabularcolumns:: column spec

	This directive gives a “column spec” for the next table occurring in the
source file. The spec is the second argument to the LaTeX tabulary
package’s environment (which Sphinx uses to translate tables). It can have
values like

|l|l|l|

which means three left-adjusted, nonbreaking columns. For columns with
longer text that should automatically be broken, use either the standard
p{width} construct, or tabulary’s automatic specifiers:

	L
	ragged-left column with automatic width

	R
	ragged-right column with automatic width

	C
	centered column with automatic width

	J
	justified column with automatic width

The automatic width is determined by rendering the content in the table, and
scaling them according to their share of the total width.

By default, Sphinx uses a table layout with L for every column.

New in version 0.3.

Warning

Tables that contain literal blocks cannot be set with tabulary. They are
therefore set with the standard LaTeX tabular environment. Also, the
verbatim environment used for literal blocks only works in p{width}
columns, which means that by default, Sphinx generates such column specs for
such tables. Use the tabularcolumns directive to get finer control
over such tables.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

Sphinx 域

New in version 1.0.

What is a Domain?

Originally, Sphinx was conceived for a single project, the documentation of the
Python language. Shortly afterwards, it was made available for everyone as a
documentation tool, but the documentation of Python modules remained deeply
built in – the most fundamental directives, like function, were designed
for Python objects. Since Sphinx has become somewhat popular, interest
developed in using it for many different purposes: C/C++ projects, JavaScript,
or even reStructuredText markup (like in this documentation).

While this was always possible, it is now much easier to easily support
documentation of projects using different programming languages or even ones not
supported by the main Sphinx distribution, by providing a domain for every
such purpose.

A domain is a collection of markup (reStructuredText directives and
roles) to describe and link to objects belonging together,
e.g. elements of a programming language. Directive and role names in a domain
have names like domain:name, e.g. py:function. Domains can also provide
custom indices (like the Python Module Index).

Having domains means that there are no naming problems when one set of
documentation wants to refer to e.g. C++ and Python classes. It also means that
extensions that support the documentation of whole new languages are much easier
to write.

This section describes what the domains that come with Sphinx provide. The
domain API is documented as well, in the section Domain API.

Basic Markup

Most domains provide a number of object description directives, used to
describe specific objects provided by modules. Each directive requires one or
more signatures to provide basic information about what is being described, and
the content should be the description. The basic version makes entries in the
general index; if no index entry is desired, you can give the directive option
flag :noindex:. An example using a Python domain directive:

.. py:function:: spam(eggs)
 ham(eggs)

 Spam or ham the foo.

This describes the two Python functions spam and ham. (Note that when
signatures become too long, you can break them if you add a backslash to lines
that are continued in the next line. Example:

.. py:function:: filterwarnings(action, message='', category=Warning, \
 module='', lineno=0, append=False)
 :noindex:

(This example also shows how to use the :noindex: flag.)

The domains also provide roles that link back to these object descriptions. For
example, to link to one of the functions described in the example above, you
could say

The function :py:func:`spam` does a similar thing.

As you can see, both directive and role names contain the domain name and the
directive name.

Default Domain

To avoid having to writing the domain name all the time when you e.g. only
describe Python objects, a default domain can be selected with either the config
value primary_domain or this directive:

	
.. default-domain:: name

	Select a new default domain. While the primary_domain selects a
global default, this only has an effect within the same file.

If no other default is selected, the Python domain (named py) is the default
one, mostly for compatibility with documentation written for older versions of
Sphinx.

Directives and roles that belong to the default domain can be mentioned without
giving the domain name, i.e.

.. function:: pyfunc()

 Describes a Python function.

Reference to :func:`pyfunc`.

Cross-referencing syntax

For cross-reference roles provided by domains, the same facilities exist as for
general cross-references. See Cross-referencing syntax.

In short:

	You may supply an explicit title and reference target: :role:`title
<target>` will refer to target, but the link text will be title.

	If you prefix the content with !, no reference/hyperlink will be created.

	If you prefix the content with ~, the link text will only be the last
component of the target. For example, :py:meth:`~Queue.Queue.get` will
refer to Queue.Queue.get but only display get as the link text.

The Python Domain

The Python domain (name py) provides the following directives for module
declarations:

	
.. py:module:: name

	This directive marks the beginning of the description of a module (or package
submodule, in which case the name should be fully qualified, including the
package name). It does not create content (like e.g. py:class does).

This directive will also cause an entry in the global module index.

The platform option, if present, is a comma-separated list of the
platforms on which the module is available (if it is available on all
platforms, the option should be omitted). The keys are short identifiers;
examples that are in use include “IRIX”, “Mac”, “Windows”, and “Unix”. It is
important to use a key which has already been used when applicable.

The synopsis option should consist of one sentence describing the
module’s purpose – it is currently only used in the Global Module Index.

The deprecated option can be given (with no value) to mark a module as
deprecated; it will be designated as such in various locations then.

	
.. py:currentmodule:: name

	This directive tells Sphinx that the classes, functions etc. documented from
here are in the given module (like py:module), but it will not
create index entries, an entry in the Global Module Index, or a link target
for py:mod. This is helpful in situations where documentation
for things in a module is spread over multiple files or sections – one
location has the py:module directive, the others only
py:currentmodule.

The following directives are provided for module and class contents:

	
.. py:data:: name

	Describes global data in a module, including both variables and values used
as “defined constants.” Class and object attributes are not documented
using this environment.

	
.. py:exception:: name

	Describes an exception class. The signature can, but need not include
parentheses with constructor arguments.

	
.. py:function:: name(signature)

	Describes a module-level function. The signature should include the
parameters, enclosing optional parameters in brackets. Default values can be
given if it enhances clarity; see Python Signatures. For example:

.. py:function:: Timer.repeat([repeat=3[, number=1000000]])

Object methods are not documented using this directive. Bound object methods
placed in the module namespace as part of the public interface of the module
are documented using this, as they are equivalent to normal functions for
most purposes.

The description should include information about the parameters required and
how they are used (especially whether mutable objects passed as parameters
are modified), side effects, and possible exceptions. A small example may be
provided.

	
.. py:class:: name[(signature)]

	Describes a class. The signature can include parentheses with parameters
which will be shown as the constructor arguments. See also
Python Signatures.

Methods and attributes belonging to the class should be placed in this
directive’s body. If they are placed outside, the supplied name should
contain the class name so that cross-references still work. Example:

.. py:class:: Foo
 .. py:method:: quux()

-- or --

.. py:class:: Bar

.. py:method:: Bar.quux()

The first way is the preferred one.

	
.. py:attribute:: name

	Describes an object data attribute. The description should include
information about the type of the data to be expected and whether it may be
changed directly.

	
.. py:method:: name(signature)

	Describes an object method. The parameters should not include the self
parameter. The description should include similar information to that
described for function. See also Python Signatures.

	
.. py:staticmethod:: name(signature)

	Like py:method, but indicates that the method is a static method.

New in version 0.4.

	
.. py:classmethod:: name(signature)

	Like py:method, but indicates that the method is a class method.

New in version 0.6.

Python Signatures

Signatures of functions, methods and class constructors can be given like they
would be written in Python, with the exception that optional parameters can be
indicated by brackets:

.. py:function:: compile(source[, filename[, symbol]])

It is customary to put the opening bracket before the comma. In addition to
this “nested” bracket style, a “flat” style can also be used, due to the fact
that most optional parameters can be given independently:

.. py:function:: compile(source[, filename, symbol])

Default values for optional arguments can be given (but if they contain commas,
they will confuse the signature parser). Python 3-style argument annotations
can also be given as well as return type annotations:

.. py:function:: compile(source : string[, filename, symbol]) -> ast object

Info field lists

New in version 0.4.

Inside Python object description directives, reST field lists with these fields
are recognized and formatted nicely:

	param, parameter, arg, argument, key, keyword:
Description of a parameter.

	type: Type of a parameter.

	raises, raise, except, exception: That (and when) a specific
exception is raised.

	var, ivar, cvar: Description of a variable.

	returns, return: Description of the return value.

	rtype: Return type.

The field names must consist of one of these keywords and an argument (except
for returns and rtype, which do not need an argument). This is best
explained by an example:

.. py:function:: format_exception(etype, value, tb[, limit=None])

 Format the exception with a traceback.

 :param etype: exception type
 :param value: exception value
 :param tb: traceback object
 :param limit: maximum number of stack frames to show
 :type limit: integer or None
 :rtype: list of strings

It is also possible to combine parameter type and description, if the type is a
single word, like this:

:param integer limit: maximum number of stack frames to show

This will render like this:

	
format_exception(etype, value, tb[, limit=None])

	Format the exception with a traceback.

	Parameters:	
	etype – exception type

	value – exception value

	tb – traceback object

	limit (integer or None) – maximum number of stack frames to show

	Return type:	list of strings

Cross-referencing Python objects

The following roles refer to objects in modules and are possibly hyperlinked if
a matching identifier is found:

	
:py:mod:

	Reference a module; a dotted name may be used. This should also be used for
package names.

	
:py:func:

	Reference a Python function; dotted names may be used. The role text needs
not include trailing parentheses to enhance readability; they will be added
automatically by Sphinx if the add_function_parentheses config
value is true (the default).

	
:py:data:

	Reference a module-level variable.

	
:py:const:

	Reference a “defined” constant. This may be a C-language #define or a
Python variable that is not intended to be changed.

	
:py:class:

	Reference a class; a dotted name may be used.

	
:py:meth:

	Reference a method of an object. The role text can include the type name and
the method name; if it occurs within the description of a type, the type name
can be omitted. A dotted name may be used.

	
:py:attr:

	Reference a data attribute of an object.

	
:py:exc:

	Reference an exception. A dotted name may be used.

	
:py:obj:

	Reference an object of unspecified type. Useful e.g. as the
default_role.

New in version 0.4.

The name enclosed in this markup can include a module name and/or a class name.
For example, :py:func:`filter` could refer to a function named filter in
the current module, or the built-in function of that name. In contrast,
:py:func:`foo.filter` clearly refers to the filter function in the
foo module.

Normally, names in these roles are searched first without any further
qualification, then with the current module name prepended, then with the
current module and class name (if any) prepended. If you prefix the name with a
dot, this order is reversed. For example, in the documentation of Python’s
codecs module, :py:func:`open` always refers to the built-in
function, while :py:func:`.open` refers to codecs.open().

A similar heuristic is used to determine whether the name is an attribute of the
currently documented class.

Also, if the name is prefixed with a dot, and no exact match is found, the
target is taken as a suffix and all object names with that suffix are
searched. For example, :py:meth:`.TarFile.close` references the
tarfile.TarFile.close() function, even if the current module is not
tarfile. Since this can get ambiguous, if there is more than one possible
match, you will get a warning from Sphinx.

Note that you can combine the ~ and . prefixes:
:py:meth:`~.TarFile.close` will reference the tarfile.TarFile.close()
method, but the visible link caption will only be close().

The C Domain

The C domain (name c) is suited for documentation of C API.

	
.. c:function:: type name(signature)

	Describes a C function. The signature should be given as in C, e.g.:

.. c:function:: PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

This is also used to describe function-like preprocessor macros. The names
of the arguments should be given so they may be used in the description.

Note that you don’t have to backslash-escape asterisks in the signature, as
it is not parsed by the reST inliner.

	
.. c:member:: type name

	Describes a C struct member. Example signature:

.. c:member:: PyObject* PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how
the value should be interpreted, and whether the value can be changed.
References to structure members in text should use the member role.

	
.. c:macro:: name

	Describes a “simple” C macro. Simple macros are macros which are used for
code expansion, but which do not take arguments so cannot be described as
functions. This is not to be used for simple constant definitions. Examples
of its use in the Python documentation include PyObject_HEAD and
Py_BEGIN_ALLOW_THREADS.

	
.. c:type:: name

	Describes a C type (whether defined by a typedef or struct). The signature
should just be the type name.

	
.. c:var:: type name

	Describes a global C variable. The signature should include the type, such
as:

.. c:var:: PyObject* PyClass_Type

Cross-referencing C constructs

The following roles create cross-references to C-language constructs if they are
defined in the documentation:

	
:c:data:

	Reference a C-language variable.

	
:c:func:

	Reference a C-language function. Should include trailing parentheses.

	
:c:macro:

	Reference a “simple” C macro, as defined above.

	
:c:type:

	Reference a C-language type.

The C++ Domain

The C++ domain (name cpp) supports documenting C++ projects.

The following directives are available:

	
.. cpp:class:: signatures

	
.. cpp:function:: signatures

	
.. cpp:member:: signatures

	
.. cpp:type:: signatures

	Describe a C++ object. Full signature specification is supported – give the
signature as you would in the declaration. Here some examples:

.. cpp:function:: bool namespaced::theclass::method(int arg1, std::string arg2)

 Describes a method with parameters and types.

.. cpp:function:: bool namespaced::theclass::method(arg1, arg2)

 Describes a method without types.

.. cpp:function:: const T &array<T>::operator[]() const

 Describes the constant indexing operator of a templated array.

.. cpp:function:: operator bool() const

 Describe a casting operator here.

.. cpp:member:: std::string theclass::name

.. cpp:type:: theclass::const_iterator

Will be rendered like this:

	
bool namespaced::theclass::method(int arg1, std::string arg2)

	Describes a method with parameters and types.

	
bool namespaced::theclass::method(arg1, arg2)

	Describes a method without types.

	
const T &array<T>::operator[]() const

	Describes the constant indexing operator of a templated array.

	
operator bool() const

	Describe a casting operator here.

	
std::string theclass::name

	

	
type theclass::const_iterator

	

	
.. cpp:namespace:: namespace

	Select the current C++ namespace for the following objects.

These roles link to the given object types:

	
:cpp:class:

	
:cpp:func:

	
:cpp:member:

	
:cpp:type:

	Reference a C++ object. You can give the full signature (and need to, for
overloaded functions.)

Note

Sphinx’ syntax to give references a custom title can interfere with
linking to template classes, if nothing follows the closing angle
bracket, i.e. if the link looks like this: :cpp:class:`MyClass<T>`.
This is interpreted as a link to T with a title of MyClass.
In this case, please escape the opening angle bracket with a backslash,
like this: :cpp:class:`MyClass\<T>`.

Note on References

It is currently impossible to link to a specific version of an
overloaded method. Currently the C++ domain is the first domain
that has basic support for overloaded methods and until there is more
data for comparison we don’t want to select a bad syntax to reference a
specific overload. Currently Sphinx will link to the first overloaded
version of the method / function.

The Standard Domain

The so-called “standard” domain collects all markup that doesn’t warrant a
domain of its own. Its directives and roles are not prefixed with a domain
name.

The standard domain is also where custom object descriptions, added using the
add_object_type() API, are placed.

There is a set of directives allowing documenting command-line programs:

	
.. option:: name args, name args, ...

	Describes a command line option or switch. Option argument names should be
enclosed in angle brackets. Example:

.. option:: -m <module>, --module <module>

 Run a module as a script.

The directive will create a cross-reference target named after the first
option, referencable by option (in the example case, you’d use
something like :option:`-m`).

	
.. envvar:: name

	Describes an environment variable that the documented code or program uses or
defines. Referencable by envvar.

	
.. program:: name

	Like py:currentmodule, this directive produces no output. Instead, it
serves to notify Sphinx that all following option directives
document options for the program called name.

If you use program, you have to qualify the references in your
option roles by the program name, so if you have the following
situation

.. program:: rm

.. option:: -r

 Work recursively.

.. program:: svn

.. option:: -r revision

 Specify the revision to work upon.

then :option:`rm -r` would refer to the first option, while
:option:`svn -r` would refer to the second one.

The program name may contain spaces (in case you want to document subcommands
like svn add and svn commit separately).

New in version 0.5.

There is also a very generic object description directive, which is not tied to
any domain:

	
.. describe:: text

	
.. object:: text

	This directive produces the same formatting as the specific ones provided by
domains, but does not create index entries or cross-referencing targets.
Example:

.. describe:: PAPER

 You can set this variable to select a paper size.

The JavaScript Domain

The JavaScript domain (name js) provides the following directives:

	
.. js:function:: name(signature)

	Describes a JavaScript function or method. If you want to describe
arguments as optional use square brackets as documented for Python signatures.

You can use fields to give more details about arguments and their expected
types, errors which may be thrown by the function, and the value being
returned:

.. js:function:: $.getJSON(href, callback[, errback])

 :param string href: An URI to the location of the resource.
 :param callback: Get's called with the object.
 :param errback:
 Get's called in case the request fails. And a lot of other
 text so we need multiple lines
 :throws SomeError: For whatever reason in that case.
 :returns: Something

This is rendered as:

	
$.getJSON(href, callback[, errback])

	

	Arguments:	
	href (string) – An URI to the location of the resource.

	callback – Get’s called with the object.

	errback – Get’s called in case the request fails. And a lot of other
text so we need multiple lines.

	Throws SomeError:

		For whatever reason in that case.

	Returns:	Something

	
.. js:class:: name

	Describes a constructor that creates an object. This is basically like
a function but will show up with a class prefix:

.. js:class:: MyAnimal(name[, age])

 :param string name: The name of the animal
 :param number age: an optional age for the animal

This is rendered as:

	
class MyAnimal(name[, age])

	

	Arguments:	
	name (string) – The name of the animal

	age (number) – an optional age for the animal

	
.. js:data:: name

	Describes a global variable or constant.

	
.. js:attribute:: object.name

	Describes the attribute name of object.

These roles are provided to refer to the described objects:

	
:js:func:

	
:js:class:

	
:js:data:

	
:js:attr:

	

The reStructuredText domain

The reStructuredText domain (name rst) provides the following directives:

	
.. rst:directive:: name

	Describes a reST directive. The name can be a single directive name or
actual directive syntax (.. prefix and :: suffix) with arguments that
will be rendered differently. For example:

.. rst:directive:: foo

 Foo description.

.. rst:directive:: .. bar:: baz

 Bar description.

will be rendered as:

	
.. foo::

	Foo description.

	
.. bar:: baz

	Bar description.

	
.. rst:role:: name

	Describes a reST role. For example:

.. rst:role:: foo

 Foo description.

will be rendered as:

	
:foo:

	Foo description.

These roles are provided to refer to the described objects:

	
:rst:dir:

	
:rst:role:

	

More domains

The sphinx-contrib [http://bitbucket.org/birkenfeld/sphinx-contrib/] repository contains more domains available as extensions;
currently a Ruby and an Erlang domain.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

Available builders

These are the built-in Sphinx builders. More builders can be added by
extensions.

The builder’s “name” must be given to the -b command-line option of
sphinx-build to select a builder.

	
class sphinx.builders.html.StandaloneHTMLBuilder

	This is the standard HTML builder. Its output is a directory with HTML
files, complete with style sheets and optionally the reST sources. There are
quite a few configuration values that customize the output of this builder,
see the chapter Options for HTML output for details.

Its name is html.

	
class sphinx.builders.html.DirectoryHTMLBuilder

	This is a subclass of the standard HTML builder. Its output is a directory
with HTML files, where each file is called index.html and placed in a
subdirectory named like its page name. For example, the document
markup/rest.rst will not result in an output file markup/rest.html,
but markup/rest/index.html. When generating links between pages, the
index.html is omitted, so that the URL would look like markup/rest/.

Its name is dirhtml.

New in version 0.6.

	
class sphinx.builders.html.SingleFileHTMLBuilder

	This is an HTML builder that combines the whole project in one output file.
(Obviously this only works with smaller projects.) The file is named like
the master document. No indices will be generated.

Its name is singlehtml.

New in version 1.0.

	
class sphinx.builders.htmlhelp.HTMLHelpBuilder

	This builder produces the same output as the standalone HTML builder, but
also generates HTML Help support files that allow the Microsoft HTML Help
Workshop to compile them into a CHM file.

Its name is htmlhelp.

	
class sphinx.builders.qthelp.QtHelpBuilder

	This builder produces the same output as the standalone HTML builder, but
also generates Qt help [http://doc.trolltech.com/4.6/qthelp-framework.html] collection support files that allow
the Qt collection generator to compile them.

Its name is qthelp.

	
class sphinx.builders.devhelp.DevhelpBuilder

	This builder produces the same output as the standalone HTML builder, but
also generates GNOME Devhelp [http://live.gnome.org/devhelp]
support file that allows the GNOME Devhelp reader to view them.

Its name is devhelp.

	
class sphinx.builders.epub.EpubBuilder

	This builder produces the same output as the standalone HTML builder, but
also generates an epub file for ebook readers. See Epub info for
details about it. For definition of the epub format, have a look at
http://www.idpf.org/specs.htm or http://en.wikipedia.org/wiki/EPUB.

Some ebook readers do not show the link targets of references. Therefore
this builder adds the targets after the link when necessary. The display
of the URLs can be customized by adding CSS rules for the class
link-target.

Its name is epub.

	
class sphinx.builders.latex.LaTeXBuilder

	This builder produces a bunch of LaTeX files in the output directory. You
have to specify which documents are to be included in which LaTeX files via
the latex_documents configuration value. There are a few
configuration values that customize the output of this builder, see the
chapter Options for LaTeX output for details.

Note

The produced LaTeX file uses several LaTeX packages that may not be
present in a “minimal” TeX distribution installation. For TeXLive,
the following packages need to be installed:

	latex-recommended

	latex-extra

	fonts-recommended

Its name is latex.

Note that a direct PDF builder using ReportLab is available in rst2pdf [http://rst2pdf.googlecode.com] version 0.12 or greater. You need to add
'rst2pdf.pdfbuilder' to your extensions to enable it, its name is
pdf. Refer to the rst2pdf manual [http://lateral.netmanagers.com.ar/static/manual.pdf] for details.

	
class sphinx.builders.text.TextBuilder

	This builder produces a text file for each reST file – this is almost the
same as the reST source, but with much of the markup stripped for better
readability.

Its name is text.

New in version 0.4.

	
class sphinx.builders.manpage.ManualPageBuilder

	This builder produces manual pages in the groff format. You have to specify
which documents are to be included in which manual pages via the
man_pages configuration value.

Its name is man.

Note

This builder requires the docutils manual page writer, which is only
available as of docutils 0.6.

New in version 1.0.

	
class sphinx.builders.html.SerializingHTMLBuilder

	This builder uses a module that implements the Python serialization API
(pickle, simplejson, phpserialize, and others) to dump the generated
HTML documentation. The pickle builder is a subclass of it.

A concrete subclass of this builder serializing to the PHP serialization [http://pypi.python.org/pypi/phpserialize]
format could look like this:

import phpserialize

class PHPSerializedBuilder(SerializingHTMLBuilder):
 name = 'phpserialized'
 implementation = phpserialize
 out_suffix = '.file.phpdump'
 globalcontext_filename = 'globalcontext.phpdump'
 searchindex_filename = 'searchindex.phpdump'

	
implementation

	A module that implements dump(), load(), dumps() and loads()
functions that conform to the functions with the same names from the
pickle module. Known modules implementing this interface are
simplejson (or json in Python 2.6), phpserialize, plistlib,
and others.

	
out_suffix

	The suffix for all regular files.

	
globalcontext_filename

	The filename for the file that contains the “global context”. This
is a dict with some general configuration values such as the name
of the project.

	
searchindex_filename

	The filename for the search index Sphinx generates.

See Serialization builder details for details about the output format.

New in version 0.5.

	
class sphinx.builders.html.PickleHTMLBuilder

	This builder produces a directory with pickle files containing mostly HTML
fragments and TOC information, for use of a web application (or custom
postprocessing tool) that doesn’t use the standard HTML templates.

See Serialization builder details for details about the output format.

Its name is pickle. (The old name web still works as well.)

The file suffix is .fpickle. The global context is called
globalcontext.pickle, the search index searchindex.pickle.

	
class sphinx.builders.html.JSONHTMLBuilder

	This builder produces a directory with JSON files containing mostly HTML
fragments and TOC information, for use of a web application (or custom
postprocessing tool) that doesn’t use the standard HTML templates.

See Serialization builder details for details about the output format.

Its name is json.

The file suffix is .fjson. The global context is called
globalcontext.json, the search index searchindex.json.

New in version 0.5.

	
class sphinx.builders.intl.MessageCatalogBuilder

	This builder produces gettext-style message catalos. Each top-level file or
subdirectory grows a single .pot catalog template.

See the documentation on 国际化 for further reference.

Its name is gettext.

New in version 1.1.

	
class sphinx.builders.changes.ChangesBuilder

	This builder produces an HTML overview of all versionadded,
versionchanged and deprecated directives for the current
version. This is useful to generate a ChangeLog file, for
example.

Its name is changes.

	
class sphinx.builders.linkcheck.CheckExternalLinksBuilder

	This builder scans all documents for external links, tries to open them with
urllib2, and writes an overview which ones are broken and redirected
to standard output and to output.txt in the output directory.

Its name is linkcheck.

Built-in Sphinx extensions that offer more builders are:

	doctest

	coverage

Serialization builder details

All serialization builders outputs one file per source file and a few special
files. They also copy the reST source files in the directory _sources
under the output directory.

The PickleHTMLBuilder is a builtin subclass that implements the pickle
serialization interface.

The files per source file have the extensions of
out_suffix, and are arranged in directories
just as the source files are. They unserialize to a dictionary (or dictionary
like structure) with these keys:

	body

	The HTML “body” (that is, the HTML rendering of the source file), as rendered
by the HTML translator.

	title

	The title of the document, as HTML (may contain markup).

	toc

	The table of contents for the file, rendered as an HTML .

	display_toc

	A boolean that is True if the toc contains more than one entry.

	current_page_name

	The document name of the current file.

	parents, prev and next

	Information about related chapters in the TOC tree. Each relation is a
dictionary with the keys link (HREF for the relation) and title
(title of the related document, as HTML). parents is a list of
relations, while prev and next are a single relation.

	sourcename

	The name of the source file under _sources.

The special files are located in the root output directory. They are:

	SerializingHTMLBuilder.globalcontext_filename

	A pickled dict with these keys:

	project, copyright, release, version

	The same values as given in the configuration file.

	style

	html_style.

	last_updated

	Date of last build.

	builder

	Name of the used builder, in the case of pickles this is always
'pickle'.

	titles

	A dictionary of all documents’ titles, as HTML strings.

	SerializingHTMLBuilder.searchindex_filename

	An index that can be used for searching the documentation. It is a pickled
list with these entries:

	A list of indexed docnames.

	A list of document titles, as HTML strings, in the same order as the first
list.

	A dict mapping word roots (processed by an English-language stemmer) to a
list of integers, which are indices into the first list.

	environment.pickle

	The build environment. This is always a pickle file, independent of the
builder and a copy of the environment that was used when the builder was
started.

Todo

Document common members.

Unlike the other pickle files this pickle file requires that the sphinx
package is available on unpickling.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

The build configuration file

The configuration directory must contain a file named conf.py.
This file (containing Python code) is called the “build configuration file” and
contains all configuration needed to customize Sphinx input and output behavior.

The configuration file is executed as Python code at build time (using
execfile(), and with the current directory set to its containing
directory), and therefore can execute arbitrarily complex code. Sphinx then
reads simple names from the file’s namespace as its configuration.

Important points to note:

	If not otherwise documented, values must be strings, and their default is the
empty string.

	The term “fully-qualified name” refers to a string that names an importable
Python object inside a module; for example, the FQN
"sphinx.builders.Builder" means the Builder class in the
sphinx.builders module.

	Remember that document names use / as the path separator and don’t contain
the file name extension.

	Since conf.py is read as a Python file, the usual rules apply for
encodings and Unicode support: declare the encoding using an encoding cookie
(a comment like # -*- coding: utf-8 -*-) and use Unicode string literals
when you include non-ASCII characters in configuration values.

	The contents of the config namespace are pickled (so that Sphinx can find out
when configuration changes), so it may not contain unpickleable values –
delete them from the namespace with del if appropriate. Modules are
removed automatically, so you don’t need to del your imports after use.

	There is a special object named tags available in the config file.
It can be used to query and change the tags (see Including content based on tags). Use
tags.has('tag') to query, tags.add('tag') and tags.remove('tag')
to change.

General configuration

	
extensions

	A list of strings that are module names of Sphinx extensions. These can be
extensions coming with Sphinx (named sphinx.ext.*) or custom ones.

Note that you can extend sys.path within the conf file if your
extensions live in another directory – but make sure you use absolute paths.
If your extension path is relative to the configuration directory,
use os.path.abspath() like so:

import sys, os

sys.path.append(os.path.abspath('sphinxext'))

extensions = ['extname']

That way, you can load an extension called extname from the subdirectory
sphinxext.

The configuration file itself can be an extension; for that, you only need to
provide a setup() function in it.

	
source_suffix

	The file name extension of source files. Only files with this suffix will be
read as sources. Default is '.rst'.

	
source_encoding

	The encoding of all reST source files. The recommended encoding, and the
default value, is 'utf-8-sig'.

New in version 0.5: Previously, Sphinx accepted only UTF-8 encoded sources.

	
master_doc

	The document name of the “master” document, that is, the document that
contains the root toctree directive. Default is 'contents'.

	
exclude_patterns

	A list of glob-style patterns that should be excluded when looking for source
files. [1] They are matched against the source file names relative to the
source directory, using slashes as directory separators on all platforms.

Example patterns:

	'library/xml.rst' – ignores the library/xml.rst file (replaces
entry in unused_docs

	'library/xml' – ignores the library/xml directory (replaces entry
in exclude_trees)

	'library/xml*' – ignores all files and directories starting with
library/xml

	'**/.svn' – ignores all .svn directories (replaces entry in
exclude_dirnames)

exclude_patterns is also consulted when looking for static files
in html_static_path.

New in version 1.0.

	
unused_docs

	A list of document names that are present, but not currently included in the
toctree. Use this setting to suppress the warning that is normally emitted
in that case.

Deprecated since version 1.0: Use exclude_patterns instead.

	
exclude_trees

	A list of directory paths, relative to the source directory, that are to be
recursively excluded from the search for source files, that is, their
subdirectories won’t be searched too. The default is [].

New in version 0.4.

Deprecated since version 1.0: Use exclude_patterns instead.

	
exclude_dirnames

	A list of directory names that are to be excluded from any recursive
operation Sphinx performs (e.g. searching for source files or copying static
files). This is useful, for example, to exclude version-control-specific
directories like 'CVS'. The default is [].

New in version 0.5.

Deprecated since version 1.0: Use exclude_patterns instead.

	
templates_path

	A list of paths that contain extra templates (or templates that overwrite
builtin/theme-specific templates). Relative paths are taken as relative to
the configuration directory.

	
template_bridge

	A string with the fully-qualified name of a callable (or simply a class) that
returns an instance of TemplateBridge. This
instance is then used to render HTML documents, and possibly the output of
other builders (currently the changes builder). (Note that the template
bridge must be made theme-aware if HTML themes are to be used.)

	
rst_epilog

	A string of reStructuredText that will be included at the end of every source
file that is read. This is the right place to add substitutions that should
be available in every file. An example:

rst_epilog = """
.. |psf| replace:: Python Software Foundation
"""

New in version 0.6.

	
rst_prolog

	A string of reStructuredText that will be included at the beginning of every
source file that is read.

New in version 1.0.

	
primary_domain

	The name of the default domain. Can also be None to
disable a default domain. The default is 'py'. Those objects in other
domains (whether the domain name is given explicitly, or selected by a
default-domain directive) will have the domain name explicitly
prepended when named (e.g., when the default domain is C, Python functions
will be named “Python function”, not just “function”).

New in version 1.0.

	
default_role

	The name of a reST role (builtin or Sphinx extension) to use as the default
role, that is, for text marked up `like this`. This can be set to
'py:obj' to make `filter` a cross-reference to the Python function
“filter”. The default is None, which doesn’t reassign the default role.

The default role can always be set within individual documents using the
standard reST default-role directive.

New in version 0.4.

	
keep_warnings

	If true, keep warnings as “system message” paragraphs in the built documents.
Regardless of this setting, warnings are always written to the standard error
stream when sphinx-build is run.

The default is False, the pre-0.5 behavior was to always keep them.

New in version 0.5.

	
needs_sphinx

	If set to a major.minor version string like '1.1', Sphinx will
compare it with its version and refuse to build if it is too old. Default is
no requirement.

New in version 1.0.

	
nitpicky

	If true, Sphinx will warn about all references where the target cannot be
found. Default is False. You can activate this mode temporarily using
the -n command-line switch.

New in version 1.0.

Project information

	
project

	The documented project’s name.

	
copyright

	A copyright statement in the style '2008, Author Name'.

	
version

	The major project version, used as the replacement for |version|. For
example, for the Python documentation, this may be something like 2.6.

	
release

	The full project version, used as the replacement for |release| and
e.g. in the HTML templates. For example, for the Python documentation, this
may be something like 2.6.0rc1.

If you don’t need the separation provided between version and
release, just set them both to the same value.

	
today

	
today_fmt

	These values determine how to format the current date, used as the
replacement for |today|.

	If you set today to a non-empty value, it is used.

	Otherwise, the current time is formatted using time.strftime() and
the format given in today_fmt.

The default is no today and a today_fmt of '%B %d,
%Y' (or, if translation is enabled with language, am equivalent
%format for the selected locale).

	
highlight_language

	The default language to highlight source code in. The default is
'python'. The value should be a valid Pygments lexer name, see
Showing code examples for more details.

New in version 0.5.

	
pygments_style

	The style name to use for Pygments highlighting of source code. The default
style is selected by the theme for HTML output, and 'sphinx' otherwise.

Changed in version 0.3: If the value is a fully-qualified name of a custom Pygments style class,
this is then used as custom style.

	
add_function_parentheses

	A boolean that decides whether parentheses are appended to function and
method role text (e.g. the content of :func:`input`) to signify that the
name is callable. Default is True.

	
add_module_names

	A boolean that decides whether module names are prepended to all
object names (for object types where a “module” of some kind is
defined), e.g. for py:function directives. Default is True.

	
show_authors

	A boolean that decides whether codeauthor and
sectionauthor directives produce any output in the built files.

	
modindex_common_prefix

	A list of prefixes that are ignored for sorting the Python module index
(e.g., if this is set to ['foo.'], then foo.bar is shown under B,
not F). This can be handy if you document a project that consists of a
single package. Works only for the HTML builder currently. Default is
[].

New in version 0.6.

	
trim_footnote_reference_space

	Trim spaces before footnote references that are necessary for the reST parser
to recognize the footnote, but do not look too nice in the output.

New in version 0.6.

	
trim_doctest_flags

	If true, doctest flags (comments looking like # doctest: FLAG, ...) at
the ends of lines are removed for all code blocks showing interactive Python
sessions (i.e. doctests). Default is true. See the extension
doctest for more possibilities of including doctests.

New in version 1.0.

Options for internationalization

These options influence Sphinx’ Native Language Support. See the
documentation on 国际化 for details.

	
language

	The code for the language the docs are written in. Any text automatically
generated by Sphinx will be in that language. Also, Sphinx will try to
substitute individual paragraphs from your documents with the translation
sets obtained from locale_dirs. In the LaTeX builder, a suitable
language will be selected as an option for the Babel package. Default is
None, which means that no translation will be done.

New in version 0.5.

Currently supported languages by Sphinx are:

	bn – Bengali

	ca – Catalan

	cs – Czech

	da – Danish

	de – German

	en – English

	es – Spanish

	fi – Finnish

	fr – French

	hr – Croatian

	it – Italian

	lt – Lithuanian

	nl – Dutch

	pl – Polish

	pt_BR – Brazilian Portuguese

	ru – Russian

	sl – Slovenian

	sv – Swedish

	tr – Turkish

	uk_UA – Ukrainian

	zh_CN – Simplified Chinese

	zh_TW – Traditional Chinese

	
locale_dirs

	
New in version 0.5.

Directories in which to search for additional message catalogs (see
language), relative to the source directory. The directories on
this path are searched by the standard gettext module.

Internal messages are fetched from a text domain of sphinx; so if you
add the directory ./locale to this settting, the message catalogs
(compiled from .po format using msgfmt) must be in
./locale/language/LC_MESSAGES/sphinx.mo. The text domain of
individual documents depends on their docname if they are top-level project
files and on their base directory otherwise.

The default is [].

Options for HTML output

These options influence HTML as well as HTML Help output, and other builders
that use Sphinx’ HTMLWriter class.

	
html_theme

	The “theme” that the HTML output should use. See the section about
theming. The default is 'default'.

New in version 0.6.

	
html_theme_options

	A dictionary of options that influence the look and feel of the selected
theme. These are theme-specific. For the options understood by the builtin
themes, see this section.

New in version 0.6.

	
html_theme_path

	A list of paths that contain custom themes, either as subdirectories or as
zip files. Relative paths are taken as relative to the configuration
directory.

New in version 0.6.

	
html_style

	The style sheet to use for HTML pages. A file of that name must exist either
in Sphinx’ static/ path, or in one of the custom paths given in
html_static_path. Default is the stylesheet given by the selected
theme. If you only want to add or override a few things compared to the
theme’s stylesheet, use CSS @import to import the theme’s stylesheet.

	
html_title

	The “title” for HTML documentation generated with Sphinx’ own templates.
This is appended to the <title> tag of individual pages, and used in the
navigation bar as the “topmost” element. It defaults to '<project>
v<revision> documentation', where the placeholders are replaced by the
config values of the same name.

	
html_short_title

	A shorter “title” for the HTML docs. This is used in for links in the header
and in the HTML Help docs. If not given, it defaults to the value of
html_title.

New in version 0.4.

	
html_logo

	If given, this must be the name of an image file that is the logo of the
docs. It is placed at the top of the sidebar; its width should therefore not
exceed 200 pixels. Default: None.

New in version 0.4.1: The image file will be copied to the _static directory of the output
HTML, so an already existing file with that name will be overwritten.

	
html_favicon

	If given, this must be the name of an image file (within the static path, see
below) that is the favicon of the docs. Modern browsers use this as icon for
tabs, windows and bookmarks. It should be a Windows-style icon file
(.ico), which is 16x16 or 32x32 pixels large. Default: None.

New in version 0.4.

	
html_static_path

	A list of paths that contain custom static files (such as style sheets or
script files). Relative paths are taken as relative to the configuration
directory. They are copied to the output directory after the theme’s static
files, so a file named default.css will overwrite the theme’s
default.css.

Changed in version 0.4: The paths in html_static_path can now contain subdirectories.

Changed in version 1.0: The entries in html_static_path can now be single files.

	
html_last_updated_fmt

	If this is not the empty string, a ‘Last updated on:’ timestamp is inserted
at every page bottom, using the given strftime() format. Default is
'%b %d, %Y' (or a locale-dependent equivalent).

	
html_use_smartypants

	If true, SmartyPants will be used to convert quotes and dashes to
typographically correct entities. Default: True.

	
html_add_permalinks

	If true, Sphinx will add “permalinks” for each heading and description
environment as paragraph signs that become visible when the mouse hovers over
them. Default: True.

New in version 0.6: Previously, this was always activated.

	
html_sidebars

	Custom sidebar templates, must be a dictionary that maps document names to
template names.

The keys can contain glob-style patterns [1], in which case all matching
documents will get the specified sidebars. (A warning is emitted when a
more than one glob-style pattern matches for any document.)

The values can be either lists or single strings.

	If a value is a list, it specifies the complete list of sidebar templates
to include. If all or some of the default sidebars are to be included,
they must be put into this list as well.

The default sidebars (for documents that don’t match any pattern) are:
['localtoc.html', 'relations.html', 'sourcelink.html',
'searchbox.html'].

	If a value is a single string, it specifies a custom sidebar to be added
between the 'sourcelink.html' and 'searchbox.html' entries. This
is for compatibility with Sphinx versions before 1.0.

Builtin sidebar templates that can be rendered are:

	localtoc.html – a fine-grained table of contents of the current document

	globaltoc.html – a coarse-grained table of contents for the whole
documentation set, collapsed

	relations.html – two links to the previous and next documents

	sourcelink.html – a link to the source of the current document, if
enabled in html_show_sourcelink

	searchbox.html – the “quick search” box

Example:

html_sidebars = {
 '**': ['globaltoc.html', 'sourcelink.html', 'searchbox.html'],
 'using/windows': ['windowssidebar.html', 'searchbox.html'],
}

This will render the custom template windowssidebar.html and the quick
search box within the sidebar of the given document, and render the default
sidebars for all other pages (except that the local TOC is replaced by the
global TOC).

New in version 1.0: The ability to use globbing keys and to specify multiple sidebars.

Note that this value only has no effect if the chosen theme does not possess
a sidebar, like the builtin scrolls and haiku themes.

	
html_additional_pages

	Additional templates that should be rendered to HTML pages, must be a
dictionary that maps document names to template names.

Example:

html_additional_pages = {
 'download': 'customdownload.html',
}

This will render the template customdownload.html as the page
download.html.

	
html_domain_indices

	If true, generate domain-specific indices in addition to the general index.
For e.g. the Python domain, this is the global module index. Default is
True.

This value can be a bool or a list of index names that should be generated.
To find out the index name for a specific index, look at the HTML file name.
For example, the Python module index has the name 'py-modindex'.

New in version 1.0.

	
html_use_modindex

	If true, add a module index to the HTML documents. Default is True.

Deprecated since version 1.0: Use html_domain_indices.

	
html_use_index

	If true, add an index to the HTML documents. Default is True.

New in version 0.4.

	
html_split_index

	If true, the index is generated twice: once as a single page with all the
entries, and once as one page per starting letter. Default is False.

New in version 0.4.

	
html_copy_source

	If true, the reST sources are included in the HTML build as
_sources/name. The default is True.

Warning

If this config value is set to False, the JavaScript search function
will only display the titles of matching documents, and no excerpt from
the matching contents.

	
html_show_sourcelink

	If true (and html_copy_source is true as well), links to the
reST sources will be added to the sidebar. The default is True.

New in version 0.6.

	
html_use_opensearch

	If nonempty, an OpenSearch <http://opensearch.org> description file will be
output, and all pages will contain a <link> tag referring to it. Since
OpenSearch doesn’t support relative URLs for its search page location, the
value of this option must be the base URL from which these documents are
served (without trailing slash), e.g. "http://docs.python.org". The
default is ''.

	
html_file_suffix

	This is the file name suffix for generated HTML files. The default is
".html".

New in version 0.4.

	
html_link_suffix

	Suffix for generated links to HTML files. The default is whatever
html_file_suffix is set to; it can be set differently (e.g. to
support different web server setups).

New in version 0.6.

	
html_translator_class

	A string with the fully-qualified name of a HTML Translator class, that is, a
subclass of Sphinx’ HTMLTranslator, that is used
to translate document trees to HTML. Default is None (use the builtin
translator).

	
html_show_copyright

	If true, “(C) Copyright ...” is shown in the HTML footer. Default is True.

New in version 1.0.

	
html_show_sphinx

	If true, “Created using Sphinx” is shown in the HTML footer. Default is
True.

New in version 0.4.

	
html_output_encoding

	Encoding of HTML output files. Default is 'utf-8'. Note that this
encoding name must both be a valid Python encoding name and a valid HTML
charset value.

New in version 1.0.

	
html_compact_lists

	If true, list items containing only a single paragraph will not be rendered
with a <p> element. This is standard docutils behavior. Default:
True.

New in version 1.0.

	
html_secnumber_suffix

	Suffix for section numbers. Default: ". ". Set to " " to suppress
the final dot on section numbers.

New in version 1.0.

	
htmlhelp_basename

	Output file base name for HTML help builder. Default is 'pydoc'.

Options for epub output

These options influence the epub output. As this builder derives from the HTML
builder, the HTML options also apply where appropriate. The actual values for
some of the options is not really important, they just have to be entered into
the Dublin Core metadata [http://dublincore.org/].

	
epub_basename

	The basename for the epub file. It defaults to the project name.

	
epub_theme

	The HTML theme for the epub output. Since the default themes are not
optimized for small screen space, using the same theme for HTML and epub
output is usually not wise. This defaults to 'epub', a theme designed to
save visual space.

	
epub_title

	The title of the document. It defaults to the html_title option
but can be set independently for epub creation.

	
epub_author

	The author of the document. This is put in the Dublin Core metadata. The
default value is 'unknown'.

	
epub_language

	The language of the document. This is put in the Dublin Core metadata. The
default is the language option or 'en' if unset.

	
epub_publisher

	The publisher of the document. This is put in the Dublin Core metadata. You
may use any sensible string, e.g. the project homepage. The default value is
'unknown'.

	
epub_copyright

	The copyright of the document. It defaults to the copyright
option but can be set independently for epub creation.

	
epub_identifier

	An identifier for the document. This is put in the Dublin Core metadata.
For published documents this is the ISBN number, but you can also use an
alternative scheme, e.g. the project homepage. The default value is
'unknown'.

	
epub_scheme

	The publication scheme for the epub_identifier. This is put in
the Dublin Core metadata. For published books the scheme is 'ISBN'. If
you use the project homepage, 'URL' seems reasonable. The default value
is 'unknown'.

	
epub_uid

	A unique identifier for the document. This is put in the Dublin Core
metadata. You may use a random string. The default value is 'unknown'.

	
epub_cover

	The cover page information. This is a tuple containing the filenames of
the cover image and the html template. The rendered html cover page is
inserted as the first item in the spine in content.opf. If the
template filename is empty, no html cover page is created. No cover at all
is created if the tuple is empty. Examples:

epub_cover = ('_static/cover.png', 'epub-cover.html')
epub_cover = ('_static/cover.png', '')
epub_cover = ()

The default value is ().

New in version 1.1.

	
epub_pre_files

	Additional files that should be inserted before the text generated by
Sphinx. It is a list of tuples containing the file name and the title.
If the title is empty, no entry is added to toc.ncx. Example:

epub_pre_files = [
 ('index.html', 'Welcome'),
]

The default value is [].

	
epub_post_files

	Additional files that should be inserted after the text generated by Sphinx.
It is a list of tuples containing the file name and the title. This option
can be used to add an appendix. If the title is empty, no entry is added
to toc.ncx. The default value is [].

	
epub_exclude_files

	A list of files that are generated/copied in the build directory but should
not be included in the epub file. The default value is [].

	
epub_tocdepth

	The depth of the table of contents in the file toc.ncx. It should
be an integer greater than zero. The default value is 3. Note: A deeply
nested table of contents may be difficult to navigate.

	
epub_tocdup

	This flag determines if a toc entry is inserted again at the beginning of
it’s nested toc listing. This allows easier navitation to the top of
a chapter, but can be confusing because it mixes entries of differnet
depth in one list. The default value is True.

Options for LaTeX output

These options influence LaTeX output.

	
latex_documents

	This value determines how to group the document tree into LaTeX source files.
It must be a list of tuples (startdocname, targetname, title, author,
documentclass, toctree_only), where the items are:

	startdocname: document name that is the “root” of the LaTeX file. All
documents referenced by it in TOC trees will be included in the LaTeX file
too. (If you want only one LaTeX file, use your master_doc
here.)

	targetname: file name of the LaTeX file in the output directory.

	title: LaTeX document title. Can be empty to use the title of the
startdoc. This is inserted as LaTeX markup, so special characters like a
backslash or ampersand must be represented by the proper LaTeX commands if
they are to be inserted literally.

	author: Author for the LaTeX document. The same LaTeX markup caveat as
for title applies. Use \and to separate multiple authors, as in:
'John \and Sarah'.

	documentclass: Normally, one of 'manual' or 'howto' (provided by
Sphinx). Other document classes can be given, but they must include the
“sphinx” package in order to define Sphinx’ custom LaTeX commands.
“howto” documents will not get appendices. Also, howtos will have a simpler
title page.

	toctree_only: Must be True or False. If True, the startdoc
document itself is not included in the output, only the documents
referenced by it via TOC trees. With this option, you can put extra stuff
in the master document that shows up in the HTML, but not the LaTeX output.

New in version 0.3: The 6th item toctree_only. Tuples with 5 items are still accepted.

	
latex_logo

	If given, this must be the name of an image file (relative to the
configuration directory) that is the logo of the docs. It is placed at the
top of the title page. Default: None.

	
latex_use_parts

	If true, the topmost sectioning unit is parts, else it is chapters. Default:
False.

New in version 0.3.

	
latex_appendices

	A list of document names to append as an appendix to all manuals.

	
latex_domain_indices

	If true, generate domain-specific indices in addition to the general index.
For e.g. the Python domain, this is the global module index. Default is
True.

This value can be a bool or a list of index names that should be generated,
like for html_domain_indices.

New in version 1.0.

	
latex_use_modindex

	If true, add a module index to LaTeX documents. Default is True.

Deprecated since version 1.0: Use latex_domain_indices.

	
latex_show_pagerefs

	If true, add page references after internal references. This is very useful
for printed copies of the manual. Default is False.

New in version 1.0.

	
latex_show_urls

	If true, add URL addresses after links. This is very useful for printed
copies of the manual. Default is False.

New in version 1.0.

	
latex_elements

	
New in version 0.5.

A dictionary that contains LaTeX snippets that override those Sphinx usually
puts into the generated .tex files.

Keep in mind that backslashes must be doubled in Python string literals to
avoid interpretation as escape sequences.

	Keys that you may want to override include:

	'papersize'

	Paper size option of the document class ('a4paper' or
'letterpaper'), default 'letterpaper'.

	'pointsize'

	Point size option of the document class ('10pt', '11pt' or
'12pt'), default '10pt'.

	'babel'

	“babel” package inclusion, default '\\usepackage{babel}'.

	'fontpkg'

	Font package inclusion, default '\\usepackage{times}' (which uses
Times and Helvetica). You can set this to '' to use the Computer
Modern fonts.

	'fncychap'

	Inclusion of the “fncychap” package (which makes fancy chapter titles),
default '\\usepackage[Bjarne]{fncychap}' for English documentation,
'\\usepackage[Sonny]{fncychap}' for internationalized docs (because
the “Bjarne” style uses numbers spelled out in English). Other
“fncychap” styles you can try include “Lenny”, “Glenn”, “Conny” and
“Rejne”. You can also set this to '' to disable fncychap.

	'preamble'

	Additional preamble content, default empty.

	'footer'`

	Additional footer content (before the indices), default empty.

	Keys that don’t need be overridden unless in special cases are:

	'inputenc'

	“inputenc” package inclusion, default
'\\usepackage[utf8]{inputenc}'.

	'fontenc'

	“fontenc” package inclusion, default '\\usepackage[T1]{fontenc}'.

	'maketitle'

	“maketitle” call, default '\\maketitle'. Override if you want to
generate a differently-styled title page.

	'tableofcontents'

	“tableofcontents” call, default '\\tableofcontents'. Override if
you want to generate a different table of contents or put content
between the title page and the TOC.

	'printindex'

	“printindex” call, the last thing in the file, default
'\\printindex'. Override if you want to generate the index
differently or append some content after the index.

	Keys that are set by other options and therefore should not be overridden are:

'docclass'
'classoptions'
'title'
'date'
'release'
'author'
'logo'
'releasename'
'makeindex'
'shorthandoff'

	
latex_docclass

	A dictionary mapping 'howto' and 'manual' to names of real document
classes that will be used as the base for the two Sphinx classes. Default
is to use 'article' for 'howto' and 'report' for 'manual'.

New in version 1.0.

	
latex_additional_files

	A list of file names, relative to the configuration directory, to copy to the
build directory when building LaTeX output. This is useful to copy files
that Sphinx doesn’t copy automatically, e.g. if they are referenced in custom
LaTeX added in latex_elements. Image files that are referenced in source
files (e.g. via .. image::) are copied automatically.

You have to make sure yourself that the filenames don’t collide with those of
any automatically copied files.

New in version 0.6.

	
latex_preamble

	Additional LaTeX markup for the preamble.

Deprecated since version 0.5: Use the 'preamble' key in the latex_elements value.

	
latex_paper_size

	The output paper size ('letter' or 'a4'). Default is 'letter'.

Deprecated since version 0.5: Use the 'papersize' key in the latex_elements value.

	
latex_font_size

	The font size (‘10pt’, ‘11pt’ or ‘12pt’). Default is '10pt'.

Deprecated since version 0.5: Use the 'pointsize' key in the latex_elements value.

Options for manual page output

These options influence manual page output.

	
man_pages

	This value determines how to group the document tree into manual pages. It
must be a list of tuples (startdocname, name, description, authors,
section), where the items are:

	startdocname: document name that is the “root” of the manual page. All
documents referenced by it in TOC trees will be included in the manual file
too. (If you want one master manual page, use your master_doc
here.)

	name: name of the manual page. This should be a short string without
spaces or special characters. It is used to determine the file name as
well as the name of the manual page (in the NAME section).

	description: description of the manual page. This is used in the NAME
section.

	authors: A list of strings with authors, or a single string. Can be
an empty string or list if you do not want to automatically generate
an AUTHORS section in the manual page.

	section: The manual page section. Used for the output file name as well
as in the manual page header.

New in version 1.0.

Footnotes

	[1]	(1, 2) A note on available globbing syntax: you can use the standard shell
constructs *, ?, [...] and [!...] with the feature that
these all don’t match slashes. A double star ** can be used to match
any sequence of characters including slashes.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

国际化

New in version 1.1.

Complementary to translations provided for Sphinx-generated messages such as
navigation bars, Sphinx provides mechanisms facilitating document translations
in itself. See the Options for internationalization for details on configuration.

[image: _images/translation.png]
Workflow visualization of translations in Sphinx. [1]

gettext [2] is an established standard for internationalization and
localization. It naïvely maps messages in a program to a translated string.
Sphinx uses these facilities to translate whole documents.

Initially project maintainers have to collect all translatable strings (also
referred to as messages) to make them known to translators. Sphinx extracts
these through invocation of sphinx-build -b gettext.

Every single element in the doctree will end up in a single message which
results in lists being equally split into different chunks while large
paragraphs will remain as coarsely-grained as they were in the original
document. This grants seamless document updates while still providing a little
bit of context for translators in free-text passages. It is the maintainer’s
task to split up paragraphs which are too large as there is no sane automated
way to do that.

After Sphinx successfully ran the
MessageCatalogBuilder you will find a collection
of .pot files in your output directory. These are catalog templates
and contain messages in your original language only.

They can be delivered to translators which will transform them to .po files
— so called message catalogs — containing a mapping from the original
messages to foreign-language strings.

Gettext compiles them into a binary format known as binary catalogs through
msgfmt for efficiency reasons. If you make these files discoverable
with locale_dirs for your language, Sphinx will pick them
up automatically.

An example: you have a document usage.rst in your Sphinx project. The
gettext builder will put its messages into usage.pot. Image you have
Spanish translations [3] on your hands in usage.po — for your builds to
be translated you need to follow these instructions:

	Compile your message catalog to a locale directory, say translated, so it
ends up in ./translated/es/LC_MESSAGES/usage.mo in your source directory
(where es is the language code for Spanish.)

msgfmt "usage.po" -o "translated/es/LC_MESSAGES/usage.mo"

	Set locale_dirs to ["translated/"].

	Set language to es (also possible via -D).

	Run your desired build.

Footnotes

	[1]	The stick-figure is taken from an XKCD comic [http://xkcd.com/779/].

	[2]	See the GNU gettext utilites [http://www.gnu.org/software/gettext/manual/gettext.html#Introduction]
for details on that software suite.

	[3]	Because nobody expects the Spanish Inquisition!

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

HTML 样式支持

New in version 0.6.

Sphinx supports changing the appearance of its HTML output via themes. A
theme is a collection of HTML templates, stylesheet(s) and other static files.
Additionally, it has a configuration file which specifies from which theme to
inherit, which highlighting style to use, and what options exist for customizing
the theme’s look and feel.

Themes are meant to be project-unaware, so they can be used for different
projects without change.

Using a theme

Using an existing theme is easy. If the theme is builtin to Sphinx, you only
need to set the html_theme config value. With the
html_theme_options config value you can set theme-specific options
that change the look and feel. For example, you could have the following in
your conf.py:

html_theme = "default"
html_theme_options = {
 "rightsidebar": "true",
 "relbarbgcolor": "black"
}

That would give you the default theme, but with a sidebar on the right side and
a black background for the relation bar (the bar with the navigation links at
the page’s top and bottom).

If the theme does not come with Sphinx, it can be in two forms: either a
directory (containing theme.conf and other needed files), or a zip file
with the same contents. Either of them must be put where Sphinx can find it;
for this there is the config value html_theme_path. It gives a list
of directories, relative to the directory containing conf.py, that can
contain theme directories or zip files. For example, if you have a theme in the
file blue.zip, you can put it right in the directory containing
conf.py and use this configuration:

html_theme = "blue"
html_theme_path = ["."]

Builtin themes

	Theme overview
	

	[image: default]

default

	[image: sphinxdoc]

sphinxdoc

	[image: scrolls]

scrolls

	[image: agogo]

agogo

	[image: traditional]

traditional

	[image: nature]

nature

	[image: haiku]

haiku

	

Sphinx comes with a selection of themes to choose from.

These themes are:

	basic – This is a basically unstyled layout used as the base for the
other themes, and usable as the base for custom themes as well. The HTML
contains all important elements like sidebar and relation bar. There is one
option (which is inherited by the other themes):

	nosidebar (true or false): Don’t include the sidebar. Defaults to
false.

	default – This is the default theme, which looks like the Python
documentation [http://docs.python.org/]. It can be customized via these
options:

	rightsidebar (true or false): Put the sidebar on the right side.
Defaults to false.

	stickysidebar (true or false): Make the sidebar “fixed” so that it
doesn’t scroll out of view for long body content. This may not work well
with all browsers. Defaults to false.

	collapsiblesidebar (true or false): Add an experimental JavaScript
snippet that makes the sidebar collapsible via a button on its side.
Doesn’t work together with “rightsidebar” or “stickysidebar”. Defaults to
false.

	externalrefs (true or false): Display external links differently from
internal links. Defaults to false.

There are also various color and font options that can change the color scheme
without having to write a custom stylesheet:

	footerbgcolor (CSS color): Background color for the footer line.

	footertextcolor (CSS color): Text color for the footer line.

	sidebarbgcolor (CSS color): Background color for the sidebar.

	sidebarbtncolor (CSS color): Background color for the sidebar collapse
button (used when collapsiblesidebar is true).

	sidebartextcolor (CSS color): Text color for the sidebar.

	sidebarlinkcolor (CSS color): Link color for the sidebar.

	relbarbgcolor (CSS color): Background color for the relation bar.

	relbartextcolor (CSS color): Text color for the relation bar.

	relbarlinkcolor (CSS color): Link color for the relation bar.

	bgcolor (CSS color): Body background color.

	textcolor (CSS color): Body text color.

	linkcolor (CSS color): Body link color.

	visitedlinkcolor (CSS color): Body color for visited links.

	headbgcolor (CSS color): Background color for headings.

	headtextcolor (CSS color): Text color for headings.

	headlinkcolor (CSS color): Link color for headings.

	codebgcolor (CSS color): Background color for code blocks.

	codetextcolor (CSS color): Default text color for code blocks, if not
set differently by the highlighting style.

	bodyfont (CSS font-family): Font for normal text.

	headfont (CSS font-family): Font for headings.

	sphinxdoc – The theme used for this documentation. It features a sidebar
on the right side. There are currently no options beyond nosidebar.

	scrolls – A more lightweight theme, based on the Jinja documentation [http://jinja.pocoo.org/2/documentation/]. The following color options are
available:

	headerbordercolor

	subheadlinecolor

	linkcolor

	visitedlinkcolor

	admonitioncolor

	agogo – A theme created by Andi Albrecht. The following options are
supported:

	bodyfont (CSS font family): Font for normal text.

	headerfont (CSS font family): Font for headings.

	pagewidth (CSS length): Width of the page content, default 70em.

	documentwidth (CSS length): Width of the document (without sidebar),
default 50em.

	sidebarwidth (CSS length): Width of the sidebar, default 20em.

	bgcolor (CSS color): Background color.

	headerbg (CSS value for “background”): background for the header area,
default a grayish gradient.

	footerbg (CSS value for “background”): background for the footer area,
default a light gray gradient.

	linkcolor (CSS color): Body link color.

	headercolor1, headercolor2 (CSS color): colors for <h1> and <h2>
headings.

	headerlinkcolor (CSS color): Color for the backreference link in
headings.

	textalign (CSS text-align value): Text alignment for the body, default
is justify.

	nature – A greenish theme. There are currently no options beyond
nosidebar.

	haiku – A theme without sidebar inspired by the Haiku OS user guide [http://www.haiku-os.org/docs/userguide/en/contents.html]. The following
options are supported:

	full_logo (true or false, default false): If this is true, the header
will only show the html_logo. Use this for large logos. If this
is false, the logo (if present) will be shown floating right, and the
documentation title will be put in the header.

	textcolor, headingcolor, linkcolor, visitedlinkcolor,
hoverlinkcolor (CSS colors): Colors for various body elements.

	traditional – A theme resembling the old Python documentation. There are
currently no options beyond nosidebar.

	epub – A theme for the epub builder. There are currently no options.
This theme tries to save visual space which is a sparse resource on ebook
readers.

Creating themes

As said, themes are either a directory or a zipfile (whose name is the theme
name), containing the following:

	A theme.conf file, see below.

	HTML templates, if needed.

	A static/ directory containing any static files that will be copied to the
output statid directory on build. These can be images, styles, script files.

The theme.conf file is in INI format [1] (readable by the standard
Python ConfigParser module) and has the following structure:

[theme]
inherit = base theme
stylesheet = main CSS name
pygments_style = stylename

[options]
variable = default value

	The inherit setting gives the name of a “base theme”, or none. The
base theme will be used to locate missing templates (most themes will not have
to supply most templates if they use basic as the base theme), its options
will be inherited, and all of its static files will be used as well.

	The stylesheet setting gives the name of a CSS file which will be
referenced in the HTML header. If you need more than one CSS file, either
include one from the other via CSS’ @import, or use a custom HTML template
that adds <link rel="stylesheet"> tags as necessary. Setting the
html_style config value will override this setting.

	The pygments_style setting gives the name of a Pygments style to use for
highlighting. This can be overridden by the user in the
pygments_style config value.

	The options section contains pairs of variable names and default values.
These options can be overridden by the user in html_theme_options
and are accessible from all templates as theme_<name>.

Templating

The guide to templating is helpful if you want to write your
own templates. What is important to keep in mind is the order in which Sphinx
searches for templates:

	First, in the user’s templates_path directories.

	Then, in the selected theme.

	Then, in its base theme, its base’s base theme, etc.

When extending a template in the base theme with the same name, use the theme
name as an explicit directory: {% extends "basic/layout.html" %}. From a
user templates_path template, you can still use the “exclamation mark”
syntax as described in the templating document.

Static templates

Since theme options are meant for the user to configure a theme more easily,
without having to write a custom stylesheet, it is necessary to be able to
template static files as well as HTML files. Therefore, Sphinx supports
so-called “static templates”, like this:

If the name of a file in the static/ directory of a theme (or in the user’s
static path, for that matter) ends with _t, it will be processed by the
template engine. The _t will be left from the final file name. For
example, the default theme has a file static/default.css_t which uses
templating to put the color options into the stylesheet. When a documentation
is built with the default theme, the output directory will contain a
_static/default.css file where all template tags have been processed.

	[1]	It is not an executable Python file, as opposed to conf.py,
because that would pose an unnecessary security risk if themes are
shared.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

模板

Sphinx uses the Jinja [http://jinja.pocoo.org] templating engine for its HTML
templates. Jinja is a text-based engine, and inspired by Django templates, so
anyone having used Django will already be familiar with it. It also has
excellent documentation for those who need to make themselves familiar with it.

Do I need to use Sphinx’ templates to produce HTML?

No. You have several other options:

	You can write a TemplateBridge subclass that
calls your template engine of choice, and set the template_bridge
configuration value accordingly.

	You can write a custom builder that derives from
StandaloneHTMLBuilder and calls your template
engine of choice.

	You can use the PickleHTMLBuilder that produces
pickle files with the page contents, and postprocess them using a custom tool,
or use them in your Web application.

Jinja/Sphinx Templating Primer

The default templating language in Sphinx is Jinja. It’s Django/Smarty inspired
and easy to understand. The most important concept in Jinja is template
inheritance, which means that you can overwrite only specific blocks within a
template, customizing it while also keeping the changes at a minimum.

To customize the output of your documentation you can override all the templates
(both the layout templates and the child templates) by adding files with the
same name as the original filename into the template directory of the structure
the Sphinx quickstart generated for you.

Sphinx will look for templates in the folders of templates_path
first, and if it can’t find the template it’s looking for there, it falls back
to the selected theme’s templates.

A template contains variables, which are replaced with values when the
template is evaluated, tags, which control the logic of the template and
blocks which are used for template inheritance.

Sphinx’ basic theme provides base templates with a couple of blocks it will
fill with data. These are located in the themes/basic subdirectory of
the Sphinx installation directory, and used by all builtin Sphinx themes.
Templates with the same name in the templates_path override templates
supplied by the selected theme.

For example, to add a new link to the template area containing related links all
you have to do is to add a new template called layout.html with the
following contents:

{% extends "!layout.html" %}
{% block rootrellink %}
 Project Homepage »
 {{ super() }}
{% endblock %}

By prefixing the name of the overridden template with an exclamation mark,
Sphinx will load the layout template from the underlying HTML theme.

Important: If you override a block, call {{ super() }} somewhere to
render the block’s content in the extended template – unless you don’t want
that content to show up.

Working with the builtin templates

The builtin basic theme supplies the templates that all builtin Sphinx
themes are based on. It has the following elements you can override or use:

Blocks

The following blocks exist in the layout.html template:

	doctype

	The doctype of the output format. By default this is XHTML 1.0 Transitional
as this is the closest to what Sphinx and Docutils generate and it’s a good
idea not to change it unless you want to switch to HTML 5 or a different but
compatible XHTML doctype.

	linktags

	This block adds a couple of <link> tags to the head section of the
template.

	extrahead

	This block is empty by default and can be used to add extra contents into
the <head> tag of the generated HTML file. This is the right place to
add references to JavaScript or extra CSS files.

	relbar1 / relbar2

	This block contains the relation bar, the list of related links (the
parent documents on the left, and the links to index, modules etc. on the
right). relbar1 appears before the document, relbar2 after the
document. By default, both blocks are filled; to show the relbar only
before the document, you would override relbar2 like this:

{% block relbar2 %}{% endblock %}

	rootrellink / relbaritems

	Inside the relbar there are three sections: The rootrellink, the links
from the documentation and the custom relbaritems. The rootrellink is a
block that by default contains a list item pointing to the master document
by default, the relbaritems is an empty block. If you override them to
add extra links into the bar make sure that they are list items and end with
the reldelim1.

	document

	The contents of the document itself. It contains the block “body” where the
individual content is put by subtemplates like page.html.

	sidebar1 / sidebar2

	A possible location for a sidebar. sidebar1 appears before the document
and is empty by default, sidebar2 after the document and contains the
default sidebar. If you want to swap the sidebar location override this and
call the sidebar helper:

{% block sidebar1 %}{{ sidebar() }}{% endblock %}
{% block sidebar2 %}{% endblock %}

(The sidebar2 location for the sidebar is needed by the sphinxdoc.css
stylesheet, for example.)

	sidebarlogo

	The logo location within the sidebar. Override this if you want to place
some content at the top of the sidebar.

	footer

	The block for the footer div. If you want a custom footer or markup before
or after it, override this one.

The following four blocks are only used for pages that do not have assigned a
list of custom sidebars in the html_sidebars config value. Their use
is deprecated in favor of separate sidebar templates, which can be included via
html_sidebars.

	sidebartoc

	The table of contents within the sidebar.

Deprecated since version 1.0.

	sidebarrel

	The relation links (previous, next document) within the sidebar.

Deprecated since version 1.0.

	sidebarsourcelink

	The “Show source” link within the sidebar (normally only shown if this is
enabled by html_show_sourcelink).

Deprecated since version 1.0.

	sidebarsearch

	The search box within the sidebar. Override this if you want to place some
content at the bottom of the sidebar.

Deprecated since version 1.0.

Configuration Variables

Inside templates you can set a couple of variables used by the layout template
using the {% set %} tag:

	
reldelim1

	The delimiter for the items on the left side of the related bar. This
defaults to ' »' Each item in the related bar ends with the value
of this variable.

	
reldelim2

	The delimiter for the items on the right side of the related bar. This
defaults to ' |'. Each item except of the last one in the related bar
ends with the value of this variable.

Overriding works like this:

{% extends "!layout.html" %}
{% set reldelim1 = ' >' %}

	
script_files

	Add additional script files here, like this:

{% set script_files = script_files + [pathto("_static/myscript.js", 1)] %}

Helper Functions

Sphinx provides various Jinja functions as helpers in the template. You can use
them to generate links or output multiply used elements.

	
pathto(document)

	Return the path to a Sphinx document as a URL. Use this to refer to built
documents.

	
pathto(file, 1)

	Return the path to a file which is a filename relative to the root of the
generated output. Use this to refer to static files.

	
hasdoc(document)

	Check if a document with the name document exists.

	
sidebar()

	Return the rendered sidebar.

	
relbar()

	Return the rendered relation bar.

Global Variables

These global variables are available in every template and are safe to use.
There are more, but most of them are an implementation detail and might change
in the future.

	
builder

	The name of the builder (e.g. html or htmlhelp).

	
copyright

	The value of copyright.

	
docstitle

	The title of the documentation (the value of html_title).

	
embedded

	True if the built HTML is meant to be embedded in some viewing application
that handles navigation, not the web browser, such as for HTML help or Qt
help formats. In this case, the sidebar is not included.

	
favicon

	The path to the HTML favicon in the static path, or ''.

	
file_suffix

	The value of the builder’s out_suffix
attribute, i.e. the file name extension that the output files will get. For
a standard HTML builder, this is usually .html.

	
has_source

	True if the reST document sources are copied (if html_copy_source
is true).

	
last_updated

	The build date.

	
logo

	The path to the HTML logo image in the static path, or ''.

	
master_doc

	The value of master_doc, for usage with pathto().

	
next

	The next document for the navigation. This variable is either false or has
two attributes link and title. The title contains HTML markup. For
example, to generate a link to the next page, you can use this snippet:

{% if next %}
{{ next.title }}
{% endif %}

	
pagename

	The “page name” of the current file, i.e. either the document name if the
file is generated from a reST source, or the equivalent hierarchical name
relative to the output directory ([directory/]filename_without_extension).

	
parents

	A list of parent documents for navigation, structured like the next
item.

	
prev

	Like next, but for the previous page.

	
project

	The value of project.

	
release

	The value of release.

	
rellinks

	A list of links to put at the left side of the relbar, next to “next” and
“prev”. This usually contains links to the general index and other indices,
such as the Python module index. If you add something yourself, it must be a
tuple (pagename, link title, accesskey, link text).

	
shorttitle

	The value of html_short_title.

	
show_source

	True if html_show_sourcelink is true.

	
sphinx_version

	The version of Sphinx used to build.

	
style

	The name of the main stylesheet, as given by the theme or
html_style.

	
title

	The title of the current document, as used in the <title> tag.

	
use_opensearch

	The value of html_use_opensearch.

	
version

	The value of version.

In addition to these values, there are also all theme options available
(prefixed by theme_), as well as the values given by the user in
html_context.

In documents that are created from source files (as opposed to
automatically-generated files like the module index, or documents that already
are in HTML form), these variables are also available:

	
meta

	Document metadata (a dictionary), see File-wide metadata.

	
sourcename

	The name of the copied source file for the current document. This is only
nonempty if the html_copy_source value is true.

	
toc

	The local table of contents for the current page, rendered as HTML bullet
lists.

	
toctree

	A callable yielding the global TOC tree containing the current page, rendered
as HTML bullet lists. Optional keyword arguments:

	collapse (true by default): if true, all TOC entries that are not
ancestors of the current page are collapsed

	maxdepth (defaults to the max depth selected in the toctree directive):
the maximum depth of the tree; set it to -1 to allow unlimited depth

	titles_only (false by default): if true, put only toplevel document
titles in the tree

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

Sphinx 扩展

Since many projects will need special features in their documentation, Sphinx is
designed to be extensible on several levels.

This is what you can do in an extension: First, you can add new
builders to support new output formats or actions on the parsed
documents. Then, it is possible to register custom reStructuredText roles and
directives, extending the markup. And finally, there are so-called “hook
points” at strategic places throughout the build process, where an extension can
register a hook and run specialized code.

An extension is simply a Python module. When an extension is loaded, Sphinx
imports this module and executes its setup() function, which in turn
notifies Sphinx of everything the extension offers – see the extension tutorial
for examples.

The configuration file itself can be treated as an extension if it contains a
setup() function. All other extensions to load must be listed in the
extensions configuration value.

	Tutorial: Writing a simple extension
	Build Phases

	Extension Design

	The Setup Function

	The Node Classes

	The Directive Classes

	The Event Handlers

	Extension API
	Sphinx core events

	The template bridge

	Domain API

	Writing new builders

Builtin Sphinx extensions

These extensions are built in and can be activated by respective entries in the
extensions configuration value:

	sphinx.ext.autodoc – Include documentation from docstrings
	Docstring preprocessing

	Skipping members

	sphinx.ext.autosummary – Generate autodoc summaries
	sphinx-autogen – generate autodoc stub pages

	Generating stub pages automatically

	Customizing templates

	sphinx.ext.doctest – Test snippets in the documentation

	sphinx.ext.intersphinx – Link to other projects’ documentation

	Math support in Sphinx
	sphinx.ext.pngmath – Render math as PNG images

	sphinx.ext.jsmath – Render math via JavaScript

	sphinx.ext.graphviz – Add Graphviz graphs

	sphinx.ext.inheritance_diagram – Include inheritance diagrams

	sphinx.ext.refcounting – Keep track of reference counting behavior

	sphinx.ext.ifconfig – Include content based on configuration

	sphinx.ext.coverage – Collect doc coverage stats

	sphinx.ext.todo – Support for todo items

	sphinx.ext.extlinks – Markup to shorten external links

	sphinx.ext.viewcode – Add links to highlighted source code

	sphinx.ext.oldcmarkup – Compatibility extension for old C markup

Third-party extensions

You can find several extensions contributed by users in the Sphinx Contrib [http://www.bitbucket.org/birkenfeld/sphinx-contrib]
repository. It is open for anyone who wants to maintain an extension
publicly; just send a short message asking for write permissions.

There are also several extensions hosted elsewhere. The Wiki at BitBucket [http://www.bitbucket.org/birkenfeld/sphinx/wiki/Home]
maintains a list of those.

If you write an extension that you think others will find useful or you think
should be included as a part of Sphinx, please write to the project mailing
list (join here [http://groups.google.com/group/sphinx-dev]).

Where to put your own extensions?

Extensions local to a project should be put within the project’s directory
structure. Set Python’s module search path, sys.path, accordingly so that
Sphinx can find them.
E.g., if your extension foo.py lies in the exts subdirectory of the
project root, put into conf.py:

import sys, os

sys.path.append(os.path.abspath('exts'))

extensions = ['foo']

You can also install extensions anywhere else on sys.path, e.g. in the
site-packages directory.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

Tutorial: Writing a simple extension

This section is intended as a walkthrough for the creation of custom extensions.
It covers the basics of writing and activating an extensions, as well as
commonly used features of extensions.

As an example, we will cover a “todo” extension that adds capabilities to
include todo entries in the documentation, and collecting these in a central
place. (A similar “todo” extension is distributed with Sphinx.)

Build Phases

One thing that is vital in order to understand extension mechanisms is the way
in which a Sphinx project is built: this works in several phases.

Phase 0: Initialization

In this phase, almost nothing interesting for us happens. The source
directory is searched for source files, and extensions are initialized.
Should a stored build environment exist, it is loaded, otherwise a new one is
created.

Phase 1: Reading

In Phase 1, all source files (and on subsequent builds, those that are new or
changed) are read and parsed. This is the phase where directives and roles
are encountered by the docutils, and the corresponding functions are called.
The output of this phase is a doctree for each source files, that is a tree
of docutils nodes. For document elements that aren’t fully known until all
existing files are read, temporary nodes are created.

During reading, the build environment is updated with all meta- and cross
reference data of the read documents, such as labels, the names of headings,
described Python objects and index entries. This will later be used to
replace the temporary nodes.

The parsed doctrees are stored on the disk, because it is not possible to
hold all of them in memory.

Phase 2: Consistency checks

Some checking is done to ensure no surprises in the built documents.

Phase 3: Resolving

Now that the metadata and cross-reference data of all existing documents is
known, all temporary nodes are replaced by nodes that can be converted into
output. For example, links are created for object references that exist, and
simple literal nodes are created for those that don’t.

Phase 4: Writing

This phase converts the resolved doctrees to the desired output format, such
as HTML or LaTeX. This happens via a so-called docutils writer that visits
the individual nodes of each doctree and produces some output in the process.

Note

Some builders deviate from this general build plan, for example, the builder
that checks external links does not need anything more than the parsed
doctrees and therefore does not have phases 2–4.

Extension Design

We want the extension to add the following to Sphinx:

	A “todo” directive, containing some content that is marked with “TODO”, and
only shown in the output if a new config value is set. (Todo entries should
not be in the output by default.)

	A “todolist” directive that creates a list of all todo entries throughout the
documentation.

For that, we will need to add the following elements to Sphinx:

	New directives, called todo and todolist.

	New document tree nodes to represent these directives, conventionally also
called todo and todolist. We wouldn’t need new nodes if the new
directives only produced some content representable by existing nodes.

	A new config value todo_include_todos (config value names should start
with the extension name, in order to stay unique) that controls whether todo
entries make it into the output.

	New event handlers: one for the doctree-resolved event, to replace
the todo and todolist nodes, and one for env-purge-doc (the reason
for that will be covered later).

The Setup Function

The new elements are added in the extension’s setup function. Let us create a
new Python module called todo.py and add the setup function:

def setup(app):
 app.add_config_value('todo_include_todos', False, False)

 app.add_node(todolist)
 app.add_node(todo,
 html=(visit_todo_node, depart_todo_node),
 latex=(visit_todo_node, depart_todo_node),
 text=(visit_todo_node, depart_todo_node))

 app.add_directive('todo', TodoDirective)
 app.add_directive('todolist', TodolistDirective)
 app.connect('doctree-resolved', process_todo_nodes)
 app.connect('env-purge-doc', purge_todos)

The calls in this function refer to classes and functions not yet written. What
the individual calls do is the following:

	add_config_value() lets Sphinx know that it should recognize the
new config value todo_include_todos, whose default value should be
False (this also tells Sphinx that it is a boolean value).

If the third argument was True, all documents would be re-read if the
config value changed its value. This is needed for config values that
influence reading (build phase 1).

	add_node() adds a new node class to the build system. It also
can specify visitor functions for each supported output format. These visitor
functions are needed when the new nodes stay until phase 4 – since the
todolist node is always replaced in phase 3, it doesn’t need any.

We need to create the two node classes todo and todolist later.

	add_directive() adds a new directive, given by name and class.

The handler functions are created later.

	Finally, connect() adds an event handler to the event whose
name is given by the first argument. The event handler function is called
with several arguments which are documented with the event.

The Node Classes

Let’s start with the node classes:

from docutils import nodes

class todo(nodes.Admonition, nodes.Element):
 pass

class todolist(nodes.General, nodes.Element):
 pass

def visit_todo_node(self, node):
 self.visit_admonition(node)

def depart_todo_node(self, node):
 self.depart_admonition(node)

Node classes usually don’t have to do anything except inherit from the standard
docutils classes defined in docutils.nodes. todo inherits from
Admonition because it should be handled like a note or warning, todolist
is just a “general” node.

The Directive Classes

A directive class is a class deriving usually from
docutils.parsers.rst.Directive. Since the class-based directive interface
doesn’t exist yet in Docutils 0.4, Sphinx has another base class called
sphinx.util.compat.Directive that you can derive your directive from, and it
will work with both Docutils 0.4 and 0.5 upwards. The directive interface is
covered in detail in the docutils documentation; the important thing is that the
class has a method run that returns a list of nodes.

The todolist directive is quite simple:

from sphinx.util.compat import Directive

class TodolistDirective(Directive):

 def run(self):
 return [todolist('')]

An instance of our todolist node class is created and returned. The
todolist directive has neither content nor arguments that need to be handled.

The todo directive function looks like this:

from sphinx.util.compat import make_admonition

class TodoDirective(Directive):

 # this enables content in the directive
 has_content = True

 def run(self):
 env = self.state.document.settings.env

 targetid = "todo-%d" % env.new_serialno('todo')
 targetnode = nodes.target('', '', ids=[targetid])

 ad = make_admonition(todo, self.name, [_('Todo')], self.options,
 self.content, self.lineno, self.content_offset,
 self.block_text, self.state, self.state_machine)

 if not hasattr(env, 'todo_all_todos'):
 env.todo_all_todos = []
 env.todo_all_todos.append({
 'docname': env.docname,
 'lineno': self.lineno,
 'todo': ad[0].deepcopy(),
 'target': targetnode,
 })

 return [targetnode] + ad

Several important things are covered here. First, as you can see, you can refer
to the build environment instance using self.state.document.settings.env.

Then, to act as a link target (from the todolist), the todo directive needs to
return a target node in addition to the todo node. The target ID (in HTML, this
will be the anchor name) is generated by using env.new_serialno which is
returns a new integer directive on each call and therefore leads to unique
target names. The target node is instantiated without any text (the first two
arguments).

An admonition is created using a standard docutils function (wrapped in Sphinx
for docutils cross-version compatibility). The first argument gives the node
class, in our case todo. The third argument gives the admonition title (use
arguments here to let the user specify the title). A list of nodes is
returned from make_admonition.

Then, the todo node is added to the environment. This is needed to be able to
create a list of all todo entries throughout the documentation, in the place
where the author puts a todolist directive. For this case, the environment
attribute todo_all_todos is used (again, the name should be unique, so it is
prefixed by the extension name). It does not exist when a new environment is
created, so the directive must check and create it if necessary. Various
information about the todo entry’s location are stored along with a copy of the
node.

In the last line, the nodes that should be put into the doctree are returned:
the target node and the admonition node.

The node structure that the directive returns looks like this:

+--------------------+
| target node |
+--------------------+
+--------------------+
| todo node |
+--------------------+
 __+--------------------+
 | admonition title |
 +--------------------+
 | paragraph |
 +--------------------+
 | ... |
 +--------------------+

The Event Handlers

Finally, let’s look at the event handlers. First, the one for the
env-purge-doc event:

def purge_todos(app, env, docname):
 if not hasattr(env, 'todo_all_todos'):
 return
 env.todo_all_todos = [todo for todo in env.todo_all_todos
 if todo['docname'] != docname]

Since we store information from source files in the environment, which is
persistent, it may become out of date when the source file changes. Therefore,
before each source file is read, the environment’s records of it are cleared,
and the env-purge-doc event gives extensions a chance to do the same.
Here we clear out all todos whose docname matches the given one from the
todo_all_todos list. If there are todos left in the document, they will be
added again during parsing.

The other handler belongs to the doctree-resolved event. This event is
emitted at the end of phase 3 and allows custom resolving to be done:

def process_todo_nodes(app, doctree, fromdocname):
 if not app.config.todo_include_todos:
 for node in doctree.traverse(todo):
 node.parent.remove(node)

 # Replace all todolist nodes with a list of the collected todos.
 # Augment each todo with a backlink to the original location.
 env = app.builder.env

 for node in doctree.traverse(todolist):
 if not app.config.todo_include_todos:
 node.replace_self([])
 continue

 content = []

 for todo_info in env.todo_all_todos:
 para = nodes.paragraph()
 filename = env.doc2path(todo_info['docname'], base=None)
 description = (
 _('(The original entry is located in %s, line %d and can be found ') %
 (filename, todo_info['lineno']))
 para += nodes.Text(description, description)

 # Create a reference
 newnode = nodes.reference('', '')
 innernode = nodes.emphasis(_('here'), _('here'))
 newnode['refdocname'] = todo_info['docname']
 newnode['refuri'] = app.builder.get_relative_uri(
 fromdocname, todo_info['docname'])
 newnode['refuri'] += '#' + todo_info['target']['refid']
 newnode.append(innernode)
 para += newnode
 para += nodes.Text('.)', '.)')

 # Insert into the todolist
 content.append(todo_info['todo'])
 content.append(para)

 node.replace_self(content)

It is a bit more involved. If our new “todo_include_todos” config value is
false, all todo and todolist nodes are removed from the documents.

If not, todo nodes just stay where and how they are. Todolist nodes are
replaced by a list of todo entries, complete with backlinks to the location
where they come from. The list items are composed of the nodes from the todo
entry and docutils nodes created on the fly: a paragraph for each entry,
containing text that gives the location, and a link (reference node containing
an italic node) with the backreference. The reference URI is built by
app.builder.get_relative_uri which creates a suitable URI depending on the
used builder, and appending the todo node’s (the target’s) ID as the anchor
name.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

Extension API

Each Sphinx extension is a Python module with at least a setup() function.
This function is called at initialization time with one argument, the
application object representing the Sphinx process. This application object has
the following public API:

	
Sphinx.setup_extension(name)

	Load the extension given by the module name. Use this if your extension
needs the features provided by another extension.

	
Sphinx.add_builder(builder)

	Register a new builder. builder must be a class that inherits from
Builder.

	
Sphinx.add_config_value(name, default, rebuild)

	Register a configuration value. This is necessary for Sphinx to recognize
new values and set default values accordingly. The name should be prefixed
with the extension name, to avoid clashes. The default value can be any
Python object. The string value rebuild must be one of those values:

	'env' if a change in the setting only takes effect when a document is
parsed – this means that the whole environment must be rebuilt.

	'html' if a change in the setting needs a full rebuild of HTML
documents.

	'' if a change in the setting will not need any special rebuild.

Changed in version 0.4: If the default value is a callable, it will be called with the config
object as its argument in order to get the default value. This can be
used to implement config values whose default depends on other values.

Changed in version 0.6: Changed rebuild from a simple boolean (equivalent to '' or
'env') to a string. However, booleans are still accepted and
converted internally.

	
Sphinx.add_domain(domain)

	Make the given domain (which must be a class; more precisely, a subclass of
Domain) known to Sphinx.

New in version 1.0.

	
Sphinx.override_domain(domain)

	Make the given domain class known to Sphinx, assuming that there is already
a domain with its .name. The new domain must be a subclass of the
existing one.

New in version 1.0.

	
Sphinx.add_index_to_domain(domain, index)

	Add a custom index class to the domain named domain. index must be a
subclass of Index.

New in version 1.0.

	
Sphinx.add_event(name)

	Register an event called name. This is needed to be able to emit it.

	
Sphinx.add_node(node, **kwds)

	Register a Docutils node class. This is necessary for Docutils internals.
It may also be used in the future to validate nodes in the parsed documents.

Node visitor functions for the Sphinx HTML, LaTeX, text and manpage writers
can be given as keyword arguments: the keyword must be one or more of
'html', 'latex', 'text', 'man', the value a 2-tuple of
(visit, depart) methods. depart can be None if the visit
function raises docutils.nodes.SkipNode. Example:

class math(docutils.nodes.Element): pass

def visit_math_html(self, node):
 self.body.append(self.starttag(node, 'math'))
def depart_math_html(self, node):
 self.body.append('</math>')

app.add_node(math, html=(visit_math_html, depart_math_html))

Obviously, translators for which you don’t specify visitor methods will choke
on the node when encountered in a document to translate.

Changed in version 0.5: Added the support for keyword arguments giving visit functions.

	
Sphinx.add_directive(name, func, content, arguments, **options)

	
Sphinx.add_directive(name, directiveclass)

	Register a Docutils directive. name must be the prospective directive
name. There are two possible ways to write a directive:

	In the docutils 0.4 style, obj is the directive function. content,
arguments and options are set as attributes on the function and
determine whether the directive has content, arguments and options,
respectively. This style is deprecated.

	In the docutils 0.5 style, directiveclass is the directive class. It
must already have attributes named has_content, required_arguments,
optional_arguments, final_argument_whitespace and option_spec that
correspond to the options for the function way. See the Docutils docs [http://docutils.sourceforge.net/docs/howto/rst-directives.html] for
details.

The directive class normally must inherit from the class
docutils.parsers.rst.Directive. When writing a directive for usage in
a Sphinx extension, you inherit from sphinx.util.compat.Directive
instead which does the right thing even on docutils 0.4 (which doesn’t
support directive classes otherwise).

For example, the (already existing) literalinclude directive would be
added like this:

from docutils.parsers.rst import directives
add_directive('literalinclude', literalinclude_directive,
 content = 0, arguments = (1, 0, 0),
 linenos = directives.flag,
 language = direcitves.unchanged,
 encoding = directives.encoding)

Changed in version 0.6: Docutils 0.5-style directive classes are now supported.

	
Sphinx.add_directive_to_domain(domain, name, func, content, arguments, **options)

	
Sphinx.add_directive_to_domain(domain, name, directiveclass)

	Like add_directive(), but the directive is added to the domain named
domain.

New in version 1.0.

	
Sphinx.add_role(name, role)

	Register a Docutils role. name must be the role name that occurs in the
source, role the role function (see the Docutils documentation [http://docutils.sourceforge.net/docs/howto/rst-roles.html] on details).

	
Sphinx.add_role_to_domain(domain, name, role)

	Like add_role(), but the role is added to the domain named domain.

New in version 1.0.

	
Sphinx.add_generic_role(name, nodeclass)

	Register a Docutils role that does nothing but wrap its contents in the
node given by nodeclass.

New in version 0.6.

	
Sphinx.add_object_type(directivename, rolename, indextemplate='', parse_node=None, ref_nodeclass=None, objname='')

	This method is a very convenient way to add a new object type that
can be cross-referenced. It will do this:

	Create a new directive (called directivename) for documenting an object.
It will automatically add index entries if indextemplate is nonempty; if
given, it must contain exactly one instance of %s. See the example
below for how the template will be interpreted.

	Create a new role (called rolename) to cross-reference to these
object descriptions.

	If you provide parse_node, it must be a function that takes a string and
a docutils node, and it must populate the node with children parsed from
the string. It must then return the name of the item to be used in
cross-referencing and index entries. See the conf.py file in the
source for this documentation for an example.

	The objname (if not given, will default to directivename) names the
type of object. It is used when listing objects, e.g. in search results.

For example, if you have this call in a custom Sphinx extension:

app.add_object_type('directive', 'dir', 'pair: %s; directive')

you can use this markup in your documents:

.. rst:directive:: function

 Document a function.

<...>

See also the :rst:dir:`function` directive.

For the directive, an index entry will be generated as if you had prepended

.. index:: pair: function; directive

The reference node will be of class literal (so it will be rendered in a
proportional font, as appropriate for code) unless you give the ref_nodeclass
argument, which must be a docutils node class (most useful are
docutils.nodes.emphasis or docutils.nodes.strong – you can also use
docutils.nodes.generated if you want no further text decoration).

For the role content, you have the same syntactical possibilities as for
standard Sphinx roles (see Cross-referencing syntax).

This method is also available under the deprecated alias
add_description_unit.

	
Sphinx.add_crossref_type(directivename, rolename, indextemplate='', ref_nodeclass=None, objname='')

	This method is very similar to add_object_type() except that the
directive it generates must be empty, and will produce no output.

That means that you can add semantic targets to your sources, and refer to
them using custom roles instead of generic ones (like ref). Example
call:

app.add_crossref_type('topic', 'topic', 'single: %s', docutils.nodes.emphasis)

Example usage:

.. topic:: application API

The application API

<...>

See also :topic:`this section <application API>`.

(Of course, the element following the topic directive needn’t be a
section.)

	
Sphinx.add_transform(transform)

	Add the standard docutils Transform subclass transform to the list
of transforms that are applied after Sphinx parses a reST document.

	
Sphinx.add_javascript(filename)

	Add filename to the list of JavaScript files that the default HTML template
will include. The filename must be relative to the HTML static path, see
the docs for the config value. A full URI with
scheme, like http://example.org/foo.js, is also supported.

New in version 0.5.

	
Sphinx.add_stylesheet(filename)

	Add filename to the list of CSS files that the default HTML template will
include. Like for add_javascript(), the filename must be relative to
the HTML static path.

New in version 1.0.

	
Sphinx.add_lexer(alias, lexer)

	Use lexer, which must be an instance of a Pygments lexer class, to
highlight code blocks with the given language alias.

New in version 0.6.

	
Sphinx.add_autodocumenter(cls)

	Add cls as a new documenter class for the sphinx.ext.autodoc
extension. It must be a subclass of sphinx.ext.autodoc.Documenter.
This allows to auto-document new types of objects. See the source of the
autodoc module for examples on how to subclass Documenter.

New in version 0.6.

	
Sphinx.add_autodoc_attrgetter(type, getter)

	Add getter, which must be a function with an interface compatible to the
getattr() builtin, as the autodoc attribute getter for objects that are
instances of type. All cases where autodoc needs to get an attribute of a
type are then handled by this function instead of getattr().

New in version 0.6.

	
Sphinx.connect(event, callback)

	Register callback to be called when event is emitted. For details on
available core events and the arguments of callback functions, please see
Sphinx core events.

The method returns a “listener ID” that can be used as an argument to
disconnect().

	
Sphinx.disconnect(listener_id)

	Unregister callback listener_id.

	
Sphinx.emit(event, *arguments)

	Emit event and pass arguments to the callback functions. Return the
return values of all callbacks as a list. Do not emit core Sphinx events
in extensions!

	
Sphinx.emit_firstresult(event, *arguments)

	Emit event and pass arguments to the callback functions. Return the
result of the first callback that doesn’t return None.

New in version 0.5.

	
Sphinx.require_sphinx(version)

	Compare version (which must be a major.minor version string,
e.g. '1.1') with the version of the running Sphinx, and abort the build
when it is too old.

New in version 1.0.

	
exception sphinx.application.ExtensionError

	All these functions raise this exception if something went wrong with the
extension API.

Examples of using the Sphinx extension API can be seen in the sphinx.ext
package.

Sphinx core events

These events are known to the core. The arguments shown are given to the
registered event handlers.

	
builder-inited(app)

	Emitted when the builder object has been created. It is available as
app.builder.

	
env-purge-doc(app, env, docname)

	Emitted when all traces of a source file should be cleaned from the
environment, that is, if the source file is removed or before it is freshly
read. This is for extensions that keep their own caches in attributes of the
environment.

For example, there is a cache of all modules on the environment. When a
source file has been changed, the cache’s entries for the file are cleared,
since the module declarations could have been removed from the file.

New in version 0.5.

	
source-read(app, docname, source)

	Emitted when a source file has been read. The source argument is a list
whose single element is the contents of the source file. You can process the
contents and replace this item to implement source-level transformations.

For example, if you want to use $ signs to delimit inline math, like in
LaTeX, you can use a regular expression to replace $...$ by
:math:`...`.

New in version 0.5.

	
doctree-read(app, doctree)

	Emitted when a doctree has been parsed and read by the environment, and is
about to be pickled. The doctree can be modified in-place.

	
missing-reference(app, env, node, contnode)

	Emitted when a cross-reference to a Python module or object cannot be
resolved. If the event handler can resolve the reference, it should return a
new docutils node to be inserted in the document tree in place of the node
node. Usually this node is a reference node containing contnode
as a child.

	Param env:	The build environment (app.builder.env).

	Param node:	The pending_xref node to be resolved. Its attributes
reftype, reftarget, modname and classname attributes
determine the type and target of the reference.

	Param contnode:	The node that carries the text and formatting inside the
future reference and should be a child of the returned reference node.

New in version 0.5.

	
doctree-resolved(app, doctree, docname)

	Emitted when a doctree has been “resolved” by the environment, that is, all
references have been resolved and TOCs have been inserted. The doctree can
be modified in place.

Here is the place to replace custom nodes that don’t have visitor methods in
the writers, so that they don’t cause errors when the writers encounter them.

	
env-updated(app, env)

	Emitted when the update() method of the build environment has
completed, that is, the environment and all doctrees are now up-to-date.

New in version 0.5.

	
html-collect-pages(app)

	Emitted when the HTML builder is starting to write non-document pages. You
can add pages to write by returning an iterable from this event consisting of
(pagename, context, templatename).

New in version 1.0.

	
html-page-context(app, pagename, templatename, context, doctree)

	Emitted when the HTML builder has created a context dictionary to render a
template with – this can be used to add custom elements to the context.

The pagename argument is the canonical name of the page being rendered,
that is, without .html suffix and using slashes as path separators. The
templatename is the name of the template to render, this will be
'page.html' for all pages from reST documents.

The context argument is a dictionary of values that are given to the
template engine to render the page and can be modified to include custom
values. Keys must be strings.

The doctree argument will be a doctree when the page is created from a reST
documents; it will be None when the page is created from an HTML template
alone.

New in version 0.4.

	
build-finished(app, exception)

	Emitted when a build has finished, before Sphinx exits, usually used for
cleanup. This event is emitted even when the build process raised an
exception, given as the exception argument. The exception is reraised in
the application after the event handlers have run. If the build process
raised no exception, exception will be None. This allows to customize
cleanup actions depending on the exception status.

New in version 0.5.

The template bridge

	
class sphinx.application.TemplateBridge

	This class defines the interface for a “template bridge”, that is, a class
that renders templates given a template name and a context.

	
init(builder, theme=None, dirs=None)

	Called by the builder to initialize the template system.

builder is the builder object; you’ll probably want to look at the
value of builder.config.templates_path.

theme is a sphinx.theming.Theme object or None; in the latter
case, dirs can be list of fixed directories to look for templates.

	
newest_template_mtime()

	Called by the builder to determine if output files are outdated
because of template changes. Return the mtime of the newest template
file that was changed. The default implementation returns 0.

	
render(template, context)

	Called by the builder to render a template given as a filename with
a specified context (a Python dictionary).

	
render_string(template, context)

	Called by the builder to render a template given as a string with a
specified context (a Python dictionary).

Domain API

	
class sphinx.domains.Domain(env)

	A Domain is meant to be a group of “object” description directives for
objects of a similar nature, and corresponding roles to create references to
them. Examples would be Python modules, classes, functions etc., elements
of a templating language, Sphinx roles and directives, etc.

Each domain has a separate storage for information about existing objects
and how to reference them in self.data, which must be a dictionary. It
also must implement several functions that expose the object information in
a uniform way to parts of Sphinx that allow the user to reference or search
for objects in a domain-agnostic way.

About self.data: since all object and cross-referencing information is
stored on a BuildEnvironment instance, the domain.data object is also
stored in the env.domaindata dict under the key domain.name. Before the
build process starts, every active domain is instantiated and given the
environment object; the domaindata dict must then either be nonexistent or
a dictionary whose ‘version’ key is equal to the domain class’
data_version attribute. Otherwise, IOError is raised and the
pickled environment is discarded.

	
clear_doc(docname)

	Remove traces of a document in the domain-specific inventories.

	
directive(name)

	Return a directive adapter class that always gives the registered
directive its full name (‘domain:name’) as self.name.

	
get_objects()

	Return an iterable of “object descriptions”, which are tuples with
five items:

	name – fully qualified name

	dispname – name to display when searching/linking

	type – object type, a key in self.object_types

	docname – the document where it is to be found

	anchor – the anchor name for the object

	priority – how “important” the object is (determines placement
in search results)
	1: default priority (placed before full-text matches)

	0: object is important (placed before default-priority objects)

	2: object is unimportant (placed after full-text matches)

	-1: object should not show up in search at all

	
get_type_name(type, primary=False)

	Return full name for given ObjType.

	
merge_domaindata(docnames, otherdata)

	Merge in data regarding docnames from a different domaindata
inventory (coming from a subprocess in parallel builds).

	
process_doc(env, docname, document)

	Process a document after it is read by the environment.

	
resolve_any_xref(env, fromdocname, builder, target, node, contnode)

	Resolve the pending_xref node with the given target.

The reference comes from an “any” or similar role, which means that we
don’t know the type. Otherwise, the arguments are the same as for
resolve_xref().

The method must return a list (potentially empty) of tuples
('domain:role', newnode), where 'domain:role' is the name of a
role that could have created the same reference, e.g. 'py:func'.
newnode is what resolve_xref() would return.

New in version 1.3.

	
resolve_xref(env, fromdocname, builder, typ, target, node, contnode)

	Resolve the pending_xref node with the given typ and target.

This method should return a new node, to replace the xref node,
containing the contnode which is the markup content of the
cross-reference.

If no resolution can be found, None can be returned; the xref node will
then given to the ‘missing-reference’ event, and if that yields no
resolution, replaced by contnode.

The method can also raise sphinx.environment.NoUri to suppress
the ‘missing-reference’ event being emitted.

	
role(name)

	Return a role adapter function that always gives the registered
role its full name (‘domain:name’) as the first argument.

	
dangling_warnings = {}

	role name -> a warning message if reference is missing

	
data_version = 0

	data version, bump this when the format of self.data changes

	
directives = {}

	directive name -> directive class

	
indices = []

	a list of Index subclasses

	
initial_data = {}

	data value for a fresh environment

	
label = ''

	domain label: longer, more descriptive (used in messages)

	
name = ''

	domain name: should be short, but unique

	
object_types = {}

	type (usually directive) name -> ObjType instance

	
roles = {}

	role name -> role callable

	
class sphinx.domains.ObjType(lname, *roles, **attrs)

	An ObjType is the description for a type of object that a domain can
document. In the object_types attribute of Domain subclasses, object type
names are mapped to instances of this class.

Constructor arguments:

	lname: localized name of the type (do not include domain name)

	roles: all the roles that can refer to an object of this type

	attrs: object attributes – currently only “searchprio” is known,
which defines the object’s priority in the full-text search index,
see Domain.get_objects().

	
class sphinx.domains.Index(domain)

	An Index is the description for a domain-specific index. To add an index to
a domain, subclass Index, overriding the three name attributes:

	name is an identifier used for generating file names.

	localname is the section title for the index.

	shortname is a short name for the index, for use in the relation bar in
HTML output. Can be empty to disable entries in the relation bar.

and providing a generate() method. Then, add the index class to
your domain’s indices list. Extensions can add indices to existing
domains using add_index_to_domain().

	
generate(docnames=None)

	Return entries for the index given by name. If docnames is
given, restrict to entries referring to these docnames.

The return value is a tuple of (content, collapse), where collapse
is a boolean that determines if sub-entries should start collapsed (for
output formats that support collapsing sub-entries).

content is a sequence of (letter, entries) tuples, where letter
is the “heading” for the given entries, usually the starting letter.

entries is a sequence of single entries, where a single entry is a
sequence [name, subtype, docname, anchor, extra, qualifier, descr].
The items in this sequence have the following meaning:

	name – the name of the index entry to be displayed

	subtype – sub-entry related type:
0 – normal entry
1 – entry with sub-entries
2 – sub-entry

	docname – docname where the entry is located

	anchor – anchor for the entry within docname

	extra – extra info for the entry

	qualifier – qualifier for the description

	descr – description for the entry

Qualifier and description are not rendered e.g. in LaTeX output.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

Writing new builders

Todo

Expand this.

	
class sphinx.builders.Builder

	This is the base class for all builders.

These methods are predefined and will be called from the application:

	
get_relative_uri(from_, to, typ=None)

	Return a relative URI between two source filenames.

May raise environment.NoUri if there’s no way to return a sensible URI.

	
build_all()

	Build all source files.

	
build_specific(filenames)

	Only rebuild as much as needed for changes in the filenames.

	
build_update()

	Only rebuild what was changed or added since last build.

	
build(docnames, summary=None, method='update')

	Main build method.

First updates the environment, and then calls write().

These methods can be overridden in concrete builder classes:

	
init()

	Load necessary templates and perform initialization. The default
implementation does nothing.

	
get_outdated_docs()

	Return an iterable of output files that are outdated, or a string
describing what an update build will build.

If the builder does not output individual files corresponding to
source files, return a string here. If it does, return an iterable
of those files that need to be written.

	
get_target_uri(docname, typ=None)

	Return the target URI for a document name.

typ can be used to qualify the link characteristic for individual
builders.

	
prepare_writing(docnames)

	A place where you can add logic before write_doc() is run

	
write_doc(docname, doctree)

	Where you actually write something to the filesystem.

	
finish()

	Finish the building process.

The default implementation does nothing.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.autodoc – Include documentation from docstrings

This extension can import the modules you are documenting, and pull in
documentation from docstrings in a semi-automatic way.

Note

For Sphinx (actually, the Python interpreter that executes Sphinx) to find
your module, it must be importable. That means that the module or the
package must be in one of the directories on sys.path – adapt your
sys.path in the configuration file accordingly.

For this to work, the docstrings must of course be written in correct
reStructuredText. You can then use all of the usual Sphinx markup in the
docstrings, and it will end up correctly in the documentation. Together with
hand-written documentation, this technique eases the pain of having to maintain
two locations for documentation, while at the same time avoiding
auto-generated-looking pure API documentation.

autodoc provides several directives that are versions of the usual
py:module, py:class and so forth. On parsing time, they
import the corresponding module and extract the docstring of the given objects,
inserting them into the page source under a suitable py:module,
py:class etc. directive.

Note

Just as py:class respects the current py:module,
autoclass will also do so. Likewise, automethod will
respect the current py:class.

	
.. automodule::

	
.. autoclass::

	
.. autoexception::

	Document a module, class or exception. All three directives will by default
only insert the docstring of the object itself:

.. autoclass:: Noodle

will produce source like this:

.. class:: Noodle

 Noodle's docstring.

The “auto” directives can also contain content of their own, it will be
inserted into the resulting non-auto directive source after the docstring
(but before any automatic member documentation).

Therefore, you can also mix automatic and non-automatic member documentation,
like so:

.. autoclass:: Noodle
 :members: eat, slurp

 .. method:: boil(time=10)

 Boil the noodle *time* minutes.

Options and advanced usage

	If you want to automatically document members, there’s a members
option:

.. automodule:: noodle
 :members:

will document all module members (recursively), and

.. autoclass:: Noodle
 :members:

will document all non-private member functions and properties (that is,
those whose name doesn’t start with _).

For modules, __all__ will be respected when looking for members; the
order of the members will also be the order in __all__.

You can also give an explicit list of members; only these will then be
documented:

.. autoclass:: Noodle
 :members: eat, slurp

	If you want to make the members option the default, see
autodoc_default_flags.

	Members without docstrings will be left out, unless you give the
undoc-members flag option:

.. automodule:: noodle
 :members:
 :undoc-members:

	For classes and exceptions, members inherited from base classes will be
left out, unless you give the inherited-members flag option, in
addition to members:

.. autoclass:: Noodle
 :members:
 :inherited-members:

This can be combined with undoc-members to document all available
members of the class or module.

Note: this will lead to markup errors if the inherited members come from a
module whose docstrings are not reST formatted.

New in version 0.3.

	It’s possible to override the signature for explicitly documented callable
objects (functions, methods, classes) with the regular syntax that will
override the signature gained from introspection:

.. autoclass:: Noodle(type)

 .. automethod:: eat(persona)

This is useful if the signature from the method is hidden by a decorator.

New in version 0.4.

	The automodule, autoclass and
autoexception directives also support a flag option called
show-inheritance. When given, a list of base classes will be inserted
just below the class signature (when used with automodule, this
will be inserted for every class that is documented in the module).

New in version 0.4.

	All autodoc directives support the noindex flag option that has the
same effect as for standard py:function etc. directives: no
index entries are generated for the documented object (and all
autodocumented members).

New in version 0.4.

	automodule also recognizes the synopsis, platform and
deprecated options that the standard py:module directive
supports.

New in version 0.5.

	automodule and autoclass also has an member-order option
that can be used to override the global value of
autodoc_member_order for one directive.

New in version 0.6.

	The directives supporting member documentation also have a
exclude-members option that can be used to exclude single member names
from documentation, if all members are to be documented.

New in version 0.6.

Note

In an automodule directive with the members option set, only
module members whose __module__ attribute is equal to the module name
as given to automodule will be documented. This is to prevent
documentation of imported classes or functions.

	
.. autofunction::

	
.. autodata::

	
.. automethod::

	
.. autoattribute::

	These work exactly like autoclass etc., but do not offer the options
used for automatic member documentation.

For module data members and class attributes, documentation can either be put
into a special-formatted comment before the attribute definition, or in a
docstring after the definition. This means that in the following class
definition, all attributes can be autodocumented:

class Foo:
 """Docstring for class Foo."""

 #: Doc comment for class attribute Foo.bar.
 bar = 1

 baz = 2
 """Docstring for class attribute Foo.baz."""

 def __init__(self):
 #: Doc comment for instance attribute qux.
 self.qux = 3

 self.spam = 4
 """Docstring for instance attribute spam."""

Changed in version 0.6: autodata and autoattribute can now extract docstrings.

Note

If you document decorated functions or methods, keep in mind that autodoc
retrieves its docstrings by importing the module and inspecting the
__doc__ attribute of the given function or method. That means that if
a decorator replaces the decorated function with another, it must copy the
original __doc__ to the new function.

From Python 2.5, functools.wraps() can be used to create
well-behaved decorating functions.

There are also new config values that you can set:

	
autoclass_content

	This value selects what content will be inserted into the main body of an
autoclass directive. The possible values are:

	"class"

	Only the class’ docstring is inserted. This is the default. You can
still document __init__ as a separate method using
automethod or the members option to autoclass.

	"both"

	Both the class’ and the __init__ method’s docstring are concatenated
and inserted.

	"init"

	Only the __init__ method’s docstring is inserted.

New in version 0.3.

	
autodoc_member_order

	This value selects if automatically documented members are sorted
alphabetical (value 'alphabetical'), by member type (value
'groupwise') or by source order (value 'bysource'). The default is
alphabetical.

Note that for source order, the module must be a Python module with the
source code available.

New in version 0.6.

Changed in version 1.0: Support for 'bysource'.

	
autodoc_default_flags

	This value is a list of autodoc directive flags that should be automatically
applied to all autodoc directives. The supported flags are 'members',
'undoc-members', 'inherited-members' and 'show-inheritance'.

If you set one of these flags in this config value, you can use a negated
form, 'no-flag', in an autodoc directive, to disable it once.
For example, if autodoc_default_flags is set to ['members',
'undoc-members'], and you write a directive like this:

.. automodule:: foo
 :no-undoc-members:

the directive will be interpreted as if only :members: was given.

New in version 1.0.

Docstring preprocessing

autodoc provides the following additional events:

	
autodoc-process-docstring(app, what, name, obj, options, lines)

	
New in version 0.4.

Emitted when autodoc has read and processed a docstring. lines is a list
of strings – the lines of the processed docstring – that the event handler
can modify in place to change what Sphinx puts into the output.

	Param app:	the Sphinx application object

	Param what:	the type of the object which the docstring belongs to (one of
"module", "class", "exception", "function", "method",
"attribute")

	Param name:	the fully qualified name of the object

	Param obj:	the object itself

	Param options:	the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and
noindex that are true if the flag option of same name was given to the
auto directive

	Param lines:	the lines of the docstring, see above

	
autodoc-process-signature(app, what, name, obj, options, signature, return_annotation)

	
New in version 0.5.

Emitted when autodoc has formatted a signature for an object. The event
handler can return a new tuple (signature, return_annotation) to change
what Sphinx puts into the output.

	Param app:	the Sphinx application object

	Param what:	the type of the object which the docstring belongs to (one of
"module", "class", "exception", "function", "method",
"attribute")

	Param name:	the fully qualified name of the object

	Param obj:	the object itself

	Param options:	the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and
noindex that are true if the flag option of same name was given to the
auto directive

	Param signature:

		function signature, as a string of the form
"(parameter_1, parameter_2)", or None if introspection didn’t succeed
and signature wasn’t specified in the directive.

	Param return_annotation:

		function return annotation as a string of the form
" -> annotation", or None if there is no return annotation

The sphinx.ext.autodoc module provides factory functions for commonly
needed docstring processing in event autodoc-process-docstring:

	
sphinx.ext.autodoc.cut_lines(pre, post=0, what=None)

	Return a listener that removes the first pre and last post
lines of every docstring. If what is a sequence of strings,
only docstrings of a type in what will be processed.

Use like this (e.g. in the setup() function of conf.py):

from sphinx.ext.autodoc import cut_lines
app.connect('autodoc-process-docstring', cut_lines(4, what=['module']))

This can (and should) be used in place of automodule_skip_lines.

	
sphinx.ext.autodoc.between(marker, what=None, keepempty=False, exclude=False)

	Return a listener that either keeps, or if exclude is True excludes,
lines between lines that match the marker regular expression. If no line
matches, the resulting docstring would be empty, so no change will be made
unless keepempty is true.

If what is a sequence of strings, only docstrings of a type in what will
be processed.

Skipping members

autodoc allows the user to define a custom method for determining whether a
member should be included in the documentation by using the following event:

	
autodoc-skip-member(app, what, name, obj, skip, options)

	
New in version 0.5.

Emitted when autodoc has to decide whether a member should be included in the
documentation. The member is excluded if a handler returns True. It is
included if the handler returns False.

	Param app:	the Sphinx application object

	Param what:	the type of the object which the docstring belongs to (one of
"module", "class", "exception", "function", "method",
"attribute")

	Param name:	the fully qualified name of the object

	Param obj:	the object itself

	Param skip:	a boolean indicating if autodoc will skip this member if the user
handler does not override the decision

	Param options:	the options given to the directive: an object with attributes
inherited_members, undoc_members, show_inheritance and
noindex that are true if the flag option of same name was given to the
auto directive

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.autosummary – Generate autodoc summaries

New in version 0.6.

This extension generates function/method/attribute summary lists, similar to
those output e.g. by Epydoc and other API doc generation tools. This is
especially useful when your docstrings are long and detailed, and putting each
one of them on a separate page makes them easier to read.

The sphinx.ext.autosummary extension does this in two parts:

	There is an autosummary directive for generating summary listings that
contain links to the documented items, and short summary blurbs extracted
from their docstrings.

	The convenience script sphinx-autogen or the new
autosummary_generate config value can be used to generate short
“stub” files for the entries listed in the autosummary directives.
These by default contain only the corresponding sphinx.ext.autodoc
directive.

	
.. autosummary::

	Insert a table that contains links to documented items, and a short summary
blurb (the first sentence of the docstring) for each of them. The
autosummary directive can also optionally serve as a toctree
entry for the included items.

For example,

.. currentmodule:: sphinx

.. autosummary::

 environment.BuildEnvironment
 util.relative_uri

produces a table like this:

	environment.BuildEnvironment(srcdir,...)
	The environment in which the ReST files are translated.

Autosummary preprocesses the docstrings and signatures with the same
autodoc-process-docstring and autodoc-process-signature
hooks as autodoc.

Options

	If you want the autosummary table to also serve as a toctree
entry, use the toctree option, for example:

.. autosummary::
 :toctree: DIRNAME

 sphinx.environment.BuildEnvironment
 sphinx.util.relative_uri

The toctree option also signals to the sphinx-autogen script
that stub pages should be generated for the entries listed in this
directive. The option accepts a directory name as an argument;
sphinx-autogen will by default place its output in this
directory. If no argument is given, output is placed in the same directory
as the file that contains the directive.

	If you don’t want the autosummary to show function signatures in the
listing, include the nosignatures option:

.. autosummary::
 :nosignatures:

 sphinx.environment.BuildEnvironment
 sphinx.util.relative_uri

	You can specify a custom template with the template option.
For example,

.. autosummary::
 :template: mytemplate.rst

 sphinx.environment.BuildEnvironment

would use the template mytemplate.rst in your
templates_path to generate the pages for all entries
listed. See Customizing templates below.

New in version 1.0.

sphinx-autogen – generate autodoc stub pages

The sphinx-autogen script can be used to conveniently generate stub
documentation pages for items included in autosummary listings.

For example, the command

$ sphinx-autogen -o generated *.rst

will read all autosummary tables in the *.rst files that have the
:toctree: option set, and output corresponding stub pages in directory
generated for all documented items. The generated pages by default contain
text of the form:

sphinx.util.relative_uri
========================

.. autofunction:: sphinx.util.relative_uri

If the -o option is not given, the script will place the output files in the
directories specified in the :toctree: options.

Generating stub pages automatically

If you do not want to create stub pages with sphinx-autogen, you can
also use this new config value:

	
autosummary_generate

	Boolean indicating whether to scan all found documents for autosummary
directives, and to generate stub pages for each.

Can also be a list of documents for which stub pages should be generated.

The new files will be placed in the directories specified in the
:toctree: options of the directives.

Customizing templates

New in version 1.0.

You can customize the stub page templates, in a similar way as the HTML Jinja
templates, see 模板. (TemplateBridge
is not supported.)

Note

If you find yourself spending much time tailoring the stub templates, this
may indicate that it’s a better idea to write custom narrative documentation
instead.

Autosummary uses the following template files:

	autosummary/base.rst – fallback template

	autosummary/module.rst – template for modules

	autosummary/class.rst – template for classes

	autosummary/function.rst – template for functions

	autosummary/attribute.rst – template for class attributes

	autosummary/method.rst – template for class methods

The following variables available in the templates:

	
name

	Name of the documented object, excluding the module and class parts.

	
objname

	Name of the documented object, excluding the module parts.

	
fullname

	Full name of the documented object, including module and class parts.

	
module

	Name of the module the documented object belongs to.

	
class

	Name of the class the documented object belongs to. Only available for
methods and attributes.

	
underline

	A string containing len(full_name) * '='.

	
members

	List containing names of all members of the module or class. Only available
for modules and classes.

	
functions

	List containing names of “public” functions in the module. Here, “public”
here means that the name does not start with an underscore. Only available
for modules.

	
classes

	List containing names of “public” classes in the module. Only available for
modules.

	
exceptions

	List containing names of “public” exceptions in the module. Only available
for modules.

	
methods

	List containing names of “public” methods in the class. Only available for
classes.

	
attributes

	List containing names of “public” attributes in the class. Only available
for classes.

Note

You can use the autosummary directive in the stub pages.
Stub pages are generated also based on these directives.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.doctest – Test snippets in the documentation

This extension allows you to test snippets in the documentation in a natural
way. It works by collecting specially-marked up code blocks and running them as
doctest tests.

Within one document, test code is partitioned in groups, where each group
consists of:

	zero or more setup code blocks (e.g. importing the module to test)

	one or more test blocks

When building the docs with the doctest builder, groups are collected for
each document and run one after the other, first executing setup code blocks,
then the test blocks in the order they appear in the file.

There are two kinds of test blocks:

	doctest-style blocks mimic interactive sessions by interleaving Python code
(including the interpreter prompt) and output.

	code-output-style blocks consist of an ordinary piece of Python code, and
optionally, a piece of output for that code.

The doctest extension provides four directives. The group argument is
interpreted as follows: if it is empty, the block is assigned to the group named
default. If it is *, the block is assigned to all groups (including the
default group). Otherwise, it must be a comma-separated list of group
names.

	
.. testsetup:: [group]

	A setup code block. This code is not shown in the output for other builders,
but executed before the doctests of the group(s) it belongs to.

	
.. doctest:: [group]

	A doctest-style code block. You can use standard doctest flags for
controlling how actual output is compared with what you give as output. By
default, these options are enabled: ELLIPSIS (allowing you to put
ellipses in the expected output that match anything in the actual output),
IGNORE_EXCEPTION_DETAIL (not comparing tracebacks),
DONT_ACCEPT_TRUE_FOR_1 (by default, doctest accepts “True” in the output
where “1” is given – this is a relic of pre-Python 2.2 times).

This directive supports two options:

	hide, a flag option, hides the doctest block in other builders. By
default it is shown as a highlighted doctest block.

	options, a string option, can be used to give a comma-separated list of
doctest flags that apply to each example in the tests. (You still can give
explicit flags per example, with doctest comments, but they will show up in
other builders too.)

Note that like with standard doctests, you have to use <BLANKLINE> to
signal a blank line in the expected output. The <BLANKLINE> is removed
when building presentation output (HTML, LaTeX etc.).

Also, you can give inline doctest options, like in doctest:

>>> datetime.date.now() # doctest: +SKIP
datetime.date(2008, 1, 1)

They will be respected when the test is run, but stripped from presentation
output.

	
.. testcode:: [group]

	A code block for a code-output-style test.

This directive supports one option:

	hide, a flag option, hides the code block in other builders. By
default it is shown as a highlighted code block.

Note

Code in a testcode block is always executed all at once, no matter how
many statements it contains. Therefore, output will not be generated
for bare expressions – use print. Example:

.. testcode::

 1+1 # this will give no output!
 print 2+2 # this will give output

.. testoutput::

 4

Also, please be aware that since the doctest module does not support
mixing regular output and an exception message in the same snippet, this
applies to testcode/testoutput as well.

	
.. testoutput:: [group]

	The corresponding output, or the exception message, for the last
testcode block.

This directive supports two options:

	hide, a flag option, hides the output block in other builders. By
default it is shown as a literal block without highlighting.

	options, a string option, can be used to give doctest flags
(comma-separated) just like in normal doctest blocks.

Example:

.. testcode::

 print 'Output text.'

.. testoutput::
 :hide:
 :options: -ELLIPSIS, +NORMALIZE_WHITESPACE

 Output text.

The following is an example for the usage of the directives. The test via
doctest and the test via testcode and testoutput are
equivalent.

The parrot module
=================

.. testsetup:: *

 import parrot

The parrot module is a module about parrots.

Doctest example:

.. doctest::

 >>> parrot.voom(3000)
 This parrot wouldn't voom if you put 3000 volts through it!

Test-Output example:

.. testcode::

 parrot.voom(3000)

This would output:

.. testoutput::

 This parrot wouldn't voom if you put 3000 volts through it!

There are also these config values for customizing the doctest extension:

	
doctest_path

	A list of directories that will be added to sys.path when the doctest
builder is used. (Make sure it contains absolute paths.)

	
doctest_global_setup

	Python code that is treated like it were put in a testsetup directive for
every file that is tested, and for every group. You can use this to
e.g. import modules you will always need in your doctests.

New in version 0.6.

	
doctest_test_doctest_blocks

	If this is a nonempty string (the default is 'default'), standard reST
doctest blocks will be tested too. They will be assigned to the group name
given.

reST doctest blocks are simply doctests put into a paragraph of their own,
like so:

Some documentation text.

>>> print 1
1

Some more documentation text.

(Note that no special :: is used to introduce a doctest block; docutils
recognizes them from the leading >>>. Also, no additional indentation is
used, though it doesn’t hurt.)

If this value is left at its default value, the above snippet is interpreted
by the doctest builder exactly like the following:

Some documentation text.

.. doctest::

 >>> print 1
 1

Some more documentation text.

This feature makes it easy for you to test doctests in docstrings included
with the autodoc extension without marking them up with a
special directive.

Note though that you can’t have blank lines in reST doctest blocks. They
will be interpreted as one block ending and another one starting. Also,
removal of <BLANKLINE> and # doctest: options only works in
doctest blocks, though you may set trim_doctest_flags to
achieve the latter in all code blocks with Python console content.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.intersphinx – Link to other projects’ documentation

New in version 0.5.

This extension can generate automatic links to the documentation of objects in
other projects.

Usage is simple: whenever Sphinx encounters a cross-reference that has no
matching target in the current documentation set, it looks for targets in the
documentation sets configured in intersphinx_mapping. A reference
like :py:class:`zipfile.ZipFile` can then link to the Python documentation
for the ZipFile class, without you having to specify where it is located
exactly.

When using the “new” format (see below), you can even force lookup in a foreign
set by prefixing the link target appropriately. A link like :ref:`comparison
manual <python:comparisons>` will then link to the label “comparisons” in the
doc set “python”, if it exists.

Behind the scenes, this works as follows:

	Each Sphinx HTML build creates a file named objects.inv that contains
a mapping from object names to URIs relative to the HTML set’s root.

	Projects using the Intersphinx extension can specify the location of such
mapping files in the intersphinx_mapping config value. The mapping
will then be used to resolve otherwise missing references to objects into
links to the other documentation.

	By default, the mapping file is assumed to be at the same location as the rest
of the documentation; however, the location of the mapping file can also be
specified individually, e.g. if the docs should be buildable without Internet
access.

To use intersphinx linking, add 'sphinx.ext.intersphinx' to your
extensions config value, and use these new config values to activate
linking:

	
intersphinx_mapping

	This config value contains the locations and names of other projects that
should be linked to in this documentation.

Relative local paths for target locations are taken as relative to the base
of the built documentation, while relative local paths for inventory
locations are taken as relative to the source directory.

When fetching remote inventory files, proxy settings will be read from
the $HTTP_PROXY environment variable.

Old format for this config value

This is the format used before Sphinx 1.0. It is still recognized.

A dictionary mapping URIs to either None or an URI. The keys are the
base URI of the foreign Sphinx documentation sets and can be local paths or
HTTP URIs. The values indicate where the inventory file can be found: they
can be None (at the same location as the base URI) or another local or
HTTP URI.

New format for this config value

New in version 1.0.

A dictionary mapping unique identifiers to a tuple (target, inventory).
Each target is the base URI of a foreign Sphinx documentation set and can
be a local path or an HTTP URI. The inventory indicates where the
inventory file can be found: it can be None (at the same location as
the base URI) or another local or HTTP URI.

The unique identifier can be used to prefix cross-reference targets, so that
it is clear which intersphinx set the target belongs to. A link like
:ref:`comparison manual <python:comparisons>` will link to the label
“comparisons” in the doc set “python”, if it exists.

Example

To add links to modules and objects in the Python standard library
documentation, use:

intersphinx_mapping = {'python': ('http://docs.python.org/3.2', None)}

This will download the corresponding objects.inv file from the
Internet and generate links to the pages under the given URI. The downloaded
inventory is cached in the Sphinx environment, so it must be redownloaded
whenever you do a full rebuild.

A second example, showing the meaning of a non-None value of the second
tuple item:

intersphinx_mapping = {'python': ('http://docs.python.org/3.2',
 'python-inv.txt')}

This will read the inventory from python-inv.txt in the source
directory, but still generate links to the pages under
http://docs.python.org/3.2. It is up to you to update the inventory file as
new objects are added to the Python documentation.

	
intersphinx_cache_limit

	The maximum number of days to cache remote inventories. The default is
5, meaning five days. Set this to a negative value to cache inventories
for unlimited time.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

Math support in Sphinx

New in version 0.5.

Since mathematical notation isn’t natively supported by HTML in any way, Sphinx
supports math in documentation with two extensions.

The basic math support that is common to both extensions is contained in
sphinx.ext.mathbase. Other math support extensions should,
if possible, reuse that support too.

Note

mathbase is not meant to be added to the extensions config
value, instead, use either sphinx.ext.pngmath or
sphinx.ext.jsmath as described below.

The input language for mathematics is LaTeX markup. This is the de-facto
standard for plain-text math notation and has the added advantage that no
further translation is necessary when building LaTeX output.

mathbase defines these new markup elements:

	
:math:

	Role for inline math. Use like this:

Since Pythagoras, we know that :math:`a^2 + b^2 = c^2`.

	
.. math::

	Directive for displayed math (math that takes the whole line for itself).

The directive supports multiple equations, which should be separated by a
blank line:

.. math::

 (a + b)^2 = a^2 + 2ab + b^2

 (a - b)^2 = a^2 - 2ab + b^2

In addition, each single equation is set within a split environment,
which means that you can have multiple aligned lines in an equation,
aligned at & and separated by \\:

.. math::

 (a + b)^2 &= (a + b)(a + b) \\
 &= a^2 + 2ab + b^2

For more details, look into the documentation of the AmSMath LaTeX
package [http://www.ams.org/tex/amslatex.html].

When the math is only one line of text, it can also be given as a directive
argument:

.. math:: (a + b)^2 = a^2 + 2ab + b^2

Normally, equations are not numbered. If you want your equation to get a
number, use the label option. When given, it selects a label for the
equation, by which it can be cross-referenced, and causes an equation number
to be issued. See eqref for an example. The numbering style depends
on the output format.

There is also an option nowrap that prevents any wrapping of the given
math in a math environment. When you give this option, you must make sure
yourself that the math is properly set up. For example:

.. math::
 :nowrap:

 \begin{eqnarray}
 y & = & ax^2 + bx + c \\
 f(x) & = & x^2 + 2xy + y^2
 \end{eqnarray}

	
:eq:

	Role for cross-referencing equations via their label. This currently works
only within the same document. Example:

.. math:: e^{i\pi} + 1 = 0
 :label: euler

Euler's identity, equation :eq:`euler`, was elected one of the most
beautiful mathematical formulas.

sphinx.ext.pngmath – Render math as PNG images

This extension renders math via LaTeX and dvipng [http://savannah.nongnu.org/projects/dvipng/] into PNG images. This of
course means that the computer where the docs are built must have both programs
available.

There are various config values you can set to influence how the images are built:

	
pngmath_latex

	The command name with which to invoke LaTeX. The default is 'latex'; you
may need to set this to a full path if latex is not in the executable
search path.

Since this setting is not portable from system to system, it is normally not
useful to set it in conf.py; rather, giving it on the
sphinx-build command line via the -D option should be
preferable, like this:

sphinx-build -b html -D pngmath_latex=C:\tex\latex.exe . _build/html

Changed in version 0.5.1: This value should only contain the path to the latex executable, not
further arguments; use pngmath_latex_args for that purpose.

	
pngmath_dvipng

	The command name with which to invoke dvipng. The default is
'dvipng'; you may need to set this to a full path if dvipng is not in
the executable search path.

	
pngmath_latex_args

	Additional arguments to give to latex, as a list. The default is an empty
list.

New in version 0.5.1.

	
pngmath_latex_preamble

	Additional LaTeX code to put into the preamble of the short LaTeX files that
are used to translate the math snippets. This is empty by default. Use it
e.g. to add more packages whose commands you want to use in the math.

	
pngmath_dvipng_args

	Additional arguments to give to dvipng, as a list. The default value is
['-gamma 1.5', '-D 110'] which makes the image a bit darker and larger
then it is by default.

An arguments you might want to add here is e.g. '-bg Transparent',
which produces PNGs with a transparent background. This is not enabled by
default because some Internet Explorer versions don’t like transparent PNGs.

Note

When you “add” an argument, you need to reproduce the default arguments if
you want to keep them; that is, like this:

pngmath_dvipng_args = ['-gamma 1.5', '-D 110', '-bg Transparent']

	
pngmath_use_preview

	dvipng has the ability to determine the “depth” of the rendered text: for
example, when typesetting a fraction inline, the baseline of surrounding text
should not be flush with the bottom of the image, rather the image should
extend a bit below the baseline. This is what TeX calls “depth”. When this
is enabled, the images put into the HTML document will get a
vertical-align style that correctly aligns the baselines.

Unfortunately, this only works when the preview-latex package [http://www.gnu.org/software/auctex/preview-latex.html] is
installed. Therefore, the default for this option is False.

sphinx.ext.jsmath – Render math via JavaScript

This extension puts math as-is into the HTML files. The JavaScript package
jsMath [http://www.math.union.edu/~dpvc/jsmath/] is then loaded and transforms the LaTeX markup to readable math live in
the browser.

Because jsMath (and the necessary fonts) is very large, it is not included in
Sphinx. You must install it yourself, and give Sphinx its path in this config
value:

	
jsmath_path

	The path to the JavaScript file to include in the HTML files in order to load
JSMath. There is no default.

The path can be absolute or relative; if it is relative, it is relative to
the _static directory of the built docs.

For example, if you put JSMath into the static path of the Sphinx docs, this
value would be jsMath/easy/load.js. If you host more than one
Sphinx documentation set on one server, it is advisable to install jsMath in
a shared location.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.graphviz – Add Graphviz graphs

New in version 0.6.

This extension allows you to embed Graphviz [http://graphviz.org/] graphs in
your documents.

It adds these directives:

	
.. graphviz::

	Directive to embed graphviz code. The input code for dot is given as the
content. For example:

.. graphviz::

 digraph foo {
 "bar" -> "baz";
 }

In HTML output, the code will be rendered to a PNG or SVG image (see
graphviz_output_format). In LaTeX output, the code will be
rendered to an embeddable PDF file.

You can also embed external dot files, by giving the file name as an
argument to graphviz and no additional content:

.. graphviz:: external.dot

As for all file references in Sphinx, if the filename is absolute, it is
taken as relative to the source directory.

Changed in version 1.1: Added support for external files.

	
.. graph::

	Directive for embedding a single undirected graph. The name is given as a
directive argument, the contents of the graph are the directive content.
This is a convenience directive to generate graph <name> { <content> }.

For example:

.. graph:: foo

 "bar" -- "baz";

	
.. digraph::

	Directive for embedding a single directed graph. The name is given as a
directive argument, the contents of the graph are the directive content.
This is a convenience directive to generate digraph <name> { <content> }.

For example:

.. digraph:: foo

 "bar" -> "baz" -> "quux";

New in version 1.0: All three directives support an alt option that determines the image’s
alternate text for HTML output. If not given, the alternate text defaults to
the graphviz code.

New in version 1.1: All three directives support an inline flag that controls
paragraph breaks in the output. When set, the graph is inserted
into the current paragraph. If the flag is not given, paragraph
breaks are introduced before and after the image (the default).

There are also these new config values:

	
graphviz_dot

	The command name with which to invoke dot. The default is 'dot'; you
may need to set this to a full path if dot is not in the executable
search path.

Since this setting is not portable from system to system, it is normally not
useful to set it in conf.py; rather, giving it on the
sphinx-build command line via the -D option should be
preferable, like this:

sphinx-build -b html -D graphviz_dot=C:\graphviz\bin\dot.exe . _build/html

	
graphviz_dot_args

	Additional command-line arguments to give to dot, as a list. The default is
an empty list. This is the right place to set global graph, node or edge
attributes via dot’s -G, -N and -E options.

	
graphviz_output_format

	The output format for Graphviz when building HTML files. This must be either
'png' or 'svg'; the default is 'png'.

New in version 1.0: Previously, output always was PNG.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.inheritance_diagram – Include inheritance diagrams

New in version 0.6.

This extension allows you to include inheritance diagrams, rendered via the
Graphviz extension.

It adds this directive:

	
.. inheritance-diagram::

	This directive has one or more arguments, each giving a module or class
name. Class names can be unqualified; in that case they are taken to exist
in the currently described module (see py:module).

For each given class, and each class in each given module, the base classes
are determined. Then, from all classes and their base classes, a graph is
generated which is then rendered via the graphviz extension to a directed
graph.

This directive supports an option called parts that, if given, must be an
integer, advising the directive to remove that many parts of module names
from the displayed names. (For example, if all your class names start with
lib., you can give :parts: 1 to remove that prefix from the displayed
node names.)

New config values are:

	
inheritance_graph_attrs

	A dictionary of graphviz graph attributes for inheritance diagrams.

For example:

inheritance_graph_attrs = dict(rankdir="LR", size='"6.0, 8.0"',
 fontsize=14, ratio='compress')

	
inheritance_node_attrs

	A dictionary of graphviz node attributes for inheritance diagrams.

For example:

inheritance_node_attrs = dict(shape='ellipse', fontsize=14, height=0.75,
 color='dodgerblue1', style='filled')

	
inheritance_edge_attrs

	A dictionary of graphviz edge attributes for inheritance diagrams.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.refcounting – Keep track of reference counting behavior

Todo

Write this section.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.ifconfig – Include content based on configuration

This extension is quite simple, and features only one directive:

	
.. ifconfig::

	Include content of the directive only if the Python expression given as an
argument is True, evaluated in the namespace of the project’s
configuration (that is, all registered variables from conf.py are
available).

For example, one could write

.. ifconfig:: releaselevel in ('alpha', 'beta', 'rc')

 This stuff is only included in the built docs for unstable versions.

To make a custom config value known to Sphinx, use
add_config_value() in the setup function in
conf.py, e.g.:

def setup(app):
 app.add_config_value('releaselevel', '', True)

The second argument is the default value, the third should always be True
for such values (it selects if Sphinx re-reads the documents if the value
changes).

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.coverage – Collect doc coverage stats

This extension features one additional builder, the CoverageBuilder.

	
class sphinx.ext.coverage.CoverageBuilder

	To use this builder, activate the coverage extension in your configuration
file and give -b coverage on the command line.

Todo

Write this section.

Several new configuration values can be used to specify what the builder
should check:

	
coverage_ignore_modules

	

	
coverage_ignore_functions

	

	
coverage_ignore_classes

	

	
coverage_c_path

	

	
coverage_c_regexes

	

	
coverage_ignore_c_items

	

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.todo – Support for todo items

Module author: Daniel Bültmann

New in version 0.5.

There are two additional directives when using this extension:

	
.. todo::

	Use this directive like, for example, note.

It will only show up in the output if todo_include_todos is true.

	
.. todolist::

	This directive is replaced by a list of all todo directives in the whole
documentation, if todo_include_todos is true.

There is also an additional config value:

	
todo_include_todos

	If this is True, todo and todolist produce output, else
they produce nothing. The default is False.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.extlinks – Markup to shorten external links

Module author: Georg Brandl

New in version 1.0.

This extension is meant to help with the common pattern of having many external
links that point to URLs on one and the same site, e.g. links to bug trackers,
version control web interfaces, or simply subpages in other websites. It does
so by providing aliases to base URLs, so that you only need to give the subpage
name when creating a link.

Let’s assume that you want to include many links to issues at the Sphinx
tracker, at http://bitbucket.org/birkenfeld/sphinx/issue/num. Typing
this URL again and again is tedious, so you can use extlinks
to avoid repeating yourself.

The extension adds one new config value:

	
extlinks

	This config value must be a dictionary of external sites, mapping unique
short alias names to a base URL and a prefix. For example, to create an
alias for the above mentioned issues, you would add

extlinks = {'issue': ('http://bitbucket.org/birkenfeld/sphinx/issue/%s',
 'issue ')}

Now, you can use the alias name as a new role, e.g. :issue:`123`. This
then inserts a link to http://bitbucket.org/birkenfeld/sphinx/issue/123.
As you can see, the target given in the role is substituted in the base URL
in the place of %s.

The link caption depends on the second item in the tuple, the prefix:

	If the prefix is None, the link caption is the full URL.

	If the prefix is the empty string, the link caption is the partial URL
given in the role content (123 in this case.)

	If the prefix is a non-empty string, the link caption is the partial URL,
prepended by the prefix – in the above example, the link caption would be
issue 123.

You can also use the usual “explicit title” syntax supported by other roles
that generate links, i.e. :issue:`this issue <123>`. In this case, the
prefix is not relevant.

Note

Since links are generated from the role in the reading stage, they appear as
ordinary links to e.g. the linkcheck builder.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.viewcode – Add links to highlighted source code

Module author: Georg Brandl

New in version 1.0.

This extension looks at your Python object descriptions (.. class::,
.. function:: etc.) and tries to find the source files where the objects are
contained. When found, a separate HTML page will be output for each module with
a highlighted version of the source code, and a link will be added to all object
descriptions that leads to the source code of the described object. A link back
from the source to the description will also be inserted.

There are currently no configuration values for this extension; you just need to
add 'sphinx.ext.viewcode' to your extensions value for it to work.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx 扩展

sphinx.ext.oldcmarkup – Compatibility extension for old C markup

Module author: Georg Brandl

New in version 1.0.

This extension is a transition helper for projects that used the old
(pre-domain) C markup, i.e. the directives like cfunction and roles like
cfunc. Since the introduction of domains, they must be called by their
fully-qualified name (c:function and c:func, respectively) or, with the
default domain set to c, by their new name (function and func).
(See The C Domain for the details.)

If you activate this extension, it will register the old names, and you can
use them like before Sphinx 1.0. The directives are:

	cfunction

	cmember

	cmacro

	ctype

	cvar

The roles are:

	cdata

	cfunc

	cmacro

	ctype

However, it is advised to migrate to the new markup – this extension is a
compatibility convenience and will disappear in a future version of Sphinx.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

Sphinx Web 支持

New in version 1.1.

Sphinx provides a Python API to easily integrate Sphinx documentation into your
web application. To learn more read the Web Support Quick Start.

	Web Support Quick Start
	Building Documentation Data

	Integrating Sphinx Documents Into Your Webapp
	Authentication

	Performing Searches

	Comments & Proposals

	Comment Moderation

	The WebSupport Class
	Methods

	Search Adapters
	BaseSearch Methods

	Storage Backends
	StorageBackend Methods

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Web 支持

Web Support Quick Start

Building Documentation Data

To make use of the web support package in your application you’ll need to build
the data it uses. This data includes pickle files representing documents,
search indices, and node data that is used to track where comments and other
things are in a document. To do this you will need to create an instance of the
WebSupport class and call its build() method:

from sphinx.websupport import WebSupport

support = WebSupport(srcdir='/path/to/rst/sources/',
 builddir='/path/to/build/outdir',
 search='xapian')

support.build()

This will read reStructuredText sources from srcdir and place the necessary
data in builddir. The builddir will contain two sub-directories: one named
“data” that contains all the data needed to display documents, search through
documents, and add comments to documents. The other directory will be called
“static” and contains static files that should be served from “/static”.

Note

If you wish to serve static files from a path other than “/static”, you can
do so by providing the staticdir keyword argument when creating the
WebSupport object.

Integrating Sphinx Documents Into Your Webapp

Now that the data is built, it’s time to do something useful with it. Start off
by creating a WebSupport object for your application:

from sphinx.websupport import WebSupport

support = WebSupport(datadir='/path/to/the/data',
 search='xapian')

You’ll only need one of these for each set of documentation you will be working
with. You can then call it’s get_document() method to access
individual documents:

contents = support.get_document('contents')

This will return a dictionary containing the following items:

	body: The main body of the document as HTML

	sidebar: The sidebar of the document as HTML

	relbar: A div containing links to related documents

	title: The title of the document

	css: Links to css files used by Sphinx

	js: Javascript containing comment options

This dict can then be used as context for templates. The goal is to be easy to
integrate with your existing templating system. An example using Jinja2 [http://jinja.pocoo.org/2/] is:

{%- extends "layout.html" %}

{%- block title %}
 {{ document.title }}
{%- endblock %}

{% block css %}
 {{ super() }}
 {{ document.css|safe }}
 <link rel="stylesheet" href="/static/websupport-custom.css" type="text/css">
{% endblock %}

{%- block js %}
 {{ super() }}
 {{ document.js|safe }}
{%- endblock %}

{%- block relbar %}
 {{ document.relbar|safe }}
{%- endblock %}

{%- block body %}
 {{ document.body|safe }}
{%- endblock %}

{%- block sidebar %}
 {{ document.sidebar|safe }}
{%- endblock %}

Authentication

To use certain features such as voting, it must be possible to authenticate
users. The details of the authentication are left to your application. Once a
user has been authenticated you can pass the user’s details to certain
WebSupport methods using the username and moderator keyword
arguments. The web support package will store the username with comments and
votes. The only caveat is that if you allow users to change their username you
must update the websupport package’s data:

support.update_username(old_username, new_username)

username should be a unique string which identifies a user, and moderator
should be a boolean representing whether the user has moderation privilieges.
The default value for moderator is False.

An example Flask [http://flask.pocoo.org/] function that checks whether a
user is logged in and then retrieves a document is:

from sphinx.websupport.errors import *

@app.route('/<path:docname>')
def doc(docname):
 username = g.user.name if g.user else ''
 moderator = g.user.moderator if g.user else False
 try:
 document = support.get_document(docname, username, moderator)
 except DocumentNotFoundError:
 abort(404)
 return render_template('doc.html', document=document)

The first thing to notice is that the docname is just the request path. This
makes accessing the correct document easy from a single view. If the user is
authenticated, then the username and moderation status are passed along with the
docname to get_document(). The web support package will then
add this data to the COMMENT_OPTIONS that are used in the template.

Note

This only works works if your documentation is served from your
document root. If it is served from another directory, you will
need to prefix the url route with that directory, and give the docroot
keyword argument when creating the web support object:

support = WebSupport(..., docroot='docs')

@app.route('/docs/<path:docname>')

Performing Searches

To use the search form built-in to the Sphinx sidebar, create a function to
handle requests to the url ‘search’ relative to the documentation root. The
user’s search query will be in the GET parameters, with the key q. Then use
the get_search_results() method to retrieve
search results. In Flask [http://flask.pocoo.org/] that would be like this:

@app.route('/search')
def search():
 q = request.args.get('q')
 document = support.get_search_results(q)
 return render_template('doc.html', document=document)

Note that we used the same template to render our search results as we did to
render our documents. That’s because get_search_results()
returns a context dict in the same format that get_document()
does.

Comments & Proposals

Now that this is done it’s time to define the functions that handle the AJAX
calls from the script. You will need three functions. The first function is
used to add a new comment, and will call the web support method
add_comment():

@app.route('/docs/add_comment', methods=['POST'])
def add_comment():
 parent_id = request.form.get('parent', '')
 node_id = request.form.get('node', '')
 text = request.form.get('text', '')
 proposal = request.form.get('proposal', '')
 username = g.user.name if g.user is not None else 'Anonymous'
 comment = support.add_comment(text, node_id='node_id',
 parent_id='parent_id',
 username=username, proposal=proposal)
 return jsonify(comment=comment)

You’ll notice that both a parent_id and node_id are sent with the
request. If the comment is being attached directly to a node, parent_id
will be empty. If the comment is a child of another comment, then node_id
will be empty. Then next function handles the retrieval of comments for a
specific node, and is aptly named
get_data():

@app.route('/docs/get_comments')
def get_comments():
 username = g.user.name if g.user else None
 moderator = g.user.moderator if g.user else False
 node_id = request.args.get('node', '')
 data = support.get_data(parent_id, user_id)
 return jsonify(**data)

The final function that is needed will call process_vote(),
and will handle user votes on comments:

@app.route('/docs/process_vote', methods=['POST'])
def process_vote():
 if g.user is None:
 abort(401)
 comment_id = request.form.get('comment_id')
 value = request.form.get('value')
 if value is None or comment_id is None:
 abort(400)
 support.process_vote(comment_id, g.user.id, value)
 return "success"

Comment Moderation

By default, all comments added through add_comment() are
automatically displayed. If you wish to have some form of moderation, you can
pass the displayed keyword argument:

comment = support.add_comment(text, node_id='node_id',
 parent_id='parent_id',
 username=username, proposal=proposal,
 displayed=False)

You can then create two new views to handle the moderation of comments. The
first will be called when a moderator decides a comment should be accepted and
displayed:

@app.route('/docs/accept_comment', methods=['POST'])
def accept_comment():
 moderator = g.user.moderator if g.user else False
 comment_id = request.form.get('id')
 support.accept_comment(comment_id, moderator=moderator)
 return 'OK'

The next is very similar, but used when rejecting a comment:

@app.route('/docs/reject_comment', methods=['POST'])
def reject_comment():
 moderator = g.user.moderator if g.user else False
 comment_id = request.form.get('id')
 support.reject_comment(comment_id, moderator=moderator)
 return 'OK'

To perform a custom action (such as emailing a moderator) when a new comment is
added but not displayed, you can pass callable to the WebSupport
class when instantiating your support object:

def moderation_callback(comment):
 """Do something..."""

support = WebSupport(..., moderation_callback=moderation_callback)

The moderation callback must take one argument, which will be the same comment
dict that is returned by add_comment().

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Web 支持

The WebSupport Class

	
class sphinx.websupport.WebSupport

	The main API class for the web support package. All interactions with the
web support package should occur through this class.

The class takes the following keyword arguments:

	srcdir

	The directory containing reStructuredText source files.

	builddir

	The directory that build data and static files should be placed in. This
should be used when creating a WebSupport object that will be
used to build data.

	datadir

	The directory that the web support data is in. This should be used when
creating a WebSupport object that will be used to retrieve data.

	search

	This may contain either a string (e.g. ‘xapian’) referencing a built-in
search adapter to use, or an instance of a subclass of
BaseSearch.

	storage

	This may contain either a string representing a database uri, or an
instance of a subclass of StorageBackend. If this is
not provided, a new sqlite database will be created.

	moderation_callback

	A callable to be called when a new comment is added that is not
displayed. It must accept one argument: a dictionary representing the
comment that was added.

	staticdir

	If static files are served from a location besides '/static', this
should be a string with the name of that location
(e.g. '/static_files').

	docroot

	If the documentation is not served from the base path of a URL, this
should be a string specifying that path (e.g. 'docs').

Methods

	
WebSupport.build()

	Build the documentation. Places the data into the outdir
directory. Use it like this:

support = WebSupport(srcdir, builddir, search='xapian')
support.build()

This will read reStructured text files from srcdir. Then it will
build the pickles and search index, placing them into builddir.
It will also save node data to the database.

	
WebSupport.get_document(docname, username='', moderator=False)

	Load and return a document from a pickle. The document will
be a dict object which can be used to render a template:

support = WebSupport(datadir=datadir)
support.get_document('index', username, moderator)

In most cases docname will be taken from the request path and
passed directly to this function. In Flask, that would be something
like this:

@app.route('/<path:docname>')
def index(docname):
 username = g.user.name if g.user else ''
 moderator = g.user.moderator if g.user else False
 try:
 document = support.get_document(docname, username,
 moderator)
 except DocumentNotFoundError:
 abort(404)
 render_template('doc.html', document=document)

The document dict that is returned contains the following items
to be used during template rendering.

	body: The main body of the document as HTML

	sidebar: The sidebar of the document as HTML

	relbar: A div containing links to related documents

	title: The title of the document

	css: Links to css files used by Sphinx

	script: Javascript containing comment options

This raises DocumentNotFoundError
if a document matching docname is not found.

	Parameters:	docname – the name of the document to load.

	
WebSupport.get_data(node_id, username=None, moderator=False)

	Get the comments and source associated with node_id. If
username is given vote information will be included with the
returned comments. The default CommentBackend returns a dict with
two keys, source, and comments. source is raw source of the
node and is used as the starting point for proposals a user can
add. comments is a list of dicts that represent a comment, each
having the following items:

	Key
	Contents

	text
	The comment text.

	username
	The username that was stored with the comment.

	id
	The comment’s unique identifier.

	rating
	The comment’s current rating.

	age
	The time in seconds since the comment was added.

	time
	A dict containing time information. It contains the
following keys: year, month, day, hour, minute, second,
iso, and delta. iso is the time formatted in ISO
8601 format. delta is a printable form of how old
the comment is (e.g. “3 hours ago”).

	vote
	If user_id was given, this will be an integer
representing the vote. 1 for an upvote, -1 for a
downvote, or 0 if unvoted.

	node
	The id of the node that the comment is attached to.
If the comment’s parent is another comment rather than
a node, this will be null.

	parent
	The id of the comment that this comment is attached
to if it is not attached to a node.

	children
	A list of all children, in this format.

	proposal_diff
	An HTML representation of the differences between the
the current source and the user’s proposed source.

	Parameters:	
	node_id – the id of the node to get comments for.

	username – the username of the user viewing the comments.

	moderator – whether the user is a moderator.

	
WebSupport.add_comment(text, node_id='', parent_id='', displayed=True, username=None, time=None, proposal=None, moderator=False)

	Add a comment to a node or another comment. Returns the comment
in the same format as get_comments(). If the comment is being
attached to a node, pass in the node’s id (as a string) with the
node keyword argument:

comment = support.add_comment(text, node_id=node_id)

If the comment is the child of another comment, provide the parent’s
id (as a string) with the parent keyword argument:

comment = support.add_comment(text, parent_id=parent_id)

If you would like to store a username with the comment, pass
in the optional username keyword argument:

comment = support.add_comment(text, node=node_id,
 username=username)

	Parameters:	
	parent_id – the prefixed id of the comment’s parent.

	text – the text of the comment.

	displayed – for moderation purposes

	username – the username of the user making the comment.

	time – the time the comment was created, defaults to now.

	
WebSupport.process_vote(comment_id, username, value)

	Process a user’s vote. The web support package relies
on the API user to perform authentication. The API user will
typically receive a comment_id and value from a form, and then
make sure the user is authenticated. A unique username must be
passed in, which will also be used to retrieve the user’s past
voting data. An example, once again in Flask:

@app.route('/docs/process_vote', methods=['POST'])
def process_vote():
 if g.user is None:
 abort(401)
 comment_id = request.form.get('comment_id')
 value = request.form.get('value')
 if value is None or comment_id is None:
 abort(400)
 support.process_vote(comment_id, g.user.name, value)
 return "success"

	Parameters:	
	comment_id – the comment being voted on

	username – the unique username of the user voting

	value – 1 for an upvote, -1 for a downvote, 0 for an unvote.

	
WebSupport.get_search_results(q)

	Perform a search for the query q, and create a set
of search results. Then render the search results as html and
return a context dict like the one created by
get_document():

document = support.get_search_results(q)

	Parameters:	q – the search query

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Web 支持

Search Adapters

To create a custom search adapter you will need to subclass the
BaseSearch class. Then create an instance of the new class and pass
that as the search keyword argument when you create the WebSupport
object:

support = WebSupport(srcdir=srcdir,
 builddir=builddir,
 search=MySearch())

For more information about creating a custom search adapter, please see the
documentation of the BaseSearch class below.

	
class sphinx.websupport.search.BaseSearch

	Defines an interface for search adapters.

BaseSearch Methods

The following methods are defined in the BaseSearch class. Some methods do
not need to be overridden, but some (add_document() and
handle_query()) must be overridden in your subclass. For a
working example, look at the built-in adapter for whoosh.

	
BaseSearch.init_indexing(changed=[])

	Called by the builder to initialize the search indexer. changed
is a list of pagenames that will be reindexed. You may want to remove
these from the search index before indexing begins.

	Parameters:	changed – a list of pagenames that will be re-indexed

	
BaseSearch.finish_indexing()

	Called by the builder when writing has been completed. Use this
to perform any finalization or cleanup actions after indexing is
complete.

	
BaseSearch.feed(pagename, title, doctree)

	Called by the builder to add a doctree to the index. Converts the
doctree to text and passes it to add_document(). You probably
won’t want to override this unless you need access to the doctree.
Override add_document() instead.

	Parameters:	
	pagename – the name of the page to be indexed

	title – the title of the page to be indexed

	doctree – is the docutils doctree representation of the page

	
BaseSearch.add_document(pagename, title, text)

	Called by feed() to add a document to the search index.
This method should should do everything necessary to add a single
document to the search index.

pagename is name of the page being indexed. It is the combination
of the source files relative path and filename,
minus the extension. For example, if the source file is
“ext/builders.rst”, the pagename would be “ext/builders”. This
will need to be returned with search results when processing a
query.

	Parameters:	
	pagename – the name of the page being indexed

	title – the page’s title

	text – the full text of the page

	
BaseSearch.query(q)

	Called by the web support api to get search results. This method
compiles the regular expression to be used when extracting
context, then calls handle_query(). You
won’t want to override this unless you don’t want to use the included
extract_context() method. Override handle_query() instead.

	Parameters:	q – the search query string.

	
BaseSearch.handle_query(q)

	Called by query() to retrieve search results for a search
query q. This should return an iterable containing tuples of the
following format:

(<path>, <title>, <context>)

path and title are the same values that were passed to
add_document(), and context should be a short text snippet
of the text surrounding the search query in the document.

The extract_context() method is provided as a simple way
to create the context.

	Parameters:	q – the search query

	
BaseSearch.extract_context(text, length=240)

	Extract the context for the search query from the document’s
full text.

	Parameters:	
	text – the full text of the document to create the context for

	length – the length of the context snippet to return.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

 	Sphinx Web 支持

Storage Backends

To create a custom storage backend you will need to subclass the
StorageBackend class. Then create an instance of the new class and
pass that as the storage keyword argument when you create the
WebSupport object:

support = WebSupport(srcdir=srcdir,
 builddir=builddir,
 storage=MyStorage())

For more information about creating a custom storage backend, please see the
documentation of the StorageBackend class below.

	
class sphinx.websupport.storage.StorageBackend

	Defines an interface for storage backends.

StorageBackend Methods

	
StorageBackend.pre_build()

	Called immediately before the build process begins. Use this
to prepare the StorageBackend for the addition of nodes.

	
StorageBackend.add_node(id, document, source)

	Add a node to the StorageBackend.

	Parameters:	
	id – a unique id for the comment.

	document – the name of the document the node belongs to.

	source – the source files name.

	
StorageBackend.post_build()

	Called after a build has completed. Use this to finalize the
addition of nodes if needed.

	
StorageBackend.add_comment(text, displayed, username, time, proposal, node_id, parent_id, moderator)

	Called when a comment is being added.

	Parameters:	
	text – the text of the comment

	displayed – whether the comment should be displayed

	username – the name of the user adding the comment

	time – a date object with the time the comment was added

	proposal – the text of the proposal the user made

	node_id – the id of the node that the comment is being added to

	parent_id – the id of the comment’s parent comment.

	moderator – whether the user adding the comment is a moderator

	
StorageBackend.delete_comment(comment_id, username, moderator)

	Delete a comment.

Raises UserNotAuthorizedError
if moderator is False and username doesn’t match the username
on the comment.

	Parameters:	
	comment_id – The id of the comment being deleted.

	username – The username of the user requesting the deletion.

	moderator – Whether the user is a moderator.

	
StorageBackend.get_data(node_id, username, moderator)

	Called to retrieve all data for a node. This should return a
dict with two keys, source and comments as described by
WebSupport‘s
get_data() method.

	Parameters:	
	node_id – The id of the node to get data for.

	username – The name of the user requesting the data.

	moderator – Whether the requestor is a moderator.

	
StorageBackend.process_vote(comment_id, username, value)

	Process a vote that is being cast. value will be either -1, 0,
or 1.

	Parameters:	
	comment_id – The id of the comment being voted on.

	username – The username of the user casting the vote.

	value – The value of the vote being cast.

	
StorageBackend.update_username(old_username, new_username)

	If a user is allowed to change their username this method should
be called so that there is not stagnate data in the storage system.

	Parameters:	
	old_username – The username being changed.

	new_username – What the username is being changed to.

	
StorageBackend.accept_comment(comment_id)

	Called when a moderator accepts a comment. After the method is
called the comment should be displayed to all users.

	Parameters:	comment_id – The id of the comment being accepted.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

Sphinx FAQ

This is a list of Frequently Asked Questions about Sphinx. Feel free to
suggest new entries!

How do I...

	... create PDF files without LaTeX?

	You can use rst2pdf [http://rst2pdf.googlecode.com] version 0.12 or greater
which comes with built-in Sphinx integration. See the Available builders
section for details.

	... get section numbers?

	They are automatic in LaTeX output; for HTML, give a :numbered: option to
the toctree directive where you want to start numbering.

	... customize the look of the built HTML files?

	Use themes, see HTML 样式支持.

	... add global substitutions or includes?

	Add them in the rst_epilog config value.

	... display the whole TOC tree in the sidebar?

	Use the toctree callable in a custom layout template, probably in the
sidebartoc block.

	... write my own extension?

	See the extension tutorial.

	... convert from my existing docs using MoinMoin markup?

	The easiest way is to convert to xhtml, then convert xhtml to reST [http://docutils.sourceforge.net/sandbox/xhtml2rest/xhtml2rest.py]. You’ll
still need to mark up classes and such, but the headings and code examples
come through cleanly.

Using Sphinx with...

	Epydoc

	There’s a third-party extension providing an api role [http://git.savannah.gnu.org/cgit/kenozooid.git/tree/doc/extapi.py] which refers to
Epydoc’s API docs for a given identifier.

	Doxygen

	Michael Jones is developing a reST/Sphinx bridge to doxygen called breathe [http://github.com/michaeljones/breathe/tree/master].

	SCons

	Glenn Hutchings has written a SCons build script to build Sphinx
documentation; it is hosted here: http://bitbucket.org/zondo/sphinx-scons

	PyPI

	Jannis Leidel wrote a setuptools command [http://pypi.python.org/pypi/Sphinx-PyPI-upload] that automatically uploads
Sphinx documentation to the PyPI package documentation area at
http://packages.python.org/.

	github pages

	You can use Michael Jones’ sphinx-to-github tool [http://github.com/michaeljones/sphinx-to-github/tree/master] to prepare
Sphinx HTML output.

	Google Analytics

	You can use a custom layout.html template, like this:

{% extends "!layout.html" %}

{%- block extrahead %}
{{ super() }}
<script type="text/javascript">
 var _gaq = _gaq || [];
 _gaq.push(['_setAccount', 'XXX account number XXX']);
 _gaq.push(['_trackPageview']);
</script>
{% endblock %}

{% block footer %}
{{ super() }}
<div class="footer">This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.
<script type="text/javascript">
 (function() {
 var ga = document.createElement('script');
 ga.src = ('https:' == document.location.protocol ?
 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
 ga.setAttribute('async', 'true');
 document.documentElement.firstChild.appendChild(ga);
 })();
</script>
</div>
{% endblock %}

Epub info

The epub builder is currently in an experimental stage. It has only been tested
with the Sphinx documentation itself. If you want to create epubs, here are
some notes:

	Split the text into several files. The longer the individual HTML files are,
the longer it takes the ebook reader to render them. In extreme cases, the
rendering can take up to one minute.

	Try to minimize the markup. This also pays in rendering time.

	For some readers you can use embedded or external fonts using the CSS
@font-face directive. This is extremely useful for code listings which
are often cut at the right margin. The default Courier font (or variant) is
quite wide and you can only display up to 60 characters on a line. If you
replace it with a narrower font, you can get more characters on a line. You
may even use FontForge [http://fontforge.sourceforge.net/] and create
narrow variants of some free font. In my case I get up to 70 characters on a
line.

You may have to experiment a little until you get reasonable results.

	Test the created epubs. You can use several alternatives. The ones I am aware
of are Epubcheck [http://code.google.com/p/epubcheck/], Calibre [http://calibre-ebook.com/], FBreader [http://www.fbreader.org/] (although it does not render the CSS),
and Bookworm [http://bookworm.oreilly.com/]. For bookworm you can download the source from
http://code.google.com/p/threepress/ and run your own local server.

	Large floating divs are not displayed properly.
If they cover more than one page, the div is only shown on the first page.
In that case you can copy the epub.css from the
sphinx/themes/epub/static/ directory to your local _static/
directory and remove the float settings.

	Files that are inserted outside of the toctree directive must be manually
included. This sometimes applies to appendixes, e.g. the glossary or
the indices. You can add them with the epub_post_files option.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

中译

有关 Sphnix 官方文档的中译说明...

动机

	
	仅仅因为喜愛 ;-)

	
	Zoom.Quiet 个人,一直在使用并推广 Sphnix

	但是发觉,并不是所有人都有通顺的E文手册阅读体验的

	而且不忿Sphnix官网只有日文的国际化版本!

特此启动个人快速翻译工程:

工程

	分支 Sphnix 1.1pre 在 https://bitbucket.org/Zoomq/sphinx_zh

	发布 Sphnix_zh 在 http://zoomquiet.org/sphnix_zh/

聲明

	当前仅为 Zoom.Quiet 个人行为,包括行为也是偏向笔记体的快速翻译;不保证”信/达/雅”

	
	未来,发布后,如果有人持续使用,期望有行者加入,共同长期维护 Sphnix 的所有文档!

	
	有意者,请直接联系 Zoom.Quiet

记要

	130306 增补监察JS

	101018 +0.5h Zoom.Quiet 配置开通keywords 支持

	101017 +0.5h Zoom.Quiet 独立出中译版翻译说明

	
	101015 +2h Zoom.Quiet 不忿Sphnix官网只有日文翻译,启动个人快速翻译工程:

	
	完成首页翻译

脚注

$Author$
$Date$
Id
$Revision$

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

词汇表

	builder

	A class (inheriting from Builder) that takes
parsed documents and performs an action on them. Normally, builders
translate the documents to an output format, but it is also possible to
use the builder builders that e.g. check for broken links in the
documentation, or build coverage information.

See Available builders for an overview over Sphinx’ built-in builders.

	configuration directory

	The directory containing conf.py. By default, this is the same as
the source directory, but can be set differently with the -c
command-line option.

	directive

	A reStructuredText markup element that allows marking a block of content
with special meaning. Directives are supplied not only by docutils, but
Sphinx and custom extensions can add their own. The basic directive
syntax looks like this:

.. directivename:: argument ...
 :option: value

 Content of the directive.

See 指令 Directives for more information.

	指令

	reStructuredText 标记元素,赋予标记块内容特殊含义.
指令不算 docutils 的特技,只是Sphnix 自行进行了扩展.
基础指令看起来象这样

.. directivename:: 参数 ...
 :option: 值

 指令内容.

参考 指令 Directives .

	document name

	Since reST source files can have different extensions (some people like
.txt, some like .rst – the extension can be configured with
source_suffix) and different OSes have different path separators,
Sphinx abstracts them: document names are always relative to the
source directory, the extension is stripped, and path separators
are converted to slashes. All values, parameters and such referring to
“documents” expect such document names.

Examples for document names are index, library/zipfile, or
reference/datamodel/types. Note that there is no leading or trailing
slash.

	文档名

	因为 rST 文件可以使用不同的后缀
(有人喜欢 .txt , 俺就愛 .rst – 这可以在配置文件中定义 source_suffix)
而且不同的操作系统也有不同的路径指引要求,
Sphnix 使用相对于 term:资源目录 的:dfn:document names 来统一这些问题,
后綴可忽略,路径使用正斜线分隔,例如:

	index

	library/zipfile

	reference/datamodel/types

注意: 不能前导正斜线!

	domain

	A domain is a collection of markup (reStructuredText directives
and roles) to describe and link to objects belonging
together, e.g. elements of a programming language. Directive and role
names in a domain have names like domain:name, e.g. py:function.

Having domains means that there are no naming problems when one set of
documentation wants to refer to e.g. C++ and Python classes. It also
means that extensions that support the documentation of whole new
languages are much easier to write. For more information about domains,
see the chapter Sphinx 域.

	environment

	A structure where information about all documents under the root is saved,
and used for cross-referencing. The environment is pickled after the
parsing stage, so that successive runs only need to read and parse new and
changed documents.

	master document

	The document that contains the root toctree directive.

	主控文档

	此文档包含根文档,以及 toctree 指令.

	object

	The basic building block of Sphinx documentation. Every “object
directive” (e.g. function or object) creates such a block;
and most objects can be cross-referenced to.

	role

	A reStructuredText markup element that allows marking a piece of text.
Like directives, roles are extensible. The basic syntax looks like this:
:rolename:`content`. See 行内标记 Inline markup for details.

	角色

	reStructuredText 标记元素,可以标记一段文本.
如同指令,角色是可扩展的.
基本语法类似:
:rolename:`content`. 参考 行内标记 Inline markup .

	source directory

	The directory which, including its subdirectories, contains all source
files for one Sphinx project.

	资源目录

	此目录及子目录应该包含所有 Sphnix 工程需要的文件.
(即:source directory)

	Zoom.Quiet

	
	男，纯种Pythoner，自由软件原教旨主义者:

	
	中文Python用户组(CPyUG)创始人,管理员之一/哲思自由软件社区核心成员/Erlang中国用户组(ECUG)宣传部长/教育大发现社区(sociallearnlab.org)高级顾问。致力于软件过程改进的工作；以及中国自由软件社区发展；关注社会化教育及知识管理；喜爱SF和摄影。

	工作信仰：过程改进乃是催生可促生靠谱的人的组织！

	技术信仰：Simple is better！

	尝试使用Pythonic体验感化国人主动进入自由软件世界体验/学习/再创作。

	个人网站: zoomquiet.org [http://zoomquiet.org]

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sphinx 1.3.1 documentation

Changes in Sphinx

Release 1.2 (in development)

Release 1.1 (Oct 9, 2011)

Incompatible changes

	The py:module directive doesn’t output its platform option
value anymore. (It was the only thing that the directive did output, and
therefore quite inconsistent.)

	Removed support for old dependency versions; requirements are now:
	Pygments >= 1.2

	Docutils >= 0.7

	Jinja2 >= 2.3

Features added

	Added Python 3.x support.

	New builders and subsystems:
	Added a Texinfo builder.

	Added i18n support for content, a gettext builder and related
utilities.

	Added the websupport library and builder.

	#98: Added a sphinx-apidoc script that autogenerates a hierarchy
of source files containing autodoc directives to document modules
and packages.

	#273: Add an API for adding full-text search support for languages
other than English. Add support for Japanese.

	Markup:
	#138: Added an index role, to make inline index entries.

	#454: Added more index markup capabilities: marking see/seealso entries,
and main entries for a given key.

	#460: Allowed limiting the depth of section numbers for HTML using the
toctree‘s numbered option.

	#586: Implemented improved glossary markup which allows
multiple terms per definition.

	#478: Added py:decorator directive to describe decorators.

	C++ domain now supports array definitions.

	C++ domain now supports doc fields (:param x: inside directives).

	Section headings in only directives are now correctly
handled.

	Added emphasize-lines option to source code directives.

	#678: C++ domain now supports superclasses.

	HTML builder:
	Added pyramid theme.

	#559: html_add_permalinks is now a string giving the
text to display in permalinks.

	#259: HTML table rows now have even/odd CSS classes to enable
“Zebra styling”.

	#554: Add theme option sidebarwidth to the basic theme.

	Other builders:
	#516: Added new value of the latex_show_urls option to
show the URLs in footnotes.

	#209: Added text_newlines and text_sectionchars
config values.

	Added man_show_urls config value.

	#472: linkcheck builder: Check links in parallel, use HTTP HEAD
requests and allow configuring the timeout. New config values:
linkcheck_timeout and linkcheck_workers.

	#521: Added linkcheck_ignore config value.

	#28: Support row/colspans in tables in the LaTeX builder.

	Configuration and extensibility:
	#537: Added nitpick_ignore.

	#306: Added env-get-outdated event.

	Application.add_stylesheet() now accepts full URIs.

	Autodoc:
	#564: Add autodoc_docstring_signature. When enabled (the
default), autodoc retrieves the signature from the first line of the
docstring, if it is found there.

	#176: Provide private-members option for autodoc directives.

	#520: Provide special-members option for autodoc directives.

	#431: Doc comments for attributes can now be given on the same line
as the assignment.

	#437: autodoc now shows values of class data attributes.

	autodoc now supports documenting the signatures of
functools.partial objects.

	Other extensions:
	Added the sphinx.ext.mathjax extension.

	#443: Allow referencing external graphviz files.

	Added inline option to graphviz directives, and fixed the
default (block-style) in LaTeX output.

	#590: Added caption option to graphviz directives.

	#553: Added testcleanup blocks in the doctest extension.

	#594: trim_doctest_flags now also removes <BLANKLINE>
indicators.

	#367: Added automatic exclusion of hidden members in inheritance
diagrams, and an option to selectively enable it.

	Added pngmath_add_tooltips.

	The math extension displaymath directives now support name in
addition to label for giving the equation label, for compatibility
with Docutils.

	New locales:
	#221: Added Swedish locale.

	#526: Added Iranian locale.

	#694: Added Latvian locale.

	Added Nepali locale.

	#714: Added Korean locale.

	#766: Added Estonian locale.

Release 1.0.9 (in development)

	#778: Fix “hide search matches” link on pages linked by search.

	Fix the source positions referenced by the “viewcode” extension.

Release 1.0.8 (Sep 23, 2011)

	#627: Fix tracebacks for AttributeErrors in autosummary generation.

	Fix the abbr role when the abbreviation has newlines in it.

	#727: Fix the links to search results with custom object types.

	#648: Fix line numbers reported in warnings about undefined
references.

	#696, #666: Fix C++ array definitions and template arguments
that are not type names.

	#633: Allow footnotes in section headers in LaTeX output.

	#616: Allow keywords to be linked via intersphinx.

	#613: Allow Unicode characters in production list token names.

	#720: Add dummy visitors for graphviz nodes for text and man.

	#704: Fix image file duplication bug.

	#677: Fix parsing of multiple signatures in C++ domain.

	#637: Ignore Emacs lock files when looking for source files.

	#544: Allow .pyw extension for importable modules in autodoc.

	#700: Use $(MAKE) in quickstart-generated Makefiles.

	#734: Make sidebar search box width consistent in browsers.

	#644: Fix spacing of centered figures in HTML output.

	#767: Safely encode SphinxError messages when printing them to
sys.stderr.

	#611: Fix LaTeX output error with a document with no sections but
a link target.

	Correctly treat built-in method descriptors as methods in autodoc.

	#706: Stop monkeypatching the Python textwrap module.

	#657: viewcode now works correctly with source files that have
non-ASCII encoding.

	#669: Respect the noindex flag option in py:module directives.

	#675: Fix IndexErrors when including nonexisting lines with
literalinclude.

	#676: Respect custom function/method parameter separator strings.

	#682: Fix JS incompatibility with jQuery >= 1.5.

	#693: Fix double encoding done when writing HTMLHelp .hhk files.

	#647: Do not apply SmartyPants in parsed-literal blocks.

	C++ domain now supports array definitions.

Release 1.0.7 (Jan 15, 2011)

	#347: Fix wrong generation of directives of static methods in
autosummary.

	#599: Import PIL as from PIL import Image.

	#558: Fix longtables with captions in LaTeX output.

	Make token references work as hyperlinks again in LaTeX output.

	#572: Show warnings by default when reference labels cannot be
found.

	#536: Include line number when complaining about missing reference
targets in nitpicky mode.

	#590: Fix inline display of graphviz diagrams in LaTeX output.

	#589: Build using app.build() in setup command.

	Fix a bug in the inheritance diagram exception that caused base
classes to be skipped if one of them is a builtin.

	Fix general index links for C++ domain objects.

	#332: Make admonition boundaries in LaTeX output visible.

	#573: Fix KeyErrors occurring on rebuild after removing a file.

	Fix a traceback when removing files with globbed toctrees.

	If an autodoc object cannot be imported, always re-read the
document containing the directive on next build.

	If an autodoc object cannot be imported, show the full traceback
of the import error.

	Fix a bug where the removal of download files and images wasn’t
noticed.

	#571: Implement ~ cross-reference prefix for the C domain.

	Fix regression of LaTeX output with the fix of #556.

	#568: Fix lookup of class attribute documentation on descriptors
so that comment documentation now works.

	Fix traceback with only directives preceded by targets.

	Fix tracebacks occurring for duplicate C++ domain objects.

	Fix JavaScript domain links to objects with $ in their name.

Release 1.0.6 (Jan 04, 2011)

	#581: Fix traceback in Python domain for empty cross-reference
targets.

	#283: Fix literal block display issues on Chrome browsers.

	#383, #148: Support sorting a limited range of accented characters
in the general index and the glossary.

	#570: Try decoding -D and -A command-line arguments with
the locale’s preferred encoding.

	#528: Observe locale_dirs when looking for the JS
translations file.

	#574: Add special code for better support of Japanese documents
in the LaTeX builder.

	Regression of #77: If there is only one parameter given with
:param: markup, the bullet list is now suppressed again.

	#556: Fix missing paragraph breaks in LaTeX output in certain
situations.

	#567: Emit the autodoc-process-docstring event even for objects
without a docstring so that it can add content.

	#565: In the LaTeX builder, not only literal blocks require different
table handling, but also quite a few other list-like block elements.

	#515: Fix tracebacks in the viewcode extension for Python objects
that do not have a valid signature.

	Fix strange reportings of line numbers for warnings generated from
autodoc-included docstrings, due to different behavior depending
on docutils version.

	Several fixes to the C++ domain.

Release 1.0.5 (Nov 12, 2010)

	#557: Add CSS styles required by docutils 0.7 for aligned images
and figures.

	In the Makefile generated by LaTeX output, do not delete pdf files
on clean; they might be required images.

	#535: Fix LaTeX output generated for line blocks.

	#544: Allow .pyw as a source file extension.

Release 1.0.4 (Sep 17, 2010)

	#524: Open intersphinx inventories in binary mode on Windows,
since version 2 contains zlib-compressed data.

	#513: Allow giving non-local URIs for JavaScript files, e.g.
in the JSMath extension.

	#512: Fix traceback when intersphinx_mapping is empty.

Release 1.0.3 (Aug 23, 2010)

	#495: Fix internal vs. external link distinction for links coming
from a docutils table-of-contents.

	#494: Fix the maxdepth option for the toctree() template
callable when used with collapse=True.

	#507: Fix crash parsing Python argument lists containing brackets
in string literals.

	#501: Fix regression when building LaTeX docs with figures that
don’t have captions.

	#510: Fix inheritance diagrams for classes that are not picklable.

	#497: Introduce separate background color for the sidebar collapse
button, making it easier to see.

	#502, #503, #496: Fix small layout bugs in several builtin themes.

Release 1.0.2 (Aug 14, 2010)

	#490: Fix cross-references to objects of types added by the
add_object_type() API function.

	Fix handling of doc field types for different directive types.

	Allow breaking long signatures, continuing with backlash-escaped
newlines.

	Fix unwanted styling of C domain references (because of a namespace
clash with Pygments styles).

	Allow references to PEPs and RFCs with explicit anchors.

	#471: Fix LaTeX references to figures.

	#482: When doing a non-exact search, match only the given type
of object.

	#481: Apply non-exact search for Python reference targets with
.name for modules too.

	#484: Fix crash when duplicating a parameter in an info field list.

	#487: Fix setting the default role to one provided by the
oldcmarkup extension.

	#488: Fix crash when json-py is installed, which provides a
json module but is incompatible to simplejson.

	#480: Fix handling of target naming in intersphinx.

	#486: Fix removal of ! for all cross-reference roles.

Release 1.0.1 (Jul 27, 2010)

	#470: Fix generated target names for reST domain objects; they
are not in the same namespace.

	#266: Add Bengali language.

	#473: Fix a bug in parsing JavaScript object names.

	#474: Fix building with SingleHTMLBuilder when there is no toctree.

	Fix display names for objects linked to by intersphinx with
explicit targets.

	Fix building with the JSON builder.

	Fix hyperrefs in object descriptions for LaTeX.

Release 1.0 (Jul 23, 2010)

Incompatible changes

	Support for domains has been added. A domain is a collection of
directives and roles that all describe objects belonging together,
e.g. elements of a programming language. A few builtin domains are
provided:
	Python

	C

	C++

	JavaScript

	reStructuredText

	The old markup for defining and linking to C directives is now
deprecated. It will not work anymore in future versions without
activating the oldcmarkup extension; in Sphinx
1.0, it is activated by default.

	Removed support for old dependency versions; requirements are now:
	docutils >= 0.5

	Jinja2 >= 2.2

	Removed deprecated elements:
	exclude_dirs config value

	sphinx.builder module

Features added

	General:
	Added a “nitpicky” mode that emits warnings for all missing
references. It is activated by the -n command-line switch
or the nitpicky config value.

	Added latexpdf target in quickstart Makefile.

	Markup:
	The menuselection and guilabel roles now
support ampersand accelerators.

	New more compact doc field syntax is now recognized: :param type
name: description.

	Added tab-width option to literalinclude directive.

	Added titlesonly option to toctree directive.

	Added the prepend and append options to the
literalinclude directive.

	#284: All docinfo metadata is now put into the document metadata, not
just the author.

	The ref role can now also reference tables by caption.

	The include directive now supports absolute paths, which
are interpreted as relative to the source directory.

	In the Python domain, references like :func:`.name` now look for
matching names with any prefix if no direct match is found.

	Configuration:
	Added rst_prolog config value.

	Added html_secnumber_suffix config value to control
section numbering format.

	Added html_compact_lists config value to control
docutils’ compact lists feature.

	The html_sidebars config value can now contain patterns
as keys, and the values can be lists that explicitly select which
sidebar templates should be rendered. That means that the builtin
sidebar contents can be included only selectively.

	html_static_path can now contain single file entries.

	The new universal config value exclude_patterns makes the
old unused_docs, exclude_trees and
exclude_dirnames obsolete.

	Added html_output_encoding config value.

	Added the latex_docclass config value and made the
“twoside” documentclass option overridable by “oneside”.

	Added the trim_doctest_flags config value, which is true
by default.

	Added html_show_copyright config value.

	Added latex_show_pagerefs and latex_show_urls
config values.

	The behavior of html_file_suffix changed slightly: the
empty string now means “no suffix” instead of “default suffix”, use
None for “default suffix”.

	New builders:
	Added a builder for the Epub format.

	Added a builder for manual pages.

	Added a single-file HTML builder.

	HTML output:
	Inline roles now get a CSS class with their name, allowing styles to
customize their appearance. Domain-specific roles get two classes,
domain and domain-rolename.

	References now get the class internal if they are internal to
the whole project, as opposed to internal to the current page.

	External references can be styled differently with the new
externalrefs theme option for the default theme.

	In the default theme, the sidebar can experimentally now be made
collapsible using the new collapsiblesidebar theme option.

	#129: Toctrees are now wrapped in a div tag with class
toctree-wrapper in HTML output.

	The toctree callable in templates now has a maxdepth
keyword argument to control the depth of the generated tree.

	The toctree callable in templates now accepts a
titles_only keyword argument.

	Added htmltitle block in layout template.

	In the JavaScript search, allow searching for object names including
the module name, like sys.argv.

	Added new theme haiku, inspired by the Haiku OS user guide.

	Added new theme nature.

	Added new theme agogo, created by Andi Albrecht.

	Added new theme scrolls, created by Armin Ronacher.

	#193: Added a visitedlinkcolor theme option to the default
theme.

	#322: Improved responsiveness of the search page by loading the
search index asynchronously.

	Extension API:
	Added html-collect-pages.

	Added needs_sphinx config value and
require_sphinx() application API
method.

	#200: Added add_stylesheet()
application API method.

	Extensions:
	Added the viewcode extension.

	Added the extlinks extension.

	Added support for source ordering of members in autodoc, with
autodoc_member_order = 'bysource'.

	Added autodoc_default_flags config value, which can be
used to select default flags for all autodoc directives.

	Added a way for intersphinx to refer to named labels in other
projects, and to specify the project you want to link to.

	#280: Autodoc can now document instance attributes assigned in
__init__ methods.

	Many improvements and fixes to the autosummary
extension, thanks to Pauli Virtanen.

	#309: The graphviz extension can now output SVG
instead of PNG images, controlled by the
graphviz_output_format config value.

	Added alt option to graphviz extension directives.

	Added exclude argument to autodoc.between().

	Translations:
	Added Croatian translation, thanks to Bojan Mihelač.

	Added Turkish translation, thanks to Firat Ozgul.

	Added Catalan translation, thanks to Pau Fernández.

	Added simplified Chinese translation.

	Added Danish translation, thanks to Hjorth Larsen.

	Added Lithuanian translation, thanks to Dalius Dobravolskas.

	Bugs fixed:
	#445: Fix links to result pages when using the search function
of HTML built with the dirhtml builder.

	#444: In templates, properly re-escape values treated with the
“striptags” Jinja filter.

Release 0.6.7 (Jun 05, 2010)

	#440: Remove usage of a Python >= 2.5 API in the literalinclude
directive.

	Fix a bug that prevented some references being generated in the
LaTeX builder.

	#428: Add some missing CSS styles for standard docutils classes.

	#432: Fix UnicodeErrors while building LaTeX in translated locale.

Release 0.6.6 (May 25, 2010)

	Handle raw nodes in the text writer.

	Fix a problem the Qt help project generated by the qthelp
builder that would lead to no content being displayed in the Qt
Assistant.

	#393: Fix the usage of Unicode characters in mathematic formulas
when using the pngmath extension.

	#404: Make \and work properly in the author field of the
latex_documents setting.

	#409: Make the highlight_language config value work properly
in the LaTeX builder.

	#418: Allow relocation of the translation JavaScript files to
the system directory on Unix systems.

	#414: Fix handling of Windows newlines in files included with
the literalinclude directive.

	#377: Fix crash in linkcheck builder.

	#387: Fix the display of search results in dirhtml output.

	#376: In autodoc, fix display of parameter defaults containing
backslashes.

	#370: Fix handling of complex list item labels in LaTeX output.

	#374: Make the doctest_path config value of the doctest
extension actually work.

	Fix the handling of multiple toctrees when creating the global
TOC for the toctree() template function.

	Fix the handling of hidden toctrees when creating the global TOC
for the toctree() template function.

	Fix the handling of nested lists in the text writer.

	#362: In autodoc, check for the existence of __self__ on
function objects before accessing it.

	#353: Strip leading and trailing whitespace when extracting
search words in the search function.

Release 0.6.5 (Mar 01, 2010)

	In autodoc, fix the omission of some module members explicitly
documented using documentation comments.

	#345: Fix cropping of sidebar scroll bar with stickysidebar
option of the default theme.

	#341: Always generate UNIX newlines in the quickstart Makefile.

	#338: Fix running with -C under Windows.

	In autodoc, allow customizing the signature of an object where
the built-in mechanism fails.

	#331: Fix output for enumerated lists with start values in LaTeX.

	Make the start-after and end-before options to the
literalinclude directive work correctly if not used together.

	#321: Fix link generation in the LaTeX builder.

Release 0.6.4 (Jan 12, 2010)

	Improve the handling of non-Unicode strings in the configuration.

	#316: Catch OSErrors occurring when calling graphviz with
arguments it doesn’t understand.

	Restore compatibility with Pygments >= 1.2.

	#295: Fix escaping of hyperref targets in LaTeX output.

	#302: Fix links generated by the :doc: role for LaTeX output.

	#286: collect todo nodes after the whole document has been read;
this allows placing substitution references in todo items.

	#294: do not ignore an explicit today config value in a
LaTeX build.

	The alt text of inheritance diagrams is now much cleaner.

	Ignore images in section titles when generating link captions.

	#310: support exception messages in the testoutput blocks of
the doctest extension.

	#293: line blocks are styled properly in HTML output.

	#285: make the locale_dirs config value work again.

	#303: html_context values given on the command line via -A
should not override other values given in conf.py.

	Fix a bug preventing incremental rebuilds for the dirhtml
builder.

	#299: Fix the mangling of quotes in some literal blocks.

	#292: Fix path to the search index for the dirhtml builder.

	Fix a Jython compatibility issue: make the dependence on the
parser module optional.

	#238: In autodoc, catch all errors that occur on module import,
not just ImportError.

	Fix the handling of non-data, but non-method descriptors in autodoc.

	When copying file times, ignore OSErrors raised by os.utime().

Release 0.6.3 (Sep 03, 2009)

	Properly add C module filenames as dependencies in autodoc.

	#253: Ignore graphviz directives without content instead of
raising an unhandled exception.

	#241: Fix a crash building LaTeX output for documents that contain
a todolist directive.

	#252: Make it easier to change the build dir in the Makefiles
generated by quickstart.

	#220: Fix CSS so that displaymath really is centered.

	#222: Allow the “Footnotes” header to be translated.

	#225: Don’t add whitespace in generated HTML after inline tags.

	#227: Make literalinclude work when the document’s path
name contains non-ASCII characters.

	#229: Fix autodoc failures with members that raise errors
on getattr().

	#205: When copying files, don’t copy full stat info, only
modification times.

	#232: Support non-ASCII metadata in Qt help builder.

	Properly format bullet lists nested in definition lists for LaTeX.

	Section titles are now allowed inside only directives.

	#201: Make centered directive work in LaTeX output.

	#206: Refuse to overwrite an existing master document in
sphinx-quickstart.

	#208: Use MS-sanctioned locale settings, determined by the
language config option, in the HTML help builder.

	#210: Fix nesting of HTML tags for displayed math from pngmath
extension.

	#213: Fix centering of images in LaTeX output.

	#211: Fix compatibility with docutils 0.5.

Release 0.6.2 (Jun 16, 2009)

	#130: Fix obscure IndexError in doctest extension.

	#167: Make glossary sorting case-independent.

	#196: Add a warning if an extension module doesn’t have a
setup() function.

	#158: Allow ‘..’ in template names, and absolute template paths;
Jinja 2 by default disables both.

	When highlighting Python code, ignore extra indentation before
trying to parse it as Python.

	#191: Don’t escape the tilde in URIs in LaTeX.

	Don’t consider contents of source comments for the search index.

	Set the default encoding to utf-8-sig to handle files with a
UTF-8 BOM correctly.

	#178: apply add_function_parentheses config value to C
functions as promised.

	#173: Respect the docutils title directive.

	#172: The obj role now links to modules as promised.

	#19: Tables now can have a “longtable” class, in order to get
correctly broken into pages in LaTeX output.

	Look for Sphinx message catalogs in the system default path before
trying sphinx/locale.

	Fix the search for methods via “classname.methodname”.

	#155: Fix Python 2.4 compatibility: exceptions are old-style
classes there.

	#150: Fix display of the “sphinxdoc” theme on Internet Explorer
versions 6 and 7.

	#146: Don’t fail to generate LaTeX when the user has an active
.docutils configuration.

	#29: Don’t generate visible “-{-}” in option lists in LaTeX.

	Fix cross-reference roles when put into substitutions.

	Don’t put image “alt” text into table-of-contents entries.

	In the LaTeX writer, do not raise an exception on too many section
levels, just use the “subparagraph” level for all of them.

	#145: Fix autodoc problem with automatic members that refuse to be
getattr()’d from their parent.

	If specific filenames to build are given on the command line,
check that they are within the source directory.

	Fix autodoc crash for objects without a __name__.

	Fix intersphinx for installations without urllib2.HTTPSHandler.

	#134: Fix pending_xref leftover nodes when using the todolist
directive from the todo extension.

Release 0.6.1 (Mar 26, 2009)

	#135: Fix problems with LaTeX output and the graphviz extension.

	#132: Include the autosummary “module” template in the distribution.

Release 0.6 (Mar 24, 2009)

New features added

	Incompatible changes:

	Templating now requires the Jinja2 library, which is an enhanced
version of the old Jinja1 engine. Since the syntax and semantic
is largely the same, very few fixes should be necessary in
custom templates.

	The “document” div tag has been moved out of the layout.html
template’s “document” block, because the closing tag was already
outside. If you overwrite this block, you need to remove your
“document” div tag as well.

	The autodoc_skip_member event now also gets to decide
whether to skip members whose name starts with underscores.
Previously, these members were always automatically skipped.
Therefore, if you handle this event, add something like this
to your event handler to restore the old behavior:

if name.startswith('_'):
 return True

	Theming support, see the new section in the documentation.

	Markup:

	Due to popular demand, added a :doc: role which directly
links to another document without the need of creating a
label to which a :ref: could link to.

	#4: Added a :download: role that marks a non-document file
for inclusion into the HTML output and links to it.

	Added an only directive that can selectively include text
based on enabled “tags”. Tags can be given on the command
line. Also, the current builder output format (e.g. “html” or
“latex”) is always a defined tag.

	#10: Added HTML section numbers, enabled by giving a
:numbered: flag to the toctree directive.

	#114: Added an abbr role to markup abbreviations and
acronyms.

	The literalinclude directive now supports several more
options, to include only parts of a file.

	The toctree directive now supports a :hidden: flag,
which will prevent links from being generated in place of
the directive – this allows you to define your document
structure, but place the links yourself.

	#123: The glossary directive now supports a :sorted:
flag that sorts glossary entries alphabetically.

	Paths to images, literal include files and download files
can now be absolute (like /images/foo.png). They are
treated as relative to the top source directory.

	#52: There is now a hlist directive, creating a compact
list by placing distributing items into multiple columns.

	#77: If a description environment with info field list only
contains one :param: entry, no bullet list is generated.

	#6: Don’t generate redundant for top-level TOC tree
items, which leads to a visual separation of TOC entries.

	#23: Added a classmethod directive along with method
and staticmethod.

	Scaled images now get a link to the unscaled version.

	SVG images are now supported in HTML (via <object> and
<embed> tags).

	Added a toctree callable to the templates, and the ability
to include external links in toctrees. The ‘collapse’ keyword
argument indicates whether or not to only display subitems of
the current page. (Defaults to True.)

	Configuration:

	The new config value rst_epilog can contain reST that is
appended to each source file that is read. This is the right
place for global substitutions.

	The new html_add_permalinks config value can be used to
switch off the generated “paragraph sign” permalinks for each
heading and definition environment.

	The new html_show_sourcelink config value can be used to
switch off the links to the reST sources in the sidebar.

	The default value for htmlhelp_basename is now the project
title, cleaned up as a filename.

	The new modindex_common_prefix config value can be used to
ignore certain package names for module index sorting.

	The new trim_footnote_reference_space config value mirrors
the docutils config value of the same name and removes the
space before a footnote reference that is necessary for reST
to recognize the reference.

	The new latex_additional_files config value can be used to
copy files (that Sphinx doesn’t copy automatically, e.g. if they
are referenced in custom LaTeX added in latex_elements) to
the build directory.

	Builders:

	The HTML builder now stores a small file named .buildinfo in
its output directory. It stores a hash of config values that
can be used to determine if a full rebuild needs to be done (e.g.
after changing html_theme).

	New builder for Qt help collections, by Antonio Valentino.

	The new DirectoryHTMLBuilder (short name dirhtml) creates
a separate directory for every page, and places the page there
in a file called index.html. Therefore, page URLs and links
don’t need to contain .html.

	The new html_link_suffix config value can be used to select
the suffix of generated links between HTML files.

	#96: The LaTeX builder now supports figures wrapped by text, when
using the figwidth option and right/left alignment.

	New translations:

	Italian by Sandro Dentella.

	Ukrainian by Petro Sasnyk.

	Finnish by Jukka Inkeri.

	Russian by Alexander Smishlajev.

	Extensions and API:

	New graphviz extension to embed graphviz graphs.

	New inheritance_diagram extension to embed... inheritance
diagrams!

	New autosummary extension that generates summaries of
modules and automatic documentation of modules.

	Autodoc now has a reusable Python API, which can be used to
create custom types of objects to auto-document (e.g. Zope
interfaces). See also Sphinx.add_autodocumenter().

	Autodoc now handles documented attributes.

	Autodoc now handles inner classes and their methods.

	Autodoc can document classes as functions now if explicitly
marked with autofunction.

	Autodoc can now exclude single members from documentation
via the exclude-members option.

	Autodoc can now order members either alphabetically (like
previously) or by member type; configurable either with the
config value autodoc_member_order or a member-order
option per directive.

	The function Sphinx.add_directive() now also supports
docutils 0.5-style directive classes. If they inherit from
sphinx.util.compat.Directive, they also work with
docutils 0.4.

	There is now a Sphinx.add_lexer() method to be able to use
custom Pygments lexers easily.

	There is now Sphinx.add_generic_role() to mirror the
docutils’ own function.

	Other changes:

	Config overrides for single dict keys can now be given on the
command line.

	There is now a doctest_global_setup config value that can
be used to give setup code for all doctests in the documentation.

	Source links in HTML are now generated with rel="nofollow".

	Quickstart can now generate a Windows make.bat file.

	#62: There is now a -w option for sphinx-build that writes
warnings to a file, in addition to stderr.

	There is now a -W option for sphinx-build that turns warnings
into errors.

Release 0.5.2 (Mar 24, 2009)

	Properly escape | in LaTeX output.

	#71: If a decoding error occurs in source files, print a
warning and replace the characters by ”?”.

	Fix a problem in the HTML search if the index takes too long
to load.

	Don’t output system messages while resolving, because they
would stay in the doctrees even if keep_warnings is false.

	#82: Determine the correct path for dependencies noted by
docutils. This fixes behavior where a source with dependent
files was always reported as changed.

	Recognize toctree directives that are not on section toplevel,
but within block items, such as tables.

	Use a new RFC base URL, since rfc.org seems down.

	Fix a crash in the todolist directive when no todo items are
defined.

	Don’t call LaTeX or dvipng over and over again if it was not
found once, and use text-only latex as a substitute in that case.

	Fix problems with footnotes in the LaTeX output.

	Prevent double hyphens becoming en-dashes in literal code in
the LaTeX output.

	Open literalinclude files in universal newline mode to allow
arbitrary newline conventions.

	Actually make the -Q option work.

	#86: Fix explicit document titles in toctrees.

	#81: Write environment and search index in a manner that is safe
from exceptions that occur during dumping.

	#80: Fix UnicodeErrors when a locale is set with setlocale().

Release 0.5.1 (Dec 15, 2008)

	#67: Output warnings about failed doctests in the doctest extension
even when running in quiet mode.

	#72: In pngmath, make it possible to give a full path to LaTeX and
dvipng on Windows. For that to work, the pngmath_latex and
pngmath_dvipng options are no longer split into command and
additional arguments; use pngmath_latex_args and
pngmath_dvipng_args to give additional arguments.

	Don’t crash on failing doctests with non-ASCII characters.

	Don’t crash on writing status messages and warnings containing
unencodable characters.

	Warn if a doctest extension block doesn’t contain any code.

	Fix the handling of :param: and :type: doc fields when
they contain markup (especially cross-referencing roles).

	#65: Fix storage of depth information for PNGs generated by the
pngmath extension.

	Fix autodoc crash when automethod is used outside a class context.

	#68: Fix LaTeX writer output for images with specified height.

	#60: Fix wrong generated image path when including images in sources
in subdirectories.

	Fix the JavaScript search when html_copy_source is off.

	Fix an indentation problem in autodoc when documenting classes
with the option autoclass_content = "both" set.

	Don’t crash on empty index entries, only emit a warning.

	Fix a typo in the search JavaScript code, leading to unusable
search function in some setups.

Release 0.5 (Nov 23, 2008) – Birthday release!

New features added

	Markup features:
	Citations are now global: all citation defined in any file can be
referenced from any file. Citations are collected in a bibliography
for LaTeX output.

	Footnotes are now properly handled in the LaTeX builder: they appear
at the location of the footnote reference in text, not at the end of
a section. Thanks to Andrew McNamara for the initial patch.

	“System Message” warnings are now automatically removed from the
built documentation, and only written to stderr. If you want the
old behavior, set the new config value keep_warnings to True.

	Glossary entries are now automatically added to the index.

	Figures with captions can now be referred to like section titles,
using the :ref: role without an explicit link text.

	Added cmember role for consistency.

	Lists enumerated by letters or roman numerals are now handled like in
standard reST.

	The seealso directive can now also be given arguments, as a short
form.

	You can now document several programs and their options with the
new program directive.

	HTML output and templates:
	Incompatible change: The “root” relation link (top left in the
relbar) now points to the master_doc by default, no longer to a
document called “index”. The old behavior, while useful in some
situations, was somewhat unexpected. Override the “rootrellink”
block in the template to customize where it refers to.

	The JavaScript search now searches for objects before searching in
the full text.

	TOC tree entries now have CSS classes that make it possible to
style them depending on their depth.

	Highlighted code blocks now have CSS classes that make it possible
to style them depending on their language.

	HTML <meta> tags via the docutils meta directive are now
supported.

	SerializingHTMLBuilder was added as new abstract builder that
can be subclassed to serialize build HTML in a specific format. The
PickleHTMLBuilder is a concrete subclass of it that uses pickle
as serialization implementation.

	JSONHTMLBuilder was added as another SerializingHTMLBuilder
subclass that dumps the generated HTML into JSON files for further
processing.

	The rellinks block in the layout template is now called
linktags to avoid confusion with the relbar links.

	The HTML builders have two additional attributes now that can be
used to disable the anchor-link creation after headlines and
definition links.

	Only generate a module index if there are some modules in the
documentation.

	New and changed config values:
	Added support for internationalization in generated text with the
language and locale_dirs config values. Many thanks to
language contributors:
	Horst Gutmann – German

	Pavel Kosina – Czech

	David Larlet – French

	Michał Kandulski – Polish

	Yasushi Masuda – Japanese

	Guillem Borrell – Spanish

	Luc Saffre and Peter Bertels – Dutch

	Fred Lin – Traditional Chinese

	Roger Demetrescu – Brazilian Portuguese

	Rok Garbas – Slovenian

	The new config value highlight_language set a global default for
highlighting. When 'python3' is selected, console output blocks
are recognized like for 'python'.

	Exposed Pygments’ lexer guessing as a highlight “language” guess.

	The new config value latex_elements allows to override all LaTeX
snippets that Sphinx puts into the generated .tex file by default.

	Added exclude_dirnames config value that can be used to exclude
e.g. CVS directories from source file search.

	Added source_encoding config value to select input encoding.

	Extensions:
	The new extensions sphinx.ext.jsmath and sphinx.ext.pngmath
provide math support for both HTML and LaTeX builders.

	The new extension sphinx.ext.intersphinx half-automatically
creates links to Sphinx documentation of Python objects in other
projects.

	The new extension sphinx.ext.todo allows the insertion of
“To do” directives whose visibility in the output can be toggled.
It also adds a directive to compile a list of all todo items.

	sphinx.ext.autodoc has a new event autodoc-process-signature
that allows tuning function signature introspection.

	sphinx.ext.autodoc has a new event autodoc-skip-member that allows
tuning which members are included in the generated content.

	Respect __all__ when autodocumenting module members.

	The automodule directive now supports the synopsis,
deprecated and platform options.

	Extension API:
	Sphinx.add_node() now takes optional visitor methods for the
HTML, LaTeX and text translators; this prevents having to manually
patch the classes.

	Added Sphinx.add_javascript() that adds scripts to load in the
default HTML template.

	Added new events: source-read, env-updated,
env-purge-doc, missing-reference, build-finished.

	Other changes:
	Added a command-line switch -Q: it will suppress warnings.

	Added a command-line switch -A: it can be used to supply
additional values into the HTML templates.

	Added a command-line switch -C: if it is given, no configuration
file conf.py is required.

	Added a distutils command build_sphinx: When Sphinx is installed,
you can call python setup.py build_sphinx for projects that have
Sphinx documentation, which will build the docs and place them in
the standard distutils build directory.

	In quickstart, if the selected root path already contains a Sphinx
project, complain and abort.

Bugs fixed

	#51: Escape configuration values placed in HTML templates.

	#44: Fix small problems in HTML help index generation.

	Fix LaTeX output for line blocks in tables.

	#38: Fix “illegal unit” error when using pixel image widths/heights.

	Support table captions in LaTeX output.

	#39: Work around a bug in Jinja that caused “<generator ...>” to be
emitted in HTML output.

	Fix a problem with module links not being generated in LaTeX output.

	Fix the handling of images in different directories.

	#29: Support option lists in the text writer. Make sure that dashes
introducing long option names are not contracted to en-dashes.

	Support the “scale” option for images in HTML output.

	#25: Properly escape quotes in HTML help attribute values.

	Fix LaTeX build for some description environments with :noindex:.

	#24: Don’t crash on uncommon casing of role names (like :Class:).

	Only output ANSI colors on color terminals.

	Update to newest fncychap.sty, to fix problems with non-ASCII
characters at the start of chapter titles.

	Fix a problem with index generation in LaTeX output, caused by
hyperref not being included last.

	Don’t disregard return annotations for functions without any parameters.

	Don’t throw away labels for code blocks.

Release 0.4.3 (Oct 8, 2008)

	Fix a bug in autodoc with directly given autodoc members.

	Fix a bug in autodoc that would import a module twice, once as
“module”, once as “module.”.

	Fix a bug in the HTML writer that created duplicate id
attributes for section titles with docutils 0.5.

	Properly call super() in overridden blocks in templates.

	Add a fix when using XeTeX.

	Unify handling of LaTeX escaping.

	Rebuild everything when the extensions config value changes.

	Don’t try to remove a nonexisting static directory.

	Fix an indentation problem in production lists.

	Fix encoding handling for literal include files: literalinclude
now has an encoding option that defaults to UTF-8.

	Fix the handling of non-ASCII characters entered in quickstart.

	Fix a crash with nonexisting image URIs.

Release 0.4.2 (Jul 29, 2008)

	Fix rendering of the samp role in HTML.

	Fix a bug with LaTeX links to headings leading to a wrong page.

	Reread documents with globbed toctrees when source files are
added or removed.

	Add a missing parameter to PickleHTMLBuilder.handle_page().

	Put inheritance info always on its own line.

	Don’t automatically enclose code with whitespace in it in quotes;
only do this for the samp role.

	autodoc now emits a more precise error message when a module
can’t be imported or an attribute can’t be found.

	The JavaScript search now uses the correct file name suffix when
referring to found items.

	The automodule directive now accepts the inherited-members
and show-inheritance options again.

	You can now rebuild the docs normally after relocating the source
and/or doctree directory.

Release 0.4.1 (Jul 5, 2008)

	Added sub-/superscript node handling to TextBuilder.

	Label names in references are now case-insensitive, since reST
label names are always lowercased.

	Fix linkcheck builder crash for malformed URLs.

	Add compatibility for admonitions and docutils 0.5.

	Remove the silly restriction on “rubric” in the LaTeX writer: you
can now write arbitrary “rubric” directives, and only those with
a title of “Footnotes” will be ignored.

	Copy the HTML logo to the output _static directory.

	Fix LaTeX code for modules with underscores in names and platforms.

	Fix a crash with nonlocal image URIs.

	Allow the usage of :noindex: in automodule directives, as
documented.

	Fix the delete() docstring processor function in autodoc.

	Fix warning message for nonexisting images.

	Fix JavaScript search in Internet Explorer.

Release 0.4 (Jun 23, 2008)

New features added

	tocdepth can be given as a file-wide metadata entry, and
specifies the maximum depth of a TOC of this file.

	The new config value default_role can be used to select the
default role for all documents.

	Sphinx now interprets field lists with fields like :param foo:
in description units.

	The new staticmethod directive can be used to mark methods as
static methods.

	HTML output:
	The “previous” and “next” links have a more logical structure, so
that by following “next” links you can traverse the entire TOC
tree.

	The new event html-page-context can be used to include custom
values into the context used when rendering an HTML template.

	Document metadata is now in the default template context, under
the name metadata.

	The new config value html_favicon can be used to set a favicon
for the HTML output. Thanks to Sebastian Wiesner.

	The new config value html_use_index can be used to switch index
generation in HTML documents off.

	The new config value html_split_index can be used to create
separate index pages for each letter, to be used when the complete
index is too large for one page.

	The new config value html_short_title can be used to set a
shorter title for the documentation which is then used in the
navigation bar.

	The new config value html_show_sphinx can be used to control
whether a link to Sphinx is added to the HTML footer.

	The new config value html_file_suffix can be used to set the
HTML file suffix to e.g. .xhtml.

	The directories in the html_static_path can now contain
subdirectories.

	The module index now isn’t collapsed if the number of submodules
is larger than the number of toplevel modules.

	The image directive now supports specifying the extension as .*,
which makes the builder select the one that matches best. Thanks to
Sebastian Wiesner.

	The new config value exclude_trees can be used to exclude whole
subtrees from the search for source files.

	Defaults for configuration values can now be callables, which allows
dynamic defaults.

	The new TextBuilder creates plain-text output.

	Python 3-style signatures, giving a return annotation via ->,
are now supported.

	Extensions:
	The autodoc extension now offers a much more flexible way to
manipulate docstrings before including them into the output, via
the new autodoc-process-docstring event.

	The autodoc extension accepts signatures for functions, methods
and classes now that override the signature got via introspection
from Python code.

	The autodoc extension now offers a show-inheritance option
for autoclass that inserts a list of bases after the signature.

	The autodoc directives now support the noindex flag option.

Bugs fixed

	Correctly report the source location for docstrings included with
autodoc.

	Fix the LaTeX output of description units with multiple signatures.

	Handle the figure directive in LaTeX output.

	Handle raw admonitions in LaTeX output.

	Fix determination of the title in HTML help output.

	Handle project names containing spaces.

	Don’t write SSI-like comments in HTML output.

	Rename the “sidebar” class to “sphinxsidebar” in order to stay different
from reST sidebars.

	Use a binary TOC in HTML help generation to fix issues links without
explicit anchors.

	Fix behavior of references to functions/methods with an explicit title.

	Support citation, subscript and superscript nodes in LaTeX writer.

	Provide the standard “class” directive as “cssclass”; else it is
shadowed by the Sphinx-defined directive.

	Fix the handling of explicit module names given to autoclass directives.
They now show up with the correct module name in the generated docs.

	Enable autodoc to process Unicode docstrings.

	The LaTeX writer now translates line blocks with \raggedright,
which plays nicer with tables.

	Fix bug with directories in the HTML builder static path.

Release 0.3 (May 6, 2008)

New features added

	The toctree directive now supports a glob option that allows
glob-style entries in the content.

	If the pygments_style config value contains a dot it’s treated as the
import path of a custom Pygments style class.

	A new config value, exclude_dirs, can be used to exclude whole
directories from the search for source files.

	The configuration directory (containing conf.py) can now be set
independently from the source directory. For that, a new command-line
option -c has been added.

	A new directive tabularcolumns can be used to give a tabular column
specification for LaTeX output. Tables now use the tabulary package.
Literal blocks can now be placed in tables, with several caveats.

	A new config value, latex_use_parts, can be used to enable parts in LaTeX
documents.

	Autodoc now skips inherited members for classes, unless you give the
new inherited-members option.

	A new config value, autoclass_content, selects if the docstring of the
class’ __init__ method is added to the directive’s body.

	Support for C++ class names (in the style Class::Function) in C function
descriptions.

	Support for a toctree_only item in items for the latex_documents
config value. This only includes the documents referenced by TOC trees in the
output, not the rest of the file containing the directive.

Bugs fixed

	sphinx.htmlwriter: Correctly write the TOC file for any structure of the
master document. Also encode non-ASCII characters as entities in TOC
and index file. Remove two remaining instances of hard-coded
“documentation”.

	sphinx.ext.autodoc: descriptors are detected properly now.

	sphinx.latexwriter: implement all reST admonitions, not just note
and warning.

	Lots of little fixes to the LaTeX output and style.

	Fix OpenSearch template and make template URL absolute. The
html_use_opensearch config value now must give the base URL.

	Some unused files are now stripped from the HTML help file build.

Release 0.2 (Apr 27, 2008)

Incompatible changes

	Jinja, the template engine used for the default HTML templates, is now
no longer shipped with Sphinx. If it is not installed automatically for
you (it is now listed as a dependency in setup.py), install it manually
from PyPI. This will also be needed if you’re using Sphinx from a SVN
checkout; in that case please also remove the sphinx/jinja directory
that may be left over from old revisions.

	The clumsy handling of the index.html template was removed. The config
value html_index is gone, and html_additional_pages should be used
instead. If you need it, the old index.html template is still there,
called defindex.html, and you can port your html_index template, using
Jinja inheritance, by changing your template:

{% extends "defindex.html" %}
{% block tables %}
... old html_index template content ...
{% endblock %}

and putting 'index': name of your template in html_additional_pages.

	In the layout template, redundant blocks were removed; you should use
Jinja’s standard {{ super() }} mechanism instead, as explained in the
(newly written) templating docs.

New features added

	Extension API (Application object):
	Support a new method, add_crossref_type. It works like
add_description_unit but the directive will only create a target
and no output.

	Support a new method, add_transform. It takes a standard docutils
Transform subclass which is then applied by Sphinx’ reader on
parsing reST document trees.

	Add support for other template engines than Jinja, by adding an
abstraction called a “template bridge”. This class handles rendering
of templates and can be changed using the new configuration value
“template_bridge”.

	The config file itself can be an extension (if it provides a setup()
function).

	Markup:
	New directive, currentmodule. It can be used to indicate the module
name of the following documented things without creating index entries.

	Allow giving a different title to documents in the toctree.

	Allow giving multiple options in a cmdoption directive.

	Fix display of class members without explicit class name given.

	Templates (HTML output):
	index.html renamed to defindex.html, see above.

	There’s a new config value, html_title, that controls the overall
“title” of the set of Sphinx docs. It is used instead everywhere instead of
“Projectname vX.Y documentation” now.

	All references to “documentation” in the templates have been removed, so
that it is now easier to use Sphinx for non-documentation documents with
the default templates.

	Templates now have an XHTML doctype, to be consistent with docutils’
HTML output.

	You can now create an OpenSearch description file with the
html_use_opensearch config value.

	You can now quickly include a logo in the sidebar, using the html_logo
config value.

	There are new blocks in the sidebar, so that you can easily insert content
into the sidebar.

	LaTeX output:
	The sphinx.sty package was cleaned of unused stuff.

	You can include a logo in the title page with the latex_logo config
value.

	You can define the link colors and a border and background color for
verbatim environments.

Thanks to Jacob Kaplan-Moss, Talin, Jeroen Ruigrok van der Werven and Sebastian
Wiesner for suggestions.

Bugs fixed

	sphinx.ext.autodoc: Don’t check __module__ for explicitly given
members. Remove “self” in class constructor argument list.

	sphinx.htmlwriter: Don’t use os.path for joining image HREFs.

	sphinx.htmlwriter: Don’t use SmartyPants for HTML attribute values.

	sphinx.latexwriter: Implement option lists. Also, some other changes
were made to sphinx.sty in order to enhance compatibility and
remove old unused stuff. Thanks to Gael Varoquaux for that!

	sphinx.roles: Fix referencing glossary terms with explicit targets.

	sphinx.environment: Don’t swallow TOC entries when resolving subtrees.

	sphinx.quickstart: Create a sensible default latex_documents setting.

	sphinx.builder, sphinx.environment: Gracefully handle some user error
cases.

	sphinx.util: Follow symbolic links when searching for documents.

Release 0.1.61950 (Mar 26, 2008)

	sphinx.quickstart: Fix format string for Makefile.

Release 0.1.61945 (Mar 26, 2008)

	sphinx.htmlwriter, sphinx.latexwriter: Support the .. image::
directive by copying image files to the output directory.

	sphinx.builder: Consistently name “special” HTML output directories
with a leading underscore; this means _sources and _static.

	sphinx.environment: Take dependent files into account when collecting
the set of outdated sources.

	sphinx.directives: Record files included with .. literalinclude::
as dependencies.

	sphinx.ext.autodoc: Record files from which docstrings are included
as dependencies.

	sphinx.builder: Rebuild all HTML files in case of a template change.

	sphinx.builder: Handle unavailability of TOC relations (previous/
next chapter) more gracefully in the HTML builder.

	sphinx.latexwriter: Include fncychap.sty which doesn’t seem to be
very common in TeX distributions. Add a clean target in the
latex Makefile. Really pass the correct paper and size options
to the LaTeX document class.

	setup: On Python 2.4, don’t egg-depend on docutils if a docutils is
already installed – else it will be overwritten.

Release 0.1.61843 (Mar 24, 2008)

	sphinx.quickstart: Really don’t create a makefile if the user
doesn’t want one.

	setup: Don’t install scripts twice, via setuptools entry points
and distutils scripts. Only install via entry points.

	sphinx.builder: Don’t recognize the HTML builder’s copied source
files (under _sources) as input files if the source suffix is
.txt.

	sphinx.highlighting: Generate correct markup for LaTeX Verbatim
environment escapes even if Pygments is not installed.

	sphinx.builder: The WebHTMLBuilder is now called PickleHTMLBuilder.

	sphinx.htmlwriter: Make parsed-literal blocks work as expected,
not highlighting them via Pygments.

	sphinx.environment: Don’t error out on reading an empty source file.

Release 0.1.61798 (Mar 23, 2008)

	sphinx: Work with docutils SVN snapshots as well as 0.4.

	sphinx.ext.doctest: Make the group in which doctest blocks are
placed selectable, and default to 'default'.

	sphinx.ext.doctest: Replace <BLANKLINE> in doctest blocks by
real blank lines for presentation output, and remove doctest
options given inline.

	sphinx.environment: Move doctest_blocks out of block_quotes to
support indented doctest blocks.

	sphinx.ext.autodoc: Render .. automodule:: docstrings in a
section node, so that module docstrings can contain proper
sectioning.

	sphinx.ext.autodoc: Use the module’s encoding for decoding
docstrings, rather than requiring ASCII.

Release 0.1.61611 (Mar 21, 2008)

	First public release.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Sphinx 1.3.1 documentation

Projects using Sphinx

This is an (incomplete) alphabetic list of projects that use Sphinx or
are experimenting with using it for their documentation. If you like to
be included, please mail to the Google group [http://groups.google.com/group/sphinx-dev].

I’ve grouped the list into sections to make it easier to find
interesting examples.

Documentation using the default theme

	APSW: http://apidoc.apsw.googlecode.com/hg/index.html

	ASE: https://wiki.fysik.dtu.dk/ase/

	boostmpi: http://documen.tician.de/boostmpi/

	Calibre: http://calibre-ebook.com/user_manual/

	CodePy: http://documen.tician.de/codepy/

	Cython: http://docs.cython.org/

	C\C++ Python language binding project: http://language-binding.net/index.html

	Cormoran: http://cormoran.nhopkg.org/docs/

	Director: http://packages.python.org/director/

	Dirigible: http://www.projectdirigible.com/documentation/

	Elemental: http://elemental.googlecode.com/hg/doc/build/html/index.html

	F2py: http://f2py.sourceforge.net/docs/

	GeoDjango: http://geodjango.org/docs/

	Genomedata: http://noble.gs.washington.edu/proj/genomedata/doc/1.2.2/genomedata.html

	gevent: http://www.gevent.org/

	Google Wave API: http://wave-robot-python-client.googlecode.com/svn/trunk/pydocs/index.html

	GSL Shell: http://www.nongnu.org/gsl-shell/

	Heapkeeper: http://heapkeeper.org/

	Hands-on Python Tutorial: http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/

	Hedge: http://documen.tician.de/hedge/

	Kaa: http://doc.freevo.org/api/kaa/

	Leo: http://webpages.charter.net/edreamleo/front.html

	Lino: http://lino.saffre-rumma.net/

	MeshPy: http://documen.tician.de/meshpy/

	mpmath: http://mpmath.googlecode.com/svn/trunk/doc/build/index.html

	OpenEXR: http://excamera.com/articles/26/doc/index.html

	OpenGDA: http://www.opengda.org/gdadoc/html/

	openWNS: http://docs.openwns.org/

	Paste: http://pythonpaste.org/script/

	Paver: http://paver.github.com/paver/

	Pyccuracy: https://github.com/heynemann/pyccuracy/wiki/

	PyCuda: http://documen.tician.de/pycuda/

	Pyevolve: http://pyevolve.sourceforge.net/

	Pylo: http://documen.tician.de/pylo/

	PyMQI: http://packages.python.org/pymqi/

	PyPubSub: http://pubsub.sourceforge.net/

	pyrticle: http://documen.tician.de/pyrticle/

	Python: http://docs.python.org/

	python-apt: http://apt.alioth.debian.org/python-apt-doc/

	PyUblas: http://documen.tician.de/pyublas/

	Quex: http://quex.sourceforge.net/doc/html/main.html

	Scapy: http://www.secdev.org/projects/scapy/doc/

	Segway: http://noble.gs.washington.edu/proj/segway/doc/1.1.0/segway.html

	SimPy: http://simpy.sourceforge.net/SimPyDocs/index.html

	SymPy: http://docs.sympy.org/

	WTForms: http://wtforms.simplecodes.com/docs/

	z3c: http://docs.carduner.net/z3c-tutorial/

Documentation using a customized version of the default theme

	Advanced Generic Widgets:
http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html

	Bazaar: http://doc.bazaar.canonical.com/en/

	Chaco: http://code.enthought.com/projects/chaco/docs/html/

	Djagios: http://djagios.org/

	GetFEM++: http://home.gna.org/getfem/

	GPAW: https://wiki.fysik.dtu.dk/gpaw/

	Grok: http://grok.zope.org/doc/current/

	IFM: http://fluffybunny.memebot.com/ifm-docs/index.html

	LEPL: http://www.acooke.org/lepl/

	Mayavi: http://code.enthought.com/projects/mayavi/docs/development/html/mayavi

	NOC: http://redmine.nocproject.org/projects/noc

	NumPy: http://docs.scipy.org/doc/numpy/reference/

	Peach^3: http://peach3.nl/doc/latest/userdoc/

	PyLit: http://pylit.berlios.de/

	Sage: http://sagemath.org/doc/

	SciPy: http://docs.scipy.org/doc/scipy/reference/

	simuPOP: http://simupop.sourceforge.net/manual_release/build/userGuide.html

	Sprox: http://sprox.org/

	TurboGears: http://turbogears.org/2.0/docs/

	Zentyal: http://doc.zentyal.org/

	Zope: http://docs.zope.org/zope2/index.html

	zc.async: http://packages.python.org/zc.async/1.5.0/

Documentation using the sphinxdoc theme

	Fityk: http://fityk.nieto.pl/

	MapServer: http://mapserver.org/

	Matplotlib: http://matplotlib.sourceforge.net/

	Music21: http://mit.edu/music21/doc/html/contents.html

	MyHDL: http://www.myhdl.org/doc/0.6/

	NetworkX: http://networkx.lanl.gov/

	Pweave: http://mpastell.com/pweave/

	Pyre: http://docs.danse.us/pyre/sphinx/

	Pysparse: http://pysparse.sourceforge.net/

	PyTango:
http://www.tango-controls.org/static/PyTango/latest/doc/html/index.html

	Reteisi: http://www.reteisi.org/contents.html

	Satchmo: http://www.satchmoproject.com/docs/dev/

	Sphinx: http://sphinx.pocoo.org/

	Sqlkit: http://sqlkit.argolinux.org/

	Tau: http://www.tango-controls.org/static/tau/latest/doc/html/index.html

	Total Open Station: http://tops.berlios.de/

	WebFaction: http://docs.webfaction.com/

Documentation using another builtin theme

	C/C++ Development with Eclipse: http://eclipsebook.in/ (agogo)

	Distribute: http://packages.python.org/distribute/ (nature)

	Jinja: http://jinja.pocoo.org/ (scrolls)

	jsFiddle: http://doc.jsfiddle.net/ (nature)

	pip: http://pip.openplans.org/ (nature)

	Programmieren mit PyGTK und Glade (German):
http://www.florian-diesch.de/doc/python-und-glade/online/ (agogo)

	Spring Python: http://springpython.webfactional.com/current/sphinx/index.html
(nature)

	sqlparse: http://python-sqlparse.googlecode.com/svn/docs/api/index.html
(agogo)

	Sylli: http://sylli.sourceforge.net/ (nature)

	libLAS: http://liblas.org/ (nature)

Documentation using a custom theme/integrated in a site

	Blender: http://www.blender.org/documentation/250PythonDoc/

	Blinker: http://discorporate.us/projects/Blinker/docs/

	Classy: classy: http://classy.pocoo.org/

	Django: http://docs.djangoproject.com/

	e-cidadania: http://e-cidadania.readthedocs.org/en/latest/

	Flask: http://flask.pocoo.org/docs/

	Flask-OpenID: http://packages.python.org/Flask-OpenID/

	Gameduino: http://excamera.com/sphinx/gameduino/

	GeoServer: http://docs.geoserver.org/

	Glashammer: http://glashammer.org/

	MirrorBrain: http://mirrorbrain.org/docs/

	nose: http://somethingaboutorange.com/mrl/projects/nose/

	ObjectListView: http://objectlistview.sourceforge.net/python

	Open ERP: http://doc.openerp.com/

	OpenLayers: http://docs.openlayers.org/

	PyEphem: http://rhodesmill.org/pyephem/

	German Plone 4.0 user manual: http://www.hasecke.com/plone-benutzerhandbuch/4.0/

	Pylons: http://pylonshq.com/docs/en/0.9.7/

	PyMOTW: http://www.doughellmann.com/PyMOTW/

	pypol: http://pypol.altervista.org/ (celery)

	qooxdoo: http://manual.qooxdoo.org/current

	Roundup: http://www.roundup-tracker.org/

	Selenium: http://seleniumhq.org/docs/

	Self: http://selflanguage.org/

	Tablib: http://tablib.org/

	SQLAlchemy: http://www.sqlalchemy.org/docs/

	tinyTiM: http://tinytim.sourceforge.net/docs/2.0/

	tipfy: http://www.tipfy.org/docs/

	Werkzeug: http://werkzeug.pocoo.org/docs/

	WFront: http://discorporate.us/projects/WFront/

Homepages and other non-documentation sites

	Applied Mathematics at the Stellenbosch University: http://dip.sun.ac.za/

	A personal page: http://www.dehlia.in/

	Benoit Boissinot: http://bboissin.appspot.com/

	lunarsite: http://lunaryorn.de/

	Red Hot Chili Python: http://redhotchilipython.com/

	The Wine Cellar Book: http://www.thewinecellarbook.com/doc/en/

	VOR: http://www.vor-cycling.be/

Books produced using Sphinx

	“The repoze.bfg Web Application Framework”:
http://www.amazon.com/repoze-bfg-Web-Application-Framework-Version/dp/0615345379

	A Theoretical Physics Reference book: http://theoretical-physics.net/

	“Simple and Steady Way of Learning for Software Engineering” (in Japanese):
http://www.amazon.co.jp/dp/477414259X/

	“Expert Python Programming” (Japanese translation):
http://www.amazon.co.jp/dp/4048686291/

	“Pomodoro Technique Illustrated” (Japanese translation):
http://www.amazon.co.jp/dp/4048689525/

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Sphinx 1.3.1 documentation

 Python Module Index

 a |
 b |
 c |
 d |
 e

 			

 		
 a	

 	
 	
 sphinx.application	
 Application class and extensibility interface.

 			

 		
 b	

 	[image: -]
 	
 sphinx.builders	
 Available built-in builder classes.

 	
 	
 sphinx.builders.changes	

 	
 	
 sphinx.builders.devhelp	

 	
 	
 sphinx.builders.epub	

 	
 	
 sphinx.builders.html	

 	
 	
 sphinx.builders.htmlhelp	

 	
 	
 sphinx.builders.intl	

 	
 	
 sphinx.builders.latex	

 	
 	
 sphinx.builders.linkcheck	

 	
 	
 sphinx.builders.manpage	

 	
 	
 sphinx.builders.qthelp	

 	
 	
 sphinx.builders.text	

 			

 		
 c	

 	
 	
 conf	
 Build configuration file.

 			

 		
 d	

 	
 	
 sphinx.domains	

 			

 		
 e	

 	[image: -]
 	
 sphinx.ext	

 	
 	
 sphinx.ext.autodoc	
 Include documentation from docstrings.

 	
 	
 sphinx.ext.autosummary	
 Generate autodoc summaries

 	
 	
 sphinx.ext.coverage	
 Check Python modules and C API for coverage in the documentation.

 	
 	
 sphinx.ext.doctest	
 Test snippets in the documentation.

 	
 	
 sphinx.ext.extlinks	
 Allow inserting external links with common base URLs easily.

 	
 	
 sphinx.ext.graphviz	
 Support for Graphviz graphs.

 	
 	
 sphinx.ext.ifconfig	
 Include documentation content based on configuration values.

 	
 	
 sphinx.ext.inheritance_diagram	
 Support for displaying inheritance diagrams via graphviz.

 	
 	
 sphinx.ext.intersphinx	
 Link to other Sphinx documentation.

 	
 	
 sphinx.ext.jsmath	
 Render math via JavaScript.

 	
 	
 sphinx.ext.mathbase	
 Common math support for pngmath and jsmath.

 	
 	
 sphinx.ext.oldcmarkup	
 Allow further use of the pre-domain C markup

 	
 	
 sphinx.ext.pngmath	
 Render math as PNG images.

 	
 	
 sphinx.ext.refcounting	
 Keep track of reference counting behavior.

 	
 	
 sphinx.ext.todo	
 Allow inserting todo items into documents.

 	
 	
 sphinx.ext.viewcode	
 Add links to a highlighted version of the source code.

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Sphinx 1.3.1 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 | Symbols

Symbols

 	

 	$.getJSON() ($ method)

 	
 -a

 	

 	command line option

 	
 -A name=value

 	

 	command line option

 	
 -b buildername

 	

 	command line option

 	
 -C

 	

 	command line option

 	
 -c path

 	

 	command line option

 	
 -d path

 	

 	command line option

 	
 -D setting=value

 	

 	command line option

 	
 -E

 	

 	command line option

 	

 	
 -N

 	

 	command line option

 	
 -n

 	

 	command line option

 	
 -P

 	

 	command line option

 	
 -Q

 	

 	command line option

 	
 -q

 	

 	command line option

 	
 -t tag

 	

 	command line option

 	
 -W

 	

 	command line option

 	
 -w file

 	

 	command line option

A

 	

 	abbr (role)

 	accept_comment() (sphinx.websupport.storage.StorageBackend method)

 	add_autodoc_attrgetter() (sphinx.application.Sphinx method)

 	add_autodocumenter() (sphinx.application.Sphinx method)

 	add_builder() (sphinx.application.Sphinx method)

 	add_comment() (sphinx.websupport.storage.StorageBackend method)

 	

 	(sphinx.websupport.WebSupport method)

 	add_config_value() (sphinx.application.Sphinx method)

 	add_crossref_type() (sphinx.application.Sphinx method)

 	add_directive() (sphinx.application.Sphinx method)

 	add_directive_to_domain() (sphinx.application.Sphinx method)

 	add_document() (sphinx.websupport.search.BaseSearch method)

 	add_domain() (sphinx.application.Sphinx method)

 	add_event() (sphinx.application.Sphinx method)

 	
 add_function_parentheses

 	

 	configuration value

 	add_generic_role() (sphinx.application.Sphinx method)

 	add_index_to_domain() (sphinx.application.Sphinx method)

 	add_javascript() (sphinx.application.Sphinx method)

 	add_lexer() (sphinx.application.Sphinx method)

 	
 add_module_names

 	

 	configuration value

 	add_node() (sphinx.application.Sphinx method)

 	

 	(sphinx.websupport.storage.StorageBackend method)

 	add_object_type() (sphinx.application.Sphinx method)

 	add_role() (sphinx.application.Sphinx method)

 	

 	add_role_to_domain() (sphinx.application.Sphinx method)

 	add_stylesheet() (sphinx.application.Sphinx method)

 	add_transform() (sphinx.application.Sphinx method)

 	array<T>::operator[] (C++ function)

 	attributes (built-in variable)

 	autoattribute (directive)

 	autoclass (directive)

 	
 autoclass_content

 	

 	configuration value

 	autodata (directive)

 	
 autodoc-process-docstring

 	

 	event

 	
 autodoc-process-signature

 	

 	event

 	
 autodoc-skip-member

 	

 	event

 	
 autodoc_default_flags

 	

 	configuration value

 	
 autodoc_member_order

 	

 	configuration value

 	autoexception (directive)

 	autofunction (directive)

 	
 automatic

 	

 	documentation

 	linking

 	testing

 	automethod (directive)

 	automodule (directive)

 	autosummary (directive)

 	
 autosummary_generate

 	

 	configuration value

B

 	

 	bar (directive)

 	BaseSearch (class in sphinx.websupport.search)

 	between() (in module sphinx.ext.autodoc)

 	build() (sphinx.builders.Builder method)

 	

 	(sphinx.websupport.WebSupport method)

 	
 build-finished

 	

 	event

 	build_all() (sphinx.builders.Builder method)

 	

 	build_specific() (sphinx.builders.Builder method)

 	build_update() (sphinx.builders.Builder method)

 	builder

 	

 	(built-in variable)

 	Builder (class in sphinx.builders)

 	
 builder-inited

 	

 	event

C

 	

 	c:data (role)

 	c:func (role)

 	c:function (directive)

 	c:macro (directive)

 	

 	(role)

 	c:member (directive)

 	c:type (directive)

 	

 	(role)

 	c:var (directive)

 	centered (directive)

 	
 changes

 	

 	in version

 	ChangesBuilder (class in sphinx.builders.changes)

 	CheckExternalLinksBuilder (class in sphinx.builders.linkcheck)

 	class (built-in variable)

 	classes (built-in variable)

 	clear_doc() (sphinx.domains.Domain method)

 	
 code

 	

 	examples

 	codeauthor (directive)

 	command (role)

 	
 command line option

 	

 	-A name=value

 	-C

 	-D setting=value

 	-E

 	-N

 	-P

 	-Q

 	-W

 	-a

 	-b buildername

 	-c path

 	-d path

 	-n

 	-q

 	-t tag

 	-w file

 	conf (module)

 	configuration directory

 	

 	
 configuration value

 	

 	add_function_parentheses

 	add_module_names

 	autoclass_content

 	autodoc_default_flags

 	autodoc_member_order

 	autosummary_generate

 	copyright

 	coverage_c_path

 	coverage_c_regexes

 	coverage_ignore_c_items

 	coverage_ignore_classes

 	coverage_ignore_functions

 	coverage_ignore_modules

 	default_role

 	doctest_global_setup

 	doctest_path

 	doctest_test_doctest_blocks

 	epub_author

 	epub_basename

 	epub_copyright

 	epub_cover

 	epub_exclude_files

 	epub_identifier

 	epub_language

 	epub_post_files

 	epub_pre_files

 	epub_publisher

 	epub_scheme

 	epub_theme

 	epub_title

 	epub_tocdepth

 	epub_tocdup

 	epub_uid

 	exclude_dirnames

 	exclude_patterns

 	exclude_trees

 	extensions

 	extlinks

 	graphviz_dot

 	graphviz_dot_args

 	graphviz_output_format

 	highlight_language

 	html_add_permalinks

 	html_additional_pages

 	html_compact_lists

 	html_copy_source

 	html_domain_indices

 	html_favicon

 	html_file_suffix

 	html_last_updated_fmt

 	html_link_suffix

 	html_logo

 	html_output_encoding

 	html_secnumber_suffix

 	html_short_title

 	html_show_copyright

 	html_show_sourcelink

 	html_show_sphinx

 	html_sidebars

 	html_split_index

 	html_static_path

 	html_style

 	html_theme

 	html_theme_options

 	html_theme_path

 	html_title

 	html_translator_class

 	html_use_index

 	html_use_modindex

 	html_use_opensearch

 	html_use_smartypants

 	htmlhelp_basename

 	inheritance_edge_attrs

 	inheritance_graph_attrs

 	inheritance_node_attrs

 	intersphinx_cache_limit

 	intersphinx_mapping

 	jsmath_path

 	keep_warnings

 	language

 	latex_additional_files

 	latex_appendices

 	latex_docclass

 	latex_documents

 	latex_domain_indices

 	latex_elements

 	latex_font_size

 	latex_logo

 	latex_paper_size

 	latex_preamble

 	latex_show_pagerefs

 	latex_show_urls

 	latex_use_modindex

 	latex_use_parts

 	locale_dirs

 	man_pages

 	master_doc

 	modindex_common_prefix

 	needs_sphinx

 	nitpicky

 	pngmath_dvipng

 	pngmath_dvipng_args

 	pngmath_latex

 	pngmath_latex_args

 	pngmath_latex_preamble

 	pngmath_use_preview

 	primary_domain

 	project

 	pygments_style

 	release

 	rst_epilog

 	rst_prolog

 	show_authors

 	source_encoding

 	source_suffix

 	template_bridge

 	templates_path

 	today

 	today_fmt

 	todo_include_todos

 	trim_doctest_flags

 	trim_footnote_reference_space

 	unused_docs

 	version

 	connect() (sphinx.application.Sphinx method)

 	
 contents

 	

 	table of

 	
 copyright

 	

 	configuration value

 	copyright (built-in variable)

 	
 coverage_c_path

 	

 	configuration value

 	
 coverage_c_regexes

 	

 	configuration value

 	
 coverage_ignore_c_items

 	

 	configuration value

 	
 coverage_ignore_classes

 	

 	configuration value

 	
 coverage_ignore_functions

 	

 	configuration value

 	
 coverage_ignore_modules

 	

 	configuration value

 	CoverageBuilder (class in sphinx.ext.coverage)

 	cpp:class (directive)

 	

 	(role)

 	cpp:func (role)

 	cpp:function (directive)

 	cpp:member (directive)

 	

 	(role)

 	cpp:namespace (directive)

 	cpp:type (directive)

 	

 	(role)

 	cut_lines() (in module sphinx.ext.autodoc)

D

 	

 	dangling_warnings (sphinx.domains.Domain attribute)

 	data_version (sphinx.domains.Domain attribute)

 	
 default

 	

 	domain

 	role

 	default-domain (directive)

 	
 default_role

 	

 	configuration value

 	delete_comment() (sphinx.websupport.storage.StorageBackend method)

 	deprecated (directive)

 	describe (directive)

 	DevhelpBuilder (class in sphinx.builders.devhelp)

 	dfn (role)

 	digraph (directive)

 	directive

 	directive() (sphinx.domains.Domain method)

 	directives (sphinx.domains.Domain attribute)

 	DirectoryHTMLBuilder (class in sphinx.builders.html)

 	

 	disconnect() (sphinx.application.Sphinx method)

 	doc (role)

 	docstitle (built-in variable)

 	docstring

 	doctest

 	

 	(directive)

 	
 doctest_global_setup

 	

 	configuration value

 	
 doctest_path

 	

 	configuration value

 	
 doctest_test_doctest_blocks

 	

 	configuration value

 	
 doctree-read

 	

 	event

 	
 doctree-resolved

 	

 	event

 	document name

 	
 documentation

 	

 	automatic

 	domain

 	Domain (class in sphinx.domains)

 	download (role)

E

 	

 	embedded (built-in variable)

 	emit() (sphinx.application.Sphinx method)

 	emit_firstresult() (sphinx.application.Sphinx method)

 	enumerate() (built-in function)

 	
 env-purge-doc

 	

 	event

 	
 env-updated

 	

 	event

 	environment

 	envvar (directive)

 	

 	(role)

 	
 epub_author

 	

 	configuration value

 	
 epub_basename

 	

 	configuration value

 	
 epub_copyright

 	

 	configuration value

 	
 epub_cover

 	

 	configuration value

 	
 epub_exclude_files

 	

 	configuration value

 	
 epub_identifier

 	

 	configuration value

 	
 epub_language

 	

 	configuration value

 	
 epub_post_files

 	

 	configuration value

 	
 epub_pre_files

 	

 	configuration value

 	
 epub_publisher

 	

 	configuration value

 	

 	
 epub_scheme

 	

 	configuration value

 	
 epub_theme

 	

 	configuration value

 	
 epub_title

 	

 	configuration value

 	
 epub_tocdepth

 	

 	configuration value

 	
 epub_tocdup

 	

 	configuration value

 	
 epub_uid

 	

 	configuration value

 	EpubBuilder (class in sphinx.builders.epub)

 	eq (role)

 	
 event

 	

 	autodoc-process-docstring

 	autodoc-process-signature

 	autodoc-skip-member

 	build-finished

 	builder-inited

 	doctree-read

 	doctree-resolved

 	env-purge-doc

 	env-updated

 	html-collect-pages

 	html-page-context

 	missing-reference

 	source-read

 	
 examples

 	

 	code

 	exceptions (built-in variable)

 	
 exclude_dirnames

 	

 	configuration value

 	
 exclude_patterns

 	

 	configuration value

 	
 exclude_trees

 	

 	configuration value

 	ExtensionError

 	
 extensions

 	

 	configuration value

 	
 extlinks

 	

 	configuration value

 	extract_context() (sphinx.websupport.search.BaseSearch method)

F

 	

 	favicon (built-in variable)

 	feed() (sphinx.websupport.search.BaseSearch method)

 	file (role)

 	file_suffix (built-in variable)

 	finish() (sphinx.builders.Builder method)

 	

 	finish_indexing() (sphinx.websupport.search.BaseSearch method)

 	foo (directive)

 	

 	(role)

 	fullname (built-in variable)

 	functions (built-in variable)

G

 	

 	generate() (sphinx.domains.Index method)

 	get_data() (sphinx.websupport.storage.StorageBackend method)

 	

 	(sphinx.websupport.WebSupport method)

 	get_document() (sphinx.websupport.WebSupport method)

 	get_objects() (sphinx.domains.Domain method)

 	get_outdated_docs() (sphinx.builders.Builder method)

 	get_relative_uri() (sphinx.builders.Builder method)

 	get_search_results() (sphinx.websupport.WebSupport method)

 	get_target_uri() (sphinx.builders.Builder method)

 	get_type_name() (sphinx.domains.Domain method)

 	

 	
 global

 	

 	substitutions

 	globalcontext_filename (sphinx.builders.html.SerializingHTMLBuilder attribute)

 	glossary (directive)

 	graph (directive)

 	graphviz (directive)

 	
 graphviz_dot

 	

 	configuration value

 	
 graphviz_dot_args

 	

 	configuration value

 	
 graphviz_output_format

 	

 	configuration value

 	guilabel (role)

H

 	

 	handle_query() (sphinx.websupport.search.BaseSearch method)

 	has_source (built-in variable)

 	hasdoc() (built-in function)

 	
 highlight_language

 	

 	configuration value

 	hlist (directive)

 	
 html-collect-pages

 	

 	event

 	
 html-page-context

 	

 	event

 	
 html_add_permalinks

 	

 	configuration value

 	
 html_additional_pages

 	

 	configuration value

 	
 html_compact_lists

 	

 	configuration value

 	
 html_copy_source

 	

 	configuration value

 	
 html_domain_indices

 	

 	configuration value

 	
 html_favicon

 	

 	configuration value

 	
 html_file_suffix

 	

 	configuration value

 	
 html_last_updated_fmt

 	

 	configuration value

 	
 html_link_suffix

 	

 	configuration value

 	
 html_logo

 	

 	configuration value

 	
 html_output_encoding

 	

 	configuration value

 	
 html_secnumber_suffix

 	

 	configuration value

 	

 	
 html_short_title

 	

 	configuration value

 	
 html_show_copyright

 	

 	configuration value

 	
 html_show_sourcelink

 	

 	configuration value

 	
 html_show_sphinx

 	

 	configuration value

 	
 html_sidebars

 	

 	configuration value

 	
 html_split_index

 	

 	configuration value

 	
 html_static_path

 	

 	configuration value

 	
 html_style

 	

 	configuration value

 	
 html_theme

 	

 	configuration value

 	
 html_theme_options

 	

 	configuration value

 	
 html_theme_path

 	

 	configuration value

 	
 html_title

 	

 	configuration value

 	
 html_translator_class

 	

 	configuration value

 	
 html_use_index

 	

 	configuration value

 	
 html_use_modindex

 	

 	configuration value

 	
 html_use_opensearch

 	

 	configuration value

 	
 html_use_smartypants

 	

 	configuration value

 	
 htmlhelp_basename

 	

 	configuration value

 	HTMLHelpBuilder (class in sphinx.builders.htmlhelp)

I

 	

 	ifconfig (directive)

 	implementation (sphinx.builders.html.SerializingHTMLBuilder attribute)

 	
 in version

 	

 	changes

 	Index (class in sphinx.domains)

 	index (directive)

 	

 	(role)

 	indices (sphinx.domains.Domain attribute)

 	inheritance-diagram (directive)

 	
 inheritance_edge_attrs

 	

 	configuration value

 	

 	
 inheritance_graph_attrs

 	

 	configuration value

 	
 inheritance_node_attrs

 	

 	configuration value

 	init() (sphinx.application.TemplateBridge method)

 	

 	(sphinx.builders.Builder method)

 	init_indexing() (sphinx.websupport.search.BaseSearch method)

 	initial_data (sphinx.domains.Domain attribute)

 	
 intersphinx_cache_limit

 	

 	configuration value

 	
 intersphinx_mapping

 	

 	configuration value

J

 	

 	js:attr (role)

 	js:attribute (directive)

 	js:class (directive)

 	

 	(role)

 	js:data (directive)

 	

 	(role)

 	

 	js:func (role)

 	js:function (directive)

 	
 jsmath_path

 	

 	configuration value

 	JSONHTMLBuilder (class in sphinx.builders.html)

K

 	

 	kbd (role)

 	
 keep_warnings

 	

 	configuration value

 	

 	keyword (role)

L

 	

 	label (sphinx.domains.Domain attribute)

 	
 language

 	

 	configuration value

 	last_updated (built-in variable)

 	
 latex_additional_files

 	

 	configuration value

 	
 latex_appendices

 	

 	configuration value

 	
 latex_docclass

 	

 	configuration value

 	
 latex_documents

 	

 	configuration value

 	
 latex_domain_indices

 	

 	configuration value

 	
 latex_elements

 	

 	configuration value

 	
 latex_font_size

 	

 	configuration value

 	
 latex_logo

 	

 	configuration value

 	

 	
 latex_paper_size

 	

 	configuration value

 	
 latex_preamble

 	

 	configuration value

 	
 latex_show_pagerefs

 	

 	configuration value

 	
 latex_show_urls

 	

 	configuration value

 	
 latex_use_modindex

 	

 	configuration value

 	
 latex_use_parts

 	

 	configuration value

 	LaTeXBuilder (class in sphinx.builders.latex)

 	
 linking

 	

 	automatic

 	literalinclude (directive)

 	
 locale_dirs

 	

 	configuration value

 	logo (built-in variable)

M

 	

 	mailheader (role)

 	makevar (role)

 	
 man_pages

 	

 	configuration value

 	manpage (role)

 	ManualPageBuilder (class in sphinx.builders.manpage)

 	master document

 	
 master_doc

 	

 	configuration value

 	master_doc (built-in variable)

 	math (directive)

 	

 	(role)

 	members (built-in variable)

 	

 	menuselection (role)

 	merge_domaindata() (sphinx.domains.Domain method)

 	MessageCatalogBuilder (class in sphinx.builders.intl)

 	meta (built-in variable)

 	methods (built-in variable)

 	mimetype (role)

 	
 missing-reference

 	

 	event

 	
 modindex_common_prefix

 	

 	configuration value

 	module (built-in variable)

 	MyAnimal() (class)

N

 	

 	name (built-in variable)

 	

 	(sphinx.domains.Domain attribute)

 	namespaced::theclass::method (C++ function), [1]

 	
 needs_sphinx

 	

 	configuration value

 	newest_template_mtime() (sphinx.application.TemplateBridge method)

 	

 	newsgroup (role)

 	next (built-in variable)

 	
 nitpicky

 	

 	configuration value

 	note

 	

 	(directive)

O

 	

 	object

 	

 	(directive)

 	object_types (sphinx.domains.Domain attribute)

 	objname (built-in variable)

 	ObjType (class in sphinx.domains)

 	only (directive)

 	

 	operator bool (C++ function)

 	option (directive)

 	

 	(role)

 	out_suffix (sphinx.builders.html.SerializingHTMLBuilder attribute)

 	override_domain() (sphinx.application.Sphinx method)

P

 	

 	pagename (built-in variable)

 	parents (built-in variable)

 	pathto() (built-in function), [1]

 	pep (role)

 	PickleHTMLBuilder (class in sphinx.builders.html)

 	
 pngmath_dvipng

 	

 	configuration value

 	
 pngmath_dvipng_args

 	

 	configuration value

 	
 pngmath_latex

 	

 	configuration value

 	
 pngmath_latex_args

 	

 	configuration value

 	
 pngmath_latex_preamble

 	

 	configuration value

 	
 pngmath_use_preview

 	

 	configuration value

 	post_build() (sphinx.websupport.storage.StorageBackend method)

 	pre_build() (sphinx.websupport.storage.StorageBackend method)

 	prepare_writing() (sphinx.builders.Builder method)

 	prev (built-in variable)

 	
 primary

 	

 	domain

 	
 primary_domain

 	

 	configuration value

 	process_doc() (sphinx.domains.Domain method)

 	process_vote() (sphinx.websupport.storage.StorageBackend method)

 	

 	(sphinx.websupport.WebSupport method)

 	productionlist (directive)

 	program (directive)

 	

 	(role)

 	

 	
 project

 	

 	configuration value

 	project (built-in variable)

 	py:attr (role)

 	py:attribute (directive)

 	py:class (directive)

 	

 	(role)

 	py:classmethod (directive)

 	py:const (role)

 	py:currentmodule (directive)

 	py:data (directive)

 	

 	(role)

 	py:exc (role)

 	py:exception (directive)

 	py:func (role)

 	py:function (directive)

 	py:meth (role)

 	py:method (directive)

 	py:mod (role)

 	py:module (directive)

 	py:obj (role)

 	py:staticmethod (directive)

 	
 pygments_style

 	

 	configuration value

Q

 	

 	QtHelpBuilder (class in sphinx.builders.qthelp)

 	

 	query() (sphinx.websupport.search.BaseSearch method)

R

 	

 	ref (role)

 	regexp (role)

 	relbar() (built-in function)

 	reldelim1 (built-in variable)

 	reldelim2 (built-in variable)

 	
 release

 	

 	configuration value

 	release (built-in variable)

 	rellinks (built-in variable)

 	render() (sphinx.application.TemplateBridge method)

 	render_string() (sphinx.application.TemplateBridge method)

 	require_sphinx() (sphinx.application.Sphinx method)

 	resolve_any_xref() (sphinx.domains.Domain method)

 	

 	resolve_xref() (sphinx.domains.Domain method)

 	rfc (role)

 	role

 	role() (sphinx.domains.Domain method)

 	roles (sphinx.domains.Domain attribute)

 	rst:dir (role)

 	rst:directive (directive)

 	rst:role (directive)

 	

 	(role)

 	
 rst_epilog

 	

 	configuration value

 	
 rst_prolog

 	

 	configuration value

 	rubric (directive)

S

 	

 	samp (role)

 	script_files (built-in variable)

 	searchindex_filename (sphinx.builders.html.SerializingHTMLBuilder attribute)

 	sectionauthor (directive)

 	seealso (directive)

 	SerializingHTMLBuilder (class in sphinx.builders.html)

 	setup_extension() (sphinx.application.Sphinx method)

 	shorttitle (built-in variable)

 	
 show_authors

 	

 	configuration value

 	show_source (built-in variable)

 	sidebar() (built-in function)

 	SingleFileHTMLBuilder (class in sphinx.builders.html)

 	
 snippets

 	

 	testing

 	source directory

 	
 source-read

 	

 	event

 	
 source_encoding

 	

 	configuration value

 	
 source_suffix

 	

 	configuration value

 	sourcecode

 	sourcename (built-in variable)

 	sphinx.application (module)

 	sphinx.builders (module)

 	sphinx.builders.changes (module)

 	sphinx.builders.devhelp (module)

 	sphinx.builders.epub (module)

 	sphinx.builders.html (module)

 	sphinx.builders.htmlhelp (module)

 	sphinx.builders.intl (module)

 	

 	sphinx.builders.latex (module)

 	sphinx.builders.linkcheck (module)

 	sphinx.builders.manpage (module)

 	sphinx.builders.qthelp (module)

 	sphinx.builders.text (module)

 	sphinx.domains (module)

 	sphinx.ext.autodoc (module)

 	sphinx.ext.autosummary (module)

 	sphinx.ext.coverage (module)

 	sphinx.ext.doctest (module)

 	sphinx.ext.extlinks (module)

 	sphinx.ext.graphviz (module)

 	sphinx.ext.ifconfig (module)

 	sphinx.ext.inheritance_diagram (module)

 	sphinx.ext.intersphinx (module)

 	sphinx.ext.jsmath (module)

 	sphinx.ext.mathbase (module)

 	sphinx.ext.oldcmarkup (module)

 	sphinx.ext.pngmath (module)

 	sphinx.ext.refcounting (module)

 	sphinx.ext.todo (module)

 	sphinx.ext.viewcode (module)

 	sphinx_version (built-in variable)

 	StandaloneHTMLBuilder (class in sphinx.builders.html)

 	StorageBackend (class in sphinx.websupport.storage)

 	style (built-in variable)

 	
 substitutions

 	

 	global

T

 	

 	
 table of

 	

 	contents

 	tabularcolumns (directive)

 	
 template_bridge

 	

 	configuration value

 	TemplateBridge (class in sphinx.application)

 	
 templates_path

 	

 	configuration value

 	term (role)

 	testcode (directive)

 	
 testing

 	

 	automatic

 	snippets

 	testoutput (directive)

 	testsetup (directive)

 	TextBuilder (class in sphinx.builders.text)

 	theclass::const_iterator (C++ type)

 	

 	theclass::name (C++ member)

 	title (built-in variable)

 	toc (built-in variable)

 	toctree (built-in variable)

 	

 	(directive)

 	
 today

 	

 	configuration value

 	
 today_fmt

 	

 	configuration value

 	todo (directive)

 	
 todo_include_todos

 	

 	configuration value

 	todolist (directive)

 	token (role)

 	
 trim_doctest_flags

 	

 	configuration value

 	
 trim_footnote_reference_space

 	

 	configuration value

U

 	

 	underline (built-in variable)

 	
 unused_docs

 	

 	configuration value

 	

 	update_username() (sphinx.websupport.storage.StorageBackend method)

 	use_opensearch (built-in variable)

V

 	

 	
 version

 	

 	configuration value

 	version (built-in variable)

 	

 	versionadded (directive)

 	versionchanged (directive)

W

 	

 	warning

 	

 	(directive)

 	WebSupport (class in sphinx.websupport)

 	

 	write_doc() (sphinx.builders.Builder method)

Z

 	

 	Zoom.Quiet

Symbols

 	

 	主控文档

 	指令

 	文档名

 	

 	角色

 	资源目录

 Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

 _images/nature.png

_images/haiku.png

_images/more.png

_images/scrolls.png

_images/traditional.png
SPHINX

_images/default.png
9. sched — Even schecter

_images/sphinxdoc.png

_images/translation.png
x—build

gettext

translator

o
project

sphinx-build
-Dlanguage=

translated |
build

_images/agogo.png

_static/down.png

_static/comment-close.png

_static/sphinx.png
== SPHINX

& /Z,’ PYTHON DOCUMENTATION GENERATOR

tutorial-footnote.html

 Navigation

 		
 index

 		
 modules |

 		Sphinx 1.3.1 documentation »

 脚注

		[1]		这只是一般情况. 其实 conf.py 也可以部属在其它目录,
通过配置 configuration directory. 参考 使用 sphinx-build.

		[2]		译按: 更多情况,我们的确使用配置好的 make 命令;
只是对于中文用户,这里生成的 LaTeX 标签文本,并不能很好的生成PDF,这里的技巧另外分享 ;-)

		[3]		译按: 的确不明白,这儿作什么用的,俺一直没有用过...

 © Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

_static/up.png

_static/comment-bright.png

man/sphinx-build.html

 Navigation

 		
 index

 		
 modules |

 		Sphinx 1.3.1 documentation »

sphinx-build manual page

Synopsis

sphinx-build [options] <sourcedir> <outdir> [filenames ...]

Description

sphinx-build generates documentation from the files in
<sourcedir> and places it in the <outdir>.

sphinx-build looks for <sourcedir>/conf.py for the configuration
settings. sphinx-quickstart(1) may be used to generate template
files, including conf.py.

sphinx-build can create documentation in different formats. A format
is selected by specifying the builder name on the command line; it defaults to
HTML. Builders can also perform other tasks related to documentation
processing.

By default, everything that is outdated is built. Output only for selected
files can be built by specifying individual filenames.

List of available builders:

		html

		HTML file generation. This is the default builder.

		htmlhelp

		Generates files for CHM (compiled help files) generation.

		qthelp

		Generates files for Qt help collection generation.

		devhelp

		Generates files for the GNOME Devhelp help viewer.

		latex

		Generates LaTeX output that can be compiled to a PDF document.

		man

		Generates manual pages.

		text

		Generates a plain-text version of the documentation.

		changes

		Generates HTML files listing changed/added/deprecated items for
the current version of the documented project.

		linkcheck

		Checks the integrity of all external links in the source.

		pickle / json

		Generates serialized HTML files for use in web applications.

Options

		
-b <builder>
		Builder to use; defaults to html. See the full list
of builders above.

		
-a
		Generate output for all files; without this option only
output for new and changed files is generated.

		
-E
		Ignore cached files, forces to re-read all source files
from disk.

		
-c <path>
		Locate the conf.py file in the specified path instead of
<sourcedir>.

		
-C
		Specify that no conf.py file at all is to be used.
Configuration can only be set with the -D option.

		
-D <setting=value>

		 		Override a setting from the configuration file.

		
-d <path>
		Path to cached files; defaults to <outdir>/.doctrees.

		
-A <name=value>

		 		Pass a value into the HTML templates (only for HTML builders).

		
-n
		Run in nit-picky mode, warn about all missing references.

		
-N
		Prevent colored output.

		
-q
		Quiet operation, just print warnings and errors on stderr.

		
-Q
		Very quiet operation, don’t print anything except for errors.

		
-w <file>
		Write warnings and errors into the given file, in addition
to stderr.

		
-W
		Turn warnings into errors.

		
-P
		Run Pdb on exception.

See also

sphinx-quickstart(1)

Author

Georg Brandl <georg@python.org>, Armin Ronacher <armin.ronacher@active-4.com> et
al.

This manual page was initially written by Mikhail Gusarov
<dottedmag@dottedmag.net>, for the Debian project.

 © Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

_static/file.png

man/sphinx-quickstart.html

 Navigation

 		
 index

 		
 modules |

 		Sphinx 1.3.1 documentation »

sphinx-quickstart manual page

Synopsis

sphinx-quickstart

Description

sphinx-quickstart is an interactive tool that asks some questions
about your project and then generates a complete documentation directory and
sample Makefile to be used with sphinx-build(1).

See also

sphinx-build(1)

Author

Georg Brandl <georg@python.org>, Armin Ronacher <armin.ronacher@active-4.com> et
al.

This manual page was initially written by Mikhail Gusarov
<dottedmag@dottedmag.net>, for the Debian project.

 © Copyright 2007-2010, Georg Brandl.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/comment.png

