

SQL (Structured Query Language) in one page

 Contents:
 Review: FAQ;
 Table of contents: Database Manipulation (CREATE, DROP DATABASE), Table Manipulation (CREATE, ALTER, DROP TABLE,
Data Types), Index Manipulation (CREATE, DROP INDEX), Data Manipulation (INSERT, UPDATE, DELETE, TRUNCATE TABLE), Select
(SELECT, FROM, WHERE, ORDER BY, GROUP BY, HAVING, Operators, Aggregate functions), Alias, Join, UNION, SELECT INTO/IN,
CREATE VIEW;
 Similar Sites: MANUAL, Cheat sheets, HTML, CSS, XML, DTD, JavaScript, W3C DOM, SQL, SSI, Tell a friend, Free Icons,
Itlibitum, Corp..

 Search

 FAQ

 What is SQL?

SQL stands for Structured Query Language;
SQL allows you to access a database;
SQL is an ANSI standard computer language;
SQL use to access and manipulate data in
Oracle, Sybase, Microsoft SQL Server, DB2,
Access, MySQL, PostgreSQL and other database
systems;
SQL can execute queries against a database;
SQL can retrieve data from a database;
SQL can insert new records in a database;
SQL can delete records from a database;
SQL can update records in a database;
SQL is easy to learn.

 Database Manipulation
 CREATE DATABASE database_name Create a database CREATE DATABASE My_First_Database

 DROP DATABASE database_name Delete a database DROP DATABASE My_First_Database

 Table Manipulation
 CREATE TABLE "table_name"

("column_1" "data_type_for_column_1",
"column_2" "data_type_for_column_2",
...)

 Create a table in a database. CREATE TABLE Person
(LastName varchar,
FirstName varchar,
Address varchar,
Age int)

 Data Types

Data Type Description
integer(size) Hold integers only. The maximum number of

digits are specified in parenthesis.int(size)

smallint(size)

tinyint(size)

decimal(size,d) Hold numbers with fractions. The maximum
number of digits are specified in "size". The
maximum number of digits to the right of the
decimal is specified in "d".

numeric(size,d)

char(size) Holds a fixed length string (can contain
letters, numbers, and special characters). The
fixed size is specified in parenthesis.

varchar(size) Holds a variable length string (can
contain letters, numbers, and special
characters). The maximum size is specified in
parenthesis.

date(yyyymmdd) Holds a date

 ALTER TABLE table_name ADD column_name datatype Add columns in an existing table. ALTER TABLE Person ADD Sex char(6)

 ALTER TABLE table_name DDROP column_name datatype Delete columns in an existing table. ALTER TABLE Person DROP Sex char(6)

 DROP TABLE table_name Delete a table. DROP TABLE Person

 Index Manipulation
 CREATE INDEX index_name

ON table_name (column_name_1, column_name_2, ...)
 Create a simple index. CREATE INDEX PersonIndex

ON Person (LastName, FirstName)

 CREATE UNIQUE INDEX index_name
ON table_name (column_name_1, column_name_2, ...)

 Create a unique index. CREATE UNIQUE INDEX PersonIndex
ON Person (LastName DESC)

 DROP INDEX table_name.index_name Delete a index. DROP INDEX Person.PersonIndex

 Data Manipulation
 INSERT INTO table_name

VALUES (value_1, value_2,....)
 Insert new rows into a table. INSERT INTO Persons

VALUES('Hussein', 'Saddam', 'White House')

 INSERT INTO table_name (column1, column2,...)
VALUES (value_1, value_2,....)

INSERT INTO Persons (LastName, FirstName, Address)
VALUES('Hussein', 'Saddam', 'White House')

 UPDATE table_name
SET column_name_1 = new_value_1, column_name_2 =
new_value_2
WHERE column_name = some_value

 Update one or several columns in rows. UPDATE Person
SET Address = 'ups'
WHERE LastName = 'Hussein'

 DELETE FROM table_name
WHERE column_name = some_value

 Delete rows in a table. DELETE FROM Person WHERE LastName = 'Hussein'

 TRUNCATE TABLE table_name Deletes the data inside the table. TRUNCATE TABLE Person

 Select
 SELECT column_name(s) FROM table_name Select data from a table. SELECT LastName, FirstName FROM Persons

 SELECT * FROM table_name Select all data from a table. SELECT * FROM Persons

 SELECT DISTINCT column_name(s) FROM table_name Select only distinct (different) data from a table. SELECT DISTINCT LastName, FirstName FROM Persons

 SELECT column_name(s) FROM table_name
WHERE column operator value
 AND column operator value
 OR column operator value
 AND (... OR ...)
 ...

 Select only certain data from a table. SELECT * FROM Persons WHERE sex='female'

 Operators

Operator Description
= Equal

<> Not equal

> Greater than

SELECT * FROM Persons WHERE Year>1970

 SELECT * FROM Persons
WHERE FirstName='Saddam'
AND LastName='Hussein'

 SELECT * FROM Persons
WHERE FirstName='Saddam'

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern.
A "%" sign can be used to define wildcards (missing
letters in the pattern) both before and after the
pattern.

OR LastName='Hussein'

 SELECT * FROM Persons WHERE
(FirstName='Tove' OR FirstName='Stephen')
AND LastName='Svendson'

 SELECT * FROM Persons WHERE FirstName LIKE 'O%'

 SELECT * FROM Persons WHERE FirstName LIKE '%a'

 SELECT * FROM Persons WHERE FirstName LIKE '%la%'

 SELECT column_name(s) FROM table_name
WHERE column_name IN (value1, value2, ...)

 The IN operator may be used if you know the exact value you
want to return for at least one of the columns.

SELECT * FROM Persons
WHERE LastName IN ('Hansen','Pettersen')

 SELECT column_name(s) FROM table_name
ORDER BY row_1, row_2 DESC, row_3 ASC, ...

 Select data from a table with sort the rows.

Note:

ASC (ascend) is a alphabetical and numerical order (optional)
DESC (descend) is a reverse alphabetical and numerical order

SELECT * FROM Persons
ORDER BY LastName

 SELECT FirstName, LastName FROM Persons
ORDER BY LastName DESC

 SELECT Company, OrderNumber FROM Orders
ORDER BY Company DESC, OrderNumber ASC

 SELECT column_1, ..., SUM(group_column_name)
FROM table_name
GROUP BY group_column_name

 GROUP BY... was added to SQL because aggregate functions
(like SUM) return the aggregate of all column values every time
they are called, and without the GROUP BY function it was
impossible to find the sum for each individual group of column
values.

SELECT Company, SUM(Amount)
FROM Sales
GROUP BY Company

 Some aggregate functions

Function Description
AVG(column) Returns the average value of a column

COUNT(column) Returns the number of rows (without a NULL
value) of a column

MAX(column) Returns the highest value of a column

MIN(column) Returns the lowest value of a column

SUM(column) Returns the total sum of a column

 SELECT column_1, ..., SUM(group_column_name)
FROM table_name
GROUP BY group_column_name
HAVING SUM(group_column_name) condition value

 HAVING... was added to SQL because the WHERE keyword could
not be used against aggregate functions (like SUM), and without
HAVING... it would be impossible to test for result conditions.

SELECT Company, SUM(Amount)
FROM Sales
GROUP BY Company
HAVING SUM(Amount)>10000

 Alias
 SELECT column_name AS column_alias FROM table_name Column name alias SELECT LastName AS Family, FirstName AS Name

FROM Persons

 SELECT table_alias.column_name FROM table_name AS
table_alias

Table name alias SELECT LastName, FirstName
FROM Persons AS Employees

 Join
 SELECT column_1_name, column_2_name, ...

FROM first_table_name
INNER JOIN second_table_name
ON first_table_name.keyfield =
second_table_name.foreign_keyfield

 The INNER JOIN returns all rows from both tables where
there is a match. If there are rows in first table that do not
have matches in second table, those rows will not be listed.

SELECT Employees.Name, Orders.Product
FROM Employees
INNER JOIN Orders
ON Employees.Employee_ID=Orders.Employee_ID

 SELECT column_1_name, column_2_name, ... The LEFT JOIN returns all the rows from the first table, SELECT Employees.Name, Orders.Product

FROM first_table_name
LEFT JOIN second_table_name
ON first_table_name.keyfield =
second_table_name.foreign_keyfield

even if there are no matches in the second table. If there are
rows in first table that do not have matches in second table,
those rows also will be listed.

FROM Employees
LEFT JOIN Orders
ON Employees.Employee_ID=Orders.Employee_ID

 SELECT column_1_name, column_2_name, ...
FROM first_table_name
RIGHT JOIN second_table_name
ON first_table_name.keyfield =
second_table_name.foreign_keyfield

 The RIGHT JOIN returns all the rows from the second table,
even if there are no matches in the first table. If there had been
any rows in second table that did not have matches in first table,
those rows also would have been listed.

SELECT Employees.Name, Orders.Product
FROM Employees
RIGHT JOIN Orders
ON Employees.Employee_ID=Orders.Employee_ID

 UNION
 SQL_Statement_1

UNION
SQL_Statement_2

 Select all different values from SQL_Statement_1 and
SQL_Statement_2

SELECT E_Name FROM Employees_Norway
UNION
SELECT E_Name FROM Employees_USA

 SQL_Statement_1
UNION ALL
SQL_Statement_2

 Select all values from SQL_Statement_1 and SQL_Statement_2 SELECT E_Name FROM Employees_Norway
UNION
SELECT E_Name FROM Employees_USA

 SELECT INTO/IN
 SELECT column_name(s)

INTO new_table_name
FROM source_table_name
WHERE query

 Select data from table(S) and insert it into another table. SELECT * INTO Persons_backup FROM Persons

 SELECT column_name(s)
IN external_database_name
FROM source_table_name
WHERE query

 Select data from table(S) and insert it in another database. SELECT Persons.* INTO Persons IN 'Backup.db' FROM
Persons WHERE City='Sandnes'

 CREATE VIEW
 CREATE VIEW view_name AS

SELECT column_name(s)
FROM table_name
WHERE condition

 Create a virtual table based on the result-set of a SELECT
statement.

CREATE VIEW [Current Product List] AS
SELECT ProductID, ProductName
FROM Products
WHERE Discontinued=No

 OTHER
 © 2006 MANUAL.SU (Itlibitum, Corp.)

