One Parser to Rule Them All

Ali Afroozeh Anastasia Izmaylova

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

{ali.afroozeh, anastasia.izmaylova}@cwi.nl

Abstract

Despite the long history of research in parsing, constructing
parsers for real programming languages remains a difficult
and painful task. In the last decades, different parser gen-
erators emerged to allow the construction of parsers from a
BNF-like specification. However, still today, many parsers
are handwritten, or are only partly generated, and include
various hacks to deal with different peculiarities in program-
ming languages. The main problem is that current declara-
tive syntax definition techniques are based on pure context-
free grammars, while many constructs found in program-
ming languages require context information.

In this paper we propose a parsing framework that em-
braces context information in its core. Our framework is
based on data-dependent grammars, which extend context-
free grammars with arbitrary computation, variable binding
and constraints. We present an implementation of our frame-
work on top of the Generalized LL (GLL) parsing algorithm,
and show how common idioms in syntax of programming
languages such as (1) lexical disambiguation filters, (2) op-
erator precedence, (3) indentation-sensitive rules, and (4)
conditional preprocessor directives can be mapped to data-
dependent grammars. We demonstrate the initial experience
with our framework, by parsing more than 20 000 Java, C#,
Haskell, and OCaml source files.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory—Syntax; D.3.4
[Programming Languages]: Processors—Parsing

Keywords Parsing, data-dependent grammars, GLL, dis-
ambiguation, operator precedence, offside rule, preprocessor
directives, scannerless parsing, context-aware scanning

Copyright ©ACM, 2015. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in Onward!’15, October 25-30, 2015, Pittsburgh, PA, USA.
http://dx.doi.org/10.1145/2814228.2814242.

1. Introduction

Parsing is a well-researched topic in computer science, and
it is common to hear from fellow researchers in the field
of programming languages that parsing is a solved prob-
lem. This statement mostly originates from the success of
Yacc [18] and its underlying theory that has been developed
in the 70s. Since Knuth’s seminal paper on LR parsing [25],
and DeRemer’s work on practical LR parsing (LALR) [6],
there is a linear parsing technique that covers most syntactic
constructs in programming languages. Yacc, and its various
ports to other languages, enabled the generation of efficient
parsers from a BNF specification. Still, research papers and
tools on parsing in the last four decades show an ongoing
effort to develop new parsing techniques.

A central goal in research in parsing has been to en-
able language engineers (i.e., language designers and tool
builders) to declaratively build a parser for a real program-
ming language from an (E)BNF-like specification. Never-
theless, still today, many parsers are hand-written or are
only partially generated and include many hacks to deal
with peculiarities in programming languages. The reason
is that grammars of programming languages in their sim-
ple and readable form are often not deterministic and also
often ambiguous. Moreover, many constructs found in pro-
gramming languages are not context-free, e.g., indentation
rules in Haskell. Parser generators based on pure context-
free grammars cannot natively deal with such constructs,
and require ad-hoc extensions or hacks in the lexer. There-
fore, additional means are necessary outside of the power of
context-free grammars to address these issues.

General parsing algorithms [7, 33, 35] support all context-
free grammars, therefore the language engineer is not lim-
ited by a specific deterministic class, and there are known
declarative disambiguation constructs to address the prob-
lem of ambiguity in general parsing [12, 36, 38]. However,
implementing disambiguation constructs is notoriously hard
and requires thorough knowledge of the underlying parsing
technology. This means that it is costly to declaratively build
a parser for a given programming language in the wild if
the required disambiguation constructs are not already sup-
ported. Perhaps surprisingly, examples of such languages are
not only the legacy languages, but also modern languages
such as Haskell, Python, OCaml and C#.

In this paper we propose a parsing framework that is able
to deal with many challenges in parsing existing and new
programming languages. We embrace the need for context
information at runtime, and base our framework on data-
dependent grammars [16]. Data-dependent grammars are an
extension of context-free grammars that allow arbitrary com-
putation, variable binding and constraints. These features al-
low us to simulate hand-written parsers and to implement
disambiguation constructs.

To demonstrate the concept of data-dependent grammars
we use the IMAP protocol [29]. In network protocol mes-
sages it is common to send the length of data before the ac-
tual data. In IMAP, these messages are called literals, and
are described by the following (simplified) context-free rule:

L8 ::= '~{' Number '}' Octets

Here octets recognizes a list of octet (any 8-bit) values. An
example of L8 is ~{6}aaaaaa. As can be seen, there is no
data dependency in this context-free grammar, but the IMAP
specification says that the number of octets is determined by
the value parsed by Number. Using data-dependent grammars,
we can specify such a data-dependency as:

L8 ::= '~{' nm:Number {n=toInt(nm.yield)} '}' Octets(n)
Octets(n) ::= [n > 0] Octets(n - 1) Octet
| [n==20] €

In the data-dependent version, nm provides access to the
value parsed by Number. We retrieve the substring of the input
parsed by Number via nm.yield which is converted to integer
using toInt. This integer value is bound to variable n, and
is passed to Octets. Octets takes an argument that specifies
the number of iterations. Conditions [n > 0] and [n == 0]
specify which alternative is selected at each iteration.

It is possible to parse IMAP using a general parser, and
then remove the derivations that violate data dependencies
post parse. However, such an approach would be slow. With-
out enforcing the dependency on the length of octets during
parsing, given the nondeterministic nature of general pars-
ing, all possible lengths of octets will be tried.

There are many common grammar and disambiguation
idioms that can be desugared into data-dependent grammars.
Examples of these idioms are operator precedence, longest
match, and the offside rule. Expecting the language engi-
neer to write low-level data-dependent grammars for such
cases would be wasteful. Instead, we describe a number of
such idioms, provide high-level notation for them and their
desugaring to data-dependent grammars. For example, using
our high-level notation the indentation rules in Haskell can
be expressed as follows:

Decls ::= align (offside Decl)x

| ignore('{' Decl (';' Decl)* '}')
This definition clearly and concisely specifies that either all
declarations in the list are aligned, and each pecl is offsided
with regard to its first token (first alternative), or indentation
is ignored inside curly braces (second alternative).

Our vision is a parsing framework that provides the right
level of abstraction for both the language engineer, who de-
signs new languages, and the tool builder, who needs a pars-
ing technology as part of her toolset. From the language en-
gineer’s perspective, our parsing framework provides an out
of the box set of high-level constructs for most common id-
ioms in syntax of programming languages. The language en-
gineer can also always express her needs directly using data-
dependent grammars. From the tool builder’s perspective,
our framework provides open, extensible means to define
higher-level syntactic notation, without requiring knowledge
of the internal workings of a parsing technology.

The contributions of this paper are:

* We provide a unified perspective on many important chal-
lenges in parsing real programming languages.

* We present several high-level syntactical constructs, and
their mappings to data-dependent grammars.

* We provide an implementation of data-dependent gram-
mars on top of Generalized LL (GLL) parsing [33] that
runs over ATN grammars [40]. The implementation is
part of the Iguana parsing framework! [2].

* We demonstrate the initial results of our parsing frame-
work, by parsing 20363 real source files of Java, C#,
Haskell (91% success rate), and excerpts from OCaml.

The rest of this paper is organized as follows. In Section 2 we
describe the landscape of parsing programming languages.
In Section 3 we present data-dependent grammars, our high-
level syntactic notation, and the mapping to data-dependent
grammars. Section 4 discusses the extension of GLL parsing
with data-dependency. In Section 5 we demonstrate the ini-
tial results of our parsing framework using grammars of real
programming languages. We discuss related work in Sec-
tion 6. A conclusion and discussion of future work is given
in Section 7.

2. The Landscape of Parsing Programming
Languages

In this section we discuss well-known features of program-
ming languages that make them hard to parse. These features
motivate our design decisions.

2.1 General Parsing for Programming Languages

Grammars of programming languages in their natural form
are not deterministic, and are often ambiguous. A well-
known example is the if-then-else construct found in many
programming languages. This construct, when written in
its natural form, is ambiguous (the dangling-else ambigu-
ity), and therefore cannot be deterministic. Some nonde-
terministic (and ambiguous) syntactic constructs, such as
if-then-else, can be rewritten to be deterministic and un-

Uhttps://github.com/iguana-parser

https://github.com/iguana-parser

ambiguous. However, such grammar rewriting in general is
not trivial, the resulting grammar is hard to read, maintain
and evolve, and the resulting parse trees are different from
the original ones the grammar writer had in mind.

Instead of rewriting a grammar, it is common to use an
ambiguous grammar, and rely on some implicit behavior of
a parsing technology for disambiguation. For example, the
dangling-else ambiguity is often resolved using a longest
match scheme provided by the underlying parsing technol-
ogy. Relying on implicit behavior of a parsing technology
to achieve determinism can make it quite difficult to reason
about the accepted language. Seemingly correct sentences
may be rejected by the parser because at a nondetermin-
istic point, a wrong path was chosen. For example, Yacc
is an LALR parser generator, but can accept any context-
free grammar by automatically resolving all shift/reduce and
reduce/reduce conflicts. Using Yacc, the language engineer
should manually check the resolved conflicts in case of un-
expected behavior.

A common theme in research in parsing has been to in-
crease the recognition power of deterministic parsing tech-
niques such as LL(k) or LR(k). One of the widely used gen-
eral parsing techniques for programming languages is the
Generalized LR (GLR) algorithm [35]. GLR parsers support
all context-free grammars and can produce a parse forest
containing all derivation trees in form of a Shared Packed
Parse Forest (SPPF) in cubic time and space [34]. Note that
the cubic bound is for the worst-case, highly ambiguous
grammars. As GLR is a generalization of LR, a GLR parser
runs linearly on LR parts of the grammar, and as the gram-
mars of real programming languages are in most parts near
deterministic, one can expect near-linear performance using
GLR for parsing programming languages. GLR parsing has
successfully been used in source code analysis and develop-
ing domain-specific languages [12, 22].

General parsing enables the language engineer to use the
most natural version of a grammar, but leaves open the prob-
lem of ambiguity. In declarative syntax definition [12, 23],
it is common to use declarative disambiguation constructs,
e.g., for operator precedence or the longest match. As a gen-
eral parser is able to return all ambiguities in form of a parse
forest, it is possible to apply the disambiguation rules post-
parse, removing the undesired derivations from the parse for-
est. However, such post-parse disambiguation is not practical
in cases where the grammar is highly ambiguous. For exam-
ple, parsing expression grammars without applying operator
precedence during parsing is only limited to small inputs.
Therefore, it is required to resolve ambiguity while parsing
to achieve near-linear performance.

Implementing disambiguation mechanisms that are ex-
ecuted during parsing is difficult. This is because the im-
plementation of such disambiguation mechanisms requires
knowledge of the internal workings of a parsing technology.
Therefore, the choice of the general parsing technology be-

comes very important when considering parsing program-
ming languages. For example, GLR parsers operate on LR
automata, and have a rather complicated execution model, as
a parsing state corresponds to multiple grammar positions.

The Generalized LL (GLL) parsing algorithm [33] is a
new generalization of recursive-descent parsing that sup-
ports all context-free grammars, including left recursive
ones. GLL parsers produce a parse forest in cubic time and
space in the worst case, and are linear on LL parts of the
grammar. GLL parsers are attractive because they have the
close relationship with the grammar that recursive-descent
parsers have. From the end user’s perspective, GLL parsers
can produce better error messages, and can be debugged in
a programming language IDE.

To deal with left recursive rules and to keep the cu-
bic bound, a GLL parser uses a GSS to handle multiple
call stacks. While the execution model of a GLL parser
is close to recursive-descent parsing, the underlying ma-
chinery is much more complicated, and still an in-depth
knowledge of GLL is required to implement disambiguation
constructs. In this paper, we propose a parser-independent
framework for parsing programming languages based on
data-dependent grammars. We use GLL parsing as the basis
for our data-dependent parsing framework, as it allows an
intuitive way to implement components of data-dependent
grammars, such as environment threading, and enables an
implementation that is very close to the stack-evaluation
based semantics of data-dependent grammars [16].

2.2 On the Interaction between Lexer and Parser

Conventional parsing techniques use a separate lexing phase
before parsing to transform a stream of characters to a stream
of tokens. In particular, whitespace and comments are dis-
carded by the lexer to reduce the number of lookahead in the
parsing phase, and enable deterministic parsing.

The main problem with a separate lexing phase is that
without having access to the parsing context, i.e., the appli-
cable grammar rules, the lexer cannot unambiguously deter-
mine the type of some tokens. An example is >> that can ei-
ther be parsed as a right shift operator, or two closing angle
brackets of a generic type, e.g., List<List<String>> in Java.
Some handwritten parsers deal with this issue by rewriting
the token stream. For example, when the javac parser reads a
>>token and is in a parsing state that expects only one >, e.g.,
when matching the closing angle bracket of a generic type,
it only consumes the first > and puts the second one back to
prevent a parse error when matching the next angle bracket.

To resolve the problems of a separate lexing phase, we
need to expose the parsing context to the lexer. To achieve
this, the separate lexing phase is abandoned, and the lex-
ing phase is effectively integrated into the parsing phase. We
call this model single-phase parsing. There are two options
to achieve single-phase parsing. The first option is called
scannerless parsing [32, 38] where lexical definitions are
treated as context-free rules. In scannerless parsing, gram-

E:i='-'E E::=E '+ T E ::=TElL
| E "' E | T EL ::= '+' TEL | e
| E '+ E T =T '« F T =FT1
| 'a’ | F TL:i= %' F | e
Fi='-'F F o= '-' F
| |

'3’

Figure 1. Three grammars that accept the same language:
the natural, ambiguous grammar (left), the grammar with
precedence encoding (middle), and the grammar after left-
recursion removal (right).

mars are defined to the level of characters. The second op-
tion is context-aware scanning [37], where the parser calls
the lexer on demand. At each parsing state, the lexer is called
with the expected set of terminals at that state.

In almost all modern programming languages longest
match (maximal munch) is applied, and keywords are ex-
cluded from being recognized as identifiers. These disam-
biguation rules are conventionally embedded in the lexer.
In single-phase parsing—scannerless or context-aware—
longest match and keyword exclusion have to be applied
during parsing, by using lexical disambiguation filters such
as follow restrictions [32, 36]. These disambiguation filters
have parser-specific implementations [2, 38]. In Section 3
we show how these filters can be mapped to data-dependent
grammars. Also note that although a context-aware scanner
employs longest match, for example by implementing the
Kleene star () as a greedy operator, in some cases we still
need to use explicit disambiguation filters, see Section 3.2.

2.3 Operator Precedence

Expressions are an integral part of virtually every program-
ming language. In reference manuals of programming lan-
guages it is common to specify the semantics of expressions
using the priority and associativity of operators. However,
the implementation of expression grammars can consider-
ably deviate from such precedence specification.

It is possible to encode operator precedence by rewriting
the grammar: a new nonterminal is created for each prece-
dence level. The rewriting is not trivial for real programming
languages, and the resulting grammar becomes large. This
rewriting is particularly problematic in parsing techniques
that do not support left recursion. The left-recursion removal
transformation disfigures the grammar and adds extra com-
plexity in transforming the trees to the intended ones. Fig-
ure 1 shows three versions of the same expression grammar.

In the 70s, Aho et al. [4] presented a technique in which
a parser is constructed from an ambiguous expression gram-
mar accompanied with a set of precedence rules. This work
can be seen as the starting point for declarative disambigua-
tion using operator precedence rules. Aho et al. ’s approach
is implemented by modifying LALR parse tables to re-
solve shift/reduce conflicts based on the operator prece-
dence. However, the semantics of operator precedence in
this approach is bound to the internal workings of LR pars-

f x = case x of g x = case x of
0 ->1
_ -> do - > X+ 2
lety =2 + 4
y + 2z
where z = 3 g x =|case x of
0 ->1
_ > X + 2
+ 4

Figure 2. Examples of indentation rules in Haskell.

ing. There have been other solutions to build parsers from
declarative operator precedence which we discuss in Sec-
tion 6. In Section 3.4 we provide a mapping from operator
precedence rules to data-dependent grammars.

2.4 Offside Rule

In most programming languages, indentation of code blocks
does not play a role in the syntactic structure. Rather, ex-
plicit delimiters, such as begin and end or { and } are used to
specify blocks of statements. Landin introduced the offside
rule [26], which serves as a basis for indentation-sensitive
languages. The offside rule says that all the tokens of an ex-
pression should be indented to the right of the first token.
Haskell and Python are two examples of popular program-
ming languages that use a variation of the offside rule.

Figure 2 shows two examples of the offside rule in
Haskell. The keywords do, let, of, and where signal the start
of a block where the starting tokens of the statements should
be aligned, and each statement should be offsided with re-
gard to its first token. In Figure 2 (left), case has two alterna-
tives which are aligned, and the second alternative that spans
several lines is offsided with regard to its first token, i.e., _.
Figure 2 (right) shows two examples that look the same, but
the indentation of the last part, + 4, is different. In the top
declaration + 4 belongs to the last alternative, but in the bot-
tom declaration, + 4 belongs to the expression on the right
hand side of =.

Indentation sensitivity in programming languages can-
not be expressed by pure context-free grammars, and has
often been implemented by hacks in the lexer. For exam-
ple, in Haskell and Python, indentation is dealt with in the
lexing phase, and the context-free part is written as if no
indentation-sensitivity exists. Both GHC and CPython, the
popular implementations of Haskell and Python, use LALR
parser generators. In Python, the lexer maintains a stack and
emits INDENT and DEDENT tokens when indentation changes.
In Haskell, the lexer translates indentation information into
curly braces and semicolons based on the rules specified by
the L function [28].

In Section 3.5 we show how data-dependent grammars
can be used for single-phase parsing of indentation-sensitive
programming languages in a declarative way. As data-
dependent grammars are rather low-level for such solutions,
we introduce three high-level constructs: align, offside, and
ignore which are desugared to data-dependent grammars.

void test() #if X

{ /*

#if Debug #else
System.Console.WriteLine("Debug") /* x/ class Q { }

} #endif

#else

}

#endif

Figure 3. Problematic cases of using C# directives [30].

2.5 Conditional Directives

Many programming languages allow compiler pragmas that
specify how the compiler (or the interpreter) processes parts
of the input. The C family of programming languages, i.e.,
C, C++ and C#, allow preprocessor directives such as #if
and #define. GHC also allows various compiler pragmas [28,
§12.3]. For example, it is possible to enable C preprocessor
directives in Haskell using {-# LANGUAGE CPP #-}.
Preprocessor directives pose considerable difficulty in
parsing programming languages. The main reason is that
they are not part of the grammar of a language, but can ap-
pear anywhere in the source code. In this regard, preproces-
sor directives are similar to whitespace and comment. How-
ever, conditional directives may affect the syntactic structure
of a program, and cannot be simply ignored as a special kind
of whitespace. This is especially important if we consider
single-phase parsing where no lexing/preprocessing is avail-
able. We need a mechanism to allow the parser to switch
between the preprocessor mode and main grammar, and to
evaluate conditional directives to select the right branch.
Figure 3 (left) shows a C# example where ignoring the
conditional directive will lead to a parse error, as the closing
bracket of the test method is in the conditional directive,
and one of the branches should be included in the input.
The example in Figure 3 (right) shows another aspect of
directives in C#. If X is true, "/ #else /* */ class Q {}" will
be considered as part of the source code. If X is false, only the
else-part will be considered: "/x =/ class Q {}". Note that
when x is false, the if-part does not have to be syntactically
correct, in this case an unclosed multi-line comment.
Among the family of C languages we selected C#, as
parsing C# is more manageable. The problematic part of
parsing C with directives is textual macros. Without a pre-
processor to expand macros before parsing, we need to deal
with macros at runtime. Parsing C without a preprocessor is
future work. In C#, #define does not define a macro, rather
it only sets a boolean variable. It should also be noted that
C# supports multi-line strings, where directives should not
be processed. Figure 4 shows a C# example that uses condi-
tional directives in a multi-line string. In single-phase pars-
ing, however, multi-line strings are not a problem, as we ef-
fectively parse each terminal in the context where it appears.

static void Main() {
System.Console.WriteLine(@"hello,
#if Debug
world
#else
Nebraska
#endif
")
}

Figure 4. C# multi-line string containing directives [30].

2.6 Miscellaneous Features

There are many other peculiarities in programming lan-
guages and data formats that cannot be expressed by context-
free grammars. There has been considerable effort to build
declarative parsers for data formats, e.g. PADS [9], and one
of the main motivations for data-dependent grammars [16]
is indeed to enable parsing data formats.

Examples of languages that require data-dependent pars-
ing are data protocols, such as IMAP and HTTP, and tag-
based languages such as XML. In programming languages,
data-dependent grammars can be used to implement some
language-specific disambiguation mechanisms. For exam-
ple, to maintain a table of type definitions in C to allow re-
solving the infamous typedef ambiguity, e.g., in x = y which
can be either interpreted as a variable of pointer type x or as
a multiplication, depending on the type of x. We give an ex-
ample of parsing XML and resolving the typedef ambiguity
in C in Section 3.7.

3. Parsing Programming Languages with
Data-dependent Grammars

In this section we describe data-dependent grammars [16],
discuss our single-phase parsing strategy, and demonstrate
how various high-level, declarative syntax definition con-
structs can be desugared into data-dependent grammars.

3.1 Data-dependent Grammars

Data-dependent grammars are defined as an extension of
context-free grammars (CFGs), where a CFG is, as usual,
atuple (N, T, P, S) where

* N is a finite set of nonterminals;
* T is a finite set of terminals;

* P is a finite set of rules. A rule (production) is written as
A ::= «a, where A (head) is a nonterminal, and « (body)
is a string in (N UT)*;

* S € N is the start symbol of the grammar.

We use A, B,C' to range over nonterminals, and a, b, ¢ to
range over terminals. We use «, 8, for a possibly empty
sequence of terminals and nonterminals, and e represents
the empty sequence. It is common to group rules with the
same head and write them as A ::= a1 |az|...|a,. In this
representation, each «y; is an alternative of A.

Data-dependent grammars introduce parametrized non-
terminals, arbitrary computation via an expression language,
constraints, and variable binding. Here, we assume that the
expression language e is a simple functional programming
language with immutable values and no side-effects. In a
data-dependent grammar a rule is of the from A(p) ::= a,
where p is a formal parameter of A. Here, for simplicity of
presentation and without loss of generality, we assume that
a nonterminal can have at most one parameter. The body of
arule, o, can now contain the following additional symbols:

*x=1:A(e) is a labeled call to A with argument e, label
[, and variable x bound to the value returned by A(e);

* [:ais a labeled terminal a with label [;

* [e] is a constraint;

* {x = e} is a variable binding;

* {e} is a return expression (only as the last symbol in «);

* e¢?« : (3 is a conditional selection.

The symbols above are presented in their general forms. For
example, labels, variables to hold return values, and return
expressions are optional.

Our data-dependent grammars are very similar to the ones
introduced in [16] with four additions. First, terminals and
nonterminals can be labeled, and labels refer to properties
associated with the result of parsing a terminal or nonter-
minal. These properties are the start input index (or left ex-
tent), the end input index (or right extent), and the parsed
substring. Properties can be accessed using dot-notation,
e.g., for labeled nonterminal b : B, b.[gives the left extent,
b.r the right extent, and b.yield the substring.

Second, nonterminals can return arbitrary values (return
expressions) which can be bound to variables. In several
cases, we found this feature very practical as we could ex-
press data dependency without changing the shape of the
original specification grammar. Specifically, cases where a
global table needs to be maintained along a parse (C# con-
ditional directives discussed in Section 3.6 and C typedef
declarations in Section 3.7), or where semantic information
needs to be propagated upwards from a complicated syntac-
tic structure (Declarator of the C grammar in Section 3.7). In
some cases a data-dependent grammar that uses return val-
ues can be rewritten to one without return values. However,
in general, whether return values enlarge the class of lan-
guages expressible with the original data-dependent gram-
mars is an open question for future work.

Third, we support regular expression operators (EBNF
constructs): *, 4+, and 7, by desugaring them to data depen-
dent rules as follows: Ax ::= A+ |e; A+ := A+ A| A;and
A? ::= A|e. In the data-dependent setting, this translation
must also account for variable binding. For example, if sym-
bol ([e] A)* appears in a rule, and «x is a free variable in e,
captured from the scope of the rule, our translation lifts this
variable, introducing a parameter x to the new nonterminal.

In addition, EBNF constructs introduce new scopes: vari-
ables declared inside an EBNF construct, e.g., (I : A [¢e])*,
are not visible outside, e.g., in the rule that uses it.

Finally, we also introduce a conditional selection sym-
bol e? «v : 3, which selects « if e is evaluated to true, oth-
erwise (3, i.e., introduces deterministic choice. Similar to
EBNF constructs, we implement conditional selection by
desugaring it into a data-dependent grammar. For example,
Auz=ae?X :Ypistranslated to A == o C(e) 5, where
C(b) == [b] X | ['b] Y. We illustrate use of the conditional
selection when discussing C# directives in Section 3.6.

3.2 Single-phase Parsing Strategy

We implement our data-dependent grammars on top of the
generalized LL. (GLL) parsing algorithm [33]. As general
parsers can deal with any context-free grammar, lexical defi-
nitions can be specified to the level of characters. For exam-
ple, comment in the C# specification [30] is defined as:

Comment ::= SingleLineComment | DelimitedComment
SingleLineComment ::= "//" InputCharacterx*
InputCharacter ::= !'[\r \n]

DelimitedComment ::= "/x" DelimitedCommentSectx [*]+ "/"
DelimitedCommentSect ::= "/" [*]* NotSlashOrAsterisk
NotSlashOrAsterisk = [/ x]

Such character-level grammars, however, lead to very
large parse forests. These parse forests reflect the full struc-
ture of lexical definitions, which are not needed in most
cases. We provide the option to use an on-demand context-
aware scanner, where terminals are defined using regular ex-
pression. For example, Comment in C# can be compiled to a
regular expression. In cases where the structure is needed, or
it is not possible to use a regular expression, e.g., recursive
definitions of nested comments, the user can use character-
level grammars.

Our support for context-aware scanning borrows many
ideas from the original work by Van Wyk and Schwerd-
feger [37], but because of the top-down nature of GLL pars-
ing, there are some differences. The original context-aware
scanning approach [37] is based on LR parsing, and as each
LR state corresponds to multiple grammar rules, there may
be several terminals that are valid at a state. The set of valid
terminals in a parsing state is called valid lookahead set [37].
In GLL parsing, in contrast, the parser is at a single grammar
position at each time, i.e., either before a nonterminal or be-
fore a terminal in a single grammar rule. Therefore, in GLL
parsing, the valid lookahead set of a terminal grammar posi-
tion contains only one element, which allows us to directly
call the matcher of the regular expression of that terminal.

We use our simple context-aware scanning model for
better performance, see Section 5.1. The implementation
of the context-aware scanner in [37] is more sophisticated.
The scanner is composed of all terminal definitions, as a
composite DFA. This enables a longest match scheme across
terminals in the same context, for example in programming
languages where one terminal is a prefix of another, e.g.,

A::=aB !> cf| A ::=«a b:B [input.at(b.r) !=c] 8
A::=ac!<<B S| A ::=a«a b:B [input.at(b.1-1) !=<c] 8
A::=aB\s g A ::= « b:B [input.sub(b.l,b.r)!=s] g8

Figure 5. Mapping of lexical disambiguation filters.

‘fun' and 'function' in OCaml. To enforce longest match
across terminals we use follow/precede restrictions, in this
case a follow restriction on 'fun' or a precede restriction on
identifiers. Moreover, keyword reservation in [37] is done
by giving priority to keywords at matching states of the
composite DFA. In our model, keyword exclusion should
be explicitly applied in the grammar rules using an exclude
disambiguation filter. We explain follow/precede restrictions
and keyword reservation in Section 3.3.

In single-phase parsing layout (whitespace and com-
ments) are treated the same way as other lexical definitions.
Because layout is almost always needed in parsing program-
ming languages, we support automatic layout insertion into
the rules. There are two approaches to deal with layout in-
sertion: a layout nonterminal can be inserted exactly before
or after each terminal node [20, 37]. Another way is to in-
sert layout between the symbols in a rule, like in SDF [12].
We use SDF-style layout insertion: if X 1= x12s2...2,
is a rule, and L is a nonterminal defining layout, after the
layout insertion, the rule becomes X ::=xz1Lx2 L ... Lx,.
A benefit of SDF-style layout insertion is that no symbol
definition accidentally ends or starts with layout, provided
that the layout is defined greedily (see Section 3.3). This is
helpful when defining the offside rule (see Section 3.5).

3.3 Lexical Disambiguation Filters

Common lexical disambiguation filters [36], such as fol-
low restrictions, precede restrictions and keyword exclu-
sion, can be mapped to data-dependent grammars without
further extensions to the parser generator or parsing algo-
rithm. These disambiguation filters are common in scanner-
less parsing [32] and have been implemented for various
generalized parsers [2, 38].

A follow restriction (!>>) specifies which characters can-
not immediately appear after a symbol in a rule. This re-
striction is used to locally define longest match (as op-
posed to a global longest match in the lexer). For ex-
ample, to enforce longest match on identifiers we write
Id ::= [A-Za-z]+ !>> [A-Za-z]. A precede restriction (!<<)
is similar to a follow restriction, but specifies the characters
that cannot immediately precede a symbol in a rule. Precede
restrictions can be used to implement longest match on key-
words. For example, [A-za-z] !<< Id disallows an identifier
to start immediately after a character. This disallows, for
example, to recognize intx as the keyword 'int' followed
by the identifier x. Finally, exclusion (\) is usually used to
implement keyword reservation. For example, Id \'int' ex-
cludes the keyword int from beging recognized as Id.

Figure 5 shows the mapping from character-level disam-
biguation filters to data-dependent grammars. The mapping
is straightforward: each restriction is translated into a con-
dition that operates on the input. A note should be made
regarding the condition implementing precede restrictions.
This condition only depends on the left extent, b.1, that per-
mits its application before parsing B. We consider this opti-
mization in the implementation of our parsing framework,
permitting application of such conditions before parsing la-
beled nonterminals or terminals.

The restrictions of Figure 5 are just examples and can be
extended in many ways. For example, instead of defining
the restriction using a single character, we can use regular
expressions or character classes. One can also define similar
restrictions for related disambiguation purposes. For exam-
ple, consider the cast expression in C#:

cast-exp ::= '(' type ')' unary-exp

An expression such as (x)-y is ambiguous, and can be in-
terpreted as either a type cast of -y to the type x, or a sub-
traction of y from (x). In the C# language specification, it is
stated that this ambiguity is resolved during parsing based
on the character that comes after the closing parentheses: if
the character following the closing parentheses is ~, '!*, ' (',
an identifier, a literal or keywords, the expression should be
interpreted as a cast. We can implement this rule as follows:

cast-exp ::= '(' type ')' >>> [~!(A-Za-z0-9] unary-exp

The >>> notation specifies that the next character after the
closing parentheses should be an element of the specified
character class. The implementation of >>> is similar to that
of >> with an additional aspect: it adds the condition on the
automatically inserted layout nonterminal after ') ' instead.

These examples show how more syntactic sugar can be
added to the existing framework for various common lexi-
cal disambiguation tasks in programming languages without
changes to the underlying parsing technology.

3.4 Operator Precedence and Associativity

Expression grammars in their natural form are often ambigu-
ous. Consider the expression grammar in Figure 6 (left). For
this grammar, the input string a+axa is ambiguous with two
derivation trees that correspond to the following groupings:
(a+(a*a)) and ((a+a)*a). Given that = normally has higher
precedence than +, the first derivation tree is desirable. We
use >, left, and right to define priority and left- and right-
associativity, respectively [3]. Figure 6 (right) shows the dis-
ambiguated version of this grammar by specifying > and
left, where - has the highest precedence, and x and + are
left-associative.

Ambiguity in expression grammars is caused by deriva-
tions from the left- or right-recursive ends in a rule, i.e.,
E ::=aF and FE ::= E(. We use >, left, and right to spec-
ify which derivations from the left- and right-recursive ends
are not valid with respect to operator precedence. For ex-
ample, E ::= '-' E > E 'x' E specifies that E in the ' -'-rule

E::="'-'"E E::="'-"E
| E 'x' E >E 'x' E left
| E '+ E >E '+ E left
| 'if' E 'then' E 'else' E > 'if' E 'then' E 'else' E
I I

a a

Figure 6. An ambiguous expression grammar (left), and the
same grammar disambiguated with > and left (right).

(parent) should not derive the '+'-rule (child). The > con-
struct only restricts the right-recursive end of a parent rule
when the child rule is left-recursive, and vice versa. For ex-
ample, in Figure 6 (right) the right E in the '+'-rule is not
restricted because the 'if'- rule is not left-recursive. This is
to avoid parse error on inputs that are not ambiguous, e.g.,
a + if a then a else a. Note that 'if' E 'then' E 'else' in
the 'if'-rule acts as a unary operator. In addition, the > oper-
ator is transitive for all the alternatives of an expression non-
terminal. Finally, left and right only affect binary recursive
rules and only at the left- and right-recursive ends.

Although > is defined as a relationship between a parent
rule and a child rule, its application may need to be arbitrary
deep in a derivation tree. For example, consider the input
string a = if a then a else a + a for the grammar in Fig-
ure 6 (right). This sentence is ambiguous with two derivation
trees that correspond to the following groupings:

(a *x (if a then a else a)) + a

a * (if a then a else (a + a))

The first grouping is not valid as 'if' binds stronger than
'+', but we defined '+' to have higher priority than 'if'. This
example shows that restricting derivations only at one level
cannot disambiguate such cases. A correct implementation
of > thus also restricts the derivation of the 'if'-rule from the
right-recursive end of the '«'-rule if the '«'-rule is derived
from the left-recursive end of the '+'-rule.

We now show how to implement an operator precedence
disambiguation scheme using data-dependent grammars. We
first demonstrate the basic translation scheme using binary
operators only, and then discuss the translation of the exam-
ple in Figure 6. Figure 7 (left) shows a simple example of an
expression grammar that defines two left-associative binary
operators * and +, where * is of higher precedence than +.
Figure 7 (right) shows the result of the translation into the
data-dependent counterpart. The basic idea behind the trans-
lation is to assign a number, a precedence level, to each left-
and/ or right recursive rule of nonterminal E, to parameterize
E with a precedence level, and based on the precedence level
passed to E, to exclude alternatives that will lead to deriva-
tion trees that violate the operator precedence.

In Figure 7 (right) each left- and right-recursive rule in
the grammar gets a precedence level (shown in comments),
which is the reverse of the alternative number in the defi-
nition of E. The precedence counter starts from 1 and incre-
ments for each encountered > in the definition. The number 0
is reserved for the unrestricted use of E, illustrated using the

E::=E 'x' E left|E(p) ::= [2 >= p] E(2) * E(3) //2
> E '+ E left | [1>=p] E(0) + E(2) //1
| (¢ E") | (" E(©) ")
| a | a

Figure 7. An expression grammar with > and teft (left), and
its translation to data-dependent grammars (right).

E(L,r) ::=[4 >= 1] '-' E(L,4) //4
| [3>=r, 3>=1] E(3,3) '*' E(L,4) //3
| [2 >=r, 2 >=1] E(2,2) '+ E(1,3) //2
| [1>=1] 'if' E(0,0) 'then' E(0,0) 'else' E(0,0) //I

| a

Figure 8. Operator precedence with data-dependent gram-
mars (binary and unary operators).

round bracket rule. Nonterminal E gets parameter p to pass
the precedence level, and for each left- and right-recursive
rule, a predicate is added at the beginning of the rule to ex-
clude rules by comparing the precedence level of the rule
with the precedence level passed to the parent E. Finally, for
each use of E in a rule, an argument is passed.

In the '+'-rule, its precedence level (2) is passed to the left
E, and its precedence level plus one (3) is passed to the right
E. This allows to exclude the rules of lower precedence from
the left E, and to exclude the rules of lower precedence and
the '«'-rule itself from the right . Excluding the '«'-rule it-
self allows only the left-associative derivations, e.g., (a*a)xa,
as specified by teft. In the '+'-rule, its precedence level plus
one (2) is passed to the right E, excluding the '+'-rule. The
value o is passed to the left E, permitting any rule. Note that
passing o instead of 1 to the left E of the '+'-rule achieves
the same effect but enables better sharing of calls to E, as
the sharing of calls (using GSS) is done based on the name
of the nonterminal and the list of arguments. In the round
bracket rule, 0 is passed to E as the use of E is neither left-
nor right-recursive, hence, the precedence does not apply.

Now we discuss the translation of the example shown in
Figure 6 that contains both binary and unary operators. For
this we need to distinguish between the rules that should be
excluded from the left and from the right e. This is achieved
as follows. First, E gets two parameters, 1 and r (Figure 8),
to distinguish between the precedence level passed from left
and right, respectively. Second, a separate condition on 1
is added to a rule when the rule can be excluded from the
right € (i.e., rules for binary operators and unary postfix
operators). A separate condition on r is added to a rule
when the rule can be excluded from the left E (i.e., rules
for binary operators and unary prefix operators). Third, 1-
and r-arguments are determined for the left and right E’s
as follows. An l-argument to the left £ and r-argument to
the right E are determined as in the example of Figure 7.
For example, E(3,_) 'x' E(_,4), where 3 is the precedence
level of the '«'-rule, and 4 is the precedence level plus one.
Note that r=4 does not exclude the unary operators of E.
Now, an 1-argument to the right E’s is propagated from the

Decls ::= align (offside Decl)x

| ignore('{' Decl (';' Decl)x* '}')
Decl = FunLHS RHS
RHS 1= '=' Exp 'where' Decls

Figure 9. Simplified version of Haskell’s Decls.

parent E. This effectively excludes a unary prefix rule from
the right £’s when the parent E is the left £ of a rule of higher
precedence than the unary operator. Finally, given that there
are no unary postfix operators, an r-argument to the left £’s
is not propagated from the parent E and can be the same as
the respective 1-argument.

We have also extended this approach for grammars that
allow rules of the same precedence and/or associativity
groups. For example, binary + and - operators have the
same precedence, but are left-associative with respect to
each other.

Our translation of operator precedence to data-dependent
grammars resembles the precedence climbing technique [5,
31]. In contrast to precedence climbing that requires a non-
left recursive grammar, our approach works in presence of
both left- and right-recursive rules.

3.5 Indentation-sensitive Constructs

In this section we show how the offside rule can be translated
into data-dependent grammars. We use Haskell as the run-
ning example, but our approach is also applicable for other
programming languages that implement the offside rule.

In Haskell, one can write a where clause consisting of a
block of declarations, where the structure of the block is de-
fined by using either explicit delimiters or indentation (col-
umn number). For example, the structure of the following
blocks, one written with explicit delimiters, such as curly
braces and semicolons (left), and the other written using in-
dentation (right), is the same:

{x=1%2+3;y=x+41} Xx=1x% 2
+ 3
y=x+4

Figure 9 shows a simplified excerpt of the Haskell grammar,
defined using our parsing framework. The first alternative
explicitly enforces indentation constraints on a declaration
block. First, it requires that all declarations of a block are
aligned (align) with respect to each other, i.e., each decla-
ration starts with the same indentation. Second, it requires
that the offside rule applies to each declaration, i.e., all non-
whitespace tokens of a declaration are strictly indented to
the right of its first non-whitespace token. In contrast, the
second alternative of Decls enforces the use of curly braces
and semicolons, and explicitly ignores (ignore) indentation
constraints even when imposed by an outer scope.

In our meta-notation, align only affects regular defini-
tions (EBNF constructs) such as lists and sequences, offside
affects nonterminals, and ignore applies to a sequence of
symbols. The translation of these high-level constructs into
data-dependent grammars is illustrated in Figures 10 and 11.

Decls ::= a@:Starl(a0.l)
| ignore('{' Decl Star2 '}')
Decl 1= FunLHS RHS
RHS = '=' Exp 'where' Decls
Starl(v) ::= Plusl(v) | €
Plusl(v) ::= offside al:Decl [col(al.l) == col(v)]
| Plusl(v) offside al:Decl [col(al.l) == col(v)]

Star2 ::= Plus2 | €
Plus2 ::= Plus2 Seq2 | Seq2
Seq2 ::=';' Decl

Figure 10. Desugaring of align.
Decls(i,fst) ::= a0:Starl(a0®.1,i,fst)

| '{' Decl(-1,0) Star2 '}'
Decl(i,fst) ::= FunLHS(i,fst) RHS(i,0)
RHS (i, fst) = 00:'=" [f(i,fst,00.1)] Exp(i,0)

ol:'where' [f(i,0,01.1)] Decls(i,0)

Starl(v,i,fst) ::= Plusl(v,i,fst) | €

Plusl(v,i,fst)
1:= Plusl(v,i,fst) al:Decl(al.l,1)

[col(al.l) == col(v), f(i,0,al.l)]
| al:Decl(al.l,1) [col(al.l) == col(v), f(i,fst,al.l)]
Star2 ::= Plus2 | e
Plus2 ::= Plus2 Seq2 | Seq2
Seq2 := ';' Decl(-1,0)
f(i,fst,1) =1 == -1 || fst == 1 || col(1l) > col(i);

Figure 11. Desugaring of offside and ignore.

The basic idea of translating align is to use the start index
of a declaration list, and constrain the start index of each
declaration in the list by an equality check on indentation
at the respective indices. Figure 10 shows the result after
first desugaring align and then translating EBNF constructs
(Section 3.1). Desugaring align alone results in:

Decls ::= a0:(offside al:Decl [col(al.l) == col(a@.1)])x*

Labels a0 and a1 are introduced to refer to the start index
of a declaration list, a0.1, and to the start index of each
declaration in the list, a1.1, respectively, and the constraint
checks whether the respective column numbers (given tabs
of 8 characters) are equal. As in case of precede restric-
tions in Section 3.3, this constraint only depends on the
start indices and can be applied before parsing Decl. The
EBNF translation introduces nonterminals for each EBNF
construct, where Starl and Plusl also get parameter v as the
use of a0 has to be lifted during the translation.

Figure 11 shows the result of desugaring offside and
ignore from Figure 10. The basic idea is to pass down
Decl’s start index and constrain the indentation of any non-
whitespace terminal that can appear under the becl-node, ex-
cept for the leftmost one, to be greater than the indentation of
Decl’s start index. Two parameters, i and fst, are introduced
to Decl and to all nonterminals reachable from it. The first
parameter is used to pass Decl’s start index, calculated at the
offside application site (al.1), to any nonterminal reachable
from Decl, and to constrain terminals reachable from Decl.

The second parameter, fst, which is either o or 1, is used
to identify and skip the leftmost terminal that should not be
constrained. The value 1 is passed at the application site of
offside and propagated down to the first nonterminal of each
reachable rule if the rule starts with a nonterminal. The value
0 is passed to any other nonterminal of a reachable rule when
the first symbol of the rule is not nullable. Our translation
also accounts for nullable nonterminals (not shown here),
and in such cases the value of fst also depends on a dy-
namic check whether the left and right extents of the node
corresponding to a nullable nonterminal are equal.

Finally, each terminal reachable from Decl gets a label
(labels starting with o), to refer to its start index, and a
constraint, encoded as a call to boolean function f. Note that
in the definition of f, condition i == -1 corresponds to the
case when Decl appears in the context where the offside rule
does not apply or is ignored, and condition fst == 1 to the
case of the leftmost terminal.

The offside, align and ignore constructs are examples
of reasonably complex desugarings to data-dependent gram-
mars. Their existence and their aptness to describe the syn-
tax of Haskell is a witness of the power of data-dependent
grammars and the parsing architecture we propose.

3.6 Conditional Directives

In this section we present our solution for parsing condi-
tional directives in C#. As discussed in Section 2.5, most
directives can be regarded as comment, but conditional di-
rectives have to be evaluated during parsing, as they may
affect the syntactic structure of a program.

Conditional directives can appear anywhere in a program.
Therefore, it is natural to define them as part of the layout
nonterminal. Figure 12 shows relevant parts of the layout
definition (Layout)? we used to parse C# (follow restrictions
enforce longest match). In addition to whitespace charac-
ters (Whitespace) and comments (starting with '/ or '//'),
the layout consists of declaration directives (Decl) and con-
ditional directives (If).

According to the C# language specification, the scope
of symbols introduced by declaration directives #define and
#undef is the file they appear in. Therefore, we need to main-
tain a global symbol table defs to declare (see Decl) and ac-
cess (see If and Elif) symbol definitions while parsing. In
C# one can define/undefine a symbol, but a value cannot be
assigned to a symbol. Thus, the symbol table needs to asso-
ciate a boolean value with a symbol.

To enable global definitions, our parsing framework sup-
ports global variables that can be declared using the global
keyword. e.g., defs in Figure 12. In our parsing framework,
a global variable is implemented by using parameters and
return values to thread a value through a parse. In this case,

2 For readability reasons, we omit uses of Whitespace? (optional whites-
pace) before and after terminal '#', and uses of Whitespace after termi-
nals 'define’', 'undef', 'if"', 'elif".

global defs = {}
Layout ::= (Whitespace | Comment | Decl | If | Gbg)x*
1>> [\ \E\N\r\f] !>> '/x' I>> '//" I>> '#!
Decl ::= '#' 'define' id:Id
{defs=put(defs,id.yield, true)} PpNL
| '#' 'undef' id:Id
{defs=put(defs,id.yield, false)} PpNL
If = '#' 'if' v=Exp(defs) [v] ? Layout
1 (Skipped (Elif|Else|PpEndif))
Elif ::= '#' 'elif' v=Exp(defs) [v] ? Layout
1 (Skipped (Elif|Else|PpEndif))
Else ::= '#' 'else' Layout
Gbg 1:= GbgElifx GbgElse? '#' 'endif'
GbgElif ::= '#' 'elif' Skipped
GbgElse ::= '#' 'else' Skipped
Skipped ::= Part+
Part ::= PpCond | PpLine | . // etc.
PpCond ::= PpIf PpElifx PpElse? PpEndif
PpIf t:= '#' 'if' PpExp PpNL Skipped?
PpElif ::= '#' 'elif' PpExp PpNL Skipped?
PpElse '#' 'else' PpNL Skipped?
PpEndif ::= '#' 'endif' PpNL

Figure 12. The grammar of conditional directives in C#.

each nonterminal that directly or indirectly accesses a global
variable should get an extra parameter, and each nonterminal
that can directly or indirectly update a global variable should
return the new value of the variable if the variable is used
after an occurrence of the nonterminal in a rule. Note that,
assuming immutable values, such implementation of global
variables properly accounts for the nondeterministic nature
of generalized parsing. This way updates to a variable made
along one parse do not interfere with updates made along an
alternative parse.

The basic idea of single-phase parsing of C# in presence
of conditional directives is as follows. Recall that in our pars-
ing strategy (Section 3.2) layout is inserted between symbols
in a grammar rule. Conditional directives are evaluated as
part of the layout nonterminal, and based on the result of the
evaluation, the next lines of source code are either treated as
the actual source code (true case), or as a sequence of valid
C# tokens (false case), also consuming directives that should
not be evaluated. To achieve this, the grammar of Figure 12
uses two different definitions for #if, #elif and #else. The
bottom definition (PpIf, PpElif and PpElse), which is found
in the C# specification, simply defines directives as part of
valid C# tokens (Skipped), while the top definition (If, Elif
and Else) uses data dependency. Note that conditional direc-
tives can be nested. This is expressed by using Layout in If,
Elif and Else, and Skipped in PpIf, PpElif and PpElse.

Whenever an #if-directive and its expression are parsed
as part of If, the expression is evaluated using the symbol
table (defs). Exp (not shown in Figure 12) defines a sim-
ple boolean expression. To enable evaluation of expressions

Element ::= STag Content ETag

STag 1= '<' Name Attributex '>'

ETag ti= '</' Name '>'

Element ::= s=STag Content ETag(s)

STag 1i= '<' n:Name Attributex '>' { n.yield }

ETag(s) ::= '</' n:Name [n.yield == s] '>'

Figure 13. Context-free grammar of XML elements (top)

and the data-dependent version (bottom).

while parsing, Exp uses data dependency and extends the
ppexp rules, found in the C# specification, with return val-
ues and boolean computation. If the expression evaluates to
true (note the use of conditional selection), the parser first
continues consuming layout, including the nested directives,
and then, after no layout can be consumed, the parser returns
to the next symbol in the alternative.

If the expression evaluates to false, the parser consumes
part of the input as a list of valid C# tokens (Skipped) until
it finds the corresponding #elif-, #else- or #endif-part. Note
that skipped also consumes nested #if-directives (PpCond), if
any, but in this case, conditions are not evaluated. The defi-
nition of Skipped also allows to consume invalid C# structure
(only valid token-wise) when the condition is false, see Fig-
ure 3 (right). Finally, when all #if, #elif and #else directives
are present, there will be dangling #elif, #else, and #endif
parts remaining if one of the conditions evaluates to true.
These dangling parts should be also consumed by the lay-
out. The Gbg (garbage) nonterminal, defined as part of layout,
does exactly this.

3.7 Miscellaneous Features

In this section we discuss the use of data-dependent gram-
mars for parsing XML and resolving the infamous typedef
ambiguity in C. XML has a relatively straightforward syn-
tax. Figure 13 (top) shows the context-free definition of
Element in XML, where Content allows a list of nested ele-
ments. The problem with this definition is that it can recog-
nize inputs with unbalanced start and end tags, for example:
<note>

<to>Bob</from>

<from>Alice</to>
</note>

Using data-dependent grammars, the solution to match
start and end tags is very intuitive. Figure 13 (bottom) shows
a data-dependent grammar for XML elements. As can be
seen, inside a starting tag, STag, the result of parsing Name is
bound to n, and the respective substring, n.yield, is returned
from the rule. The returned value is assigned to s in the
Element rule, and is passed to the end tag, ETag. Finally, in the
ETag, the name of the end tag is checked against the name of
the starting tag. If the name of the starting tag is not equal to
the name of the end tag, i.e., n.yield == s does not hold, the
parsing pass dies.

global defs = [{}]

Declaration ::= x=Specifiers Declarators(x)

Specifiers ::= x=Specifier y=Specifiers {x || y}
| x=Specifier {x}

Specifier 1= "typedef" {true} |

Declarators(x) ::= s=Declarator {h=put(head(defs),s,x);

defs=list(h,tail(defs))}

("," Declarators(x))x*
Declarator ::= id:Identifier {id.yield}
| x=Declarator "(" ParameterTypelList ")" {x}
| ...
Expr ::= Expr "-" Expr
"(" n:TypeName [isType(defs,n.yield)] ")" Expr

I
| (" Expr ")
I
I

Identifier [!isType(defs,n.yield)]

Figure 14. Resolving typedef ambiguity in C.

Now, we consider the problem of typedef ambiguity in
C. For example, expression (T)+1 can have two meanings,
depending on the meaning of T in the context: a cast to type T
with +1 being a subexpression, or addition with two operands
(1) and 1. If T is a type, declared using typedef, the first parse
is valid, otherwise the second one.

To resolve the typedef ambiguity, type names should be
distinguished from other identifiers, such as variables and
function names, during parsing. In addition, the scoping
rules of C should be taken into account. For example, con-
sider the following C program:
typedef int T;
main() {

int T=0, n=
}
In this example, T is first declared as a type alias to int and
then redeclared as a variable of type int in the inner scope
introduced by the main function.

Figure 14 shows a simplified excerpt of our data-dependent
C grammar. The excerpt shows the declaration and expres-
sion parts of the C grammar. As can be seen, a C decla-
ration consists of a list of specifiers followed by a list of
declarators. Each declarator declares one identifier. Key-
word typedef can appear in the list of specifiers, for exam-
ple, along with the declared type. A declarator can be either
a simple identifier or a more complicated syntactic structure,
e.g., array and function declarators, nesting the identifier. It
is important to note that an identifier should enter the cur-
rent scope when its declarator is complete. The expression
part of Figure 14 shows the cast expression rule (the sec-
ond rule from top), and the primary expression rule (the last
one). Note that to resolve the typedef ambiguity, illustrated
in our running example, an identifier should be accepted as
an expression if it is not declared as a type name.

To distinguish between type names and other identifiers,
we record names, encountered as part of declarators, and as-
sociate a boolean value with each name: true for type names

(T)+1;

and false otherwise. To maintain this information during
parsing, we introduce global variable defs, holding a list of
maps to properly account for scoping. At the beginning of
parsing, defs is a list containing a single, empty map. At the
beginning of a new scope, i.e., when "{" is encountered, an
empty map is prepended to the current list resulting in a new
list which is assigned to defs (not shown in the figure). At
the end of the current scope, i.e., when "}" is encountered,
the head of the current list is dropped by taking the tail of
the list and assigning it to defs.

To communicate the presence of typedef in a list of spec-
ifiers, we extend each rule of Specifier to return a boolean
value: "typedef"-rule returns true, and the other rules return
false. Specifiers computes disjunction of the values asso-
ciated with the specifiers in the resulting list. This informa-
tion is passed via variable x to Declarators. We also extend
the rules of Declarator to return the declared name, id.yield.
After a declarator is parsed, the declared name can be stored
in defs: pair (s,x) is added to the map taken from the head
of the current list, and a new list, with the resulting map as
its head, is created and assigned to defs.

Finally, isType function is used to check whether the
current identifier is a type name in the current scope or not:
isType iterates over elements in defs, starting from the first
element, to look up the given name. If the name is not found
in the current map, isType continues the search with the next
element, representing the outer scope. If the name is found,
isType returns the boolean value associated with the name. If
none of the maps contains the name, isType returns false.

In our running example, after parsing the second decla-
ration of T, appeared in the scope of the main function, pair
("T", false) will be added to the map in the head of defs,
effectively shadowing the previous typedef declaration of T,
and causing the condition in the cast expression rule to fail.

4. Implementation

In this section we present our extension of the GLL parsing
algorithm [33] to support data-dependent grammars. GLL
parsing is a generalization of recursive-descent parsing that
supports all context-free grammars, and produces a bina-
rized Shared Packed Parse Forest (SPPF) in cubic time and
space. GLL uses a Graph-Structured Stack (GSS) [35] to
handle multiple function calls in recursive-descent parsing.
The problem of left recursion is solved by allowing cycles
in GSS. As GLL parsers are recursive-descent like, the han-
dling of parameters and environment is intuitive, and the im-
plementation remains very close to the stack-based seman-
tics, which eases the reasoning about the runtime behavior
of the parser. More information on GLL parsing over ATN,
GSS, and SPPF is provided in Appendix A.

We use a variation of GLL parsing that uses a more effi-
cient GSS [2]. GLL parsing can be seen as a grammar traver-
sal process that is guided by the input. At each point during
parsing, a GLL parser is at a grammar slot (grammar posi-

Figure 15. ATN Grammar for F ::= E+ F| — F|a.

tion before or after a symbol in a rule) and executes the code
corresponding to this slot. Because of the nondeterministic
nature of general parsing, a GLL parser needs to record all
possible paths and process them later, and at the same time
eliminate duplicate jobs. The unit of work in GLL parsing
is a descriptor which captures a parsing state. Descriptors
allow a serialized, discrete view of tasks performed during
parsing. GLL parsing has a main loop, in a trampolined style,
that executes the descriptors one at a time until no more de-
scriptors left.

The standard way of implementing a GLL parser is to
generate code for each grammar slot [33]. Such implemen-
tation relies on dynamic gotos to allow arbitrary jumps to
the main loop or other grammar slots. In our GLL imple-
mentation, a grammar is modeled as a connected graph of
grammar slots. This model of context-free grammars re-
sembles Woods’ Recursive Augmented Transition Networks
(ATN) [40] grammars. As such, our implementation of GLL
over ATN grammars (Appendix A) provides an interpreter
version of GLL parsing.

4.1 ATN Grammars

ATN grammars are an automaton formalism developed in
the 70s to parse natural languages, and are similar to nonde-
terministic finite automata.

An ATN grammar is a tuple (Q, F, —) where

* () is a finite set of states representing grammar slots;

* F' C @ is afinite set of states representing final grammar
slots; and

. . . A .
* — is a transition relation of the form — (nonterminal),
t . .
= (terminal), or = (epsilon).

For example, the ATN grammar for £ := E+ E| — E|a
is shown in Figure 15. In an ATN, there is a one-to-many
relation, S C String x), from a nonterminal name to a
set of start states, each representing the initial state of an
alternative.

Constructing an ATN grammar from a CFG is straight-
forward. For each nonterminal in the grammar, and for each
alternative of the nonterminal, a pair consisting of the non-
terminal’s name and a state representing the start state of the
alternative is added to S. Finally, for each symbol in the al-
ternative, a next state is created, and a transition, labeled with
the symbol, from the previous state to this state is added. The
last state of the alternative is marked as a final grammar slot.

. [2>=1,2>=1] E2,2) + E(,3) @
E(L1) Q: 77777 . [1>=1] - E(0,0)

020
Figure 16. Data-dependent ATN grammar for £ == E +
E > —F|a after desugaring operator precedence.

4.2 Data-dependent ATN Grammars

To support data-dependent grammars, we extend ATN gram-
mars with the following forms of transitions:
. ﬂi (parameterized, labeled nonterminals) and l—t>
(labeled terminals)

« 2=% (variable binding), ﬂ) (constraint) and < (return
expression).

Two additional mappings are maintained: L, X : () — String
that map a state, representing a grammar slot after a labeled
nonterminal, to the nonterminal’s label (/) and to the nonter-
minal’s variable (), respectively. Here, as in Section 3.1, for
simplicity of presentation and without loss of generality, we
assume that nonterminals can have at most one parameter.
We also only consider cases of labeled terminals and non-
terminals, and when a return expression is present. Finally,
we assume that expression language e is a simple functional
programming language with immutable values and no side-
effects, that labels and variables are scoped to the rules they
are introduced in, and that labels and variables introduced by
desugaring have unique names in their scopes.

An example of a data-dependent ATN is shown in Fig-
ure 16. This ATN grammar is the disambiguated version of
the grammar shown in Figure 15 after desugaring operator
precedence.

4.3 Data Dependency in GLL Parsing

In the following, p, q, s represent ATN states in (), ¢ is an
input index, u, u’ represent GSS nodes, and w, n, y repre-
sent SPPF nodes. To support data-dependent grammars, we
introduce an environment, F/, into GLL parsing. Here, we
assume that I/ is an immutable map of variable names to
values. In the data-dependent setting, a descriptor, the unit
of work in GLL parsing, is of the form (p, ¢, E, u, w). Now,
a descriptor contains an environment E that has to be stored
and later used whenever the parser selects the descriptor to
continue from this point. GSS is also extended to store ad-
ditional data. A GSS node and a GSS edge are now of the
forms (A, i,v) and (u, p, w, E,u’), respectively. That is, in
addition to the current input index ¢, a GSS node stores an
argument v, passed to a nonterminal A, to fully identify the
call. A GSS edge additionally stores an environment F, to
capture the state of the parser before a call to a nonterminal
is made.

Finally, a GLL parser constructs a binarized SPPF (Ap-
pendix A.l), creating terminal nodes (nodeT), and nonter-
minal and intermediate nodes (nodeP). In GLL parsing in-
termediate nodes are essential. In particular, they allow the
parser to carry a single node at each time by grouping the
symbols of a rule in a left-associative manner. Nonterminal
and intermediate nodes can be ambiguous. To properly han-
dle ambiguities under nonterminal and intermediate nodes,
we include environment and return values into the SPPF con-
struction. Specifically, arguments to nonterminals and return
values are part of nonterminal nodes, and environment is part
of intermediate nodes.

Figure 17 presents the semantics of GLL parsing over
ATN, defining it as a transition relation on configuration
(R,U,G,P) where the elements are four main structures
maintained by a GLL parser:

* R is a set of pending descriptors to be processed

* U is a set of descriptors created during parsing. This set
is maintained to eliminate duplicate descriptors

* G is a GSS, represented by a set of GSS edges

* P is a set of parsing results (SPPF nodes created for
nonterminals) associated with GSS nodes, i.e., a set of
elements of the form (u, w)

During parsing, a descriptor is selected and removed from
R, represented as {(p, i, E, u, w)} UR, and given the rules,
a deterministic choice is made based on the next transition
in the ATN. The simplest rules are Eps, Cond-1, Cond-2
and Bind. Eps creates the e-node (via call to nodeT) and an
intermediate node (via call to nodeP), and adds a descriptor
for the next grammar slot. Cond-1 and Cond-2 depend on the
evaluation of expression e in a constraint. If the expression
evaluates to true, a new descriptor is added to continue
with the next symbol in the rule (Cond-1), otherwise no
descriptor is added (Cond-2). Bind evaluates the expression
in an assignment and creates a new environment containing
the respective binding. This environment is used to create
the new descriptor added to R.

Term-1 and Term-2 deal with labeled terminals. If ter-
minal ¢ matches (Term-1) the input string (represented by
an array I) starting from input position ¢, a terminal node
is created (assuming ¢ is of length 1). Then, the properties,
i.e., the left and right extents, and the respective substring,
are computed from the resulting node (props(y)). Finally, a
new environment, containing binding [= props(y)], is cre-
ated and used to construct an intermediate node and a new
descriptor. If the terminal does not match (Term-2), no de-
scriptor is added.

Call-1 and Call-2 deal with labeled calls to nonterminals.
First, argument e is evaluated, where E; allows the use of
the left extent in e (Iprop constructs properties with only left
extent). If a GSS node, representing this call, already exists
(Call-1), the parsing results associated with this GSS node
are reused, and a possibly empty set of new descriptors (D)

(R.U,G,P)= (R, UG, P

p=q
n=nodeP(q, w,nodeT(¢,i,i), E) d=(q,i, E,u,n)

S i, B,) JURLUL G, P) = (RU{d},U, G, P)

I:t .
p—q I[i|=t
y=nodeT(t,7,i+1) E;=FE[l=props(y)]
n=nodeP(q,w,y, F1) d=(q,i+1, E1,u,n)

Term-1
{6, Bow,w) URUL G, P) = (RU{d}, U, G, P)
Term-2 Ld i) ¢ 17t
({4, E,u,w)}UR,U,G,P) = (R,U,G,P)
z=1:A(e)
% q
E1=E[l=Iprop(i)] [e]E1 =v ' =(A,i,v) € N(G)
D={d| (v',y)€P, B2 =E[l=props(y), z=val(y)],
Call-l d= (g, rext(y), E2, u, nodeP(q, w,y, E2)),d & U}
all-

{(p, %, E,u,w)}UR,U,G,P) = (RUD,UUD,
Gu{(v',q,w, E,u)},P)

z=l:A(e)
% q

E1=E[l=lprop(i)] [e]E1=v u' =(A,i,v) € N(G)

D = {(s,4,[po=v],v',8) | s € S(4)}
{(p, 3, E,u,w)}UR, U, G, P) = (RUD,U,
GU{(v,q,w, E,u)},P)

Call-2

p>q q€F
[e]E =v n = nodeP(q,w,arg(u), v)
D={d| (u,s,y, E1,u') €G, By = E1[L(s) =props(n), X (s) =],

Ret d:(sviv E27u’,n0deP(s,y,n7 E2))7d¢u}
€

{1, E,u,w)}UR, U, G, P) = (RUD,UUD, G, PU{(u,n)})

p 1, q [e]E = true

d = (q7 i? E7 u7 w)

Cond-1
O i, B, w)) URULG, P) = (RULd]U,G. P)
Cond2 P 1, q [e]E = false
(@, E,u,w)}UR,U,G,P) = (R,U,G,P)
p=5q [e]E=v
. d= (q,i,E‘[xzv},u,w)
Bind

{(p,i, E,u,w)}UR, U, G, P) = (RU{d},U,G,P)

Figure 17. GLL for data-dependent ATN grammars.

is created. Each descriptor in the set corresponds to a re-
sult, nonterminal node y, retrieved from P, so that the index
of the descriptor is the right extent of y (rext), its environ-
ment contains bindings [l = props(y)] and [z = val(y)] (val
retrieves the value from y), and its SPPF node is a new in-
termediate node. Note that d ¢ U/ ensures that no duplicate
descriptors are added at this point. If the corresponding GSS
node does not exist, Call-2 creates one descriptor for each
start state of the nonterminal (s € S(A)). Each descriptor
gets a new environment with binding [py = v], where py is
the nonterminal’s parameter that we assume to have a unique
name in the scope of a rule. Both Call-1 and Call-2 add a new
GSS edge capturing the previous environment to G.

Finally, in Ret-rule, the return expression is evaluated,
and the nonterminal node is created which stores both the

argument of the current GSS node (arg(u)) and the return
value. This node is recorded in P as a result associated with
the GSS node. For each GSS edge directly reachable from
the current GSS node, a new descriptor is created. Note that
labels and variables at call sites, represented by the current
GSS node, are retrieved via mappings L and X, respectively.

5. Evaluation

Our data-dependent parsing framework is implemented as an
extension of the Iguana parsing framework [2]. The addition
of data-dependency is at the moment a prototype and most of
the effort was put into correctness, rather than performance
optimization. As a frontend to write data-dependent gram-
mars, we extended the syntax definition of Rascal [24], a
programming language for meta-programming and source
code analysis, and provided a mapping to Iguana’s internal
representation of data-dependent grammars.

In Section 2 we enumerated a number of challenges in
parsing programming languages, and in Section 3, we pro-
vided solutions based on data-dependent grammars (directly
or via desugaring) that address these challenges. For each
challenge we selected a programming language that exhibits
it, and wrote a data-dependent grammar3, derived from the
specification grammar of the language. For evaluation, we
parsed real source files from the source distribution of the
language and some popular open source libraries, see Ta-
ble 2. Table 1 summarizes the evaluation results. In the fol-
lowing we discuss these results in detail, and provide an
analysis of the expected performance in practice.

Java To evaluate the correctness of our declarative opera-
tor precedence solution using data-dependent grammars, we
used the grammar of Java 7 from the main part of the Java
language specification [11]. This grammar contains an un-
ambiguous left-recursive expression grammar, in a similar
style to the expression grammar in Figure 1 (middle).

We replaced the expression part (consisting of about 30
nonterminals) of the Java specification grammar with a sin-
gle Expression nonterminal that declaratively expresses oper-
ator precedence using >, left and right. The resulting gram-
mar, which we refer to as the natural grammar, is much
more concise and readable, see Table 1. The resulting parser
parsed all 8067 files successfully and without ambiguity.

The natural grammar of Java produces different parse
trees compared to the original specification grammar, and
therefore it is not possible to directly compare the parse
trees. To test the correctness of parsers resulting from the
desugaring of >, left, and right to data-dependent gram-
mars, we tested their resulting parse trees against a GLL
parser for the same natural grammar of Java, using our
previous work on rewriting operator precedence rules [3].
Both parsers, using desugaring to data-dependent grammars
and rewriting operator precedence rules, produced the same

3https://github.com/iguana-parser/grammars

https://github.com/iguana-parser/grammars

Table 1. Summary of the results of parsing with character-level data-dependent grammars of programming languages.

Spec. Grammar Data-dep. Grammar

Language Challenge Solution #Files % Success
#Nont. #Rules #Nont. #Rules

Java Operator precedence >, left and right 200 485 169 435 8067 100% (8067)

C# Conditional directives ~ global variables and dynamic layout 387 1000 395 1013 5839 99% (5838)

Haskell Indentation sensitivity ~ align, offside and ignore 143 431 152 452 6457 72% (4657)

parse trees for all Java files, providing an evidence that our
desugaring of operator precedence to data-dependent gram-
mars implements the same semantics as the rewriting in [3].

Despite its prototype status, the data-dependent parser is
at the moment on average only 25% slower than the rewrit-
ten one. The main reason for performance difference is that
in the rewriting technique [3] the precedence information is
statically encoded in the grammar, and therefore there is no
runtime overhead, while in the data-dependent version pass-
ing arguments and handling environment is done at runtime.
The problem with the rewriting technique is that the rewrit-
ing process itself is rather slow and the resulting grammar is
very large.

C# To evaluate our data-dependent framework on parsing
conditional directives, we used the grammar of C# 5 from
the C# language specification [30]. As mentioned in Sec-
tion 2.5, existing C# compilers resolve preprocessor direc-
tives in the lexing phase, and the parser is not aware of direc-
tives. However, the C# language specification has context-
free rules that describe the syntax of directives. Our solution
to parsing conditional directives (Section 3.6) leverages lay-
out that is automatically inserted between symbols in gram-
mar rules. We used the context-free syntax of directives in
C# as the starting point. We extended the layout definition to
include directives. Then, the conditional directive rules were
modified to allow parse-time evaluation of conditions and
selection of the corresponding path.

The resulting data-dependent grammar is only different
from the specification grammar in the layout definition, and
the difference is minimal. As can be seen in Table 1 there
are only 8 additional nonterminals and 13 additional rules
(about 1.3% of the whole grammar). Using the character-
level grammar of C# we could parse 5838 files out of 5839.
The parser timed out after 30 seconds on a very large source
file from the Roslyn framework. The file, which appears to
be automatically generated, contains 156033 lines of code
and is of size 4.8 MB.

Although the grammar of C# is near deterministic, the
reason for time out is that character-level grammars generate
very large parse trees, a node for each character. Neverthe-
less, this file could be parsed using a context-aware parser
of C#. We discuss the performance gain of using a context-
aware scanner in Section 5.1.

Haskell To evaluate our parsing framework for indenta-
tion sensitive programming languages, we used the gram-

Table 2. Summary of the projects used in the evaluation.

Lang. Projects Version Description

Java JDK 1.7.0_60-b19 Java Development Kit
JUnit 4.12 Unit testing framework
SLF4] 1.7.12 A Java logging framework

C Roslyn build-preview .NET Compiler Platform
MVC 6.0.0-beta5 ASPNET MVC Framework
EntityFramew. 7.0.0-beta5 Data access for NET

Haskell GHC 7.8 Glasgow Haskell Compiler
Cabal 1.22.4.0 Build System for Haskell
Git-annex 5.20150710 File manager based on Git
Fay 0.23.1.6 Haskell to JavaScript compiler

mar of Haskell [28]. The specification grammar of Haskell
is written using explicit blocks, as if no indentation sensi-
tivity exists, and the lexer translates indentation to physical
block delimiters. We took the Haskell grammar as written in
the specification as the starting point and added extra rules
that specify layout sensitivity using align, offside and ignore
constructs. As shown in Table 1, the data-dependent version
has only 21 additional rules (about 4% of the whole gram-
mar). From the total number of 6457 Haskell files, we could
successfully parse 4657 files (72%). The reason for the parse
error in other files is that they contained some syntactic con-
structs from GHC extensions that we do not support yet.

Besides numerous undocumented GHC extensions we
found in the source files, many Haskell files contained CPP
directives which were resolved by running the C preproces-
sor, cpp, before parsing. In the future, we plan to deal with
C directives during parsing, the same way we did for C#.
One last issue about parsing Haskell is that indentation rules
alone are not sufficient to unambiguously parse Haskell, and
there is a need for a syntactic longest match that uses inden-
tation information. For example, the following input string
is ambiguous, where both derivations are correct regarding
the indentation rules:
f x = do print x

+ 1

In the first derivation, the right hand side is an infix plus-
expression, consisting of a do-expression and 1. The sec-
ond derivation consists of only a do-expression that has
print x + 1 as its subexpression. According to the Haskell
language specification the second interpretation is valid, as
in do expressions longest match should be applied. We re-
solved this issue by defining a special kind of follow re-

Java

C#

Haskell

y=1212x-3.181

R*=09395 R?=09821

Regression line

CPU time (milliseconds) in log10

y=1098x-3

y=095x— 1616
|R*=095

Regression line

Regression line

T T T T T T
2 3 4 5 2 3

4 5 6 0 1 2 3 4 5

size (#characters) in log10

Figure 18. Running time of the character-level parsers for Java, C#, and Haskell against the input size (number of characters)
plotted as log-log base 10. The red line is the linear regression fit. The goodness of each fit is indicated by the adjusted R?
value in each log-log plot. The equation in each plot describes a power relation with original data, and as all the coefficients
(1.212, 1.098, 0.950) are close to one, we can conclude the running time is near-linear on these grammars.

striction, similar to Section 3.3, that bypasses the layout and
checks for the indentation level of the next non-whitespace
token when the token is not a keyword or a delimiter.

OCaml We used excerpts of OCaml source files to test our
operator precedence translation against deep and problem-
atic operator precedence cases. OCaml, in contrast to other
three programming languages we used for the evaluation,
uses a natural, ambiguous expression grammar in its lan-
guage specification. The data-dependent grammar of OCaml
is basically the same as the reference manual, where the al-
ternative operator in the expression part is replaced with >
and additional left and right operators added. We are not
yet able to unambiguously parse full OCaml programs, as
they contain operator precedence ambiguities across indirect
nonterminals. An example is pattern-matching which can de-
rive expr on its right-most end:

expr ::= expr '+' expr

| 'function' pattern-matching

pattern-matching ::= pattern '->' expr

For example, the input string function x -> x + 11is ambigu-
ous with the following derivations: (function x -> x) + 1
or function x -> (x + 1). As the function alternative has
pattern-matching and not expr on its right-most end, the op-
erator precedence rules do not apply in our current scheme.
The translation of operator precedence in presence of indi-
rect nonterminals to data-dependent grammars seems possi-
ble with an additional analysis of indirect nonterminals, but
is left as future work.

5.1 Running Time and Performance

Data-dependent grammars [16] provide a pay-as-you-go
model. If a pure context-free grammar is specified, the
worst-case complexity of the underlying parsing technol-
ogy is retained. However, in the general case no guarantees
can be made. Our data-dependent parsers, implemented on
top of GLL parsing, are worst-case O(n?) on pure context-

Java — |>- ____________________ 1
| HF
Haskell — f—]}-{

12 13 14 15

Speedup

Figure 19. The relative speedup using context-aware scan-
ning instead of character level grammars.

free grammars [33]. The more practical question, however,
is how data dependency affects the runtime performance of
parsing real programming languages.

In this section, we provide empirical results showing that
parsers for data-dependent grammars can behave nearly lin-
early on grammars of real programming languages. We ran
the experiments on a machine with a quad-core Intel Core 17
2.6 GHz CPU and 16 GB of physical memory running Mac
OS X 10.10.4. We used a 64-Bit Oracle HotSpot™ JVM ver-
sion 1.8.0_25. Each file was executed 10 times and the mean
running time (CPU user time) was reported. The three first
runs of each file were skipped to allow for JIT optimizations.

Figure 18 shows the log-log plots (log base 10) of running
time (ms) against file size (number of characters) for all the
files we parsed (See Table 1 and 2). For showing the linear
behavior we used the character-level grammars, as they ex-
hibit the relationship between the running time and the num-
ber of characters better than the context-aware version. As
can be seen, all three parsers exhibit near-linear behavior on
grammars of programming languages.

To compare the performance difference between character-
level and context-aware parsing, we ran both context-aware

and character-level parsers on all the source files. Fig-
ure 19 shows the relative performance gain (speedup) using
a context-aware parser compared to a character-level parser
for each file. For a better visualization we omitted the out-
liers from the box plots. The median and maximum speedup
for Javais (2.45, 15.1), for C# (2.45, 4) and for Haskell (1.9,
3). The precise impact of context-aware scanning for general
parsing and data-dependent grammars is future work, but our
preliminary investigation revealed that using character-level
grammars for parsing layout is very expensive, as it is a very
common operation, see Section 3.2.

6. Related Work

Parsing is a well-researched topic, and many features of our
parsing framework are related in one or another way to other
existing systems. Throughout this paper we have discussed
some related work, which we do not repeat here. In this
section we discuss direct related work and our inspirations.

Data dependency implementation Data-dependent gram-
mars have many similarities with attribute grammars [27]
and attribute directed parsing [39]. A detailed discussion of
related systems is provided by Jim er al. [16]. From the
implementation perspective, Jim et al. present the Yakker
parser generator [16], which is based on Earley’s algo-
rithm [7], but we have a GLL-based interpretation of data-
dependent grammars. We also extend the SPPF creation
functionality of GLL parsing (taking environments into ac-
count), while SPPF creation is not discussed in Jim et al.’s
approach. Another difference between our implementation
and Yakker is that Yakker directly supports regular opera-
tors, by applying longest match. We, however, believe that
all ambiguities should be returned by the parser, and avoid
such implicit heuristics. Therefore, we desugar regular oper-
ators to data-dependent BNF rules.

We use an interpretative model of parsing based on
Woods’ ATN grammars [40]. Woods used an explicit stack
to run ATN grammars, similar to a pushdown automata.
However, as with any top-down parser, such execution of
ATN grammars does not terminate in presence of left recur-
sion. Jim et al.’s data-dependent framework operates on a
data-dependent automata [15], which is a variation of ATN
grammars interpreted with Earley’s algorithm.

Indentation-sensitive parsing Besides modification to the
lexer which has been used in GHC and CPython, there
are a number of other systems that provide a solution for
indentation-sensitive parsing. Parser combinators [13] are
higher-order functions that are used to define grammars in
terms of constructs such as alternation and sequence. This
approach has been used in parsing indentation-sensitive lan-
guages [14]. Traditional parser combinators do not support
left-recursion and can have exponential runtime. Another
main difference between parser combinators and our ap-
proach is that we do not give the end user access to the

internal workings of the parser. Since parser combinators
are normal functions, the user can modify them. Our ap-
proach provides an external DSL for defining parsers, while
parser combinators provide an internal DSL. Therefore, our
approach compared to parser combinators provides more
control over the syntax definition.

Erdweg et al. present an extension of SDF to define
layout constraints on grammar rules [8]. These constraint-
based approach is implemented by modifying the underly-
ing SGLR [38] parser. Most constraints can be solved during
parsing. Constraints that are not resolved will lead to ambi-
guity which can be removed by post-parse filtering. Adams
presents the notion of indentation-sensitive grammars [1],
where symbols in a rule are annotated by the relative posi-
tion to the immediate parents. This technique is implemented
for LR(k) parsing.

We do not offer a customized solution for indentation-
sensitivity for a specific parsing technology, rather we use
the general data-dependent grammars framework, and map
indentation rules to them. In addition, we define high-level
constructs such as align, offside, and ignore which are
desugared to lower-level data-dependent grammars. This en-
ables a syntax definition model that is closer to what the user
has in mind. We think the use of high-level constructs leads
to cleaner, more maintainable grammars.

Operator precedence SDF?2 uses a parser-independent se-
mantics of operator precedence which is based on parent-
child relationship on derivation trees [38]. This semantics is
implemented in SGLR parsing [38] by modifying parse ta-
bles. Although the SDF2 semantics for operator precedence
works for most cases, in some cases it is too strong, i.e.,
rejecting valid sentences, and in some cases it cannot disam-
biguate the expression grammar.

In earlier work [3] we discussed the precedence ambigu-
ity, and proposed a grammar rewriting that takes an ambigu-
ous grammar with a set of precedence rules and produces a
grammar that does not allow precedence-invalid derivations.
Our current solution has the same semantics: it does not re-
move sentences when there is no precedence ambiguity, and
can deal with corner cases found in programming languages
such as OCaml. In addition, our operator precedence solu-
tion is desugared to data-dependent grammars, thus it is in-
dependent of the underlying parsing technology.

Conditional directives Recent work in parsing condi-
tional directives target all variations [10, 21]. Gazzillo and
Grimm [10] give an extensive overview of related work in
this area. However, to the best of our knowledge, none of
the existing systems employ a single-phase parsing scheme,
rather they use a separate scanner and annotate the tokens
based on the conditional directives they appear in. Our ap-
proach in using data-dependent grammars to evaluate the
conditional directives is new. The treatment of other features
of preprocessors, such as macros, is future work.

7. Conclusion

We have presented our vision of a parsing framework that
is able to address many challenges of declarative parsing of
real programming languages. We have built an implemen-
tation of data-dependent grammars based on the GLL pars-
ing algorithm. We also have shown how to map common
idioms in syntax of programming languages, such as lexi-
cal disambiguation filters, operator precedence, indentation-
sensitivity, and conditional directives to data-dependent
grammars. These mappings provide the language engineer
with a set of out of the box constructs, while at the same
time, new high-level constructs can be added. The prelimi-
nary experiments with our parsing framework show that it
can be efficient and practical. To fully realize our vision we
will explore more syntactic features, and further optimize
the implementation of our framework.

Acknowledgments

We are thankful to Jurgen Vinju, Paul Klint, and the anony-
mous reviewers for their constructive feedback on earlier
versions of this paper.

References

[1] M. D. Adams. Principled Parsing for Indentation-sensitive
Languages: Revisiting Landin’s Offside Rule. In Principles of
Programming Languages, POPL °13, pages 511-522. ACM,
2013.

[2] A. Afroozeh and A. Izmaylova. Faster, Practical GLL Parsing.
In Compiler Construction, 24th International Conference, CC
’15, pages 89-108. Springer, 2015.

[3] A. Afroozeh, M. van den Brand, A. Johnstone, E. Scott, and
J. J. Vinju. Safe Specification of Operator Precedence Rules.
In Software Language Engineering, SLE *13, pages 137-156.
Springer, 2013.

[4] A. V. Aho, S. C. Johnson, and J. D. Ullman. Deterministic
Parsing of Ambiguous Grammars. In Principles of Program-
ming Languages, POPL *73, pages 1-21, 1973.

[5] K. Clarke. The Top-down Parsing of Expressions. Technical
report, Dept. of Computer Science and Statistics, Queen Mary
College, London, June 1986.

[6] F. L. DeRemer. Practical Translators for LR(k) Languages.
PhD thesis, Massachusetts Institute of Technology, 1969.

[7] J. Earley. An Efficient Context-free Parsing Algorithm. Com-
mun. ACM, 13(2):94-102, Feb. 1970. ISSN 0001-0782.

[8] S. Erdweg, T. Rendel, C. Kistner, and K. Ostermann. Layout-
Sensitive Generalized Parsing. In Software Language Engi-
neering, SLE’12, pages 244-263. Springer, 2012.

[9] K. Fisher and R. Gruber. PADS: A Domain-specific Language
for Processing Ad Hoc Data. In Programming Language
Design and Implementation, PLDI *05, pages 295-304. ACM,
2005.

[10] P. Gazzillo and R. Grimm. SuperC: Parsing All of C by

Taming the Preprocessor. In Programming Language Design
and Implementation, PLDI *12, pages 323-334. ACM, 2012.

[11] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The
Java Language Specification Java SE 7 Edition, 2013.

[12] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The
Syntax Definition Formalism SDF-Reference Manual-. SIG-
PLAN Not., 24(11):43-75, Nov. 1989.

[13] G. Hutton. Higher-order Functions for Parsing. Journal of
Functional Programming, 2(3):323-343, July 1992.

[14] G. Hutton and E. Meijer. Monadic Parsing in Haskell. J.
Funct. Program., 8(4):437-444, 1998.

[15] T. Jim and Y. Mandelbaum. Efficient Earley Parsing with
Regular Right-hand Sides. 253(7):135 — 148, 2010. LDTA’09.

[16] T. Jim, Y. Mandelbaum, and D. Walker. Semantics and Algo-
rithms for Data-dependent Grammars. In Principles of Pro-
gramming Languages, POPL’ 10, pages 417-430. ACM, 2010.

[17] M. Johnson. The Computational Complexity of GLR Parsing.
In Generalized LR Parsing, pages 35-42. Springer US, 1991.

[18] S. C. Johnson. Yacc: Yet Another Compiler-Compiler. Tech-
nical report, AT&T Bell Laboratories, 1979.

[19] A. Johnstone and E. Scott. Modelling GLL Parser Implemen-
tations. In Software Language Engineering - 3rd International
Conference, SLE ’10, pages 42-61, 2010.

[20] A. Johnstone, E. Scott, and M. van den Brand. Modular
Grammar Specification. Sci. Comput. Prog., 87:23-43, 2014.

[21] C. Kastner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Oster-
mann, and T. Berger. Variability-aware Parsing in the Pres-
ence of Lexical Macros and Conditional Compilation. In Ob-
ject Oriented Programming Systems Languages and Applica-
tions, OOPSLA 11, pages 805-824, 2011.

[22] L. C. Kats and E. Visser. The Spoofax Language Workbench:
Rules for Declarative Specification of Languages and IDEs. In
Object Oriented Programming Systems Languages and Appli-
cations, OOPSLA 10, pages 444—463. ACM, 2010.

[23] L. C. Kats, E. Visser, and G. Wachsmuth. Pure and Declarative
Syntax Definition: Paradise Lost and Regained. In Object
Oriented Programming Systems Languages and Applications,
OOPSLA 10, pages 918-932. ACM, 2010.

[24] P. Klint, T. van der Storm, and J. Vinju. RASCAL: a Domain

Specific Language for Source Code Analysis and Manipula-
tion. SCAM’09. IEEE, 2009.

[25] D. E. Knuth. On the Translation of Languages from Left to
Right. Information and control, 8(6):607-639, 1965.

[26] P. J. Landin. The Next 700 Programming Languages. Com-
mun. ACM, 9(3):157-166, Mar. 1966.

[27] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed
Translations. J. Comput. Syst. Sci., 9(3):279-307, 1974.

[28] S. Marlow. Haskell 2010 language report, 2010.
[29] A. Melnikov. Collected Extensions to IMAP4 ABNF, 2006.
[30] Microsoft Corp. C# Language Specification 5.0. 2013.

[31] T. Parr, S. Harwell, and K. Fisher. Adaptive LL(*) Parsing:
The Power of Dynamic Analysis. In Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA
"14, pages 579-598. ACM, 2014.

[32] D.J. Salomon and G. V. Cormack. Scannerless NSLR(1) Pars-
ing of Programming Languages. In Programming Language
Design and Implementation, PLDI °89, pages 170-178, 1989.

[33] E. Scott and A. Johnstone. GLL Parse-tree Generation.
Science of Computer Programming, 78(10):1828-1844, Oct.
2013.

[34] E. Scott, A. Johnstone, and R. Economopoulos. BRNGLR: A
Cubic Tomita-style GLR Parsing Algorithm. Acta informat-
ica, 44(6):427-461, 2007.

[35] M. Tomita. Efficient Parsing for Natural Language. Kluwer
Academic Publishers, USA, 1985. ISBN 0898382025.

[36] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and
E. Visser. Disambiguation Filters for Scannerless General-
ized LR Parsers. In Compiler Construction, CC 02, pages
143-158. Springer, 2002.

[37] E. R. Van Wyk and A. C. Schwerdfeger. Context-aware
Scanning for Parsing Extensible Languages. GPCE 07, pages
63-72. ACM, 2007.

[38] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, 1997.

[39] D. A. Watt. Rule Splitting and Attribute-directed Parsing.
In Semantics-Directed Compiler Generation, pages 363-392.
1980.

[40] W. A. Woods. Transition Network Grammars for Natural
Language Analysis. Commun. ACM, 13(10):591-606, 1970.

A. GLL Parsing

In this section we first describe GLL parsing, SPPF construc-
tion and GSS. Then, we define the semantics of GLL parsing
over ATN grammars as a transition relation.

Al SPPF

It is known that any parsing algorithm that constructs Tomita-
style SPPF is of unbounded polynomial complexity [17]. To
achieve parsing in cubic time and space, GLL uses a bina-
rized SPPF [33] format, which has additional intermediate
nodes. Intermediate nodes allow grouping of the symbols of
a rule in a left-associative manner, thus allowing the parser
to always carry a single node at each time, instead of a list
of nodes. This is the key in preserving the cubic bound. The
use of intermediate nodes effectively achieves the same as
restricting a grammar to have rules of length at most two,
but without requiring rewriting the original grammar, and
transforming back the resulting derivation trees to the ones
of the original grammar.

Definition 1. A binarized SPPF is a compact representation
of a parse forest that has the following types of nodes.

* nonterminal nodes of the form (A,i,5) where A is a
nonterminal, and ¢ and j are the left and right extents;

* terminal nodes of the form (¢, 4, j) where t is a terminal,
and ¢ and j are the left and right extents;

* packed nodes of the form (L, k) where L is a grammar
slot and k is the pivot of the node; and

Figure 20. SPPF (left) and GSS (right) for the input -a+a.

* intermediate nodes of the form (L, 4, j) where L is the
grammar slot, and 7 and j are the left and right extends.

The left and right extents of a node represent the substring
in the input, associated with the node. As GLL parsing is
context-free, nodes with the same label, the same left and
the same right extents can be shared. Nonterminal and inter-
mediate nodes have packed nodes as their children. Packed
nodes represent a derivation, and can have at most two chil-
dren, which are non-packed nodes. If a non-packed node is
ambiguous, it will have more than one packed node. The
pivot of a packed node is the right extent of its left child, and
is used to distinguish between packed nodes under a non-
packed node.

The binarized SPPF resulting from parsing the input
string -a+a with the grammar F ::= —F | E+ F | a is shown
in Figure 20 (left), where packed nodes are depicted with
small circles. For a better visualization, we have omitted the
labels of packed nodes. The input is ambiguous and has the
following two derivations: (- (a+a)) or ((-a)+a). This can be
observed by the presence of two packed nodes under the root
node. The left and right packed nodes under the root node
correspond to the first and second alternatives, respectively.

SPPF construction is delegated to two functions nodeT
and nodeP. The nodeT(¢,%,j) function takes terminal ¢,
and two integer values ¢ and j (left and right extents) and
returns an existing node with these properties, otherwise
a new node. nodeP(L, w, z) takes a grammar slot L, and
two non-packed nodes w and z. nodeP returns an existing
non-packed node labeled L with two children w and z.
If no such node exists, then a non-packed node labeled L
will be created, and w and z are connected to the newly
created non-packed node via a packed node. The details
of GLL parse tree construction is discussed in [33], and
implementation techniques for efficient sharing of nodes are
presented in [2, 19].

A2 GSS

At the core of GLL parsing is the Graph-Structured Stack
data structure. We use a variation of GLL parsing that uses a
more efficient GSS [2].

(R.U,G,P)= (R, UG, P

P=q
n = nodeP(q, w, nodeT (e, ,1))

S i W) JURLUL G, P) = (RUL(q, i, w,m) .U, G, P)

t ;
p—q 1=t
n = nodeP(q, w, nodeT(t,4,i+1))

Tt -1
6w, w) JUR U, G, P) = (RU{(¢, i+ L,u,n)}, U, G, P)

pLg I #t

e i w, W)} URLUL G, P) = (R, G, P)

P2 q v=(4,49) EN(G)

D ={d| (v,y) € P,d=(q, rext(y), u,nodeP(g, w, y)),
dg U}
{(®,i,u,w)}UR,U, G, P) = (RUD,UUD,
GU{(v,q,w,u)},P)

Call-1

P g v=(A4i) € N(G)
D ={(s,i,v,8) | s € S(A)}

Call-2

{(p, 4, u,w)}UR,U,G,P) = (RUD,U,GU{(v,q,w,u)}, P)

peF

Ret— 2= {d] (u,q,y,v) € G,d=(q,%,v,n0deP(q,y, w)),d ¢ U}
€

{(p, 4, u,w)}UR,U,G,P) = (RUD,UUD, G, PU{(u,n)})

Figure 21. GLL parsing over ATN grammars.

Definition 2. A Graph-Structured Stack (GSS) in GLL pars-
ing is a directed graph where

* nodes are of the form (A,), where A is a nonterminal
and ¢ is an input position; and

* edges are of the form (u, L, w,v), where u and v are
GSS nodes, L is a grammar slot, and w is an SPPF node
recorded on the edge.

GSS was originally developed by Tomita [35] for GLR pars-
ing to merge different LR stacks. Although GLL parsing
uses the same term, there are two main differences between
GSS in GLL parsing and GLR. First, in GLL parsing GSS
represents function calls in recursive-descent parsing, simi-
lar to memoization of functions in functional programming,
and therefore has the input position at which the nonterminal
is called. Second, in GLL parsing GSS allows cycles in the
graph that solve the problem of left-recursion in recursive-
descent parsing.

The GSS resulting from parsing -a+a using the grammar
E ::= —E|E + E|ais shown in Figure 20 (right). As can
be seen there is a cycle on all nodes, as they represent the
left recursive calls to £ at different input positions. In case
of indirect left recursion, there will be a cycle in the GSS
involving multiple nodes.

A.3 GLL Parsing over ATN Grammars

In this section, we define GLL parsing over ATN grammars
as a transition relation. In contrast to the imperative style
used in [2, 33], we use the declarative rules of Figure 21.

20

Such GLL formulation is concise and easy to extend to
support data-dependent grammars. The rules in Figure 21
use notation similar to one in [2, 33].

The unit of work of a GLL parser is a descriptor. A de-
scriptor is of the form (p, i, u, w), where p is an ATN state
representing a grammar slot, u is a GSS node, ¢ is an in-
put position, and w is an SPPF (non-packed) node. A GLL
parser maintains a set {{ that holds descriptors created during
parsing and is used to eliminate duplicate descriptors. In ad-
dition to U, a set R is used to hold pending descriptors that
are to be processed. Note that GLL parsing does not impose
any order in which the descriptors in R are processed. Fig-
ure 21 defines the semantics of GLL parsing over ATN gram-
mars as a transition relation on configuration (R,U, G, P),
where G represents GSS (a set of GSS edges), such that
N(G) gives a set of GSS nodes, and P is a set of parsing
results that are associated with GSS nodes, i.e., a set of ele-
ments of the form (u, w).

During parsing a descriptor is selected and removed from
R, represented as {(p, 4, u, w)} U R, and given the rules, a
deterministic choice is made based on the next transition in
the ATN. The first three rules of Figure 21 are straightfor-
ward. An ¢ transition creates an e-node (via call to nodeT)
and intermediate node* (via call to nodeP), and adds a de-
scriptor for the next grammar slot. The terminal rules (Term-
1 and Term-2) try to match terminal ¢ at the current input
position, where [is an array representing the input string. If
there is a match (Term-1), a terminal node (via nodeT) and
intermediate node (via nodeP) are created, and a descrip-
tor for the next grammar slot is added. If there is no match
(Term-2), no descriptor is added.

Call-1 and Call-2 correspond to nonterminal transitions

2, Similar to calling a memoized function, a GLL parser
first checks if a GSS node (A4,) exists. If such a node exists
(Call-1), the parsing results associated with this GSS node
are reused. These results are retrieved from P, and for each
result, nonterminal node y, a descriptor d is created (rext
returns the right extent of y), and if the same descriptor has
not been processed before (d ¢ U), it is added to R. If the
GSS node does not exist (Call-2), the call to the nonterminal
is made, i.e., for each start state of the nonterminal (s €
S(A)), a descriptor is added. Both Call-1 and Call-2 add a
new GSS edge to G.

Finally, Ret corresponds to a final grammar slot (final
states in ATNs) in which the parser returns from the current
nonterminal call. First, the tuple with the current SPPF node
and the current GSS node is added to P. Second, for each
outgoing GSS edge of the current GSS node, a descriptor is
created and, if the same descriptor has not been processed
before (d€U), it is added to R.

41n fact, when the next state is an end state, nodeP creates a nonterminal
node, instead of an intermediate node. However, in the current discussion,
this is not essential, therefore, we always refer to the result of nodeP as an
intermediate node.

	Introduction
	The Landscape of Parsing Programming Languages
	General Parsing for Programming Languages
	On the Interaction between Lexer and Parser
	Operator Precedence
	Offside Rule
	Conditional Directives
	Miscellaneous Features

	Parsing Programming Languages with Data-dependent Grammars
	Data-dependent Grammars
	Single-phase Parsing Strategy
	Lexical Disambiguation Filters
	Operator Precedence and Associativity
	Indentation-sensitive Constructs
	Conditional Directives
	Miscellaneous Features

	Implementation
	ATN Grammars
	Data-dependent ATN Grammars
	Data Dependency in GLL Parsing

	Evaluation
	Running Time and Performance

	Related Work
	Conclusion
	GLL Parsing
	SPPF
	GSS
	GLL Parsing over ATN Grammars

