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Abstract
We prove arithmetic Rallis inner product formulae for (SO3, S̃L2) over totally real fields. As a result, for

GL2 type abelian variety with trivial central character, the central derivative of the L-function is related to
arithmetic inner product of the arithmetic theta lifting. The approach is different from arithmetic Siegel-Weil
proposed by Kudla. Instead, the result follows from considering relations among various (arithmetic) Whittaker
periods formulae for L-values, and comparison of local periods. We also establish explicit formulae for (arithmetic)
Whittaker-Fourier periods. As a by product, we get (i) explicit (arithmetic) Rallis inner product (ii) generalization
of Tunnell’s work to any quadratic twist family of cuspidal automorphic irreducible representations of PGL2 over
a number field.

1. Introduction

Given a dual pair (G,H) over a number field, the Weil representation gives a construction of automor-
phic forms on H×G, called theta series. Using these theta series as kernel functions, one could construct
automorphic representations on one group from automorphic representations on another group, such a
process is called theta lifting. Given a cuspidal irreducible automorphic representation of H(A) such that
its theta lifting is cuspidal and has no local obstructions to be nonvanishing. The Rallis inner product
formulae, was first proposed by Rallis [31], connects inner product of lifted forms to relevant L-values.
The key in the proof is the Siegel-Weil formulae, which connects inner product of lifted forms to an
integral of the original forms with diagonal restriction of Siegel Eisenstein series. Via doubling methods
of Piatetski-Shapiro and Rallis [11], the integral could be unfolded as product of local doubling zeta
integral for pure tensor test vectors, and hence to related L-value.

In many cases when G and H have almost equal rank, for example, (SO2n+1,Mp2n), (U(n), U(n)), a
necessary condition for theta lifting of (conjugate) self-dual representation to be nonvanishing is given
by the global epsilon factor equals to +1 and the global obstruction of the nonvanishingness is given
by nonvanishing of central L-value. The question is that if epsilon factor equals to −1, is there exist
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an arithmetic version of theta lifting whose global obstruction of nonvanishingness is given by central
derivative of L-function and there exists an arithmetic version of Rallis inner product formulae?

Consider (SO3, S̃L2), it was observed by Gross-Kohnen-Zagier [14] that certain family of Heegner
points on modular curve form Fourier coefficients of a weight 3/2 modular form valued in the rational
points of the Jacobian. Extending Gross-Kohnen-Zagier’s work, Kudla constructed arithmetic theta
kernels which are weight 3/2 modular forms valued in Ĉh

1
of Shimura curves over Q with maximal level.

In [18], it is conjectured that for the weight 3/2 eigen form ϕ corresponds to a weight 2 newform f
with sign −1 and square-free level, arithmetic inner product of arithmetic theta lifting of ϕ is related to
central derivative L-values of f . In the same paper, Kudla propose an arithmetic version of Siegel-Weil
together with doubling methods to get his conjecture. Towards to such approach, there are many results,
see Kudla-Rapoport-Yang [19] for the conjecture on Shimura curve with maximal level, Du-Yang [6] for
a relevant arithmetic Siegel-Weil on modular curve X0(N) with N square-free. Ald also see Zhu [43] for
local arithmetic Siegel-Weil on modular curve with general level. The local arithmetic Siegel-Weil in the
case SO3 is nonsplit is still open except the level is hyperspecial. In Kudla’s approach, even formulation
of arithmetic Siegel-Weil needs good model of Shimura curve at all places.

In this paper, we prove arithmetic inner product formulae for (SO2, S̃L2) over totally real fields. We
use modularity of Heegner points on generic fiber of Shimura curve [40] to formulate arithmetic theta
lifting. Before introducing our method, let’s first introduce main results. For simplicity, we consider
everything over Q in the rest of the introduction.

Let B be an incoherent definite quaternion algebra over A and let V = Btr=0 be the quadratic space
over A with quadratic form given by minus of the reduced norm. Let H = A×\B× ' SO(V) and
G = S̃L2(A). Fix a nontrivial additive character ψ of Q\A → C×.

Let π be an cuspidal irreducible automorphic representation of H such that πJL corresponds to an
elliptic curve A over Q. The representation π has a model Homξ(X,A)Q, where X is the Shimura curve
associated to H and Homξ means use Hodge cycle ξ as base point.

Consider the case
ε(π) = −1.

Fix decomposition π = ⊗vπv, and for each v let θψv (πv) be the local theta correspondence of πv with
respect to ψv, then

Θ := ⊗vθψv (πv)
is an irreducible cuspidal automorphic representation of G.

The work of Yuan-Zhang-Zhang establish a H×G equivalent map:
S(V) → Ch1(X)Q ⊗Q A(G), φ 7→ ϑϕ.

Identify π and Θ with their model of morphisms and automorphic forms respectively, the arithmetic
theta lifting from H to G is

π ⊗ S(V) → Θ⊗Q L, (f, φ) 7→ ϑfϕ := f ◦ ϑϕ,

where L ⊂ A(Q)Q is the space generated by image of Heegner points on Shimura curve associated to H
via modular parameterizations. The space L has dimension ≤ 1. The image is denoted by ϑψ(π). Then
ϑψ(π) is either zero or equals to Θ⊗Q L with L has dimension one.

Fix decomposition ( , ) = ⊗v( , )v of Petersson norm on π.

Theorem 1.1. Let fi = ⊗fi,v ∈ π, φ = ⊗φi,v ∈ S(V), i = 1, 2 be pure tensor vectors,

(ϑf1ϕ1
, ϑf2ϕ2

)NT =
L′(1/2, π)

L(2, 1Q)

∏
v

Z∗(φ1,v, φ2,v, f1,v, f2,v),

where Z∗(φ1,v, φ2,v, f1,v, f2,v) is the normalized doubling zeta integral:
L(2, 1v)

L(1/2, πv)

ˆ
Hv

(hvφ1,v, φ2,v)v(hvf1,v, f2,v)vdhv

same as the one appeared in the classical Rallis inner product formula.

Similar for the other direction of arithmetic theta lifting.
The main ingredient is that we make full use of arithmetic periods for L-functions and study their

relations. To get arithmetic Rallis inner product, the basic observation is that the central derivative
of base change L-function of a cuspidal automorphic representation of PGL2(A) has a natural splitting
into product of two twist L-functions. There are two Whittaker-Fourier periods formulae for arithmetic
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theta lifting (See Section 4.2). The first one is that the toric periods of f ∈ π along Heegner points
appear in Whittaker-Fourier coefficients of arithmetic theta lifting ϑfϕ, and the ratio of Whittaker-Fourier
coefficients by the toric periods is product of local Whittaker functional constructed from Waldspurger
explicit local theta lifting. As a consequence, the Néron -Tate height of arithmetic Whittaker-Fourier
coefficients of ϑψ(π) is connected to central derivative of base change L-function. The second formula
connects Néron -Tate height of arithmetic Whittaker-Fourier coefficients to product of quadratic twist
central L-value and arithmetic inner product, the ratio is given by product of local Whittaker periods
constructed from matrix coefficients. The second arithmetic Whittaker-Fourier periods formulae is a
variant of a formula for usual theta lifting. The Arithmetic Rallis inner product formulae follow from
global comparison of two arithmetic Whittaker-Fourier periods formulae and composition of local periods
2.3. The same approach works for the other side of arithmetic theta lifting. For the other direction, one
just interchange the role of arithmetic toric periods and arithmetic Whittaker-Fourier periods. The two
sides of arithmetic Rallis inner product formulae are in fact equivalent.

The approach could also be applied to higher rank dual pair, like (SO2n+1,Mp2n), (U(n), U(n)),
which connects AGGP to arithmetic Rallis inner product formulae. In the classical case, the problem
was considered by Furusawa [8].

In the unitary shimura curve case, parallel to Yuan-Zhang-Zhang’s approach to Gross-Zagier formula,
Liu [20] proves a weak version of arithmetic Siegel-Weil only involves modularity of cycles on generic
fiber which is enough to get arithmetic Rallis. Following Liu’s approach, one may get the same result as
ours. Yet our approach has benefit for getting explicit formulae and further arithmetic applications.

Our second result is the explicit formulae for (arithmetic) Whittaker-Fourier periods formulae and
(arithmetic) Rallis inner product formulae.

The explicit version for first (arithmetic) Whittaker-Fourier periods formulae is based on Cai-Shu-
Tian’s work on explicit (Gross-Zagier) Waldspurger formulae and our choice of test Schwartz functions.
As a consequence, the explicit Whittaker-Fourier periods formulae generalize the Tunnell-Gross type
formulae on connection between quadratic twist L-values of elliptic curves to representation problem of
ternary quadratic forms.

The explicit (arithmetic) Rallis inner product formulae follows from the comparison of two explicit
(arithmetic) Whittaker periods formulae. More precisely, the normalized local doubling zeta integral
could be interpreted by normalized local toric periods and local Whittaker periods which have 1 dimen-
sional integral domain and whose explicit formulae is relative easy to understand.

In the next paper, we will consider further arithmetic application of these formulae to arithmetic of
quadratic twist family of elliptic curves. Let’s introduce arithmetic question for motivation of the explicit
formulae.

Tunnell-Gross type formulae
Let’s recall Tunnell, Gross’s work on Shimura-Waldspurger correspondence, which related ternary

quadratic forms to quadratic twist central L-values of elliptic curves.
For a = 1, 2, let {Qa,1, Qa,2} be the genus class of ternary quadratic forms

{x2 + 2ay2 + 32z2, 2ax2 + 4y2 + 9z2 − 4yz}.

Theorem 1.2 (Tunnell-Qin). For any n ≡ 1, 2, 3 (mod 8) positive square-free

L(E(n), 1)

Ω/
√
n

=
a

16

 ∑
Qa,1(x,y,z)=n/a

1−
∑

Qa,2(x,y,z)=n/a

x∈Z3

1


2

where a = 1 if 2 - n, a = 2 if 2|n, Ω =
´∞
1

dx√
x3−x .

The work of Tunnell was based on Waldspurger’s work which established connection between Fourier
coefficients of half-integer modular form and quadratic twist central L-values of elliptic newform under
Shimura-Waldspurger correspondence [36]. To apply Waldspurger’s result, one needs to find weight 3/2
modular form that

• it is a Shimura-Waldspurger image of a given elliptic newform,
• the preassigned Fourier coefficient of weight 3/2 modular form is nonzero.
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For congruent elliptic curve y2 = x3−x, Tunnell constructed its Shimura-Waldspurger image by tensoring
weight 1/2modular forms and weight 1modular forms, whose structure well understood by work of Serre-
Stark [33] and Deligne-Serre [4]. Recently, Qin [26] reinterpreted forms in Tunnell’s work as constructed
from theta series associated to ternary quadratic forms in the same genus class.

In the case of prime conductor, Gross [13] gave a method to construct Shimura-Waldspurger lifting via
ternary quadratic forms whose Fourier coefficients are certain toric periods. There are also generalizations
of Gross’s work to the whole quadratic twist family in the prime conductor case [21] and to square-free
conductor case by S. Bocherer and R. Schulze-Pillot [2] by their investigation of the Yoshida lift.

As an application of the explicit formula for Whittaker-Fourier period in the sign +1 case, we get
general Tunnell-Gross type formula.

Let A be a quadratic twist family of elliptic curves over Q. We call p a bad place of A if any A ∈ A
has bad reduction at p. Let Σ be a set of finite places containing bad places of A and 2∞. Given A ∈ A
and X a Σ equivalent class with equivalent relation defined by a fiber of the map Q× →

∏
v∈Σ Q×

v /Q×2.
Theorem 1.3. Given A ∈ A with L(A, 1) 6= 0, X and Σ equivalent class with ε(A ⊗ X) = 1, exists an
explicit weight 3/2 modular form

∑
n anq

n and a constant C such that

|a|n||2 =

{
C · Lalg(A(n), 1), n ∈ X fundamental discriminant
0, n /∈ X.

We give several explanations and remarks.
• The whole quadratic twist family A could be covered by finitely many (Ai,Xi).
• When X ⊂ Q<0, the Fourier coefficients of the form in the above theorem have a simple form

like Tunnell’s work which connects to arithmetic of ternary quadratic forms, indefinite ternary
quadratic form also involved. In particular, there is an effective algorithm to determine a|n| in
O(n3/2) steps. The formula exactly generalizes Tunnell and Gross’s work with full generality.
If there exist d1, d2 with distinct signs such that both L(A(n1), 1) and L(A(n2), 1) are non-zero,
then exists a covering (Ai ⊗ Xi)i of A such that their Fourier coefficients are always related to
definite ternary quadratic forms. In particular, it holds if ∃A ∈ A has non-square conductor or
has CM. For a counter example that the condition is not satisfied, for example the quadratic
twist family of the elliptic curve y2 = x3 − 91x+ 182, see [5].

Examples
(1) In the general situation, there may be local obstructions given by Atkin-Lehner operators, and

is necessary to consider oriented lattice points to replace to counting of the whole lattice points
(See Proposition 2.17.) Let A = X0(14) be the elliptic curve of conductor 14 whose L(A, 1) 6= 0:

A : y2 + xy + y = x3 + 4x− 6.

For the class X containing negative fundamental discriminant n ≡ −3 mod 56, there will be local
obstruction at p = 2, 7:

let Q = (x+ 14y + 4z)2 + (x− 14y − 2z)2 + x2. For each n ∈ X,

L(A(n), 1)

Ω(A(−1))/
√

|n|
= 2


∑

Q(x,y,z)=|n|,
3x+2z≡3 (mod 4)
3x+2z≡3 (mod 7)

1−
∑

Q(x,y,z)=|n|,
3x+2z≡3 (mod 4)
3x+2z≡−3 (mod 7)

1


2

.

(2) Different (Ai,Xi)may interpret the same subfamily of quadratic twist L-values e.g. For congruent
number elliptic curves, choose A : y2 = x3 − x and A(2) as base curve: For n > 0 square-free∑

x2+2y2+8z2=n

(−1)z = ±
∑

x2+8y2+16z2=n

(−1)y+z, 0 < n ≡ 1 (mod 8),

∑
x2+2y2+8z2=n

(−1)z = ±2
∑

x2+2(x+4y)2+16z2=n

(−1)z 0 < n ≡ 3 (mod 8),

∑
x2+4y2+8z2=n/2

(−1)z = ±
∑

x2+16y2+16z2=n/2

(−1)z 0 < n ≡ 2 (mod 16),

∑
x2+4y2+8z2=n/2

(−1)z = ±2
∑

x2+4(x+4y)2+16z2=n/2

(−1)z 0 < n ≡ 10 (mod 16).
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(3) The above Tunnell-Gross Type theorem is just the specialization of the Theorem 6.3 in the sign
+1 case with D1 = 1 and X = X2 and Σ containing bad places of A0, in general, we have a
Whittaker-Fourier period formula associated to two families. Consider the quadratic twist family
of congruent elliptic curve E : y2 = x3 − x. Let A0 = E, Σ = {2,∞} (X1,X2) = ([2], [−1]) or
([2], [−1]).

For each p - 2, consider the weight function on Lp = Zp[i, j, k] defined by the following: Fix
x0 ∈ Lp\pLp such that p|q(x0). Let

wn,p(x) =


0, p - q(x)
ηn,p(−〈x, x0〉), p - 〈x, x0〉
ηn,p(u), p|〈x, x0〉

,

here 〈x, y〉 = q(x + y) − q(x) − q(y), u ∈ Z×
p is such that x ≡ ux0 (mod p) and ηn,p is the

quadratic character of Q×
p associated to Qp(

√
n)/Qp. For different choice of x0, w differs by a

constant in {±1}.

Proposition 1.4.
(a) For each positive square-free n1 ≡ 2 (mod 16) and n2 ≡ 1 (mod 8),

L(E(n1), 1)

Ω/
√
n1

L(E(n2), 1)

Ω/
√
n2

=
1

32

 ∑
(a−4b)2+(a+4b)2+64c2=n1n2

∏
p| n1/2

wn1,p(a− 4b, a+ 4b, 4c)

+
∑

(2a+4b+c)2+(2a−4b+c)2+16c2=n1n2

∏
p|n1/2

wn1,p(2a+ 4b+ c, 2a− 4b+ c, 4c)

2

In particular, if n2 = 1, for each positive square-free n ≡ 2 (mod 8),

L(E(n), 1)

Ω/
√
n

=
1

32

 ∑
(a−4b)2+(a+4b)2+64c2=n

∏
p| n1/2

wn1,p(a− 4b, a+ 4b, 4c)

+
∑

(2a+4b+c)2+(2a−4b+c)2+16c2=n1n2

∏
p|n1/2

wn1,p(2a+ 4b+ c, 2a− 4b+ c, 4c)

2

(b) For each positive square-free n1 ≡ 1 (mod 8) and n2 ≡ 2 (mod 16) with (n1, n2) = 1,

L(E(n1), 1)

Ω/
√
n1

L(E(n2), 1)

Ω/
√
n2

=
1

32

 ∑
(a+4b)2+(a−4b)2+64c2=n1n2

∏
p| n1

wn1,p(a+ 4b, a− 4b, 4c)

−
∑

(2a+4b+c)2+(2a−4b+c)2+16c2=n1n2

∏
p|n1

wn1,p(2a+ 4b+ c, 2a− 4b+ c, 4c)

2

In particular, if n1 = 1, for each positive square-free n ≡ 2 (mod 16),

L(E(n), 1)

Ω/
√
n

=
1

8

 ∑
x2+16y2+8z2=n

2

(−1)z

2

p-divisibility of X in sub quadratic twist family In the following, we introduce our explicit
formulae on (arithmetic) Whittaker-Fourier periods formulae and (arithmetic) Rallis inner product for-
mulae and the arithmetic application on p-divisibility of X. Consider distribution of Tate-Shafarevich
group X(A) as A varies in a quadratic family of A elliptic curves over Q. It is suggested that it
has good behaviour as A varies in a Σ equivalent class. Here Σ is a finite set of places containing
{p
∣∣∣ p is bad for ∀A ∈ A} ∪ {2,∞} and A,A′ ∈ A are called Σ equivalent if and only if A/Qv ' A′/Qv,

∀v ∈ Σ. Elliptic curves in an equivalent class have the same sign. The work of Pan-Tian suggest that
X(A)[p∞] has good distribution behaviour as A varies in X and the invariant

µp(X) = inf
A∈X

ords=1L(s,A)≤1

ordp#Xan(A)
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could be strictly positive. Recall Kolyvagin conjectured that exists one X with µp(X) = 0 [17].
The Goldfeld conjecture predicts that density one of A ∈ X has ords=1L(s,A) =

1
2 (1 − ε(X)), where

ε(X) is the sign of X. The question is
Question 1.5. How does µp(X1)− µp(X2) varies as Xi varies?

Given A ∈ A, X1,X2 ⊂ A with ε(X2) = +1. We may also identify an equivalent class X with subset
of Q× consists of n such that A(n) ∈ X. Assume X1X2 whenever ε(X1) = −1. Let B be the quaternion
algebra over A unramified outside Σ such that

ε(Bv) = ηv(−1)ε(X⊗Qv)ε(X2 ⊗Qv), ∀v ∈ Σ,

where ηv is the quadratic twist character associated to Qv(
√
n1n2), ni ∈ Xi.

For n ∈ Q×, let ηn be the quadratic character associated to Q(
√
n)/Q. Let π be the cuspidal

automorphic irreducible representation of H = A×\B× associated to A, Let Θ ⊂ A0,3/2(A) be the
irreducible representation only depends on X1 such that Θv ' θψn−1,v

(πv ⊗ ηn,v) for all v and n ∈ X1.
Let Σ be minimal for simplicity. The following result is a direct consequence of our explicit formulae
(See Theorem 5.5 and Theorem 5.7).
Theorem 1.6. There is a distinguished one dimensional Hecke eigen space in π (Cai-Shu-Tian), say
generated by f , and uniform choice of integral φD1 for D1 ∈ X1 fundamental discriminants such that the
theta lifting θD1

:=
∑
n a

D1
n qn of (fD1

:= f ⊗ ηD1
, φD1

) in Θ (with respect to ψD−1
1

) satisfies that:
(a) Support of Whittaker-Fourier coefficients of θD1

is on |X2| for each fundamental discriminant
D1 ∈ X1. Further more, take f rational, for any fundamental discriminant D1 ∈ X1:

Q 3


|aD1

|D2|/Ω
sign(D1)
f |2

|aD1

|D2||
2

|aD1

|D2||
2
NT/RA(D1)

=α0


L(A(D1),1)

Ω
sign(D1)

A /
√

|D1|
L(A(D2),1)

Ω
sign(D2)

A /
√

|D2|
, ε(A⊗ X1) = +1, X1X2 > 0

L(A(D1),1)

Ω
sign(D1)

A /
√

|D1|
L(A(D2),1)

Ω
sign(D2)

A /
√

|D2|
, ε(A⊗ X1) = +1, X1X2 < 0

L′(A(D1),1)

R
A(D1) ·Ω

sign(D1)

A /
√

|D1|
L(A(D2),1)

Ω
sign(D2)

A /
√

|D2|
ε(A⊗ X1) = −1, X1X2 < 0

,

α0 = C ′ ·


(f,f)

(ϕA,ϕA)

Ω
sign(D1)

A Ω
sign(D2)

A

2πiΩ
sign(D1)

f 2πiΩ
sign(D2)

f

(f,f)Ω+
AΩ−

A

π3(ϕA,ϕA)
(f,f)Ω+

AΩ−
A

π3(ϕA,ϕA)

with C ′ ∈ Q× an explicit constant (essentially) does

not depends on Di and p|C ′ only if

p|
∏

q∈Σ or A/Qq bad

q(q2 − 1)L2(A
(D1), 1)L2(A

(D2), 1).

Here Ω±
A are Néron periods of A, Ωϵf are Shimura periods associated to f , RA(D1) is the regulator

of A(D1), φA is the weight 2 newform associated to A.

(b). θ
θ
fD1
ϕD1

ϕD1
∈ C · fD1 and for any fundamental discriminant D1 ∈ X1:

(θ
fD1

ϕD1
, θ
fD1

ϕD1
)

(f, f)
·


π3

Ω
sign(D1)

A
π

Ω
sign(D1)

A
π

R
A(D1)Ω

sign(D1)

A

= C


L(A(D1),1)

Ω
sign(D1)

A /
√

|D1|
, ε(A⊗ X1) = +1, X1X2 > 0

L(A(D1),1)

Ω
sign(D1)

A /
√

|D1|
, ε(A⊗ X1) = +1, X1X2 > 0

L′(A(D1),1)

R
A(D1)Ω

sign(D1)

A /
√

|D1|
ε(A⊗ X1) = −1, X1X2 < 0

,

where C ∈ Q× an explicit constant (essentially) does not depends on Di and p|C only if

p|
∏

q∈Σ or A/Qq bad

q(q2 − 1) · L2(A
(D1), 1)L2(A

(D2), 1)

To answer of the question 1.5 will follow from the above explicit formulae and p-integrality of two
sides of (arithmetic) theta lifting. In fact, once have p-integrality of (arithmetic) theta lifting, the first
formulae give relation between

µp(X1) + µp(X2)

and
inf

D1∈X1

ordpθD1
.
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And the second formulae gives lower bound of
µ(X1)

in terms of
inf

D1∈X1

ordpθD1
.

Hence we have upper bound for
µp(X1)− µp(X2).

The p-integrality of (arithmetic) theta lifting will be considered in subsequent paper. See [25] for partial
results on p-integrality of theta lifting in the square-free conductor case.

2. Local theory

There are two explicit realizations of local theta lifting for (SO3, S̃L2). One involves doubling zeta
integrals, the other involves toric models of representations of SO3 and Whittaker models of represen-
tations of S̃L2. The two realizations give two constructions of local inner product of local theta lifting.
In this section, we first consider comparison of these two inner product formulae, which follows from
relations among doubling zeta integrals, toric periods and Whittaker periods. The point is that the toric
periods and Whittaker periods are relative easy to study than the doubling zeta integral, since their
integral region have lower dimension. All these periods are related to special L-values. For arithmetic
application, in the second part, we consider test vectors for these periods and their family behaviours
under quadratic twists.
Notations. Let F be a local field of characteristic zero and let ψ be a non-trivial character of F . Choose
Haar measure dx on F to be self-dual with respect to ψ. Denoted d×x by the Haar measure on F×

defined by d×x = L(1, 1F )
dx
|x| , where | · | is the normalized valuation on F×.

We will identify an algebraic group over F or its metaplectic covering with its F points. Let Q be a
quadratic algebra or a quaternion algebra over F , or the trace free part of a quaternion algebra over F
with quadratic form q given by the minus of the reduced norm. Fix Haar measure on dx on Q which is
self-dual with respect to ψ(〈 , 〉), where 〈x, y〉 = q(x+ y)− q(x)− q(y) is the bilinear form associated to
q. Fix Haar measure on Q× defined by

d×x =

{
L(1, 1F )

dx
|q(x)| , if Q is a quadratic extension of F

L(1, 1F )
dx

|q(x)|2 , if Q is a quaternion algebra.

Take Haar measure on F×\Q× to be the quotient measure. For G0 := SL2, we take Haar measure to be
dxdydz

|x| for the coordinate
(
x y
z ∗

)
.

For δ ∈ F×, let ηδ be the quadratic character of F× corresponding to extension F (
√
δ)/F , let ψδ(·) =

ψ(·).

2.1. Inner products on local theta lifting. Let B be a quaternion algebra over F and V = Btr=0

with quadratic form given by the minus of the reduced norm. Let H = PB× and identified with SO(V )

via its conjugate action on V . Let G = S̃L2 be the metaplectic covering of SL2. Let (wψ,S(V )) be
the Weil-representation of H × G associated to ψ. Here, if F is non-Archimedean, S(V ) is the space
of Schwartz functions on V and if F is Archimedean, S(V ) is the Fock model related to ψ, which is a
certain subspace of Schwartz functions on V and stable under Hecke algebra [37]. Let π be an unitary
irreducible admissible representation of H and ( , ) be an invariant positive definite hermitian pairing on
π. Then ( , ) is a basis of Hom∆H(π⊠π,C) [16], where ∆ : H → H ×H is the diagonal embedding. Let
Θ = θψ(π) be the theta correspondence of π. Then Θ is an unitary irreducible admissible representation
of G and Θ is the unique one such that

HomH×G(wψ, π ⊠Θ)

is one dimensional ([37], [9]).

Remark 2.1. IfH = PGL2 over F , we only consider unitary irreducible admissible representations that are
infinitely dimensional and for G = S̃L2, we only consider unitary irreducible admissible representations
that are not even Weil representations. The reason is that these representations are enough for global
application and their matrix coefficients have good properties such that certain linear functionals, like
doubling zeta integral, are well defined.
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In the following, we consider relations between two explicit constructions of inner products on local
theta liftings, one construction is via Waldspurger’s explicit local theta lifting [37] involve toric models
on π and Whittaker models defined as below and the other is given by local doubling zeta integral.

Let 0 6= x ∈ V and δ = q(x). Let T ⊂ H be the stabilizer of x and N =

{
n(y) =

(
1 y

1

) ∣∣∣ y ∈ F

}
⊂

G0 = SL2 the unipotent subgroup viewed as a subgroup of G. We have that
dimC HomT (π,C) = dimC HomN (Θ, ψδ) ≤ 1.

It was shown in [37] separately that there always exists δ such thatHomT (π,C) 6= 0 (resp. HomN (Θ, ψδ) 6=
0). Then π admits an unique model Vx contained in the space of functions on T\H, called T -model, and
Θ admits a unique model Wδ contained in {f : G → C

∣∣∣ ϕ(n(y)g) = ψδ(y)ϕ(g)}, called ψδ whittaker
model. For example, let 0 6= P ∈ HomT (π,C) be a basis, then Vx = {P (·f)

∣∣ f ∈ π}, and similar for the
construction of the Whittaker model.

From now on, assume that HomT (π,C) 6= 0 (equivalently, HomN (Θ, ψδ) 6= 0).
From H to G:

We have Wδ consists of following Whittaker functions constructed from local theta lifting

Θfϕ(g) =

ˆ
T\H

wψ(g)φ(h
−1 ◦ x)f(h)dh, φ ∈ S(V ), f ∈ Vx, h ∈ H, g ∈ G

here ◦ means the conjugate action of H on V and wψ(h)φ(·) = φ(h−1 ◦ ·). The integral is absolutely
convergent [37]. Note the above local theta lifting depends on x and ψ.

Let ( , ) be an invariant positive definite hermitian pairing on Θ.
We have construct a basis

(θf1ϕ1
, θf2ϕ2

)

of the one dimensional space

Hom(H×G)2(wψ ⊗ π ⊠ (wψ ⊗ π),Θ⊠Θ)
⊗

Hom∆G(Θ⊠Θ,C),

depends on an identification of π and Θ with their models introduced as above. Here H acts trivially on
Θ and G acts trivially on π.

One the other hand, we have another basis: Let ( , ) be the L2 norm on S(V ) with the measure
introduced in Notations.

Lemma 2.2. The doubling zeta integral

Z(φ1, φ2, f1, f2) :=

ˆ
H

(hφ1.φ2)(hf1, f2)dh

is absolutely convergent and is a basis of

Hom(H×G)2(wψ ⊗ π ⊠ (wψ ⊗ π),Θ⊠Θ)
⊗

Hom∆G(Θ⊠Θ,C).

Proof. The proof for the absolutely convergence is essential down in Lemma 9.5 (ii) of [10] by using
estimation of matrix coefficients of π (for example, see [30]) and estimation of matrix coefficients of Weil
representation (for example, see [22] for relevant discussion). Note that although the result in [10] is
for tempered representation, but the result is more strong and the same analysis is enough for general
unitary π to see the doubling zeta integral is absolutely convergent. Since under our convention (See
Remark 2.1), the only non-tempered unitary representation is the non-tempered unitary principle series,
which is very close to the related tempered unitary principle series.

Note that the doubling zeta integral lies in the space
Hom(H×G)2,∆G(wψ ⊗ π ⊠ (wψ ⊗ π),C).

Under our convention, the maximal π isotropic quotient of S(V ) is isomorphic to Θ⊠ π, thus
Hom(H×G)2,∆G(wψ ⊗ π ⊠ (wψ ⊗ π),C)

equals to
Hom(H×G)2(wψ ⊗ π ⊠ (wψ ⊗ π),Θ⊠Θ)

⊗
Hom∆G(Θ⊠Θ,C)

and hence one dimensional. □

Now we consider relations between these two basis. It turns out that they are closely related to the
following linear functionals.

8



• the one dimensional space HomT 2(π ⊠ π,C) has two generators

f1(1)f2(1), α(f1, f2) :=

ˆ
T

(tf1, f2)dt, fi ∈ Vx.

• the one dimensional space HomN2(Θ⊠Θ, ψδ ⊠ ψ−δ) has generators

ϕ1(1)ϕ2(1), β(ϕ1, ϕ2) :=

ˆ
F

(n(y)ϕ1, ϕ2)ψδ(−y)dy, n(y) =

((
1 y

1

)
, 1

)
∈ N ⊂ G, ϕi ∈ Wδ.

Here we give several explainations of the linear function introduced above: (1) α is absolutely convergent[38].
(2) We view function (n(·)ϕ1, ϕ2) of F as a distribution on S(F ). The ψ−δ Fourier transformation of
distribution (n(·)ϕ1, ϕ2):

φ 7→
ˆ
F

(n(y)ϕ1, ϕ2)

ˆ
F

φ(z)ψ−δ(zy)dzdy

is represented by a smooth function tδ on F× [27]. Define the Whittaker-Fourier periodˆ
F

(n(y)ϕ1, ϕ2)ψδ(−y)dy := tδ(1).

The following result is proved via Harmonic analysis on toric and unipotent subgroup and together
with above multiplicity one results.

Theorem 2.3. For any fi ∈ Vx, ϕi = θfiϕi ∈ Wδ with φi ∈ S(V ), i = 1, 2, we have

Z(φ1, φ2, f1, f2) = (ϕ1, ϕ2) ·
α(f1, f2)

f1(1)f2(1)
· ϕ1(1)ϕ2(1)

β(ϕ1, ϕ2)
· |8δ|1/2

Remark 2.4. In fact, α(f1,f2)(f1,f2)
is closely related to L(1/2, πF (

√
δ)),

β(φ1,φ2)
(φ1,φ2)

is closely related to L(1/2, π⊗ηδ)
and Z(ϕ1,ϕ2,f1,f2)

(f1,f2)
is closely related to L(1/2, π).

Denoted by Va = {x ∈ V
∣∣∣ q(x) = a}. There exists a unique H-invariant measure dav on Va for each

a ∈ F× such that for each φ ∈ S(V ),ˆ
V

φ(v)dv =

ˆ
F

ˆ
Va

φ(v)davda.

For y 6= 0 and Ty be the stablizer of y, then under identification Ty\H ' Vq(y), the H invariant measure
on Ty\H induced from Vq(y) is 1

|8q(y)|1/2 times the quotient measure on Ty\H [40].
We have that the local theta lifting from H to G connects ψa quotient of wψ under action of N , with

IndGT 1T in the following way:

Lemma 2.5. The maximal quotient of S(V ) such that N acts by ψa is S(Va) ⊂ IndGT 1T and equals to
c− IndGT 1T if F is non-Archimedean.

Define ˆ
F

Z(n(y)φ1, φ2, f1, f2)ψδ(−y)dy

in the same way as β.

Proof of Theorem 2.3. By multiplicity one of Hom(H×G)2(wψ⊗π⊠(wψ⊗π),Θ⊠Θ)
⊗

Hom∆G(Θ⊠Θ,C),
we have that

(ϕ1, ϕ2)

and
Z(φ1, φ2, f1, f2).

are differed by a scalar. We now understand their relation via consider Fourier coefficients.
Denoted by δ1 ∈ S ′(F ) the delta distribution. We have for φn → δ1,ˆ

F

Z(n(y)φ1, φ2, f1, f2)ψδ(−y)dy

= lim
m→∞

ˆ
F

Z(n(y)φ1, φ2, f1, f2)

ˆ
F

φm(z)ψδ(−zy)dzdy

=

ˆ
H

(hf1, f2) lim
m→∞

ˆ
F

(n(y)hφ1, φ2)

ˆ
F

φm(z)ψδ(−zy)dzdydh

9



Note that the ψ−δ Fourier transformation of distribution (n(·)φ1, φ2) is represented by continuous
function f(y) =

´
Vyδ

φ1(v)φ2(v)dyδv on F×. By estimation of matrix coefficients of weil representa-
tion, the function

´
Va
φ1(v)φ2(v)dav as function of a ∈ F× is continuous and in L1(F ) and its Fourier

transformation is also in L1(F ), thus the Fourier inverse formula holds. Thus
ˆ
F

Z(n(y)φ1, φ2, f1, f2)ψδ(−y)dy =

ˆ
H

ˆ
Vδ

hφ1(v)φ2(v)dδv · (hf1, f2)dh

Since
´
T
|(thf1, h′f2)|dt is moderate growth as function of (h, h′) ∈ (T\H)2 and hφ1(x), h′φ2(x) is rapidly

decay as function of h, h′ respectively, the following integral is absolutely convergent

|8δ|1/2
ˆ
T\H

(h′φ2)(x)

ˆ
T\H

(hφ1)(x)

ˆ
T

(thf1, h′f2)dtdhdh
′ (∗)

and hence

(∗) =|8δ|1/2
ˆ
H

ˆ
T\H

(h′hφ1)(x)(h′φ2)(x)(hf1, f2)dh
′dh

=

ˆ
H

ˆ
Vδ

hφ1(v)φ2(v)dδv · (hf1, f2)dh
,

where extra factor 1
|8δ|1/2 comes from the comparison between two H-invariant measures on T\H.

One the other hand, by multiplication one of HomT (π,C), HomN (Θ, ψδ), exists nonzero c1, c2 such
that

f1(1)f2(1) · c1 = α(f1, f2)

W1(1)W2(1) · c2 = β(W1,W2).

It follows that ˆ
F

Z(n(y)φ1, φ2, f1, f2)ψδ(−y)dy =
|8δ|1/2c1

c2
β(ϕ1, ϕ2).

□

From G to H:
One may also consider the theta lifting from G to H. Similarly, Vx consists of functions

θφϕ (h) =

ˆ
N\G0

wψ(g)φ(h
−1 ◦ x)ϕ(g)dg, φ ∈ S(V ), ϕ ∈ Wδ, h ∈ H, g ∈ G0 = SL2

where the integral is absolutely convergent [37]. Moreover, the one dimensional space

Hom(H×G)2(wψ ⊗Θ⊠ (wψ ⊗Θ), π ⊠ π)
⊗

Hom∆H(π ⊠ π,C)

has two generators

(θφ1

ϕ1
, θφ2

ϕ2
), Z(φ1, φ2, ϕ1, ϕ2) :=

ˆ
G

(gφ1.φ2)(gϕ1, ϕ2)dg, ϕi ∈ Wδ.

In fact, parallel to Lemma 2.2, we have

Lemma 2.6. The doubling zeta integral Z(φ1, φ2, ϕ1, ϕ2) is absolutely convergent and is a basis of

Hom(H×G)2(wψ ⊗Θ⊠ (wψ ⊗Θ), π ⊠ π)
⊗

Hom∆H(π ⊠ π,C).

In the following, we compare these two basis.
The following lemma is parallel to Lemma 2.5, which connects the T invariant quotient of Weil

representation with IndGNψq(x).

Lemma 2.7. Fix 0 6= x ∈ Ktr=0,ˆ
T

(tφ1, φ2)dt = |2q(x)|1/2
ˆ
N\G0

gφ1(x)gφ2(x)dg.
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Proof. The equality essentially follows from the Fourier inversion formulae.
The integral on both sides are absolutely convergent. Note that N\G0 = TdiagwN t Tdiag and the

measure becomes dg = |a|−3dady on N\NTdiagwN , where g = d(a)wn(y), d(a) =
(
a

a−1

)
. We have

ˆ
N\G0

gφ1(x)gφ2(x)dg

=

ˆ
F×

ˆ
F

|a|3d(a)wn(y)φ1(x)d(a)wn(y)φ1(x)dyda (1)

Let da be the self-dual measure on F with respect to ψ, and du be the self-dual measure on Ktr=0 with
respect to ψ ◦ 〈 , 〉|Ktr=0 , then for u = a · x ∈ Ktr=0,

da =
1

|2q(x)|1/2
d′ax.

We have

(1) =
1

|2q(x)|1/2

ˆ
Ktr=0

ˆ
F

wn(y)φ1(u)wn(y)φ2(u)dydu (2).

Note that the fiber of q : V → F at a is Va and the fiber of restriction map Va → Ktr=0 at u is an orbit of
T given by (u, ι(t)u0) ∈ Ktr=0 ⊕K⊥, here ι(t) = t/t, u0 ∈ K⊥ is any element such that q(u, ι(t)u0) = a.
We have decomposition of the measure on V : dv = davda = dtduda.

Thus (2) becomes:

=
1

|2q(x)|1/2

ˆ
Ktr=0

ˆ
F

(ˆ
F

ψ(a1a)

ˆ
Va1

ψ(〈u, v1〉)φ1(v1)da1v1da1·

ˆ
F

ψ(a2a)

ˆ
Va2

ψ(〈u, v2〉)φ2(v2)da2v2da2

)
dadu, (3)

=
1

|2q(x)|1/2

ˆ
Ktr=0

ˆ
F

(ˆ
F

ψ(a1a)

ˆ
Ktr=0

ψ(〈u, u1〉)
ˆ
T

φ1(u1, ι(t1)u1,0)dt1du1da1·
ˆ
F

ψ(a2a)

ˆ
Ktr=0

ψ(〈u, u2〉)
ˆ
T

φ1(u2, ι(t2)u2,0)dt2du2da2

)
dadu, (4)

where ui,0 ∈ K⊥ such that q(ui, ui,0) = ai. Now the key is to applying Plancherel identity for Fourier
transformation that

ˆ
F

ˆ
F

ψ(−a1a)f1(a1)da1
ˆ
F

ψ(−a2a)f2(a2)da2da =

ˆ
y

f1(a)f2(a)da,

where the measure are self-dual with respect to ψ holds whenever fi ∈ L1(F ) ∩ L2(F ), where da is the
self-dual measure with respect to ψ. Since the fi(a, u) =

´
Va
ψ(〈u, x〉)φi(x)dax, a ∈ F , u ∈ Ktr=0 is in

L1(F ) ∩ L2(F ), we have

(3) =
1

|2q(x)|1/2

ˆ
Ktr=0

ˆ
F

ˆ
F

ψ(aa1)f1(a1, u)da1

ˆ
F

ψ(aa2)f1(a2, u)da2dadu

=
1

|2q(x)|1/2

ˆ
Ktr=0

ˆ
F

f1(a, u)f1(a, u)dadydu

=
1

|2q(x)|1/2

ˆ
Ktr=0

ˆ
F

(ˆ
Ktr=0

ψ(〈u, u1〉)
ˆ
T

φ1(u1, ι(t1)u1,0)dt1du1 ·
ˆ
Ktr=0

ψ(〈u, u2〉)
ˆ
T

φ2(u2, ι(t2)u2,0)dt2du2

)
dadu

(4)

here q(ui, ui,0) = a. We have that the outer integral in (3) of u ∈ Ktr=0 and a ∈ F are commutes, and
also note that the function gi(a, ui) =

´
T
φi(ui, ι(t1)ui,0)dti, q(ui, ι(t)ui,0) = a of ui are in L1(Ktr=0) ∩

L2(Ktr=0).
11



Thus

(4) =
1

|2q(x)|1/2

ˆ
F

ˆ
Ktr=0

(ˆ
Ktr=0

ψ(〈u, u1〉)
ˆ
T

φ1(u1, ι(t1)u1,0)dt1du1 ·
ˆ
Ktr=0

ψ(〈u, u2〉)
ˆ
T

φ2(u2, ι(t2)u2,0)dt2du2

)
duda

(By Plancherel identity)

=
1

|2q(x)|1/2

ˆ
F

ˆ
Ktr=0

ˆ
T

φ1(u, ι(t1)u0)dt1 ·
ˆ
T

φ2(u, ι(t2)u0)dt2duda

(absolutely convergent)

=
1

|2q(x)|1/2

ˆ
T

(ˆ
F

ˆ
Ktr=0

φ1(u, ι(t1t2)u0) ·
ˆ
T

φ2(u, ι(t2)u0)dudadt2

)
dt1

=
1

|2q(x)|1/2

ˆ
T

(tφ1, φ2)dt

□

Theorem 2.8. For any ϕi ∈ Wδ, fi = θfiϕi ∈ Vx with φi ∈ S(V ), i = 1, 2, we have

Z(φ1, φ2, ϕ1, ϕ2) = (f1, f2) ·
β(ϕ1, ϕ2)

ϕ1(1)ϕ2(1)
· f1(1)f2(1)
α(f1, f2)

· |2q(x)|1/2

Proof of Theorem 2.8. In the same way as the proof of Theorem 2.3, we want to show theˆ
T

ˆ
G0

(tgφ1, φ2)(gϕ1, ϕ2)dgdt = |2q(x)|1/2
ˆ
N\G0

g′φ2(x)

ˆ
N\G0

gφ1(x)

ˆ
F

(n(y)gϕ1, g′ϕ2)ψδ(−y)dydgdg′ (∗),

here
´
F
(n(y)gϕ1, g

′ϕ2)ψδ(−y)dy is the regularized Whittaker functional defined as before.
Then by multiplication one of HomT (π,C), HomN (Θ, ψδ), exists nonzero c1, c2 such that

f1(1)f2(1) · c1 = α(f1, f2)

ϕ1(1)ϕ2(1) · c2 = β(ϕ1, ϕ2).

Thus the above formula becomes

|2q(x)|1/2c2
ˆ
N\G0

g′φ2(x)

ˆ
N\G0

gφ1(x)ϕ1(g)ϕ2(g
′)dgdg′

=|2q(x)|1/2c2θφ1

ϕ1
(1)ϑφ2

ϕ2
(1)

=
|2q(x)|1/2c2

c1

ˆ
T

(tf1, f2)dt

It follows that
Z(φ1, φ2, ϕ1, ϕ2) = |2q(x)|1/2 c2

c1
(f1, f2).

We now focus on the proof of (∗).
The integral ˆ

T

ˆ
G0

(tgφ1, φ2)(gϕ1, ϕ2)dgdt

is absolutely convergent and thus by Lemma 2.7 equals to

|2q(x)|1/2
ˆ
G0

ˆ
N\G0

g′gφ1(x)g′φ2(x)dg
′(gϕ1, ϕ2)dg (2).

The integral may not absolutely convergent, so we can not commutes the position of integral directly.
Let K be the maximal compact subgroup of G0 = SL2, thenˆ

N\G0

ˆ
K

|g′kgφ1(x)g′φ2(x)(kgϕ1, ϕ2)|dkdg′ <∞.

Thus we can interchange the position of K and G0:ˆ
K

(ˆ
F×

ˆ
K

d(a)k′kgφ1(x)d(a)k′φ2(x)(kgϕ1, ϕ2)dk
′ da

|a|3

)
dk(let k = k′−1k, then)

=

ˆ
K

(ˆ
F×

ˆ
K

d(a)kgφ1(x)d(a)k′φ2(x)(kgϕ1, k′ϕ2)dk
′ da

|a|3

)
dk

,
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here dk is the measure on K such that da
|a|3 dk gives dg. Thus

(2) = |2q(x)|1/2
ˆ
G0

ˆ
F×

ˆ
K

d(a)gφ1(x)d(a)k′φ2(x)(gϕ1, k′ϕ2)dk
′|a|−3dadg

= |2q(x)|1/2
ˆ
N\G0

ˆ
F

ˆ
F×

ˆ
K

d(a)n(y)gφ1(x)d(a)k′φ2(x)(n(y)gϕ1, k′ϕ2)dk
′|a|−3dadydg

=

ˆ
N\G

ˆ
F

ˆ
Ktr=0

ψ(yq(u))

ˆ
K

gφ1(u)k′φ2(u)(n(y)gϕ1, k′ϕ2)dk
′dudydg

=

ˆ
N\G

ˆ
K

(ˆ
F

(ˆ
Ktr=0

ψ(yq(u))gφ1(u)k′φ2(u)du

)
(n(y)gϕ1, k′ϕ2)dy

)
dk′dg (3)

here Ktr=0 = F (x)tr=0 and du is the self-dual measure on Ktr=0 with respect to ψ(〈 , 〉Ktr=0). Applying
the Plancherel identity for quadratic Fourier transformation (For example, see Lemma 3.5 of [27]) for
the integral in bracket

(3) =

ˆ
N\G

ˆ
K

(ˆ
Ktr=0

gφ1(u)k′φ2(u)

(ˆ
F

ψ(−yq(u))(n(y)gϕ1, k′ϕ2)dy

)
du

)
dk′dg (4)

Here ˆ
F

ψ(−yq(u))(n(y)gϕ1, k
′ϕ2)dydu

is defined by distribution as before. We have

(4) =|2q(x)|1/2
ˆ
N\G

ˆ
K

(ˆ
F×

d(a)gφ1(x)d(a)k′φ2(x)

(ˆ
F

ψ(−ya2q(x))(n(y)gϕ1, k′ϕ2)dy

)
|a|−3da

)
dk′dg(u = ax)

and also note thatˆ
K

ˆ
F×

ˆ
N\G

|d(a)gφ1(x)d(a)k′φ2(x)||
(ˆ

F

ψ(−ya2q(x))(n(y)gϕ1, k′ϕ2)dy

)
|dg|a|−3dadk′ <∞,

Thus we can make the change of position of N\G, K, F× in the integral in (4), it follows that

(4) = |2q(x)|1/2
ˆ
N\G

ˆ
N\G

gφ1(x)g′φ2(x)

ˆ
N

ψ(−y)(n(y)gϕ1, g′ϕ2)dydgdg
′.

We have proved (∗). □

Local index In the following, we consider index of local theta liftings and the relation of indexes
defined by various local theta liftings.

Let π, Θ are unitary irreducible admissible representation of H,G respectively such that they are local
theta correspondence to each other, i.e.

HomH×G(wψ, π ⊠Θ) 6= 0.

Definition and Proposition 2.9.
(1) (abstract theta lifting)An abstract theta lifting is an equivalent class of triple 0 6= (θ·, ( , )π, ( , )Θ)

with θ· ∈ HomH×G(wψ, π ⊠ Θ) and ( , )π, ( , )Θ are nontrivial Hermitian pairings on π, Θ
respectively. The triple gives an explicit theta lifting

θfϕ := (θϕ, f)πv , θφϕ := (θϕ, ϕ)Θv , f ∈ πv, ϕ ∈ Θv.

Here two triples ((θ·, ( , )πv , ( , )Θv )), ((θ′·, ( , )′πv , ( , )′Θv )) are equivalent if then gives same
explicit theta lifting, i.e. exists a ∈ R×

+ such that

θ′· = aθ·, ( , )′πv = a−1( , )πv , ( , )′Θv = a−1( , )Θv

(2) Called one dimensional spaces V1 ⊂ π, V2 ⊂ Θ, W ⊂ wψ self-reflex if each basis θ· ∈
HomH×G(wψ, π ⊠Θ) maps W onto V1 ⊗ V2.

(3) (local see-saw and equality of local index on both sides)Under abstract theta lifting, the following
see-saw identity holds:

(f, θφϕ ) = (ϕ, θfϕ).
13



In particular, if (V1, V2;W ) is self-reflex, then local index with respect to local theta lifting
associated to (θ·, ( , )π, ( , )Θ) is

Ind(V1, V2;W ) :=
(θfϕ, θ

f
ϕ)Θ

(f, f)π(φ, φ)
=

(θφϕ , θ
φ
ϕ )π

(ϕ,ϕ)Θ(φ, φ)
, f ∈ V1, φ ∈W,ϕ ∈ V2,

which only depends on (V1, V2;W ).

The Waldspurger’s explicit local theta lifting xθ for both sides of theta lifting corresponds to an
abstract theta lifting and the index with respect to (V1, V2;W ) is denoted by Indq(x)(V2, V2;W ).

There is also another explicit local theta lifting defined by doubling zeta integral. The local doubling
zeta integral for each sides gives an abstract theta lifting. For example, consider the doubling zeta
integral

Z(φ1, φ2, f1, f2) :=

ˆ
H

(hφ1, φ2)(hf1, f2)dh, φi ∈ wψ, fi ∈ π

from H to G. There is an abstract theta lifting (θ·, ( , )π, ( , )Θ) with ( , )π = ( , ) on π such that the
corresponding explicit theta lifting satisfies:

(θf1ϕ1
, θf2ϕ2

)Θ = Z(f1, f2, φ1, φ2), φi ∈ wψ, fi ∈ π.

Similar for the other direction.
The two abstract theta liftings obtained from two directions of local doubling zeta integral are in fact

equivalent.
Let mi ∈ F× such that the Haar measure on H and G0 = SL2(F ) introduced in notation is |mi|

times the one in [15]. For Global application, these |mi| will harmless since the product measure will
give the Tamagawa measure, since product of these measures induces Tamagawa measure if the groups
are considered as defined over number field.

Proposition 2.10. Assume F is real if it is Archimedean. There exists θ ∈ HomH×G(wψ, π ⊠ θ) and
invariant Hermitian pairings ( , )π, ( , )Θ on π, θ respectively such that the corresponding local theta
lifting

θfϕ := (θϕ, f)π, θφϕ := (θϕ, ϕ)Θ

satisfies
Z(φ1, φ2, f1, f2) = |m1|(θf1ϕ1

, θf2ϕ2
)Θ, Z(φ1, φ2, ϕ1, ϕ2) = |2m2| · (θφ1

ϕ1
, θφ2

ϕ2
)π,

here we use same Hermitian pairing in local doubling zeta integral.

Remark 2.11. Using globalization methods and Rallis inner product formulae, the assumption on F is
not necessary. The about proposition is a result of Qiu, which is a consequence of (1) of Theorem A
in [30] together with Theorem C in [29] on equality of formal degrees under local theta correspondence.
The key is that there is a doubling zeta integral involve matrix coefficients of wψ, π and θ. It connects
with doubling zeta integrals for both directions of local theta liftings and the difference is given by formal
degree of π and θ respectively.

Denoted by IndZ(V1, V2;W ) for the theta lifting given by the above proposition, then

IndZ(V1, V2;W ) = |m1|−1Z(φ, φ, f, f)

(f, f)(φ, φ)
= |2m2|−1Z(φ, φ, ϕ, ϕ)

(ϕ,ϕ)(φ, φ)
, 0 6= f ∈ V1, 0 6= ϕ ∈ V2, 0 6= φ ∈ wψ.

In the following theorem, identify π with its Tx models and identify Θ with its ψq(x) models (related
to x ∈ V ).

Theorem 2.12. Let
(θ, ( , )π, ( , )Θ)

be abstract theta lifting such that Proposition 2.10, then(∣∣∣∣ 2q(x)m1m2

∣∣∣∣−1/4

θ, ( , )π, ( , )Θ

)
is a abstract theta lifting corresponds to Waldspurger explicit theta lifting xθ. In particular, for self-reflex
(V1, V2;W ),

IndZ(V1, V2;W ) =

∣∣∣∣ 2q(x)m1m2

∣∣∣∣1/2 Indδ(V1, V2;W ).
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Proof. Let ( )π and ( , )Θ be Hermitian pairing on π and Θ such that

|m1|
|2|

(
f(1)f(1)´

Tδ,v
(tf1, f2)πdt

´
N
(nϕ, ϕ)Θψδ,v(−n)dn

ϕ1(1)ϕ2(1)

)
= |2m2|

(´
Tδ,v

(tf1, f2)πdt

f2(1)f1(1)

ϕ1(1)ϕ2(1)´
N
(nϕ1, ϕ2)Θψδ,v(−n)dn

)
.

For example, we may take ( , )π, ( , )Θ with
´
Tδ,v

(tf1,f2)πdt

f(1)f(1)
= 1, and

´
N

(nφ1,φ2)Θψδ,v(−n)dn
φ1(1)φ2(1)

= |4m2/m1|1/2.
denoted by A to be this nonzero number. Then by Theorem local period relation,

Z(φ1, φ2, f2, f2)

(f1, f2)π
=

∣∣∣∣ 2q(x)m1m2

∣∣∣∣1/2 · |m1|
(xθ

f1
ϕ1
, xθ

f2
ϕ2
)Θ

(f1, f2)π

Z(φ1, φ2, ϕ1, ϕ2)

(ϕ1, ϕ2)Θ
=

∣∣∣∣ 2q(x)m1m2

∣∣∣∣1/2 · |2m2|
(xθ

φ1

ϕ1
, xθ

φ2

ϕ2
)π

(ϕ1, ϕ2)Θ

Let (θ,B( , )π, C( , )Θ) be the abstract theta lifting given in Proposition 2.10, let (aθ, b( , )π, c( , )Θ)
be the explicit local theta lifting corresponding to explicit local theta lifting xθ, then

BC =

∣∣∣∣ 2q(x)m1m2

∣∣∣∣1/2 a2b2
BC =

∣∣∣∣ 2q(x)m1m2

∣∣∣∣1/2 a2c2.
Thus we may take a =

∣∣∣ 2q(x)m1m2

∣∣∣−1/4

, B = b, C = c. □

For arithmetic applications we need to study test vectors for linear forms α, β, θfϕ(1), Z for the
direction from H to G, and even their explicit and family behaviour under quadratic twists. Since α
is well studied in [3] and Z follows from other ones by the Theorem 2.3 above, in the following we will
focus on the Whittaker functional θfϕ(1) and the properties of β will follow as well.

2.2. Test vector for Whittaker functional of local theta lifting.

Notations. Denoted by $ a uniformizer of F . Define Vδ = {x ∈ V
∣∣∣ q(x) = δ}, δ ∈ F . We will add

subscript x (resp. δ) for T , θϕf (resp. α, β) and so on to emphasize the dependence on x (resp. q(x)).
Let π0 be an unitary irreducible admissible representation of H. Let X1, X2 ⊂ F× be one of the

following two type equivalent classes:
Case (I). The residue field of F has odd characteristic and exists a quadratic character ηδ0 either trivial

or ramified such that π0 ⊗ ηδ0 is unramified. Let X1 = X2 = F×.
Case (II). Xi ⊂ F× is a coset of F×/F×2 such that ε(π0 ⊗ ηδ1)ηδ1(−1) = ε(B)ε(π0 ⊗ ηδ2)ηδ2(−1), where

ε(π0 ⊗ ηδi) is the root number of π0 ⊗ ηδi and ε(B) the Hasse invariant of B.
Fix a non-trivial additive character ψ0 of F . Let π = π0 ⊗ ηδ1 and ψ = ψ0,δ−1

1
(depends on δ1) for

δ1 ∈ X1 . It follows from the property of Waldspurger packet that θ := θψ(π) only depends on X1. By
result of Tunnell-Saito, for each x ∈ Vδ1δ2 with δ2 ∈ X2, Tx ⊂ H the group of stablizers of x,

dimC HomTx(π,C) = 1, (equivalently dimC HomN (θ, ψδ1δ2) = 1).
Let δi ∈ Xi varies, in the following, we will give uniform construction of (f, φ) with f a test vec-

tor of HomTx(π,C) and xθ
f
ϕ ∈ Wq(x) is a test vector for HomN (θ, ψδ1δ2). Here a test vector for

HomTx(π,C) means a vector in π such that a basis of HomTx(π,C) takes non-zero value on it, simi-
lar for HomN (θ, ψδ1δ2). We add a left-subscript x for local theta lifting θfϕ to emphasis the dependence
of x. Furthermore,

• They varies uniformly under normalized linear forms associated to α, β, xθϕf (1),
• In the case (II)., xθfϕ is not a test vector of ψδ Whittaker functional for any other coset of δ that
different from X1 · X2.

• Theta lifting twice of f with respect to φ still lies in C · f ,
• In the non-archimedean case and δ1 = 1, φ is closely related to lattice.
• In the archimedean case, they have good algebraic properties for algebraic regular representa-

tions.
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Remark 2.13. In the case (II), K := F (x) only depends on X1, X2, we have the following relation on
different choice of x ∈ Ktr=0:

For u ∈ F×, note that

uxθ
f
ϕ(·) = |u|−3/2χψ(u)

−1
xθ
f
ϕ

(((
u

u−1

)
, 1

)
·
)
,

where | · | is the normalized valuation on F× and χψ is the genuine character associated to ψ. We have
isomorphism of G-models

Wq(x) ' Wq(ux), xθ
f
ϕ 7→ uxθ

f
ϕ.

Test vector for toric linear form Let π0, X1, X2 be as before. For δi ∈ Xi, let K ⊂ B be subalgebra
isomorphic to F (

√
δ1δ2) and let T = K×/F×.

In the following, we will construct a one dimensional space V (π0,X1,X2) ⊂ π0 depends on a certain
compact subgroup of B such that for each δ1 ∈ X1, a nonzero element in V (π0, δ1,X2) := V (π0,X1,X2)⊗
ηδ1 is a test vector for HomT (π,C) for all δ2 ∈ X2 wheneverK has good relative position with the compact
subgroup. And we also consider uniform bahaviour of these test vectors under α.

The construction is essential a special case of Cai-Shu-Tian’s test vector theory we now recall: Let
π′ be an unitary admissible irreducible representation of H. Let K ′ ⊂ B a quadratic subalgebra and
T ′ = K ′×/F× ⊂ H. Let χ′ a quadratic character of T ′ comes from base change of a quadratic character
of F×. Assume HomT ′(π′, χ′) 6= 0. Let n′ ∈ Z≥0 be the exponential conductor of Jacquet-Langlands
correspondent of π′, let c′ ∈ Z≥0 be the exponential conductor of χ′ and Oχ′ the order of K ′ with
conductor c′.

Proposition 2.14. [3] The following space is one dimensional and any nonzero element is a test vector
for HomT ′(π′, χ′).

• F is non-Archimedean. Let R′ be an admissible order for (π′, χ′) in the sense of [3] with
discriminant equals to n′ and R′ ∩K ′ = Oχ′ .
(a’) Assume π′ is unramified, or K ′ splits, or c′ ≥ n′,

V (π′, χ′) := π′R′×
.

(b’) If K ′ is nonsplit and 0 = c′ < n′,

V (π′, χ′) := π′χ′
⊂ π′R′×

.

• F is Archimedean
(c’) Let U ′ be a maximal compact subgroup of H such that U ′ ∩ T ′ is the maximal compact

subgroup of T ′. Let

V (π′, χ′) :=
{
f ∈ π′

∣∣∣ T ′ ∩ U ′ acts by χ′ and weight is minimal
}
.

Now come back to our situation.
Let x ∈ Vδ1δ2 , K = F (x), χ = ηδ1 ◦NK/F . Observe that f is test vector for HomTx(π,C) is equivalent

to f ⊗ ηδ1 is test vector for HomTx(π0, χ) and furthermore

αq(x)(f1, f2) = αχ(f1 ⊗ ηδ1 , f2 ⊗ ηδ1) :=

ˆ
Tx

(t(f ⊗ ηδ1), f ⊗ ηδ1)χ(t)dt, fi ∈ π

where we choose inner product on π0 and π such that

(f1, f2) = (f1 ⊗ ηδ1 , f2 ⊗ ηδ1), fi ∈ π.

It is enough to construct test vector for HomTx(π0, χ) 6= 0.
Let χ1 = ηδ1δ0 ◦ NK/F , where we choose ordF (δ0) = 1 in the case (I). and ηδ0 ramified, and δ0 = 1

otherwise. Denoted by O (resp. OK) the ring of integers of F (resp. K) if F is non-archimedean. Let
n be the exponential conductor of the Jacquet-Langlands correspondent of π0, and let c (resp. c1) be
exponential conductor of χ (resp. χ1) and Oχ ⊂ OK (resp. Oχ1

⊂ OK) be the order with conductor c
(resp. c1).

Theorem 2.15. The following space V (π0,X1,X2) ⊂ π0 is one dimensional and nonzero vectors in it
is test vectors for nonzero linear form in HomTx(π0, χ) whenever K and R has relative position below:
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Case (I). Let R be a maximal order of B. Let

V (π0,X1,X2) := V (π0 ⊗ ηδ0 , χ1)⊗ ηδ0 = {f ∈ π0

∣∣∣ R× acts via ηδ0 ◦ det}.

Let δi ∈ Xi and x ∈ Vδ1δ2 such that Oχ1 = K ∩R.
Case (II). Fix x ∈ Vδ1δ2 , then K := F (x), Tx only depend on Xi.

(a). If F is non-Archimedean such that either K splits or c ≥ n,

V (π0,X1,X2) := V (π0, χ) = πR
×

0 .

where R is an admissible order for (π0, χ) in the sense of [3] with discriminant equals to n
and R ∩ K = Oχ.

(b). If F is non-Archimedean, K is a field and c < n. Let R be an order with discriminant equals
to conductor of π and R ∩ K = OK.

(i) If π is ramified,

V (π0,X1,X2) := V (π0, χ) = V (π, 1K)⊗ ηδ1 =
{
f ∈ π0

∣∣∣ Tx acts by χ
}
.

We have R× acts by ηδ1 ◦ det.
(ii) If π is unramified,

V (π0,X1,X2) := V (π, 1K)⊗ ηδ1 =
{
f ∈ π0

∣∣∣ R× acts by ηδ1 ◦ det
}
.

(c) If F is Archimedean, let U be a maximal compact subgroup of H such that U ∩ Tx is the
maximal compact subgroup of Tx. Let

V (π0,X1,X2) := V (π0, χ) = V (π, 1K)⊗ ηδ1 =
{
f ∈ π0

∣∣∣ Tx ∩ U acts by χ and weight is minimal
}
.

Remark 2.16. In the case (I). and ηδ0 is ramified, we modified the Cai-Shu-Tian test vector for (π0, χ)
such that is does not depends on different δi. In the case (II).(b).(ii)., we modified the Cai-Shu-Tian test
vector so that the level of test vector is clear. These modifications are convenient for our purpose.

From a nonzero vector f0 in V (π0,X1,X2), we get test vectors f := f0 ⊗ ηδ1 ∈ V (π0, δ1,X2) :=
V (π0,X1,X2)⊗ ηδ1 for HomTx(π,C) as δi ∈ Xi varies so that K = F (x) has good relative position with
R as in Theorem 2.15. We have the following uniform property of

α0
q(x)(f) =

L(1, ηq(x))
2L(1, π, ad)

L(2, 1F )L(1/2, πF (x))

´
Tx

(tf, f)dt,

(f, f)

for the non-Archimedean case as δi ∈ Xi varies,

α0
q(x)(f)|Dδ|

−1/2·|cδ1 |−1/2 =



L(1, ηδ1δ2)
2|$c1 |, Case (I) c1 > 0,

1, Case (I) c1 = 0, or Case (II).(a). c = n = 0,

L(1, ηδ1δ2)
2|$c|, Case (II).(a). c > 0 and n = 0,

L(1,1F )
L(2,1F )L(1, π, ad)

δπ0 , Case (II).(a). c = 0, n > 0, K splits,
L(1, ηδ1δ2)

2|$c|L(1,1F )
L(2,1F )

L(1,π,ad)δπ0

L(1/2,πK) , Case (II).(a). cn > 0,

e(1− |$|e) L(1,π,ad)L(1/2,πK) , Case (II).(b).(i),
1, Case (II).(b).(ii),

whereDOF is the relative discriminant ofK/F , δOF is the different ideal of F , δπ0
=

{
0, π0 ' St(µ) with µ unramified
1, otherwise,

cδ1 such that ψ(c−1
δ1

·) is the standard additive character on F . e is the ramification index of K/F .
Archimedean case is similar.

Test vector for Whittaker functional: non-Archimedean
Let R be as in Theorem 2.15 and 0 6= f ∈ V (π0, δ1,X2) ⊂ π be as above. In the following, identify

π with its Tx-models. We will construct φ ∈ S(V ) for each δi ∈ X1 from certain twist of φ0 by ηδ1
in the case (I) such that for each x ∈ Vδ1δ2 , δ2 ∈ X2 such that whenever K = F (x) has good relative
position with R, xθϕf (1) 6= 0 and has further good and uniform properties introduced at the begging of
this section.

Consider the following of choice of Schwartz function φ:
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(I) Assume exists a quadratic character ηδ0 either trivial or ramified such that π0⊗ηδ0 is unramified.,
and characteristic of F is odd, let φ0 = 1L with L = Rtr=0. If π is unramified, let φ = φ0. Fix
R 'M2(OF ). If π is ramified, let

φ

(
x y
z −x

)
=


ηδ1δ0(−y) (resp. ηδ1δ0(z))

if g =

(
x y

z −x

)
∈M2(O), ord(det(g)) ≥ 1, and

ord(y) = 0, ord(z) > 0 (resp. ord(z) = 0, ord(y) > 0)
0, otherwise.

There is an equivalent description of φ in the case π ramified: supp(φ) = R× ◦
(

$OF

1

)
and

φ

(
r ◦
(

b
1

))
= ηδ1δ0 ◦ det(r) for r ∈ R× and b ∈ $OF .

(II) In the case (II) of Proposition 2.15:
First consider the following case:

(*) π is ramified, and either K is a field and c < n, or K is split and c = 0.

Proposition 2.17 (Local obstruction). Under assumption (∗) We have VK(π) is eigen under
j ∈ B with jkj−1 = k, k ∈ K. The action of j on VK(π) is given by ε(π)ε(B)

Proof. For K nonsplit, it follows from Theorem 4 of [24] and Tunnell-Saito condition; For v split,
it follows from Theorem 3.2.2 of [32]. □

Suppose that (∗) holds and ε(π) = ε(B), let δ ⊂ OF be the ideal given by product of relative
discriminants of quadratic field K1, K2, where Ki = F (

√
δi) with δi ∈ Xi only depends on Xi.

Let
φ(h ◦ x) = ηδ1 ◦ det(h)1R×(h)1Ktr=0|q(·)∈δ

(x).

We will see later that φ is closely related a lattice relative to R whenever δ1 = 1, which will
apply to get Tunnell type result.

In general, we introduce orientation.
Let Ko ⊂ Ktr=0|q(·)∈δ be an open compact subset given by{

Ktr=0|q(·)∈δ, if ε(π) = ε(B), (∗) holds
Ktr=0|q(·)∈δ = Ko t −Ko, otherwise

,

and Lo = R× ◦ Ko. Let φ be support on Lo given by

φ(h ◦ x) =

{
1, case (II). (b).
ηδ1 ◦ det(h), case (II). (a).

where h ∈ R×, x ∈ Ko.

Theorem 2.18. Let φ be the schwartz function as above, then for any δi ∈ Xi such that (δ1δ2) =
DF (δ0δ1)/FDF (δ0δ2)/F (here δ0 = 1 in case (II)) and x ∈ Vδ1δ2 such that K = F (x) satisfies in the case
(I), K ∩R = Oχ1

and in the case (II) x ∈ Ko, the following hold:

xθ
f
ϕ(1)/f(1) = εvol(R×, Tx\H),

where ε =
{
2, ε(π) = ε(B), (∗) holds and R× ∩NK× ⊂ K×

1, other wise
, where NK× is the normalizer of K

in B. Furthermore, twice theta lifting of f with respect to φ lines in C · f .

Lemma 2.19 (Relation to lattice). Let R be an order containing OK with discriminant DR. let Ro ⊂ R
containing OK be maximal such that for L = (OF + 2Ro)tr=0, we have

Lq=q(x) = R× · {±x}
for any x ∈ Ktr=0 such that (q(x)) = DK/F . In fact, the discriminant of R0 is DR(DR/DB , DK/F ).

Proof. We first give explicit description of R. There exists j ∈ Btr=0 such that jkj−1 = k for ∀k ∈ K
and

ord(N(j)) =

{
ord(DB), if K/F is inert,
0, if K/F is not inert,
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If B is split and K is ramified, we further choose j2 = 1; If Char(O/$) = 2, B is ramified and K is
ramified, we further choose j2 ≡ 1 (mod DK/F /$F ) not lies in norm of K×; If K is split, we further

choose j =
(
0 1
1 0

)
to make the following holds. We have maximal order of B is given by

OB =

{
OK +OKj , if K is not ramified,
OK + (DB/DK/F )

1
2OK(1 + j) , if K is ramified.

and

R =


OK + (N/DB)

1
2OKj , if K/F is inert,

OK + (N/DK/F )
1
2OK(1 + j) , if K is ramified,

OK ⊕ j

(
$ord(N) 0

0 1

)
OK =

(
O O
N O

)
, if K is split and K diagonal embedded into B 'M2(F ).

The result follows from explicit calculation based on the following fact:

Fact 2.20. Let j ∈ Btr=0 such that jkj−1 = k for k ∈ K. Let OK,n = {x ∈ K
∣∣∣ N(x) ∈ $nO}. We

have

B× = (1 + jOK,0)
q(·) ̸=0

K×
⊔(

1 + j
OK,1

N(j)

)q(·) ̸=0

jK×.

□

Test vector for Whittaker functional: Archimedean
Let’s recall some basic theory on Whittaker functions of an unitary irreducible admissible represen-

tation θ.
Let ψ(·) = e2πitrF/R(c·) be a character of F such that ψ-th Whittaker model of θ exists.
Assume first F = R. Consider the complexified Lie algebra of gC of G. The center of its universal

enveloping algebra is generated by the Casimir element D. Denote λ be the eigen value of D on θ. By
admissibility of θ, for each weight n appears in θ, the weight n vector is one dimensional. Choose 0 6=Wn

to be weight n. By Iwasawa decomposition, Wn is determined by

ϕn(t) :=Wn

((
t1/2

t−1/2

)
, 1

)
, t > 0.

Recall g = sl2,C =M2(C)tr=0 and γ ∈M2(R) acts on an elements in Whittaker model by

γW (g, ε) =

(
dt

t
W ((g, ε)(etγ , 1))

)
|t=0.

It follows from equation [16]
DWn = λWn

that

ϕn(t)
′′ =

(
4π2c2 − 2πcn

t
+

λ

2t2

)
ϕn(t), (1).

Remark 2.21. Recall the classification of θ for F = R:
Recall we have induced representation Ind(|t|sχ) consists of ˜SO2(R)-finite functions on G such that

f

(((
t

t−1

)
, ε

)
g

)
= χ

((
t

t−1

)
, ε

)
|t|s+1f(g),

where χ is the genuine character on
{((

t
t−1

)
, {±}

) ∣∣∣ t ∈ R×
}

which factor through {(±1,±1)}

determined by

χ

((
−1

−1

)
, 1

)
= eiνπ,

ν ∈ {± 1
2}. May assume Re(s) ≥ 0. Now the irreducible representations are given by:

• Principle series: π̃(|t|sχ) = Ind(|t|sχ), where s ∈ iR, or s ∈ (− 1
2 , 0) t (0, 12 ), consists of weight

ν + 2Z.
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• Holomorphic discrete series: σ̃(|t|k−1χ) ⊂ Ind(|t|k−1χ), where k − 1 ∈ −ν + 2Z, and consists of
weight k + 2Z≥0 vectors. Simply denoted by σ̃+

k .
• Antiholomorphic discrete series: σ̃(|t|k−1χ) ⊂ Ind(|t|k−1χ), where k − 1 ∈ ν + 2Z, and consists
of weight k + 2Z≤0 vectors. Simply denoted by σ̃−

k .
We have λ = s2−1

2 if θ is an irreducible subrepresentation of π̃(|t|sχ). We have θ coming from theta
lifting of algebraic regular representation if and only if θ = σ̃ϵk. If n = k is the highest weight vector
(resp. lowest weight vector) in σ̃ϵk, the second order differential equation (1) degenerates to first order
differential equation

2tϕ′
k(t) = (−2πct+ εk)ϕk(t).

This can also be read from the weight lowing (resp, weight raising) operator,

We have similar differential equation for F = C. Identify the complexified Lie-algebra gC of G with
sl2,C ⊕ sl2,C so that g consists of X ⊕ X. In this case, the center of the universal enveloping algebra
of complexified Lie algebra of G is generated by D ⊗ 1 and 1 ⊗ D. Denote by λ+, λ− be the eigen
value of D ⊗ 1, 1 ⊗ D on θ respectively. Let n be a SU2 type appears in θ, i.e. exist irreducible SU2

representation isomorphic to {CXiY n−i
∣∣∣ 0 ≤ i ≤ n}, where action is given by gP (X,Y ) = P ((X,Y )g).

Each type appears at most once in θ by the admissibility. Denote Wn,k be the element corresponding
to Xn/2+kY n/2−k, −n

2 ≤ k ≤ n
2 , k ≡ n

2 (mod 2). By Iwasawa decomposition again, Wn and Wn,k are

determined by their restriction on
{((

t1/2

t−1/2

)
, 1

) ∣∣∣ t ∈ R>0

}
, denoted by ϕn(t), ϕn,k(t). We

have [16], [23]

ϕ′′
n,ϵn2

(t)− (1 + n)
ϕ′
n,ϵn2

t
−
(
16π2|c|+

2λϵ + 1− (1 + n
2 )

2

t2

)
ϕn,ϵn2 , (2).

And all other ϕn,k can be find recursively by the following:

ϕ′′
n,k − (1− 2k)

ϕ′
n,k

t
− (16π2|c|+ 2λ+ + 1− (1− k)2

t2
)ϕn,k(t) = −8πi(n/2 + k)

ϕn,k−1

t

ϕ′′
n,k − (1 + 2k)

ϕ′
n,k

t
− (16π2|c|+ 2λ− + 1− (1− k)2

t2
)ϕn,k(t) = 8πi(n/2− k)

ϕn,k−1

t
.

Remark 2.22. We have classification of θ for F = C:
• π̃(|z|s(z/

√
|z|)m), where s ∈ iR, m ∈ Z, or s ∈ (− 1

2 , 0) t (0, 12 ) and m = 0: coming from
restriction of principal series on GL2(C) with character{

(|z|s/2(z/
√
|z|)m/2, |z|−s/2(z/

√
|z|)−m/2), if 2|m

(|z|s/2(z/
√

|z|)(m+1)/2, |z|−s/2(z/
√
|z|)−(m−1)/2), if 2 - m

and consists of SU2 type |m|+ 2Z≥0, here type n means a representation of SU2 consists of two
variable homogeneous polynomials of degree n+ 1 with action by

gP (X,Y ) = P ((X,Y )g).

We have λϵ = 1
2 ((s − εm/2)2 − 1) if θ = π̃(|z|s(z/

√
|z|)m). We have π̃(|z|s(z/

√
|z|)m) coming from

theta lifting of algebraic regular representation if and only if s = 0 and 2 - m.

The two kinds of differential equations (1), (2) are essentially of the same type, both are special cases
of the following differential equation satisfied by the classical whittaker function. Let’s recall some basics.
Let α ∈ R and ν ∈ C, the Whittaker function related to (δ, ν), denoted by Wα,ν is the unique solution
of Whittaker’s differential equation

W ′′
α,ν =

(
1

4
− α

t
+
ν2 − 1/4

t2

)
Wα,ν

which is rapid decay when t → ∞, t > 0. Another linear independent solution of the above differential
equation over C isW−α,ν(−t). The differential equation has 0 as regular singular point and∞ as irregular
singular point.

It has the following properties
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• (Non-vanishingness) [12]By the asymptotic behavior

Wα,ν(t) ∼ tαe−t/2

1 +

∞∑
k=1

1

k!tk

k∏
j=1

(
ν2 −

(
α+

1

2
− `

)2
) , t→ ∞

for ν pure imaginary, we have Wα,ν(t) 6= 0 for t� 0.
For Re(ν − α) > − 1

2 ,

Wα,ν =
tν+1/2e−t/2

Γ(ν − α+ 1/2)

ˆ ∞

0

e−ytyν−α−1/2(1 + y)ν+α−1/2dy.

Thus if ν real with ν − α > − 1
2 , Wα,ν , has no zeros on R>0. It can be also showed that for

ν /∈ iR, W0,ν has no zeros on R>0 and for each t > 0, exists ν ∈ iR such that W0,ν(t) = 0.
• (Algebraicity) Whenever one of 1

2 + α ± ν is a positive integer, Wα,ν(t) ∈ CPα,ν(t1/2)e−t/2, for
some Pα,ν(t1/2) ∈ Q[t−1/2]. Furthermore,

Wα,±(α− 1
2 )
(t) = tαe−

t
2

W1−α,±(α− 1
2 )
(t) = t1−αe−

t
2 .

By above analysis, one have:

Lemma and Definition 2.23.
• If F = R,

Wn

((
t1/2

t−1/2

)
, 1

)
∈ CWsign(c)n/2,s/2(4π|ct|), t > 0.

– If θ = σ̃ϵk, for ψ(·) = e2πc·, the ψ-th Whittaker model of θ exists if and only if sign(c) = ε.
If this is the case, choose

Wk

((
t1/2

t−1/2

)
, 1

)
= tϵk/2e−2π|ct|, t > 0.

– If θ = π̃(|t|sχ), then ψ-th Whittaker model always exists. (i). for each n appears in weight
of θ, Wn only has finitely many zeros on((

t1/2

t−1/2

)
, 1

)
, t > 0,

(ii). for each t > 0, exists n such that Wn

((
t1/2

t−1/2

)
, 1

)
6= 0.

• If F = C and θ = π̃(|z|s(z/
√
|z|)m), the ψ-th Whittaker model always exists. We have

Wn,ϵn2

((
t1/2

t−1/2

)
, 1

)
∈ Ct

n+1
2 W0,s−ϵm2 (8π

√
|c|t), t > 0,

and if n is the minimal type, for each −n
2 ≤ k ≤ n

2 with k ≡ n
2 (mod 2),

Wn,k

((
t1/2

t−1/2

)
, 1

)
∈ Ct

n+1
2 W0,s−k(8π

√
|c|t), t > 0.

Thus we can take the following
– If m 6= 0, or s real and m = 0, for each n ∈ |m|+ 2Z≥0, then Wn,ϵn2

always non-vanishing
on ((

t1/2

t−1/2

)
, 1

)
, t > 0.

– In the left case, Wn,ϵn2
only has finitely many zeros. Furthermore, for each t > 0, exists

some Wn,k such that Wn,k

((
t1/2

t−1/2

)
, 1

)
6= 0.

– In particular, if θ is algebraic regular and n is minimal type, then we can take Wn,ϵ 1
2

((
t1/2

t−1/2

)
, 1

)
=

t
n+1
2 e−4π

√
|c|t, t > 0.
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Let w be the exponential of t in the choice of Whittaker function in the above lemma.
Now by the Lemma 2.23 and the relation between xθ

f
ϕ and uxθ

f
ϕ introduced before we have the

following.
Let θ be the theta lifting of π with respect to ψ. Fix f ∈ V (π0, δ1,X2) as before. Let F×o be the

identity component of F× and let Ko ⊂ Ktr=0\{0} be an orbit of F×0.

Theorem 2.24.
(1). If F = R, then

(i). If θ = σ̃ϵk, exists φ ∈ S(V ) of weight k (under action of the standard maximal compact
subgroup of S̃L2(R)) such that for any x ∈ Ko,

xθ
f
ϕ(1)/f(1) = |q(x)|

ϵk
2 − 3

4 e−2π|cq(x)|.

(ii). If θ = π̃(|t|sχ), then (a). for each n appears in weights of θ, exist φn ∈ S(V ) of weight n
(under action of maximal compact subgroup of S̃L2(R)) such that for each each x ∈ Ko,

xθ
f
ϕn

(1)/f(1) = |q(x)|
−3
4 Wsign(c)n/2,s/2(4π|cq(x)|),

which is nonzero for |q(x)| sufficient large. (b). for each x ∈ Ko, exists n and φn ∈ S(V )

of weight n such that xθfϕn(1) 6= 0.
(2). If F = C and θ = π̃(|z|s(z/

√
|z|)m), then

– In the case θ is algebraic regular, i.e. s = 0 and 2 - m, for n be the minimal type m,
ε ∈ {±1}, exists φn,ϵ 1

2
such that for each x ∈ Ko, xθfϕ

n,ϵ 1
2

corresponding to Wn,ϵ 1
2
-vector in

the ψq(x)-Whittaker model of θ and

xθ
f
ϕ
n,ϵ 1

2

(1)/f(1) = |q(x)|
n−2
4 e−4π

√
|cq(x)|eiϵθx 6= 0,

where x corresponding to (|q(x)|1/4eiθx ,−|q(x)|1/4eiθx) in Ktr=0 = {(u,−u)
∣∣∣ u ∈ C}.

– If m 6= 0, or s real and m = 0, for each n appears in the type of θ and ε ∈ {±1}, there
exists φn,ϵn2 ∈ S(V ) such that for each x ∈ Ko, xθfϕn,ϵ n

2

corresponding to Wn,ϵn/2-vector in
the ψq(x)-Whittaker model of θ and

xθ
f
ϕn,ϵ n

2

(1)/f(1) = |q(x)|
n−2
4 W0,s−ϵm2 (8π

√
|cq(x)|)einθxϵ 6= 0.

– For each x ∈ Ko, exists φn,k for some n, k such that xθ
f
ϕn,k

corresponding to Wn,k in the
ψq(x)-th Whittaker model of θ and xθ

f
ϕn,k

(1) 6= 0.

We may denoted Cq(x) = (xθ
f
ϕ(1)/f(1))/|q(x)|w/[F :R]−3/4 for f ∈ V (π0, δ1,X2) and φ be fixed one of

the above choice.

Remark 2.25. The local theta correspondence with respect to ψ is given by the following: Denote χψ be
the genus character of diagonal torus of S̃L2(R) associated to ψ if F is real.

• If F = R,

Irr(PGL2(R)) ↪→ Irr(S̃L2(R))
Principle series: π(µ, µ−1) ↔ π̃(µχψ), (µ(t) = |t|ssignη, s /∈ 1/2 + Z≥0,Re(s) ≥ 0, η ∈ {±1})

Discrete series σ(µ, µ−1) ↔ σ̃(µχψ), (µ(t) = |t|ssigns+1/2, s ∈ 1/2 + Z≥0,Re(s) ≥ 0, ε ∈ {±1})

Irr(R×\H×) ↪→ Irr(S̃L2(R))

ρn, n ∈ 2Z≥0 ↔ σ̃(µnχψ), (µn(t) = |t|(n+1)/2signn/2)

,

where ρn is the unique irreducible representation of H with dimensional n.
• If F = C, the genuine irreducible representations of S̃L2(C) = SL2(C) × {±1} are the same as
irreducible representations of S̃L2(C)

Irr(PGL2(C)) ↔ Irr(SL2(C))
π(µ, µ−1) ↔ π̃(µ)
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Remark 2.26. In the case F = R, K/F splits and π is weight 2k holomorphic series, the CST’s test
vector are closely related to the holomorphic vector, if we choose the holomorphic vector f2k, one can
construct φ such that θfϕ is holomorphic weight 3/2 and twice of theta lifting of f2k lies in C · f2k.

Test vector for Whittaker functional (II)
Let δi ∈ Xi such that δ = δ1δ2 generates DF (δ0δ1)/FDF (δ0δ2)/F (here δ0 = 1 in case (II)) and

ψ = ψ0,δ−1
1

. Let x ∈ Vδ, f, φ be as in Subsection 2.2 and W = xθ
f
ϕ ∈ Wδ. In the following, we study the

uniform properties of Whittaker functional β(W,W ).
The main result of this subsection is to get explicit formula for

β0
δ (θ) =

L(1, π ⊗ ηδ, ad)

L(1/2, π ⊗ ηδ)L(2, 1F )

´
F
(n(y)θ, θ)ψδ(−y)dy

(θ, θ)
, n(y) =

((
1 y

1

)
, 1

)
∈ N.

Here dy is the Haar measure on F which is self dual with respect to ψ. Let u0 such that ψ0,u0
is

unramified.
To understand β0, several construction of Hermitian invariant pairing for θ is crucial.

Lemma 2.27 (local invariant Hermitian pairing I). [27] For any set of representations δi of F×/F×2,
there exists ψδi Whittaker functions Wψδi

of θ such that

(ϕ1, ϕ2)1 =
∑
δi

ˆ
F×

Wψδi
(d(a)ϕ1)Wψδi

(d(a)ϕ2)d
×a

and ˆ
F

(n(y)ϕ1, ϕ2)1ψδi(−y)dy =
2

|2δi|
Wψδi

(ϕ1)Wψδi
(ϕ2), ϕi ∈ θ.

Remark 2.28. If either
• exists only one coset, say represented by δ, in F×/F×2 such that θ admits ψδ-th Whittaker

model or
• exists only one coset, say represented by δ, δ in F×/F×2 such that ϕi are test vectors of ψδ-th
Whittaker functional, then

(ϕ1, ϕ2)1 =

ˆ
F×

Wψδ(d(a)ϕ1)Wψδ(d(a)ϕ2)d
×a.

Lemma 2.29 (local invariant Hermitian pairing II). Let Wψδ be a nonzero ψδ-th Whittaker functional
on θ, then the following pairing is a nonzero Hermitian pairing:

(ϕ1, ϕ2)2 =

{´
F× Wψδ(d(a)ϕ1)Wψδ(d(a)ϕ2)d

×a, if F = C, or F = R and ϕ1, ϕ2 are of same weight
0, otherwise.

If F = R and θ has nonzero ψδ Whittaker functional. let cδ be the nonzero constant such that
( , )1 = cδ( , )2, where the ψδ Whittaker functional in definite of ( , )i are the same. Then cδ only
depend on the class X of δ in F×/F×2, may denoted by dX And we have cδ = 1 if and only if F = C, or
F = R and θ is discrete series.

For Principle series, have another Hermitian invariant pairing.

Lemma 2.30. [27] If θ ' π̃(χψµ) is a principle series, then the following pairing on π̃(χψµ)⊗π̃(χψ−1µ
−1)

is G-invariant:
(ϕ1, ϕ2) =

ˆ
N

ϕ1(wn(y))ϕ2(wn(y))dy,,

where w =

((
0 1
−1 0

)
, 1

)
. In particular,

• If µ is unitary, then
(ϕ1, ϕ2)3 =

ˆ
N

ϕ1(wn(y))ϕ2(wn(y))dy

is a Hermitian pairing on θ.
• If µ = | · |sχ with χ quadratic and s ∈ (− 1

2 , 0) t (0, 12 ), let Mµ : π̃(χψµ) 7→ π̃(χψµ
−1) be the

intertwining operator given by

Mµϕ(g) =

ˆ
F

ϕ(wn(y)g)dy
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Then the following is a Hermitian pairing on θ:

(ϕ1, ϕ2)3 =

ˆ
F

Mµϕ1(wn(y))ϕ2(wn(y))dy.

Theorem 2.31. We have the following uniform property of W :

β0
δ (W ) =


1

|δ′1||cδ1 |1/2|dF |1/2 , Case (I).
L(1,π⊗ηδ,ad)

L(1/2,π⊗ηδ)L(2,1F )
2nL(1,1F )

|2δ||cδ1 |1/2|dF |1/2 , Case (II). non-Archimedean
L(1,π⊗ηδ,ad)

L(1/2,π⊗ηδ)L(2,1F )
2W (1)W (1)|δ|1/2

cX1·X2
|2||cδ1 |1/2−2w/[F :R](W o,W o)2

, Archimedean

cδ1 is such that ψc−1
δ1

is the standard additive character, (δ′1) = DF (δ1δ0)/F and

n =

{
1, if (∗) holds and ε(π) = ε(B), or R× ∩NK× * K×

2, otherwise
,

W o = |cδ1 |w/[F :R]−1/4|δ|3/4W in the ψδ Whittaker model of θ has the property that (W 0,W 0)2 =´
F× W

0(d(a))W
0
(d(a))d×a does not depend on δ and δ1, w corresponds to the the exponential of t

in formula of test vector in Lemma 2.23.

Remark 2.32. For F Archimedean, explicit formula for W (1) is given in 2.24. For algebraic regular
representations, cX1·X2

= 1. If F = R, θ ' σ̃ϵk, and W is of weight k, then

(W o,W o)2 =
Γ(εk)

(4π)ϵk
.

If F = C, θ ' π̃((z/
√
|z|)m) with 2 - m and W corresponds to vector W|m|,ϵ 1

2
, then

(W 0,W 0)2 =
2πΓ(|m|+ 1)

(8π)|m|+1
.

We now consider proof of Theorem 2.31. The case (I). follows from the following Proposition. By
definition of Weil representation, the automorphism

ιu :

((
a b
c d

)
, ε

)
7→



((
a ub

u−1c d

)
, ε

)
, if c 6= 0((

a ub

0 d

)
, εχu(d)

)
, if c = 0

on G induces isomorphism
π̃(χψµ) ' π̃(χψuµ), ϕ 7→ ϕ ◦ ιu.

The result follows from the following proposition.

Proposition 2.33. Let π = π(µ) be unramified principle series. Let K̃ be the standard maximal compact
subgroup of G. Let u ∈ F× such that ψu is unramified and hence π̃(χψuµ) is unramified, then the subspace

π̃(χψµ)
ιu(K̃)

is one dimensional. For any nonzero ϕ ∈ π̃(χψµ)
ιu(K̃) with ord(δ) = 0, 1 and δ ∈ F×, we have

L(1, π ⊗ ηδ, ad)

L(1/2, π ⊗ ηδ)L(2, 1F )

´
F
(n(y)ϕ,ϕ)ψδ(−y)dy

(ϕ,ϕ)
= |u|1/2,

here dy is self dual with respect to ψ.

Proof. The proof could be reduces to the case π̃(χψµ) is unramified via ιu introduced above. Then
it follows from explicit G-invariant Hermitian pairing ( , )3 in Lemma 2.30 and explicit description of
spherical vector, for example in [27].

□

For the case (II). and F is non-Archimedean, the result follows directly from Lemma 2.27 and the
property of θ that it is not the test vector of ψδ′ -th for any other δ′ which represents different coset in
F×/F×2 as q(x).

For the Archimedean case, the results follows from Lemma and Lemma 2.27 and Lemma 2.29.
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3. Rallis inner product formulae

In this section, we give a new proof of the Rallis inner product formulae for the dual pair (SO3, S̃L2)
over a number field. The proof is via considering relations among several periods formulae associated to
toric periods, Whittaker-Fourier periods, and Peterson inner products. For the theta lifting from SO3

to S̃L2, the keys are the comparison of two different Whittaker-Fourier periods formulae (See Theorem
3.1 and Theorem 3.2) and the local comparison result (See Theorem 2.3). The first Whittaker-Fourier
period formula is established by considering relation betweenWhittaker-Fourier periods and toric periods.
In fact, the ratio of Whittaker-Fourier period by toric period is given by product of local Whittaker
functionals constructed by Waldspurger’s explicit local theta lifting. The second formula of Whittaker-
Fourier coefficients involves local Whittaker functional constructed from matrix coefficients. There are
parallel story for the other direction of theta lifting. For both directions of theta liftings, the role of
Whittaker-Fourier periods and toric periods are interchanged, .
Notations Let F be a number field, O be its ring of integers and A be its ring of adéles . For G an
algebraic group over F , also denoted by G the group of its F points. For v a place of F , denoted by Gv
the set of Fv points of G, which is a locally compact topological group.

For global version of algebraic groups introduced in Notations of the local theory, we take Haar
measure on the group of adelic points to be the one induced by the product measure with local measure
given in local theory. We choose global additive character of A to be trivial on F and then the measures
on adelic points of these algebraic groups are the Tamagawa measures.

For δ ∈ F× and ψ a nontrivial additive character of F\A, denoted ψ(δ·) by ψδ(·). Denoted by ηδ the
quadratic character of F×\A× associated to the quadratic extension F (

√
δ)/F .

3.1. Theta lifting. Let B/F be a quaternion algebra and let V = Btr=0 be the quadratic space with
quadratic form q given by minus of the reduced norm. Let H = SO(V ) and identify it with PB× via
its conjugate action on V . Denoted by G the metaplectic double covering of SL2(A). Fix a non-trivial
additive character ψ : F\A → C×. Let (wψ,S(V (A))) be the Weil representation of H(A) × G [9],
S(V (A)) :=

⊗
v S(Fv) with S(Fv) defined in local theory.

Via Weil representation, one can construct cuspidal automorphic representations of one group in dual
pair (H(A),G) from cuspidal automorphic representations of another group. Such process is called theta
lifting we now recall.

For each φ ∈ S(V (A)), the theta kernel function

θϕ : (h, g) 7→
∑
x∈V

(wψ(h, g)φ)(x), h ∈ H(A), g ∈ G

is an automorphic form on H(A)×G and hence induces an H(A)×G-equivalent map
S(V ) → A(H(A)×G), φ 7→ θϕ,

where A(H(A) × G) is the space of automorphic forms on H(A) × G. Similarly denoted by A(·) (resp.
A0(·)) the space of (resp. cuspidal automorphic forms) automorphic forms on · for · = H(A),G.

Given an irreducible π ⊂ A0(H(A)), its theta lifting θψ(π) ⊂ A0(G) consists of

θϕf (g) =

ˆ
H\H(A)

θϕ(h, g)f(h)dh, f ∈ π, φ ∈ S(V (A)),

where the measure on H\H(A) is the Tamagawa measure with total volume 2. In this paper we only
consider cuspidal automorphic forms on G that are genuine and orthogonal to elementary theta functions
(See [9]).

For the other direction, given θ ⊂ A0(G) irreducible, its theta lifting π := θψ(θ) consists of

θφϕ (h) =

ˆ
SL2\SL2(A)

θϕ(h, g)ϕ(g)dg, ϕ ∈ θ, φ ∈ S(V (A)),

where the measure on SL2\SL2(A) is the Tamagawa measure with total volume 1.
Whenever θ := θψ(π) 6= 0, θ ⊂ A0(G) is irreducible, θψ(θ) = π, and similar for the other direction. We

call (θ, π) a global theta correspondence. The theta correspondence has the following see-saw property:

(θfϕ, ϕ) = (θφϕ , f), f ∈ π, φ ∈ S(V (A)), ϕ ∈ θ,

where ( , ) stands for the Petersson inner products on two groups respectively with the choice of Tama-
gawa measures.
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Given a cuspidal automorphic irreducible representation Π of H(A), or G, A fundamental question if
nonvanishingness of θψ(Π). By Proposition 3.5, ⊗vθψv (Πv) is cuspidal irreducible automorphic represen-
tation if and only if Π has global root number +1. This is a necessary condition for θψ(Π) to be nonzero.
In fact, there exists global obstruction for cuspidal automorprhic representation θψ(Π) to be nonzero,
which is given by central L-value due to the Rallis inner product formula, which connects Peterson inner
product of lifted forms with central L-value. More precise statement, see Theorem 3.6 and Theorem 3.7,
and also see Remark 3.8 for previous works.

In the following, we will give new proof of Rallis inner product formulae, via considering several
periods formulae and their relations.

3.2. Whittaker-Fourier periods formulae of theta liftings from SO3 to S̃L2. In this subsection,
we consider the relations between Whittaker-Fourier periods and L-values via decomposition. Fix irre-
ducible π ⊂ A0(H(A)), nontrivial additive character ψ : F\A → C× and let θ := θψ(θ) be its theta
lifting.

The group G splits over the unipotent subgroup N(A) =
{
n(y) =

(
1 y
0 1

) ∣∣∣ y ∈ A
}

of SL2(A), hence

we may view N(A) as a subgroup of G. For δ ∈ F×, consider ψδ-th Whittaker-Fourier coefficient

Wψδ : θ → C, ϕ 7→
ˆ
F\A

ϕ(n(y))ψ(−δy)dy.

Recall the action of N(A) on S(V (A)) is given by

wψ(n(y))φ(x) = ψ(yq(x))φ(x)

and the action of H(A) on S(V (A)) is given by wψ(h)φ(x) = φ(h−1 ◦x), where ◦ means conjugate action.
We have

Wψδ(θ
ϕ
f ) =

ˆ
H\H(A)

(∑
x∈Vδ

φ(h−1 ◦ x)

)
f(h)dh,

where Vδ = {x ∈ V
∣∣∣ q(x) = δ}.

Consider the space of ψδ Whittaker functionals
⊗

HomNv (θψv (πv), ψδ,v). If θ 6= 0 and the ψδ-th
Whittaker-Fourier coefficient on θ is nonzero, then it gives a basis of this space. Unlike the theory of
automorphic forms on GL2(A), even if θ 6= 0 and the space of ψδ-Whittaker functionals is nonzero, it
is not necessary comes from the ψδ-th Whittaker-Fourier coefficient. Will see this global obstruction is
given by twist L-values under θ 6= 0.

In the following, we introduce two formulae for Whittaker-Fourier periods which connect to quadratic
twists L-values. The local Whittaker functionals appeared in the two formulae are from different sources.

In the following type (I), (II) formulae, we fix an irreducible π ⊂ A0(H(A)) with ε(1/2, π) = 1 and
θ := θψ(π) its theta lifting.

Type (I) formulae
In the following, we introduce a formulae for Whittaker-Fourier period which connect to base change L-

value. The key observation is that the toric period on π appears in the Whittaker-Fourier period on θ and
their difference is given by product of local Whittaker functionals constructed from explicit local theta
liftings. Hence we connects ψδ-th Whittaker-Fourier period of θ to base change L-value L(1/2, πF (

√
δ))

via Waldspurger formula for toric periods. In particular, the global obstruction for Whittaker-Fourier
period of θ to be nonzero are given by base change central L-value.

Let x ∈ Vδ and K = F (x). Denoted by Tx := F×\K× ⊂ H be the group of stablizer of x. Fix a
decomposition π =

⊗
v πv.

Assume that
(a1) dimC

⊗
v HomNv (θψv (πv), ψδ,v) = 1, equivalently, dimC

⊗
v HomTx,v (πv,C) = 1,

(a2) f = ⊗fv ∈ π such that fv is a test vector for HomTx,v (πv,C) for all places v.
The above assumptions only depend on coset of δ in F×/F×2. The existence of x satisfying (a1) is a

local problem we have introduced in local theory which is proved by Waldspurger in [37].
Whenever θ 6= 0, we have an isomorphism

θ '
⊗

Wδ,v, θfϕ 7→ ⊗v
xθ
fv
ϕv

fv(1)
, ∀φ = ⊗vφv ∈ S(V (A))
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where Wδ,v is the ψδ,v Whittaker model of θψv (πv) introduced in local theory. Here we view fv in the Tx,v
model Vx,v of πv and we add subscript x for explicit local theta lifting (in Subsection 2.1) to emphasis
its dependence on x.

In the degenerate case, i.e. δ ∈ F×2, the toric period on π is directly related to L-value L(1/2, π) via
Whittaker theory of PGL2. Since we are interested in quadratic twist L-values, in the following theorem,
we only consider δ /∈ F×2, i.e. the case Tx(A) is compact. For f ∈ π, its toric period along Tx is defined
by

PTx(f) =

ˆ
Tx\Tx(A)

f(t)dt.

Theorem 3.1. Under assumption (a1) and δ /∈ F×2:
(1). Let f = ⊗fv ∈ π be as in (a2). The equality holds in HomN(A)(θ, ψδ):

Wψδ(θ
f
ϕ) = PTx(f) ·

∏
v

xθ
fv
ϕv
(1)

fv(1)
, ∀φ = ⊗φv ∈ S(V (A)).

(2). Let fi = ⊗fi,v ∈ π, i = 1, 2 be as in (a2).The equality holds in HomN(A)(θ, ψδ)
⊗

HomN(A)(θ, ψδ):

Wψδ(θ
f1
ϕ1
)Wψδ(θ

f2
ϕ2
) =

L(1/2, πK)L(2, 1F )

2L(1, ηδ)2L(1, π, ad)
·
∏
v

α0
δ,v(f2,v, f1,v)

xθ
f1,v
ϕ1,v

(1)

f1,v(1)

xθ
f2,v
ϕ2,v

(1)

f2,v(1)
.

∀φi = ⊗φi,v ∈ S(V (A)), i = 1, 2,

where α0
δ,v is the normalized basis of HomTx,v (πv,C)⊗HomTx,v (πv,C) defined by

α0
δ,v(f2,v, f1,v) :=

L(1, ηδ,v)
2L(1, πv, ad)

L(2, 1Fv )L(1/2, πKv )

ˆ
Tx,v

(tf2,v, f1,v)vdt,

L(s, 1Fv ) is the local factor of Dedekind zeta function of F at v and L(s, πv, ad) is the local factor
of adjoint L-function of π at v, ( , )v is a Hv invariant Hermitian pairing on πv × πv for each
v such that their product gives Petersson inner product on π × π.

As a consequence, for δ ∈ F× satisfies condition (a1), the ψδ-th Whittaker-Fourier periods on θ is
nonzero if and only if L(1/2, πK) 6= 0. And by the non-vanishing of quadratic twists [7], θ 6= 0 if and
only if L(1/2, π) 6= 0.

Proof. Recall the ψδ-th Whittaker-Fourier coefficient is given by

Wψδ(θ
f
ϕ) =

ˆ
H\H(A)

f(h)
∑
x∈Vδ

φ(h−1 ◦ x)dh.

By Witt theorem,

Wψδ(θ
f
ϕ) =

ˆ
Tx(A)\H(A)

φ(h−1 ◦ x)PTx(hf)dh.

Recall the Waldspurger formulae for toric periods [38](See also Theorem 3.4) say that under assumption
(a1), (a2), PTx(f) = 0 if and only if L(1/2, πK) = 0.

Thus if L(1/2, πK) = 0, then PTx(hf) = 0 for all h and henceWψδ(θ
ϕ
f ) = 0. Now assume L(1/2, πK) 6=

0. Since for each v, fv is test vector for HomTx,v (πv,C), we have PTx(f) 6= 0. Since the space
HomTx(A)(π,C) is one dimensional, say generated by Pv, we have the identity in Tx(A)-model of π

PTx(hf)

PTx(f)
=
∏
v

Pv(hvfv)

Pv(fv)

for all h ∈ H(A). Under identification of πv with its Tx,v model, Pv(hvfv)Pv(fv)
= fv(hv)

fv(1)
for all v. Thus

Wψδ(θ
f
ϕ) = PTx(f) ·

∏
v

xθ
fv
ϕv
(1)

fv(1)
,

the second part of the theorem follows from Waldspurger formula for toric periods. □
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Type (II) formulae
Now we introduce another Whittaker-Fourier period formula which connects Whittaker-Fourier pe-

riod to quadratic twist L-value, Petersson inner product and product of local Whittaker functional β
constructed from matrix coefficients. The following theorem is due to [27] for split B and δ = 1 and the
general case could be easily reduced to this essential case. See also work of Baruch-Mao [1].

Fix decomposition θ '
⊗

v θv and choose a local Hermitian invariant pairing ( , )v for each v such
that the product gives Petersson inner product

(θ1, θ2) =

ˆ
SL2\SL2(A)

θ1(g)θ2(g)dg

for pure tensors θi = ⊗θi,v.

Theorem 3.2. Under assumption (a1), we have the following equality in HomN(A)(θ, ψδ)
⊗

HomN(A)(θ, ψδ):
For pure tensors ϕi ∈ θ,

Wψδ(ϕ1)Wψδ(ϕ2) =
L(1/2, π ⊗ ηδ)L(2, 1F )

2L(1, π, ad)

∏
v

β0
δ,v(ϕ1,v, ϕ2,v),

where β0
δ,v is the normalized basis of HomNv (θv, ψδ,v)

⊗
HomNv (θv, ψδ,v) given by

β0
δ,v(ϕ1,v, ϕ2,v) =

L(1, πv, ad)

L(1/2, πv ⊗ ηδ,v)L(2, 1Fv )

ˆ
Fv

(n(y)ϕ1,v, ϕ2,v)vψδ,v(−y)dy.

In fact, this theorem has nothing to do with SO3 side and is a result on S̃L2 side.
As a consequence, for δ ∈ F× satisfies condition (a1), ψδ-th Whittaker-Fourier periods of θ is nonzero

if and only if θ 6= 0 and L(1/2, π ⊗ ηδ) 6= 0. Again, by the non-vanishing of quadratic twists, θ 6= 0 if
and only if L(1/2, π) 6= 0.

Proof. May assume θ 6= 0. If L(1/2, π ⊗ ηδ) = 0, then both sides of the equality in the theorem is zero
by Theorem 3.1. So we may also assume L(1/2, π ⊗ ηδ) 6= 0 and hence θψδ(πJL ⊗ ηδ) 6= 0, where πJL

is the Jacquet-Langlands correspondence of π. Now the properties of Waldspurger packet [9] says that
θ = θψδ(π

JL ⊗ηδ) if and only the assumption (a1) holds. Thus we reduces to the case B splits and δ = 1.
□

3.3. Toric periods formulae of theta liftings from S̃L2 to SO3. Let θ ⊂ A0(G) be irreducible and
π := θψ(θ) its theta lifting. Let δ ∈ F×, x ∈ Vδ, K = F (x) and Tx = F×\K× ⊂ H its stablizer. Parallel
to last subsection, in this subsection, we introduce two formulae on relation between toric periods of
theta liftings

PTx(θ
φ
ϕ ), ϕ ∈ θ, φ ∈ S(V (A))

and L-values.
In the following type (I), (II), formulae, we fix an irreducible θ ⊂ A0(G) with ε(1/2, θ, ψ) = +1 and

π := θψ(θ) its theta lifting.
These two type formulae are due to work of Waldspurger and Qiu.

Type (I) formulae
Fix a decomposition

⊗
v θv of θ.

Assume that
(b1) dim

⊗
v HomTx,v (θψv (θv),C) = 1, equivalently, dim

⊗
HomNv (θv, ψv,δ) = 1,

(b2) ϕ = ⊗ϕv ∈ θ such that ϕv is a test vector for HomNv (θv, ψδ,v) for all v.
The above assumption only depends on coset of δ in F×/F×2.

Whenever π = θψ(θ) 6= 0, we have isomorphism

π '
⊗
v

Vx,v, θφϕ 7→ ⊗v
xθ
φv
ϕv

(1)

ϕv(1)L(1/2, θv, ψv)
, ∀φ = ⊗vφv ∈ S(V (A)),

where Vx,v is the Tx,v model of θψv (θv) introduced in local theory. Here we view ϕv ∈ Wδ,v in the ψδ,v
Whittaker model of θv and we add subscript x for local theta lifting to emphasis its dependence on x.

Theorem 3.3. Under assumption (b1):
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(1). Let ϕ = ⊗ϕv ∈ θ be as in (b2). The equality holds in HomTx(A)(π,C):

PTx(θ
φ
ϕ ) = L(1/2, θ, ψ) ·Wψδ(ϕ) ·

∏
v

xθ
φv
ϕv

(1)

ϕv(1)L(1/2, θv, ψv)
, ∀φ = ⊗φv ∈ S(V (A)).

(2). Let ϕi = ⊗ϕi,v ∈ π, i = 1, 2 be as in (b2).The equality holds in HomTx(A)(π,C)
⊗

HomTx(A)(π,C):

PTx(θ
φ1

ϕ1
)PTx(θ

φ2

ϕ2
) =

L(1/2, θ, ψ)2L(1/2, θ, ψδ)L(2, 1F )

2L(1, π, ad)

∏
v

β0
δ,v(ϕ2,v, ϕ1,v)

∏
v

xθ
φv
ϕv

(1)

ϕv(1)L(1/2, θv, ψv)

xθ
φv
ϕv

(1)

ϕv(1)L(1/2, θv, ψv)

∀φi = ⊗φi,v ∈ S(V (A)), i = 1, 2,

where β0
δ,v is the regularized Whittaker functional in Theorem 3.2 with ( , )v in β0

δ,v is a invariant
Hermitian pairing on θv × θv for each v such that its product gives Petersson inner product.

The proof of the first part is (4) of Lemma 45 of [37] . The second part follows from the first part and
Theorem 3.2.

We have for each v, L(s, ψ, θv) = L(s, θψ(θv)) and under assumption (b1), L(s, ψδ,v, θv) = L(s, θψ(θv)⊗
ηδ,v).
Type (II) formulae

The following formulae just the Waldspurger formula for toric periods [38].

Theorem 3.4. Assume Tx is nonsplit. Let π be an irreducible cuspidal automorphic representation of
H(A). Under assumption (b1), we have the following equality in HomTx(π,C)⊗HomTx(π,C): For pure
tensor fi = ⊗fi,v ∈ π,

PTx(f)PTx(f) =
L(1/2, θ, ψ)L(1/2, θ, ψδ)L(2, 1F )

2L(1, ηδ)2L(1, π, ad)
·
∏
v

α0
δ,v(f1,v, f2,v), fi = ⊗fi,v

where
α0
δ,v(f1,v, f2,v) :=

L(1, ηδ,v)
2L(1, πv, ad)

L(2, 1Fv )L(1/2, θv, ψv)L(1/2, θv, ψδ,v)

ˆ
Tx,v

(tf1,v, f2,v)vdt,

For the case Tx split, the toric period is related to L-value via Whittaker theory.

3.4. Rallis inner product formulae and index formulae. Let’s first consider a necessary condition
for the non-vanishingness of theta lifting: automorphy.

We first consider a general setting (including sign −1 case). Let B be a quaternion algebra over A
which is either coherent or coherent. Let ε(B) =

∏
v ε(Bv) = 1 or −1 depending on B is coherent or

incoherent respectively. Let ψ : F\A → C× be a non-trivial additive character. Let ⊗vπv and ⊗vθv be
irreducible representation of H and G respectively such that πv and θv are local theta correspondence with
respect to ψv for all v. Call ⊗vπv cuspidal automorphic if ⊗vπvJL is an irreducible cuspidal automorphic
representation of PGL2(A).

Proposition 3.5. π := ⊗vπv is cuspidal automorphic and ε(1/2, π) = ε(B) if and only if θ := ⊗vθv is
cuspidal automorphic(necessary have ε(1/2, θ, ψ) = ε(B)).

Proof. If θ = ⊗θv is cuspidal automorphic. There exists a a such that θψa(θ) is a nonzero cuspidal
automorphic representation of PGL2(A), say θψa(θ) = σ ⊗ ηa for an irreducible cuspidal automorphic
representation σ of PGL2(A). Then ε(1/2, σ⊗ ηa) = +1. By result of local theta correspondence [9], we
must have

πJL
v = σv, ε(πv)ε(πv ⊗ ηa,v)ηa,v(−1) = ε(Bv), for all v,

In particular, π = ⊗vπv is cuspidal automorphic and ε(π) = ε(B). By property of central sign,
ε(1/2, θ, ψ) = ε(B).

If π = ⊗vπv is cuspidal automorphic and ε(π) = ε(B), let σ = πJL. Then exists a [37] such that
ε(πv)ε(πv ⊗ ηa,v)ηa,v(−1) = ε(Bv), ∀v

and further choose a such that L(1/2, σ ⊗ ηa) 6= 0 [7]. We must have
θv ' θψa,v (σv ⊗ ηa,v), ∀v.

And hence θ = ⊗vθv = θψa(σ ⊗ ηa) is cuspidal automorphic.
□
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Type (III) formulae Now we introduce Rallis inner product formulae and index formulae. Given π an
irreducible cuspidal automorphic representation ofH(A) and θ be an cuspidal automorphic representation
of G which is the theta lifting of π. As we have said, there always exists δ ∈ F×\F×2 and x ∈ Vδ such
that HomTx(A)(π,C) 6= 0 and we can further choose δ such that L(1/2, π ⊗ ηδ) 6= 0 by non-vanishing of
quadratic twist [7]. Together with the local comparison result 2.3, any two of the the following formulae

• Type (I): Theorem 3.1
• Type (II): Theorem 3.2
• Type (III): Rallis inner product formula from H(A) to G

implies the third one.
Fix decomposition π ' ⊗vπv. Whenever θ 6= 0, we have θ '

⊗
θv with θv the local theta lifting of

πv for each v. It follows that

Theorem 3.6 (Rallis inner product formula). Assume ε(1/2, π) = +1. For pure tensors f1, f2 ∈ π and
φ1, φ2 ∈ S(V (A)). The the following equality holds in⊗

v

(
Hom(Gv×Hv)2(wψv ⊗ πv ⊠ (wψv ⊗ πv), θv ⊠ θv)⊗Hom∆Gv (θv ⊠ θv,C)

)
:

(θf1ϕ1
, θf2ϕ2

) =
L(1/2, π)

L(2, 1F )
·
∏
v

Z0
v (φ1,v, φ2,v, f1,v, f2,v),

where Z0
v (φ1,v, φ2,v, f1,v, f2,v) =

L(2, 1Fv )

L(1/2, πv)
·
ˆ
Hv

(hφ1,v, φ2,v)v(hf1,v, f2,v)vdh.

Now consider the Rallis inner product formula of the converse direction: Given an irreducible au-
tomorphic cuspidal representation θ of G and π an irreducible automorphic cuspidal representation of
H(A) which is the theta lifting of θ. Parallel to the above analysis, by local comparison result 2.8, the
following three theorem are equivalent:

• Type (I): Theorem 3.3
• Type (II): Theorem 3.4
• Type (III): Rallis inner product form G to H(A)

We have:

Theorem 3.7 (Rallis inner product formula). Assume ε(1/2, θ, ψ) = 1. For pure tensors ϕ1, ϕ2 ∈ θ and
φ1, φ2 ∈ S(V (A)). The the following equality holds in⊗

v

(
Hom(Hv×Gv)2(wψv ⊗ θv ⊠ (wψv ⊗ θv), πv ⊠ πv)⊗Hom∆Hv (πv ⊠ πv,C)

)
:

(θφ1

ϕ1
, θφ2

ϕ2
) =

L(1/2, θ, ψ)

L(2, 1F )
·
∏
v

Z0
v (φ1,v, φ2,v, ϕ1,v, ϕ2,v),

where Z0
v (φ1,v, φ2,v, ϕ1,v, ϕ2,v) =

L(2, 1Fv )

L(1/2, θv, ψv)
·
ˆ
G0,v

(hφ1,v, φ2,v)v(hϕ1,v, ϕ2,v)vdh.

By Proposition 3.5, the assumption on root number in the above two Theorems is necessary for the
non-vanishingness of theta lifting.

Remark 3.8. The relation between non-vanishingness of theta lifting and non-vanishingness central L-
value is considered by Waldspurger [35], [37] via relation between toric period, whittaker-Fourier period
and L-value. Both Rallis inner inner product formulae for the two direction could be proved by Siegel-
Weil and doubling methods, see [28], [42].

Now we introduce index formulae, which connects Rallis inner product formulae for two direction of
theta liftings. As before, consider π ⊂ A0(H(A)) with ε(π) = +1 and Θ := ⊗θψv (πv) ⊂ A0(G).

Definition 3.9.
• Call one dimensional pure tensor spaces V1 ⊂ π, V2 ∈ Θ, W ⊂ S(V (A)) self-reflex if for each v

and basis θv ∈ HomGv×Hv (S(Vv), πv ⊠Θv), one have θv(Wv) = V1,v ⊗ V2,v.
• Let (V1, V2;W ) be self-reflex lines.

– The global index

Ind(V1, V2;W ) :=
θ
θfϕ
ϕ

f(φ, φ)
=

θ
θφϕ
ϕ

ϕ(φ, φ)
, 0 6= f ∈ V1, 0 6= ϕ ∈ V2, 0 6= φ ∈W.
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– For each v, let δ ∈ F×
v , x ∈ Vv with q(x) = δ and Tδ,v = Stab(x) ⊂ Hv. The local index

Indδ(V1,v, V2,v;Wv) :=
xθ

xθ
f
ϕ

ϕ

f(φ, φ)v
=

xθ
xθ
φ
ϕ

ϕ

ϕ(φ, φ)v
, 0 6= f ∈ V1,v, 0 6= ϕ ∈ V2,v, 0 6= φ ∈Wv.

Remark 3.10. As a consequence of two rallis inner product formulae and globalization, Proposition 2.10
also holds for general Archimedean local field. And if 2.10 holds for general local field, then the two
Rallis inner product for the two directions of theta lifting are equivalent to each other as a consequence
of (local and global) see-saw, multiplicity one together with 2.10 (Also see [30]).

Take δ, x to be global and the local measure such that the product measure induces Tamagawa
measures.

The following Theorem is a consequence of one side of Rallis inner product formulae, and the relation
between local index defined by Waldspurger’s explicit local theta lifting and index of normalized local
lifting defined by local doubling zeta integral 2.12. If 2.10 holds for general local field, then one could
use index formulae to deduce either side of Rallis inner product formulae via multiplicity one, relation
between two indexes.

Theorem 3.11. The following index formulae holds

Ind(V1, V2;W ) =
L(1/2, π)

L(2, 1)

∏
v

L(2, 1v)

L(1/2, πv)
Indδ(V1,v, V2,v;Wv).

4. Arithmetic Rallis inner product formula

In this section, we consider arithmetic Rallis inner product formula for (SO3, S̃L2), which lifts cuspidal
irreducible automorphic representations of sign −1. The theory of arithmetic theta liftings over totally
real base field for parallel weight 2 representations were accomplished by Yuan-Zhang-Zhang’s work on
modularity of CM points on Shimura curves. For arithmetic theta lifting from SO3 to S̃L2, we will see
that parallel to last Section, the Rallis inner product formulae follows from comparison of two formulae
of arithmetic Whittaker-Fourier periods and a local comparison result 2.3.

We also get arithmetic Rallis inner product formula for the converse direction, via showing the equiv-
alence of the two arithmetic Rallis inner product formulae. There are also relations among arithmetic
toric periods formulae for the arithmetic theta lifting from SO3 to S̃L2. As a byproduct, we get a new
formulae of arithmetic toric periods, which independent of Gross-Zagier formulae.

In this section, F stands for a totally real field. For an abelian group G and a ring R, denoted G⊗ZR
by GR.

4.1. Arithmetic theta lifting. Let B be a totally definite quaternion algebra over A and B/F be the
quaternion algebra which ramified exactly at all except one archimedean place ι of F together with an
isomorphism B(Afin) ' Bfin. Let H = A×\B×.

For each open compact subgroup U of Hfin, denoted by XU/F the Shimura curve associated to H
of level U with complex uniformization B×\H± × Hfin/U t {cusps}, where B× acts on upper/lower
half-plane H± via ι : B → Bι ' M2(R) and fractional linear transformation. Denoted by Ch1(XU ) the
Chow group of codimensional 1 cycles on XU and let Ch1(X)Q = lim−→U

Ch1(XU )Q, where the inductive
system is with respect to pull back maps. There is a natural action of H on Ch1(X)Q with H∞ acts
trivially and Hfin acts via Hecke correspondence.

Fix a non-trivial additive character ψ : F\A → C×. Let V = Btr=0. Recall there is a Weil represen-
tation wψ of H × G acts on S(V). Denoted by Aψ,3/2(G) ⊂ A(G) the subspace consists of irreducible
automorphic representations θ such that θψ∞(θ∞) is the trivial representation of H∞. Generalizing the
work of Kohnen-Gross-Zagier on modularity of Heegner points, Yuan-Zhang-Zhang [41] constructed a
H×G equivalent map

ϑ : S(V) → Aψ,3/2(G)⊗Q Ch1(X)Q,

φ 7→ ϑϕ

which we now recall. View V = Btr=0 as quadratic subspace of Vfin. Let V − = {x ∈ V
∣∣∣ q(x) is totally negative}

For x ∈ V −, let T = Stab(x) ⊂ SO(V ). Let z±x ∈ H± be the unique fixed point of Tx. We have
associated CM cycle

zx :=
1

2
([z+x , 1] + [z−x , 1]),
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where c is the complex conjugation. Similar, we have Hecke action

zx · h :=
1

2
([z+x , h] + [z−x , h]).

Fix an identification of V − as a subset of V with totally negative norm.
The arithmetic theta kernel is

ϑϕ(g) := −2ξwψ(g)φ(0) +

ˆ
h∈(H\Hfin)·H∞

( ∑
x∈V −

wψ(g, h)φ(x)zx · h

)
dh,

where the ξ is the normalized Hodge class on the Shimura curve associated to H with degree 1. If φ is
fixed by U , the above arithmetic theta kernel could be described in terms of cycles on level U Shimura
curve, which is equivalent to the one in Proposition 4.8 of [40].

Let A0(H) be the direct sum of isomorphic classes of irreducible admissible representations π of H such
that the Jacquet-Langlands correspondence of π are cuspidal automorprhic representations of discrete
series of parallel weight 2 at infinity. The space A0(H) has a Q structure A0(H,Q) [40]. For irreducible
representation π ∈ A0(H,Q) with M = End(π)Q, we have decomposition

πC =
⊕

ι:M→C

πι

as H×M modules, where πι = π ⊗M,ι C.
Let A0,ψ,3/2(G) ⊂ Aψ,3/2(G) be the subspace of cusp forms. Similar as A(H), let A0,ψ,3/2(G,Q)

be direct sum of Aut(C/Q) orbits of irreducible representations in A0,ψ,3/2(G), i.e. consists of θ :=⊕
ι:M→C θ0,ι as G ×M representation, here θ0,ι ⊂ A0,ψ,3/2(G) is irreducible with Hecke field ι(M) and

θ0,ι are conjugate to each other.
The semisimplicity of A0(G) is well known. Let Ch1s(X)Q ⊂ Ch1(X)Q be sub-H-module generated by

Hodge cycle and Gal(Q/Q) orbits of CM cycles introduced before, let’s say something on automorphy
and semisimplicity of Ch1s(X)Q.

Let ξ be the normalized Hodge cycle with degree 1 and Ch1s(X)0 is the cohomological trivial (equiva-
lently, degree 0) part. By definition, Qξ is a trivial H module and the cohomological trivial part Ch1s(X)0Q
is also H stable.

As H module, JX(F ) '
⊕

[A]A(F )Q ⊗End(A)Q πA [40], where [A] runs over all simple abelian param-
eterized by X. Thus the H submodule Ch1s(X)0 of JX(F ) is automorphic and semisimple.

The space Ch1s(X)0Q also has multiplicity one [39] in the sense that for each πA, if ε(A) = +1,
then dimM HomH(Ch

1
s(X)0Q, πA) = 0 and ≤ 1 if ε(A) = −1. Such multiplicity one and condition on sign

follows from the multiplicity one of irreducible cuspidal automorphic representation of G and automorphy
criterion of arithmetic theta lifting (See Proposition 3.5). Thus

Theorem 4.1 (Yuan-Zhang-Zhang). We have

Ch1s(X)0Q '
⊕
[A]

ϵ(A)=−1

Ch1s(X)0Q[πA],

where Ch1s(X)0Q[πA] ⊂ Ch1s(X)0Q is the πA component, which is either 0 or isomorphic to πA.

Arithmetic theta lifting from H to G
Given a simple abelian variety A over F parameterized by X. One can construct a irreducible

representation of H over Q in the following: Let ξU ∈ Pic(XU )Q be the normalized Hodge class on XU ,
which has degree 1 on each geometric connected component of XU . We have

πA := lim−→
U

HomξU (XU , A)Q,

where HomξU (XU , A)Q are the morphisms in Hom(XU , A)Q using ξU as a base point in the sense that if
ξU is represented by a divisor

∑
aixi, then f ∈ HomξU (XU , A) if and only if

∑
i aif(xi) = 0 in A(F )Q.

Let M := EndF (A)Q which is a totally real field with [M : Q] = dimA, then End(πA)Q = M . The
following spectral decomposition holds [40]

A(H,Q) =
⊕
[A]

πA,

where [A] runs over all isogeny classes of simple abelian varieties A over F parameterized by X.
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Define the arithmetic theta lifting ϑ := ϑψ(πA,C) of πA,C to be the G×M -module

{ϑϕf := f ◦ ϑϕ ∈ A0,ψ,3/2(G)⊗Q A(F )Q

∣∣∣ f ∈ πA,C, φ ∈ S(V)}.

Note here for f ∈ πA, f = f , since M is totally real. If we only consider f ∈ πA, the lifting gives the
same representation, we may also write as ϑψ(πA) to emphasis f ∈ πA. There is a C ⊗Q M valued H
invariant M -bilinear Hermitian pairing on ϑ:

〈ϕ1, ϕ2〉M :=

ˆ
SL2\SL2(A)

〈ϕ1(g), ϕ2(g)〉Mdg,

where 〈 , 〉M : A(F )Q⊗MA(F )Q → C⊗QM is theM -bilinear height pairing will such that trM/Q◦〈 , 〉M is
the Néron -Tate height pairing. We may extend 〈 , 〉M to a Hermitian pairing from A(F )C⊗C⊗QM A(F )C
to C⊗Q M and still denoted by 〈 , 〉M . Fix a decomposition πA '

⊗
πv. We have πv,C =

⊕
ι:M→C πv,ι,

where πv,ι is a irreducible representation of Hv over C on which M acts via embedding ι :M → C. The
local theta lifting θψv (πv,C) of πv,C is a M ×Gv module given by

⊕
ι:M→C θψv (πv,ι).

Proposition 4.2. Under assumption ε(A) = −1, the G ×M representation
⊗

v ϑψv (πv,C) is cuspidal
automorphic, and isomorphic to a unique θ in A0,ψ,3/2(G,Q). The representation ϑ 6= 0 if and only if
the C⊗Q M module L ⊂ A(Q)C generated by Whittaker-Fourier coefficients of ϑψ(πA) is free of rank 1.
In any case, ϑψ(πA,C) = θ ⊗C⊗QM L.

Proof. The first claim follows from multiplicity one of A0(G), the fact that theta lifting preserving Hecke
field and action of Hecke field and Proposition 3.5.

Assume 0 6= ϑψ(πA,C). Since A0(G) is semisimple, the global arithmetic theta lifting factor through
tensor product ⊗vθψv (πv,C) of local theta liftings thus must induce an isomorphism ⊗vθψv (πv,C) '
ϑψ(πA).

Fix embedding ι : M → C and let πA,ι := πA ⊗M,ι C be the irreducible representation of H over
C. Since A0,ψ,3/2(G) has multiplicity one, thus ϑψ(πA,ι) = θι ⊗M,ι L an irreducible representation
θι ⊂ A0,ψ,3/2(G) with Hecke field ι(M) and L ⊗M,ι C is one dimensional. Different ι are conjugate to
each other thus
ϑψ(πA) = θ ⊗C⊗QM L for some θ ⊂ A0,ψ,3/2(G). □

Arithmetic theta lifting from G to H
Define the arithmetic theta lifting π := ϑψ(θ) of θ ⊂ A0,ψ,3/2(G,Q) with Hecke field M be the H×M

module {
ϑφϕ =

∑
ι:M→C

ˆ
SL2\SL2(A)

ϑϕ(g)ϕι(g)dg ∈ Ch1s(X)C

∣∣∣ , ϕ ∈ θ, φ ∈ S(V)

}
here ϕι is the ι component of ϕ.

Lemma 4.3. The arithmetic theta lifting lies in cohomological trivial part Ch1s(X)0C of Ch1s(X)C.

Proof. We will prove each ι component lies in cohomological trivial part. The degree map on ϑψ(θι)
gives an element in

HomM,H×G(S(V)⊠ θι,C).
If it is nonzero, there exists a pure tensor φ0 ⊠ ϕ0 such that deg(ϑφ0

ϕ0
) is nonzero. Take a place v such

that the maximal Gv invariant quotient of S(Vv) ⊠ θι,v has no trivial representation of Hv. Consider
Hv ×Gv equivalent embedding map

S(Vv)⊠ θι,v → S(V)⊠ θι, φv ⊠ ϕv 7→ φv ⊗ φ
(v)
0 ⊠ ϕv ⊗ ϕ

(v)
0 ,

the degree map give a nonzero elements in
HomM,Hv×Gv (S(Vv)⊠ θι,v,C),

contradiction. □

We now introduce a H×M invariant pairing 〈 , 〉M on π.
There is a H invariant height pairing on Ch1s(X)0Q defined by

〈P,Q〉 = 2vol(XU )
−1〈P,Q〉NT,U , P,Q ∈ Ch1s(XU )

0
Q,
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where 〈 , 〉NT,U is the Néron -Tate height pairing of level U , XU is viewed as disjoint union of quotient of
H+ and equipped each H+ with measure dxdy

4πy2 . May extend the height pairing to be a Hermitian pairing
on Ch1s(X)0C, still denoted by 〈 , 〉.

There is a H invariant M -bilinear Hermitian pairing on π

〈 , 〉M : π ⊗C⊗QM π → C⊗Q M

such that 〈 , 〉 = trC⊗QM/C ◦ 〈 , 〉M .

Proposition 4.4. Under assumption ε(1/2, θ, ψ) = −1, the H×M representation
⊗

v θψv (θv) is cuspidal
automorphic, and isomorphic to a unique πA,C for πA in A0(H,Q). If ϑψ(θ) 6= 0, then ϑψ(θ) =

Ch1s(X)0C[πA,C] 6= 0. In any case, ϑψ(θ) = Ch1s(X)0C[πA,C].

The proof is parallel to the Proposition 4.2.

Remark 4.5. We will see from arithmetic see-saw that ϑψ(θ) = Ch1s(X)0C[πA,C] always holds.

Arithmetic see-saw Assume πA ⊂ A0(H,Q) with ε(1/2, πA) = −1 and θ ⊂ A0,ψ,3/2(G,Q) such that
they are correspondence to each other in the sense that locally they are theta lifting of each other. (See
Proposition 3.5.) Let L ⊂ A(F )Q be theM -submodule generated by image of CM points in A(F )Q under
elements in πA. We have known that dimM L ≤ 1 and L 6= 0 if and only if Ch1s(X)Q[πA] 6= 0. Assume

L 6= 0.

Note that there is a natural M linear pairing

ϑψ(θ)⊗M πA ⊗M L→ C⊗Q M, (C, f, P ) 7→ 〈f(C), P 〉M
induces a map ι : ϑψ(ϑ) → πA,C ⊗M L via Riesz representation theorem, where the pairing on πA ⊗M L
is induced by intersection on L and the Hermitian invariant pairing on πA,C. The map ι preserve pairing
on both side.

We have arithmetic see-saw:

〈ϑfϕ, ϕ⊗ P 〉M = 〈ι(ϑφϕ), f ⊗ P 〉M , f ∈ πA, ϕ ∈ θ, P ∈ L, φ ∈ S(V).

In particular, Ch1s(X)Q[πA] 6= 0 implies that ϑψ(πA) 6= 0 (via considering specifically choice of φ) and
hence ϑψ(θ) 6= 0. Thus they are all equivalent by Proposition 4.2, 4.4.

4.2. Whittaker-Fourier periods formulae of arithmetic theta lifting from SO3 to S̃L2. Consider
the arithmetic theta lifting ϑ := ϑψ(πA) ⊂ A0,ψ,3/2(G) of an irreducible representation πA ⊂ A0(H,Q).

In this subsection, we consider two formulae on relation between Whittaker-Fourier periods

Wψδ(ϕ) :=

ˆ
N\N(A)

ϕ(n(y))ψδ(−y)dy, ϕ ∈ ϑ, δ ∈ F×

and central value of derivatives of L-functions of quadratic twists. In particular, the quadratic twist L-
value gives global obstruction for arithmetic Whittaker-Fourier periods to be nonzero global Whittaker
functional, whenever arithmetic theta lifting is nonzero and local ψδ,v Whittaker functionals exist for all
v.

In the following type (I’), (II’) formulae, we fix irreducible πA ⊂ A0(H,Q) with sign ε(1/2, πA) = −1.
Let θ ⊂ A0,ψ,3/2(G,Q) corresponding to πA as in Proposition 4.2, let ϑ := ϑψ(πA) its arithmetic theta
lifting.

Type (I’) formulae Let δ ∈ F be totally negative, x ∈ V −
δ := {x ∈ V −

∣∣∣ q(x) = δ} and K = F (x).
Recall we also view x as element in Vδ. Let Tx,Tx be stablizer of x in H, H respectively. Note that

Wψδ(ϑϕ) =

ˆ
N\N(A)

ϑϕ(n(y))ψδ(−y)dy

=

ˆ
h∈(H\Hfin)·H∞

 ∑
x∈V −

δ

φ(h−1 ◦ x)zx · h

 dh

=

ˆ
Tx\H

φ(h−1 ◦ x)
ˆ
Tx\Tx(A)

zx · thdtdh
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It follows that
Wψδ(ϑ

f
ϕ) =

ˆ
Tx\H

φ(h−1 ◦ x)P+
Tx
(hf)dtdh,

where P+
Tx

∈ HomTx,M (πA, A(F )Q) given by P+
Tx
(f) = 1+c

2 PTx(f), with PTx(f) =
´
Tx(F )\Tx(A) f([zx, tfin])dt.

Fix decomposition πA =
⊗

v πv. The local theta lifting θψv (πv,C) of πv,C is the Gv×M representation
given by

⊕
ι:M→C θψv (πv,ι). Assume that

(a′1) rankC⊗QM

⊗
C⊗QM,v HomNv,M (θψv (πv,C), ψv,δ ⊗Q M) = 1, equivalently

rankC⊗QM

⊗
C⊗QM,v HomTx,v,M (πv,C,C⊗Q M) = 1,

(a′2) f = ⊗fv ∈ πA pure tensor so that fv is a test vector for HomTx,v,M (πv,M).
Whenever ϑ 6= 0, we have

ϑ '
⊗

C⊗QM,v

Wδ,v, θfϕ 7→ ⊗θfvϕv (1)/fv(1), ∀φ = ⊗φv ∈ S(V),

where for each v, (i) Vx,v is the Tx,v model of πv which is a subspace of M -valued functions on Tx,v\Hv
and we view fv as in Vx,v; (ii) Wδ,v is the ψδ,v ⊗Q M Whittaker model of θψv (πv,C) which is s subspace
of C⊗Q M -valued functions on Gv with action of Nv by ψδ,v. Note here f = f and fv = fv for each v,
since M is totally real. We add subscript x for explicit local theta lifting to emphasis its dependence on
x and note here the local theta lifting maps Vx,v to Wδ,v

We have the following equality of Whittaker functionals:

Wψδ(ϑ
f
ϕ) = P+

Tx
(f)
∏
v

xθ
fv
ϕv

fv(1)
∈ A(F )C, φ = ⊗φv ∈ S(V).

We now consider the self intersection of the Whittaker-Fourier coefficients.
There exists a global H-invariant M-linear pairing πA ⊗M πA →M given by

(f1, f2) = 2vol(XU )
−1f1,U ◦ f∨2,U ,

where fi ∈ πUA for some open compact subgroup U ⊂ H×
fin, fi,U ∈ Hom(Jac(XU ), A)Q corresponds to

fi. For each place v of F , fix a M -bilinear local invariant Hermitian pairing ( , )v : πv ⊗M πv → M
such that the product gives global one. Let α0

δ,v be the basis of HomTx,v,M (πv,C,C ⊗Q M) ⊗C⊗QM

HomTx,v,M (πv,C,C⊗Q M) the same as in Waldspurger formula:

α0
δ,v(f1,v, f2,v) :=

L(1, ηδ,v)
2L(1, πv, ad)

L(2, 1Fv )L(1/2, πv,Kv )

ˆ
Tx,v

(tf1,v, f2,v)vdt, fi,v ∈ πv,C.

Since we have relation between arithmetic Whittaker-Fourier periods and arithmetic toric periods, as
a consequence of Gross-Zagier formula [40],

Theorem 4.6. Under assumption (a′1), and let fi = ⊗fi,v be as in (a′2). The equality holds in

HomN(A),M (ϑ, ψδ ⊗Q M)
⊗

C⊗QM

HomN(A)(ϑ, ψδ ⊗Q M) :

〈Wψδ(ϑ
f1
ϕ1
),Wψδ(ϑ

f2
ϕ2
)〉M =

L′(1/2, πA,K)L(2, 1F )

2L(1, ηδ)2L(1, πA, ad)

∏
α0
δ,v(f1,v, f2,v)

xθ
f1,v
ϕ1,v

(1)

f1,v(1)
·
xθ
f2,v
ϕ2,v

(1)

f2,v(1)
, φi = ⊗φi,v ∈ S(V).

The proof is the parallel to Theorem3.1 and we omit here.
Type (II’) formulae

Now we introduce another decomposition formulae for arithmetic Whittaker-Fourier period. Recall
there is a natural Hermitian pairing on ϑ induced by the Néron -Tate height pairing and Petersson inner
product:

〈ϕ1, ϕ2〉M =

ˆ
SL2\SL2(A)

〈ϕ1(g), ϕ2(g)〉Mdg.

Consider the case ϑ 6= 0, then we have ϑ = θ ⊗M L. Observe that for ϕi := ϑfiϕi = ϕi,0 ⊗ yi ∈ θ ⊗M L,

(ϕ1,0, ϕ2,0)〈Wψδ(ϕ1),Wψδ(ϕ2)〉M = 〈ϕ1, ϕ2〉M ·Wψδ(ϕ1,0)Wψδ(ϕ2,0)

as equality in C⊗Q M . Fix a decomposition of Petersson inner product on θ. It follows from the Type
(II) formula 3.2 that
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Theorem 4.7. Under the assumption (a′1), For ϕi ∈ ϑ pure tensor,

〈Wψδ(ϕ1),Wψδ(ϕ2)〉M = 〈ϕ1, ϕ2〉M
L(1/2, πA ⊗ ηδ)L(2, 1F )

2L(1, πA, ad)

∏
v

β0
δ,v(ϕ1,0,v, ϕ2,0,v)

(ϕ1,0,v, ϕ2,0,v)v
.

Note that whenever ϑ = 0, both sides of the equation are 0.

4.3. Toric periods formulae of arithmetic theta lifting from S̃L2 to SO3. In the following type (I’),
(II’) formulae, we fix θ ⊂ A0,3.2,ψ(H,Q) with sign ε(1/2, θ, ψ) = −1. Let πA ⊂ A0(H,Q) corresponding
to θ as in Proposition 4.2, let π := ϑψ(θ) its arithmetic theta lifting.

Type (I’) formulae
Let δ x, Tx, Tx be the same as in the last subsection. Fix decomposition θ = ⊗θv.
Assume
(b′1) rankM⊗C

⊗
C⊗QM,v HomTx,v,M (θψv (θv),C⊗QM) = 1, equivalently rankM⊗C

⊗
C⊗QM

HomNv,M (θv, ψv,δ⊗Q
M) = 1,

(b′2) ϕ = ⊗vϕv ∈ θ be a pure tensor such that ϕv is a local test vector for HomNv,M (θv, ψv,δ ⊗Q M)
for all v.

Whenever π 6= 0, we have

π '
⊗

C⊗QM,v

Vx,v, ϑφϕ 7→ ⊗v
xθ
φv
ϕv

(1)

ϕv(1)L(1/2, θv, ψv)
, ∀φ = ⊗vφv ∈ S(V),

here for each v, Vx,v is the Tx,v×M model of θψ(θv) introduced in local theory consists of M ⊗C valued
functions on Tx,v\Hv, view ϕv ∈ Wδ,v in the ψδ,v×M model of θv and we add subscript x for local theta
lifting to emphasis its dependence on x.

Let Zx =
´
Tx(F )\Tx(A)[z

+
x , t]dt, where z+x ∈ H+ is the fixed point of Tx. Then 〈ϑφϕ , Zx〉M gives an

element in HomTx,M (π,C⊗Q M). Fix a decomposition of Petersson inner product on θ.

Conjecture 4.8. Under assumption (b′1).
• Let ϕ be pure tensor as in (b′2).The following equality holds in HomTx(π,C⊗Q M):

〈ϑφϕ , Zx〉M = L′(1/2, θ, ψ) ·Wψδ(ϕ)
∏
v

xθ
φv
ϕv

(1)

ϕv(1)L(1/2, θv, ψv)
.

• Let ϕi be pure tensor as in (b′2),

〈ϑφ1

ϕ1
, Zx〉M 〈ϑφ2

ϕ2
, Zx〉M =

L′(1/2, θ, ψ)2L(1/2, θ, ψδ)L(2, 1F )

2L(1, πA, ad)

∏
v

β0
δ,v(ϕ2,v, ϕ1,v)

∏
v

θ
φ1,v

ϕ1,v
(1)

ϕ1,v(1)L(1/2, θv, ψv)

θ
φ2,v

ϕ2,v
(1)

ϕ2,v(1)L(1/2, θv, ψv)

here β0
δ,v is the same as sign +1 case.

Remark 4.9. The second part follows from the first part of conjecture and the Theorem 3.2. We will
prove the first part of conjecture holds up to ±1 (See Theorem 4.13).

We have L(s, θ, ψδ) = L(s, πA ⊗ ηδ) for any δ ∈ F×.

Type (II’) formulae
We also have type (II’) decomposition formulae, i.e. Gross-Zagier formulae:
We have ι : π ' πA ⊗C⊗QM L, L ⊂ A(F )C with C ⊗Q M rank either 1 or 0. And if ι(f) = f0 ⊗ P ∈

πA ⊗M L, then
〈PTx(f0), P 〉M = 〈f, Zx〉M .

Theorem 4.10. [40] Assume HomTx,v (πA,v,C⊗QM) = 1 for all v. For each pure tensor fi = fi,0⊗Pi ∈
ϑψ(θ),

〈f1, Zx〉M 〈f2, Zx〉M = 〈f1, f2〉M · L
′(1/2, θ, ψ)L(1/2, θ, ψδ)L(2, 1F )

2L(1, ηδ)2L(1, πA, ad)

∏
v

α0
δ,v(f1,0,v, f2,0,v)

(f1,0,v, f2,0,v)

here α0
δ,v is the same as sign +1 case.
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4.4. Arithmetic Rallis inner product formula and arithmetic index formulae. The method is
same as in the sign +1 case.

Arithmetic theta lifting from H to G: Given π ⊂ A0(H,Q) irreducible with ε( 12 , π) = −1 Recall
there exists totally negative δ such that assumption (a′1) holds and L(1/2, πA ⊗ ηδ) 6= 0. Together with
local comparison result 2.3, have any two of the above formulae implies the third one:

• Type (I): Theorem 4.6
• Type (II): Theorem 4.7
• Type (III): Arithmetic Rallis inner product formula from H to G.

Fix decomposition of πA and decomposition of M equivalent Hermitian inner product ( , ) = ⊗v( , )v
on πA,C.
Theorem 4.11 (type (III’)). For pure tensors f1, f2 ∈ πA and φ1, φ2 ∈ S(V), the following equality
holds:

(ϑf1ϕ1
, ϑf2ϕ2

) =
L′(1/2, πA)

L(2, 1F )
·
∏
v

Z0
v (φ1,v, φ2,v, f1,v, f2,v),

where Z0
v (φ1,v, φ2,v, f1,v, f2,v) =

L(2, 1Fv )

L(1/2, πv)
·
ˆ
Hv

(hφ1,v, φ2,v)v(hf1,v, f2,v)vdh is the doubling zeta integral

which valued in C⊗Q M .
Arithmetic theta lifting from G to H: Given θ ⊂ A0,ψ,3/2(G,Q) with ε(1/2, θ, ψ) = −1. Then

there exists totally negative δ such that assumption (b′1) holds and L(1/2, θ, ψδ) 6= 0. Together with local
comparison result 2.8, have any two of the above formulae implies the third one:

• Type (I’): Conjecture 4.8
• Type (II’): Theorem 4.10
• Type (III’): Arithmetic Rallis inner product formula from H to G.

By multiplicity one, global arithmetic see-saw and local see-saw 2.10, and Proposition 2.10, the arith-
metic Rallis inner product formulae for the both sides are also equivalent. Thus we have the following:

Fix decomposition of θ and decomposition of M equivalent Hermitian inner product ( , ) = ⊗v( , )v
on θ
Theorem 4.12. Assume ε(1/2, θ, ψ) = −1. For pure tensors ϕ1, ϕ2 ∈ θ and φ1, φ2 ∈ S(V), the following
equality holds:

(ϑφ1

ϕ1
, ϑφ2

ϕ2
) =

L′(1/2, θ, ψ)

L(2, 1F )
·
∏
v

Z0
v (φ1,v, φ2,v, ϕ1,v, ϕ2,v),

where Z0
v (φ1,v, φ2,v, ϕ1,v, ϕ2,v) =

L(2, 1Fv )

L(1/2, θv, ψv)
·
ˆ
G0,v

(gφ1,v, φ2,v)v(gϕ1,v, ϕ2,v)vdg is the doubling zeta

integral which valued in C⊗Q M .
Theorem 4.13. The first part of Conjecture 4.8 holds up to ±1 and the second part of Conjecture 4.8
holds.

In the same principle, the following arithmetic index theorem are equivalent to either side of Rallis
inner product formulae.

Let π, Θ as before, (V1, V2;W ) be self-reflex lines (here similar in sign +1 case, but we equipped V1, V2
with M structure.) Let x ∈ V − such that HomTx,v,M (πv,M ⊗Q C) is nonzero for all v.
Theorem 4.14.

Ind(V1, V2;W ) =
L′(1/2, π)

L(2, 1)

∏
v

L(2, 1v)

L(1/2, πv)
Indδ(V1,v, V2,v;Wv)

Either arithmetic Rallis inner product formulae or Gross-Zagier formulae could implies the following
spectral decomposition:
Corollary 4.15. We have

Ch1s(X)0Q '
⊕
[A]

L′(A,1) ̸=0

Ch1s(X)0Q[πA],

with Ch1s(X)0Q[πA] ' πA.
By the BSD conjecture, one would like to replace the analytic rank by algebraic rank.
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5. Explicit formulae and arithmetic applications

The case sign +1 Let T be an quadratic twist family of irreducible cuspidal automorprhic represen-
tations of PGL2(A) over a number field F . Let Σ0 = {v

∣∣∣ v|2∞ or σv is ramified for all σ ∈ T }. Let
Σ ⊃ Σ0 be any finite set of places of F . Let σ0 ∈ T be any element. We call a fiber X of the map

F× →
∏
v∈Σ

F×
v /F

×2
v .

a Σ-equivalent class. Identify δ ∈ X with quadratic twist σ0 ⊗ ηδ of σ0. The sign of σ0 ⊗ ηδ only depends
on X, denoted by ε(σ0 ⊗ X).

Let Xi, i = 1, 2 be two Σ-equivalent classes. For each v ∈ Σ, the quadratic extension Kv = Fv(
√
δ1δ2),

with δi ∈ Xi, of Fv only depends on X1, X2.
Assume that

ε(σ0 ⊗ X1) = +1, ε(σ0 ⊗ X2) = +1.

Let B be the quaternion algebra over F unramified outside Σ such that

ε(Bv) = ε(σ0,Kv ), ∀v ∈ Σ.

Let π0 be the cuspidal automorphic irreducible representation over H = PB× that corresponds to σ0 via
Jacquet-Langlands.

Fix a non-trivial additive character ψ0 of F\A. By property of Waldspurger packet [9], for ψ = ψ0,δ−1
1

,
δ1 ∈ X1 such that L(1/2, π0 ⊗ ηδ1) 6= 0, the representation

θ := θψ(π0 ⊗ ηδ1)

is nonzero and only depends on X1.
We will give a uniform construction of ϕδ1 = θ

fδ1
ϕδ1

∈ θψ(π) such that we have the uniform relation
between

(I). |Wψδ1δ2
(ϕδ1)|2 and L(1/2, π0 ⊗ ηδ1)L(1/2, π0 ⊗ ηδ2) as δi ∈ Xi varies;

(II). |Wψδ1δ2
(ϕδ1)|2 and (ϕδ1 , ϕδ1)L(1/2, π0 ⊗ ηδ2) as δi ∈ Xi varies;

(III). (ϕδ1 , ϕδ1) and L(1/2, π0 ⊗ ηδ1) as δ1 ∈ X1 varies.

The case sign −1 Assume F is totally real, and T be a quadratic twist family of irreducible cuspidal
automorphic representations of PGL2(A) over F and with infinite component given by discrete series of
parallel weight 2. Define Σ, X, ε(σ0 ⊗ X) in the same way as sign +1 case.

Assume that
ε(σ0 ⊗ X1) = −1, ε(σ0 ⊗ X2) = +1

and
X1X2

is totally negative. Let B be the incoherent totally definite quaternion algebra over A unramified outside
Σ such that

ε(Bv) = ε(σ0,Kv ), ∀v ∈ Σ.

LetX the Shimura curve associated toH = A×\B× and let A/F be the simple abelian variety corresponds
to π0. Then the H representation πA = lim−→U

Hom0
ξU (XU , A) corresponds to σ0 via Jacquet-Langlands.

Let π0 = πA,C. In this arithmetic case, we will give a uniform construction of cycle valued automorphic
forms ϕδ1 = ϑ

fδ1
ϕδ1

∈ ϑψ(π), with ψ = ψ0,δ−1
1

, π = π0 ⊗ ηδ1 , δ1 ∈ X1, such that we have the uniform
relation between

(I’). 〈Wψδ1δ2
(ϕδ1),Wψδ1δ2

(ϕδ1)〉M and L′(1/2, π0 ⊗ ηδ1)L(1/2, π0 ⊗ ηδ2) as δi ∈ Xi varies; Here M =

EndF (A)Q.
(II’). 〈Wψδ1δ2

(ϕδ1),Wψδ1δ2
(ϕδ1)〉M and (ϕδ1 , ϕδ1)L(1/2, π0 ⊗ ηδ2) as δi ∈ Xi varies;

(III’). (ϕδ1 , ϕδ1) and {L′(1/2, π0 ⊗ ηδ1)} as δ1 ∈ X1 varies.

We will also consider the arithmetic application of these formulae.
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5.1. Test vector space. Let’s first focus on the choice of family of fδ1 . For each v ∈ Σ finite, let
ηX1,v = ηδ1,v, δi ∈ X1, χv = ηX1,v ◦NKv/Fv , which only depends on X1. Let

R ⊂ B :=

{
B

B
be an

{
OF , sign +1 case
ÔF , sign −1 case

order of discriminant∏
v∈Σfin

Kv split or
ordv(Cond(χv)) ≥ ordv(Cond(σ0,v))

Cond(σ0,v)
∏

v∈Σfin
Kv nonsplit and

ordv(Cond(χv)) < ordv(Cond(σ0,v))

Cond(σ0,v ⊗ ηX1,v)

such that for v ∈ Σ, Rv∩Kv = Oχv if Kv split or ordv(Cond(χv)) ≥ ordv(Cond(σ0,v)) andRv∩Kv = OKv
if Kv nonsplit and ordv(Cond(χv)) < ordv(Cond(σ0,v)). Here Cond(σ0,v), Cond(χv) is the conductor
of σ0,v, χv respectively, Oχv ⊂ OKv is the order with conductor equals to conductor of χv. Let U∞ =∏
v|∞ Uv such that Uv is a compact subgroup of{

Hv, sign +1 case
Hv, sign −1 case

such that Uv ∩ K×
v is the maximal compact subgroup of K×

v .
Let

V (π0,X1,X2)

be the tensor product of local test vector space defined in Theorem 2.15 relative to Rv if v is finite and
Uv if v|∞ (also Kv if v ∈ Σ), where the places outside Σ corresponds to the case (I). and the places inside
Σ corresponds to the case (II). in Theorem 2.15. Note that in the sign −1 case, all the spaces equipped
with an M structure.

Proposition 5.1. V (π0,X1,X2) is rank one{
C, sign +1 case
C⊗Q M, sign −1 case

space.

We also identify element δ := δ1δ2 with (δ1, δ2) ∈ (X1,X2) as a quadratic algebra

K =

{
F (

√
δ), sign +1 case

A(
√
δ), sign −1 case

contained in B. Let T = F (
√
δ)×/F×. For any K ∈ X1X2, exists hδ1,K ∈

{
H(A), sign +1 case
H, sign −1 case

such that RK = hδ1,KRh−1
δ1,K and K satisfies good relative position in Theorem 2.15. For δi ∈ X1, let

π = π0 ⊗ ηδ1 .

Proposition 5.2. Let 0 6= f0 ∈ V (π0,X1,X2). For each (δ1, δ2) ∈ (X1,X2), fδ1,K = f
hδ1,K
0 ⊗ ηδ1 is a

test vector for (π,K) in the sense that for each v, the local toric linear form defined in 2.2 is nonzero on
local component of fδ1,K at v.

Recall Waldspurger/Gross-Zagier formula say that PT (fδ1,K) is non-vanishing on πδ1 := π0 ⊗ ηδ1 if
and only if the derivative base change central L-value/base change central L-value is non-vanishing. In
the following, we consider uniform relation between toric period and L-values.

Similarly to R, there exists a admissible order R0 (depends on δ1) in the sense of [3] with discriminant
equals to N = Cond(σ0) such that for each embedding K → B and hK above, R′

K = hKR0h
−1
K is

admissible order for (π0, ηδ1).
Denote ||a|| the norm of an ideal a of F . In the sign −1 case, simply denoted by |Q|2M = 〈Q,Q〉M for

Q ∈ A(F )C.
It follows from Explicit Waldspurger formula of Cai-Shu-Tian for (π0, ηδ1 ◦NF (

√
δ1δ2)/F

) and its vari-
ation (see also Remark 2.16), we have: For δi ∈ X1, let π = π0 ⊗ ηδ1 .
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Theorem 5.3. For each (δ1, δ2) ∈ (X1,X2),

L(c1,2)(1, ηK)
2||c1,2||·

|DK|
|DF |

·

{
|PT (fδ1,K)|2

|PT (fδ1,K)|2M
= CX1,X2 ·

(f0, f0)

(φ0, φ0)
·
√
|DK/F | ·

{
L(Σ′)(1/2, πK), sign +1 case
L′(Σ′)(1/2, πK), sign −1 case

where
CX1,X2

only depends on σ0,X1,X2 given by local factors mainly contributed from places in Σ and bad places of
σ0:

CX1,X2
= |DF |C∞

−1
2
#

{
v

∣∣∣ Case (II).(b).(i),
Kv is ramified

} ∏
v /∈ Σ

π0,v is ramified

L(2, 1Fv )

L(1, Fv)L(1, π0,v , ad)

∏
v|N∩Σ

vol(U0(N))v

vol(R0,v)

∏
Case(II).(b).(ii)

1

(1 − q
−ev
v )L(1, π0,v , ad)

,

with qv is the cardinality of residue field of Fv, ev is the ramification index of Kv/Fv, C∞ is defined in
[3], φ0 the normalized Hilbert new vector;

c1,2 =
∏
v/∈Σ

√
DFv(δ1,vδ0,v)/FvDFv(δ2,vδ0,v)/Fv

DFv(δ1,vδ2,v)/Fv

∏
v∈Σ,Case(II).(a).

pcvv ,

which depends on δ1, δ2 with δ0,v = 1 or a uniformizer of Fv such that σ0,v ⊗ ηδ0,v is unramified for
v /∈ Σ, cv the conductor of χδ1,v := ηδ0,vδ1,v ◦NKv/Fv for v ∈ Σ and pv the prime of Fv.

Σ′ =
{
v ∈ Σ

∣∣∣ v|(nv, cvDKv/Fv ) if v is finite; if v ∥ N, then ordv(cv) ≥ 1;
v is not Case (II).(b).(ii); if v|∞, then Kv ≃ C

}
,

where nv is the conductor of π0,v.

Now consider choice of family of φδ1 . We need to choose representative of δi ∈ Xi such that the
Whittaker-Fourier coefficients and L-values have uniform relation.

Let a be a fractional ideal of F prime to Σ. Let Xa ⊂ X1 × X2 be subset consists of (δ1, δ2) such
that (δ1δ2) = a2

∏
v is finite DFv(

√
δ1δ0,v)/Fv

D
Fv(

√
δ2δ0,v)/Fv

. Let Pic+F be the narrow ideal class group of
F . Note that we have surjection: ⊔

[a]∈Pic+F

Xa → (X1 × X2)/F
×2.

We normalize the Schwartz function by the following so that the theta lifting has good properties

φδ1 =
∏
v|∞ L(1,ηKv )

vol(R̂×,H(Afin))/
∏
v is finite |cδ1,v|

1/2
v

⊗v φδ1,v, where R̂× =

{
R̂×, sign +1 case
R×, sign −1 case

, φδ1,v is defined in

Section 2.2 relative to πv = π0,v ⊗ ηδ1,v, Rv for all v and Kv for v ∈ Σ.
For each a, fix a generator a ∈ Afin of â. Let φδ1,a be the translation of φ by a in the sense that

φδ1,a(ax) = φδ1(x) for any x ∈

{
V (A), sign +1 case
V, sign −1 case

. For a different choice of a, φa,0 will differed by

±1, we may fix one choice once for all.

For each x ∈ Vδ1δ2 with (δ1, δ2) ∈ Xa, we have choose hx := hδ1,K as before withK =

{
F (x), sign +1 case
A(x), sign −1 case

and we may further choose h−1
x ◦ x such that for each v ∈ Σ and h−1

x ◦ x ∈ Kov. Here in Kov ⊂ Ktr=0
v is

the oriented subset in 2.2 and in the case sign −1, V ⊂ Vfin is in Section 4.1.

Proposition 5.4. Let (fδ1,x, φδ1,a,x) := (hx(f0 ⊗ ηδ1), hxφδ1,a), then it follows that

ϕδ1,a =

{
θ
fδ1,x
ϕδ1,a,x

, sign +1 case
ϑ
fδ1,x
ϕδ1,a,x

, sign −1 case

only depends on a, δ1, does not depend on δ2 here the theta lifting is with respect to ψ = ψ0,δ−1
1

and ψ0

is a fixed non-trivial additive character once for all.

We have ϕδ1,a is a test vector for ψδ1δ2 Whittaker functional for all (δ1, δ2) ∈ Xa. In the following, we
will consider the uniform relation between Whittaker-Fourier coefficients and L-values.
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5.2. Explicit formulae for (arithmetic) Whittaker-Fourier periods and Rallis inner product.

Type (I) and (I’)
By the decomposition of (arithmetic) Whittaker-Fourier coefficients in Section 3 4.2 and formula for

local Whittaker function 2.2, we have the following modularity of toric periods:
Define the normalizedWhittaker-Fourier coefficient byW 0

ψδ
(ϕδ1,a) =

Wψδ
(φa)∏

v|∞ Cq(x),v
whenever

∏
v|∞ Cq(x),v

is nonzero, where Cq(x),v is defined behind Theorem 2.24. For each (δ1, δ2) ∈ Xa and x ∈ Vδ with δ = δ1δ2,

W 0
ψδ
(ϕδ1,a) = 2ϵ ·

∏
v|∞

|δ|wv/[Fv :R]−3/4
v ·

√
|DKx |
|DF |

L(c1,2)(1, ηKx)||c1,2||PTx(fx),

where ε =
∑
εv with εv ∈ {1, 2} in Theorem 2.18, Tx be the stablizer of x ∈ V .

By Theorem 5.3, we have the following explicit and uniform relation:

Theorem 5.5. For each (δ1, δ2) ∈ Xa,{
|W 0

ψδ
(ϕδ1,a)|2

|W 0
ψδ
(ϕδ1,a)|2M

= C ′
X1,X2

· (f0, f0)
(φ0, φ0)

·
∏
v|∞

|δ1δ2|2wv/[Fv :R]−1
v ·

{
L(Σ′)(1/2, πδ1,K), sign +1 case
L′(Σ′)(1/2, πδ1,K), sign −1 case

,

where
C ′

X1,X2
= C1 · CX1,X2

with C1 only depends on σ0,X1,X2 given by local factors contributed from places in Σ, a and bad places
of σ0: C1 = 4ϵ||c′||1/2||a||−1 , c′ =

∏
v|Σfin

DKv/Fv
DK1,v/Fv

DK2,v/Fv

∏
v∈Σ,(II).(a). p

2cv
v with Ki,v = Fv(

√
δi) for

v ∈ Σ only depends on Xi, cv the conductor of ηδ1,v ◦NKv/Fv , ε =
∑
εv with εv ∈ {1, 2} in Theorem 2.18.

Type (II) and (II’)
Let notations be as before,

Theorem 5.6. For each (δ1, δ2) ∈ Xa,{
|W 0

ψδ
(ϕδ1,a)|2

|W 0
ψδ
(ϕδ1,a)|2M

= C ′′
X1,X2

· (ϕδ1,a, ϕδ1,a)
(φ0, φ0)

∏
v/∈Σ ||DFv(δ1δ0)/Fv ||v

||(δ1)(Σ)||
∏
v|∞

|δ2|2wv/[Fv :R]−1
v L(Σ)(1/2, π0 ⊗ ηδ2)

where C ′′
X1,X2

only depends on σ0,X1,X2 given by local factors mainly contributed from places in Σ, a
and bad places of σ0:

C ′′
X1,X2

= ||a||2
∏
v|∞

|c0|2wv/[Fv :R]v |DF |2n+#Σ∞πb||(δ2)Σ||

∏
v/∈Σ,

π0,v is ramified

L(2, 1Fv )

L(1, π0,v, ad)L(1, 1Fv )

∏
v∈Σfin

π0,v is unramified

L(1, π0,v, ad)L(1, 1F )

L(2, 1Fv )

∏
v|∞

(W0,v,W0,v)

cX1·X2,v(W
o
v ,W

o
v )2

n =
∑
v∈Σ nv with nv defined in Theorem 2.31, c0 is such that ψ0,c−1

0
is the standard additive character

of F\A, b = {v|∞
∣∣∣ Fv ' C}.

Type (III) and (III’)
Let notations be as before,

Theorem 5.7. For each (δ1, δ2) ∈ Xa,

(ϕδ1,a, ϕδ1,a)

(f0, f0)
= C ′′′

X1,X2
· ||(δ1)(Σ)||∏

v/∈Σ ||DFv(δ1δ0)/Fv ||v

∏
v|∞

|δ1|2wv/[Fv :R]−1
v ·

{
L(Σ′)(1/2, π0 ⊗ ηδ1), sign +1 case
L′(Σ′)(1/2, π0 ⊗ ηδ1), sign −1 case

where C ′′′
X1,X2

only depends on X1, X2 given by local factors contributed from places in Σ, a and bad
places of σ0: C ′′′

X1,X2
= C ′

X1,X2
/C ′′

X1,X2
LΣ\Σ′(1/2, π0 ⊗ ηδ2)
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6. Arithmetic application: Tunnell-Gross Type formula

Let notations be as in sign +1 case of Theorem 5.5 in Section 5. We consider the case π0,∞ is trivial.
Equivalently, F is totally real, σ0,∞ is parallel of weight 2 and X1X2 is totally negative.

We have known the explicit and uniform relation between Fourier coefficients of theta series and
L-values, in the following we consider relation between Fourier coefficients and arithmetic of ternary
quadratic lattices.

Recall for v ∈ Σ, we say (πv,Kv) has no local obstruction if (∗) in Proposition 2.17 holds. It is
equivalent to that the involution define in the proposition acts on local test vector in πv by ε(Bv)ε(πv) =
+1. Let

L◦
v =



Lv, πv is unramified (ordv(δ0,vδ1,v) is even) and v /∈ Σ

R×
v ◦

(
pv

1

)
, πv is ramified (ordv(δ0,vδ1,v) is odd) and v /∈ Σ

Lv, v ∈ Σ finite and without local obstruction
R×
v ◦ K◦

v, v ∈ Σ finite, other case.

,

where pv is the prime ideal of F associated to v and in the last case, L◦
v is the oriented subset defined in

2.2.
And let L◦

a = (
∏
v<∞ avL

◦
v) ∩ V (F ), here recall a ∈ Afin is a generator of a. For each δ = δ1δ2 with

(δ1, δ2) ∈ Xa, let
wδ1 =

∏
v/∈Σ

πv is ramified

wδ1,v
∏

v∈Σ,Case(II),(a).

be the weight function on La defined by

wδ1,v

(
r ◦
(
av

(
b

1

)))
= ηδ1,vδ0,v ◦ det(r), r ∈ R×

v , b ∈ pv

in the case v /∈ Σ and πv is ramified and

wδ1,v (r ◦ k) = ηδ1,v ◦ det(r), r ∈ R×
v , k ∈ K◦

v.

in the Case (II).(a). for v ∈ Σ.
Denoted (L◦

a,h, wδ1,h) by the conjugation of (L◦
a, wδ1) by h, more precisely,

L◦
a,h = (

∏
v<∞

hv ◦ avL◦
v) ∩ V (F )

wδ1,h,v(·) = wδ1,v (h
−1
v ◦ ·).

The following lemma follows directly from our choice of vector and explicit description of Weil represen-
tation.

Lemma 6.1. For each (δ1, δ2) ∈ Xa,

W 0
ψδ
(θa) = 2[F :Q]

∑
[h]∈XR×

f0(h)ηδ1 ◦ det(h)
wh

∑
x∈L◦

a,h∩Vδ(F )

wδ1(x)

where δ = δ1δ2, wh = #(hR×h−1 ∩H(F )), XR× = H(F )\H(Afin)/R×.

Remark 6.2. The local weight function has the following concrete description in the case v /∈ Σ and πv is
ramified: Fix x0 ∈

(
pv

1

)
. Then it is the function whose support is contained in a−1

v M2(OF,v) given
by

wδ1,v(a
−1
v x) =


0, ordv(q(x)) = 0

ηδ1,vδ0,v (−〈x, x0〉), ordv(〈x, x0〉) = 0

ηδ1,vδ0,v (u), ordv(〈x, x0〉) > 0

,

here 〈x, y〉 = q(x+ y)− q(x)− q(y), u ∈ O×
F,v is such that ordv(x− ux0) > 0.

Together with Theorem 5.5, we have the following generalization of Tunnell type theorem:
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Theorem 6.3. For each (δ1, δ2) ∈ Xa,

|δ1δ2|1/2 · L(Σ′)(1/2, σ0 ⊗ ηδ1)L
(Σ′)(1/2, σ0 ⊗ ηδ2)

π3(φ0, φ0)
·C◦

X1,X2
=

1

(f0, f0)

∣∣∣ ∑
[h]∈XR×

f0(h)ηδ1 ◦ det(h)
wh

∑
x∈L◦

a,h∩Vδ(F )

wδ1(x)
∣∣∣2 ∈ Q

where
C◦

X1,X2
= π34−[F :Q] · C ′

X1,X2
∈ Q×

with C ′
X1,X2

be the same as in Theorem 5.5 only depends on σ0, a0 and Xi given by local factors contributed
from places in Σ, a and bad places of σ0.

If π is unramified outside Σ and δ1 = 1, the formulae in | · | is simply∑
[h]∈XR×

f0(h)

wh
#(L◦

a,h ∩ Vδ(F )).

Similar for general F and B, the weight function will involve archimedean places and one should count
the lattice points by modulo suitable automorphism so that the sum appeared in the formulae is still
finite.
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