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Abstract

We prove arithmetic Rallis inner product formulae for (SOg,gf_Tz) over totally real fields. As a result, for
GL> type abelian variety with trivial central character, the central derivative of the L-function is related to
arithmetic inner product of the arithmetic theta lifting. The approach is different from arithmetic Siegel-Weil
proposed by Kudla. Instead, the result follows from considering relations among various (arithmetic) Whittaker
periods formulae for L-values, and comparison of local periods. We also establish explicit formulae for (arithmetic)
Whittaker-Fourier periods. As a by product, we get (i) explicit (arithmetic) Rallis inner product (ii) generalization
of Tunnell’s work to any quadratic twist family of cuspidal automorphic irreducible representations of PGL2 over
a number field.

1. INTRODUCTION

Given a dual pair (G, H) over a number field, the Weil representation gives a construction of automor-
phic forms on H x G, called theta series. Using these theta series as kernel functions, one could construct
automorphic representations on one group from automorphic representations on another group, such a
process is called theta lifting. Given a cuspidal irreducible automorphic representation of H(A) such that
its theta lifting is cuspidal and has no local obstructions to be nonvanishing. The Rallis inner product
formulae, was first proposed by Rallis [31], connects inner product of lifted forms to relevant L-values.
The key in the proof is the Siegel-Weil formulae, which connects inner product of lifted forms to an
integral of the original forms with diagonal restriction of Siegel Eisenstein series. Via doubling methods
of Piatetski-Shapiro and Rallis [11], the integral could be unfolded as product of local doubling zeta
integral for pure tensor test vectors, and hence to related L-value.

In many cases when G and H have almost equal rank, for example, (SO2p,41, Mps,,), (U(n),U(n)), a
necessary condition for theta lifting of (conjugate) self-dual representation to be nonvanishing is given
by the global epsilon factor equals to +1 and the global obstruction of the nonvanishingness is given
by nonvanishing of central L-value. The question is that if epsilon factor equals to —1, is there exist
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an arithmetic version of theta lifting whose global obstruction of nonvanishingness is given by central
derivative of L-function and there exists an arithmetic version of Rallis inner product formulae?
Consider (SOs,SLsg), it was observed by Gross-Kohnen-Zagier [14] that certain family of Heegner
points on modular curve form Fourier coefficients of a weight 3/2 modular form valued in the rational
points of the Jacobian. Extending Gross-Kohnen-Zagier’s work, Kudla constructed arithmetic theta

kernels which are weight 3/2 modular forms valued in (/]T11 of Shimura curves over Q with maximal level.
In [18], it is conjectured that for the weight 3/2 eigen form ¢ corresponds to a weight 2 newform f
with sign —1 and square-free level, arithmetic inner product of arithmetic theta lifting of ¢ is related to
central derivative L-values of f. In the same paper, Kudla propose an arithmetic version of Siegel-Weil
together with doubling methods to get his conjecture. Towards to such approach, there are many results,
see Kudla-Rapoport-Yang [19] for the conjecture on Shimura curve with maximal level, Du-Yang [6] for
a relevant arithmetic Siegel-Weil on modular curve Xo(N) with NV square-free. Ald also see Zhu [43] for
local arithmetic Siegel-Weil on modular curve with general level. The local arithmetic Siegel-Weil in the
case SO3 is nonsplit is still open except the level is hyperspecial. In Kudla’s approach, even formulation
of arithmetic Siegel-Weil needs good model of Shimura curve at all places.

In this paper, we prove arithmetic inner product formulae for (SO2,SLs) over totally real fields. We
use modularity of Heegner points on generic fiber of Shimura curve [40] to formulate arithmetic theta
lifting. Before introducing our method, let’s first introduce main results. For simplicity, we consider
everything over Q in the rest of the introduction.

Let B be an incoherent definite quaternion algebra over A and let V = B"=0 be the quadratic space
over A with quadratic form given by minus of the reduced norm. Let H = A*\B* ~ SO(V) and

—_~

G = SLy(A). Fix a nontrivial additive character ¢ of Q\A — C*.

Let 7 be an cuspidal irreducible automorphic representation of H such that 7'% corresponds to an
elliptic curve A over Q. The representation 7 has a model Hom¢ (X, A)g, where X is the Shimura curve
associated to H and Hom, means use Hodge cycle { as base point.

Consider the case

e(m) = —1.
Fix decomposition m = ®,m,, and for each v let 6y, (m,) be the local theta correspondence of 7, with
respect to 1, then
O 1= ®,b0y, (1)
is an irreducible cuspidal automorphic representation of G.
The work of Yuan-Zhang-Zhang establish a H x G equivalent map:

S(V) = Ch'(X)g ®g A(G), ¢ Jy.

Identify 7 and © with their model of morphisms and automorphic forms respectively, the arithmetic
theta lifting from H to G is

TRS(V) = 0®qL, (f>¢)'_”9£ = fody,

where L C A(Q)g is the space generated by image of Heegner points on Shimura curve associated to H
via modular parameterizations. The space L has dimension < 1. The image is denoted by ¥ (7). Then
¥y () is either zero or equals to © ®g L with L has dimension one.

Fix decomposition ( , ) = ®,(, ), of Petersson norm on .

Theorem 1.1. Let f; = Qf;y €T, ¢ = Qi € S(V), i = 1,2 be pure tensor vectors,

L'(1/2,7

(19£11’19£2)NT: L(2 IQ)) HZ*(¢17U7¢2,v7f1,v7f2,v);

where Z*($1,0, P20, [1,0, f2,0) i the normalized doubling zeta integral:

L(27 11)) -
[’(1/2)7711)/I{v(hv¢1’v7¢2’v)v(hvflvv’fQ,U)vdhv

same as the one appeared in the classical Rallis inner product formula.

Similar for the other direction of arithmetic theta lifting.

The main ingredient is that we make full use of arithmetic periods for L-functions and study their
relations. To get arithmetic Rallis inner product, the basic observation is that the central derivative
of base change L-function of a cuspidal automorphic representation of PGL2(A) has a natural splitting
into product of two twist L-functions. There are two Whittaker-Fourier periods formulae for arithmetic
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theta lifting (See Section 4.2). The first one is that the toric periods of f € 7 along Heegner points
appear in Whittaker-Fourier coefficients of arithmetic theta lifting 193;, and the ratio of Whittaker-Fourier
coefficients by the toric periods is product of local Whittaker functional constructed from Waldspurger
explicit local theta lifting. As a consequence, the Néron -Tate height of arithmetic Whittaker-Fourier
coefficients of ¥, (7) is connected to central derivative of base change L-function. The second formula
connects Néron -Tate height of arithmetic Whittaker-Fourier coefficients to product of quadratic twist
central L-value and arithmetic inner product, the ratio is given by product of local Whittaker periods
constructed from matrix coefficients. The second arithmetic Whittaker-Fourier periods formulae is a
variant of a formula for usual theta lifting. The Arithmetic Rallis inner product formulae follow from
global comparison of two arithmetic Whittaker-Fourier periods formulae and composition of local periods
2.3. The same approach works for the other side of arithmetic theta lifting. For the other direction, one
just interchange the role of arithmetic toric periods and arithmetic Whittaker-Fourier periods. The two
sides of arithmetic Rallis inner product formulae are in fact equivalent.

The approach could also be applied to higher rank dual pair, like (SOg2,41, Mps,), (U(n),U(n)),
which connects AGGP to arithmetic Rallis inner product formulae. In the classical case, the problem
was considered by Furusawa [3].

In the unitary shimura curve case, parallel to Yuan-Zhang-Zhang’s approach to Gross-Zagier formula,
Liu [20] proves a weak version of arithmetic Siegel-Weil only involves modularity of cycles on generic
fiber which is enough to get arithmetic Rallis. Following Liu’s approach, one may get the same result as
ours. Yet our approach has benefit for getting explicit formulae and further arithmetic applications.

Our second result is the explicit formulae for (arithmetic) Whittaker-Fourier periods formulae and
(arithmetic) Rallis inner product formulae.

The explicit version for first (arithmetic) Whittaker-Fourier periods formulae is based on Cai-Shu-
Tian’s work on explicit (Gross-Zagier) Waldspurger formulae and our choice of test Schwartz functions.
As a consequence, the explicit Whittaker-Fourier periods formulae generalize the Tunnell-Gross type
formulae on connection between quadratic twist L-values of elliptic curves to representation problem of
ternary quadratic forms.

The explicit (arithmetic) Rallis inner product formulae follows from the comparison of two explicit
(arithmetic) Whittaker periods formulae. More precisely, the normalized local doubling zeta integral
could be interpreted by normalized local toric periods and local Whittaker periods which have 1 dimen-
sional integral domain and whose explicit formulae is relative easy to understand.

In the next paper, we will consider further arithmetic application of these formulae to arithmetic of
quadratic twist family of elliptic curves. Let’s introduce arithmetic question for motivation of the explicit
formulae.

Tunnell-Gross type formulae

Let’s recall Tunnell, Gross’s work on Shimura-Waldspurger correspondence, which related ternary
quadratic forms to quadratic twist central L-values of elliptic curves.

For a = 1,2, let {Qq1,Qq2} be the genus class of ternary quadratic forms

{2 4+ 2ay” 4+ 322%,  2ax® + 4y® + 927 — dyz).

Theorem 1.2 (Tunnell-Qin). For any n =1,2,3 (mod 8) positive square-free

2

L(E™.1) a
Nt T N

Qa,l(w:y)z):n/a Qa,?(w)yvz):n/a
z€Z?

where a =1 if 24n, a =2 if 2|n, Q:floo \/;’%x'

The work of Tunnell was based on Waldspurger’s work which established connection between Fourier
coeflicients of half-integer modular form and quadratic twist central L-values of elliptic newform under
Shimura-Waldspurger correspondence [36]. To apply Waldspurger’s result, one needs to find weight 3/2
modular form that

e it is a Shimura-Waldspurger image of a given elliptic newform,
e the preassigned Fourier coefficient of weight 3/2 modular form is nonzero.
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For congruent elliptic curve 2 = 23 —2, Tunnell constructed its Shimura-Waldspurger image by tensoring

weight 1/2 modular forms and weight 1 modular forms, whose structure well understood by work of Serre-
Stark [33] and Deligne-Serre [1]. Recently, Qin [20] reinterpreted forms in Tunnell’s work as constructed
from theta series associated to ternary quadratic forms in the same genus class.

In the case of prime conductor, Gross [13] gave a method to construct Shimura-Waldspurger lifting via
ternary quadratic forms whose Fourier coefficients are certain toric periods. There are also generalizations
of Gross’s work to the whole quadratic twist family in the prime conductor case [21] and to square-free
conductor case by S. Bocherer and R. Schulze-Pillot [2] by their investigation of the Yoshida lift.

As an application of the explicit formula for Whittaker-Fourier period in the sign +1 case, we get
general Tunnell-Gross type formula.

Let A be a quadratic twist family of elliptic curves over Q. We call p a bad place of A if any A € A
has bad reduction at p. Let X be a set of finite places containing bad places of A and 2c0. Given A € A
and X a ¥ equivalent class with equivalent relation defined by a fiber of the map Q* — ], Q/ Qx2.

Theorem 1.3. Given A € A with L(A,1) # 0, X and ¥ equivalent class with e(A ® X) = 1, exists an
explicit weight 3/2 modular form )~ a,q"™ and a constant C such that

a2 = C-L“(AM™ 1), necX fundamental discriminant
" Yo,n ¢ x.

We give several explanations and remarks.

e The whole quadratic twist family A could be covered by finitely many (A4;, X;).

e When X C Q«g, the Fourier coefficients of the form in the above theorem have a simple form
like Tunnell’s work which connects to arithmetic of ternary quadratic forms, indefinite ternary
quadratic form also involved. In particular, there is an effective algorithm to determine aj, in
O(n?®/?) steps. The formula exactly generalizes Tunnell and Gross’s work with full generality.
If there exist dy,ds with distinct signs such that both L(A(™) 1) and L(A™2), 1) are non-zero,
then exists a covering (A; ® X;); of A such that their Fourier coefficients are always related to
definite ternary quadratic forms. In particular, it holds if 34 € A has non-square conductor or
has CM. For a counter example that the condition is not satisfied, for example the quadratic
twist family of the elliptic curve y? = 23 — 91z + 182, see [7].

Examples

(1) In the general situation, there may be local obstructions given by Atkin-Lehner operators, and
is necessary to consider oriented lattice points to replace to counting of the whole lattice points
(See Proposition 2.17.) Let A = X(14) be the elliptic curve of conductor 14 whose L(A,1) # 0:

A: P Hay+y=a2>+4z—6.
For the class X containing negative fundamental discriminant n = —3 mod 56, there will be local

obstruction at p =2, 7:
let Q = (z + 14y +42)2 + (x — 14y — 22)% + 22. For each n € X,

2
L(A™ 1)
B ) S 1 S 1
A/ VIl Q(ay,2)=Inl, Q(a,y,2)=Inl,
3z+2z=3 (mod 4) 3z+2z=3 (mod 4)

3z+2z=3 (mod 7) 3z+2z=-3 (mod 7)

(2) Different (A4;, X;) may interpret the same subfamily of quadratic twist L-values e.g. For congruent
number elliptic curves, choose A : y? = 23 — 2 and A®? as base curve: For n > 0 square-free

Z ()7 ==+ Z (-1)¥**, 0<n=1 (mod38),

1242y2+4822=n 224-8y2+1622=n
S (-1 =2 > (-1)* 0<n=3 (mod8),
2242y24+822=n 2242(z+4y)2+1622=n
> (-1)* =+ > (-1)* 0<n=2 (mod 16),
22 +4y2+822=n/2 22+16y2+1622=n/2
> (1) = £2 > (-1)* 0<n=10 (mod 16).
224+4y2+822=n/2 22 4-4(z+4y)2+1622=n/2
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(3) The above Tunnell-Gross Type theorem is just the specialization of the Theorem 6.3 in the sign
+1 case with D; = 1 and X = X5 and X containing bad places of Ay, in general, we have a
Whittaker-Fourier period formula associated to two families. Consider the quadratic twist family
of congruent elliptic curve E : y?> = 23 — 2. Let Ag = E, ¥ = {2,00} (X1,X2) = ([2],[-1]) or
(121, [-1)).

For each p 1 2, consider the weight function on L, = Z,[i, j, k| defined by the following: Fix
xo € L,\pL, such that p|g(zo). Let

0, ptax)
wn,p(x) = 7771,:0(_<1’7x0>)7 p* <l’,l’0> ’
nn,p(u)> p|<!L'7:L‘0>

here (z,y) = q(z +y) — q(x) — q(y), v € Z) is such that = uxy (mod p) and 7, , is the
quadratic character of Q) associated to Q,(y/n)/Q,. For different choice of g, w differs by a
constant in {£1}.

Proposition 1.4.
(a) For each positive square-free ny =2 (mod 16) and ny =1 (mod 8),

L(E™) 1) L(E™2) 1) 1 3 I
= — Wn, p(a —4b,a + 4b, 4c)
Q/ e Q/ V72 32 (a—4b)2+(a+4b)2464c2=n1ns2 p| n1/2

+ Z H Wy p(2a 4+ 4b + ¢, 2a — 4b + ¢, 4c)
(2a+4b+c)24(2a—4b+c)2+16c2=nins p|ni /2

In particular, if no = 1, for each positive square-free n = 2 (mod 8),

L(E™ 1) 1 Z

N II wnipla—4b,a+4b,4c)

(a—4b)2+(a+4b)2+64c2=np| n1/2

+ Z H W, p(26 + 4b + ¢,2a — 4b + ¢, 4c)
(2a+4b+c)?+(2a—4b+c)?+16c2=n1n2 p|ni/2

(b) For each positive square-free ny =1 (mod 8) and ne =2 (mod 16) with (ny,n2) =1,

L(E™) 1) L(E™2) 1) 1 > 1
=— Wn, p(a+ 4b, a — 4b, 4c)
Q/ Vi Q/ V72 32 (a+4b)2+(a—4b)2+64c2=nin2 p| n1

- Z Hwnl,p(2a+4b—|—c,2a—4b+c74c)
(2a+4b+c)?24+(2a—4b+c)?2+16c2=n1n2 p|n1

In particular, if ny = 1, for each positive square-free n = 2 (mod 16),
2

/v

p-divisibility of III in sub quadratic twist family In the following, we introduce our explicit
formulae on (arithmetic) Whittaker-Fourier periods formulae and (arithmetic) Rallis inner product for-
mulae and the arithmetic application on p-divisibility of III. Consider distribution of Tate-Shafarevich
group II(A) as A varies in a quadratic family of A elliptic curves over Q. It is suggested that it
has good behaviour as A varies in a X equivalent class. Here X is a finite set of places containing

{p ‘ p is bad for VA € A} U {2,000} and A, A’ € A are called ¥ equivalent if and only if A/Q, ~ A’/Q,,
Vv € X. Elliptic curves in an equivalent class have the same sign. The work of Pan-Tian suggest that
II(A)[p>=] has good distribution behaviour as A varies in X and the invariant
pp(0)= L ord 41 (4)
ords=1L(s,A)<1
5

(n)
L(E ) 1) 1 Z (_1)z

z2416y24822=1%



could be strictly positive. Recall Kolyvagin conjectured that exists one X with pu, (%) =0 [17].
The Goldfeld conjecture predicts that density one of A € X has ords—;L(s, A) = 1(1 — €(X)), where
€(X) is the sign of X. The question is

Question 1.5. How does p,(%1) — pp(X2) varies as X; varies?

Given A € A, X1,%X2 C A with ¢(X2) = +1. We may also identify an equivalent class X with subset
of Q* consists of n such that A™ € X. Assume X; %> whenever €(%1) = —1. Let B be the quaternion
algebra over A unramified outside ¥ such that

eBy) = (—1)e(XRQ,)e(X2 @ Q,), Vv e,

where 7, is the quadratic twist character associated to Q,(y/nin2), n; € %;.
For n € Q*, let 7, be the quadratic character associated to Q(y/n)/Q. Let 7 be the cuspidal
automorphic irreducible representation of H = A*\B* associated to A, Let © C Aj3/2(A) be the
irreducible representation only depends on X; such that ©, ~ 9¢n71‘v (Ty @ Mp) for all v and n € X;.

Let ¥ be minimal for simplicity. The following result is a direct consequence of our explicit formulae
(See Theorem 5.5 and Theorem 5.7).

Theorem 1.6. There is a distinguished one dimensional Hecke eigen space in w (Cai-Shu-Tian), say
generated by f, and uniform choice of integral ¢p, for D1 € X1 fundamental discriminants such that the
theta lifting Op, ==, al1q" of (fp, == f @ np,, dp,) in O (with respect to le—l) satisfies that:

(a) Support of Whittaker-Fourier coefficients of Op, is on |X2| for each fundamental discriminant
D, € X1. Further more, take f rational, for any fundamental discriminant D1 € X1:

Ly Leat2)l) A@ X)) = +1, X1%, > 0
|a|D2|/QSIgn (D1) ‘2 s:gn(D(ll))/)\/m ngn(Df;/)\/F 6( & 1) =41, X1X2 >
> — LA 71,1) LA =, A@ X)) =41, X%, <0
@ > :angl: /R = b]gu(D;)(/A\(/‘D?j §2mgn(D2>/\[/J|(1[;7(D2) ) 6( ® 1) + ) 1X9 < s
a A(D1) ! ] 1 i )1 —
|Da|INT 1 o) GO o T 5] e(A® X)) 1, X1X2 <0
(£.f) Qign(Dl)ngn(DQ)
(04:04) 2miQyE" PV griq7en(P2)
apg=C"- (fé{)ﬂﬁff); with C' € Q* an explicit constant (essentially) does
(A,
(.heke,
w3 (pa,pa)
not depends on D; and p|C’ only if
o T ale® = DLa(AP), 1) Ly(aP2) 1),

qeEX or A/Qq bad

Here Qi are Néron periods of A, Q} are Shimura periods associated to f, R 4py) s the regulator
of APV ¢4 is the weight 2 newform associated to A.

Ip
0 1
(b). %Zﬁl € C- fp, and for any fundamental discriminant Dy € Xy:

_ _ LU (ADE) = +1. ¥1%, > 0

(0£D1 9£D1) ngn(Dl) Qii‘((:;;{;/l@’ ( 1) 3 A1A2

Dy’ " ¢Dy PR — o _ LAY _

W ’ QZ‘gn(Dl) - C Q:gn(Dl)/ (/‘D)ll’ G(A (024 %1) +]., %1%2 > O ,
— =D L'(A™PD 1) —
RA(D1)Q;4?; v RA(DI)QS/:@“(DI)/\/@ G(A @ xl) 1; x1x2 <0

where C' € Q* an explicit constant (essentially) does not depends on D; and p|C only if

ol JI a(@®— 1) La(APY, 1) Ly(AP) 1)
qeX or A/Qq bad

To answer of the question 1.5 will follow from the above explicit formulae and p-integrality of two
sides of (arithmetic) theta lifting. In fact, once have p-integrality of (arithmetic) theta lifting, the first
formulae give relation between

fp(X1) + p1p(X2)
and

inf ord,fp
DieXx, v
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And the second formulae gives lower bound of
w(X1)

in terms of

inf ord,dp,.
DieXxy

Hence we have upper bound for

Hp(X1) — pp(X2).
The p-integrality of (arithmetic) theta lifting will be considered in subsequent paper. See [25] for partial
results on p-integrality of theta lifting in the square-free conductor case.

2. LOCAL THEORY

There are two explicit realizations of local theta lifting for (SOsg, §I\;) One involves doubling zeta
integrals, tll\e/other involves toric models of representations of SOz and Whittaker models of represen-
tations of SLy. The two realizations give two constructions of local inner product of local theta lifting.
In this section, we first consider comparison of these two inner product formulae, which follows from
relations among doubling zeta integrals, toric periods and Whittaker periods. The point is that the toric
periods and Whittaker periods are relative easy to study than the doubling zeta integral, since their
integral region have lower dimension. All these periods are related to special L-values. For arithmetic
application, in the second part, we consider test vectors for these periods and their family behaviours
under quadratic twists.

Notations. Let F be a local field of characteristic zero and let i be a non-trivial character of F. Choose
Haar measure dz on F' to be self-dual with respect to 1. Denoted d*x by the Haar measure on F'*
defined by d*z = L(1,1 F)%, where | - | is the normalized valuation on F'*.

We will identify an algebraic group over F' or its metaplectic covering with its F' points. Let @) be a
quadratic algebra or a quaternion algebra over F', or the trace free part of a quaternion algebra over F'
with quadratic form ¢ given by the minus of the reduced norm. Fix Haar measure on dx on () which is
self-dual with respect to ¢ (( , )), where (z,y) = g(x +y) — g(z) — q(y) is the bilinear form associated to
q. Fix Haar measure on Q* defined by

o L(1, 1F)ﬁ’ if Q is a quadratic extension of F’
B L(1, 1F)|q(d#, if  is a quaternion algebra.
Take Haar measure on F*\Q@Q* to be the quotient measure. For G := SL9, we take Haar measure to be

dzdydz {1 the coordinate (ﬁ Z

E]
For § € F*, let 15 be the quadratic character of F* corresponding to extension F(v/§)/F, let bs(-) =
¥().

2.1. Inner products on local theta lifting. Let B be a quaternion algebra over F and V = B*=Y
with quadratic form given by the minus of the reduced norm. Let H = PB* and identified with SO(V)
via its conjugate action on V. Let G = SL, be the metaplectic covering of SLy. Let (wy,S(V)) be
the Weil-representation of H x G associated to 1. Here, if F' is non-Archimedean, S(V) is the space
of Schwartz functions on V' and if F' is Archimedean, S(V') is the Fock model related to v, which is a
certain subspace of Schwartz functions on V' and stable under Hecke algebra [37]. Let 7 be an unitary
irreducible admissible representation of H and (, ) be an invariant positive definite hermitian pairing on
7. Then (, ) is a basis of Homa gy (7 X7, C) [16], where A : H — H x H is the diagonal embedding. Let
© = 0y (m) be the theta correspondence of w. Then O is an unitary irreducible admissible representation
of G and O is the unique one such that

HOH’IHX(;(wd,,’/Tg @)
is one dimensional ([37], [9]).

Remark 2.1. If H = PGL; over F, we only consider unitary irreducible admissible representations that are
infinitely dimensional and for G = SLo, we only consider unitary irreducible admissible representations
that are not even Weil representations. The reason is that these representations are enough for global
application and their matrix coefficients have good properties such that certain linear functionals, like
doubling zeta integral, are well defined.



In the following, we consider relations between two explicit constructions of inner products on local
theta liftings, one construction is via Waldspurger’s explicit local theta lifting [37] involve toric models
on m and Whittaker models defined as below and the other is given by local doubling zeta integral.

Let 0 # xz € V and § = ¢(x). Let T C H be the stabilizer of z and N = {n(y) = (1 21J> ’ y € F} C
G = SL2 the unipotent subgroup viewed as a subgroup of G. We have that
dim¢ Homyp (7, C) = dime Hompy (0, v5) < 1.
It was shown in [37] separately that there always exists ¢ such that Homr (7, C) # 0 (resp. Homp (0, ¢5) #
0). Then 7 admits an unique model V, contained in the space of functions on T\ H, called T-model, and
O admits a unique model Wy contained in {f : G — C ‘ w(n(y)g) = Ys(y)e(g)}, called 15 whittaker

model. For example, let 0 # P € Homy(w, C) be a basis, then V,, = {P(-f) ‘ f € w}, and similar for the
construction of the Whittaker model.
From now on, assume that Homyz (7, C) # 0 (equivalently, Homy (0, 15) # 0).

From H to G:
We have W; consists of following Whittaker functions constructed from local theta lifting

0o = [ wolgoh ox) T, 6 e SW).fEVahEHgEG
T\H

here o means the conjugate action of H on V and wy(h)¢(-) = ¢(h™! o). The integral is absolutely
convergent [37]. Note the above local theta lifting depends on x and .

Let (1, ) be an invariant positive definite hermitian pairing on ©.

We have construct a basis

1 pf
(95,95,)
of the one dimensional space
Hom g w2 (wy @ T (Wy, @ 7),0 K O) ®HomAg(9 X O,C),

depends on an identification of m and © with their models introduced as above. Here H acts trivially on
© and G acts trivially on 7.

One the other hand, we have another basis: Let ( , ) be the L? norm on S(V) with the measure
introduced in Notations.

Lemma 2.2. The doubling zeta integral

Z(61, 60, 1. f2) = /H (hos1. o) frs J)dh

is absolutely convergent and is a basis of
Hom g xcy2 (wy @ TX (Wy @ 7), 0 K O) ®HomAg(@ X O,C).

Proof. The proof for the absolutely convergence is essential down in Lemma 9.5 (ii) of [10] by using
estimation of matrix coeflicients of 7 (for example, see [30]) and estimation of matrix coefficients of Weil
representation (for example, see [22] for relevant discussion). Note that although the result in [10] is
for tempered representation, but the result is more strong and the same analysis is enough for general
unitary 7 to see the doubling zeta integral is absolutely convergent. Since under our convention (See
Remark 2.1), the only non-tempered unitary representation is the non-tempered unitary principle series,
which is very close to the related tempered unitary principle series.
Note that the doubling zeta integral lies in the space

Hom (g xqy2,ac(wy @ T X (Wy @ ), C).
Under our convention, the maximal 7 isotropic quotient of S(V') is isomorphic to © K 7, thus
Hom(HXc)27AG(’LUw R7TKX (m [024] 7T), (C)
equals to
Homgxgy2(wy @ TR (wy, @ 7), 0 K O) ® Homag(© X O,C)

and hence one dimensional. O

Now we consider relations between these two basis. It turns out that they are closely related to the
following linear functionals.



e the one dimensional space Homyp2 (7 X 7, C) has two generators
AORD.  alfif) = [ (thofdt fie v,
T

e the one dimensional space Homy2 (0 X O, )5 K 1)_s) has generators

e1(Dp2(1),  Ble1,p2) = /F(n(y)sm,w)wa(—y)dy, n(y) = ((1 g{) ,1> ENCG, @i€Ws.

Here we give several explainations of the linear function introduced above: (1) « is absolutely convergent[38].
(2) We view function (n(-)e1,p2) of F as a distribution on S(F'). The v¢_s Fourier transformation of
distribution (n(-)¢1, p2):

¢H/(n( Y)e1, 92 /¢ s(zy)dzdy

is represented by a smooth function ts on F* [27]. Define the Whittaker-Fourier period

/F (n()p1, o2)s(—y)dy = t5(1).

The following result is proved via Harmonic analysis on toric and unipotent subgroup and together
with above multiplicity one results.

Theorem 2.3. For any f; € V., @©; = Hgl € Ws with ¢; € S(V), i = 1,2, we have

W_ p1(Dga(1) |85\1/2
A (1) Bler,p2)

Remark 2.4. In fact, 2422) i5 closely related to L(1/2, Te(/5) Blerea) ig closely related to L(1/2, 7@ns)

Z(¢1a¢27f17f2) = (SolaSDZ)

* (f1,f2) (p1,02)
and W is closely related to L(1/2,7).
Denoted by V, = {x € V ‘ q(z) = a}. There exists a unique H-invariant measure d,v on V, for each

a € F* such that for each ¢ € S(V),

/(;5 dv—//dz )d,vda.

For y # 0 and T}, be the stablizer of y, then under identification T;,\ H ~ V), the H invariant measure

on T,\H induced from V) is W times the quotient measure on T,\H [10].
We have that the local theta lifting from H to G connects 1, quotient of w,, under action of IV, with

Indng in the following way:
Lemma 2.5. The mazimal quotient of S(V') such that N acts by 1, is S(V,) C Indng and equals to
c— Indng if F' is non-Archimedean.
Define
/FZ(”(y)¢1,¢2,fl,fQ)lZJé(*l/)dy

in the same way as .

Proof of Theorem 2.5. By multiplicity one of Hom gy )2 (wy @TX (W, @), OXO) ® Homa(OXO,C),
we have that

(1, 92)
and

Z(¢17¢27f17f2)~

are differed by a scalar. We now understand their relation via consider Fourier coefficients.
Denoted by §; € §’(F) the delta distribution. We have for ¢,, — 41,

/FZ(”(Z/)¢1,¢27f1,f2)¢6(—y)dy
— 1im [ Z0(y)br. 60 o, J2) / b (2)5 () dzdy

m—» 00 F

- / (hfinfo) lim / y)hor, 6) / ()05 (— ) dzdydh
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Note that the t_s Fourier transformation of distribution (n(-)¢1, ¢2) is represented by continuous
function f(y) = [, , #1(v)2(v)dysv on F*. By estimation of matrix coefficients of weil representa-
Y

tion, the function fv $1(v)d2(v)d,v as function of a € F* is continuous and in L!(F) and its Fourier
transformation is also in L(F), thus the Fourier inverse formula holds. Thus

/ Z(n(y)r, o, fr, fos(—y)dy = / / hn (0)Ba(@)dsv - (s Ja)dh
F H JVs

Since [, |(thf1, ' f2)|dt is moderate growth as function of (h, k') € (T'\H)? and hoy(x), h'¢2(x) is rapidly
decay as function of h, h' respectively, the following integral is absolutely convergent

85"/ /T\H (W ¢2)(x) /T\H(h¢1)(:r)/(ﬁzfl,h’]”2)dtdhdh’ (%)

T
and hence
() =[86]1/2 / / (W heon) () (W 02) @) (h v, Fo)dh'dh
HJT\H
— [ [ morwimtlds - Wi, Fn
HJV;
where extra factor W comes from the comparison between two H-invariant measures on T\ H.

One the other hand, by multiplication one of Homy (7, C), Hompy (©,5), exists nonzero c¢;, ¢o such
that

(D) f2(1) -1 = alfi, f2)
Wi(1)Wa(1) - ca = B(W1, Wa).

It follows that

s B(p1, p2)-

/F Z(n(y)é1, d2, f1, f2)vs(—y)dy =

From G to H:
One may also consider the theta lifting from G to H. Similarly, V, consists of functions

04 (h) = / wy(g)p(h~ o x)p(g)dg, € S(V), o€ Ws,he HgeGo= 5L,
N\Go

where the integral is absolutely convergent [37]. Moreover, the one dimensional space
Hom (g xy2(wy ® O X (wy, @ ©), 7 KT) ® Homapg(m X7, C)

has two generators

(05:,072), Z(¢1, d2, 1, p2) 5:/6:(9%-(252)(9@1’%2)559, i € Ws.

In fact, parallel to Lemma 2.2, we have

Lemma 2.6. The doubling zeta integral Z(¢1, ¢2, 01, 92) is absolutely convergent and is a basis of
Hom g« )2 (wy ® O K (wy ® O), 7 K 7) ®HomAH(7r X7, C).

In the following, we compare these two basis.
The following lemma is parallel to Lemma 2.5, which connects the T invariant quotient of Weil
representation with Indgwq(m).

Lemma 2.7. Fiz 0 #x € K9,

/ (b1, do)dt = 2(x)[V/2 / 961(2)902(@)dy.
T N\Go
10



Proof. The equality essentially follows from the Fourier inversion formulae.
The integral on both sides are absolutely convergent. Note that N\Go = TaiagwN U Tgiag and the

measure becomes dg = |a|~3dady on N\NTyi.gwN, where g = d(a)wn(y), d(a) = (a a_1>' We have

[ gnteiats
N\Go
/FX/ |a|3d a)wn(y)py(x)d ( Yun(y)o (z)dyda (1)

Let da be the self-dual measure on F with respect to v, and du be the self-dual measure on K"=° with
respect to ¥ o { , )| =0, then for u = a -z € K"=0,

1 /
da = Wd ax.

We have
1 -
W)= s [ [ wonwéen@atndyde (@)
12q()| Ktr=0 JF
Note that the fiber of ¢ : V — F at a is V,, and the fiber of restriction map V,, — K%"=0 at u is an orbit of
T given by (u,t(t)ug) € K"~ @® K+, here 1(t) = t/f, ug € K+ is any element such that q(u, ¢(t)ug) = a.

We have decomposition of the measure on V: dv = d,vda = dtduda.
Thus (2) becomes:

e ( [ [ oot o

/Fw(aga)/v w(<u,v2))¢2(vg)da2v2da2> dadu, (3)

o ( [t [ i) [ oty o)t durdr

/F W(aza) /K ) /T ¢1(u2,L(t2)uz,0)dt2du2da2> dadu, (4)

where u; o € K+ such that g(u;,u;0) = a;. Now the key is to applying Plancherel identity for Fourier
transformation that

/F/F¢(—a1a)f1(a1)da1/F¢(—a2a)f2(a2)da2da:/yfl(a)ﬁ(a)da

where the measure are self-dual with respect to ¥ holds whenever fl € LY(F) N L3(F), where da is the
self-dual measure with respect to . Since the f;(a,u) fv ((u, 2))¢i(x)dgzw, a € F, u € K0 is in
LY (F) N L%(F), we have

el M RSy R R AR
:W /]{tr:o /F fi(a,w) f1(a, u)dadydu

1
:71/2/ / (/ 1/)(<u,u1>)/ ¢1(u1,L(t1)u170)dt1du1 / ¢(<U,U2>)/ ¢2(U2,L(t2)U2p)dt2dU2) dad@
2q(z)| Ktr=0 Jp \J Ktr=0 T Ktr=0 T
(4)
here g(u;,u;0) = a. We have that the outer integral in (3) of u € K"=? and a € F are commutes, and

also note that the function g;(a,u;) = fT Gi(wiyt(tr)uio)dti, q(ui, t(t)uio) = a of u; are in LY (K™=%) N
LQ(Ktrzo).
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Thus
(4) :|2ql|1/2/ /Ktr . (/Kt Ow(<u,u1>)/ ¢1(u1,b(t1)u1’0)dt1du1-/Ktr:o z/J(<u,u2))/T¢2(u27b(t2)uzo)dt2du2) dudc

(By Plancherel identity)

|2q |1/2 / /Ktr /¢1 u, L(t1)ug)dty - /¢2 u, t(t2)ug)dtaduda

(absolutely convergent)

e ([ ertwttu) - [ oatuattapuo)dudades ) ar

1
:W /T(t¢17¢2)dt

Theorem 2.8. For any ¢; € W, f; = 9£ €V, with ¢; € S(V), i = 1,2, we have

B(p1, 02) fl( )sz) 2)|1/2
P Dpa(l) ath b 20

Proof of Theorem 2.8. In the same way as the proof of Theorem 2.3, we want to show the

// (t9¢1,</>z)(g<p1,s02)d9dt=|2q(w)\1/2/ g’¢2(m)/ g¢1($)/(n(y)gwl,g’sﬂz)lﬁa(—y)dydgdg’ (%),
Go Go N\Go i

N\

Z(¢17¢27§01a¢2) = (f17f2) :

here [,.(n »(n(y)ge1, g v2)vs(—y)dy is the regularized Whittaker functional defined as before.
Then by multiplication one of Homyp (7, C), Homy (0, 1)), exists nonzero ¢, ¢o such that

fi(D)fa(1) - e1 = alfi1, fo)
e1(1)pa(1) - c2 = B(p1, p2)-

Thus the above formula becomes
2@ [ TR [ ge@n@e)dsds
N\Go N\Go
=[2¢(x)"?E&05 (1)972(1)
W/(tflafz)dt
T

¢
It follows that o
c
Z(d)l» ¢27 1, 902) = |2q(x)|1/2£(fla f2)

We now focus on the proof of (x).
The integral

// (tgor, d2) (91, p2)dgdt
TJa,

is absolutely convergent and thus by Lemma 2.7 equals to

12 ()| /2 /G /N @R e ey (),

The integral may not absolutely convergent, so we can not commutes the position of integral directly.
Let K be the maximal compact subgroup of Gy = SLs, then

/ / 19’ kg (2)97 02 (@) (kgor, pa)ldkdg’ < oo,
N\Go J K

Thus we can interchange the position of K and Gy:

/ </F/ a)k'kger(z)d(a )k’¢2(x)(kg<p1,<p2)dk’|d(|13> dk(let k = k'~ 'k, then)

:/K (/FX/KCZ(G)’CQ%(m)d(a)k’@( )(kg@1,k/g02)dk/|d%>dk ’
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here dk is the measure on K such that ‘a‘gdk gives dg. Thus

@) = Pa@)? [ [ | d@go @@ o Ko ol dadg

1/2 7 7 /. 1—3
= [2¢(x /N\GO/ /F/ y)go1(x)d(a)k d2(x)(n(y)ger, k' w2)dE |a| = dadydg

:/N\G/ /ano w(yq(u))/Kg¢1(u)k'¢2(“)(n(y)9901»k’@z)dk’dudydg

/N v / ( / ( /K “0¢(QQ(U))9¢1(u)k’¢2(u)du) (n(y)ggol,k’pg)dy) dk'dg  (3)

here K=" = F(z)"=Y and du is the self-dual measure on K®=° with respect to ¥({ , ) gu=0). Applying
the Plancherel identity for quadratic Fourier transformation (For example, see Lemma 3.5 of [27]) for
the integral in bracket

- /N\G /K </K= 91(@)F Ga(u) (/p d(=ya(u)(n(y)ger, k'<,02)dy) du) dk'dg (4)

/F Y(=yq(u))(n(y)gp1, k' v2)dydu

is defined by distribution as before. We have

Here

@ =pa [ [ (/F @@ [ w(-vaal ))(n(y)gwhk’s&z)dy)la3da> k' dg(u =

and also note that

[ ] @a@R @ [ ova) oo e ) dolol “dak’ <

Thus we can make the change of position of N\G, K, F* in the integral in (4), it follows that

(4) = [2q(= |1/2/ / 961(2)g da(x / (=) (n(y)ge1, g'v2)dydgdy’ .
MmaJIne
We have proved (x). O

Local index In the following, we consider index of local theta liftings and the relation of indexes
defined by various local theta liftings.

Let 7, © are unitary irreducible admissible representation of H, G respectively such that they are local
theta correspondence to each other, i.e.

Homp xg(wy, n®KO) #0

Definition and Proposition 2.9.

(1) (abstract theta lifting) An abstract theta lifting is an equivalent class of triple 0 # (6., (, )x, (, )o)
with 0. € Hompgxg(wy,m®O) and (, )r, (, )o are nontrivial Hermitian pairings on m, ©
respectively. The triple gives an explicit theta lifting

0 = (04, )n,y 05 := (04, 0)0,, [Em,p€ O
Here two triples ((0.,( , )r,. (5 )o,))s ((0,(, )e (s )o,)) are equivalent if then gives same

o v

explicit theta lifting, i.e. exists a € R_T_ such that

9/ =at., ( ) ){n'v = a_l( ) )Tru’ ( ) )291, :a’_l( ) )@v
(2) Called one dimensional spaces Vi C w, Vo C ©, W C wy self-reflex if each basis 0. €
Homp xg(wy, # W O) maps W onto Vi @ Vs.
(3) (local see-saw and equality of local index on both sides)Under abstract theta lifting, the following
see-saw tdentity holds:
(£.67) = (¢.6))-

13
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In particular, if (V1,Va; W) is self-reflex, then local index with respect to local theta lifting
associated to (0.,(, )x,(, Jo) is
(6.6))o (05, 05)
Ind(Vy, Vo; W) = = , feVi,oe W, pe Vs,
VW)= G 6.0 ~ (erela(6.0) : ce

which only depends on (Vi,Va; W).

The Waldspurger’s explicit local theta lifting ,0 for both sides of theta lifting corresponds to an
abstract theta lifting and the index with respect to (V1, Va; W) is denoted by Indy(,(Va, Va; W).

There is also another explicit local theta lifting defined by doubling zeta integral. The local doubling
zeta integral for each sides gives an abstract theta lifting. For example, consider the doubling zeta
integral

Z(¢17¢27f1af2) = /I{<h¢17¢2)(hflaf2)dha ¢’L S wlb?fi em

from H to G. There is an abstract theta lifting (6., (, ), (, )o) with (, )» = (, ) on 7 such that the
corresponding explicit theta lifting satisfies:

(93;11’93;2)@ = Z(f17f2’¢17¢2), ¢ € w¢,fi em.

Similar for the other direction.

The two abstract theta liftings obtained from two directions of local doubling zeta integral are in fact
equivalent.

Let m; € F* such that the Haar measure on H and Gy = SLa(F') introduced in notation is |m;]
times the one in [15]. For Global application, these |m;| will harmless since the product measure will
give the Tamagawa measure, since product of these measures induces Tamagawa measure if the groups
are considered as defined over number field.

Proposition 2.10. Assume F is real if it is Archimedean. There exists 8 € Homp g (wy,m X 0) and
invariant Hermitian pairings (, )z, (, )o on m, 0 respectively such that the corresponding local theta
lifting

6, := (66, )r, 05 := (6s,0)0
satisfies

Z(¢1a ¢27 fla fZ) = |m1|(0£113 0{;22)@’ Z(¢17 QSQ? #1, 902) = |2m2| ! (aill ) 9g22)7h
here we use same Hermitian pairing in local doubling zeta integral.

Remark 2.11. Using globalization methods and Rallis inner product formulae, the assumption on F' is
not necessary. The about proposition is a result of Qiu, which is a consequence of (1) of Theorem A
in [30] together with Theorem C in [29] on equality of formal degrees under local theta correspondence.
The key is that there is a doubling zeta integral involve matrix coefficients of w,, m and 6. It connects
with doubling zeta integrals for both directions of local theta liftings and the difference is given by formal
degree of m and 6 respectively.

Denoted by Indz(Vy, Va; W) for the theta lifting given by the above proposition, then

Z(9, 0, f, f) Z(¢,9,0,0)
(f, /)9, 9) (0, 0)(¢,0)

In the following theorem, identify 7 with its 7% models and identify © with its 1),(,) models (related
tox € V).

Indz(Vy, Va; W) = |my |} = |2mg| ™! 0#feVi,0%# o€ Va,0%# ¢ € wy.

Theorem 2.12. Let

(97( ) )m( ’ )@)

be abstract theta lifting such that Proposition 2.10, then

—1/4
29(z) |/
mimeso
is a abstract theta lifting corresponds to Waldspurger explicit theta lifting 0. In particular, for self-reflex
V1, Vo; W),

0,(, )m (s )@)

1/2

P
a(x) Tnds(Vy, Va; W).

Indz(V1, Vo; W) = P
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Proof. Let ( ), and (, )o be Hermitian pairing on 7 and © such that

|m1|< FOF) fN<nso,so>ew5,v<—n>dn>:|2m2|<fn,“<tfufz>wdf 21 (U7a() )

2l \ Jr,, (tf1, f2)ndt e1(1)p2(1) LOAQ) [y (e, 02)ets(—n)dn

fT(;’U (tf1,f2)=dt ~ 1. and Jn (nep1,02)0 s, (—n)dn _ |4m2/m1|1/2.

For example, we may take (, )., (, )o with

FF(D) e1(D@a(1)
denoted by A to be this nonzero number. Then by Theorem local period relation,
Z(é1. 62 f2, f2) _ | 2a(x) |'/* \mﬂif@iiw@iﬁe
(f1, f2)x mymsz (f1, f2)x
Z(¢1)¢27g017302) — QQ(x) 1/2 . ‘2m2|(:c9§117x0?;22)ﬂ'
(p1,92)0 mims (p1,92)0

Let (0, B(, )z, C(, )o) be the abstract theta lifting given in Proposition 2.10, let (a8,b( , )x,c(, )o)
be the explicit local theta lifting corresponding to explicit local theta lifting .6, then

9 1/2
BC — q(z) a2b?

mimso

9 1/2

BC = a(z) a?c?.
mimso
~1/4

Thuswemaytakea:‘% ,B=b,C=c O

For arithmetic applications we need to study test vectors for linear forms «, £, 93;(1), Z for the
direction from H to G, and even their explicit and family behaviour under quadratic twists. Since «
is well studied in [3] and Z follows from other ones by the Theorem 2.3 above, in the following we will
focus on the Whittaker functional Gg(l) and the properties of 5 will follow as well.

2.2. Test vector for Whittaker functional of local theta lifting.

Notations. Denoted by w a uniformizer of F'. Define Vs = {z € V | q(z) =}, 6 € F. We will add

subscript x (resp. ) for T, 9? (resp. a, ) and so on to emphasize the dependence on x (resp. ¢(x)).
Let mp be an unitary irreducible admissible representation of H. Let X;, X5 C F* be one of the
following two type equivalent classes:
Case (I). The residue field of F' has odd characteristic and exists a quadratic character 7, either trivial
or ramified such that my ® 7s, is unramified. Let X1 = Xo = F'*.
Case (II). X; C F* is a coset of F*/F*2 such that e(mp @ 1s,)ns, (—1) = €(B)e(mo ® 1s,)ns,(—1), where
€(mo ® s, ) is the root number of 7wy ® s, and €(B) the Hasse invariant of B.
Fix a non-trivial additive character 19 of F. Let m = mo ® 15, and ¥ = 1), st (depends on §y) for

91 € X1 . It follows from the property of Waldspurger packet that 6 := 6, (7) only depends on ¥;. By
result of Tunnell-Saito, for each x € V5,5, with 9 € Xo, T, C H the group of stablizers of z,

dim¢ Homg, (7, C) = 1, (equivalently dim¢ Hompy (6, s,5,) = 1).

Let ¢; € X; varies, in the following, we will give uniform construction of (f,¢) with f a test vec-
tor of Homrp, (7,C) and x@g € Wy@) is a test vector for Homp(0,5,5,). Here a test vector for
Homr, (7, C) means a vector in 7 such that a basis of Homr, (7, C) takes non-zero value on it, simi-
lar for Homp (0, 1s,5,). We add a left-subscript « for local theta lifting 03; to emphasis the dependence
of x. Furthermore,

e They varies uniformly under normalized linear forms associated to «, (3, 19?(1),

e In the case (I1)., 193; is not a test vector of s Whittaker functional for any other coset of § that
different from X; - X5.
e Theta lifting twice of f with respect to ¢ still lies in C - f,
e In the non-archimedean case and d; = 1, ¢ is closely related to lattice.
e In the archimedean case, they have good algebraic properties for algebraic regular representa-
tions.
15



Remark 2.13. In the case (II), K := F(x) only depends on X1, X2, we have the following relation on
different choice of z € K=0:

For u € F'*, note that
F(N — |gy]—3/2 -1 pf u .

where | - | is the normalized valuation on F'* and x. is the genuine character associated to 1. We have
isomorphism of G-models

~ f f
Wq(x) — Wq(ua:)7 ;v9¢ — ux9¢-

Test vector for toric linear form Let my, X1, X5 be as before. For §; € X;, let K C B be subalgebra
isomorphic to F(v/192) and let T'= K*/F*.

In the following, we will construct a one dimensional space V (mp, X1, %2) C mo depends on a certain
compact subgroup of B such that for each d; € X1, a nonzero element in V' (mg, d1, X2) := V (79, X1, X2) ®
7s, is a test vector for Homy (7, C) for all §; € X5 whenever K has good relative position with the compact
subgroup. And we also consider uniform bahaviour of these test vectors under a.

The construction is essential a special case of Cai-Shu-Tian’s test vector theory we now recall: Let
7w be an unitary admissible irreducible representation of H. Let K’ C B a quadratic subalgebra and
T = K'*/F* C H. Let ¥’ a quadratic character of 7" comes from base change of a quadratic character
of F*. Assume Homp (7', %) # 0. Let n' € Z>( be the exponential conductor of Jacquet-Langlands
correspondent of 7/, let ¢ € Z>( be the exponential conductor of x’ and O, the order of K’ with
conductor ¢'.

Proposition 2.14. [3] The following space is one dimensional and any nonzero element is a test vector
for Homp (7, ).

e F is non-Archimedean. Let R' be an admissible order for (n',x') in the sense of [3] with
discriminant equals to n' and R' N K' = O,.
(a’) Assume 7' is unramified, or K’ splits, or ¢’ > n/,

V', x) ="
(b)) If K’ is nonsplit and 0 = ¢ < n/,
V', x") = X c B

o F' is Archimedean
(¢") Let U’ be a mazimal compact subgroup of H such that U' N'T’ is the maximal compact
subgroup of T'. Let

V(r',x') = {f cn

Now come back to our situation.
Let x € Vi,5,, K = F(x), x = 05, o Ng/p. Observe that f is test vector for Homz, (7, C) is equivalent
to f ®ns, is test vector for Homrp, (7o, x) and furthermore

T' NU' acts by X' and weight is minimal} .

Oéq(w)(fhfé):Oéx(f1®7']51,f2®7']51)3:/ (t(f®7751)7f®7751)><(t)dt7 fieTr

x

where we choose inner product on 7y and 7 such that

(f17f2)=(f1®7751,f2®7751), fZ‘E?T.

It is enough to construct test vector for Homg, (7o, x) # 0.

Let x1 = 75,5, © Ni/r, where we choose ordr(dp) = 1 in the case (I). and n;, ramified, and o = 1
otherwise. Denoted by O (resp. O) the ring of integers of F' (resp. K) if F' is non-archimedean. Let
n be the exponential conductor of the Jacquet-Langlands correspondent of 7y, and let ¢ (resp. ¢1) be
exponential conductor of x (resp. x1) and O, C Ok (resp. Oy, C Ok) be the order with conductor ¢
(resp. c1).

Theorem 2.15. The following space V(my, X1, %X2) C mo is one dimensional and nonzero vectors in it
is test vectors for nonzero linear form in Homr, (mo, x) whenever K and R has relative position below:
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Case (I). Let R be a mazimal order of B. Let
V(mo, X1, X2) := V(w0 @ 05y, X1) @ Ms, = {f € 7o | R* acts via ns, o det}.

Let 0; € X; and x € V5,5, such that Oy, = KN R.
Case (IT). Fiz x € Vs,5,, then K := F(z), T,, only depend on X;.
(a). If F is non-Archimedean such that either IC splits or ¢ > n,

V(mo, X1, X2) :=V(mo, x) = W(1§X~

where R is an admissible order for (mp,x) in the sense of [3] with discriminant equals to n
and RNK = O,.
(b). If F is non-Archimedean, K is a field and ¢ < n. Let R be an order with discriminant equals
to conductor of m and RN K = O.
(i) If © is ramified,

V(mo, X1, X2) := V(mo,x) = V(m, 1) @15, = {f € mo ’ Ty acts by X}~

We have R* acts by ns, o det.
(ii) If 7 is unramified,

Vimo, X1, %) :=V(m, 1) @ ns, = {f € m ‘ R* acts by ns, odet}.

(c) If F is Archimedean, let U be a mazimal compact subgroup of H such that U N'T, is the
maximal compact subgroup of T,,.. Let

V(mo, X1, X2) := V(mg,x) = V(m,1x) @ ns, = {f € m ‘ T, NU acts by x and weight is mz’m’mal} .

Remark 2.16. In the case (I). and 7, is ramified, we modified the Cai-Shu-Tian test vector for (mg, x)
such that is does not depends on different §;. In the case (IT).(b).(ii)., we modified the Cai-Shu-Tian test
vector so that the level of test vector is clear. These modifications are convenient for our purpose.

From a nonzero vector fy in V(m, X1, X2), we get test vectors f := fo ® ns, € V(m,01,%X2) =
V (7o, X1, X2) ® ns, for Homg, (7, C) as 0; € X; varies so that K = F(x) has good relative position with
R as in Theorem 2.15. We have the following uniform property of
ate) L(2,1p)L(1/2,7p@w) (. f)

for the non-Archimedean case as §; € X; varies,

L(1,75,6,)% |, Case (I) ¢; > 0,
1, Case (I) ¢; =0, or Case (I).(a). c=n =0,
L(1,ns,5,)%@°|, Case (II).(a). ¢ >0 and n =0,

al o (F)IDS| 72 es, |71/2 = igﬁigL(laWaad)‘s"‘% Case (II).(a). ¢ =0, n > 0, K splits,
L(1,n5,6,) || ig}ig Lél(f;;i)zo , Case (I1).(a). cn > 0,
e(1 - |@|°) £i7es, Case (I1).(b).(1),
1, Case (II).(b).(ii),

0 ~ St ith ifi
where DOp is the relative discriminant of K/F, §Op is the different ideal of F, 6., =< 7o (,u) WILH b untaimiie
1, otherwise,
¢s, such that 1/)((:5_11-) is the standard additive character on F. e is the ramification index of K/F.

Archimedean case is similar.

Test vector for Whittaker functional: non-Archimedean

Let R be as in Theorem 2.15 and 0 # f € V(m,d1,X2) C 7 be as above. In the following, identify
7w with its T,-models. We will construct ¢ € S(V) for each 6; € X; from certain twist of ¢¢ by ns,
in the case (I) such that for each = € Vj,5,, d2 € X3 such that whenever K = F(z) has good relative
position with R, xﬁjf(l) # 0 and has further good and uniform properties introduced at the begging of
this section.

Consider the following of choice of Schwartz function ¢:
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(I) Assume exists a quadratic character 7, either trivial or ramified such that mo®ns, is unramified.,
and characteristic of F is odd, let ¢g = 17 with L = R"=0, If 7 is unramified, let ¢ = ¢. Fix
R~ My(Op). If 7 is ramified, let

. Y
fg= M,(0), ord(det > 1, and
¢ (x y > o) Gesp. gz TIT L ) € M(0) ord(det(g)) 2 1, an
z o~z ord(y) =0, ord(z) > 0 (resp. ord(z) =0, ord(y) > 0)
0, otherwise.

There is an equivalent description of ¢ in the case 7 ramified: supp(¢) = R* o <1 w0F> and

0] (r o (1 b)) = 15,5, © det(r) for r € R* and b € wOp.

(IT) In the case (I1) of Proposition 2.15:
First consider the following case:
(*) 7 is ramified, and either K is a field and ¢ < n, or K is split and ¢ = 0.

Proposition 2.17 (Local obstruction). Under assumption (x) We have Vic(r) is eigen under
j € B with jkj=' =k, k € K. The action of j on Vic(r) is given by e(m)e(B)

Proof. For K nonsplit, it follows from Theorem 4 of [24] and Tunnell-Saito condition; For v split,
it follows from Theorem 3.2.2 of [32]. O

Suppose that () holds and e(7) = €(B), let 8 C Op be the ideal given by product of relative
discriminants of quadratic field Ky, Ko, where K; = F(1/5;) with §; € X; only depends on X;.
Let
¢(hox)=mns odet(h)lgx (h)l;ccr:0|q(_)€5 (x).

We will see later that ¢ is closely related a lattice relative to R whenever §; = 1, which will
apply to get Tunnell type result.

In general, we introduce orientation.

Let K° C lCtr:0|q(_)€5 be an open compact subset given by

’Ctr:0|q(')€6’ if e(w) = €(B), () holds
K= )es = K°U—K°,  otherwise ’

and L° = R* o K°. Let ¢ be support on L° given by

b(hox) = 1, case (II). (b).
s, © det(h), case (II). (a).
where h € R*,x € K°.

Theorem 2.18. Let ¢ be the schwartz function as above, then for any 6; € X; such that (§12) =
Dr(s05,) /7 DF(505,)/F (here 6o = 1 in case (I1)) and x € V5,5, such that K = F(x) satisfies in the case
(I), KNR = 0,, and in the case (II) x € K°, the following hold:

205(1)/f(1) = evol(R*, T, \H),
2, ¢e(m) =¢€(B), () holds and R*NNK* C K*

1, other wise
in B. Furthermore, twice theta lifting of f with respect to ¢ lines in C - f.

where € = , where NK* is the normalizer of K

Lemma 2.19 (Relation to lattice). Let R be an order containing O with discriminant Dg. let R° C R
containing Ok be mazimal such that for L = (Op + 2R°)"=Y, we have
L9791 = R* . {+z}

for any x € K™=° such that (q(z)) = Dg/p. In fact, the discriminant of R® is Dr(Dgr/Dp, D /F).
Proof. We first give explicit description of R. There exists j € B"=0 such that jkj~' = k for Vk € K
and
ord(Dp), if K/F is inert,
0, if K/F is not inert,

18
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If B is split and K is ramified, we further choose j2 = 1; If Char(O/w) = 2, B is ramified and K is
ramified, we further choose j2 = 1 (mod Dy p/@r) not lies in norm of K*; If K is split, we further

choose j = (? (1)) to make the following holds. We have maximal order of B is given by

0. — Ok + Oxkj , if K is not ramified,
7\ Ok + (Dp/D /)2 Ok (1+7) , if K is ramified.
and
Ok + (N/Dp)2 Ok j , if K/F is inert,
R JOK+ (N/Dg/r)2 Ok (1+j) , if K is ramified,

zUord(N) 0 O O
Ok ®j 0 ) Ok = N O , if K is split and K diagonal embedded into B ~ Ms(F).

The result follows from explicit calculation based on the following fact:

Fact 2.20. Let j € B"=Y such that jkj=' =k fork € K. Let Ok, = {r € K | N(z) € @w"O}. We
have

()#0
B* = (1+jOx,0) "7 K*| | 1-|—jOK’1 ' JEK*.
’ N(j)

Test vector for Whittaker functional: Archimedean

Let’s recall some basic theory on Whittaker functions of an unitary irreducible admissible represen-
tation 6.

Let 9(-) = e2™r/2(¢) be a character of F' such that ¢-th Whittaker model of @ exists.

Assume first F' = R. Consider the complexified Lie algebra of gc of G. The center of its universal
enveloping algebra is generated by the Casimir element D. Denote A be the eigen value of D on 6. By
admissibility of 8, for each weight n appears in 6, the weight n vector is one dimensional. Choose 0 # W,
to be weight n. By Iwasawa decomposition, W, is determined by

1/2
on(t) =W, ((t t1/2> ,1) ,t> 0.

Recall g = sly ¢ = M(C)"=Y and v € M2(R) acts on an elements in Whittaker model by

W (.0 = (FW (0. 1)) e

It follows from equation [10]

DW,, = AW,
that
2mwen A
eult)’ = (42 = 1 S Y o, ()

Remark 2.21. Recall the classification of 8 for F' = R: o
Recall we have induced representation Ind(]t|*x) consists of SO2(R)-finite functions on G such that

()=l )

where x is the genuine character on {((t t_1> 7{:t}) ‘ te RX} which factor through {(£1,+1)}

determined by
Y ((—1 _1) ’1) — eil/ﬂ'7

v € {£3}. May assume Re(s) > 0. Now the irreducible representations are given by:

e Principle series: 7(|¢|*x) = Ind([¢|*x), where s € iR, or s € (—3,0) U (0, %), consists of weight
v+ 27.
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e Holomorphic discrete series: &(|t|*~1x) C Ind(|t|*~!x), where k — 1 € —v + 2Z, and consists of
weight k + 2Z>¢ vectors. Simply denoted by 5,’:.

e Antiholomorphic discrete series: & ([t|*~1x) C Ind([t|*~1x), where k — 1 € v + 27Z, and consists
of weight k + 2Z<q vectors. Simply denoted by o, .

We have A = 5'22—_1 if 6 is an irreducible subrepresentation of 7(|t|*x). We have 6 coming from theta
lifting of algebraic regular representation if and only if # = of. If n = k is the highest weight vector
(resp. lowest weight vector) in o7f, the second order differential equation (1) degenerates to first order
differential equation

2t () = (—2mct + ek) g (t).

This can also be read from the weight lowing (resp, weight raising) operator,

We have similar differential equation for F' = C. Identify the complexified Lie-algebra g¢ of G with
sly ¢ @ sly ¢ so that g consists of X @ X. In this case, the center of the universal enveloping algebra
of complexified Lie algebra of G is generated by D ® 1 and 1 ® D. Denote by Ay, A_ be the eigen
value of D ® 1, 1 ® D on 6 respectively. Let n be a SUy type appears in 6, i.e. exist irreducible SU,
representation isomorphic to {C XY~ ’ 0 < i < n}, where action is given by gP(X,Y) = P((X,Y)g).
Each type appears at most once in 6 by the admissibility. Denote W, , be the element corresponding
to Xn/2tkyn/2—k -5 <k< 3, k=3 (mod 2). By Iwasawa decomposition again, W,, and W, ; are

1/2
determined by their restriction on {<<t t_l/z) ,1) ’ te R>0}, denoted by ¢, (t), ©ni(t). We
have [16], [

/

Pr,en 20 +1— (14 2)2
Pren(t) = (1 +n) t 2 — (167T26|+ 1+s)

2

) Pnen, (2).

And all other ¢,, , can be find recursively by the following:

n My +1—(1— k)2 -
P — (1 2’“)% ~ (6l + = O (1) = —8ritn/2+ pEm

n M +1—(1—k)?2 .
P — (1+ 2k)9"t,k — (1672|c| + + . ( ) Yo i(t) = 8mi(n)2 — k)%.

Remark 2.22. We have classification of 6 for ' = C:

o 7(|z*(z/+/|2])™), where s € iR, m € Z, or s € (—1,0) U (0,3) and m = 0: coming from
restriction of principal series on GLy(C) with character

{<|z|s/2<z/¢m>m/2, |22 2/ /2] 72, if 2jm
(272 (2/ /T /2, 2] =52 (2 I~ 072), i 24 m

and consists of SUs type |m| + 2Z>¢, here type n means a representation of SUs consists of two
variable homogeneous polynomials of degree n + 1 with action by

gP(X,Y) = P((X,Y)g).
We have A\c = 2((s — em/2)? — 1) if 6 = 7(|121°(2/4/]2])™). We have 7(|2|*(2/+/]z])™) coming from

theta lifting of algebraic regular representation if and only if s =0 and 24 m.

The two kinds of differential equations (1), (2) are essentially of the same type, both are special cases
of the following differential equation satisfied by the classical whittaker function. Let’s recall some basics.
Let o € R and v € C, the Whittaker function related to (J,v), denoted by W, , is the unique solution
of Whittaker’s differential equation

1 a v2-1/4
1! _ - = e
Woo = <4 ; + 2 ) Waw

which is rapid decay when t — oo,t > 0. Another linear independent solution of the above differential
equation over Cis W_, ,(—t). The differential equation has 0 as regular singular point and oo as irregular
singular point.
It has the following properties
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e (Non-vanishingness) [12]By the asymptotic behavior
ap—t/2 [ 4 ST 1, ’ ;
Wap(t) ~ t% +;WE<”_(O‘+2_)> , t— oo
for v pure imaginary, we have W, ,,(t) # 0 for ¢ > 0.

For Re(v — a) > —3,

H1/20-t/2 0o
Wa,u _ )/ e—ytyu—a—1/2(1 _~_y)y+a—1/2dy.
0

T(v—a+1/2

Thus if v real with v — a > —%, Woa,v, has no zeros on Rs. It can be also showed that for

v ¢ iR, Wy, has no zeros on R and for each ¢ > 0, exists v € iR such that W, (t) = 0.
e (Algebraicity) Whenever one of % + a £+ v is a positive integer, Wy, (t) € CP, ., (t/?)e=t/2  for
some P, ,(t'/?) € Q[t~'/?]. Furthermore,

By above analysis, one have:

Lemma and Definition 2.23.
o I[fF =R,

11/2
Wy (( t1/2> a1> € CWsign(c)n/2,s/2(47T|Ct|)at > 0.

— If 0 = 5%, for ¢(-) = ¥, the y-th Whittaker model of 0 exists if and only if sign(c) = e.
If this is the case, choose

t1/2
Wi (( t1/2> 71) = tk/2e=2mletl ¢ 5 .

— If 0 =7 (|t|°x), then 1-th Whittaker model always exists. (i). for each n appears in weight
of 0, W, only has finitely many zeros on

t1/2
(7 ) e

1/2
(ii). for each t > 0, exists n such that W, (<t t_1/2) 71) #0.
o If F=C and 0 =7(|z]°(2/+/|2])™), the 1-th Whittaker model always exists. We have

t1/2 n+1
Wme% <( t_1/2> ,1) e Ct W01575%(87T let), t>0,

and if n is the minimal type, for each =* <k < § with k= % (mod 2),

1/2 1
Wik ((t t1/2) ,1) € Ct"F Wo s (8my/]elt), t> 0.

Thus we can take the following
— Ifm#0, or s real and m = 0, for each n € |m| + 2Z>¢, then Wi,z always non-vanishing

on
£1/2
(" ) ). oo

— In the left case, Wy ez only has finitely many zeros. Furthermore, for each t > 0, exists
1/2
some Wy, . such that Wi, j, <<t t‘1/2> ,1> #0.
11/2
— In particular, if 0 is algebraic reqular and n is minimal type, then we can take Wn,e% <( t_1/2> , 1> =

t"THe*M\mt, t>0.
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Let w be the exponential of ¢ in the choice of Whittaker function in the above lemma.

Now by the Lemma 2.23 and the relation between zf)f; and MG(J; introduced before we have the
following.

Let 6 be the theta lifting of m with respect to 9. Fix f € V(mg,d1,X2) as before. Let F*° be the
identity component of F* and let K° C K=%\{0} be an orbit of F*0.
Theorem 2.24.

(1). If F =R, then

(). If 6 = o5, exists ¢ € S(V) of weight k (under action of the standard mazimal compact
subgroup of SLo(R)) such that for any x € K°,

aé(l)/m = |q(x)|%_%e*27r\cq(z)‘.
(ii). If 0 = 7(|t|°X), then (a). for each n appears in weights of 0, exist ¢, € S(V)) of weight n

(under action of mazximal compact subgroup of SLa(R)) such that for each each x € K°,

0 ()/FD) = [a@)| = Weign(epm/z.s/2(4leg(@)]),
which is nonzero for |q(x)| sufficient large. (b). for each x € K°, exists n and ¢, € S(V)
of weight n such that Qﬁin(l) £ 0.
(2). If F =C and 0 = 7(|2|°(2//]2])™), then
— In the case 0 is algebraic regular, i.e. s = 0 and 2 t m, for n be the minimal type m,

€ € {£1}, exists que% such that for each © € K°, xﬁ(’;n,% corresponding to aneé—vector n
the gz - Whittaker model of 6 and

T\ =2 _4Any/|cq(z)| i€l
05, /T = lg(o) 7 eVl oo,
where x corresponding to (|q(z)|Y/*e=, —|q(x)|/*e?=) in K*=0 = {(u, —u) ‘ u € C}.
— Ifm #0, or s real and m = 0, for each n appears in the type of 0 and ¢ € {£1}, there
exists Pnen € S(V) such that for each x € K°, x0£ . corresponding to Wy, o, j2-vector in
the gz - Whittaker model of 6 and ’

5 W/ = @)% Wo oeep (87 fea(@) e # 0.

— For each x € K°, exists ¢n 1 for some n, k such that fo; . corresponding to Wy, i in the
Yq(a)-th Whittaker model of 0 and .07 (1) # 0.

We may denoted Cy,y = (zﬂg(l)/f(l))”q(x)|“’/[F:R]’3/4 for f € V(mp,01,X2) and ¢ be fixed one of
the above choice.

Remark 2.25. The local theta correspondence with respect to v is given by the following: Denote x, be

—~

the genus character of diagonal torus of SLy(R) associated to ¢ if F' is real.

o If F =R,
Irr(PGL2(R)) — Irr(SLa(R))
Principle series: alu, ™) & T(uxy), (p(t) = |t|°sign”, s ¢ 1/2 + Z>o,Re(s) > 0,n € {£1})
Discrete series olu, ™) & F(uxy), (u(t) = [t|*sign®Y2 s € 1/2 + Z>o, Re(s) > 0,€ € {£1}),
Ir(R*\H*) < TIrr(SLy(R))

P €2Lz0 & Flpaxy),  (ua(t) = [tV sign"/?)
where p,, is the unique irreducible representation of H with dimensional n.
o If ' = C, the genuine irreducible representations of SLy(C) = SLy(C) x {£1} are the same as

P

irreducible representations of SLa(C)
Irr(PGLy(C)) <+ Irr(SL2(C))
1

(=) (1)



Remark 2.26. In the case F = R, K/F splits and 7 is weight 2k holomorphic series, the CST’s test
vector are closely related to the holomorphic vector, if we choose the holomorphic vector for, one can
construct ¢ such that 0(’; is holomorphic weight 3/2 and twice of theta lifting of for lies in C - fo.

Test vector for Whittaker functional (II)
Let 6; € X; such that 0 = 0162 generates Dp(s,5,)/rDr(505,)/F (here o = 1 in case (/1)) and
P = wo,él—l. Let x € Vi, f, ¢ be as in Subsection 2.2 and W = 195) € Ws. In the following, we study the

uniform properties of Whittaker functional S(W, W).
The main result of this subsection is to get explicit formula for

L(1, 7 ®ns,ad (n(y)8,0)¢s(—y)dy 1
86 = LTS ad) [y Cam=((* V) a)en
(1/277T®7](5)L(271F) (9’9)

Here dy is the Haar measure on F' which is self dual with respect to 9. Let ug such that g, is

unramified.
To understand °, several construction of Hermitian invariant pairing for @ is crucial.

Lemma 2.27 (local invariant Hermitian pairing I). [27] For any set of representations &; of F*/F*?,
there exists 15, Whittaker functions Wy, of 0 such that

(prgah =3 [ We (@)W @i a

and

2 -
A(n(y)¢1,¢2)1¢6i(—y)dy = WWw%(@l)Wwai(@z)a @i €0.

Remark 2.28. If either

e exists only one coset, say represented by §, in F'*/F*?2 such that § admits 1s5-th Whittaker
model or

e exists only one coset, say represented by &, § in F*/F*? such that ¢; are test vectors of 1s-th
Whittaker functional, then

(12l = [ Weld@p) o (@) o,

Lemma 2.29 (local invariant Hermitian pairing II). Let Wy, be a nonzero s-th Whittaker functional
on 0, then the following pairing is a nonzero Hermitian pairing:

Jrox Ws(d(a)p1) Wy, (d(a)pz)d”a, if F=C, or F =R and ¢1, p2 are of same weight
(1, p2)2 = .
0, otherwise.

If F = R and @ has nonzero s Whittaker functional. let c¢5 be the nonzero constant such that
(, )1 =cs(, )2, where the 15 Whittaker functional in definite of ( , ); are the same. Then ¢5 only
depend on the class X of § in F*/F*2? may denoted by dx And we have ¢s = 1 if and only if F = C, or
F =R and @ is discrete series.

For Principle series, have another Hermitian invariant pairing.

Lemma 2.30. [27] If0 ~ 7 (xyp) is a principle series, then the following pairing on 7 (xyp) @ (Xyp_ 14 1)

is G-invariant:

(1, 02) = /N o1 (wn(y))pa(wn(y))dy,,

where w = ((_01 (1)> ,1) . In particular,

o [If pu is unitary, then
(pr.02)s = [ o1 (on(y)palwnlo)dy
N

is a Hermitian pairing on 6.
o If p=|-|°x with x quadratic and s € (—3,0) U (0,3), let M, : T(xypp) — F(xyppu~') be the
intertwining operator given by

M,p(g) = /F o(wn(y)g)dy
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Then the following is a Hermitian pairing on 0:

(1. 02)s = /F Myor (wn(y))palan(y) ) dy.

Theorem 2.31. We have the following uniform property of W:

1
\5{\\C51|1/2\dp|1/2’ Case (I)
0 _ L(1,7®ns,ad) 2"L(1,1F) _ ;
Bi(W) = T2 70m)L2.1r) 20]lcs, 12 ]dr /7 Case (II). non-Archimedean
L(1,7®n5,ad) 2W ()W (1)[8]/2

L(1/2,7®m5)L(2,1r) cxy x5 121]C5 [1/2=2w/[FR(Wo Wo), Archimedean

¢s, 1s such that wcé—l is the standard additive character, (81) = Dp(s,s,)/F and
1

3

1, if (x) holds and €(w) = €(B), or R*NNK* ¢ K*

n =
2, otherwise

W = |c5, |@/FRI=VA4§3/4W in the s Whittaker model of 6 has the property that (W0, W), =

S Wo(d(a))Wo(d(a))an does not depend on § and 01, w corresponds to the the exponential of t

in formula of test vector in Lemma 2.25.

Remark 2.32. For F Archimedean, explicit formula for W(1) is given in 2.24. For algebraic regular

representations, cx,.x, = 1. If F =R, § ~ o}, and W is of weight k, then

T'(ek)

(47r)ek :

If F=C, 0 ~7((z/\/|z])™) with 2¢m and W corresponds to vector Wi, .1, then

(WO, W), = 27227&%11)

(W, W°)y =

We now consider proof of Theorem 2.31. The case (I). follows from the following Proposition. By
definition of Weil representation, the automorphism

a ub
if 0
((a b) ) ’U,ilC d>7€>7 1 075
Ly & €| =

c d
g Zb>,exu(d)>, ife=0

T(Xph) = T(Xy, 1), P 9O Ly
The result follows from the following proposition.

on G induces isomorphism

Proposition 2.33. Let m = 7(u) be unramified principle series. Let K be the standard mazimal compact
subgroup of G. Letw € F'* such that v, is unramified and hence T(xy, 1) is unramified, then the subspace

T (xpp)

is one dimensional. For any nonzero ¢ € %(leu)”([}) with ord(6) = 0,1 and § € F*, we have
LLw@mad)  Je(W)e os o)y _\ o

L(1/2a7r®775)L(2?1F) (@590)
here dy is self dual with respect to .

Proof. The proof could be reduces to the case T(xyu) is unramified via ¢, introduced above. Then
it follows from explicit G-invariant Hermitian pairing ( , )3 in Lemma 2.30 and explicit description of
spherical vector, for example in [27].

O

For the case (II). and F' is non-Archimedean, the result follows directly from Lemma 2.27 and the
property of 6 that it is not the test vector of 1s-th for any other ¢’ which represents different coset in
F*/F*? as q(z).

For the Archimedean case, the results follows from Lemma and Lemma 2.27 and Lemma 2.29.
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3. RALLIS INNER PRODUCT FORMULAE

In this section, we give a new proof of the Rallis inner product formulae for the dual pair (SOg, §I\;)
over a number field. The proof is via considering relations among several periods formulae associated to
toric periods, Whittaker-Fourier periods, and Peterson inner products. For the theta lifting from SOg
to §I\;, the keys are the comparison of two different Whittaker-Fourier periods formulae (See Theorem
3.1 and Theorem 3.2) and the local comparison result (See Theorem 2.3). The first Whittaker-Fourier
period formula is established by considering relation between Whittaker-Fourier periods and toric periods.
In fact, the ratio of Whittaker-Fourier period by toric period is given by product of local Whittaker
functionals constructed by Waldspurger’s explicit local theta lifting. The second formula of Whittaker-
Fourier coefficients involves local Whittaker functional constructed from matrix coefficients. There are
parallel story for the other direction of theta lifting. For both directions of theta liftings, the role of
Whittaker-Fourier periods and toric periods are interchanged, .

Notations Let F' be a number field, O be its ring of integers and A be its ring of adéles . For G an
algebraic group over F', also denoted by G the group of its F' points. For v a place of F', denoted by G,
the set of F,, points of GG, which is a locally compact topological group.

For global version of algebraic groups introduced in Notations of the local theory, we take Haar
measure on the group of adelic points to be the one induced by the product measure with local measure
given in local theory. We choose global additive character of A to be trivial on F' and then the measures
on adelic points of these algebraic groups are the Tamagawa measures.

For § € F* and v a nontrivial additive character of F'\A, denoted ¥ (d-) by ¢s(-). Denoted by 7s the
quadratic character of F*\A* associated to the quadratic extension F(v/3)/F.

3.1. Theta lifting. Let B/F be a quaternion algebra and let V = B"=Y be the quadratic space with
quadratic form ¢ given by minus of the reduced norm. Let H = SO(V) and identify it with PB* via
its conjugate action on V. Denoted by G the metaplectic double covering of SLo(A). Fix a non-trivial
additive character ¢ : F\A — C*. Let (wy,S(V(A))) be the Weil representation of H(A) x G [9],
S(V(A)) :=Q, S(F,) with S(F,) defined in local theory.

Via Weil representation, one can construct cuspidal automorphic representations of one group in dual
pair (H(A), G) from cuspidal automorphic representations of another group. Such process is called theta
lifting we now recall.

For each ¢ € S(V(A)), the theta kernel function

9(15: (h7g)'_> Z(Ww(h,g)¢)($), hEH(A)ngG

zeV

is an automorphic form on H(A) x G and hence induces an H(A) x G-equivalent map
S(V)—= AH(A) xG), ¢+ by,

where A(H(A) x G) is the space of automorphic forms on H(A) x G. Similarly denoted by A(-) (resp.
Ap(+)) the space of (resp. cuspidal automorphic forms) automorphic forms on - for - = H(A),G.
Given an irreducible m C Ag(H (A)), its theta lifting 6,,(7) C Ao(G) consists of

0@ = [ Ou(h g Fdh. femse SV
H\H(A)

where the measure on H\H(A) is the Tamagawa measure with total volume 2. In this paper we only
consider cuspidal automorphic forms on G that are genuine and orthogonal to elementary theta functions

(See [9]).

For the other direction, given 6 C Ay(G) irreducible, its theta lifting = := 6,,(0) consists of

emm:/‘ 05(h, 9)o(g)dg, ¢ € 0, € S(V(A)),
SLy\SLa(A)

where the measure on SLa\SLs2(A) is the Tamagawa measure with total volume 1.
Whenever 6 := 0, () # 0, 8 C Ay(G) is irreducible, 6,,(0) = 7, and similar for the other direction. We
call (0, 7) a global theta correspondence. The theta correspondence has the following see-saw property:

0],0)=(02.1), fempeSV(A))ped,

where (, ) stands for the Petersson inner products on two groups respectively with the choice of Tama-
gawa measures.
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Given a cuspidal automorphic irreducible representation II of H(A), or G, A fundamental question if
nonvanishingness of 6,,(II). By Proposition 3.5, ®,0y, (IL,) is cuspidal irreducible automorphic represen-
tation if and only if IT has global root number +1. This is a necessary condition for 6, (II) to be nonzero.
In fact, there exists global obstruction for cuspidal automorprhic representation 6, (II) to be nonzero,
which is given by central L-value due to the Rallis inner product formula, which connects Peterson inner
product of lifted forms with central L-value. More precise statement, see Theorem 3.6 and Theorem 3.7,
and also see Remark 3.8 for previous works.

In the following, we will give new proof of Rallis inner product formulae, via considering several
periods formulae and their relations.

3.2. Whittaker-Fourier periods formulae of theta liftings from SOj; to §fj2 In this subsection,
we consider the relations between Whittaker-Fourier periods and L-values via decomposition. Fix irre-
ducible 7 C Ag(H(A)), nontrivial additive character ¢ : F\A — C* and let 8 := §,(0) be its theta
lifting.

The group G splits over the unipotent subgroup N(A) = {n(y) = (1 y)

0 1
we may view N(A) as a subgroup of G. For § € F*, consider s5-th Whittaker-Fourier coefficient

Y € A} of SL2(A), hence

Wys :0 - C, ¢~ e(n(y))Y(=dy)dy.
F\A

Recall the action of N(A) on S(V(A)) is given by

wy(n(y))¢(x) = ¥ (yq(z))¢(x)
and the action of H(A) on S(V(A)) is given by wy,(h)¢(z) = ¢(h~'ox), where o means conjugate action.

We have
Wy, (67) = /H _ (Z ¢(h ox)) f(h)dh,

xz€Vs

where Vs = {z € V | q(z) = d}.

Consider the space of ¥s Whittaker functionals Q) Hompy, (04, (70), %s.»). If 6 # 0 and the ¢)5-th
Whittaker-Fourier coefficient on # is nonzero, then it gives a basis of this space. Unlike the theory of
automorphic forms on GLa(A), even if 8 # 0 and the space of 1s-Whittaker functionals is nonzero, it
is not necessary comes from the 1s-th Whittaker-Fourier coefficient. Will see this global obstruction is
given by twist L-values under 6 # 0.

In the following, we introduce two formulae for Whittaker-Fourier periods which connect to quadratic
twists L-values. The local Whittaker functionals appeared in the two formulae are from different sources.

In the following type (I), (II) formulae, we fix an irreducible m C Ag(H(A)) with ¢(1/2,7) = 1 and
6 := 0y (m) its theta lifting.

Type (I) formulae

In the following, we introduce a formulae for Whittaker-Fourier period which connect to base change L-
value. The key observation is that the toric period on m appears in the Whittaker-Fourier period on 6 and
their difference is given by product of local Whittaker functionals constructed from explicit local theta
liftings. Hence we connects 1s-th Whittaker-Fourier period of 6 to base change L-value L(1/2, Tp( \/g))
via Waldspurger formula for toric periods. In particular, the global obstruction for Whittaker-Fourier
period of 6 to be nonzero are given by base change central L-value.

Let ¢ € Vs and K = F(x). Denoted by T, := F*\K* C H be the group of stablizer of z. Fix a
decomposition m = @), m,.

Assume that

(a1) dimc @, Homy, (0, (), ¥s,0) = 1, equivalently, dime &), Homr, , (7, C) = 1,

(a2) f=®f, € msuch that f, is a test vector for Homr, , (7, C) for all places v.

The above assumptions only depend on coset of § in F*/F*2. The existence of z satisfying (a;) is a

local problem we have introduced in local theory which is proved by Waldspurger in [37].
Whenever 6 # 0, we have an isomorphism
s 20}
0~ QR Wsw: 05— @, Tf)’ Vo = @udy € S(V(A))
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where W ,, is the 95, Whittaker model of 6, (7,) introduced in local theory. Here we view f, in the T} ,,
model V, , of 7, and we add subscript = for explicit local theta lifting (in Subsection 2.1) to emphasis
its dependence on .

In the degenerate case, i.e. § € F*2) the toric period on 7 is directly related to L-value L(1/2, ) via
Whittaker theory of PGL,. Since we are interested in quadratic twist L-values, in the following theorem,
we only consider § ¢ F*2 i.e. the case T,(A) is compact. For f € T, its toric period along T}, is defined

by
)= [ s
T \Tx(A)
Theorem 3.1. Under assumption (a1) and § ¢ F*?:

(1). Let f =®f, € w be as in (az). The equality holds in Hompa)(0,s):

. Iefv 1
Wy, (045) = Pr, () - ] ﬂi)) Vo = @¢, € S(V(A)).
(2). Let fi = ®fin € m, 0= 1,2 be as in (az). The equality holds in Hom y4)(0, v5) ®m:

L(1/2,75)L(2,1F) S5, (1) 26020 (1)
2L(1,15)2L(1, 7, ad) H %0(f20: f1.0) Fro)  fou(D)

Wos (9511 )W¢5 (0({52 )=

Vo, = ¢, € S(V(A)), i=1,2,

where o ,, is the normalized basis of Homr, ,(m,, C) ® Homy, ,(m,,C) defined by

x,v

L(1,n5.,)2L(1,m, ad)/
0 . ) N ) )
ol ) = o N ) (e T

L(s,1p,) is the local factor of Dedekind zeta function of F' at v and L(s,m,,ad) is the local factor
of adjoint L-function of m at v, (, ), is a H, invariant Hermitian pairing on m, X m, for each
v such that their product gives Petersson inner product on w X m.

As a consequence, for § € F* satisfies condition (a1), the ¥s-th Whittaker-Fourier periods on 6 is
nonzero if and only if L(1/2,7x) # 0. And by the non-vanishing of quadratic twists [7], 8 # 0 if and
only if L(1/2,7) # 0.

Proof. Recall the 1s-th Whittaker-Fourier coefficient is given by
o= [ T0Y olh
zeVs

By Witt theorem,
Was(6]) = [ 61" o 2)Pr, (R dh
Te(A)\H(A)

Recall the Waldspurger formulae for toric periods [38](See also Theorem 3.4) say that under assumption
(al), (ag), PT,,, (f) =0 if and only if L(1/2, 7TK) =0.

Thus if L(1/2,7x) = 0, then Pr, (hf) = 0 for all h and hence Wy (9?) = 0. Now assume L(1/2,7x) #
0. Since for each v, f, is test vector for Homp,  (m,,C), we have Pr (f) # 0. Since the space

x,v

Homy, (4 (7, C) is one dimensional, say generated by P,, we have the identity in 7 (A)-model of 7

PTz(hf) _ H Pv(hva)

P Ty (f ) P v(f v)
for all h € H(A). Under identification of m, with its T, , model, ;’,(fa;f 3’) = f;(ﬁ”)) for all v. Thus
EE——T LY G
e H fo(D)
the second part of the theorem follows from Waldspurger formula for toric periods. O
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Type (II) formulae

Now we introduce another Whittaker-Fourier period formula which connects Whittaker-Fourier pe-
riod to quadratic twist L-value, Petersson inner product and product of local Whittaker functional 3
constructed from matrix coefficients. The following theorem is due to [27] for split B and 6 = 1 and the
general case could be easily reduced to this essential case. See also work of Baruch-Mao [1].

Fix decomposition 6 ~ ), 0, and choose a local Hermitian invariant pairing (, ), for each v such
that the product gives Petersson inner product

(61,0) = / 0,(9)02(9)dg
SL2\SL2(A)

for pure tensors 6; = ®6; ,.

Theorem 3.2. Under assumption (a1), we have the following equality in Homy 4 (0,v5) @ Hom y4(6, v5)
For pure tensors @; € 0,

W (1)1 (o) = 2T 210G L)

H 531} (‘pl,va 902,11)’

where Bgv is the normalized basis of Homp, (0y, ¥5,) @ Homp, (0, ¥s.) given by

L(I, Ty, ad)
L(1/2, 7y ® n5,0)L(2,1F,)

B2 (91,0, 20) = / () P10+ P20 )50 (—4) .

v

In fact, this theorem has nothing to do with SOg3 side and is a result on SLs side.

As a consequence, for 6 € F* satisfies condition (aq), 1s-th Whittaker-Fourier periods of 6 is nonzero
if and only if 0 # 0 and L(1/2,7 ® ns) # 0. Again, by the non-vanishing of quadratic twists, 8 # 0 if
and only if L(1/2,7) # 0.

Proof. May assume 6 # 0. If L(1/2,7 ® ns) = 0, then both sides of the equality in the theorem is zero
by Theorem 3.1. So we may also assume L(1/2,7 ® 5) # 0 and hence 0y, (7" @ n5) # 0, where 7/
is the Jacquet-Langlands correspondence of m. Now the properties of Waldspurger packet [9] says that
0 = 0, (7" ®ns) if and only the assumption (a;) holds. Thus we reduces to the case B splits and § = 1.

O

3.3. Toric periods formulae of theta liftings from gi/g to SO3. Let 8 C Ay(G) be irreducible and
7 = 0y (0) its theta lifting. Let § € F*, x € V5, K = F(x) and T,, = F*\K* C H its stablizer. Parallel
to last subsection, in this subsection, we introduce two formulae on relation between toric periods of
theta liftings

Pr,(65), peb,6eS(V(A)

and L-values.

In the following type (I), (II), formulae, we fix an irreducible § C Ag(G) with €(1/2,0,) = +1 and
7= 6y(0) its theta lifting.

These two type formulae are due to work of Waldspurger and Qiu.

Type (I) formulae
Fix a decomposition @), 6, of 6.
Assume that
(b1) dim @, Homy, , (0y,(0,),C) = 1, equivalently, dim Q) Homy, (0, %y,5) = 1,
(b2) © = ®¢p, € 0 such that ¢, is a test vector for Homp, (0,,1s5,) for all v.
The above assumption only depends on coset of § in F* /F*2,
Whenever m = 6,(0) # 0, we have isomorphism

2057 (1)
S SO R P R
v @1)(1)L(1/270U7¢v)

V¢ = ®v¢v S S(V(A)),
where V, ,, is the T, model of 8y, (6,) introduced in local theory. Here we view ¢, € W;, in the 15,
Whittaker model of 8, and we add subscript x for local theta lifting to emphasis its dependence on =x.

Theorem 3.3. Under assumption (by):
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(1). Let p = @¢, € 0 be as in (b2). The equality holds in Homy, 4(m, C):

zgtpu 1
7, (07) = umew>mm>]]¢uﬂ@;;wy

(2). Letyp; = @i, € m, 1 = 1,2 be as in (b2). The equality holds in Homy, (4 (7, C) @ Homy, (a) (7, C):

Vo = ®@¢, € S(V(A)).

ey gy — L(1/2.0,0)°L(1/2,0,05)L(2,18) 1T 40 =04, (1) =05, (1)
PTw (9¢1 )PTJL (9¢2) - 2L(1,7r,ad) 1:[@5,@(%02,1;;901,1;) 1;[ @v( ) 1/2 ev;wv) va( )L(]_/Q,eq),/djq))

V¢7 = ®¢i,v S S(V(A)), 1=1,2,
where Bgv is the regularized Whittaker functional in Theorem 3.2 with (', ), in Bgv s a tnvariant
Hermitian pairing on 6, x 0, for each v such that its product gives Petersson inner product.

The proof of the first part is (4) of Lemma 45 of [37] . The second part follows from the first part and
Theorem 3.2.

We have for each v, L(s, 9, 6,) = L(s,0,(0,)) and under assumption (b1), L(s, ¥s.v,0,) = L(s, 0y (6,)®
775,v>~
Type (II) formulae

The following formulae just the Waldspurger formula for toric periods [38].

Theorem 3.4. Assume T, is nonsplit. Let m be an irreducible cuspidal automorphic representation of
H(A). Under assumption (by), we have the following equality in Homy, (7, C) ® Homr, (7, C): For pure
tensor fi = ®f;, €,

L(1/2,0,¢)L(1/2,0,vs)L(2,1F)
2L(1,ms)2L(1, 7, ad)

Pr,(f)Pr,(f) = H(Mﬁmhn fi = ®fin

where

L(1,n5.4)%L(1, 7y, ad
O‘g,v(fl,vaflv) = U o) 11 : / (tf1,00 f2,0)0dt

L(2,15,)L(1/2,04,v,)L(1/2,0,,5.) Ty
For the case T, split, the toric period is related to L-value via Whittaker theory.

3.4. Rallis inner product formulae and index formulae. Let’s first consider a necessary condition
for the non-vanishingness of theta lifting: automorphy.

We first consider a general setting (including sign —1 case). Let B be a quaternion algebra over A
which is either coherent or coherent. Let e(B) = [], €(B,) = 1 or —1 depending on B is coherent or
incoherent respectively. Let ¢ : F\A — C* be a non-trivial additive character. Let ®,m, and ®,0, be
irreducible representation of H and G respectively such that 7, and 6, are local theta correspondence with
respect to ¥, for all v. Call ®,m, cuspidal automorphic if ®,m,"" is an irreducible cuspidal automorphic
representation of PGLa(A).

Proposition 3.5. 7 := ®,m, is cuspidal automorphic and €(1/2,7) = e(B) if and only if 6 := ®,0, is
cuspidal automorphic(necessary have €(1/2,0,1) = €(B)).

Proof. If § = ®6,, is cuspidal automorphic. There exists a a such that 6y, () is a nonzero cuspidal
automorphic representation of PGL2(A), say 6y, (8) = 0 ® 1, for an irreducible cuspidal automorphic
representation o of PGLg(A). Then €(1/2,0 ® ) = +1. By result of local theta correspondence [9], we
must have

’/TgL = Oy, 6(7'('1,)6(71'1) ® na,v)na,v(*l) = 6(]B'U)a for all v,

In particular, # = ®,m, is cuspidal automorphic and e(w) = ¢(B). By property of central sign,
€(1/2,0,9) = e(B).
If 7 = ®,7, is cuspidal automorphic and () = ¢(B), let ¢ = 7'%. Then exists a [37] such that

€(m0)e(my @ Na,o)a,0(—1) = €(By), Vv
and further choose a such that L(1/2,0 ®n,) # 0 [7]. We must have
Oy >~ 0y, , (00 @ Nap), Yo.
And hence § = ®,6, = 0y, (0 ®1,) is cuspidal automorphic.
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Type (III) formulae Now we introduce Rallis inner product formulae and index formulae. Given 7 an
irreducible cuspidal automorphic representation of H(A) and 6 be an cuspidal automorphic representation
of G which is the theta lifting of 7. As we have said, there always exists § € F*\F*? and z € Vs such
that Homp, 4 (7, C) # 0 and we can further choose ¢ such that L(1/2,7 ® ns) # 0 by non-vanishing of
quadratic twist [7]. Together with the local comparison result 2.3, any two of the the following formulae

e Type (I): Theorem 3.1

e Type (II): Theorem 3.2

e Type (III): Rallis inner product formula from H(A) to G

implies the third one.
Fix decomposition m ~ ®,m,. Whenever 0 # 0, we have § ~ Q) 6, with 6, the local theta lifting of
m, for each v. It follows that

Theorem 3.6 (Rallis inner product formula). Assume ¢(1/2,7) = +1. For pure tensors f1, fo € m and
1,02 € S(V(A)). The the following equality holds in

® (Hom(vaHU)z(w% ® 7, M (W@ 7'['1,)7 0, X%) X HOHIAG” (91, X%, (C)) :

v

1 2
(93;1176();22)7 / Tr H ¢1U7¢21)7f1v7f2u)

L(Qv ]-Fv)
L(1/2,m,)
Now consider the Rallis inner product formula of the converse direction: Given an irreducible au-
tomorphic cuspidal representation 6 of G and 7 an irreducible automorphic cuspidal representation of
H(A) which is the theta lifting of §. Parallel to the above analysis, by local comparison result 2.8, the
following three theorem are equivalent:
e Type (I): Theorem 3.3
e Type (II): Theorem 3.4
e Type (III): Rallis inner product form G to H(A)
We have:

where Zg(¢1,v’¢2,vaf1,v7f2,v) = : /H (h¢1,v7¢2,v)v(hfl,v7f2,v)vdh

Theorem 3.7 (Rallis inner product formula). Assume €(1/2,0,v) = 1. For pure tensors ¢1,p2 € 0 and
o1,02 € S(V(A)). The the following equality holds in

® (Hom g, x . )2 (wy, ® 0, B (Wy, @ 0,), 7, B7,) @ Homap, (7, B 7, C)) :

v

L(1/2,0,1)
L(2,15)

L(2,1p,)
L(1/2,0,,1v)

By Proposition 3.5, the assumption on root number in the above two Theorems is necessary for the
non-vanishingness of theta lifting.

(aill’ggj)_ HZO ¢1v7¢2va§01v7902v)

where ZS(¢1,U»¢2,1)7901,71,§02,U) = ! /G’ (h¢1,v7¢2,v)v(h@1,va‘p2,v)vdh'
0,v

Remark 3.8. The relation between non-vanishingness of theta lifting and non-vanishingness central L-
value is considered by Waldspurger [35], [37] via relation between toric period, whittaker-Fourier period
and L-value. Both Rallis inner inner product formulae for the two direction could be proved by Siegel-
Weil and doubling methods, see [28], [12].

Now we introduce index formulae, which connects Rallis inner product formulae for two direction of
theta liftings. As before, consider m C Ag(H(A)) with e(7) = +1 and © := @0y, (7,) C Ao(G).

Definition 3.9.

e Call one dimensional pure tensor spaces Vi C w, Vo € ©, W C S(V(A)) self-reflex if for each v
and basis 8, € Homg, x g, (S(V4), 7, K ©,), one have 0,(W,) = Vi, @ Va ,.
o Let (V1,Va; W) be self-reflex lines.
— The global index
o’ 0,
= , 0#feV,0 €eVa,0£ 9 W.
1.0 pgy 7IEMOFLEROZ
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Ind(Vy, Vo; W) =




— For each v, let 6 € F*

v o7

z €V, with q(x) = ¢ and Ts, = Stab(x) C H,. The local index

g% 0°%

Ind;s (Vi Vaui W) 1= e = ——— 0#£ € Vi, 04 0 Vo, 04 ¢ €W,

Vo Vot Wo) = 36557, = 20,00, ‘ ‘ ‘
Remark 3.10. As a consequence of two rallis inner product formulae and globalization, Proposition 2.10
also holds for general Archimedean local field. And if 2.10 holds for general local field, then the two
Rallis inner product for the two directions of theta lifting are equivalent to each other as a consequence

of (local and global) see-saw, multiplicity one together with 2.10 (Also see [30]).

Take 6, = to be global and the local measure such that the product measure induces Tamagawa
measures.

The following Theorem is a consequence of one side of Rallis inner product formulae, and the relation
between local index defined by Waldspurger’s explicit local theta lifting and index of normalized local
lifting defined by local doubling zeta integral 2.12. If 2.10 holds for general local field, then one could
use index formulae to deduce either side of Rallis inner product formulae via multiplicity one, relation
between two indexes.

Theorem 3.11. The following index formulae holds

1 2,7)
Ind(Vy, Va; W) = / HL 1/2 Ind(;(Vlv,VQU,WU).

’ ’U

4. ARITHMETIC RALLIS INNER PRODUCT FORMULA

In this section, we consider arithmetic Rallis inner product formula for (SOs, éfg), which lifts cuspidal
irreducible automorphic representations of sign —1. The theory of arithmetic theta liftings over totally
real base field for parallel weight 2 representations were accomplished by Yuan—Zhang—leing’s work on
modularity of CM points on Shimura curves. For arithmetic theta lifting from SO3 to SLo, we will see
that parallel to last Section, the Rallis inner product formulae follows from comparison of two formulae
of arithmetic Whittaker-Fourier periods and a local comparison result 2.3.

We also get arithmetic Rallis inner product formula for the converse direction, via showing the equiv-
alence of the two arithmetic Rallis inner product formulae. There are also relations among arithmetic
toric periods formulae for the arithmetic theta lifting from SO3 to SLy. As a byproduct, we get a new
formulae of arithmetic toric periods, which independent of Gross-Zagier formulae.

In this section, F' stands for a totally real field. For an abelian group G and a ring R, denoted G ®z R
by G R-

4.1. Arithmetic theta lifting. Let B be a totally definite quaternion algebra over A and B/F be the
quaternion algebra which ramified exactly at all except one archimedean place ¢ of F' together with an
isomorphism B(Ag,) ~ Bg,. Let H = A*\B*.

For each open compact subgroup U of Hg,, denoted by Xy /F the Shimura curve associated to H
of level U with complex uniformization B*\H* x Hg,/U U {cusps}, where B* acts on upper/lower
half-plane H* via ¢ : B — B, ~ M(R) and fractional linear transformation. Denoted by Ch*(Xy) the
Chow group of codimensional 1 cycles on Xy and let Ch'(X)g = lim, | Ch'(Xy)g, where the inductive
system is with respect to pull back maps. There is a natural action of H on Ch! (X)g with Hy acts
trivially and Hg, acts via Hecke correspondence.

Fix a non-trivial additive character ¢ : F\A — C*. Let V = B"=%. Recall there is a Weil represen-
tation wy, of H x G acts on S(V). Denoted by Ay, 5/2(G) C A(G) the subspace consists of irreducible
automorphic representations 6 such that 0, (6 ) is the trivial representation of Ho,. Generalizing the
work of Kohnen-Gross-Zagier on modularity of Heegner points, Yuan-Zhang-Zhang [11] constructed a
H x G equivalent map

9 S(V) = Ay3(G) ®g Ch(X)q,
)

which we now recall. View V = B%"=0 as quadratic subspace of Vap. Let V- ={z eV ’ q(x) is totally negative}

For x € V~, let T = Stab(x) C SO(V). Let zf € H* be the unique fixed point of T,. We have
associated CM cycle

2y = 7([2;_5 1] + [Z;7 1]))
31



where c is the complex conjugation. Similar, we have Hecke action

o hi= S ([ + (2 ).

Fix an identification of V'~ as a subset of V with totally negative norm.
The arithmetic theta kernel is

Vy(g) = —2&wy(9)6(0) +/he(H\IHI - ( > wylg, h)b(z)z, - h) dh,
fin) Moo \gev -

where the £ is the normalized Hodge class on the Shimura curve associated to H with degree 1. If ¢ is
fixed by U, the above arithmetic theta kernel could be described in terms of cycles on level U Shimura
curve, which is equivalent to the one in Proposition 4.8 of [40].

Let Ag(H) be the direct sum of isomorphic classes of irreducible admissible representations 7 of H such
that the Jacquet-Langlands correspondence of 7 are cuspidal automorprhic representations of discrete
series of parallel weight 2 at infinity. The space A (H) has a Q structure Ay (H, Q) [40]. For irreducible
representation m € Ag(H, Q) with M = End(7)g, we have decomposition

TCc = @ ™,

t:M—C
as H x M modules, where 7, = 7 ®,,, C.

Let Agyp,3/2(G) C Ay3/2(G) be the subspace of cusp forms. Similar as A(H), let Ag . 3/2(G,Q)
be direct sum of Aut(C/Q) orbits of irreducible representations in Ag ., 3/2(G), i.e. consists of 6 :=
D11 0o, as G x M representation, here 6y, C Ay y 3/2(G) is irreducible with Hecke field «(M) and
6o,, are conjugate to each other.

The semisimplicity of Ag(G) is well known. Let Chl(X)g € Ch'(X)q be sub-H-module generated by
Hodge cycle and Gal(Q/Q) orbits of CM cycles introduced before, let’s say something on automorphy
and semisimplicity of Chl(X)q.

Let ¢ be the normalized Hodge cycle with degree 1 and Chi (X)? is the cohomological trivial (equiva-
lently, degree 0) part. By definition, Q¢ is a trivial H module and the cohomological trivial part Chi (X )%
is also H stable.

As H module, Jx (F) 2~ @4 A(F)g ®End(a), 7a [10], where [A] runs over all simple abelian param-
eterized by X. Thus the H submodule Chl(X)? of Jx (F) is automorphic and semisimple.
The space Chl(X )¢ also has multiplicity one [39] in the sense that for each ma, if €(4) = +1,

then dimy; Homg (Ch! (X)Q;ma) =0 and < 1 if €(A) = —1. Such multiplicity one and condition on sign
follows from the multiplicity one of irreducible cuspidal automorphic representation of G and automorphy
criterion of arithmetic theta lifting (See Proposition 3.5). Thus

Theorem 4.1 (Yuan-Zhang-Zhang). We have
Chy(X)g~ (P Chi(X)glmal,
[A]
e(A)=-1
where Ch} (X)?Q[WA] C Ch!} (X)(%) is the m4 component, which is either O or isomorphic to 4.
Arithmetic theta lifting from H to G
Given a simple abelian variety A over F' parameterized by X. One can construct a irreducible

representation of H over Q in the following: Let {y € Pic(Xy)g be the normalized Hodge class on Xy,
which has degree 1 on each geometric connected component of Xy. We have

T = hﬂ Home, (Xv, A)g,
U

where Homg,, (Xy7, A)g are the morphisms in Hom(Xy, A)g using {y as a base point in the sense that if
&u is represented by a divisor Y a;z;, then f € Homg, (Xy, A) if and only if >, a; f(z;) = 0 in A(F)q.
Let M := Endp(A)g which is a totally real field with [M : Q] = dim A, then End(m4)g = M. The
following spectral decomposition holds [10]

A, Q) = P a,
[4]

where [A] runs over all isogeny classes of simple abelian varieties A over F' parameterized by X.
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Define the arithmetic theta lifting ¢ := ¥, (74,c) of ma,c to be the G x M-module
{99 :=Fovy € Ayy32(G) @ A(F)q | f € mac,¢ € S(V)}

Note here for f € w4, f = f, since M is totally real. If we only consider f € w4, the lifting gives the
same representation, we may also write as ¥y (ma) to emphasis f € m4. There is a C ®g M valued H
invariant M-bilinear Hermitian pairing on ¢:

(o1, 0200 = / (1(9), p2(9)) mdg,
SL2\SLs(A)

where (, )ar 1 A(F)o®@m A(F)g — C®gM is the M-bilinear height pairing will such that try;go( , )as is
the Néron -Tate height pairing. We may extend (, )as to a Hermitian pairing from A(F')c ®ceom A(F)c
to C ®g M and still denoted by ( , )as. Fix a decomposition 74 ~ @ m,. We have m,c = D,. /¢ Mo,
where , , is a irreducible representation of H, over C on which M acts via embedding ¢ : M — C. The
local theta lifting 6y, (7,,c) of Ty ,c is a M x G, module given by @,.,, ¢ O, (70,.)-

Proposition 4.2. Under assumption €(A) = —1, the G x M representation @, Uy, (7y,c) is cuspidal
automorphic, and isomorphic to a unique 0 in Ag .y 3/2(G,Q). The representation ¥ # 0 if and only if
the C ®g M module L C A(Q)c generated by Whittaker-Fourier coefficients of Uy (mwa) is free of rank 1.
In any case, ¥y (mac) = 0 @coonm L.

Proof. The first claim follows from multiplicity one of A4y(G), the fact that theta lifting preserving Hecke
field and action of Hecke field and Proposition 3.5.

Assume 0 # 9y (ma,c). Since Ag(G) is semisimple, the global arithmetic theta lifting factor through
tensor product ®,,0y, (7, c) of local theta liftings thus must induce an isomorphism &0y, (Tyc) =~
Dy (ma).

Fix embedding ¢ : M — C and let m4, := ma ®u,, C be the irreducible representation of H over
C. Since Ag y,3/2(G) has multiplicity one, thus ¥y (74,) = 0, ®n,, L an irreducible representation
0, C Ao,y,3/2(G) with Hecke field (M) and L ®js,, C is one dimensional. Different ¢ are conjugate to
each other thus

Vy(Ta) = 0 @cgom L for some 6 C Ay 3/2(G). O

Arithmetic theta lifting from G to H
Define the arithmetic theta lifting 7 := ,,(0) of 6 C Ag y,3/2(G, Q) with Hecke field M be the H x M
module

{195 > / 95(9)¢.(9)dg € Chy(X)e |, peb b€ S(V)}
1:M—C 7/ SL2\SLa(4)

here ¢, is the ¢« component of .
Lemma 4.3. The arithmetic theta lifting lies in cohomological trivial part Chi (X)2 of Chi (X)c.

Proof. We will prove each ¢ component lies in cohomological trivial part. The degree map on ¥, (6,)
gives an element in

HOII]M,HX@(S(V) @ 9“ (C)
If it is nonzero, there exists a pure tensor ¢g X g such that deg(ﬁg(‘;) is nonzero. Take a place v such

that the maximal G, invariant quotient of S(V,) X m has no trivial representation of H,. Consider
H, x G, equivalent embedding map

S(V)RB,, » S(V)RF, ¢ K7y by @6y Ko, @pf,
the degree map give a nonzero elements in

Hom s m, x, (S(V,) ¥ 0,.,,C),

s

contradiction. 0

We now introduce a H x M invariant pairing ( , ) on 7.
There is a H invariant height pairing on Ch!(X )% defined by

(P,Q) = 2vol(Xy) " (P,Q)xrv.  P,Q € Chi(Xy)d,
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where ( , )n7,v is the Néron -Tate height pairing of level U, Xy is viewed as disjoint union of quotient of

j‘ffrjg. May extend the height pairing to be a Hermitian pairing

‘HT and equipped each H* with measure

on Ch}(X), still denoted by (, ).
There is a H invariant M-bilinear Hermitian pairing on 7

<,>MI7T®C®QM7T‘>C®QM
such that (, ) = tregoar/co (5 ) M-

Proposition 4.4. Under assumption €(1/2,0,1) = —1, the Hx M representation ), 0, (0,) is cuspidal
automorphic, and isomorphic to a unique mac for ma in Ag(H,Q). If 94(0) # 0, then ¥,(0) =
Chl(X)[mac] #0. In any case, U,,(0) = Chl(X)%[rac].

The proof is parallel to the Proposition 4.2.

Remark 4.5. We will see from arithmetic see-saw that 9 (6) = Ch}(X)%[m 4 c] always holds.

Arithmetic see-saw Assume 74 C Ag(H, Q) with £(1/2,74) = —1 and 6 C Ag 4 3/2(G, Q) such that
they are correspondence to each other in the sense that locally they are theta lifting of each other. (See
Proposition 3.5.) Let L C A(F)g be the M-submodule generated by image of CM points in A(F')g under
elements in 4. We have known that dimp; L < 1 and L # 0 if and only if Chi (X)g[ma] # 0. Assume

L #0.
Note that there is a natural M linear pairing
19¢(9)®M7TA®ML_>(C®QM7 (CafaP)H<f(C)>P>M

induces a map ¢ : Uy (¥) = ma,c @m L via Riesz representation theorem, where the pairing on m4 ®ps L
is induced by intersection on L and the Hermitian invariant pairing on w4 c. The map ¢ preserve pairing
on both side.

We have arithmetic see-saw:

(0, 0@ P = (u(95), f @ P)ar, femapel, PeLpeS(V).

In particular, Ch}(X)g[ma] # 0 implies that 9, (m4) # 0 (via considering specifically choice of ¢) and
hence ¥ (6) # 0. Thus they are all equivalent by Proposition 4.2, 4.4.

4.2. Whittaker-Fourier periods formulae of arithmetic theta lifting from SO3 to §I\4/2 Consider
the arithmetic theta lifting 0 := ¥y (m4) C Ag,y,3/2(G) of an irreducible representation m4 C Ap(H, Q).
In this subsection, we consider two formulae on relation between Whittaker-Fourier periods

Wys(p) == / o(n(y))bs(—y)dy, 9,6 € F>
N\N(A)

and central value of derivatives of L-functions of quadratic twists. In particular, the quadratic twist L-
value gives global obstruction for arithmetic Whittaker-Fourier periods to be nonzero global Whittaker
functional, whenever arithmetic theta lifting is nonzero and local 15, Whittaker functionals exist for all
.

In the following type (I’), (I') formulae, we fix irreducible m4 C Ao(H, Q) with sign €¢(1/2,74) = —1.
Let 0 C Ag,y,3/2(G, Q) corresponding to 74 as in Proposition 4.2, let ¥ := 1, (74) its arithmetic theta
lifting.

Type (I’) formulae Let § € F be totally negative, x € Vi~ := {z € V™ | ¢(z) = 6} and K = F(x).

Recall we also view x as element in Vs. Let T,, T, be stablizer of z in H, H respectively. Note that

Wiy (95) = / B (n ()5 —y)dy
N\N(A)

:/ S 6(htow)z, b | dh
hE(H\Hﬁn)'Hoo

zeVy

:/ d(h™1 ox)/ %y - thdtdh
T, \H To\Ty(A)
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It follows that
Wy, (95) = . $(h~" o x)Pf: (hf)dtdh,

where Py € Homr, ar(ma, A(F)g) given by Pyt (f) = 5 Pr, (f), with Pr, (f) = [1 (p)\1, a) f (20, tin])dt.

Fix decomposition m4 = @), m,. The local theta lifting 6, (7, c) of 7, ¢ is the G, x M representation
given by @,/ ¢ 0, (7y,,). Assume that

(a’l) rankc@)QM ®C®QM,1) HOHINU,M(H,([,U (7‘['7,7((;)7 ’(ﬂl,,g 90 M) =1, equivalently

rankcg, i ®C®QM1U Homr, , a(moc,C®o M) =1,
(ay) f = ®f, € T4 pure tensor so that f, is a test vector for Homr, , as(my, M).
Whenever ¥ # 0, we have

I Q) Wiw 05— @60 (1)/f,(1), Vé=c¢, €S(V),
CRqM,v

where for each v, (i) V;,, is the T, , model of 7, which is a subspace of M-valued functions on T, ,,\H,
and we view f, as in V, ,; (ii) Ws,, is the ¢s, ®g M Whittaker model of 8y, (7, c) which is s subspace
of C ®g M-valued functions on G, with action of N, by t5,. Note here f = f and f, = f, for each v,
since M is totally real. We add subscript « for explicit local theta lifting to emphasis its dependence on
x and note here the local theta lifting maps Vy , to Ws,

We have the following equality of Whittaker functionals:

Wy, (9) = H . "’v A(F)e, ¢=¢, € S(V).

We now consider the self intersection of the Whittaker-Fourier coefficients.
There exists a global H-invariant M-linear pairing m4 ®p; m4 — M given by

(f1, f2) = 2vol(Xu) ™' fru o fo s

where f; € 7Y for some open compact subgroup U C HY , fiv € Hom(Jac(Xy), A)g corresponds to
fi- For each place v of F, fix a M-bilinear local invariant Hermitian pairing ( , ), : 7y Qp 7 — M
such that the product gives global one. Let agyv be the basis of Homr, , a(m,c,C ®g M) @ceom

x,v

Hom

x,v,

M (mo.c, C ®g M) the same as in Waldspurger formula:
L(I,T](;,U)QL(I,T(U,ad)
L(27 1Fu>L(1/277rv,Kv)

Since we have relation between arithmetic Whittaker-Fourier periods and arithmetic toric periods, as
a consequence of Gross-Zagier formula [10],

ag,'u(fl,v7 f2,U) =

/ (tfl,vvf2,v)vdta fiv € o
Te,w

Theorem 4.6. Under assumption (a}), and let f; = Qf; , be as in (ab). The equality holds in

HomN(A),M(ﬂ,ZZJ& ®q M) ® HomN(A)('&,w& ®o M) :
CRoM

W (0500 = 2T ) L850
<Ww5<19£1)7Ww5(19£2)> = K . H 51} flvanv) fiv(].) . fjv() ;

~ 2L(1,75)?L(1, 74, ad) ¢i = Rpin € S(V).

The proof is the parallel to Theorem3.1 and we omit here.

Type (IT’) formulae

Now we introduce another decomposition formulae for arithmetic Whittaker-Fourier period. Recall
there is a natural Hermitian pairing on ¢ induced by the Néron -Tate height pairing and Petersson inner
product:

(p1,2) M 2/ (p1(9), v2(9)) mdg.
SL2\SL2(A)
Consider the case ¥ # 0, then we have ¥ = 0 @), L. Observe that for ¢; := ﬂdfn =i oYy €0 L,

(©1,0, 92,0) Wy (1), Was (02)) = (01, 02) s - Was (01,0) W (92,0)

as equality in C ®g M. Fix a decomposition of Petersson inner product on 6. It follows from the Type
(IT) formula 3.2 that
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Theorem 4.7. Under the assumption (a}), For ¢; € ¥ pure tensor,

L(1/2,7ma ®ns)L(2,1F) H 5?,1;(901,0,1;, ©2,0,0)

W, Ww. —
(Wys (1), Wy, (02)) M = (@1, 92) m SL(L 7 p.ad) I ron 200,

Note that whenever ¢ = 0, both sides of the equation are 0.

4.3. Toric periods formulae of arithmetic theta lifting from Si; to SO3. In the following type (I’),
(II’) formulae, we fix 0 C Ag .24 (H, Q) with sign €(1/2,0,1) = —1. Let 74 C Ao(H, Q) corresponding
to 6 as in Proposition 4.2, let 7 := 9J,(6) its arithmetic theta lifting.

Type (I’) formulae
Let 6 =, T,,, T, be the same as in the last subsection. Fix decomposition 6 = ®40,,.
Assume
(b)) rankprgc ®C®QM’U Homr, , a1 (0y, (6y), C®oM) = 1, equivalently rank g c ®C®QM Hompy, ar(6y, 0,6 Rq
M) =1,
(0h) ¢ = Ry, € 0 be a pure tensor such that ¢, is a local test vector for Homp, ar(60y,%y,6 @ M)
for all v.

Whenever m # 0, we have

=05, (1)

o Vv, U5+ @y
C(X%Lv ¢ ¢U(1)L(1/270v7¢v)

here for each v, V, , is the T, , x M model of 6, (6, ) introduced in local theory consists of M ® C valued

functions on T, \H,, view ¢, € Ws, in the 15, x M model of 8, and we add subscript z for local theta
lifting to emphasis its dependence on .

Let Z, = [, (F\T (4) [23,t]dt, where 2 € H* is the fixed point of T;. Then (97, Z;)a gives an
element in Homry, as (7, C ®g M). Fix a decomposition of Petersson inner product on 6.

, Vo =®,0, € S(V),

Conjecture 4.8. Under assumption (b}).

o Let ¢ be pure tensor as in (by). The following equality holds in Homr, (7,C ®qg M):

’ ST 2057 (1)
(05, Zehar = L'(1/2,0,%) - W, () [ | o (DL (12,6, 0)

e Let @; be pure tensor as in (b)),

o L(1/2,0,9)2L(1/2,0,%5) L(2,18) 17 40 05, (1) 050 (1)
92 Z VN (92, Zo s = [155. (020 010) [ —=
(Vg0 Zadna (953, Ze)na 2L(1, 71, ad) Atz Ll =5 0 o DE(1/2,00,

here Bgv is the same as sign +1 case.

Remark 4.9. The second part follows from the first part of conjecture and the Theorem 3.2. We will
prove the first part of conjecture holds up to +1 (See Theorem 4.13).

We have L(s,0,15) = L(s,m4 ® n5) for any 6 € F*.

Type (IT’) formulae
We also have type (II’) decomposition formulae, i.e. Gross-Zagier formulae:
We have v : 7 ~ m4 @cgom L, L C A(F)c with C ®g M rank either 1 or 0. And if «(f) = fo® P €
T4 ®p L, then
<PTz(f0)>P>M = <f7 Z:z:>M

Theorem 4.10. [10] Assume Homr, ,(74,.,C®qM) =1 for allv. For each pure tensor f; = fio®@P; €
Uy (6),

(f1, Ze)m(fos Za) s = (f1, f2) -

Ll(l/za 9, w)L(1/27 97 wé)L(Qa lF) H ag,v(fl,(),va f2,0,7j)
2L(1,m5)?L(1, 74, ad) (f1,0,05 f2,00)

here o9 is the same as sign +1 case.
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4.4. Arithmetic Rallis inner product formula and arithmetic index formulae. The method is
same as in the sign +1 case.

Arithmetic theta lifting from H to G: Given m C Ag(H, Q) irreducible with e(4,7) = —1 Recall
there exists totally negative § such that assumption (af) holds and L(1/2,m4 ® ns) # 0. Together with
local comparison result 2.3, have any two of the above formulae implies the third one:

e Type (I): Theorem 4.6
e Type (II): Theorem 4.7
e Type (III): Arithmetic Rallis inner product formula from H to G.

Fix decomposition of 74 and decomposition of M equivalent Hermitian inner product (, ) = ®,(, )s

on ma c-

Theorem 4.11 (type (IIT)). For pure tensors fi1,fa € ma and ¢1,¢92 € S(V), the following equality
holds:

L(1/2,74)

frogf2y ) 0

(05, 052) = L2 1) E[Zv((bl,w(blmfl,va faw),
L(2,1p,)

where Z2(01,0, 2,05 f1.0 fo.0) =
which valued in C ®qg M.

Arithmetic theta lifting from G to H: Given 6 C Ay 3/2(G, Q) with €(1/2,60,7) = —1. Then
there exists totally negative d such that assumption (b)) holds and L(1/2,6,1s) # 0. Together with local
comparison result 2.8, have any two of the above formulae implies the third one:

m -/HU (ho1,0s P2.0)0(hf1,0, f2,0)udh is the doubling zeta integral

e Type (I’): Conjecture 4.8
e Type (IT"): Theorem 4.10
e Type (IIT): Arithmetic Rallis inner product formula from H to G.
By multiplicity one, global arithmetic see-saw and local see-saw 2.10, and Proposition 2.10, the arith-
metic Rallis inner product formulae for the both sides are also equivalent. Thus we have the following:
Fix decomposition of § and decomposition of M equivalent Hermitian inner product ( , ) = ®,(, o
on 6

Theorem 4.12. Assume €(1/2,0,1) = —1. For pure tensors @1, p2 € 0 and ¢1, 92 € S(V), the following
equality holds:

L'(1/2,6,9) 0
IS L) ]_:[Zv (D1,05 P20, 91,0, P2,0),

L(2,1
where Zy($1,0, 62,0, P10, P2,0) = L( i

— e vy D2.0)v vy P2.0)0dg is the doubli t
1/2, 0y, 1) LO’U(9¢1, B2,0)0(991,0, P2,0)0dg is the doubling zeta

integral which valued in C ®g M.
Theorem 4.13. The first part of Conjecture 4.8 holds up to 1 and the second part of Conjecture 4.8
holds.

In the same principle, the following arithmetic index theorem are equivalent to either side of Rallis
inner product formulae.

Let , © as before, (V1, Va; W) be self-reflex lines (here similar in sign +1 case, but we equipped V1, V3
with M structure.) Let 2 € V'~ such that Homrp, , a(7,, M ®q C) is nonzero for all v.

Theorem 4.14.

L L/2m o L2,1) .
Ind(V1, Ve; W) = =755 H T /27y s Vi, Vaui W)

Either arithmetic Rallis inner product formulae or Gross-Zagier formulae could implies the following
spectral decomposition:

Corollary 4.15. We have
Chy(X)g=~ €D Chy(X)g[ral,
L’(Afll);éo
with Chi(X)Q[ma] ~ 7.

By the BSD conjecture, one would like to replace the analytic rank by algebraic rank.
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5. EXPLICIT FORMULAE AND ARITHMETIC APPLICATIONS

The case sign +1 Let 7 be an quadratic twist family of irreducible cuspidal automorprhic represen-
tations of PGL3(A) over a number field F. Let 3¢ = {v ’ v|200 or o, is ramified for all o € T}. Let
3 D ¥y be any finite set of places of F'. Let og € T be any element. We call a fiber X of the map
= [ Fr/F
VEX

a Y-equivalent class. Identify 6 € X with quadratic twist og ® 15 of o¢. The sign of oy ® 15 only depends
on X, denoted by ¢(op ® X).

Let X;, i = 1,2 be two X-equivalent classes. For each v € X, the quadratic extension K, = F,(1/d162),
with 0; € X;, of I}, only depends on X, Xs.

Assume that

€(og ® X1) = +1,e(00 ® X2) = +1.

Let B be the quaternion algebra over F' unramified outside ¥ such that
€(By) = €(oox,), YveEX.

Let 7y be the cuspidal automorphic irreducible representation over H = PB* that corresponds to og via
Jacquet-Langlands.
Fix a non-trivial additive character ¢y of F\A. By property of Waldspurger packet [9], for ¢ = 1), 51

01 € X4 such that L(1/2,m ® ns,) # 0, the representation
0:= Hw(ﬂo & 7751)

is nonzero and only depends on X;.
We will give a uniform construction of ¢; = 0(1;‘;11 € 6y (m) such that we have the uniform relation
between
(D). [Wys,s, (05,)|* and L(1/2,m0 @ 15, ) L(1/2,m0 @ 15,) as 6; € X; varies;
(IT). [Wys, s, (ps,)|* and (@s,, 05,)L(1/2,m0 @ ns,) as §; € X; varies;
(IIT). (ws,,ws,) and L(1/2,m9 ® ns,) as §1 € X7 varies.

The case sign —1 Assume F is totally real, and 7 be a quadratic twist family of irreducible cuspidal
automorphic representations of PGL2(A) over F' and with infinite component given by discrete series of
parallel weight 2. Define X, X, €¢(0¢ ® X) in the same way as sign +1 case.
Assume that
(oo ®X1) = —1,e(00 @ X2) = +1
and
X1%o

is totally negative. Let B be the incoherent totally definite quaternion algebra over A unramified outside
3 such that

eB,) = €(oo,x,), YveD.

Let X the Shimura curve associated to H = A*\B* and let A/F be the simple abelian variety corresponds
to mg. Then the H representation m4 = li_n}U HomgU (Xy, A) corresponds to g via Jacquet-Langlands.
Let mp = m4,c. In this arithmetic case, we will give a uniform construction of cycle valued automorphic
forms @5, = ﬂéill € Yy(m), with ¢ = 1/)075;1, T = Ty ®Ns,, 01 € X1, such that we have the uniform
relation between
(1). (le{;2 (@51),W¢5152 (ps,))ar and L'(1/2,m9 @ ns, ) L(1/2, 79 @ ns,) as §; € X; varies; Here M =
EndF(A)Q.
(Inr). (le(52 (¢s,), Wes. s, (ps,))ar and (@s,,s,)L(1/2,m9 @ 15,) as §; € X; varies;
(II1). (ps,,9s,) and {L'(1/2,mo @ ns, )} as §1 € X1 varies.

We will also consider the arithmetic application of these formulae.
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5.1. Test vector space. Let’s first focus on the choice of family of fs,. For each v € ¥ finite, let
Nxy 0 = N61,05 0 € X1, Xo = Nx,0 © Nk, /F,, Which only depends on X;. Let

RCB— B be an (/Q\F, s%gn +1 case
B r, sign —1 case

order of discriminant

H Cond(oyg,y) H Cond(00,4 ® Nx,,0)
VEZ vEXfFn
Koy split or K, nonsplit and
ord, (Cond(x+)) > ord,(Cond(oq,v)) ord, (Cond(x+)) < ord,(Cond(oq,v))

such that for v € £, R,NK, = O,, if I, split or ord, (Cond(x,)) > ord,(Cond(cg,»)) and R,NK, = Ok,
if K, nonsplit and ord,(Cond(x,)) < ord,(Cond(c¢)). Here Cond(og,), Cond(x,) is the conductor
of 09y, Xv respectively, Oy, C Ok, is the order with conductor equals to conductor of x,. Let Uy, =
[ 1,00 Us such that U, is a compact subgroup of

H,, sign +1 case
H,, sign —1 case

such that U, N K} is the maximal compact subgroup of K.
Let

V(mo, X1, X2)

be the tensor product of local test vector space defined in Theorem 2.15 relative to R, if v is finite and
U, if v]oo (also K, if v € ), where the places outside ¥ corresponds to the case (I). and the places inside
% corresponds to the case (II). in Theorem 2.15. Note that in the sign —1 case, all the spaces equipped
with an M structure.

Proposition 5.1. V(m, X1, X2) is rank one

C, sign +1 case
C®q M, sign —1 case

space.

We also identify element § := §102 with (d1,02) € (X1,X2) as a quadratic algebra

K F(V/6), sign +1 case
1 AWS), sign —1 case

H(A 51 1 cas
contained in B. Let T = F(v/§)*/F*. For any K € X1X,, exists hs, x € { (), s?gn T case

H, sign —1 case
such that Rx = h(;h;CRhé_ll,C and KC satisfies good relative position in Theorem 2.15. For §; € X, let

T = To & Ns; -

Proposition 5.2. Let 0 # fo € V(mp, X1,X2). For each (61,62) € (X1,%2), fs, x = féL&l’K ®ns, s a
test vector for (mw,KC) in the sense that for each v, the local toric linear form defined in 2.2 is nonzero on
local component of fs, x at v.

Recall Waldspurger/Gross-Zagier formula say that Pr(fs, x) is non-vanishing on s, = 79 ® 7, if
and only if the derivative base change central L-value/base change central L-value is non-vanishing. In
the following, we consider uniform relation between toric period and L-values.

Similarly to R, there exists a admissible order R (depends on d;1) in the sense of [3] with discriminant
equals to N = Cond(og) such that for each embedding K — B and hx above, R} = h;CROh,El is
admissible order for (mg,ns, ).

Denote ||a|| the norm of an ideal a of F. In the sign —1 case, simply denoted by |Q[3, = (Q, Q) for
Qe A(F)C

It follows from Explicit Waldspurger formula of Cai-Shu-Tian for (g, ns, o N F(J/3753)/ ) and its vari-
ation (see also Remark 2.16), we have: For ¢; € X1, let # = mp @ 15, -
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Theorem 5.3. For each (§1,02) € (%1, %2),

Di| J|Pr(fs, ) (fo, fo) LEY(1/2, ) sign +1 case
L(e12) 1, 2le 7‘ KL b =C LR D . , ) ’
( 77/C) || 1,2” ‘DF| |PT(f61,IC)‘?\4 X1,X2 (¢0, ¢0) | )C/F| /= )(1/277”0) sign —1 case

where

thxz

only depends on oy, X1, X2 given by local factors mainly contributed from places in ¥ and bad places of
gop’

K is ramified

Gse (D-080) 3 L2 15,) vol(Ug (N))o 1

v L(L, Fu)L(1, 70,0, ad) , Ny VOUROw)  Case(rT).(v). (1) (1 — dv “Y)L(1, 70,0, ad)

70,y s ramified

o
Cxy,x5 = IDF|Coc™ "2

with q, is the cardinality of residue field of F,, e, is the ramification index of K,/F,, Cx is defined in
[3], ¢° the normalized Hilbert new vector;

D D
cr2 = H Fy(81,080,0)/ Fo Fy (62,080,0) / Fo H

- P,
Fv(él,vé‘z,v)/Fv

vgs veX,Case(II).(a).

which depends on 61,02 with do,, = 1 or a uniformizer of F,, such that og, ® 15, , 5 unramified for
v & X, ¢, the conductor of Xs, v := Nsy.,5,., © N, /p, for v € ¥ and p, the prime of F,.

E’:{UEE

v|[(nv, o Dic,y /F,,) if v is finite; if v || N, then ordy(cy) > 15
v is not Case (II).(b).(ii); if v|oo, then K, ~ C ’

where n,, is the conductor of mg .

Now consider choice of family of ¢s5,. We need to choose representative of §; € X; such that the
Whittaker-Fourier coefficients and L-values have uniform relation.
Let a be a fractional ideal of F' prime to 3. Let X, C X; x X3 be subset consists of (d1,d2) such

that (6102) = a® [, i« finite DFU(\/M)/FU DFv(\/(SQTM)/Fv‘ Let Pic}. be the narrow ideal class group of
F. Note that we have surjection:

|| %= (X1 x %)/ P2

(ot
[a]€Picy

We normalize the Schwartz function by the following so that the theta lifting has good properties
~ X 1 3
05 = T o ore S O where R = 00 ST O G s defned in
Section 2.2 relative to m, = 7, ® s, v, R for all v and K, for v € 2.

For each a, fix a generator a € Ag, of a. Let ¢s, « be the translation of ¢ by a in the sense that
V(A), sign +1 case
vV, sign —1 case
+1, we may fix one choice once for all.

®5,,a(ax) = ¢, (z) for any x € . For a different choice of a, ¢q ¢ will differed by

F(z), i 1
For each x € V3,5, with (01, d2) € X4, we have choose h,, := hs, x as before with K = (z) STgn 1 case
' A(z), sign —1 case
and we may further choose h, ! o x such that for each v € ¥ and h;! oz € K9. Here in K9 C KI=Y is
the oriented subset in 2.2 and in the case sign —1, V' C Vg, is in Section 4.1.

Proposition 5.4. Let (fs5, 2, 051.0,2) = (ha(fo @ 0s,), huts, a), then it follows that

fs1, .
Vs © . sign —1 case
1.9,

03;2”” ~,  sign +1 case
()051,11 - e
only depends on a,d1, does not depend on 02 here the theta lifting is with respect to 1 = 1, st and g

s a fized non-trivial additive character once for all.

We have ¢, q is a test vector for 15,5, Whittaker functional for all (d1,d2) € X4. In the following, we
will consider the uniform relation between Whittaker-Fourier coefficients and L-values.
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5.2. Explicit formulae for (arithmetic) Whittaker-Fourier periods and Rallis inner product.

Type (I) and (I’)
By the decomposition of (arithmetic) Whittaker-Fourier coefficients in Section 3 4.2 and formula for

local Whittaker function 2.2, we have the following modularity of toric periods:

Define the normalized Whittaker-Fourier coefficient by W$5 (©8y,0) = 1_{”(%7(?“ whenever Hv|oo a(x),v

is nonzero, where Cy () ,, is defined behind Theorem 2.24. For each (d1,d2) € X4 and x € V5 with § = 6102,

€ w H — D’C C
WE, () =2 T ol 051900 [ 01 e ol (7).

v|oo

where e = )€, with ¢, € {1,2} in Theorem 2.18, T, be the stablizer of x € V.
By Theorem 5.3, we have the following explicit and uniform relation:

Theorem 5.5. For each (01,02) € X4,

(W, (©s1,0)]? — - (fo, fo) H (865200 /PRI L(E'?(I/Q,ml,lc), sign +1 case
W2, (9s,.0)3s L2 (g0, ¢0) v L' (1/2, 75, x), sign —1 case’

oo
where

Ck,.x, = C1-Cx, 2,
with Cy only depends on og, X1, X2 given by local factors contributed from places in X, a and bad places

_ D .
of ao: Cy = 47| ]lal| ™", ¢ = 1,5, %“ff—zﬁmnvez (11).(a). P2 with Kiy = Fu (V) for

v € X only depends on X;, ¢, the conductor of s, » o N, /r,, € = ) €y wzth €y € {1,2} in Theorem 2.18.

Type (II) and (II’)
Let notations be as before,
Theorem 5.6. For each (01,02) € X4,

‘Wgs (9051,0)|2 — Cl}/j % (90517039051&1) Hvﬁz ||DF1;
W3, (061.0) 13 pX2 (g0, ¢0) H(al)w

T 16212 B L) (12, 70 @ 1s,)

v|oo

where 0%17362 only depends on og, X1, X2 given by local factors mainly contributed from places in 3, a
and bad places of o¢:

Ol ey = llal? TT leo 2o/ D 2n #5120 (85) |

v|oo

H L(2,1F“) H L(l,ﬁgv,ad ]. ]-F H WOU,W07U)
e L(l,ﬁo’wad)L(l,va) vesy L(2 1F Voo Cx, X0 (W,L?,W,[?)Q

To,0 s Tamified To,v 18 unramified
n =, cx M with n, defined in Theorem 2.31, cq is such that 1, ot is the standard additive character

of F\A, b = {v|oco ‘ F, ~ C}.

Type (III) and (IIT%)
Let notations be as before,

Theorem 5.7. For each (01,02) € X4,

(©s1,a5 P51,a) —cn .. ||(61)(E)|| H ‘51|2w1,/[FU:]R]—1. L(E/)(I/ZWO ® Ns,), sign +1 case
(f()’ fO) *1,%2 HfugE HDFu((Sl%)/FvHU Y (= )(1/2371—0 & 7751)7 SZgn —1 case

v|oco

where Cgé’l x, only depends on X1, X5 given by local factors contributed from places in 3, a and bad

places of ao: O x, = C%, x,/C%, 2, Le\s (1/2, 70 @ ns,,)
a1



6. ARITHMETIC APPLICATION: TUNNELL-GROSS TYPE FORMULA

Let notations be as in sign 41 case of Theorem 5.5 in Section 5. We consider the case g o is trivial.
Equivalently, F' is totally real, 0¢ o is parallel of weight 2 and X; X3 is totally negative.

We have known the explicit and uniform relation between Fourier coefficients of theta series and
L-values, in the following we consider relation between Fourier coefficients and arithmetic of ternary
quadratic lattices.

Recall for v € X, we say (m,,/,) has no local obstruction if (%) in Proposition 2.17 holds. It is
equivalent to that the involution define in the proposition acts on local test vector in 7, by (B, )e(m,) =
+1. Let

L,, m, is unramified (ord,(dp»01,.) is even) and v ¢ X

LO — v
L,, v € X finite and without local obstruction
Ry oKy, wv e X finite, other case.

RX o (1 pv) , My is ramified (ord,(do,4d1,,) is odd) and v ¢ £

)

where p,, is the prime ideal of F associated to v and in the last case, L is the oriented subset defined in
2.2.
And let Ly = (J], .o avLy) N V(F), here recall a € Ag, is a generator of a. For each ¢ = 10 with

((51,52) € Xg, let
ws, = H Ws, v H

vgs veX,Case(II),(a).
T, is ramified

be the weight function on L, defined by

Ws, v (7“ o (av (1 b))) = 15,60, ©det(r), 7€ RY, beEp,

in the case v ¢ ¥ and m, is ramified and
W, v (rok)=mns podet(r), reR), kek,.
in the Case (II).(a). for v € X.

Denoted (Lg j,, ws,,n) by the conjugation of (Lg,ws,) by h, more precisely,

z,h = ( H hy 0 ay L) NV (F)
v<o0
w517h,v(') = wél,v(h;l © )

The following lemma follows directly from our choice of vector and explicit description of Weil represen-
tation.

Lemma 6.1. For each (d1,02) € X,

: fo(h)ns, odet(h
W&(ga)ZQ[FQ] Z o(h) L (h) Z ws, (z)
(h]E X, x h wELS ,(Vs(F)

where § = 6102, wy, = #(hR*h™* N H(F)), Xgx = H(F)\H (Agn)/R*.

Remark 6.2. The local weight function has the following concrete description in the case v ¢ ¥ and 7, is
ramified: Fix xq € <1 p”). Then it is the function whose support is contained in a, ! My(Op,,) given
by

0, ord,(q(z)) =0
ws, w(ay ') = S M5y a0, (—(,20)),  ordy((z,20)) =0,
161,080, (W) ord, ((z,20)) > 0

here (z,y) = q(z +y) — q(z) — q(y), u € O, is such that ord,(z — uzg) >

Together with Theorem 5.5, we have the following generalization of Tunnell type theorem:
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Theorem 6.3. For each (01,02) € X,

16102]1/2 - L&D (1/2, 00 @ 15, ) L) (1/2, 00 ® 1s,) _ ’ E : fo(h)ns, o det(h)
wy, Z
[hle X x z€L? , NVs(F)

€Q

773(¢0’¢0) '0361,362 - (f07f0)

wg, () ’2

where
—[F: X
0;17:{2 = 7T34 Q. Clxhxz € QX

with Cgel,xQ be the same as in Theorem 5.5 only depends on o, ag and X; given by local factors contributed
from places in X, a and bad places of og.

If 7 is unramified outside ¥ and §; = 1, the formulae in | - | is simply
fo(h 0
> POy, vy,
wp,
[hleX x x

Similar for general F' and B, the weight function will involve archimedean places and one should count
the lattice points by modulo suitable automorphism so that the sum appeared in the formulae is still
finite.
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