

Funkgesteuertes Zündsystem für Feuerwerke

Felix Pflaum (f.pflaum@gmail.com) 07.01.2023, 13:46

Wichtige Hinweise

Vor Inbetriebnahme sollte in jedem Fall diese Anleitung gelesen und verstanden werden! Speziell die folgenden, weiter hinten in der Anleitung detaillierter ausgeführten Hinweise müssen beachtet werden, um Personenschäden oder Beschädigungen an den Geräten zu vermeiden:

- 1. Bei den Zündboxen der ersten Generation liegt das Metallgehäuse des SMA-Antennenanschlusses an der Oberseite der Zündbox auf Massepotential, die roten Anschlussklemmen nach dem Einschalten und unter Umständen auch noch Minuten nach dem Ausschalten bei 22,5 V. Ein Kurzschluss zwischen diesen beiden Punkten ist daher unbedingt zu vermeiden, um Schäden an der Schaltung und ungewollte Zündungen zu verhindern. Daher, sofern der Antennenanschluss nicht isoliert ist, beim Anschließen die Anzünder immer zuerst mit der schwarzen Klemme, danach mit der roten verbinden, beim Abklemmen zuerst das Kabel an der roten, dann das an der schwarzen Klemme lösen. Weiterhin sollte man die Zündbox erst in ihrer endgültigen Position einschalten, so dass ein unbeabsichtigtes Herausziehen der Kabel tunlichst ausgeschlossen ist. Sicherheitshalber kann auch der SMA-Stecker nach dem Anschrauben mit Klebeband isoliert werden. Bei den Zündboxen ab der zweiten Generation sind schaltungstechnische Maßnahmen getroffen, um den Strom im Kurzschlussfall zu begrenzen und ein Auslösen der Anzünder bei Verbindung zwischen roter Klemme und Antennenanschluss im nicht-scharfgeschalteten Zustand auszuschließen.
- 2. Devices niemals ohne angeschlossene Antenne einschalten, um Rückreflexionen an offenen Steckern/Buchsen zu vermeiden, welche die Sendeendstufe zerstören könnten.
- 3. Keine Softwareupdates an Zündboxen durchführen, solange Anzünder angeschlossen sind, da das Verhalten nach einem fehlgeschlagenen Update unvorhersehbar ist.

Trotz aller Sorgfalt bei der Entwicklung von Hard- und Software sowie ausgiebigen Tests seitens der Entwickler kann – auch aufgrund nicht vorhandener Kontrollmöglichkeiten über die Qualität der letztlich verbauten Komponenten und der handwerklichen Durchführung – keinerlei Garantie für Sicherheit und Funktionalität von *El Fueradoro* und *raspEasyFire* sowie keine Haftung für Sach- und Personenschäden, welche sich direkt oder indirekt aus dem Einsatz von *El Fueradoro* und *raspEasyFire* ergeben, übernommen werden.

Es werden mit *El Fueradoro* dem Anwender lediglich Schaltpläne, Layouts und Programmcode sowie Hinweise zu Aufbau und Verwendung einer elektronischen Funkzündanlage, welche er frei weiter verbreiten und – selbstverständlich auf eigene Gefahr – verändern darf, zur Verfügung gestellt.

El Fueradoro und *raspEasyFire* sind und bleiben Hobby-Bastelprojekte, keine geprüften oder in irgendeiner Form zertifizierten Produkte!

Der Umgang mit Feuerwerkskörpern und explosivem Material unterliegt in Deutschland und der EU harmonisierten wie auch nationalen gesetzlichen Restriktionen, deren Einhaltung im Verantwortungsbereich des Anwenders liegt. Insbesondere auf Sicherheitsabstände und persönliche Schutzausrüstung ist zu achten. *El Fueradoro* und *raspEasyFire* dürfen nicht von Personen unter 18 Jahren bedient werden.

Inhaltsverzeichnis

W	ichtig	ge Hinweise	3
In	haltsv	verzeichnis	5
I	Be	enutzerhandbuch	9
1	Das 1.1 1.2	System	11 11 14
	1.3 1.4 1.5 1.6	Energieversorgung	15 15 16 17
2	Vorl 2.1 2.2 2.3	bereitung des PCs Installation eines USB-RS232-Adapters Installation eines Installation eines USB-RS232-Adapters <td>19 19 20 22</td>	19 19 20 22
3	Kon 3.1 3.2 3.3	nmunikation zwischen PC und DevicesPuttytel3.1.1Befehlsübersicht3.1.2Konfiguration3.1.3Systemübersicht3.1.4Manuelles Senden3.1.5Funkmodul-Zugriff3.1.6AES-Verschlüsselung3.1.7AnzündertypGUIFirmwareupdate3.3.1Herunterladen3.3.2Aktualisierung	 25 25 26 29 30 30 33 35 36 37 37
4	rasp 4.1 4.2	EasyFire Erster Start	41 41 43

4.4 Passwort indern 45 4.5 Zündpläne und Musikdateien übertragen 45 4.5.1 USB-Stick 46 4.5.2 SFTP 46 4.6 Die Benutzeroberfläche 46 4.6.1 Zündpläne auswahl 47 4.6.2 Slavesuche 48 4.6.3 Weitere Optionen 49 4.6.4 Datein löschen 53 4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderbeiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.3 Funkreichweite 59 5.1.1 Beidseitiges Zünden 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 63 52 11 Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 83 8.2 Raspberry-Pi-Aufsteckplatine		4.3	Anpassung und Umbenennung von AES-Schlüsseln	3						
4.5 Zündpläne und Musikdateien übertragen 45 4.5.1 USB-Stick 46 4.5.1 USB-Stick 46 4.6 Die Benutzeroberfläche 46 4.6 Die Benutzeroberfläche 46 4.6.1 Zündplanauswahl 47 4.6.2 Slavesuche 48 4.6.3 Weitere Optionen 49 4.6.4 Dateien löschen 53 4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.2 Zündkreisauslegung 59 5.1.2 Zündkreisauslegung 63 5.2 Durchführung 63 5.2 Durchführung 63 5.2 Durchführung 63 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Nikrocontroller		4.4	Passwort ändern							
4.5.1 USB-Stick 46 4.5.2 SFTP 46 4.6 Die Benutzeroberfläche 46 4.6.1 Zündplanauswahl 47 4.6.2 Slavesuche 48 4.6.3 Weitere Optionen 49 4.6.4 Dateien löschen 53 4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 64 Shitecontroller 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 11 Putsellisten 91 12 Aufbau 107 <td< th=""><th></th><th>4.5</th><th>Zündpläne und Musikdateien übertragen</th><th>5</th></td<>		4.5	Zündpläne und Musikdateien übertragen	5						
4.5.2 SFTP 46 4.6 Die Benutzeroberfläche 46 4.6.1 Zündplanauswahl 47 4.6.2 Slavesuche 48 4.6.3 Weitere Optionen 49 4.6.4 Dateien löschen 53 4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreiskuslegung 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 5.2 Durchführung 63 5.2 Durchführung 63 64 Software 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberty-Pi-Aufsteckplatine 84 9 Software 87			4.5.1 USB-Stick	5						
4.6 Die Benutzeroberfläche 46 4.6.1 Zündplanauswahl 47 4.6.2 Slavesuche 48 4.6.3 Weitere Optionen 49 4.6.4 Dateien löschen 53 4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 11 Putionenherstellung 103 <th></th> <th></th> <th>4.5.2 SFTP 40</th> <th>5</th>			4.5.2 SFTP 40	5						
4.6.1 Zündplanauswahl		4.6	Die Benutzeroberfläche	5						
4.6.2 Slavesuche 48 4.6.3 Weitere Optionen 49 4.6.4 Dateien löschen 53 4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.2 Zündkreisauslegung 63 5.2 Durchführung und Überprüfung des Zündplans 63 5.2 Durchführung 63 11 Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 87 11 Platinenherstellung 103 12 Aufbau 107 12.1 Kabel 107 12.1 Zufbao 107			4.6.1 Zündplanauswahl	7						
4.6.3 Weitere Optionen 49 4.6.4 Dateien löschen 53 4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.2 Zündkreisauslegung 59 5.1.2 Zündkreisauslegung 59 5.1.2 Zündkreisauslegung 63 5.1.2 Zündkreisauslegung 63 5.1.2 Durchführung 63 7.1 Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 11 Putinenherstellung 103 12 Aufbau 107 12.1 Rabel 107 12.1			4.6.2 Slavesuche	8						
4.6.4 Dateien löschen 53 4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 5.2 Durchführung 63 63 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 11 Platinenherstellung 103 12 Aufbau 107 12.1 Kabel 107 12.1 Zuitinen 108			4.6.3 Weitere Optionen	9						
4.6.5 Soundcheck 54 4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 5.2 Durchführung 63 63 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 11 Putinenherstellung 103 12 Aufbau 107 12.1 Kabel 107 12.1.1 Kabel 107 12.1.2 Latinen 108			4.6.4 Dateien löschen	3						
4.6.6 Widerstandsmessung 54 4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 11 Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 87 111 Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 2 Zuitien 108			4.6.5 Soundcheck	4						
4.6.7 Besonderheiten in Zündplänen 55 4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 11 Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 111 Aufbauanleitung 103 12 Aufbau 107 12.1 Kabel 107 12.1.1 Kabel 107 12.1.2 Puitnen 108			4.6.6 Widerstandsmessung	4						
4.6.8 Showstart 55 5 Show 59 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 5.2 Durchführung 63 63 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 11 Aufbauanleitung 103 12 Aufbau 107 12.1 Kabel 107 12.1.1 Kabel 107 12.1.2 Latinen 108			4.6.7 Besonderheiten in Zündplänen	5						
5 Show 59 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 5.2 Durchführung 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 11 Platinenherstellung 103 12 Aufbau 107 12.1 Kabel 107 12.1.1 Kabel 107 12.1.2 Latigen 108			4.6.8 Showstart	5						
5 Show 35 5.1 Vorbereitung 59 5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 11 Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 11 Platinenherstellung 103 12 Aufbau 107 12.1 Kabel 107 12.1.2 Latinen 107 12.1.2 Kabel 107 12.1.1 Kabel 107 12.1.2 Dateinen 108	Б	Sho	50	n						
5.1.1 Beidseitiges Zünden 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 5.2 Durchführung 63 63 65 6 64 65 65 6 66 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 111 Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1.1 Kabel 107 12.1.2 Platinen 108	5	5 1	Workereitung 50	9 0						
5.1.1 Detecting 2 Junch 59 5.1.2 Zündkreisauslegung 59 5.1.3 Funkreichweite 62 5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 63 5.2 Durchführung 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1.1 Kabel 107 12.1.2 Platinen 108		5.1	511 Beidseitiges Zünden 50	2 2						
5.1.2 Eukerichweite			$5.1.1$ Deduseninges Zunden \ldots $5.1.2$ Zündkreisauslegung 50))						
5.1.4 Erstellung und Überprüfung des Zündplans 63 5.2 Durchführung 63 II Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1.1 Kabel 107 12.1.2 Platinen 108			5.1.2 Eunoricisausiegung 6	י ר						
5.1.4 Externing und Oberphrung uss Zundphals 63 5.2 Durchführung 63 II Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 P Zindbox 107 12.1.2 Platinen 108			5.1.5 Funkteienweite	3						
II Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.2 Platinen 108		52	Durchführung	3						
II Dokumentation 65 6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1.1 Kabel 107 12.1.2 Platinen 108		5.2		5						
6 Schaltpläne & Layouts 67 7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1.1 Kabel 107 12.1.2 Platinen 108	II	Do	okumentation 65	5						
7 Datenblätter 81 8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 Kabel 107 12.1.1 Kabel 107 12.1.2 Platinen 108	6	Scha	altpläne & Layouts 6	7						
8 Pinbelegung 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 107 12.1.2 Platinen 107	7	Date	enblätter 81	1						
8.1 Mikrocontroller 83 8.1 Mikrocontroller 83 8.2 Raspberry-Pi-Aufsteckplatine 84 9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 108	8	Pinh	helegung 8'	3						
8.1 Nill Ocontolici 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	U	8 1	Mikrocontroller 8	3						
9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 107 107 12.1 2 Platinen 108		8.2	Raspherry-Pi-Aufsteckplatine	4						
9 Software 87 III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 108		•								
III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 107 12.1.3 Rabel 107 12.1.1 Kabel 107 12.1.1 Kabel 107 12.1.2 Platinen 108	9	Soft	tware 8	7						
III Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 107										
111 Aufbauanleitung 89 10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 107										
10 Materiallisten 91 11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 107	111	Au	ifbauanleitung 8	J						
11 Platinenherstellung 103 12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12 1 2. Platinen 108	10		toriallisten Q	1						
12 Aufbau 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 108		Mat	J.							
12 Autodu 107 12.1 PC-Transmitter und Zündbox 107 12.1.1 Kabel 107 12.1.2 Platinen 108	11	Mat Plat	tinenherstellung 10	3						
12.1 1 C-Hanshinter and Zandoox 107 12.1.1 Kabel 107 12.1 2 Platinen 108	11 12	Mat Plat	tinenherstellung 10	3						
12.1.1 Raber	11 12	Mat Plat Auft	tinenherstellung 10 bau 10 PC-Transmitter und Zündbox 10	3 7 7						
	11 12	Mat Plat Auft 12.1	tinenherstellung 10 bau 10 PC-Transmitter und Zündbox	3 7 7						

12.2Raspberry-Pi-Aufsteckplatine12.3Funkmodul-Adapter12.4Peripherie12.4.1Transmitter12.4.2Zündbox12.4.3Koffer12.4.4Gehäuse des Raspberry-Pi-Transmitters	110 111 112 112 112 114 118 122
13 Aufspielen des Bootloaders	123
13.1 Über raspEasyFire	124
13.2 Über den PC	124
13.2.1 Verwendung des AVRISP mkII	124
13.2.2 Verwendung eines anderen Programmieradapters	125
14 Micro-SD-Karte für raspEasyFire vorbereiten 14.1 Image herunterladen und übertragen 14.2 WLAN-Daten einstellen	127 127 128
15 Tipps und Tricks	131
15.1.5V-LCD an 3.3V	131
15.2 Antennenbau	132
15.3 Kompilieren der Firmware	135
15.4 Umrechnung zwischen Watt und dBm	135
Abbildungsverzeichnis	137
Tabellenverzeichnis	139
Danksagung	141

Teil I Benutzerhandbuch

1 Das System

El Fueradoro ist eine Eigenentwicklung zur automatisierten Zündung von Feuerwerkschoreographien per Computer und Funk, der Name *El Fueradoro* leitet sich als Kofferwort aus den spanischen Wörtern *fuego*, *radio* und *oro* her und bedeutet frei übersetzt daher so etwas wie "Goldenes Funkfeuer". Sie wurde zur Verwendung mit der frei verfügbaren Software *Pyro Ignition Control* von Yannic Wilkening (Version 1.4.5 und später) geplant.

Das ursprüngliche System bestand aus einer mit einem PC verbundenen Transmitterbox, welche die von *Pyro Ignition Control* generierten Zündbefehle per Funk an die Zündboxen weitergibt, und einer oder mehreren Zündboxen mit je 16 oder 32 Kanälen zur elektrischen Zündung. Dieser klassische Aufbau des Systems ist schematisch in Abbildung 1.1 gezeigt. Die reine Transmitterbox wird nicht zwingend benötigt; es kann alternativ auch eine Zündbox per Kabel mit dem PC verbunden werden und neben ihrer originären Aufgabe auch die Transmitteraufgaben bewältigen.

Mittlerweile hat sich als Standalone-Lösung, also als Ersatz für Transmitterbox und PC, der Raspberry-Pi-Transmitter *raspEasyFire* etabliert, welcher einen deutlich größeren Funktionsumfang bietet als die ursprüngliche Variante.

Um möglichst große Flexibilität bei der Gestaltung eines Feuerwerks mit *El Fueradoro* zu gewährleisten, was z. B. die Anzahl der verwendeten Zündboxen oder auch die Tatsache angeht, dass man identische Effekte gerne zeitgleich an zwei weiter voneinander entfernten Orten zünden möchte, können den Boxen per Software zwei Kennnummern (Unique-ID und Slave-ID) zugewiesen werden. Genaueres dazu findet sich im Abschnitt 3.

Transmitterbox und Zündbox sind in Abbildung 1.2a bzw. 1.2b mit ihren wesentlichen Bestandteilen gezeigt. Sie werden im weiteren Text unter dem Begriff "Devices" zusammengefasst, falls sich Aussagen auf beide Teile beziehen, und in den folgenden Kapiteln näher beschrieben.

Um den Raspberry-Pi-basierten Transmitter raspEasyFire geht es in Abschnitt 4 ab Seite 41.

1.1 Aufbau

Detailliertere Infos zum Aufbau erhalten interessierte Leser in den nächsten Teilen dieses Dokuments ab Seite 67. An dieser Stelle soll nur kurz auf die Funktionalität eingegangen werden. Herzstück aller

Abbildung 1.1: Systemübersicht El Fueradoro

Devices ist der 8-bit-Mikrocontroller ATmega328P von Atmel, welcher die verschiedenen Peripheriebausteine kontrolliert. In jedem Device befinden sich ein Funkmodul RFM69CW oder RFM69HCW von HopeRF, welches die drahtlose Kommunikation zwischen den einzelnen Devices übernimmt, ein RS232-Treiberbaustein MAX202 mit an die Gehäuseaußenseite geführter Sub-D-Buchse bzw. ab der dritten Generation ein USB-UART-Transceiver MCP2221 mit USB-Buchse zur Kommunikation zwischen Mikrocontroller und PC sowie vier Status-LEDs.

Die Transmitterbox ist mit einem LC-Display mit 20 Spalten und 4 Zeilen ausgestattet.

In den Zündboxen befinden sich zwei vom Mikrocontroller gesteuerte kaskadierte Schieberegister 74HC595, welche mit ihren insgesamt 16 bzw. 32 Ausgängen 16 bzw. 32 Feldeffekttransistoren vom Typ IRF3708 für die Zündung ansteuern, außerdem ist auf der Platine mit dem MC33063 bzw. einem fertigen Modul mit dem XL6009 ein Hochsetzsteller zur Erzeugung einer höheren Zündspannung integriert sowie ein Schlüsselschalter zum Scharfschalten der Boxen. Bei den ersten beiden Generationen liegt parallel zur Drain-Source-Strecke jedes Feldeffekttransistors eine LED mit Vorwiderstand, um zu signalisieren, an welchen Kanälen Anzünder angeschlossen sind. Ab der dritten Generation werden diese Kanal-LEDs über LED-Treiber DM13A angesteuert, um genauere Informationen über den Kanalzustand und weitere Funktionen darstellen zu können.

(a) Transmitter

(b) Zündbox von oben, eingebettet in Koffer

Abbildung 1.2: Die Devices von *El Fueradoro*

1.2 Transmitter und Zündboxen

Die in Abbildung 1.2a gezeigte Transmitterbox dient dazu, die Zündbefehle des PCs per Funk an die über das Gelände verteilt stehenden Zündboxen weiterzuleiten sowie das komplette Funksystem zu überwachen. Hierzu ist im Inneren der Transmitterbox sowie der Zündboxen ein Funkmodul für das – im Rahmen der Vorschriften der jeweiligen nationalen Aufsichtsbehörde, in Deutschland der Bundesnetzagentur – frei nutzbare Frequenzband um 868 MHz verbaut, das ISM-Band um 433 MHz kann ebenfalls genutzt werden. Die Datenübertragung vom PC geschieht über eine serielle Schnittstelle.

Die Zündboxen, in Abbildung 1.2b dargestellt, empfangen die Anweisungen und zünden die einzelnen Kanäle. Die hier gezeigte Variante der Zündbox enthält 16 einzeln ansteuerbare Zündkanäle. Jeweils eine rote und eine schwarze Klemme bilden zusammen einen Zündkanal, die Nummerierung beginnt links unten mit Kanal 1 und endet rechts oben mit Kanal 16. Alle roten Klemmen sind nach dem Einschalten unmittelbar mit einer Gleichspannung von 22,5 V verbunden, die schwarzen Klemmen mit dem Drain-Anschluss eines von 16 n-Kanal-MOSFETs.

Welches der beiden Kabel an welcher Klemme des Zündkanals angeschlossen wird, spielt keine Rolle, da es sich bei den Anzündern um passive elektrische Bauelemente handelt, die in beiden Richtungen gleichermaßen von Strom durchflossen werden können. Die Verdrahtung sollte aber stets im ausgeschalteten Zustand der Boxen erfolgen und aus Sicherheitsgründen immer in folgender Reihenfolge:

- Beim Anklemmen der Kabel zuerst ein Kabel an der schwarzen Klemme befestigen, anschließend das andere an der roten!
- Beim Lösen der Kabel zuerst das Kabel von der roten Klemme lösen, anschlie
 ßend das von der schwarzen!

Dies ist der Tatsache geschuldet, dass bei der ersten Generation der Zündboxen, wenn eine Seite des Zündkanals fest mit der Zündspannung, d. h. einer roten Klemme verbunden ist, ein frei baumelndes zweites Kabel durch Berührung eines Bauteils auf Massepotential, z. B. der Antennenbuchse oder der Überwurfmutter des gewinkelten SMA-Steckers, einen Kurzschluss und somit eine Zündung auslösen würde – selbst dann, wenn die Box nicht scharf geschaltet ist! Ab der zweiten Generation der Zündboxen ist dieses Manko behoben.

Bei den Zündboxen der ersten und zweiten Generation ist parallel zur üblicherweise sperrenden Drain-Source-Strecke jedes MOSFETs ist eine grüne LED mit Vorwiderstand geschaltet, welcher den Strom durch den LED-Zweig auf unter 5 mA begrenzt, so dass ein Zünden über die LED ausgeschlossen ist. Sobald die zugehörige schwarze Klemme mit einer roten Klemme – die Zuordnung kann beliebig erfolgen, obwohl zwecks Übersichtlichkeit natürlich ratsam ist, die nebeneinander liegenden Klemmen zu nutzen – verbunden ist, also ein geschlossener Strompfad von 22,5 V zur Schaltungsmasse besteht, wird dies durch Leuchten der zur schwarzen Klemme gehörigen grünen LED signalisiert. Ein Leuchten der grünen LED ist dabei lediglich ein Indikator, dass "etwas" am jeweiligen Kanal angeschlossen ist, eine Aussage, ob der Widerstand des angeschlossenen Anzündernetzwerks gering genug ist, um eine

Farbe	Funktion	Startup-Faktor
orange	Funkmodul empfängt	4
grün	Funkmodul sendet	2
gelb	Daten kommen über serielle Schnittstelle an	1
rot	Device ist scharf geschaltet	8

Tabelle 1.1: Farben und Funktionen der Status-LEDs

Zündung auszulösen, wird durch die LED ausdrücklich nicht getroffen.

Anders verhält sich dies bei den Zündboxen der dritten Generation: Hier werden die Widerstände der einzelnen Kanäle periodisch bestimmt und die zugehörige grüne LED nur dann aktiviert, wenn der Kanalwiderstand ausreichend gering ist.

1.3 Energieversorgung

Die in unmittelbarer Nähe des zu steuernden PCs platzierte Transmitterbox bezieht ihre nötige elektrische Energie aus dem USB-Port eines PCs. Das fest mit der Transmitterbox verbundene USB-Kabel dient ausschließlich diesem Zweck. Sie verfügt über keinen Ein/Aus-Schalter, sondern ist eingeschaltet, solange sie mit dem USB-Port verbunden und der PC eingeschaltet ist. Da der USB-Port "angezapft" wird, ohne in der sonst üblichen Weise mit dem Controller zu kommunizieren, empfiehlt sich, die USB-Verbindung erst nach komplett abgeschlossenem Bootvorgang herzustellen und vor dem Herunterfahren des Rechners wieder zu trennen.

Aufgrund der anzunehmenden Platzierung der Zündboxen im freien Feld, abseits von Steckdosen und anderen Energiequellen werden sie über eine Batterie versorgt. Um ordnungsgemäße Funktionalität zu garantieren und Schäden an der Schaltung zu vermeiden, muss die Batteriespannung zwischen 8 V und 15 V liegen! Empfohlen wird die Verwendung eines Blei-Vlies-Akkus mit Nennspannung 12 V, wie er auch in Abbildung 1.2b über der Zündbox zu erahnen ist.

1.4 Die Status-LEDs

Alle Devices verfügen über vier Status-LEDs. Bei den Transmitterboxen liegen sie direkt neben dem Kabel für die Energieversorgung auf der Seite, bei den Zündboxen auf der Oberseite. Diese sind mit ihrer Bedeutung in Tabelle 1.1 aufgeführt und leuchten, wenn das jeweilige Device die mit der LED verknüpfte Tätigkeit ausführt.

Während des Bootvorgangs wird durch die Status-LEDs dem Benutzer die aktuell eingestellte Slave-ID der Box in Binärdarstellung visualisiert. Hierzu gehen zunächst nacheinander schnell die gelbe, grüne,

orange und rote LED an, ehe zwei Sekunden lang eine Kombination der Status-LEDs aufleuchtet. Anschließend gehen nacheinander schnell die rote, orange, grüne und gelbe LED an, bevor erneut zwei Sekunden lang eine weitere Kombination der Status-LEDs leuchtet. Der Zahlenwert, welcher durch eine Status-LED repräsentiert wird, ist in Tabelle 1.1 aufgeführt. Die eingestellte Slave-ID entspricht der Summe aus dem Wert der ersten Kombination multipliziert mit 16 und der zweiten Kombination.

Beispiel: Leuchtet nach dem ersten Lauflicht zunächst zwei Sekunden lang nur die gelbe LED und nach der zweiten Lauflichtsequenz leuchten zwei Sekunden die orange und grüne LED zusammen, ergibt sich die Slave-ID zu $16 \cdot 1 + 4 + 2 = 22$.

Ab der dritten Generation werden während dieser Sequenz auch alle Kanal-LEDs eingeschaltet, um defekte LEDs erkennen zu können.

Das nach kurzer Pause folgende Blinken der grünen LED signalisiert dann die Statusmeldung per Funk an allen anderen Devices.

Bei einem Zündvorgang leuchten an der Zündbox für die einstellbare Dauer der Zündung – näheres hierzu im Abschnitt 3.1.7 – alle vier LEDs, bei Zündboxen ab der dritten Generation zusätzlich auch die zum gezündeten Kanal zugehörige Kanal-LED.

1.5 Das LCD des Transmitters

Aktuelle Statusanzeigen werden beim Transmitter auf dem LC-Display ausgegeben. Ein Beispiel zeigt Abbildung 1.3. In Zeile 1 wird hinter der Abkürzung "Tx" (Transmitted) der letzte gesendete Befehl angezeigt, in Zeile 2 – im Bild nicht zu sehen – ggf. hinter der Abkürzung "Rx" (Received) die letzte empfangene Rückmeldung (angeforderte Parameter). Die am Ende der zweiten Zeile erscheinende negative Zahl steht für den RSSI-Wert beim Empfang in dBm.

In den Zeilen 3 und 4 werden die letzten sechs gesendeten Kommandos aufgelistet. Zwei zweistellige Zahlen getrennt durch ein Flammensymbol stehen dabei für einen Zündbefehl. Die erste Zahl gibt die Slave-ID, die zweite den zu zündenden Kanal an. Für den Fall, dass eine Aufforderung zur Identifikation gesendet wurde, erscheint "IDENT", für eine Aufforderung zur Temperaturmessung "TEMP". Das "x" steht immer vor dem bis dato letzten Befehl, springt also mit jedem neuen Befehl eine Stelle weiter.

Alle Zeilen werden nach einer bestimmten Zeit automatisch gelöscht.

Abbildung 1.3: LCD während der Show

1.6 Schalter an den Zündboxen

Die Zündboxen verfügen, wie in Abbildung 1.4 zu erkennen, über zwei Schalter, einen schwarzen Wippschalter zum Ein- und Ausschalten der Energieversorgung sowie einen Schlüsselschalter, um die Zündbox "scharf" zu schalten.

Die Scharfschaltung durch den Schlüsselschalter geschieht auf die Weise, dass durch eine Zustandsabfrage vor der Zündung letztere nur ausgeführt wird, wenn das Schloss auf den grünen Punkt am Gehäuse zeigt. Befindet sich der Schlüssel in waagrechter Stellung und zeigt auf den roten Punkt, so ist der Schalter geöffnet und Zündbefehle werden von der Box ignoriert. Für das Scharfschalten der Box ist der Anwender selbst verantwortlich.

Abbildung 1.4: Schalter und serielle Schnittstelle an der Zündbox

Ob Boxen scharf geschaltet sind, ist an der Box – wie in Abschnitt 1.4 ausgeführt – durch das Dauerleuchten der roten Status-LED erkennbar, kann aber auch durch eine Identifizierungsabfrage ausgelesen werden (siehe Abschnitt 3.1.2).

2 Vorbereitung des PCs

Zur Kommunikation mit einem Computer verfügen alle Devices über eine serielle Schnittstelle bzw. ab der dritten Generation über einen USB-Anschluss. *Pyro Ignition Control* sollte ohnehin auf dem Rechner installiert sein, für die serielle Kommunikation gibt es für Windows zudem zahlreiche Terminalprogramme.

2.1 Installation eines USB-RS232-Adapters

Zunächst steht man allerdings in der Regel vor dem Problem, dass zwar die Devices eine serielle Schnittstelle besitzen, moderne Rechner aber nicht mehr mit dem früher standardmäßig verbauten 9-poligen Sub-D-Stecker der RS232-Schnittstelle ausgestattet sind. Diese wurden seit dem Ende der 1990er-Jahre von den USB-Schnittstellen verdrängt. Sollte wider Erwarten am einzusetzenden Rechner ein derartiger Anschluss vorhanden sein, können die nächsten Absätze übersprungen und der COM-Port direkt im Gerätemanager anhand von Tabelle 2.1 konfiguriert werden. Wer nur über USB-Ports verfügt, lese unmittelbar weiter.

Weil in vielen Bereichen noch immer auf RS232 zurückgegriffen wird, existieren Adapterkabel wie in Abbildung 1.2a mit USB-Anschluss für den Rechner und einem 9-poligen RS232-Stecker für den Anschluss an der Peripherie, also die Devices von *El Fueradoro*. In diesen Adapterkabeln ist ein Chip verbaut, um die Signalumsetzung von USB auf RS232 und umgekehrt zu bewerkstelligen. Übliche verwendete Chips sind der CH340¹, welcher sich in vielen über eBay aus China angebotenen Modellen befindet, der Prolific PL2303² in verschiedenen Versionen oder – bei edleren und somit auch teureren Varianten – der uneingeschränkt zu empfehlende FTDI232, mit welchem die in den folgenden Abschnitten beschriebenen Probleme nicht auftreten sollten.

Das Plug-and-Play-Traumszenario, dass sich der Adapter bei der Verbindung des USB-Steckers mit dem Rechner automatisch korrekt installiert, tritt gerade bei den günstigen Adaptern leider nur sehr selten ein. Die in den Fußnoten verlinkten Treiber sollten, sofern die automatische Treiberinstallation von Windows versagt, ihren Dienst tun, müssen allerdings teilweise mit sanfter Gewalt installiert werden. Hat man die Installation erfolgreich absolviert, sollte bei angeschlossenem Adapterkabel ein neuer Eintrag in der Art von Abbildung 2.1 im Gerätemanager auftauchen.

¹Treiber CH340/341: http://wch.cn/download/list.asp?id=5

²Falls die automatische Treiberinstallation unter Windows fehlschlägt, funktioniert – mit zeitweiligen Aussetzern – oft der Treiber unter: http://www.cartft.com/support/drivers/TFT/tftdrivers/GPS/PL2303_Prolific_ GPS_1013_20090319.zip

Abbildung 2.1: Eintrag des USB-RS232-Adapters im Gerätemanager

Weil viele Chips dazu tendieren, sich beim Anschluss an immer wieder andere USB-Ports neu zu installieren bzw. eine andere COM-Port-Nummer anzunehmen, wird empfohlen, für den USB-RS232-Adapter stets denselben USB-Steckplatz zu nutzen.

Durch Doppelklick auf den Eintrag und den Reiter Anschlusseinstellungen kann die nun vorhandene serielle Schnittstelle unter Windows konfiguriert werden. Um Kompatibilität mit *Pyro Ignition Control* zu gewährleisten, ist das Hauptfenster nach Tabelle 2.1 zu konfigurieren.

Unter der Schaltfläche "Erweitert" kann man zudem die Puffer ausschalten, was aber nicht zwingend notwendig ist und die Funktionsweise normalerweise weder positiv noch negativ beeinflusst, sowie die Portnummer für den neu geschaffenen COM-Port einstellen.

2.2 Einrichtung des Terminalprogramms

Hardware- und treiberseitig steht einer erfolgreichen Kommunikation von Rechner und Devices nun nichts mehr im Wege, für eine komfortable Unterhaltung außerhalb von *Pyro Ignition Control* fehlt aber noch die entsprechende Software. Empfohlen wird die Verwendung des kostenlosen Programms *Puttytel*³, mit welchem auch die im Rahmen dieser Anleitung gezeigten Beispiele durchgeführt werden. Es besteht nur aus einer einzigen ausführbaren Datei.

Puttytel kann per Doppelklick gestartet werden, woraufhin man zu einem Startbildschirm, der Kategorie "Session" gelangt. Man wählt in der linken Spalte unten links "Serial" und stellt die Parameter – analog zur Konfiguration des COM-Ports nach Tabelle 2.1 – wie in Abbildung 2.2 ein. Anschließend muss man in der linken Spalte zurück auf "Session" gehen und dort im rechten Teil des Fensters "Serial" als "Connection Type" wählen, ehe man die serielle Verbindung per Klick auf "Open" starten kann. Vor dem Start der Verbindung sollte man zudem das verbundene Device mit Strom versorgen, damit dieses seine Kommunikationsschnittstelle vor Beginn des Datenaustauschs initialisieren kann.

Abbildung 2.2: Einstellungen für Puttytel

Windows eine Verknüpfung auf **puttytel.exe** zu erstellen und in den Verknüpfungseigenschaften als Ziel anzugeben:

"c:\programme\puttytel\puttytel.exe" -serial com24 -sercfg 9600,8,1,n,R

Die ohne Leerzeichen auf "com" folgende Zahl ist natürlich entsprechend dem verwendeten seriellen Anschluss (COM5, COM37, …) anzupassen.

2.3 Einrichtung von Pyro Ignition Control

Um eine reibungslose Kommunikation zwischen *Pyro Ignition Control* und *El Fueradoro* sicherzustellen, muss in *Pyro Ignition Control* als wesentliche Einstellung unter dem Menüpunkt "Einstellungen \rightarrow Optionen" im Reiter "Output" – gezeigt in Abbildung 2.3a – der richtige COM-Port eingestellt werden. Über "Einstellungen \rightarrow Connect" wird die serielle Verbindung aufgebaut und in der untersten Leiste anzeigt, ob der Verbindungsaufbau erfolgreich war.

Zudem sollte im Reiter "Allgemein" die globale Verzögerung erfahrungsgemäß, wie Abbildung 2.3b zeigt, auf etwa 0,07 s eingestellt werden. Dies ist die Zeit, die aufgrund von Datenübertragungen und Rechenvorgängen zwischen dem Beginn des Sendens des Befehls vom PC zum Transmitter und dem Zünden des Kanals an der Zündbox vergeht.

Als minimale Zeitdauer zwischen zwei Zündungen sollte 100 ms nicht unterschritten werden, das Scharfschalten vor Beginn der Show ist ebenso nicht zu vergessen wie das Scharfschalten des Transmitters und sämtlicher Zündboxen!

Anmerkung: Eine serielle Verbindung zu einem Device kann immer nur durch einen einzigen Client (Puttytel, GUI, Pyro Ignition Control, Firware-Updater) bestehen. Man muss also immer die bestehende Verbindung trennen, bevor man mit einem anderen Programm eine neue aufbauen kann.

linstellungen	
Allgemein Spectrum Handfire Out	but
ComPort:	
4 🗸	PyroTronic.dll 🗸 🗸
[<u>×</u>
Verbindungsoptionen:	
Verbindungsversuch beim scharf:	chalten der Software
💿 Nur manuelle Verbindung (Einstei	ungen -> Connect)

(a) Einstellung des COM-Ports in Pyro Ignition Control

A Einstellungen								
Allgemein Spectrum Handfire Output								
Sicherheitspasswort:								
Listenoptionen:								
Sonstiges:								
Globale Verzögerung: (S.MS) 00.070								

(b) Einstellung des Global Delay in Pyro Ignition Control

Abbildung 2.3: Einstellungen in Pyro Ignition Control

3 Kommunikation zwischen PC und Devices

In diesem Abschnitt wird die Systemüberwachung bzw. -konfiguration über die serielle Schnittstelle mittels Puttytel oder die *El Fueradoro*-GUI behandelt.

Auf die Kommunikation zwischen *Pyro Ignition Control* und der Transmitterbox wird an dieser Stelle nicht detailliert eingegangen, da hier – wenn alle Einstellungen wie in Abschnitt 2.3 erläutert getroffen wurden – alles quasi-automatisch und ohne Zutun des Benutzers stattfindet. Es muss dafür aber unbedingt sichergestellt sein, dass das von *Pyro Ignition Control* angesprochene Device scharfgeschaltet sein muss. Dies geschieht bei Zündboxen via Schlüsselschalter, bei Transmittern über den Terminalbefehl "arm".

Im Abschnitt 3.3 ab Seite 36 wird das Aktualisieren der Firmware mittels Firmware-Updater erklärt.

3.1 Puttytel

3.1.1 Befehlsübersicht

Hat man mittels **Puttytel** eine Verbindung zwischen einem Device und dem PC aufbauen können, sieht man vor sich zunächst nur einen schwarzen Bildschirm. Um nun mit dem Device kommunizieren zu können, existieren einige Befehle gemäß Tabelle 3.1.

Diese können, sofern **Puttytel** die aktive Anwendung ist, direkt über die PC-Tastatur eingegeben werden und sollten zur unmittelbaren Ausführung mit Druck auf die Taste *ENTER* abgeschlossen werden. Sobald das erste Zeichen eingegeben wurde, leuchtet die gelbe Status-LED am Device. Unbekannte Befehle werden ignoriert, sämtliche Buchstaben als Kleinbuchstaben interpretiert. Korrekturen sind unter Verwendung der *BACKSPACE*-Taste möglich.

Aufgrund der eingebauten Timeout-Funktion, welche ein Hängenbleiben des Programms während einer Show verhindern soll, bricht die Firmware die Eingabe ab, wenn zwischen der Eingabe der einzelnen Buchstaben mehr als 3 s vergehen. Lässt man diese Zeit verstreichen, wird automatisch ein Drücken der *ENTER*-Taste übermittelt, die Befehlseingabe also abgeschlossen und das Device ist unmittelbar bereit, einen neuen Befehl aufzunehmen. Wird also nach Eingabe eines gültigen Befehls die *ENTER*-Taste nicht gedrückt, wird der Befehl durch den Timeout dennoch ausgelöst. Möchte

Befehl	Wirkung			
arm	Schaltet den Transmitter scharf, um Zündbefehle senden zu können			
disarm	Schaltet den Transmitter unscharf, Zündbefehle werden nicht mehr gesendet			
conf	conf Startet das Konfigurationsprogramm zur lokalen Zuweisung von Unique- und			
	Slave-ID			
remote	Startet das Konfigurationsprogramm zur ferngesteuerten Zuweisung von			
	Unique- und Slave-ID			
list	Zeigt die Systemübersicht (Zuweisung Unique- und Slave-ID, Batteriespannung			
	jeder Box, Scharfschaltungsstatus Temperatur, RSSI, Anzahl Boxen je Slave-			
	ID)			
send	Startet das Menü zur manuellen Eingabe einer Anweisung ans Funkmodul			
	(Zündbefehl, Identifizierungsaufforderung oder Temperaturmessung)			
fire	Führt zu einer Eingabemaske, in die Slave-ID und Kanal für die Zündung			
	einzugeben sind			
ident	Sendet eine Identifizierungsaufforderung an alle anderen Devices			
temp	Gibt über die serielle Schnittstelle die Temperatur aus und fordert alle anderen			
	Devices ebenfalls zur Temperaturmessung auf. Zum Auslesen der neu gemes-			
	senen Temperaturen muss dann eine Identifizierungsanfrage geschickt werden			
rfm	Erlaubt unmittelbaren Zugriff auf das Funkmodul durch Eingabe einer 16-Bit-			
	Hexadezimalzahl, um Registerwerte auszulesen oder neu zu setzen			
aeskey	Schlüssel für die Funkübertragung auslesen und neu setzen			
igniter	Verwendeten Anzündertyp und somit Öffnungszeit der Zündkanäle setzen			
orders	Gibt letztes gesendetes und empfangenes Pattern auf LCD aus			
cls	Löscht den Terminal-Bildschirm			
kill	Löst einen Neustart des Device aus			

Tabelle 3.1: Kommandos zur Konfiguration über die serielle Schnittstelle

man dies vermeiden, sollte man den Befehl vor Ausführung durch Eingabe weiterer Zeichen ungültig machen oder durch Entfernen aller Zeichen mittels *BACKSPACE* löschen.

Von den in Tabelle 3.1 aufgeführten Befehlen funktioniert lediglich "orders" nicht bei allen Devices, sondern setzt voraus, dass das angeschlossene Device ein Transmitter ist.

3.1.2 Konfiguration

Lokal

Mit "conf" gelangt man ins Konfigurationsmenü für die lokale Konfiguration der IDs, dessen Ablauf beispielhaft in Abbildung 3.1 gezeigt ist. Hier sind die beiden wichtigsten Parameter jeder Zündbox,

Abbildung 3.1: Ablauf des Konfigurationsprogramms bei Verbindung mit einer Zündbox

die Unique-ID und die Slave-ID, aufgeführt, die der Benutzer nach eigenen Bedürfnissen vergeben kann.

Die **Unique-ID** dient der Identifikation jeder einzelnen Zündbox im Funksystem. Jeder verwendeten Zündbox muss daher, um die Funktion von *El Fueradoro* gewährleisten zu können, eine andere Unique-ID im Bereich von 01-30 (zweistellige Eingabe!) eineindeutig zugeteilt werden, d. h. jede Box hat eine unterschiedliche Unique-ID bzw. jede Unique-ID gehört zu genau einer Zündbox.

Die **Slave-ID** entscheidet, auf welche Zündbefehle eine Zündbox reagiert. Sollen also zwei oder mehr Boxen stets zur selben Zeit denselben Kanal zünden, kann ihnen einfach die gleiche Slave-ID zugewiesen werden.

Die Null als Unique- und Slave-ID identifiziert ein Device als Transmitterbox. Die Software für Transmitter und die ersten beiden Zündboxgenerationen erkennt dabei automatisch, ob es sich beim angeschlossenen Device um einen Transmitter oder eine Zündbox handelt⁴ und weist Transmittern unmittelbar beim Hochfahren "0" als Unique- und Slave-ID zu. Ein vom Aufbau her als Zündbox ausgeführtes Device muss immer von Null verschiedene IDs besitzen.

Die Zuweisung von Unique- und Slave-ID vom Startbildschirm des Konfigurationsprogramms aus geschieht, indem man den Anweisungen auf dem Bildschirm folgt. Die Eingabe von "I" bzw. "i" (Groß- oder Kleinschreibung spielt keine Rolle) erlaubt eine Änderung von Unique- und Slave-ID einer Zündbox. Die neue Unique- bzw. Slave-ID muss stets zweistellig ohne Bestätigung durch *ENTER* oder eine andere Taste eingegeben werden. Beide IDs können im Bereich von 01-30 liegen.

Möchte man beispielsweise die Unique-ID 5 und die Slave-ID 12 zuweisen, muss man nach Anzeige des Startbildschirms zunächst "i" und anschließend "05" und "12" eingeben. Will man eine der beiden IDs beibehalten und nur die andere ändern, kann die Änderung durch Drücken von *ENTER* übersprungen

⁴Wie diese automatische Erkennung funktioniert, ist im Abschnitt 8 ab Seite 83 beschrieben

Abbildung 3.2: Beispiel einer ferngesteuerten ID-Zuweisung

werden. Die zugewiesenen IDs werden an drei Stellen im internen Speicher mit Prüfsummen hinterlegt und bleiben sowohl nach dem Ausschalten als auch nach einem Firmwareupdate erhalten. Eine Änderung mindestens einer der IDs führt zu einem sofortigen Neustart der Zündbox.

Unabhängig davon, dass eine Zündbox nicht als Transmitter konfiguriert werden, also nicht Uniqueund Slave-ID besitzen kann, kann sie theoretisch trotzdem zur Steuerung und Koordinierung eines Netzes und einer Show eingesetzt werden, indem man sie über die serielle Schnittstelle mit dem PC verbindet. Bis auf die Darstellung am LCD erfüllt sie dieselben Aufgaben wie ein Transmitter und kann auch parallel noch als Zündbox fungieren. Auf entsprechenden Sicherheitsabstand zu Lebewesen und sensibler Technik ist dabei selbstverständlich zu achten!

Ferngesteuert

Über den Befehl "remote" gelangt man ins Konfigurationsprogramm zur ferngesteuerten Vergabe von Unique- und Slave-ID. Der Programmablauf ist beispielhaft in Abbildung 3.2 gezeigt: Die Eingabe der alten und neuen IDs erfolgt analog zur Eingabe bei lokaler Konfiguration, am Ende muss die Änderung noch bestätigt werden. Werden als alte Unique- und Slave-ID die Daten der verbundenen Box eingegeben, so werden deren Kennzahlen wie bei einer lokalen Konfiguration geändert und kein weiterer Befehl gesendet.

Durch "remote" und die Eingabe von Unique- und Slave-ID einer nicht per Kabel verbundenen Box ist es möglich, die IDs einer eingeschalteten Zündbox per Funk zu ändern. Voraussetzung ist dabei, dass die angesprochene Zündbox nicht scharf geschaltet ist.

Der Anwender hat selbst darauf zu achten, durch ein ferngesteuertes Update nicht einem Device eine bereits vergebene Unique-ID zuzuweisen! Falls dies dennoch geschieht, ist das weitere Vorgehen davon abhängig, ob die Devices auch die gleiche Slave-ID besitzen oder nicht. Sind die Slave-IDs nicht identisch, so kann durch einen weiteren "remote"-Befehl die Unique-ID-Zuweisung geändert werden. Bei identischen Slave-IDs funktioniert dies nicht, da stets alle Devices auf den Änderungsbefehl in gleicher Weise reagieren würden. Hier müssen daher alle Devices mit identischen IDs bis auf eines ausgeschaltet werden, dem man dann neue IDs zuweisen kann. Nun kann dann jeweils ein weiteres Device eingeschaltet und seine IDs neu gesetzt werden, bis wieder alle unterschiedliche Unique-IDs besitzen.

3.1.3 Systemübersicht

Mit "list" ist es möglich, sich die Systemübersicht entsprechend Abbildung 3.3 anzeigen zu lassen. Es werden zwei Tabellen ausgegeben, wobei die obere nach Unique-ID geordnet anzeigt:

- 1. Slave-ID, welcher der Unique-ID zugewiesen ist.
- 2. Spannung, welche die Batterie der Box mit der entsprechenden Unique-ID liefert.
- 3. Scharfschaltungsstatus der Box mit der jeweiligen Unique-ID: (j)a (=scharf) oder (n)ein (=nicht scharf).
- 4. Temperatur im Inneren der Box, sofern die Box über einen eingebauten Temperatursensor verfügt, ansonsten wird "n.a." (not available) angezeigt.
- 5. Stärke des von der Box empfangenen Antwortsignals (RSSI = Received Signal Strength Indicator) in dBm. Je größer der Wert ist bei negativen Werten also umso näher er bei 0 liegt, umso besser und umso weniger störanfällig ist die Verbindung zwischen den Devices. Die theoretische Empfangsgrenze liegt bei etwa –96 dBm.

Die untere Tabelle listet auf, wie viele Boxen mit der entsprechenden Slave-ID derzeit aktiv sind.

Zwischen den beiden Tabellen wird die Anzahl der fehlerhaften IDs aufgelistet. Dies kann entweder auf doppelte Zuweisung von Unique-IDs oder Fehler beim Auslesen der IDs (fehlerhafte Prüfsummen) zurückzuführen sein. Für normalen Betrieb sollte dieser Wert stets 0 betragen.

Der dargestellte Zustand entspricht den empfangenen Parametern nach der letzten Identifikationsaufforderung bzw. nach dem Einschalten der Zündbox. Für eine möglichst aktuelle Liste sollte also vor dem Aufruf von "list", wie im Abschnitt 3.1.4 beschrieben, eine Identifikationsaufforderung gesendet werden.

	Second Property.		
Systemübersicht			
Unique-ID: Slave-ID, Batteriesp	annung (V), Scharf?, Temperatur	(°C), RSSI (dBm)	
01: 01, 12.8, n, 21, -33	02: 01, 12.4, n, 21, -24	03: 02, 13.0, n, 21,	-35
04:,, -,,	05:,, -,,	06:,, -,,	
07:,, -,,	08:,, -,,	09:,, -,,	
10:,, -,,	11:,, -,,	12:,, -,,	
13:,, -,,	14:,, -,,	15:,, -,,	
16:,, -,,	17:,, -,,	18:,, -,,	
19:,, -,,	20:,, -,,	21:,, -,,	
22:,, -,,	23:,, -,,	24:,, -,,	
25:,, -,,	26:,, -,,	2/:,, -,,	
28:,, -,,	29:,, -,,	30:,, -, -,,	
Fehlerhafte/doppelte IDs: 0			
Slave-ID: Anzahl Boxen			
01: 2	02: 1	03:	
04:	05:	06:	
07:	08:	09:	
10:	11:	12:	
13:	14:	15:	
16:	17:	18:	
19:	20:	21:	
22:	23:	24:	
25:	26:	27:	
28:	29:	30:	
			*

Abbildung 3.3: Systemübersicht

3.1.4 Manuelles Senden

Zu Testzwecken oder um die Systemübersicht zu aktualisieren, können mittels "send" Zündbefehle und die Aufforderung zur Identifizierung oder Temperaturmessung manuell versendet werden. Nach Eingabe von "send" muss dies mit "f" (=fire), "i" (=identify) oder "t" (=temperature) ausgewählt werden. Wählt man "i" oder "t" ist keine weitere Eingabe nötig, bei "f" müssen anschließend noch Slave-ID und Kanal jeweils zweistellig eingegeben werden. Statt "send" und den entsprechenden Buchstaben anzugeben, können auch die direkten Befehle "fire", "ident" und "temp" verwendet werden.

Jede andere Angabe als "f", "i" oder "t" beendet den Modus ohne irgendetwas zu senden. Denselben Effekt hat die Eingabe einer Slave-ID oder Kanalnummer außerhalb der jeweils zulässigen Zahlenbereiche.

3.1.5 Funkmodul-Zugriff

Die zwingend für den Betrieb von *El Fueradoro* notwendigen Zugriffe auf das Funkmodul werden von der Software automatisch getätigt, so dass diese Funktion in der Regel nicht gebraucht wird. Dennoch ist es möglich das verwendete Funkmodul RFM69CW bzw. RFM69HCW⁵ unmittelbar über das Terminalprogramm anzusprechen, um Werte aus den Registern zu lesen oder die Register für

⁵Link zum Datenblatt auf Seite 81

Hexadezimal	0	1	2	3	4	5	6	7
Dezimal	0	1	2	3	4	5	6	7
Binär	0000	0001	0010	0011	0100	0101	0110	0111
Hexadezimal	8	9	А	В	С	D	Е	F
Dezimal	8	9	10	11	12	13	14	15
Binär	1000	1001	1010	1011	1100	1101	1110	1111

Tabelle 3.2: Umrechnung Hexadezimal-, Dezimal- und Binärwerte

Bit	w/īr	r6	r5	r4	r3	r2	r1	r0	d7	d6	d5	d4	d3	d2	d1	d0
Wert	8	4	2	1	8	4	2	1	8	4	2	1	8	4	2	1
Zeichen Zeichen 1		en 1	Zeichen 2			Zeichen 3				Zeichen 4						
	w/r Schreib- oder Lesezugriff ($0 = \text{lesen}, 1 = \text{schreiben}$)															
	r6r0 Registeradresse															
	d7 d0 Zu schreibender Registerwert (beliebig falls w/ $\bar{r} = 0$)															

Tabelle 3.3: Struktur des RFM69-Befehls

die aktuelle Sitzung neu zu beschreiben. Beim nächsten Neustart des Devices werden stets die Standardeinstellungen wiederhergestellt.

Nach Eingabe von "rfm" und Bestätigung mit *ENTER* erscheint eine Aufforderung zur Befehlseingabe. Diese hat im Hexadezimalformat als 16-Bit-Wert zu erfolgen, d. h. vierstellig mit den zulässigen Zeichen 0-9 und A-F bzw. a-f. Jedes eingegebene Zeichen symbolisiert dabei vier Bits, die Umrechnung ist in Tabelle 3.2 gezeigt.

Die Bedeutung der Eingabe für das Funkmodul ist in Tabelle 3.3 illustriert. Hierbei sollte auch klar werden, wie sich die Werte für die Zeichen 1-4 zusammensetzen. Ist ein Bit gesetzt, muss die entsprechende Zahl (8, 4, 2, 1) zum Zeichenwert addiert werden, so dass sich bei vier gesetzten Bits als Maximalwert 15 ergibt, ist nur das oberste Bit gesetzt, lautet der Wert 8, ist nur das unterste gesetzt 1, sind die beiden mittleren Bits gesetzt 6, usw.

Es ist zu erkennen, dass das erste einzugebende Zeichen sowohl das Schreiben/Lesen-Bit enthält als auch die obersten drei Bit der Registeradresse. Die acht Datenbits sind lediglich für einen Schreibbefehl relevant, bei einem Lesezugriff kann als drittes und viertes Zeichen ohne Konsequenzen ein beliebiger Hexadezimalwert im Bereich von 0x00 bis 0xFF übertragen werden.

Auslesen der eingestellten Sendeleistung

Zur Veranschaulichung soll hier die Abfrage der aktuell eingestellten Sendeleistung und eine anschließende Änderung derselben mit dem Funkmodul **RFM69CW** simuliert werden: Aus dem Datenblatt, dem die Bedeutungen aller Registeradressen und ihrer acht Registerbits zu entnehmen sind, kann die Registeradresse 0x11 als diejenige identifiziert werden, in der die Informationen zur Sendeleistung hinterlegt sind. Um nun den aktuellen Wert auszulesen, gibt man – wie in Abbildung 3.4 gezeigt – im Terminalprogramm "rfm" gefolgt von *ENTER* ein und anschließend die Zeichenfolge "11FF", wobei die beiden hinteren Stellen wie erwähnt keine Rolle spielen.

Abbildung 3.4: Auslesen der gesetzten Sendeleistung

Abbildung 3.5: Setzen der Sendeleistung mit anschließendem Auslesen

10011010 entspricht, dessen Bedeutung dem Datenblatt entnommen werden kann: Das oberste Bit signalisiert, dass die Verstärkerstufe PA0 aktiv ist, die beiden folgenden Bits sind 0, da PA1 und PA2 in der Variante **RFM69CW** nicht genutzt werden können. Die unteren fünf Bits schließlich stehen für die eingestellte Sendeleistung, wobei man vom aus den fünf Bits berechneten Wert noch 18 abziehen muss, um die Sendeleistung in dBm zu erhalten. Gesetzt sind die Bits 4, 3 und 1, was dem Wert 26 $(= 2^4 + 2^3 + 2^1)$ entspricht, daraus resultiert eine eingestellte Sendeleistung von 8 dBm.

Setzen der Sendeleistung

Will man die Sendeleistung nun auf 6 dBm anpassen, muss also ein Wert von 24 für die Ausgangsleistungs-Bits gesetzt werden, dazu natürlich auch das oberste Bit für den PAO. Als Wert für die Registerbits ergibt sich damit $2^7 + 2^4 + 2^3 = 0x98$. Die Registeradresse bleibt gleich, jedoch muss dem Modul mitgeteilt werden, dass es sich um einen Schreibzugriff handelt, weshalb die erste Stelle um den Wert 8 erhöht werden muss. Um nun den neuen Wert von 6 dBm einzuschreiben, gibt man im Terminalprogramm – wie in Abbildung 3.5 gezeigt – "rfm" gefolgt von *ENTER* ein und anschließend die Zeichenfolge "9198".

Als Antwort erhält man vom Modul den Registerwert von VOR dem Schreibzugriff, im Beispiel also den Wert 0x9A. Ein nochmaliges Auslesen des Registers, wie im Abschnitt 3.1.5 beschrieben, sollte nun den eben eingeschriebenen Wert 0x98 zurückgeben. Beim nächsten Neustart des Device wird der Standardwert wiederhergestellt.

3.1.6 AES-Verschlüsselung

Zum sicheren Betrieb von *El Fueradoro* werden die drahtlos zu übermittelnden Daten zwischen Sender und Empfänger verschlüsselt. Hierfür muss in den am Funkverkehr beteiligten Modulen ein Schlüssel mit einer Länge von 16 Bytes (128 Bit) hinterlegt werden, der für die Ver- und Entschlüsselung der Datenpakete genutzt wird. Dieser Schlüssel ist im internen Speicher des Mikrocontrollers hinterlegt und bleibt auch beim Trennen der Stromversorgung erhalten. Selbstredend muss in allen Controllern derselbe Schlüssel hinterlegt sein, damit diese miteinander kommunizieren können.

Nach Eingabe von "aeskey" im Terminalfenster kann der aktuell eingestellte Schlüssel eingesehen werden. Hierzu wird der Schlüssel einmal aus dem Speicher des Controllers ausgelesen und einmal aus den Einstellungen des Funkmoduls. Diese beiden Zeilen sollten identische Werte anzeigen.

Jede Taste außer "s" bringt den Benutzer anschließend ins Hauptmenü zurück.

Möchte man den Schlüssel ändern, muss die Taste "s" gedrückt und anschließend der komplette neue Schlüssel im hexadezimalen Zahlenformat eingegeben werden, wie beim Funkmodul-Zugriff sind also nur die Zeichen 0-9 und A-F bzw. a-f zulässig. Wurde ein gültiger Schlüssel eingegeben, erfolgt noch eine finale Nachfrage, ob dieser neue Schlüssel gespeichert werden soll, welche man mit "j" oder "n" beantworten kann. Abbildung 3.6 zeigt das Prozedere im Terminalfenster.

🛃 EL FUERADORO		×
aeskey		\sim
Konfiguration der Verschlüsselung		
Aktuelle Einstellung: Verschlüsselung aktiviert!		
Schlüssel lt. Funkmodul: 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FI Schlüssel lt. EEPROM: 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FI	5	
Neuen (S)chlüssel eingeben, Abbruch mit beliebiger anderer Taste! s		
Neuer Schlüssel: 12 34 56 78 90 ab cd ef 12 34 56 78 90 ab cd ef Diesen Schlüssel speichern (j/n)?		

Abbildung 3.6: Auslesen und Neusetzen des AES-Schlüssels

3.1.7 Anzündertyp

Um *El Fueradoro* auch mit anderen Anzündertypen als den Standard E-Anzündern wie Talon-Anzündern nutzen zu können oder einen Zündkanal als Trigger für Geräte wie Flamer nutzen zu können, kann die Zünddauer angepasst werden. Es stehen dabei die Optionen:

- E-Anzünder: 20 ms
- Flamer: 350 ms

• Talon: 2450 ms

zur Auswahl.

Nach Eingabe von "igniter" im Terminalfenster kann die aktuelle Einstellung eingesehen werden, durch Eingabe eines Buchstabens, der den entsprechenden Optionen zugeordnet ist, kann diese Einstellung geändert werden. Eine nicht zugeordnete Taste beendet das Einstellungsmenü ohne Änderung. Die Einstellung bezieht sich dabei immer auf alle Kanäle der Zündbox und bleibt auch nach Neustart und Firmware-Update erhalten.

3.2 GUI

E FUERADORO	A EL RUERADORO Senden Metzwerk (D.(loka)) (D (remote))
COM4: USS Serial Pent (COM4) - (FTOBUS) •	COM4: USS Serial Fort (COM4) - (FTDBUS) *
Verbinden Trennem	Verbinden Teenen
Device-Newstart	Device-Neutlar

(a) Keine serielle Verbindung (b) Verbindung erfolgreich hergestellt

Abbildung 3.7: Startbildschirm der GUI

Die GUI stellt eine graphische Oberfläche zur Implementierung der Puttytel-Funktionen dar, indem über die serielle Schnittstelle ein- und ausgehende Daten geparst und an den entsprechenden Stellen innerhalb der Oberfläche dargestellt werden. Die Software ist in die fünf Reiter "Start", "Senden", "Netzwerk", "ID (lokal)" und "ID (remote)" unterteilt, in denen die entsprechenden Funktionen ausgeführt werden können.

Nach dem Start der Software sind alle Schaltflächen in allen Reitern mit Ausnahme der Auswahl der zur Verfügung stehenden COM-Ports und der Schaltfläche "Verbinden" im Reiter "Start" ausgegraut und deaktiviert, was in Abbildung 3.7a dargestellt ist. Nach Auswahl des entsprechenden Ports und Klick auf "Verbinden", werden diese beiden Schaltflächen ausgegraut und deaktiviert. Im Gegenzug erscheint in der Fußleiste der Devicetyp mit verwendetem Controller und Funkmodul und die Schaltflächen "Trennen" sowie "Device-Neustart" werden im aktuellen Reiter aktiv (Abbildung 3.7b).

Nach Herstellung der Verbindung sind auch die sonstigen Schaltflächen aktiv, Abbildung 3.8 zeigt den Reiter "Senden" im aktiven Zustand. Hier kann per Klick eine Identifizierungsaufforderung ver-

LE FUERADORO	- • •
Start Senden Netzwerk ID (lokal) ID (remote)	
	Identifizieren
	Temperatur 21
	Zanden Slave-ID 1 Transformation Kanal 1 Transformation
	Funkmodul 0100 h →> 10 h
Verbunden: Transmitter mit atmega328p & RFM69	

Abbildung 3.8: Sendebildschirm der GUI

art Senden Netzwerk ID (lokal) ID (remote)		
Unique-ID: Slave-ID, Batter	espannung (V), Scharf?, Te	emperatur (°C), RSSI (dBm	n)
01: 01, 12.8, j, 20, -4	02: 01, 12.5, n,	20, -50 03: 02, 1	12.8, j, 20, -42
04:,, -,,	05:,, -,	, 06:, -	, -,,
07:,, -,,	- 08:,, -, -	,, -	, -,,
10:,, -,,	11:,, -, -, -, -, -, -, -, -, -, -,	12:, -	
16, -, -, -, -, -, -, -, -, -, -, -,	12	, 15:, 19-	
19	20		
22:	23:	24:	
26:,, -,,	26:,, -, -	, 27:, -	; -;;
28:,, -,,	29:,, -,	, 30:, -	; -;;
Slave-ID: Anzahl Boxen 01: 2	02: 1	03:	
07:	08:	08:	
10:	11:	12:	
13:	14:	15:	
16:	17:	18:	
19:	20:	21:	
22:	23:	24:	
25:	26:	27:	
28:	29:	30:	

Abbildung 3.9: Netzwerkanzeige der GUI

schickt, eine Temperaturmessung getriggert, ein Zündvorgang ausgelöst oder ein Befehl ans Funkmodul geschickt werden. Bei "Zünden" und "Funkmodul" ist darauf zu achten, dass beim Klick auf die Schaltfläche unmittelbar die aktuell in den Eingabefeldern stehenden Werte übertragen werden, man diese also vor dem Klicken anpassen muss. Bei Temperaturanfrage und Funkmodulzugriff wird im entsprechenden Anzeigefeld die Antwort des angeschlossenen Devices – also die Temperatur in Grad Celsius oder die Antwort des Funkmoduls auf den aktuellen Registerzugriff als 8-bit-Hexadezimalwert – ausgegeben. Das permanente Ändern der Sendeleistung ist in der GUI noch nicht implementiert.

Der Reiter "Netzwerk" (Abbildung 3.9) dient einzig und allein der Darstellung der aktuell im System befindlichen Zündboxen mit ihren Parametern Unique-ID, Slave-ID, Batteriespannung, Scharfschaltungs-Status, Temperatur und gemessenem RSSI-Wert beim Empfang der Parameter.

Die Ansicht des Reiters "ID (lokal)" ist, wie Abbildung 3.10 zeigt, abhängig vom angeschlossenen Devicetyp. Bei Transmittern sind die Schaltflächen deaktiviert, da hier keine Änderungen an den IDs vorgenommen werden können (Abbildung 3.10a). Bei Zündboxen werden bei Aufruf des Reiters die aktuellen IDs in die entsprechenden Felder kopiert, können verändert und die Änderungen dann durch Klick auf "Werte übernehmen" übernommen werden (Abbildung 3.10b).

Im Reiter "ID (remote)" können alte und neue ID-Kombination eingestellt werden. Durch Klick auf "Ausführen" wird der Befehl zur ID-Änderung gesendet.

3.3 Firmwareupdate

WICHTIG: Aus Sicherheitsgründen darf kein Update durchgeführt werden, solange Anzünder mit dem Device verbunden sind, da sich die Devices im Falle eines Übertragungsfehlers völlig unvorhersehbar verhalten können.
3.3.1 Herunterladen

Die aktuelle Firmware kann aus dem Git-Repository

https://github.com/fixxl/el-fueradoro

mittels Git-Client oder direkt über den Link

https://github.com/fixxl/el-fueradoro/archive/master.zip

heruntergeladen werden.

Im Repository enthalten sind der komplette C-Quellcode, das AVR-Eclipse-Projekt, die kompilierten iHex-Dateien für Firmware und Bootloader, die nötigen Software-Tools zur Übertragung zwischen PC und Mikrocontroller sowie die vorliegende Anleitung.

3.3.2 Aktualisierung

El Fueradoro bietet die Möglichkeit, die Firmware via serielle Schnittstelle vom PC aus zu aktualisieren. Hierfür stehen das Kommandozeilentool *fwupdate.exe* oder eine Windows-Oberfläche namens UpdateLoader, welche beide zunächst einen Reset auslösen, um den Bootloader des Devices zu aktivieren, und anschließend die im iHex-Format vorliegende Firmware überträgen.

Es existieren für jede Kombination von Platinenversion (v1/v2, v3 mit 16 Kanälen und v3 mit 32 Kanälen sowie das Minimodul mit 4 Kanälen) und Funkmodul (RFM69CW und RFM69HCW) Firmwareversionen. Tabelle 3.4 gibt einen Überblick über die Versionen, welche sich im gleichen Ordner wie *fwupdate.exe* und *UpdateLoader.exe* befinden.

Kommandozeile

fwupdate.exe muss über die Kommandozeile mit zwei Parametern gestartet werden, nämlich der Angabe der seriellen Schnittstelle und dem Namen der zu übertragenden Firmware-Datei. Um nun die neue Firmware zu übertragen, lautet das Kommando für ein Device am *COM4* mit dem *ATmega328P* (und dem Funkmodul *RFM69CW*):

fwupdate.exe /c4 /fm:Pyro_atmega328p_RFM69.hex

oder für die Firmware mit höherer Sendeleistung

EL FUERADORO Start Senden Netzwerk [10 (lokal)] ID (remote)	Start Senden Netzverk (D (lokal) (D (remote)
Unique-ID 0 2 Slave-ID 0 2 Viete übernehmen	Unique-ID 1 Stave-ID 1 Stave
Vebunden: Transmitter mit atmegs128p & 87469	Verbunden: Zündbar mit ehmega238 p.8.87M69

Start Send	en Netzwerk ID (loka	I) ID (remote)		
	Alte Unique-ID Alte Slave-ID Neue Unique-ID Neue Slave-ID		Austubren	

Abbildung 3.11: Remote-ID-Einstellung

Firmware	Platine	Kanäle	Funkmodul
			(Sendeleistung)
Pyro_atmega328p_RFM69CW_16ch.hex	v1/v2	16	RFM69CW (13 dBm)
Pyro_atmega328p_RFM69HCW_16ch.hex	v1/v2	16	RFM69HCW (20 dBm)
Pyro_v3_atmega328p_RFM69CW_16ch.hex	v3	16	RFM69CW (13 dBm)
Pyro_v3_atmega328p_RFM69CW_32ch.hex	v3	32	RFM69CW (13 dBm)
Pyro_v3_atmega328p_RFM69HCW_16ch.hex	v3	16	RFM69HCW (20 dBm)
Pyro_v3_atmega328p_RFM69HCW_32ch.hex	v3	32	RFM69HCW (20dBm)
Pyro_Mini_atmega328p_RFM69CW_4ch.hex	Mini	4	RFM69CW (13 dBm)
Pyro_Mini_atmega328p_RFM69HCW_4ch.hex	Mini	4	RFM69HCW (20 dBm)

Tabelle 3.4: Verfügbare Firmware-Versionen

fwupdate.exe /c4 /fm:Pyro_atmega328p_RFM69_HP.hex

Die Angabe der Dateiendung *.hex* kann hierbei – ebenso wie das *.exe* hinter *fwupdate* – auch weggelassen werden, die Firmware-Datei muss jedoch zwingend auf *.hex* enden.

fwupdate.exe ist, sofern bereits eine korrekt funktionierende Firmware auf dem Device vorhanden ist, in der Lage, automatisiert zu ermitteln, welche Firmwaredatei die benötigte ist, das Kommando für ein Update über *COM4* lautet dann nur noch:

fwupdate.exe /c4 /fa

Der Updater führt nach Übertragung der Daten einen CRC-Check durch. Sollte dieser fehlschlagen, wurde die Firmware nicht korrekt übertragen. Dies kann zufällig passieren oder auf ein Hardwareproblem, welches in der Regel beim USB-RS232-Adapter liegt, zurückzuführen sein. Für den Fall eines CRC-Fehlers sollte die Firmware erneut übertragen werden. Bleibt das Update beim Punkt "COMx at 9600 baud:" stehen, sollte die Stromversorgung des Device kurz unterbrochen und wieder aktiviert werden. Das Kabel für die serielle Verbindung bleibt währenddessen mit Device und PC verbunden.

Windows-Oberfläche

Dank der Arbeit von Leo-Andres Hofmann⁶ existiert die in Abbildung 3.12 dargestellte Windows-Oberfläche zur einfachen Übertragung der Firmware via serielle Schnittstelle, der UpdateLoader. Hier kann man aus der Liste der verfügbaren COM-Ports den entsprechenden wählen sowie die zu übertragende Datei einstellen (hier auf korrekte Version achten!) und die Dateiübertragung per Klick auf "Update starten" durchführen.

🔏 UpdateLoader 2.2 (Build 2.2.5.0)	x
Update Sonstiges	
Verbindung	
Port	
COM 1: Kommunikationsanschluss (COM1) - (ACPI) 🔻	- 11
Firmware-Update	
Firmware-Datei	
Pyro_atmega328p_RFM69.hex Auswählen	
Update starten!	
Status	51
Verbinden	L.
Programmieren Überprüfen	
	-
Fortschritt	
Bereit, Firmware-Datei geladen (Pyro_atmega328p_RFM69.hex)	

Abbildung 3.12: Benutzeroberfläche UpdateLoader

⁶Seine Homepage findet sich unter: https://luani.de

4 raspEasyFire

Als Alternative zur Kombination aus Laptop/PC und dem in den vorangegangenen Abschnitten beschriebenen Transmitter wurde in Zusammenarbeit mit einem Softwareentwickler ein Audio-Funksystem auf Basis des bekannten Einplatinencomputers "Raspberry Pi" entwickelt. Dieser übernimmt die Kontrolle der Show inklusive der Musikwiedergabe.

Neben einem Raspberry Pi (unterstützt werden Stand 01-2023 Modelle bis 3B+) werden für den Aufbau eine speziell für die Verwendung mit *El Fueradoro* entwickelte Aufsteckplatine sowie ein Touchdisplay, eine USB-Soundkarte, zwei Taster (FIRE und ON-OFF), welche interne oder externe LEDs besitzen können, ein Schlüsselschalter und zwei weitere LEDs für die Signalisierung von Senden (TX) und Empfangen (RX) benötigt. Eine Einkaufsliste findet sich in Tabelle 10.2 ab Seite 93.

Alternativ zur Verwendung einer USB-Soundkarte kann für die Soundwiedergabe auch ein Hifiberry⁷ verwendet werden. Hierzu existiert eine in diesem Handbuch noch nicht näher behandelte Platinenversion für *raspEasyFire*, welche die von Hifiberry benötigten Anschlüsse am "Raspberry Pi" nicht nutzt. Ob es sich um die Hifiberry- oder die klassische Variante handelt, muss softwareseitig festgelegt werden, als Standard wird die klassische Variante angenommen.

Ausgangspunkt für die Arbeiten mit *raspEasyFire* ist ein komplett aufgebautes System mit beschriebener SD-Karte, die notwendigen Schritte hierzu werden in den Abschnitten 12.2, 12.4.4 und 14 dargelegt. Eine mögliche Außenansicht mit den notwendigen Funktionseinheiten ist in Abbildung 4.1 gezeigt.

4.1 Erster Start

Beim ersten Hochfahren passt sich das System an die tatsächlichen lokalen Gegebenheiten an, insbesondere wird die komplette Größe der verwendeten Speicherkarte nutzbar gemacht.

Zusätzlich muss der Anwender mitteilen, welche Auflösung das von ihm verwendete Display besitzt: Der FIRE-Taster setzt die Auflösung auf 800x480 Pixel, der ON-OFF-Taster auf 1024x600 Pixel. Ebenso wird die Art des verbauten Funkmoduls abgefragt: Der FIRE-Taster setzt das RFM69HCW, der ON-OFF-Taster das RFM69CW.

⁷Nähere Infos unter https://www.hifiberry.com/

Abbildung 4.1: Aufgebautes System raspEasyFire

Die manuelle Eingabe von Auflösung und Funkmodul kann vermieden werden, indem im Hauptverzeichnis der SD-Karte eine Datei "sysinfo.txt" abgelegt wird, die für ein "klassisches" System mit HCW-Modul und großem Display im Band um 868 MHz folgendermaßen aussehen sollte:

screen800: 0 hcw: 1 f433: 0 hifi: 0

Anschließend erfolgt ein automatischer Neustart des Systems, der im Auswahlbildschirm mündet, ob man das Programm starten (FIRE-Button) oder das System herunterfahren (ON-OFF-Button) möchte. Ein gleichzeitiges Drücken beider Taster beendet das Startup-Skript und bringt den Nutzer zur "Bash", wie die Kommandozeile unter Linux genannt wird.

4.2 Konfiguration und Zugriff

Die meisten Konfigurationseinstellungen sind mittlerweile im Programm via Touchscreen verfügbar, dennoch kann es nötig oder gewünscht sein, unmittelbar auf das Dateisystem oder die Ordnerstruktur des Raspberry Pi zuzugreifen.

Die einfachste Möglichkeit ist der Anschluss einer USB-Tastatur an den Raspberry Pi und Beenden des Startup-Skripts zur Kommandozeile. Alternativ kann auch per SSH über den stationären Rechner auf *raspEasyFire* zugegriffen werden.

Hierzu muss sichergestellt sein, dass sich *raspEasyFire* mit dem Drahtlosnetzwerk verbunden hat, um die lokale IP-Adresse (beispielsweise: 192.168.0.5) ermitteln zu können. Als SSH-Client kann das bereits als Terminalprogramm bekannte **Putty** verwendet werden, welches man mit folgenden Parametern startet:

putty.exe -ssh pi@192.168.0.5

Nun muss man beim ersten Verbindungsaufbau den SSH-Schlüssel bestätigen und wird dann nach dem Passwort gefragt. Das Standardpasswort für den Nutzer "pi" lautet *raspberry*. Ab diesem Punkt ist das Vorgehen mit direkt angeschlossener Tastatur oder SSH-Zugang identisch.

4.3 Anpassung und Umbenennung von AES-Schlüsseln

Ist der Zugriff eingerichtet, wird eine der ersten Tätigkeiten die Einstellung des passenden AES-Schlüssels sein, damit *raspEasyFire* und die Zündboxen von *El Fueradoro* dieselbe Sprache sprechen. Ausgangspunkt auf der Bash ist das Home-Verzeichnis des Users "pi", von dort kann man mit der Eingabe

cd raspEasyFire3/config

ins Verzeichnis der Konfigurationsdateien wechseln. Auch wenn an dieser Stelle keine ausführliche Linux-Einführung gegeben werden soll, sei kurz darauf hingewiesen, dass Linux im Gegensatz zu Windows bei Datei- und Verzeichnisnamen "case sensitive" ist, also genau auf Groß- und Kleinschreibung achtet.

In diesem Verzeichnis befinden sich von Haus aus drei Dateien, namentlich

- raspEasyFire.conf Die Konfigurationsdatei mit grundlegenden Programmeinstellungen. Mit einer Raute (#) beginnende Zeilen stellen dabei Kommentare dar, welche die Bedeutung der nachfolgenden Einstellungen demonstrieren, Einstellungen selbst werden in der Form "Variable: Wert" angegeben. Typischerweise sollte es nicht notwendig sein, hier Einstellungen zu ändern, der derzeit ausgewählte Zündplan wird beispielsweise immer automatisch durch das eigentliche Programm aktualisiert, andere Einstellungen können in der *raspEasyFire*-Oberfläche geändert werden.
- aesvalues_default.txt Diese Datei enthält den Standard-AES-Schlüssel, der zur Kommunikation mit den Zündboxen verwendet wird. Die Werte heißen "value_01, …, value_16" und müssen im Hexadezimalformat, d.h. mit vorangestelltem "0x" angegeben werden, der Wertebereich für jeden einzelnen "value" geht von "0x00" bis "0xFF".
- **aesvalues.txt** Diese Datei enthält den derzeit im Programm verwendeten AES-Schlüssel. Im Auslieferungszustand ist sie mit *aesvalues_default.txt* identisch.

Um einen eigenen AES-Schlüssel, welcher beispielsweise den Namen "mykey" tragen könnte, anzulegen, empfiehlt es sich, die Datei *aesvalues_default.txt* zunächst mit dem Kopierbefehl *cp* zu duplizieren:

sudo cp aesvalues_default.txt aesvalues_mykey.txt

Das Voranstellen von *sudo* führt dazu, dass der Befehl mit Administratorrechten ausgeführt wird, so dass man sich keine Gedanken um eingeschränkte Schreibrechte machen muss.

Zum Anpassen des Dateiinhalts steht der simple Texteditor "nano" zur Verfügung, per

sudo nano aesvalues_mykey.txt

startet man die Bearbeitung.

In "nano" werden dann die entsprechenden Einstellungen vorgenommen, beendet wird das Programm durch die Tastenkombination "STRG + X", anschließend bestätigt man die Nachfrage, ob die Änderungen gespeichert werden sollen.

Um die Daten aus *aesvalues_mykey.txt* zu verwenden, kann man sie entweder später im Programm per Touchscreen auswählen oder direkt via

sudo cp aesvalues_mykey.txt aesvalues.txt

zur neuen Standardeinstellung machen.

Ebenso ist es möglich, eine Textdatei im passenden Format nach dem Vorbild der *aesvalues_de-fault.txt* mit einem Namen, der mit *aesvalues_* beginnen und auf *.txt* enden muss – beispielsweise *aesvalues_customized.txt*, ins Hauptverzeichnis eines USB-Sticks zu kopieren und diesen beim Starten in den Raspberry Pi zu stecken. Genau wie bei Zündplänen und Musikdateien (siehe hierzu Abschnitt 4.5.1) werden diese Dateien dann automatisch ins korrekte Verzeichnis kopiert und ersetzen eventuell bereits vorhandene Dateien mit gleichem Namen.

Auch die im Abschnitt 4.1 angesprochene Datei "sysinfo.txt" kann über einen USB-Stick zum *raspEasy-Fire* übertragen werden. Um eine Dauerschleife zu vermeiden, wird die Datei auf dem Stick im Anschluss automatisch in "sysinfo.txt.applied" umbenannt.

4.4 Passwort ändern

Um den Zugriff für unbefugte Personen auf den Raspberry Pi zu verhindern, sollte unbedingt das Passwort des Users "pi" geändert werden. Möglich ist dies über ein Menü, welches man aus der Bash über

sudo raspi-config

erreicht.

4.5 Zündpläne und Musikdateien übertragen

raspEasyFire verarbeitet unmittelbar in *Pyro Ignition Control* erzeugte zpl-Dateien, so dass die Shows bequem am eigenen Rechner konzipiert werden können. Für die Übertragung der Dateien existieren grundsätzlich zwei Möglichkeiten, entweder über einen USB-Stick oder via Netzwerk über das SFTP-Protokoll. Bei Musikdateien muss es sich um mp3-Dateien handeln, welche auch die Endung ".mp3" besitzen, Zündpläne müssen auf ".zpl" enden und Dateien, die zusammen gehören, müssen denselben Namen tragen: Eine Show "Feuerwerk.zpl" verlangt demnach nach einer Musikdatei "Feuerwerk.mp3".

4.5.1 USB-Stick

Um Zündpläne und Musikdateien via USB-Stick zu übertragen, müssen die Dateien im Hauptverzeichnis eines USB-Sticks abgelegt werden und dieser Stick vor dem Hochfahren des Systems mit dem Raspberry Pi verbunden werden. Der Stick wird dann automatisch erkannt und die zpl- bzw. mp3-Dateien in die Verzeichnisse /home/pi/raspEasyFire3/showfiles/zpl bzw. /home/ pi/raspEasyFire3/showfiles/mp3 kopiert. Bereits dort existierende Dateien gleichen Namens werden ohne Nachfrage überschrieben.

4.5.2 SFTP

Unmittelbar übers Netzwerk können Dateien durch ein Programm wie den "FileZilla FTP Client" verschoben werden. Dort muss dann im Servermanager eine SFTP-Verbindung erstellt werden, wobei der Server der internen IP-Adresse von *raspEasyFire* entspricht und die Zugangsdaten mit Nutzername "pi" und dem entsprechend gewählten Passwort anzugeben sind. Auch hier wird bei erstmaliger Verbindung typischerweise eine Bestätigung gefordert, anschließend kann man durch das Dateisystem navigieren und die Show- und Musikdateien in den entsprechenden Verzeichnissen /home/pi/raspEasyFire3/showfiles/zpl bzw. /home/pi/raspEasyFire3/showfiles/mp3 ablegen.

4.6 Die Benutzeroberfläche

Durch Drücken des FIRE-Buttons nach dem Hochfahren, startet die Benutzeroberfläche von *raspEasy-Fire*, sie ist in Abbildung 4.2 gezeigt.

Im linken Teil des Bildschirms werden einige Informationen wie der aktuelle Zündplan oder die gemessene Batteriespannung angezeigt, am rechten Rand des Bildschirms sind die Schaltflächen zur Bedienung via Touchscreen zu sehen:

1. Modusauswahl

Auto-Mode Vollautomatisches Zünden nach Zeitplan

Semi-Auto-Mode Manuelle Zündung per Knopfdruck mit vorgegebener Reihenfolge

Abbildung 4.2: Startbildschirm nach dem Aufruf von raspEasyFire

Manual Mode Vollständig manuelle Zündung

- 2. Musikbegleitung an/aus
- 3. Zündplanauswahl
- 4. Slavesuche
- 5. Weitere Optionen
- 6. Soundcheck

Zusätzlich wird das Datum der Erstellung der aktuell verwendeten Software angezeigt, bei aktiver Internetverbindung kommt dazu der Hinweis, ob die Software dem aktuellen Stand auf dem Server entspricht oder älter ist. Updates können über den in Abschnitt 4.6.3 beschriebenen Bereich durchgeführt werden.

4.6.1 Zündplanauswahl

Anwählen des Punktes "ZPL wählen" führt zum in Abbildung 4.3 gezeigten Bildschirm. Hier kann aus den im Programmunterverzeichnis "showfiles/zpl" vorhandenen Zündplänen gewählt werden. Die Auswahl ist abschließend zu bestätigen, um den gewählten Zündplan zu laden.

00	6		Q		
		Wähle ZPL-F	-ile für Show		
			FIRE2013		
	FIRE2015		FIRE 2017	FIRE2018	
	JensFinal		Kanaltest-zwei-Slaves	Klaus75	
	Wagenburg2018				
	Abbre	chen	Best	ätigen	0

Abbildung 4.3: Auswahl des Zündplans

Analog verhält es sich im manuellen Modus mit Musik mit der Auswahl der MP3-Datei, sofern die Musikbegleitung aktiviert ist.

Die Auswahl von Zündplan bzw. Musikstück wird jeweils gespeichert und ist dann auch beim nächsten Programmstart aktiv.

4.6.2 Slavesuche

Mit einem Druck auf die Schaltfläche "Slaves suchen" wird eine Suche nach verfügbaren Zündboxen gestartet. Deren Dauer ist von der maximalen Slaveanzahl abhängig, anschließend werden die Parameter der in Reichweite befindlichen Boxen wie in Abbildung 4.4 zu sehen auf dem Startbildschirm angezeigt.

Die Anzeige der gefundenen Boxen erfolgt farblich kodiert. Wird eine Box gefunden, deren Slave-ID im aktuell ausgewählten Zündplan Verwendung findet, so werden ihre Daten in weißer Schrift ausgegeben, Boxen mit nicht verwendeter Slave-ID werden in einem Goldton gelistet. Dies dient als Hinweis an den User.

Die gezeigten Parameter jeder einzelnen Box sind:

• Unique-ID

- Slave-ID
- Kanalanzahl
- Batteriespannung
- Scharfschaltungsstatus
- Temperatur
- Empfangsleistung beim Empfang der Identifizierungsaufforderung
- Aktueller Squelch-Wert des Funkmoduls
- Farbliche Markierung für die Größe der Differenz zwischen Empfangsleistung und Squelch als Indikator für die Ausfallwahrscheinlichkeit

In Klammern hinter "Gefundene Slaves" taucht zudem die Gesamtanzahl gefundener Zündboxen auf. Werden weniger Boxen als erwartet gefunden, sollten –sofern mehrmaliges erneutes Suchen keinen Erfolg gebracht hat – folgende Ursachen und Lösungsversuche in Erwägung gezogen werden:

- 1. Box nicht eingeschaltet oder Batterie leer \Rightarrow Einschalten, Batterie laden/tauschen
- 2. Unterschiedliche AES-Schlüssel \Rightarrow AES-Schlüssel abgleichen
- 3. Fehlende Funkverbindung durch Hindernisse, Abschattung, schlecht angebundene Antenne ⇒ Boxposition anpassen für direkte Sichtlinie, Schraubverbindung der Antenne fest (aber nicht zu fest) anziehen, Abstand zwischen Box und *raspEasyFire* verringern
- 4. Datenkollision durch gleiche Unique-IDs \Rightarrow Zuteilung einer anderen Unique-ID

Erscheint unter dem Punkt "Letzte Suche" der Hinweis "SQUELCH-WARNUNG", so bedeutet dies, dass das Funkmodul während der Suche häufig durch Signale, welche nicht von einer Zündbox kamen, abgelenkt wurde. In einem solchen Fall sollte die RSSI-Schwelle des Senders neu kalibriert werden, weil sie zu sensibel eingestellt ist, siehe hierzu Abschnitt 4.6.3. Dasselbe gilt, wenn keine "SQUELCH-WARNUNG" ausgegeben wurde, aber möglicherweise nicht alle Zündboxen gefunden wurden. Dann liegt die eingestellte Schwelle möglicherweise zu hoch.

4.6.3 Weitere Optionen

Über diesen Menüpunkt erhält man Zugang zu weiteren Untermenüs und Funktionen.

Abbildung 4.4: Anzeige der gefundenen Boxen

Einstellungen anpassen

Unter diesem Punkt können einige Grundeinstellungen des Programms verändert werden:

- **Showmodus beim Start** Welche Art der Show soll beim Programmstart standardmäßig eingestellt sein? Diese Einstellung wird erst nach Neustart von *raspEasyFire* aktiv und hat keine Auswirkung auf die aktuelle Einstellung im Programm.
- **Ton standardmäßig aus?** Soll die Standardeinstellung "Musik an" oder "Musik aus" lauten? Auch diese Einstellung wird erst nach Neustart von *raspEasyFire* aktiv und hat keine Auswirkung auf die aktuelle Einstellung im Programm.
- **Eingebautes Funkmodul** Wird mit dem Funkmodul RFM69CW gearbeitet oder mit der Variante RFM69HCW mit höherer Sendeleistung? Eine nicht zur tatsächlich verbauten Hardware passende Einstellung führt dazu, dass die Funkverbindung mit den Zündboxen schon bei geringen Distanzen nicht aufgebaut werden kann.
- Herunterfahren beim Beenden Soll nach dem Beenden von *raspEasyFire* das System komplett heruntergefahren oder in den Commandprompt gesprungen werden?
- **Fehlende Slaves ignorieren** Soll beim Überprüfen der automatischen oder semiautomatischen Show darauf bestanden werden, dass jede im Zündplan genannten Slave-ID (außer Slave 999) auch tatsächlich mindestens einmal vorhanden, die verfügbare Kanalzahl größer oder gleich der maximal bei dieser Slave-ID adressierten Kanalnummer ist und alle Slaves scharf geschaltet

sind oder nicht? Für den manuellen Modus hat diese Einstellung keine Bedeutung.

Soundcheck mit Showmusik Soll die aktuell ausgewählte Musik für den Soundcheck verwendet werden? Bei "Nein" wird das Standard-Teststück (showfiles/mp3/test.mp3) verwendet.

Lautstärke Lautstärkeeinstellung der Soundkarte für die Wiedergabe der Musik in Prozent.

- Maximale Anzahl Slaves Wie viele Slaves sind zulässig? Dieser Wert ist gleichzeitig auch der Maximalwert für Unique-ID und Slave-ID einer einzelnen Box. Je größer dieser Wert gewählt wird, umso länger dauert auch die Slavesuche, weil das Programm jeder Unique-ID einen Zeitschlitz fester Länge zuweist, um auf eine Identifizierungsanfrage zu antworten.
- **RSSI-Schwellwert (dBm) Sender** Minimale Empfangsleistung (Squelch-Wert) für *raspEasyFire*. Ab welcher Leistung soll das Funkmodul versuchen, ein ankommendes Signal zu detektieren. Diese Einstellung ist wichtig für korrekt funktionierenden Funkverkehr. Ein zu hoher Wert verringert die Funkreichweite, ein zu geringer Wert führt zu Fehltriggerungen durch Rauschen und blockiert die Empfangseinheit für tatsächliche Nachrichten. Der Wert kann manuell eingestellt werden oder durch einen Druck auf "Cal." durch einen Suchalgorithmus ermittelt werden. Bei erfolgreicher Kalibrierung wechselt der Buttontext auf "Cal. ok" und schlägt einen Wert vor, der jedoch noch zu bestätigen ist.
- RSSI-Schwellwert (dBm) Boxen Squelch-Wert für Zündboxen; durch einen Druck auf "Send" kann ein gemeinsamer Squelch-Wert für alle Zündboxen in Reichweite eingestellt werden. Ausgehend von diesem Wert führen die Zündboxen jedoch individuell und kontinuierlich eine weitere Squelch-Anpassung durch, um ihren minimalen Empfangspegel möglichst optimal an die bestehenden örtlichen Gegebenheiten anzupassen.

Diese Einstellungen können durch "Bestätigen" dauerhaft übernommen oder durch "Abbrechen" wieder verworfen werden. Squelch-Einstellungen für die Zündboxen werden nicht automatisch gesendet, sondern nur per Druck auf den "Send"-Button.

Updates durchführen

Bei bestehender Internetverbindung kann hier die Software von *raspEasyFire* auf den letzten Stand gebracht werden. Ein Neustart ist nötig, um die Änderungen wirksam zu machen, der ausgewählte Zündplan wird auf die Standardeinstellung zurückgesetzt, AES-Key und Funkmoduleinstellung bleiben nach einem Update erhalten. Zudem werden die Veröffentlichungszeiten der lokalen und auf dem Server liegenden Software angezeigt.

Verwendeten AES-Key wählen

In diesem Fenster kann gewählt werden, mit welcher der im Unterverzeichnis *config* vorhandenen AES-Schlüssel-Dateien, welche einen Dateinamen der Form *aesvalues_NAME.txt* tragen müssen, gearbeitet werden soll. Die jeweils aktuell gewählte Datei ist blau markiert.

Sofern keins der Auswahlfelder markiert ist, entspricht der Inhalt der *aesvalues.txt* keiner der vorhandenen Dateien des Namensschemas *aesvalues_NAME.txt*. Dies sollte man durch Auswahl eines Feldes und anschließendes Bestätigen beheben, um wieder einen definierten Zustand zu erreichen.

Es besteht in diesem Feld auch die Möglichkeit, einen eigenen "Custom"-Key zu erzeugen. Dies geschieht auf Basis der Seriennummer des verwendeten Raspberry Pi sowie weiterer Zufallszahlen. Wurde dieser Key bereits erzeugt und seitdem nicht gelöscht, kann kein neuer erzeugt werden.

AES-Key mit Box abgleichen

Wird eine eingeschaltete Zündbox über USB-Kabel (v3) bzw. einen RS232-USB-Konverter (v1/v2) an den Raspberry Pi angeschlossen, kann unter diesem Punkt ihr AES-Schlüssel ausgelesen werden. Unterscheidet er sich vom aktuell in *raspEasyFire* eingestellten Schlüssel, kann der Nutzer entscheiden, wessen Schlüssel auf das andere Device übertragen werden soll.

El Fueradoro flashen

In diesem Untermenü ist es möglich, die aktuellen Bootloader- und Firmwaredateien für *El Fueradoro* herunterzuladen sowie über einen geeigneten Programmer den Bootloader auf ein El-Fueradoro-Device zu schreiben und bei vorhandenem Bootloader die Firmware zu übertragen. Zu diesem Zweck muss das Device von *El Fueradoro* per Programmer (Bootloader) oder USB-Kabel (Firmware v3) bzw. USB-RS232-Adapter (Firmware früherer Generationen) mit *raspEasyFire* verbunden werden. Standardmäßig sind im Image keine Firmwaredateien enthalten, vor dem ersten Flashen müssen diese also zwingend heruntergeladen werden. Den korrekten Bootloader und die korrekte Firmware für das angeschlossene Device (Generation/Funkmodul/Kanalzahl) auszuwählen, ist zunächst Aufgabe des Benutzers, mit Firmwareversionen ab September 2021 ist es jedoch auch möglich, das angeschlossene Device zu identifizieren, woraufhin direkt die passende Firmware zum Flashen ausgewählt wird.

Slave ID ändern

Zündboxen können neue IDs zugewiesen werden, den Bildschirm dazu zeigt Abbildung 4.5. Hierzu müssen per "+" und "-" die alten und neuen IDs eingestellt werden, durch Druck auf "Bestätigen" wird der Befehl zur Änderung der IDs dann abgeschickt. Es ist zu beachten, dass diese Änderung nur wirksam werden kann, wenn die entsprechende Zündbox nicht scharf geschaltet ist.

Abbildung 4.5: Ändern der IDs

Fuoco Step flashen

In diesem Untermenü ist es möglich, die aktuellen Bootloader- und Firmwaredateien für den Stepper *Fuoco Step* herunterzuladen sowie über einen geeigneten Programmer den Bootloader auf den *Fuoco Step* zu schreiben und bei vorhandenem Bootloader die Firmware zu übertragen. Zu diesem Zweck muss der Stepper per Programmer (Bootloader) oder USB-Kabel (Firmware) mit *raspEasyFire* verbunden werden.

Fuoco Step konfigurieren

Über diesen Menüpunkt können Stepsequenzen im *Fuoco Step* programmiert werden. Auch hierfür ist eine Kabelverbindung nötig, da *Fuoco Step* nicht in der Lage ist, Funksignale zu senden oder zu empfangen.

4.6.4 Dateien löschen

Hier können zpl- und mp3-Dateien sowie AES-Schlüssel und Logs gelöscht werden. Nicht löschbar sind Dateien, welche aktuell für die Show oder den Soundcheck ausgewählt sind, der Standard-AES-Schlüssel, der derzeit aktive AES-Schlüssel sowie der Log der aktiven Sitzung.

Abbildung 4.6: Widerstandsmessung

4.6.5 Soundcheck

Durch einen Druck auf den Button "Soundcheck" wird die in der Konfigurationsdatei eingestellte Soundcheckdatei wiedergegeben, möglich ist dies nur im nicht scharfgeschalteten Zustand. Beendet wird der Soundcheck durch Drücken des FIRE-Buttons oder Drehen des Schlüsselschalters in die "scharfe" Position.

4.6.6 Widerstandsmessung

Durch Anklicken der entsprechenden Zeile in Abbildung 4.4 fordert man eine *El Fueradoro-*Zündbox dazu auf, die Widerstände ihrer 4, 16 oder 32 Kanäle zu messen und an *raspEasyFire* zu senden. Diese werden dann in tabellarischer Form angezeigt wie in Abbildung 4.6 gezeigt. Am unteren Rand des Bildschirms kann zur jeweils nächsten und vorherigen Box oder zurück zum Startbildschirm gesprungen werden.

Frühere Generationen der Zündboxen (vor v3) können keine Widerstandsmessung durchführen, sie geben daher für alle Kanäle den Wert "n.a." (not available) zurück.

4.6.7 Besonderheiten in Zündplänen

Um die Funktionalität der zpl-Dateien zu erweitern, die Kompatibilität mit *Pyro Ignition Control* aber zu erhalten, existieren einige Schlüsselwörter und -zahlen, die für *Pyro Ignition Control* keine Bedeutung haben, in *raspEasyFire* aber entsprechend interpretiert werden:

- **STEPPER** Findet sich die Zeichenfolge "STEPPER" in einer Effektbeschreibung, so signalisiert dies *raspEasyFire*, dass der entsprechende Slave an diesem Kanal einen Stepper angeschlossen hat und der Kanal deshalb unter Umständen mehrfach gezündet werden darf, um den nächsten Effekt am Stepper zu triggern.
- **NOBUTTON** Diese Zeichenfolge in der Effektbeschreibung verhindert, dass für den jeweiligen Effekt in der Liste der Showcues, siehe hierzu Abschnitt 4.6.8, ein Button erstellt wird.
- **EXTEND** Vereint die beiden Optionen STEPPER und NOBUTTON. Dies kann dazu dienen, Zündkanäle für eine bestimmte Zeit offenzuhalten, beispielsweise für den Betrieb eines Flamers.
- **BACKUP** Findet sich die Zeichenfolge "BACKUP" in einer Effektbeschreibung, wird der Effekt nicht in die automatische Zündliste eingefügt, sondern als Schaltfläche auf dem Touchscreen hinterlegt, von wo aus er dann manuell während der Show ausgelöst werden kann. Es spielt dabei keine Rolle, ob die Slave-Kanal-Kombination woanders im Feuerwerk verwendet wird oder nicht, man kann also sowohl zur händischen "Nachzündung" als auch für zusätzliche Pausen- oder Lückenfüller Backups hinterlegen. Die Option BACKUP sticht die ihr teils widersprechenden Optionen STEPPER, NOBUTTON und EXTEND aus.
- Slave 999 Durch Verwendung der Slave-ID 999 wird *raspEasyFire* mitgeteilt, dass es sich hierbei nicht um einen tatsächlich zu schießenden Cue handelt, sondern nur um etwas, was auf dem Bildschirm angezeigt werden soll, beispielsweise durch einen zeitgesteuerten Stepper gezündete Cues oder Erinnerungen an eine bestimmte Aktion.

Seit April 2021 ist es mit *raspEasyFire* möglich, mehrere Slave-Kanal-Kombinationen (maximal 7 verschiedene) gleichzeitig zu zünden. Hierbei ist bei der Erstellung des Zündplans darauf zu achten, dass die Werte in der Spalte "Zündzeitpunkt" bzw. "Ignition Time" für die gleichzeitig zu feuernden Kombinationen identisch sind. Nur dann fasst *raspEasyFire* sie zu einem gemeinsamen Zündbefehl zusammen. Die Einschränkung, dass zwischen zwei Zündbefehlen mit nicht identischem Zündzeitpunkt mindestens 100 ms liegen müssen, bleibt weiterhin bestehen. In gleicher Weise wie Showcues können auch Backupcues zu Multicues zusammengefasst werden.

4.6.8 Showstart

Gestartet wird die Show im aktuell eingestellten Modus durch Drücken des FIRE-Buttons, es müssen allerdings bestimmte Voraussetzungen erfüllt sein, damit es wirklich losgehen kann.

Damit die Show reibungslos verläuft, kontrolliert *raspEasyFire*, ob Zündpläne und sonstige Gegebenheiten korrekt sind. Folgende Bedingungen müssen dabei für eine automatische Show erfüllt sein:

- Verwendete Slave-IDs müssen im Bereich von 1 bis zum in den Einstellungen festgelegten Maximum liegen, Slave-ID 999 ist zulässig für "Dummy-Cues", die zwar auf dem Display angezeigt werden, aber keine Zündung auslösen.
- Ansprechbare Kanalnummern liegen im Bereich von 1 bis 32.
- Jede Kombination aus Slave-ID und Kanalnummer darf im Zündplan lediglich einmal vorkommen. Dient der Kanal der Triggerung eines weiteren Geräts, soll also wirklich mehrfach ausgelöst werden, so ist in die Effektbeschreibung bei jedem Aufruf "STEPPER" (Großschreibung beachten) mit einzutragen, auch das Hinzufügen von "BACKUP", falls man bei Versagen der Zündung noch einmal manuell nachzünden möchte, unterbindet die Fehlermeldung.
- Der Abstand zwischen zwei "echten" Zündungen muss mindestens 100 ms betragen, für Dummy-Cues gilt diese Beschränkung demnach nicht.
- Für jede angesprochene Slave-ID (Ausnahme ist die Dummy-Slave-ID 999) muss mindestens eine Zündbox mit der entsprechenden Slave-ID gefunden worden sein. Zusätzlich wird geprüft, ob der maximale auf dieser Slave-ID angesprochene Kanalwert von den vorhandenen Boxen erreicht werden kann. Um diese Überprüfung abzuschalten, kann über "Weitere Optionen" und "Einstellungen anpassen" die Option "Fehlende Slaves ignorieren" auf "Ja" gesetzt werden.
- Alle gefundenen Zündboxen, deren IDs im Feuerwerk verwendet werden, müssen scharf geschaltet sein. Auch diese Überprüfung wird übersprungen, wenn die Option "Fehlende Slaves ignorieren" auf "Ja" gesetzt ist.
- Ist eine Musikshow vorgesehen, muss eine zum Zündplan passende Musikdatei im korrekten Verzeichnis vorhanden sein. Ebenso muss die in der Konfigurationsdatei benannte Soundcheckdatei existieren.
- Bei einer Musikshow müssen alle Zündzeitpunkte innerhalb der Dauer des Musikstücks liegen, da die Zündzeiten mit dem Zeitstempel des Audioplayers abgeglichen werden. Möchte man Zündungen nach dem Ende des Musikstücks setzen, muss die mp3-Datei durch das Hinzufügen von Stille am Ende verlängert werden.
- raspEasyFire muss durch den Schlüsselschalter scharf geschaltet sein.

Wird der FIRE-Button gedrückt, ohne dass die nötigen Voraussetzungen erfüllt sind, erscheint ein Info-Popup, welches die zu behebenden Probleme auflistet. Es empfiehlt sich, mit großem Zeitpuffer vor Beginn der Show einen Trockenlauf zu machen, um auf Fehler, die vor Ort nicht mehr allzu leicht zu beheben sind, aufmerksam zu werden.

Sind alle Bedingungen erfüllt, beginnt die FIRE-Button-LED nach dem Drehen des Schlüsselschalters in die "scharfe" Position zu blinken und ein Druck auf den FIRE-Button startet die Show.

Beispiele für die Ansicht im automatischen (mit Backup-Cues) und manuellen Modus sind in Abbildung 4.7a bzw. Abbildung 4.7b gezeigt.

Im automatischen Modus befinden sich in der unteren Bildschirmhälfte zwei Listen: Einerseits die horizontal scrollbare Liste (das automatische Scrollen zum aktuellen Showzeitpunkt kann durch Drücken auf die angezeigte Einstellung deaktiviert oder aktiviert werden) der automatischen Zündungen, darunter die Liste der explizit festgelegten Backup-Cues. Durch Drücken des FIRE-Buttons und anschließendes Betätigen der entsprechenden Schaltfläche bei noch gedrücktem FIRE-Button können ein Backup-Cue oder ein Show-Cue erneut bzw. auch vorzeitig ausgelöst werden.

(a) Automatischer Modus

				Manuell	e Zündung			
							Spa	nnung: 4.93 V
	Slav	/e:			-	01		
	Kana	al:						
		2	3	4	5	6	7	8
	9	10	11	12	13	14	15	16
	17	18	19	20	21	22	23	24
	25	26	27	28	29	30	31	32
Niche	ter Cue:	01/01						
Т								

(b) Manueller Modus

Abbildung 4.7: Bildschirme während der Show

5 Show

In diesem Kapitel gibt es einige Hinweise zur Planung und Umsetzung eines choreographierten Feuerwerks.

5.1 Vorbereitung

5.1.1 Beidseitiges Zünden

Gerade in Musikfeuerwerken steht man häufig vor der Herausforderung, ein durch die Dramaturgie des Musikstücks sehr genau abgestecktes Zeitintervall mit Effekten füllen zu müssen. Ist die Laufzeit einer Cakebox länger als dieses Intervall und besitzt der Effekt eine Reservezündschnur, kann die Laufzeit durch eine weitere Zündung an der Reservezündschnur entsprechend verkürzt werden.

Ab dem Zeitpunkt der zweiten Zündung wird die Restlaufzeit der Batterie halbiert, da die Anzündlitze dann von beiden Seiten abbrennt. Bezeichnet man das Zeitintervall zwischen erster und zweiter Zündung mit Δt und die ursprüngliche Laufzeit als T_{original} , ergibt sich die neue Laufzeit T_{neu} , die zwischen der halben und der ganzen ursprünglichen Laufzeit liegen kann, aus

$$T_{\rm neu} = \frac{T_{\rm original} + \Delta t}{2}.$$
(5.1)

Durch Umstellen der Formel (5.1) kann der Abstand zwischen den beiden Zündzeitpunkten bei festgelegter neuer Laufzeit bestimmt werden:

$$\Delta t = 2 \cdot T_{\text{neu}} - T_{\text{original}} \tag{5.2}$$

Soll also eine Batterie mit einer Laufzeit von 60 s in 40 s abgebrannt werden, muss die zweite Zündung 20 s nach der ersten ausgelöst werden. Hierbei kommt es natürlich auch zu einer Verdichtung der Effekte.

5.1.2 Zündkreisauslegung

An dieser Stelle soll kurz auf die Grenzen und Limits von *El Fueradoro* hinsichtlich der Zündkreise eingegangen werden, die bei der Planung einer Show zu berücksichtigen sind. Die Charakteristika

Strom (A)	Widerstand gesamt (Ω)	Widerstand Anzünder + Kabel (Ω)
0,6	37,0	34,8
0,75	29,5	27,3
0,9	24,5	22,3
1,0	22,0	19,8
1,2	18,2	16,0
1,5	14,5	12,3
1,75	12,3	10,1
2	10,7	8,5
2,5	8,5	6,3

Tabelle 5.1: Widerstandswerte für Zündkreise bei gegebenem Strom

und Kennwerte der einzelnen Anzündertypen sind Anlage 2 der 1. SprengV zu entnehmen.

El Fueradoro ist für die Verwendung mit den Anzündertypen A (Auslösestrom 0,6 A) und U (Auslösestrom 1,3 A) ausgelegt. Der nötige Strom zum Auslösen eines HU-Anzünders (Auslösestrom 25 A) kann nicht geliefert werden. Es ist zu berücksichtigen, dass in der Anlage ein Strombegrenzungswiderstand von 2,2 Ω verbaut ist, der in Reihe zum angeschlossenen Anzünder-Netzwerk liegt. Mittels Formel (5.3) kann der maximal zulässige Widerstand (inklusive der 2,2 Ω) für einen gegebenen mittleren Strom *I* ermittelt werden.

$$R_{\max} = \frac{50}{47 \cdot \ln\left(\frac{423 \,\mathrm{A}}{423 \,\mathrm{A} - 20 \cdot I}\right)} \Omega \tag{5.3}$$

Entsprechend resultiert für einen gegebenen Widerstand der mittlere Strom über eine Zeit von 10 ms aus Gleichung (5.4).

$$I = 21,15 \,\mathrm{A} \cdot \left(1 - \mathrm{e}^{-\frac{50\,\Omega}{47\cdot R}}\right) \tag{5.4}$$

Einige Kennwerte für Ströme und die resultierenden maximalen Widerstände sind in Tabelle 5.1 aufgeführt.

Der Kabelwiderstand kann unter Kenntnis von Querschnittsfläche A und/oder Durchmesser d, Material (mit spezifischem Widerstand ρ) und Kabellänge l berechnet werden:

$$R_{\text{Kabel}} = \frac{\rho \cdot l}{A}$$

bzw.
$$R_{\text{Kabel}} = \frac{4 \cdot \rho \cdot l}{d^2 \cdot \pi}$$

Material	$\rho\left(\frac{\Omega\mathrm{mm}^2}{\mathrm{m}}\right)$
Silber	0,0159
Kupfer	0,0175
Aluminium	0,0265
Eisen	0,15
Stahl	0,2

Tabelle 5.2: Spezifischer Widerstand verschiedener Leitermaterialien

Für einige typische Drahtmaterialien ist der spezifische Widerstand in Tabelle 5.2 dargestellt. Je kleiner der spezifische Widerstand ausfällt, umso größer ist dementsprechend sein Kehrwert, die elektrische Leitfähigkeit.

Bei der Verwendung von Verschleißdraht mit einer Kupferseele mit Durchmesser d = 0,5 mm kann für Überschlagsrechnungen also davon ausgegangen werden, dass je 10 m Kabel-Gesamtweg (also Hin- und Rückleitung addiert) ein zusätzlicher Reihenwiderstand von 1 Ω im Zündkreis auftritt.

Setzt man pro A-Anzünder einen Widerstand von 2 Ω und pro U-Anzünder einen Widerstand von 0,8 Ω an und geht von einem Gesamt-Kabelweg von 10 m aus, sollte die Anlage also im Stande sein, eine Reihe von 10 A-Anzündern, wodurch sich $R_{ges} = 23,2 \Omega$ ergibt, noch sicher auszulösen, da der mittlere Strom dann noch mehr als 50 % über dem Auslösestrom eines A-Anzünders liegt. Bei den U-Anzündern ergibt sich unter sonst gleichen Bedingungen, was Stromüberhöhung und Kabellänge angeht, ebenso eine Maximalzahl von 10 U-Anzündern in Reihe.

Es sei noch einmal deutlich darauf hingewiesen, dass aufgrund der unterschiedlichen Widerstände und Ansprechströme niemals verschiedene Anzündertypen zusammen in einem Zündkreis verwendet werden sollten – und zwar weder in Reihen- noch in Parallelschaltung!

Eine Beispielrechnung macht dies klar: Würde man beispielsweise je fünf Anzünder jeder Kategorie zu einer Reihenschaltung von 10 Anzündern zusammenschalten, ergäbe sich $R_{ges} = 17,2 \Omega$ und damit nach Formel (5.4) ein Strom I = 1,27 A, was bereits unterhalb des spezifizierten Auslösestroms eines U-Anzünders (1,3 A) liegt.

Hinzu kommt die Problematik, dass selbst bei einem rechnerisch ausreichend hohen Strom dieser in einer "Mischschaltung" wahrscheinlich nicht über die notwendige Zeitspanne bei den U-Anzündern ankäme. Dies liegt am unterschiedlichen Zündimpuls (Einheit $\frac{mWs}{\Omega}$), hinter dem sich der bei Schmelzsicherungen als Schmelzintegral bekannte "I-Quadrat-t-Wert", also das Produkt aus dem Quadrat des Stroms und der Zeit, verbirgt⁸. Fließt ein Strom I = 1,3 A durch die Reihenschaltung eines Anzünders vom Typ A und eines Anzünders vom Typ U, löst der A-Anzünder aufgrund des geringeren notwendigen Zündimpulses zuerst aus. Durch das Auslösen wird in aller Regel der Stromkreis unmittelbar unterbrochen, so dass kein Strom mehr durch den U-Anzünder fließen kann, weshalb die ihn ihm umgesetzte Energie möglicherweise nicht zum Auslösen ausreicht.

 $^{{}^{8}}W = VA \text{ und } \Omega = \frac{V}{A} \Rightarrow \frac{W}{\Omega} = A^{2}$

Die Krux bei einer Parallelschaltung, welche gegenüber der Reihenschaltung ohnehin die schlechtere Alternative darstellt, verschiedener Anzündertypen liegt darin, dass ein Auslösen des Anzünders nicht zwingend gleichbedeutend mit einer Unterbrechung des Stromkreises ist. Bei einer Parallelschaltung unterschiedlicher Widerstände wird zunächst der Ast mit dem geringsten Widerstand auslösen, allerdings kann nicht garantiert werden, dass dieser anschließend auch wirklich einen elektrischen Leerlauf darstellt. Sehr häufig ist auch nach dem Ansprechen noch eine elektrisch leitende Verbindung zwischen den Anzünderdrähten messbar, so dass ein Auslösen der weiteren Äste – gerade im Fall stark unterschiedlicher Widerstände – nicht gesichert ist.

El Fueradoro ermöglicht das Auslösen in so kurzen Zeitabständen, dass derartige Drahtseilakte durch eine Aufteilung auf zwei kurz hintereinander erfolgende Zündungen vermieden werden können.

Dem Anwender wird empfohlen, bei gleichzeitigem Zünden mehrerer Anzünder gleichen Typs eine Reihenschaltung zu verwenden, da hierdurch die Fehleranfälligkeit und Ausfallwahrscheinlichkeit deutlich verringert wird.

Ein Leerlauf (kein Durchgang eines Anzünders oder schlechte Kabelverbindung) wird bei der Reihenschaltung unmittelbar durch die nicht-leuchtende Kanal-LED bemerkt, bei einem Kurzschluss eines Anzünders fällt lediglich der Effekt dieses einen Anzünders aus. Bei der Parallelschaltung sorgt der Kurzschluss eines Anzünders mit hoher Wahrscheinlichkeit dafür, dass alle parallel geschalteten Anzünder stromlos bleiben, auch wird ein Leerlauf aufgrund des über die anderen Anzünder geschlossenen Stromkreises vermutlich nicht bemerkt.

5.1.3 Funkreichweite

Die Frage nach der Funkreichweite, also wie weit die Zündboxen bei *El Fueradoro* vom Transmitter entfernt sein dürfen, um noch sicher auszulösen, kann pauschal nicht beantwortet werden, da dieser Wert sehr vielen Einflussgrößen unterliegt.

Das theoretische Reichweiten-Maximum bei der verwendeten Frequenz von 868 MHz und einer zulässigen Dämpfung von 113 dB (Sendeleistung in dBm minus niedrigste Empfangsleistung in dBm) ergibt sich aus der Friis-Übertragungsgleichung zu mehreren Kilometern. Hierfür müssten die Antennen jedoch mehrere Meter über dem Erdboden angebracht sein, um ideale Wellenausbreitung durch die Luft und Entkopplung vom Boden zu ermöglichen, was in der Feuerwerks-Praxis meist nicht umsetzbar ist, und die Umgebung müsste so störungsfrei sein, dass der Empfänger das Signal auch bei sehr geringen Leistungen noch detektieren kann.

In Tests mit *El Fueradoro* konnte für ein reales Szenario (Platzierung im Gras am Boden) eine Distanz von 250 m zwischen Sender und Empfänger mit einer Reserve von über 20 dB gegenüber der minimalen Empfängerempfindlichkeit überbrückt werden, was für die meisten Feuerwerke ausreichend sein dürfte. Wichtig ist hierbei jedoch eine Sichtverbindung zwischen den Devices. Bricht diese Sichtlinie ab, sinkt die Reichweite, da eine Verbindung über reflektierende und streuende Hindernisse in aller Regel stark verlustbehaftet ist.

Für eine möglichst hohe Reichweite sollte man die Devices daher mit möglichst ungestörter Sichtlinie zueinander und so weit wie möglich vom Boden entfernt platzieren. Die Antennen sollten möglichst parallel zueinander ausgerichtet sein.

In der Systemübersicht, die in Abbildung 3.3 auf Seite 30 zu sehen ist, wird dargestellt, wie stark die anderen Devices vom angeschlossenen Device empfangen werden.

5.1.4 Erstellung und Überprüfung des Zündplans

Pyro Ignition Control unterstützt den Ersteller einer Show, indem es sowohl den passenden Zündzeitpunkt aus den Angaben "Effektbeginn" und "Verzögerung" berechnet als auch anhand der angegebenen Effektdauer die Überlagerung der Effekte kalkuliert und veranschaulicht. *Pyro Ignition Control* wird den eingegebenen Zündplan perfekt umsetzen, die Krux liegt jedoch darin, dass falsche Eingaben des Erstellers übernommen und nicht hinterfragt werden.

Wenig ist ärgerlicher, als dass eine sorgfältig geplante Show an Flüchtigkeitsfehlern scheitert. Ein falscher Klick bei der Erstellung des Zündplans kann dafür sorgen, dass die Highlightbatterie nicht angesprochen wird und statt buntem Lichterzauber nur schwarze Nacht am Himmel zu sehen ist. Aus diesem Grund existiert das auf *El Fueradoro* zugeschnittene Tool schemecheck.exe, welches folgende Dinge im Zündplan erkennen kann und hinweist auf:

- Verwenden einer Slave-ID außerhalb des Bereichs 1 30
- Ansprechen eines Kanals außerhalb des Bereichs 1 32
- Unterschreiten des minimalen Zündabstands von 100 ms
- Mehrfachzünden derselben Slave-Kanal-Kombination

Darüber hinaus werden auch alle angesprochenen Slave-IDs und die Gesamtzahl der Cues angezeigt.

Zur Überprüfung muss der in *Pyro Ignition Control* erstellte Zündplan als zpl-Datei gespeichert und dem Kommandozeilentool folgendermaßen übergeben werden:

schemecheck.exe fw.zpl

5.2 Durchführung

Die Durchführung eines Feuerwerks mit allen bürokratischen, logistischen, sicherheitstechnischen und sonstigen Herausforderungen ist Gegenstand eigener Lehrbücher und Vorschriften, weshalb hier nur auf den Einsatz von *El Fueradoro* eingegangen werden soll.

Hierbei gilt ebenso wie in vielen anderen Lebensbereichen der Spruch "Ordnung ist das halbe Leben". Die Anzünderkabel sollten beschriftet und derart verlegt werden, dass man bei einer eventuellen Fehlersuche schnell fündig wird, zudem sollte ihre Länge so kurz wie möglich aber so lang wie nötig dimensioniert werden, um keine zu hohen Leitungswiderstände zu produzieren, aber auch keine Stolperfallen.

Vor Aufbau der Zündkoffer gilt es, für jede Zündbox eine geeignete Position mit genügendem Abstand zu den Effekten zu finden, um ein Übergreifen entstehender Brände auf den Koffer und die Zündbox zu verhindern. An diesen Positionen werden die Enden der Anzünderkabel für jede einzelne Box gesammelt.

Nun kann der jeweilige Koffer platziert und geöffnet werden, im ersten Schritt wird die Antenne angebracht und fest an der Buchse an der Zündbox verschraubt, ehe man die metallischen Teile der Schraubverbindung mit einem Klebestreifen gegen Berührungen mit freiliegenden Kabeln isoliert. Anschließend kann der Akku verbunden werden. Um böse Überraschungen zu vermeiden, sollte man die Box einschalten und mit dem Transmitter kontrollieren, ob sie an dieser Position erreichbar ist.

Im nächsten Schritt muss, falls noch nicht geschehen, der Schlüsselschalter auf Position "rot" gedreht und abgezogen werden. Erst dann dürfen die Anzünderkabel angeschlossen werden, zunächst an der schwarzen, dann an der zugehörigen roten Klemme. Sind alle Kabel angeklemmt, kann man die Box einschalten, dabei durch das Blinken der gelben und organgen Status-LEDs sicherstellen, dass sie auf die korrekte Slave-ID programmiert ist, und anhand der Kanal-LEDs überprüfen, ob auf allen angeschlossenen Kanälen ein geschlossener Stromkreis vorliegt. Ist letzteres nicht der Fall, müssen zunächst Kabelverbindungsstellen kontrolliert werden. Erweisen die sich als in Ordnung und sind auch die einzelnen Kabelwege niederohmig, so dass ein Kabelbruch ausgeschlossen werden kann, müssen die Anzünder kontrolliert und eventuell getauscht werden. Zum Schutz der Zündbox vor Wetter und sonstigem Niederschlag ist der Kofferdeckel nach Abschluss der Arbeiten zu schließen, vorher kann die Box zur Batterieschonung erst einmal wieder abgeschaltet werden. Ein Abdecken der Boxen mit Brandschutzmatten kann in Erwägung gezogen werden, die Antenne sollte zwecks Empfang aber immer frei sein und senkrecht nach oben zeigen.

Das Scharfschalten der Boxen darf als allerletzter Schritt erst unmittelbar vor dem Beginn der Show erfolgen. Mit einem Identifikationsbefehl vom Transmitter und anschließender Betrachtung der Empfängerliste kann kontrolliert werden, ob alle Boxen erreichbar und scharf geschaltet sind. Fällt auf, dass eine Box die falsche Slave-ID besitzt, muss sie zunächst wieder entschärft werden, bevor man einen Remote-ID-Wechsel durchführen kann.

Sind diese Arbeiten erledigt und der Transmitter scharf geschaltet, kann das Terminalprogramm/die GUI beendet werden und *Pyro Ignition Control* gestartet werden. Hier den Zündplan öffnen, verbinden und scharfschalten – jetzt kann der Spaß endlich losgehen!

Teil II

Dokumentation

6 Schaltpläne & Layouts

In den Abbildungen 6.1, 6.2, 6.3, 6.4,, 6.5 und 6.6 sind die Schaltpläne des PC-Transmitters, der verschiedenen Zündbox-Generationen und des Raspberry-Pi-Transmitters nach Funktionseinheiten unterteilt gezeigt, in den Abbildungen 6.7, 6.8, 6.9, 6.10, 6.11 und 6.12 die Layouts.

Erstellt wurden diese mit den Layoutprogrammen EAGLE von CadSoft bzw. KiCAD, die Originaldateien sowie Gerber-Dateien zur Fertigung sind im Unterordner "Schematics_and_Layouts" des Projekt-Hauptverzeichnisses abgelegt.

Die Layouts der ersten Generation wurden dabei so gestaltet, dass die Platinen nicht zwingend zweiseitig gefertigt werden müssen. Die Anzahl der Leiterbahnen auf der Oberseite wurde minimiert, zudem verlaufen sie nicht unterhalb von Bauelementen und können daher als Drahtbrücken ausgeführt werden. Die nachfolgenden Generationen der Zündboxplatine und die Adapterplatine für den Raspberry Pi wurden hingegen als typische Zwei-Lagen-Platine entworfen.

Die Abmessungen der Platinen finden sich in Abschnitt 11 auf Seite 103.

Abbildung 6.1: Schaltplan des Transmitters

Abbildung 6.2: Schaltplan der Zündbox

Abbildung 6.3: Schaltplan der Zündbox (2. Generation)

Abbildung 6.4: Schaltplan der Zündbox (3. Generation)

Abbildung 6.5: Schaltplan der Zündbox (3. Generation) mit 32 Kanälen

Abbildung 6.6: Schaltplan des Raspberry-Pi-Adapters

Abbildung 6.7: Layout des Transmitters (keine Originalgröße!)

Abbildung 6.8: Layout der Zündbox (keine Originalgröße!)

Abbildung 6.9: Layout der Zündbox (2. Generation, keine Originalgröße!)

Abbildung 6.10: Layout der Zündbox (3. Generation, keine Originalgröße!)

Abbildung 6.11: Layout der Zündbox (3. Generation mit 32 Kanälen, keine Originalgröße!)

Abbildung 6.12: Layout des Raspberry-Pi-Adapters (keine Originalgröße)

7 Datenblätter

- [1] Atmel. ATmega48A/PA/88A/PA/168A/PA/328/P. Nov. 2015. URL: http://www.atmel.com/ images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf.
- [2] HopeRF. RFM69CW ISM TRANSCEIVER MODULE. Dez. 2013. URL: http://www.hoperf. com/upload/rf/RFM69CW-V1.1.pdf.
- [3] Texas Instruments. LM1086 1.5-A Low Dropout Positive Regulators. Apr. 2015. URL: http: //www.ti.com/lit/ds/symlink/lm1086.pdf.
- [4] Texas Instruments. LM3940 1-A Low-Dropout Regulator for 5-V to 3.3-V Conversion. Feb. 2015. URL: http://www.ti.com/lit/ds/symlink/lm3940.pdf.
- [5] Texas Instruments. SNx4HC595 8-Bit Shift Registers With 3-State Output Registers. Sep. 2015. URL: http://www.ti.com/lit/ds/symlink/sn74hc595.pdf.
- [6] Maxim Integrated. DS18B20 Programmable Resolution 1-Wire Digital Thermometer. Apr. 2008. URL: http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf.
- [7] International Rectifier. IRF3708PbF SMPS MOSFET. Aug. 2007. URL: http://www.irf. com/product-info/datasheets/data/irf3708pbf.pdf.
- [8] ON Semiconductor. MC34063A, MC33063A, SC34063A, SC33063A, NCV33063A 1.5 A, Step-Up/Down/Inverting Switching Regulators. Aug. 2010. URL: http://www.onsemi.com/ pub_link/Collateral/MC34063A-D.PDF.

8 Pinbelegung

8.1 Mikrocontroller

Die Pinbelegung des ATmega328p in den verschiedenen Devices ist in Abbildung 8.1 gezeigt.

Besondere Bedeutung kommt bei Transmitter und den ersten beiden Zündboxgenerationen dem Pin rechts oben (LCD-RW bzw. V_BATT) zu, da er beim Starten der Firmware als Eingang geschaltet wird und aufgrund der dort anliegenden Spannung die sicherheitsrelevante Erkennung, um welchen Devicetyp es sich handelt, vorgenommen wird. Aufgrund eines internen Pullup-Widerstands im LCD werden bei angeschlossenem Transmitter stets 3,3 V an diesem Pin anliegen, bei Zündboxen bewegt sich die heruntergeteilte Spannung der Versorgungsbatterie im Bereich unterhalb von 1,1 V.

Diese Unterscheidung ist wichtig, da der Programmablauf sich bei Transmittern (Unique-ID 0 und Slave-ID 0) anders gestaltet als bei Zündboxen und Controllerpins, wie in Abbildung 8.1 zu sehen, bei Transmittern anders belegt sind und für eine andere Datenrichtung (Eingang/Ausgang) ausgelegt sind als bei Zündboxen. Wie zu erkennen werden Controlleranschlüsse beim Transmitter als Steuerung des Displays verwendet, die bei der Zündbox den Zustand des Schlüsselschalters einlesen oder die Schieberegister zur Zündung der Kanäle ansteuern.

Würde die Software beim Start nicht überprüfen, auf welcher Art Device sie gerade läuft, könnte das Programm bei falscher Konfiguration davon ausgehen, auf einem anderen Device zu laufen. Während die Zündbox-Konfiguration auf einem Transmitter – abgesehen davon, dass das LCD nichts

Abbildung 8.1: Pinbelegung des Mikrocontrollers bei Transmitter und Zündboxen

anzeigen würde – keine Probleme hervorriefe, würde es zu Schäden am Controller kommen und zu unerwünschten Zündungen führen, wenn die Transmitter-Konfiguration auf einer Zündbox gestartet werden würde: Im Fall des Schlüsselschalter-Pins käme es zu einem Kurzschluss, wenn die Box scharf geschaltet ist, was den Controller beschädigen kann, die Ansteuerung des Schieberegisters mit LCD-Befehlen würde dazu führen, dass Zündkanäle durchschalten, weil die Ansteuerbefehle des LCD ans Schieberegister weitergeleitet werden.

Aufgrund der einschneidenden Änderungen in der dritten Zündboxgeneration weicht die Pinbelegung stark ab und die Firmware der Zündbox_v3 ist dementsprechend nicht mit anderen Devices kompatibel!

Für den Betrieb der Devices von *El Fueradoro* müssen nicht zwingend die Standardlayouts verwendet werden, die Firmware kann, sofern die Peripherie mit den "richtigen" Pins verbunden ist, auch auf anderen Boards wie z. B. Arduino laufen.

8.2 Raspberry-Pi-Aufsteckplatine

Die in Abbildung 6.12 gezeigte Platine verfügt über die in den Abbildungen 8.2 und 8.3 gezeigte Pinbelegung. Sie ist vom Formfaktor so konzipiert, dass sie mit einer nach unten gerichteten Buchsenleiste auf die Stiftleiste des Raspberry Pi aufgesteckt und an den vier Ecken über insgesamt 11 mm hohe Abstandshalter mit Gewindeschrauben M2,5 mit dem Einplatinencomputer verschraubt werden kann.

Die an den Seiten der Aufsteckplatine angebrachten Schraubklemmen dienen dem Anschluss der am Gehäuse verbauten Indikatoren (LEDs) und Schalterelemente. Welches Signal an welcher Stelle anzuklemmen ist, illustriert Abbildung 8.3, welche eine Draufsicht auf die Oberseite der Aufsteckplatine zeigt.

Die 40-polige Buchsenleiste zeigt dabei in die Papierebene hinein, die Klemmen an der Seite aus der Papierebene heraus.

3V3	1	2	5V	Supply
R1	3	4	5V	Supply
R2	5	6	GND	Supply
L3	7	8	L4	Out 4 (Tx-LED)
GND	9	10	L2	Out 2 (ON/OFF-LED)
L5	11	12	L1	Out 1 (Fire-LED)
DIO0	13	14	GND	Supply
R3	15	16	R4	In 4
3V3	17	18	RES	Reset RFM69
MOSI	19	20	GND	Supply
MISO	21	22	R5	In 5
SCLK	23	24	CS0	SPI Select RFM
GND	25	26	CS1	SPI Select ADC
	27	28		
	29	30	GND	Supply
	31	32		
	33	34	GND	Supply
	35	36		
	37	38		
GND	39	40		
	3V3 R1 R2 L3 GND L5 DIO0 R3 3V3 MOSI MISO SCLK GND	3V3 1 R1 3 R2 5 L3 7 GND 9 L5 11 DIO0 13 R3 15 3V3 17 MOSI 19 MISO 21 SCLK 23 GND 25 27 29 31 33 35 37 GND 39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3V3 1 2 5V R1 3 4 5V R2 5 6 GND L3 7 8 L4 GND 9 10 L2 L5 11 12 L1 DIO0 13 14 GND R3 15 16 R4 3V3 17 18 RES MOSI 19 20 GND MISO 21 22 R5 SCLK 23 24 CS0 GND 25 26 CS1 27 28 29 30 GND 31 32 33 34 GND 35 36 37 38 GND 39 40

Abbildung 8.2: Belegung Verbindungsstiftleiste Pi-Aufsteckplatine

2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39

1	U+	TT	IT	U+	1
2	GND	U _{Force}	U _{Sense}	GND	2
3	-	I = (D; n = 11)	D.5	Pin 22	3
4	+	L3 (PIII 11)	KJ	GND	4
5	-	$I \neq (Din \otimes) TY = I = D$	D 4	Pin 16	5
6	+	L4 (FIII 8) IA-LED	Κ4	GND	6
7	-	I_2 (Din 7) DY LED	KEV Sw D2	Pin 15	7
8	+	L5 (FIII /) KX-LED	GND	8	
9	-	I_2 (Bin 10) ON/OEE LED	ON/OFE Dt D2	Pin 5	9
10	+	E2 (FIII 10) ON/OFT-LED	UN/UTT-DL K2	GND	10
11	-	I_1 (Din 12) FIDE I ED	FIDE Bt D1	Pin 3	11
12	+	LT(I III 12) TIKE-LED	FIRE-DI. KI	GND	12

Abbildung 8.3: Pinbelegung der Aufsteckplatine von oben gesehen

9 Software

Die Steuerungssoftware für *El Fueradoro* ist unter Zuhilfename des **AVR-GCC** in der Programmiersprache C geschrieben. Sie umfasst für die dritte Zündboxgeneration insgesamt 16, ansonsten 15 Sourcefiles (.c) mit zugehörigen Headerdateien (.h), eine Headerdatei zur Generierung von Registeradressen "portmakros.h" sowie eine globale Headerdatei "global.h", in welcher alle anderen erfasst sind.

Dateiname	Aufgabe(n)
pyro.c	Hauptprogramm, Interruptroutinen und anlagenspezifische Funktionen (Schalter-
	initialisierung, spezielle LCD-Symbole,)
1wire.c	Steuerung des Temperatursensors DS18B20
adc.c	Erfassung der Versorgungsspannung und des Devicetyps mittels Analog-Digital-
	Converter
addresses.c	Unique- und Slave-ID aus dem Speicher holen, speichern, überprüfen
crcchk.c	Überprüfen der Korrektheit empfangener Zeichenketten
dm13a.c	Steuerung der Kanal-LEDs (nur in der dritten Zündboxgeneration vorhanden)
eeprom.c	Direkter Zugriff auf den EEPROM des Controllers
lcd.c	Steuerung des LCD
leds.c	Kontrolle der vier Status-LEDs
rfm69.c	Funktionen für das Funkmodul RFM69CW
shiftregister.c	Schieberegister-Initialisierung und -Datenübertragung
terminal.c	"GUI" zur Benutzerinteraktion via Terminalprogramm
timer.c	Funktionen zur Timer-Steuerung
uart.c	Kommunikation über serielle Schnittstelle

Die Quellcodedateien und ihre Aufgaben sind in Tabelle 9.1 aufgelistet.

Tabelle 9.1: Quellcodedateien und ihre Funktionen

Teil III Aufbauanleitung

10 Materiallisten

In den Tabellen dieses Kapitels sind die benötigten Teile für den Aufbau der verschiedenen Devices von *El Fueradoro* zusammen mit möglichen Bezugsquellen und Preisen (Stand Januar 2015, teils aktualisiert im August 2015) aufgelistet. Bei den Zündboxen wird die zweite Generation empfohlen, die zusätzliche Sicherheit gegenüber der ersten Generation bietet. Es ist jedoch problemlos möglich, beide Generationen gemeinsam in einer Show zu verwenden.

Leider ist es – schon alleine aufgrund der Währungsschwankungen, denen besonders die eBay-Artikel unterworfen sind – ein Ding der Unmöglichkeit, die Liste permanent tagesaktuell zu halten. Tote Links dürfen gerne gemeldet werden.

Bauteil	Anz.	Beschreibung	Händler	Artikelnr.
		Kondensatoren		
C11, C13	2	Elektrolytkondensator, 100uF	Reichelt	RAD 105 100/35
C14	1	Elektrolytkondensator, 10uF	Reichelt	RAD 10/100
C17, C10, C12, C15,	11	Keramikkondensator, 100nF	Reichelt	X7R-2,5 100N
C16				
C8, C9	2	Keramikkondensator, 15pF	Reichelt	KERKO 15P
		Integrierte Schaltungen		
IC2	1	ATMEGA 328P	Reichelt	ATMEGA 328P-PU
IC1	1	MAX202	Reichelt	MAX 202 ECPE
U\$4	1	RFM69CW	Pollin	810 303
U\$2	1	DS18B20	Reichelt	DS 18B20
IC8	1	LM3940-3,3	Reichelt	LM 3940 IT3,3
				
		Display		
	1	LCD, 20x4 Zeichen, HD44780-komp.	eBay	291548935509
		LEDs		
LED_O	1	LED, 5mm, orange	Reichelt	LED 5MM R OR
LED_R	1	LED, 5mm, rot	Reichelt	LED 5MM RT
LED_Y	1	LED, 5mm, gelb	Reichelt	LED 5MM GE
LED_G	1	LED, 5mm, grün	Reichelt	LED 5MM GN
		Quarz		
Q1	1	Standardquarz, Grundton, 9,8304 Mhz	Reichelt	9,8304-HC49U-S
		Widerstände		
R13	1	6k8	Reichelt	1/4W 6,8K
R12, R14	2	3k3	Reichelt	METALL 3,30K
R1, R2, R3, R7	4	10k	Reichelt	METALL 10,0K

Materialliste Transmitter

Bauteil	Anz.	Beschreibung	Händler	Artikelnr.
R46, R811	7	1k0	Reichelt	METALL 1,00K
		Maghanisaha Pautaila		
		wiechanische Dautene		
X1	1	Sub-D-Buchse, 9-pol	Reichelt	D-SUB BU 09US
SV2	1	Wannenstecker, 10-pol	Reichelt	WSL 10G
	1	Box	Reichelt	GEH KS 50
	1	USB-Kabel als Stromkabel	Reichelt	AK 670/2-1,0
		HF-Komponenten		
	1	SMA-Kabel Funkmodul-Gehäuse	eBay	161134814025
	1	Antenne 868 MHz	eBay	380436601891
	1	SMA-Platinenbuchse, 1,6mm	eBay	220952712009

Tabelle 10.1: Materialliste für den Transmitter

Bauteil	Anz	Beschreibung	Händler	Artikelnr
		Kondensatoren		
C1, C3	2	Elektrolytkondensator, 100uF	Reichelt	RAD FR 100/16
C2, C4, C5, C6	4	Keramikkondensator, 100nF	Reichelt	X7R-2,5 100N
		· · · · · · · · · · · · · · · · · · ·		
		Integrierte Schaltungen		
IC1	1	LM3940-3,3	Reichelt	LM 3940 IT3,3
IC2	1	ULN2003A	Reichelt	ULN 2003A
IC3	1	MCP3202-CI/P	eBay	250878853097
	1	RFM69CW	Pollin	810 303
		Einplatinenrechner und Zubehör		
	1	Raspherry Pi 3	Reichelt	RASPBERRY PI 3
	1	Micro-SD-Speicherkarte, 16 GB	Reichelt	INTENSO 3433470
	1	USB-Soundkarte	Amazon	B00C7LXUDY
	1	Powerbank	Amazon	B01KPFC4B2
	1	Waveshare 7 inch 1024*600 Capacitive Touch	Amazon	B015E8EDYO
		Screen LCD		
		LEDs		
LED_O	1	LED, 5mm, orange	Reichelt	LED 5MM R OR
LED_G	1	LED, 5mm, grün	Reichelt	LED 5MM GN
C-h1#1h-14	1	laster/Schalter	D-11:	120 664
Schlusselschalter	1	Miniatur-Schlusselschalter	Pollin	420 004
Taster	1	LED, 12mm, 3V, blau	AliExpress	Link
Taster	1	LED, 12 mm, $3V$, rot	AllExpress	LINK
		Widerstände		
R_10	1	100R	Reichelt	METALL 100
R_12	1	150R	Reichelt	METALL 150
R1, R8, R9, R10	4	10k	Reichelt	METALL 10,0K
R11	1	2k2	Reichelt	METALL 2,20K
R_7, R_8, R_11	3	1k0	Reichelt	METALL 1,00K
		Maghaniagha Dautaila		
	4	Schraubklemme 6-pol	Reichelt	AKI 059.06
	-+	Buchsenleiste 2x20-pol	Pollin	451 358
	1	Buchsenleiste mit 6 Plätzen	Reichelt	451 558 MPF 004-1-006
	1	Buchsenleiste mit 7 Plätzen	Reichelt	MPF 094-1-000
	1	Micro-USB-Kabel Powerbank-Pi	Reichelt	DFI OCK \$3807
	1	Micro-USB-Kabel Pi-Touchscreen	AliFypress	Link
	1	HDMI-Kabel Pi-Touchscreen	eBay	361031629625
	1		CDay	561051027025
		HF-Komponenten		
	1	SMA-Kabel Funkmodul-Gehäuse	eBay	161134814025
	1	Antenne 868 MHz	eBay	380436601891
	1	SMA-Platinenbuchse, 1,6mm	eBay	220952712009

Materialliste Raspberry-Pi-Transmitter

Tabelle 10.2: Materialliste für den Raspberry-Pi-Transmitter

Materialliste Zündbox v1

Bauteil	Anz.	Beschreibung	Händler	Artikelnr.
		Kondensatoren		
C13, C27, C19	3	Elektrolytkondensator, 100uF	Reichelt	RAD 105 100/35
C14	1	Elektrolytkondensator, 10uF	Reichelt	RAD 10/100
C21, C22	2	Elektrolytkondensator, 4700uF 35V	Reichelt	RAD 4.700/35
C17. C15. C16. C20.	14	Keramikkondensator, 100nF	Reichelt	X7R-2.5 100N
C2326				
C8 C9	2	Keramikkondensator 15nF	Reichelt	KERKO 15P
C18	1	Keramikkondensator, 220nF	Reichelt	KERKO 220P
010	1	Keramikkondensator, 220pr	Reference	KERRO 2201
		Dioden		
D3	1	1N4002	Reichelt	1N 4002
D2	1	1N5819	Reichelt	1N 5819
		Integrierte Schaltungen		
IC2	1	ATMEGA 328P	Reichelt	ATMEGA 328P-PU
IC4	1	MC33063	Reichelt	MC 33063 AP1
IC1	1	MAX202	Reichelt	MAX 202 ECPE
IC6, IC7	2	74HC595	Reichelt	74HC 595
IC8	1	LM1086	Reichelt	LM 1086 IT3,3
U\$4	1	RFM69CW	Pollin	810 303
U\$2	1	DS18B20	Reichelt	DS 18B20
		Induktivität		
L1	1	68 uH, stehend	Reichelt	L-07HCP 68μ
		LEDs		
LED_O	1	LED, 5mm, orange	Reichelt	LED 5MM R OR
LED_R	1	LED, 5mm, rot	Reichelt	LED 5MM RT
LED_Y	1	LED, 5mm, gelb	Reichelt	LED 5MM GE
LED_G	1	LED, 5mm, grün	Reichelt	LED 5MM GN
LED116	16	LED, 3mm, grün	Reichelt	LED 3MM GN
		0		
01	1	Quarz	D 1 1	0.0204 HC40H 0
QI	1	Standardquarz, Grundton, 9,8304 Minz	Reichelt	9,8304-HC49U-S
		MOSEETs		
02 017	16	IRF3708	AliExpress	Link
Q2Q17	10	NG 5700	7 IIIExpress	Link
		Widerstände		
R16	1	180	Reichelt	METALL 180
R17	1	0R22	eBay	221583734560
R13, R7, R20, R37	7	10k	Reichelt	METALL 10,0K
R19	1	100k	Reichelt	METALL 100K
R18	1	1M5	Reichelt	METALL 1.50M
R46. R811	7	1k	Reichelt	METALL 1.00K
R Z	1	2R2-9W	Reichelt	9W VERT. 2.2
R12 R14 R38	3	3k3	Reichelt	METALL 3 30K
R15	1	56k	Reichelt	METALL 56K
R21 36	16	6k8	Reichelt	1/4W 6 8K
RN1 RN2	2	Network 9Pin 10k	Reichelt	SII 0.8 10K
IXIVI, IXIV2	2	TOCOUTE, JI III, TOK	Referencie	51L 7-0 10K
		HF-Komponenten		
	1	SMA-Kabel Funkmodul-Gehäuse	eBay	291548738413
	1	SMA-Kabel Gehäuse-Antenne	eBay	151505370986
	1	Antenne 868 MHz	eBay	380436601891

Bauteil	Anz.	Beschreibung	Händler	Artikelnr.
	1	SMA-Platinenbuchse, 1,6mm	eBay	220952712009
		Mechanische Bauteile		
X1	1	Sub-D-Buchse, 9-pol	Reichelt	D-SUB BU 09US
SV2	1	Wannenstecker, 10-pol	Reichelt	WSL 10G
	1	Wippschalter	Pollin	420 697
	1	Miniatur-Schlüsselschalter	Pollin	420 664
	1	Kunststoffgehäuse 021-002-084	Pollin	460 001
	8	Lautsprecherklemmen	Reichelt	PT 932
	1	Koffer	Amazon	Bilora 545
	1	Akku	Reichelt	WP 1,2-12
	4	Schrauben M3x6	Reichelt	SZK M3X6-200
	16	Schrauben M3x10	Reichelt	SKL M3X10-50
	16	Muttern M3	Reichelt	SK-E M3-100
	2	Akku-Flachstecker	Reichelt	FSH-M1 4,75
	1	Stiftleiste	Reichelt	SL 1X36G 2,54
	1	Buchsenleiste mit 6 Plätzen	Reichelt	MPE 094-1-006
	1	Buchsenleiste mit 7 Plätzen	Reichelt	MPE 094-1-007
	1	Deans-T-Plugs-Paar	Pollin	820 129
		Kabel		
	1	Flachbandkabel für LED+Schlüsselsch.	Reichelt	AWG 28-10F 3M
	1	Litzen-Sortiment, 0,5 mm ² , 5x 5 m	Pollin	800 024
	1	Schrumpfschläuche 1,6mm	Reichelt	SDH 1,6 SW
	1	Schrumpfschläuche 3,2mm	Reichelt	SDH 3,2 SW

Tabelle 10.3: Materialliste für die Zündbox (1. Generation)

Bauteil	Anz	Beschreibung	Händler	Artikelnr
Duuton	1 MIZ.	Kondensatoren	Tanulu	
C13, C27	2	Elektrolytkondensator, 100uF	Reichelt	RAD 105 100/35
C14	1	Elektrolytkondensator, 10uF	Reichelt	RAD 10/100
C21. C22	2	Elektrolytkondensator, 4700uF 35V	Reichelt	RAD 4.700/35
C_{1}^{1}, C_{2}^{1}	13	Keramikkondensator 100nF	Reichelt	X7R-2.5 100N
C_{23}^{23} 26	15	Refumicicondensator, 100m	resenten	1111 2,5 10011
C8, C9	2	Keramikkondensator, 15pF	Reichelt	KERKO 15P
- ,		······································		
		Dioden		
D3	1	1N4002	Reichelt	1N 4002
		Integrierte Schaltungen		
IC2	1	ATMEGA 328P	Reichelt	ATMEGA 328P-PU
IC1	1	MAX202	Reichelt	MAX 202 ECPE
IC6, IC7	2	74HC595	Reichelt	74HC 595
IC8	1	LM1086	Reichelt	LM 1086 IT3.3
U\$4	1	RFM69CW	Pollin	810 303
U\$2	1	DS18B20	Reichelt	DS 18B20
	-	-		
		Step-Up-Modul		
—	1	Step-Up M-SU-XL6009	Pollin	351 434
		LEDs		
LED O	1	LED, 5mm, orange	Reichelt	LED 5MM R OR
LED R	1	LED. 5mm, rot	Reichelt	LED 5MM RT
LEDY	1	LED, 5mm, gelb	Reichelt	LED 5MM GE
LED G	1	LED. 5mm. grün	Reichelt	LED 5MM GN
LED116	16	LED, 3mm, grün	Reichelt	LED 3MM GN
		2		
01	1	Quarz Standardguarz, Grundton, 0.8204 Mbz	Deichalt	0 8204 UC4011 S
QI	1	Standardquarz, Orundton, 9,8304 Milz	Reichen	9,8304-00490-5
		MOSFETs und Transistoren		
Q2Q17	16	IRF3708	AliExpress	Link
Q19	1	IRF4905	Reichelt	IRF 4905
O18. T1	2	BC337-40	Reichelt	BC 337-40
T2	1	BC327-40	Reichelt	BC 327-40
	_	Widerstände		
R13, R7, R16, R20, R37	7	10k	Reichelt	METALL 10,0K
R19	1	100k	Reichelt	METALL 100K
R18	1	1M5	Reichelt	METALL 1 50M
R/ 6 R8 11	1	11	Reichalt	METALL 1,00W
R70, R011	/		Reichalt	OW VERT 22
к_L D 71	1	21X2-7 W 150D OW	Deichalt	7 W VEN1. 2,2 OW VEDT 150
N_LI D12 D38	1	1JUN-7 W 21-2	Deichalt	7 W VENI. IJU METALI 2 2017
N12, N30 D12	ے 1	JNJ 270D	Deigh-14	METALL 3,50K
КIЭ D14	1	270K	Reicheit	METALL 2/U
K14	l 16		Reichelt	METALL 1,50K
R2136	16	6k8	Reichelt	1/4W 6,8K
KN1, KN2	2	Network, 9Pin, 10k	Reichelt	SIL 9-8 10K
		HF-Komponenten		
	1	SMA-Kabel Funkmodul-Gehäuse	eBav	291548738413
	1	SMA-Kabel Gehäuse-Antenne	eBay	151505370986
			~	

Materialliste Zündbox v2

Aufbauanleitung

Bauteil	Anz.	Beschreibung	Händler	Artikelnr.
	1	Antenne 868 MHz	eBay	380436601891
	1	SMA-Platinenbuchse, 1,6mm	eBay	220952712009
37.1		Mechanische Bauteile	D · 1 · 1	
XI	I	Sub-D-Buchse, 9-pol	Reichelt	D-SUB BU 09US
SV2	1	Wannenstecker, 10-pol	Reichelt	WSL 10G
	1	Wippschalter	Pollin	420 697
	1	Miniatur-Schlüsselschalter	Pollin	420 664
	1	Kunststoffgehäuse 021-002-084	Pollin	460 001
	8	Lautsprecherklemmen	Reichelt	PT 932
	1	Koffer	Amazon	Bilora 545
	1	Akku	Reichelt	WP 1,2-12
	4	Schrauben M3x6	Reichelt	SZK M3X6-200
	16	Schrauben M3x10	Reichelt	SKL M3X10-50
	16	Muttern M3	Reichelt	SK-E M3-100
	2	Akku-Flachstecker	Reichelt	FSH-M1 4,75
	1	Stiftleiste	Reichelt	SL 1X36G 2,54
	1	Buchsenleiste mit 6 Plätzen	Reichelt	MPE 094-1-006
	1	Buchsenleiste mit 7 Plätzen	Reichelt	MPE 094-1-007
	1	Deans-T-Plugs-Paar	Pollin	820 129
		Kabel		
	1	Flachbandkabel für LED+Schlüsselsch.	Reichelt	AWG 28-10F 3M
	1	Litzen-Sortiment, 0,5 mm ² , 5x 5 m	Pollin	800 024
	1	Schrumpfschläuche 1,6mm	Reichelt	SDH 1,6 SW
	1	Schrumpfschläuche 3,2mm	Reichelt	SDH 3,2 SW

Tabelle 10.4: Materialliste für die Zündbox (2. Generation)

Bauteil	Anz.	Beschreibung	Händler	Artikelnr.
a	-	Kondensatoren		
C3, C14, C15	3	Elektrolytkondensator, 10uF	Reichelt	RAD 10/100
C11, C12	2	Elektrolytkondensator, 4700uF 35V	Reichelt	RAD 4.700/35
C1, C2, C46, C9,	12	Keramikkondensator, 100nF	Reichelt	X7R-2,5 100N
C10, C13, C1619				
C7, C8	2	Keramikkondensator, 15pF	Reichelt	KERKO 15P
		Dioden		
D17, D24	2	1N4148	Reichelt	1N 4148
D22, D23	2	1N4001	Reichelt	1N 4001
		Integrierte Schaltungen		
U1	1	DM13A	eBav	_
U2	1	MCP6002 IP	Reichelt	MCP 6002-I/P
U3	1	RFM69CW	Pollin	810 303
U4	1	ATMEGA 328P	Reichelt	ATMEGA 328P-PU
U5. U8	2	74HC595	Reichelt	74HC 595
U7	1	LM1086	Reichelt	LM 1086 IT3 3
	1	MCP2221 IP	Reichelt	MCP 2221_I/P
U)	1	DS18B20	Peichelt	DS 18B20
010	1	D318B20	Reichen	DS 16B20
		Step-Up-Modul		
U6	1	Step-Up M-SU-XL6009	Pollin	351 434
		LEDs		
D19	1	LED, 5mm, orange	Reichelt	LED 5MM R OR
D20	1	LED, 5mm, rot	Reichelt	LED 5MM RT
D18	1	LED, 5mm, gelb	Reichelt	LED 5MM GE
D21	1	LED, 5mm, grün	Reichelt	LED 5MM GN
D116	16	LED, 3mm, grün	Reichelt	LED 3MM GN
		Quarz		
Y1	1	Standardquarz Grundton 9 8304 Mhz	Reichelt	9 8304-HC49U-S
	1		Telefient	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
01 1/	16	MOSFETs und Transistoren	A 1'E	T · 1
Q116	16	IRF3/08	AliExpress	Link
Q19	1	IRF4905	Reichelt	IRF 4905
Q18, Q21	2	BC337-40	Reichelt	BC 337-40
Q17, Q20	2	BC327-40	Reichelt	BC 327-40
		Widerstände		
R1	1	47k	Reichelt	METALL 47,0K
R2	1	150	Reichelt	METALL 150
R3	1	150k	Reichelt	METALL 150K
R4	1	180k	Reichelt	METALL 180K
R5, R7, R16	3	100k	Reichelt	METALL 100K
R6	1	120k	Reichelt	METALL 120K
R8, R9, R15, R17.	6	10k	Reichelt	METALL 10.0K
R27, R29	-			,
R1013. R1820	7	1k	Reichelt	METALL 1.00K
R14	1	1M5	Reichelt	METALL 1.50M
R21, R23 25, R30	5	3k3	Reichelt	METALL 3.30K
R22	1	1k5	Reichelt	METALL 1.50K
R26	1	2R2-9W	Reichelt	9W VERT 2.2
	-	/ / / / / / / / / / / / / / / / /		

Materialliste Zündbox v3

Bauteil	Anz.	Beschreibung	Händler	Artikelnr.
R28	1	270R	Reichelt	METALL 270
RN1, RN2	2	Network, 9Pin, 10k	Reichelt	SIL 9-8 10K
	1	SMA-Kabel Funkmodul-Gehäuse	eBay	291548738413
	1	SMA-Kabel Gehäuse-Antenne	eBay	151505370986
	1	Antenne 868 MHz	eBay	380436601891
	1	SMA-Platinenbuchse, 1,6mm	eBay	220952712009
J1	1	USB-Buchse Typ B	Reichelt	USB BW
J2	1	Wannenstecker, 10-pol	Reichelt	WSL 10G
	1	Wippschalter	Pollin	420 697
	1	Miniatur-Schlüsselschalter	Pollin	420 664
	1	Kunststoffgehäuse 021-002-084	Pollin	460 001
	8	Lautsprecherklemmen	Reichelt	PT 932
	1	Koffer	Amazon	Bilora 545
	1	Akku	Reichelt	WP 1,2-12
	4	Schrauben M3x6	Reichelt	SZK M3X6-200
	16	Schrauben M3x10	Reichelt	SKL M3X10-50
	16	Muttern M3	Reichelt	SK-E M3-100
	2	Akku-Flachstecker	Reichelt	FSH-M1 4,75
	1	Stiftleiste	Reichelt	SL 1X36G 2,54
	1	Buchsenleiste mit 6 Plätzen	Reichelt	MPE 094-1-006
	1	Buchsenleiste mit 7 Plätzen	Reichelt	MPE 094-1-007
	1	Deans-T-Plugs-Paar	Pollin	820 129
		Kabel		
	1	Flachbandkabel für LED+Schlüsselsch.	Reichelt	AWG 28-10F 3M
	1	Litzen-Sortiment, 0,5 mm ² , 5x 5 m	Pollin	800 024
	1	Schrumpfschläuche 1,6mm	Reichelt	SDH 1,6 SW
	1	Schrumpfschläuche 3,2mm	Reichelt	SDH 3,2 SW

Tabelle 10.3. Materialiste fui die Zundbox (3. Ocheration)
--

Kondensatoren Kondensatoren C3, C14, C15 3 Elektrolytkondensator, 10uF Reichelt RAD 1/100 C11, C12 2 Elektrolytkondensator, 4700uF 35V Reichelt RAD 4.700/35 C1, C2, C46, C9, 15 Keramikkondensator, 100nF Reichelt RAD 4.700/35 C1, C2, C46, C9, 15 Keramikkondensator, 100nF Reichelt X7R-2,5 100N C7, C8 2 Keramikkondensator, 15pF Reichelt KERKO 15P D33, D40 2 1N4148 Reichelt IN 4148 D38, D39 2 1N4001 Reichelt IN 4001 Integrierte Schaltungen U1, U11 2 DM13A eBay — U2 1 MCP6002_IP Reichelt ATMEGA 328P-PU U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt LED 5 U7 1 LM1086						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
C11, C12 2 Elektrolytkondensator, 4700uF 35V Reichelt RAD 4.70035 C1, C2, C46, C9, C10, C13, C1622 I5 Keramikkondensator, 100nF Reichelt X7R-2,5 100N C10, C13, C1622 C7, C8 2 Keramikkondensator, 15pF Reichelt KERKO 15P D33, D40 2 1N4148 Reichelt IN 4148 Reichelt IN 4148 D38, D39 2 1N4001 Reichelt IN 4148 Reichelt IN 4001 Integrierte Schaltungen U1, U11 2 DM13A eBay - U2 1 MCP6002_IP Reichelt MCP 6002-I/P U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U7 1 LM1086 Reichelt LM 1086 fT3,3 U9 1 MCP2221_IP Reichelt LM 1086 fT3,3 U9 1 Step-Up-Modul Step-Up-Modul Step-Up-Modul U6 1 Step-Up M-SU-XL6009 Pollin 351 434 U4 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
C7, C82Keramikkondensator, 15pFReicheltKERKO 15PDiodenD33, D4021N4148D38, D3921N4001Integrierte SchaltungenU1, U112DM13AU21MCP6002_IPU31RFM69CWU41ATMEGA 328PU5, U8, U12, U13474HC595U71LM1086U71LM1086U101DS18B20ReicheltMCP221-I/PU101Step-Up-ModulU61Step-Up M-SU-XL6009D351LED, 5mm, rotD361LED, 5mm, rotD361LED, 5mm, grünC1.3232LED, 3mm, grünC2QuarzY11Standardouarz, Grundton, 9.8304 MhzY11Standardouarz, Grundton, 9.8304 MhzQuarz <tr <td=""></tr>						
Dioden Dioden D33, D40 2 1N4148 D38, D39 2 1N4001 Integrierte Schaltungen Integrierte Schaltungen U1, U11 2 DM13A 2 1 MCP6002_IP 3 1 RFM69CW V3 1 RFM69CW V4 1 ATMEGA 328P V4 1 ATMEGA 328P V3 1 RFM69CW V4 1 ATMEGA 328P V3 1 RFM69CW V4 1 ATMEGA 328P Reichelt ATMEGA 328P V7 1 LM1086 V9 1 MCP2221_IP V10 1 DS18B20 V10 1 DS18B20 V10 1 DS18B20 V10 1 Step-Up-Modul V6 1 Step-Up-Modul V6 1 Step-Up M-SU-XL6009 V10 1 Step-Up M-SU-XL6009 </td						
Dioden Dioden D33, D40 2 1N4148 Reichelt 1N 4148 D38, D39 2 1N4001 Reichelt 1N 4001 Integrierte Schaltungen U1, U11 2 DM13A eBay U2 1 MCP6002_IP Reichelt MCP 6002-I/P U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt LM 1086 IT3,3 U9 1 MCP2221_IP Reichelt MCP 2221-I/P U10 1 DS18B20 Reichelt DS 18B20 LEDs LEDs D35 1 LED, 5mm, orange Reichelt LED 5MM R OR D36 1 LED, 5mm, gelb Reichelt LED 5MM GE D37 1 LED, 5mm, grün Reichelt LED 5MM GN D37 1 LED, 5mm, grün Reichelt<						
D33, D40 2 IN4148 Reichelt IN 4148 D38, D39 2 IN4001 Reichelt IN 4001 Integrierte Schaltungen U1, U11 2 DM13A eBay — U2 1 MCP6002_IP Reichelt MCP 6002-I/P U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt TAHC595 U7 1 LM1086 Reichelt LM 1086 IT3,3 U9 1 MCP2221_IP Reichelt DS 18B20 V6 1 Step-Up-Modul DS 18B20 DS 18B20 V6 1 Step-Up M-SU-XL6009 Pollin 351 434 LEDs I LED, 5mm, orange Reichelt LED 5MM R OR D35 1 LED, 5mm, gelb Reichelt LED 5MM GE D37 1 LED, 5mm, grün Reichelt LED 5MM GN						
D38, D39 2 1N4001 Reichelt 1N 4001 Integrierte Schaltungen U1, U11 2 DM13A eBay — U2 1 MCP6002_IP Reichelt MCP 6002-I/P U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt TMEGA 328P-PU U7 1 LM1086 Reichelt LM 1086 IT3,3 U9 1 MCP2221_IP Reichelt DS 18B20 U6 1 Step-Up-Modul Step-Up-Modul DS 18B20 U6 1 Step-Up M-SU-XL6009 Pollin 351 434 LEDs D35 1 LED, 5mm, orange Reichelt LED 5MM R OR D36 1 LED, 5mm, grün Reichelt LED 5MM GE D37 1 LED, 5mm, grün Reichelt LED 5MM GN D132 32 LED, 3mm						
Integrierte Schaltungen eBay — U1, U11 2 DM13A eBay — U2 1 MCP6002_IP Reichelt MCP 6002-I/P U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt 74HC 595 U7 1 LM1086 Reichelt LM 1086 IT3,3 U9 1 MCP2221_IP Reichelt MCP 2221-I/P U10 1 DS18B20 Reichelt DS 18B20 LEDs LEDs D35 1 LED, 5mm, orange D36 1 LED, 5mm, rot Reichelt LED 5MM R OR D37 1 LED, 5mm, grün Reichelt LED 5MM GR D37 1 LED, 5mm, grün Reichelt LED 5MM GN D132 32 LED, 3mm, grün Reichelt LED 5MM GN						
U1, U11 2 DM13A eBay — U2 1 MCP6002_IP Reichelt MCP 6002-I/P U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt LM 1086 IT3,3 U9 1 MCP2221_IP Reichelt MCP 2221-I/P U10 1 DS18B20 Reichelt DS 18B20 Step-Up-Modul U6 1 Step-Up M-SU-XL6009 Pollin 351 434 LEDs D35 1 LED, 5mm, orange Reichelt LED 5MM R OR D36 1 LED, 5mm, gelb Reichelt LED 5MM GE D37 1 LED, 5mm, grün Reichelt LED 5MM GN D132 32 LED, 3mm, grün Reichelt LED 5MM GN Quarz Y1 1 Standardouarz, Grundton, 9.8304 Mhz Reichelt 2 9.8304-HC49U-S						
U1 1 DMISAT DMISAT U2 1 MCP6002_IP Reichelt MCP 6002-I/P U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt LM 1086 IT3,3 U9 1 LM1086 Reichelt LM 1086 IT3,3 U9 1 MCP2221_IP Reichelt MCP 2221-I/P U10 1 DS18B20 Reichelt DS 18B20 Step-Up-Modul U6 1 Step-Up-Modul U6 1 Step-Up-Modul Pollin 351 434 LEDs D35 1 LED, 5mm, orange Reichelt LED 5MM R OR D36 1 LED, 5mm, gelb Reichelt LED 5MM GE D37 1 LED, 5mm, grün Reichelt LED 5MM GN D37 1 LED, 3mm, grün Reichelt LED 3MM GN <						
U2 1 MC1 0002_II Reference U3 1 RFM69CW Pollin 810 303 U4 1 ATMEGA 328P Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt ATMEGA 328P-PU U5, U8, U12, U13 4 74HC595 Reichelt ATMEGA 328P-PU U7 1 LM1086 Reichelt LM 1086 IT3,3 U9 1 MCP2221_IP Reichelt DS 18B20 U6 1 DS18B20 Reichelt DS 18B20 LEDs LEDs D35 1 LED, 5mm, orange Reichelt LED 5MM R OR D36 1 LED, 5mm, rot Reichelt LED 5MM RT D34 1 LED, 5mm, grün Reichelt LED 5MM GE D37 1 LED, 5mm, grün Reichelt LED 5MM GN D132 32 LED, 3mm, grün Reichelt LED 3MM GN						
U31It MOC W1010 303U41ATMEGA 328PReicheltATMEGA 328P-PUU5, U8, U12, U13474HC595ReicheltATMEGA 328P-PUU71LM1086Reichelt74HC 595U71LM1086ReicheltLM 1086 IT3,3U91MCP2221_IPReicheltMCP 2221-I/PU101DS18B20ReicheltDS 18B20LEDsD351LED, 5mm, orangeD351LED, 5mm, rotReicheltLED 5MM R ORD361LED, 5mm, gelbReicheltLED 5MM RTD341LED, 5mm, grünReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardguarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
U41ATMEOA 328FReicheltATMEOA 328F+CU5, U8, U12, U13474HC595Reichelt74HC 595U71LM1086ReicheltLM 1086 IT3,3U91MCP2221_IPReicheltMCP 2221-I/PU101DS18B20ReicheltDS 18B20Step-Up-ModulU61Step-Up M-SU-XL6009Pollin3511LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardouarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
U3, U3, U12, U13474HC393Reichelt74HC 393U71LM1086ReicheltLM 1086 IT3,3U91MCP2221_IPReicheltMCP 2221-I/PU101DS18B20ReicheltDS 18B20LEDsLEDsD351LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardguarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
U71LM1086ReicheltLM 1086 115,5U91MCP2221_IPReicheltMCP 2221-I/PU101DS18B20ReicheltDS 18B20Step-Up-ModulU61Step-Up M-SU-XL6009Pollin3551LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardquarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
U91MCP2221_IPReicheltMCP2221-IPU101DS18B20ReicheltDS 18B20Step-Up-ModulU61Step-Up M-SU-XL6009Pollin3551LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardquarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
U101DS18B20ReicheltDS 18B20Step-Up-ModulU61Step-Up M-SU-XL6009Pollin351 434LEDsD351LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardquarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
Step-Up-ModulU61Step-Up M-SU-XL6009Pollin351 434LEDsD351LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardguarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
U61Step-Up M-SU-XL6009Pollin351 434LEDsD351LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardquarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
LEDsD351LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardguarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
LEDsD351LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardquarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
D351LED, 5mm, orangeReicheltLED 5MM R ORD361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardquarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
D361LED, 5mm, rotReicheltLED 5MM RTD341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardquarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
D341LED, 5mm, gelbReicheltLED 5MM GED371LED, 5mm, grünReicheltLED 5MM GND13232LED, 3mm, grünReicheltLED 3MM GNQuarzY11Standardquarz, Grundton, 9.8304 MhzReichelt9.8304-HC49U-S						
D37 1 LED, 5mm, grün Reichelt LED 5MM GN D132 32 LED, 3mm, grün Reichelt LED 3MM GN Quarz Y1 1 Standardquarz, Grundton, 9.8304 Mhz Reichelt 9.8304-HC49U-S						
D132 32 LED, 3mm, grün Reichelt LED 3MM GN Quarz Y1 1 Standardquarz, Grundton, 9.8304 Mhz Reichelt 9.8304-HC49U-S						
Quarz Y1 1 Standardguarz, Grundton, 9.8304 Mhz Reichelt 9.8304-HC49U-S						
Quarz Y1 1 Standardguarz, Grundton, 9.8304 Mhz Reichelt 9.8304-HC49U-S						
I Standardduarz, Grundton, 9.8.504 Minz Keichell 9.8.504-HU.490-5						
MOSFETs und Transistoren						
Q132 32 IRF3708 AliExpress Link						
O35 1 IRF4905 Reichelt IRF 4905						
O34, O37 2 BC337-40 Reichelt BC 337-40						
O33, O36 2 BC327-40 Reichelt BC 327-40						
Widerstände						
D1 D21 $2 \sqrt{7}$						
K1, K31 2 4/K Keicheit METALL 4/,0K						
R1, R51 2 47κ ReicheltMETALL 47,0KR21150ReicheltMETALL 150						
R1, R51247kReferentMETALL 47,0KR21150ReicheltMETALL 150R31150kReicheltMETALL 150K						
R1, R51247kReferentMETALL 47,0KR21150ReicheltMETALL 150R31150kReicheltMETALL 150KR41180kReicheltMETALL 180K						
R1, R51247kReicheltMETALL 47,0KR21150ReicheltMETALL 150R31150kReicheltMETALL 150KR41180kReicheltMETALL 180KR5, R7, R163100kReicheltMETALL 100K						
R1, R51247kReicheltMETALL 47,0KR21150ReicheltMETALL 150R31150kReicheltMETALL 150KR41180kReicheltMETALL 180KR5, R7, R163100kReicheltMETALL 100KR61120kReicheltMETALL 120K						
R1, R51 2 47k Reichelt METALL 47,0K R2 1 150 Reichelt METALL 150 R3 1 150k Reichelt METALL 150K R4 1 180k Reichelt METALL 180K R5, R7, R16 3 100k Reichelt METALL 100K R6 1 120k Reichelt METALL 120K R8, R9, R15, R17, 8 10k Reichelt METALL 10.0K						
R1, R51 2 47k Reicheit METALL 47,0K R2 1 150 Reichelt METALL 150 R3 1 150k Reichelt METALL 150K R4 1 180k Reichelt METALL 180K R5, R7, R16 3 100k Reichelt METALL 100K R6 1 120k Reichelt METALL 120K R8, R9, R15, R17, 8 10k Reichelt METALL 10,0K R27, R29, R32, R33						
R1, R51 2 47k Reichelt METALL 47,0K R2 1 150 Reichelt METALL 150 R3 1 150k Reichelt METALL 150K R4 1 180k Reichelt METALL 180K R5, R7, R16 3 100k Reichelt METALL 100K R6 1 120k Reichelt METALL 120K R8, R9, R15, R17, 8 10k Reichelt METALL 10,0K R27, R29, R32, R33 Reichelt METALL 1.00K Reichelt METALL 1.00K						
R1, R51 2 47k Reichelt METALL 47,0K R2 1 150 Reichelt METALL 150 R3 1 150k Reichelt METALL 150K R4 1 180k Reichelt METALL 180K R5, R7, R16 3 100k Reichelt METALL 100K R6 1 120k Reichelt METALL 120K R8, R9, R15, R17, 8 10k Reichelt METALL 10,0K R27, R29, R32, R33						
R1, R51 2 47k Reichelt METALL 47,0K R2 1 150 Reichelt METALL 150 R3 1 150k Reichelt METALL 150K R4 1 180k Reichelt METALL 180K R5, R7, R16 3 100k Reichelt METALL 100K R6 1 120k Reichelt METALL 120K R8, R9, R15, R17, 8 10k Reichelt METALL 10,0K R27, R29, R32, R33						
R1, R51 2 47k Reichelt METALL 47,0K R2 1 150 Reichelt METALL 150 R3 1 150k Reichelt METALL 150K R4 1 180k Reichelt METALL 180K R5, R7, R16 3 100k Reichelt METALL 100K R6 1 120k Reichelt METALL 120K R8, R9, R15, R17, 8 10k Reichelt METALL 100K R27, R29, R32, R33						

Materialliste Zündbox v3 mit 32 Kanälen

Bauteil	Anz	Beechraibung	Händler	Artikelnr			
Dauton D26	1	2P2 QW	Paichalt	OW VEDT 2.2			
R20 D29	1	2R2-9 W	Reichelt	METALL 270			
NZO DNI DNO DNO	1	270K Naturali ODin 10k	Deichelt	SH 0.8 10V			
\mathbf{N}	4	Network, 9FIII, TOK	Reichen	51L 9-6 10K			
K1N4		HF-Komponenten					
	1	SMA-Kabel Funkmodul-Gehäuse	eBay	2015/18738/13			
	1	SMA-Kabel Gehäuse-Antenne	eBay	151505370086			
	1	Antenne 868 MHz	eBay	380/36601801			
	1	SMA-Platinenbuchse 1 6mm	eBay	220052712000			
	1	SWA-I lathenouense, 1,0hill	CDay	220932712009			
Mechanische Bauteile							
J1	1	USB-Buchse Typ B	Reichelt	USB BW			
J2	1	Wannenstecker, 10-pol	Reichelt	WSL 10G			
	1	Wippschalter	Pollin	420 697			
	1	Miniatur-Schlüsselschalter	Pollin	420 664			
	16	Lautsprecherklemmen	Reichelt	PT 932			
	1	Koffer	Amazon	Bilora 545			
	1	Akku	Reichelt	WP 1,2-12			
	4	Schrauben M3x6	Reichelt	SZK M3X6-200			
	32	Schrauben M3x10	Reichelt	SKL M3X10-50			
	32	Muttern M3	Reichelt	SK-E M3-100			
	2	Akku-Flachstecker	Reichelt	FSH-M1 4,75			
	1	Stiftleiste	Reichelt	SL 1X36G 2,54			
	1	Buchsenleiste mit 6 Plätzen	Reichelt	MPE 094-1-006			
	1	Buchsenleiste mit 7 Plätzen	Reichelt	MPE 094-1-007			
	1	Deans-T-Plugs-Paar	Pollin	820 129			
	1	Rauti Flachbandkabel für I FD+Schlüsselsch	Reichelt	AWG 28-10F 3M			
	1	Litzen Sortiment 0.5 mm ² 5x 5 m	Dollin	800 024			
	1	Schrumpfschläuche 1 6mm	Reichelt	SDH 1.6 SW			
	1	Som umpischläuche 1,00000	Deichelt	SDH 1,0 SW			
	1	Som umprechiauche 5,2mm	Reichen	зыц 2,2 2 м			

Tabelle 10.6: Materialliste für die Zündbox (3. Generation) mit 32 Kanälen

11 Platinenherstellung

Wer zur Platinenherstellung nicht auf die Dienste eines PCB-Herstellers zurückgreifen will, findet in Abbildung 11.1 die Platine des Transmitters (Platinenabmessungen: 91,44 mm × 66,04 mm) als Druckvorlage für den Tonertransfer⁹ bzw. als Belichtungsvorlage. In Abbildung 11.2 findet sich das Layout der Zündbox (Platinenabmessungen: 157,48 mm × 97,79 mm bei den 16-Kanal-Versionen und 214 mm × 128 mm bei der 32-Kanal-Version) und in Abbildung 11.3 das der Adapterplatine zum Auflöten des Funkmoduls (Abmessungen einer einzelnen Adapterplatine: 31,75 mm × 22,86 mm).

Die Oberseite ist hierbei jeweils schon gespiegelt, die Ausdrücke können für einen Tonertransfer also einfach ausgedruckt und im Zwischenraum gefaltet werden, wobei auf möglichst exakte Deckung zu achten ist.

Die Layouts der späteren Zündboxgenerationen und der Raspberry-Pi-Aufsteckplatine sind aufgrund ihrer Komplexität nicht als Tonertransfer-Vorlagen verfügbar, hier kann auf einen der mittlerweile relativ günstigen PCB-Fertiger zurückgegriffen werden. Für Selbstfertigung kann man die Fertigungsdaten den jeweiligen Gerberdateien entnehmen.

⁹Eine Einführung zum Ätzen mit dieser Methode gibt es HIER

Abbildung 11.1: Ober- und Unterseite des Transmitters für Toner-Transfer-Verfahren/Belichtung

Abbildung 11.2: Ober- und Unterseite der Zündbox für Toner-Transfer-Verfahren/Belichtung

Abbildung 11.3: Adapterplatine für Funkmodule (8 Stück) für Toner-Transfer-Verfahren/Belichtung

12 Aufbau

12.1 PC-Transmitter und Zündbox

Der Aufbau umfasst alle Schritte von der blanken Platine hin zum fertigen Gehäuse/Koffer. Hierfür sind verschiedene handwerkliche Tätigkeiten, vor allem das Elektroniklöten¹⁰, aber auch das Bohren, Schneiden, Kleben und evtl. Trennen mittels Trennscheibe und Feilen nötig.

Im eigenen Interesse ist darauf zu achten, diese Arbeiten sorgfältig und unter Einhaltung der gängigen Sicherheitsregeln durchzuführen. **Beim Bohren und Trennen Schutzbrille tragen!** Beim Löten ist auf richtige Orientierung aktiver Bauteile (Dioden, Elektrolytkondensatoren, Temperatursensor, Integrierte Schaltungen) sowie Anschlusskabel zu achten, vor dem Einschalten soll die eigene Arbeit auch kritisch auf beim Löten entstandene Kurzschlüsse getestet werden¹¹. Eine Laborspannungsquelle mit einstellbarer Strombegrenzung – oder ein Steckernetzteil mit maximal 2 A Ausgangsstrom – zu Testzwecken tun hier gute Dienste, wobei auf die Einhaltung der zulässigen Betriebsspannungen (Transmitter 5-7 V, Zündbox 8-15 V) zu achten ist.

12.1.1 Kabel

Zur Verbindung der Platinen mit der Peripherie wird bei *El Fueradoro* eine Vielzahl von Kabeln benötigt, die grob in drei Kategorien unterteilt werden können:

- 1. Flachbandkabel bzw. Flachbandkabel-Adern zum Anschluss von LCD (außer Hintergrundbeleuchtung), LEDs und Schlüsselschalter
- 2. Litze mit einer Querschnittsfläche von mindestens 0,5 mm², d. h. einem Mindestdurchmesser von 0,8 mm, zum Anschluss von LCD-Hintergrundbeleuchtung, Netzschalter und Zündklemmen
- 3. 50 Ω -Koaxialkabel als Antennenkabel

Die Koaxialkabel werden in diesem Abschnitt nicht behandelt, da dafür oft Spezialwerkzeug notwendig ist und davon ausgegangen wird, dass diese Kabel bereits fertig konfektioniert erworben werden. Für

¹⁰Ein gutes – wenn auch englischsprachiges – Löt-Tutorial mit wichtigen Grundlagen gibt es HIER

¹¹Hier klicken, um zu sehen, was ein kurzgeschlossener Blei-Gel-Akku mit Drähten/Leiterbahnen anstellt, sofern er nicht direkt explodiert!

Device (T/Z)	Art	Adern	Länge	Anzahl	Verwendungszweck
Z	Litze	_	210 mm	4	Rote Klemmen (spaltenweise)
Ζ	Litze	_	210 mm	16	Schwarze Klemmen
Z	Litze	_	200 mm	2	Netzschalter
Z	Litze	_	250 mm	4	Batterie (2x rot, 2x schwarz)
Z	Flachband	2	200 mm	16	Kanal-LEDs
Z	Flachband	2	200 mm	4	Status-LEDs
Z	Flachband	2	200 mm	1	Schlüsselschalter
Т	Litze	_	100 mm	2	LCD-Hintergrundbeleuchtung
Т	Flachband	2	100 mm	4	Status-LEDs
Т	Flachband	10	100 mm	1	LCD

Tabelle 12.1: Übersicht über benötigte Kabelverbindungen

die Konfektionierung der anderen Kabel gilt, dass diese so kurz wie möglich aber gleichzeitig auch so lang wie nötig sein sollten, um das Verlöten/Verkleben annehmbar zu gestalten und das Gehäuse später noch einmal öffnen zu können, ohne gleich alles abzureißen.

In Tabelle 12.1 sind die benötigten Abschnitte aufgelistet. Alle Kabel sollten am einen Ende jeweils auf einer Länge von 4 mm zum Festlöten an der Platine, am anderen auf einer Länge von 6 mm abisoliert und verzinnt werden. Zur Vereinfachung der Arbeit ist es ratsam, die Adern des Flachbandkabels erst danach zu trennen, so dass nicht jeder "Zweierverbund" einzeln abisoliert und verzinnt werden muss.

Es dient der Übersichtlichkeit und dem späteren Verständnis ungemein, wenn man verschiedene Kabelfarben verwendet und sich dabei an gängige Konventionen hält (Akkuspannung rot, Masse schwarz).

12.1.2 Platinen

Ausgangspunkt der Bestückung ist die geätzte und gebohrte Platine mit allen Leiterbahnen auf der Ober- und Unterseite. Für selbst gefertigte, einseitig geätzte Platinen, bei denen die Leitungen auf der Oberseite als Drahtbrücken ausgeführt sind, sind diese in Abbildung 12.1 dargestellt.

Anschließend sollten die Bauteile in folgender Reihenfolge eingelötet werden:

Widerstände mit Ausnahme von R_Z, bei den Widerstandsnetzwerken auf korrekte Orientierung achten

Dioden mit korrekter Polung

Keramikkondensatoren
Aufbauanleitung

Abbildung 12.1: Platinen für Transmitter (oben) und Zündbox (unten)

Quarz

Buchsenleisten für Funkmoduladapter

Elektrolytkondensatoren Polung beachten und C14 beim Transmitter waagrecht legen!

Leistungswiderstand R_Z

Temperatursensor mit korrekter Orientierung

Integrierte Schaltungen mit korrekter Orientierung

Der Stand bis zu diesem Punkt ist in Abbildung 12.2 dargestellt.

Anschluss-Kabel für Klemmen (Zündbox) bzw. LCD (Transmitter)

Schalterkabel für Netz- und Schlüsselschalter

LED-Kabel für Status-LEDs und Kanal-LEDs. Um den Überblick zu behalten sollte dabei jeweils

Abbildung 12.2: Zündboxplatine (1. Generation) vor dem Einlöten der Kabel und MOSFETs

das Kabel für den GND-Anschluss vor dem Einlöten markiert werden

- MOSFETs mit korrekter Orientierung (Metallplatte sitzt auf der Seite der großen Elkos)
- **Batterie- bzw. USB-Versorgungs-Kabel** Falls bei der Zündbox fertig konfektionierte Kabel mit Anschluss verwendet werden, vor dem Löten die Seitenwand auf der Schalterseite durchbohren und beide Kabel durchfädeln. Beim Trasmitter wird das Kabel zwischen zwei miteinander verschraubten Teilen verlegt.

12.2 Raspberry-Pi-Aufsteckplatine

Das Einlöten der Bauteile erfolgt in bewährter Reihenfolge:

Widerstände

Keramikkondensatoren

Einreihige Buchsenleisten für Funkmoduladapter

Abbildung 12.3: Raspberry-Pi-Erweiterungsplatine mit aufgestecktem Zündmodul und Antenne

Schraubklemmen

Elektrolytkondensatoren Polung beachten!

Integrierte Schaltungen mit korrekter Orientierung

- Zweireihige Buchsenleiste ACHTUNG: Buchsenleiste befindet sich auf der Unterseite der Platine, Lötseite ist also hier ausnahmsweise die Oberseite
- Verbindungskabel zwischen Spannungsmesspunkt und Klemmeneingang

Die fertig bestückte Platine ist in Abbildung 12.3 gezeigt.

12.3 Funkmodul-Adapter

Nachdem die Platinen nun fertig bestückt sind, folgen die Schritte für die Fertigstellung des Funkmodul-Adapters:

Funkmodul mit allen 14 Anschlüssen (Orientierung beachten) auf der Adapterplatine festlöten. Dabei beachten, dass auf die SMD-Pads auf beiden Seiten etwa gleich weit unter den Anschlüssen hervorstehen und das Modul nicht nach oben oder unten verschoben ist. Am besten mit dem

Abbildung 12.4: Fertig aufgebauter Funkmoduladapter

mittleren Pin einer Seite beginnen und das Modul beim Löten korrekt positionieren, dann alle anderen 13 Anschlüsse löten.

SMA-Buchse anlöten, so dass sie direkt an der Platine anliegt. Falls Anschlüsse zu lang sind und am Modul anstoßen, vorsichtig mit Trennscheibe (Außenleiter) oder Seitenschneider (Innenleiter) kürzen.

Stiftleiste in einen 6-poligen und einen 7-poligen Abschnitt teilen und anlöten.

Der fertige Adapter ist in Abbildung 12.4 gezeigt.

12.4 Peripherie

12.4.1 Transmitter

Als Gehäuse für den Transmitter wird das schwarze Kunststoffgehäuse GEH KS 50 aus dem Sortiment von Reichelt verwendet. Es besteht aus zwei miteinander zu verschraubenden Teilen, wobei der dünne Teil, auf dem später die Platine befestigt wird, als Rückwand dient. Dementsprechend sind die Bezeichnungen in der folgenden Beschreibung zu verstehen.

Die Vorderseite des Gehäuses muss zunächst mit einem Ausschnitt von 97 mm \times 39,5 mm und vier 3 mm-Bohrungen für die Anbringung des LCD versehen werden. Die Abstände zueinander sind in Abbildung 12.5 verdeutlicht. Wer nicht auf seine Messkünste vertrauen möchte oder ein LCD mit

Abbildung 12.5: Abmessungen (in mm) des LCD

abweichenden Abmessungen besitzt, sollte zunächst einen passenden Ausschnitt für den Bildschirm mittig in der Fläche anbringen, anschließend können das LCD aufgelegt und die vier Bohrlöcher markiert und gebohrt werden.

Bevor man das LCD einschraubt, muss noch eine Aussparung für den Sub-D-Anschluss, ein Loch für den Antennenanschluss (6,5 mm), vier Löcher für die Status-LEDs (5 mm)und eine Kerbe für die Versorgungskabeldurchführung in die Wand, welche später als Oberseite des Gehäuses dient, eingebracht werden.

Hierfür sollte man zunächst die fertig bestückte Platine mittels zweier Schrauben in ihrer finalen Position festschrauben und das Oberteil so anlegen, dass die Position der Aussparung für die Sub-D-Buchse angezeichnet werden kann. Die Abmessung der Aussparung sollte 31 mm × 12,5 mm betragen. Die Positionen der restlichen Löcher sind aufgrund der Kabelverbindung mit der Platine unkritisch, die ungefähre Lage kann Abbildung 1.2a auf Seite 13 entnommen werden. Das Versorgungskabel mit USB-Stecker wird zwecks Zugentlastung zwischen den beiden zu verschraubenden Teilen eingeklemmt, die Kerbe sollte daher nicht allzu groß ausgeführt werden. Die Bohrarbeiten am Transmitter sind damit erledigt!

Nun müssen noch die elektrischen Verbindungen zwischen Platine und Peripherie hergestellt und die Peripherieteile anschließend befestigt werden – zuerst die vier Status-LEDs:

1. Die Verbindung der Adern des Flachbandkabels auf einer Länge von etwa 35 mm auftrennen

- 2. Auf jede Ader einen dünnen Schrumpfschlauch der Länge 15 mm stecken (noch nicht erhitzen!)
- 3. Das kürzere Anschlussbein der LED (Kathode) mit dem Seitenschneider auf eine Länge von 8 mm trimmen und die mit GND verbundene Ader anlöten
- 4. Das längere Anschlussbein der LED (Anode) mit dem Seitenschneider auf eine Länge von 8 mm trimmen und die andere Ader anlöten
- 5. Schrumpfschläuche bis ans LED-Gehäuse vorschieben und per Heißluft schrumpfen

Anschließend das Flachbandkabel für das LCD vorbereiten, d. h. abisolieren, verzinnen und Verbindungen soweit lösen, dass alle Anschlüsse bequem erreicht werden können. Da das LCD im 4-Bit-Modus betrieben wird, werden nur die Pins 1-6 sowie 11-16 angeschlossen, 7-10 bleiben offen. Bei Anschluss der Pins 15 und 16 darauf achten, Anode und Kathode nicht zu vertauschen; die Belegung ist in der Regel so, dass die Anode an Pin 15 herausgeführt ist, kann aber von LCD zu LCD variieren. Der Lötkolben kann danach ausgeschaltet werden, jetzt geht es an die Befestigung.

Zunächst wird das LCD am Gehäuse festgeschraubt, wobei darauf zu achten ist, dass die Oberseite auch in die Richtung von Antennen- und Sub-D-Anschluss zeigt. Anschließend die LEDs um den Gehäusering mit Sekunden- oder Heißkleber bestreichen und danach für einige Sekunden fest ins dafür vorgesehene Loch pressen. Nun die SMA-Buchse fest am Gehäuse anschrauben und das andere Kabelende mit der Buchse am Funkmodul-Adapter verbinden.

Unter möglichst geringer Torsion sollte dann der Funkmoduladapter in die Buchsenleisten auf der Platine gesteckt werden.

Nun muss man noch die Antenne anschrauben. Wenn der Bootloader sich bereits auf dem Controller befindet, kann man das Gehäuse zuschrauben. Ansonsten den Transmitter mit Energie versorgen und den Bootloader wie in Abschnitt 13 beschrieben flashen. Jetzt ist der Transmitter fertig aufgebaut und kann zugeschraubt werden! Die Firmware kann wie in Abschnitt 3.3 beschrieben über die serielle Schnittstelle aufgespielt werden, wobei beim ersten Mal noch die Angabe des Dateinamens nötig ist.

12.4.2 Zündbox

Abbildung 12.6 zeigt die Bohrschablone für die Oberseite des Kunststoffgehäuses der Zündbox (Kunststoffgehäuse 021-002-084 von Pollin). Diese kann dazu verwendet werden, eine Schablone aus Sperrholz oder Metall anzufertigen, welche später auf die Boxenoberseite gelegt wird, um die nötigen Bohrungen vorzunehmen. Die Oberseite des Gehäuses ist dabei der Teil ohne sichtbare Schraublöcher.

Es ist beim Bohren der Box auf die richtige Orientierung der Schablone zu achten, da die Befestigungsbohrungen für die Platine nicht symmetrisch sind (Schrauben auf der linken Seite, wo sich die serielle

Abbildung 12.6: Bohrschablone für Zündboxoberseite

Schnittstelle befindet, sind enger zusammen als die auf der rechten Seite mit den MOSFETs und Kanal-LEDs) und die Gehäuseteile durch ein Nut-Feder-System nur in einer Kombination aufeinander gesteckt werden können. Man beachte hierzu Abbildung 12.7.

Damit die Löcher nicht mit Schraubenhalterungen in den Ecken interferieren, sollte zunächst im Gehäuseinneren der passende Ort für die Kanal-LEDs von Kanal 4 und 16 (äußerste grüne LEDs in der obersten und untersten Reihe, Abstand 75 mm) gesucht, die beiden Löcher mit einem 3 mm-Bohrer gebohrt und die Schablone auf der Oberseite in diesen beiden Bohrungen befestigt werden.

Die Bohrlöcher für die 16 Kanal-LEDs sollten mit einem 3-mm-Bohrer, die der vier Status-LEDs mit einem 5 mm-Bohrer ausgeführt werden. Die LEDs werden später (nach dem Verkabeln und Festlöten des Kabels auf der Platine) seitlich mit Heißkleber bestrichen von unten bis zum Anschlag in diese Löcher eingeschoben.

Da die Lautsprecherklemmen mit M3-Gewindeschrauben befestigt werden, wäre der ideale Bohrdurchmesser für die 16 Schraubenlöcher 3,2 mm. Sollte dieser Durchmesser nicht vorhanden sein, kann aber auch mit 3,5 mm oder 3 mm gearbeitet werden. Für die Lötfahnen der Klemmen ist eine rechteckige Aussparung von 4,5 mm × 2 mm nötig, als schnelle Lösung kann auch jeweils ein 5 mm-Loch durch den Mittelpunkt (Diagonalenschnittpunkt) dieser Flächen gebohrt werden.

Die rechteckige Aussparung für den Netzschalter sollte die Größe 19 mm × 13 mm besitzen, der Schlüsselschalter hat einen Einbaudurchmesser von 12 mm und der Durchsteckplatz für die SMA-Buchse sollte mit 6,5 mm vorgebohrt werden. Im nächsten Schritt werden Schlüsselschalter, Klemmen und Netzschalter am Gehäuse verschraubt bzw. eingeklickt. Die Innenansicht des Zündboxdeckels (noch ohne SMA-Anschluss) ist in Abbildung 12.7 dargestellt. Hierbei ist auch zu erkennen, wo sich die Nut (unten, bei den Status-LEDs) und wo die Feder (oben) beim Deckel befinden muss. Dementsprechend muss es bei der Unterseite andersherum sein.

In die linke Einschub-Seitenwand muss, sofern noch nicht im Rahmen des Lötens geschehen, ein Loch für die Durchführung der Batteriekabel mit einer Größe je nach Kabeldurchmesser.

Um die Position der D-Sub-Buchse in der Wand des Unterteils, welche in der Nut endet, zu finnden, muss die Platine möglichst identisch zu ihrer späteren Position ins Gehäuse eingelegt werden, die Aussparung beträgt wie beim Transmitter 31 mm × 12,5 mm. In der dritten Zündboxgeneration kommt statt der D-Sub-Buchse ein USB-Anschluss Typ B zum Einsatz, hier fällt der Ausschnitt entsprechend anders aus. Wenn die Aussparung fertig ist, kann die Platine in ihre endgültige Position gebracht und mit vier Schrauben befestigt werden. Die linke Seitenwand bleibt noch ausgesteckt. Jetzt ist wieder der Lötkolben dran!

Zunächst vier Drahtstücke á 80 mm abschneiden und durch die übereinander liegenden Lötfahnen der roten Klemmen ziehen und mit den Lötfahnen verlöten.

Die Kanal- und Status-LEDs wie auf Seite 113 beschrieben mit den zugehörigen Flachbandkabeln verbinden, anschließend den Schlüssel- und den Netzschalter mit den zugehörigen Anschlusskabeln.

Abbildung 12.7: Innenansicht des Zündboxdeckels

Bei den Schritten in den folgenden Absätzen ist Sorgfalt geboten, da die Kanäle und LEDs richtig zugeordnet werden müssen, um später mit dem entsprechenden Befehl auch den richtigen Kanal zu zünden!

Zunächst müssen die 16 Kabel mit den zugehörigen schwarzen Klemmen verbunden werden, was anhand des Layouts in Abbildung 6.8 auf Seite 75 erklärt werden soll. Kanal 1 wird vom Transistor Q2 gesteuert, Kanal 2 von Q3, Kanal 3 von Q4 und allgemein Kanal x-1 von Qx. Entsprechend ist das Kabel, welches an derjenigen Lötstelle angelötet ist, die durch die dicke blaue Linie unmittelbar mit dem mittleren Pin (Drain) von Q2 verbunden ist, an der Lötfahne der schwarzen Klemme ganz unten links – bezogen auf Abbildung 1.2b – anzubringen. Das Kabel an der Drain von Q3 (Zick-Zack-Anordnung der Transistoren beachten!) wird mit der schwarzen Klemme daneben verbunden, das an Q4 mit der dritten und das an Q5 schließlich mit der letzten Klemme in der Reihe, die unmittelbar neben der Viererreihe für die Kanal-LEDs liegt. Man sollte sich nicht dadurch verwirren lassen, dass aufgrund des umgedrehten Deckels alles seitenverkehrt ist, man die Klemmen also beim Löten von rechts nach links belegt. Analog zum bisherigen Vorgehen verfährt man in der Reihe darüber und den beiden anderen Reihen.

Nun werden mit Heiß- oder Sekundenkleber die Kanal-LEDs in die richtige Position gesteckt.

Für Kanal n ist dabei immer auch LEDn zuständig, für Kanal 1 also LED1, die über R21 mit der Drain von Q2 verbunden ist, für Kanal 2 LED2, usw. Sinnvollerweise ist LED1 in das Loch zu kleben, welches in der untersten Reihe direkt neben den Klemmen liegt, LED8 dementsprechend in der zweituntersten Reihe ganz außen usw.

Danach werden die vier Kabel am Leistungswiderstand jeweils mit einem der gespannten Drähte an den roten Klemmen verbunden. Hierbei spielt die Zuordnung (welches Kabel an welchen Draht?) keine Rolle. Damit sind sämtliche Kabel im inneren der Box nun verlötet und die Arbeit nähert sich langsam dem Ende!

Nun die SMA-Buchse fest am Gehäuse anschrauben, die Antenne vorerst dort befestigen und das andere Kabelende mit der Buchse am RFM-Adapter verbinden. Unter möglichst geringer Torsion sollte dann der RFM-Adapter mit dem aufgelöteten Funkmodul in die Buchsenleisten auf der Platine gesteckt werden.

Wenn der Bootloader bereits auf den Controller geflasht wurde, kann man jetzt die beiden Seitenwände einstecken und die Box zuschrauben (wenn man sich sicher ist, dass sie funktioniert...). Ansonsten muss die Box noch offen bleiben.

Den männlichen Teil des Steckerpaars mit den aus der Box kommenden Batteriekabeln verlöten (Schrumpfschlauch nicht vergessen!), den weiblichen über zwei Kabel an der Batterie, wobei jeweils auf die korrekte Polung zu achten ist¹².

Für die erste Inbetriebnahme sollte, wie zu Beginn des Kapitels empfohlen, idealerweise eine Laborspannungsquelle, ein kurzsschlussfestes Steckernetzteil oder aber eine träge 3 A-Sicherung in der Zuleitung verwendet werden. Nun die Box über den Netzschalter einschalten und, falls noch nicht geschehen, den Bootloader via ISP flashen. Nun kann die Box zugeschraubt und die Firmware eingespielt werden.

12.4.3 Koffer

Als Aufbewahrungsort für die Zündboxen tut ein robuster Aluminiumkoffer wertvolle Dienste, um die Zündboxen vor Wettereinflüssen und Feuerwerksniederschlag zu schützen. Als gutes Pendant zum Plastikgehäuse bietet sich der in der Materialliste in Tabelle 10.4 aufgeführte Alu-Koffer 545 von Bilora an, der gerade ausreichend Platz für eine Zündbox und den zugehörigen Blei-Gel-Akku für die Stromversorgung bietet.

Schaumstoffeinlage

Der Koffer besitzt eine gewürfelte Schaumstoffeinlage mit einem 18×14 -Raster, die gemäß Abbildung 12.8 entsprechend angepasst werden kann, um auch beim Transport einen festen Stand von Zündbox und Akku im Koffer zu ermöglichen.

Hierfür müssen für die Box 13×7 sowie für den Akku 6×3 Würfel händisch oder mit Hilfe eines Teppichmessers an den gezeigten Stellen gelöst werden. Zudem empfiehlt es sich noch, zwei Würfel

¹²Bei Deans-T-Steckern wird der obere Balken des T mit + verbunden, bei Tamiya-Steckern das eckige Profil

Abbildung 12.8: Ausschnitt aus der Schaumstoffeinlage für Zündbox und Akku

an der seriellen Schnittstelle für ein leichteres Herausnehmen der Box und den eingezeichneten Kabelkanal herauszutrennen. Um ein Herauslösen weiterer Würfel zu verhindern, kann mittels Sekundenoder Heißkleber in den Kreuzungen der vorgestanzten Linien eine festere Naht hergestellt werden.

Antennenhalterung

Etwas Arbeit ist nötig, um die Antenne in eine geeignete Position zu bringen, um bei geschlossenem Koffer die Zündkommandos noch sicher und zuverlässig empfangen zu können. Wenn die Antenne nicht außerhalb des Gehäuses angebracht ist, können ankommende Signale nicht bzw. nur äußerst stark gedämpft hinein- und abgehende so gut wie nicht hinausgelangen, weil der Alukoffer als Faradayscher Käfig wirkt.

Um die Antenne vom SMA-Anschluss an der Zündbox nach außen zu führen, wird ein zweiteiliger Adapter, der in Abbildung 12.9 am Koffer montiert gezeigt ist, verwendet. So wird einerseits das Kabel geschützt, andererseits die Kabelführung stabilisiert. Die Halterung besteht aus zwei ineinander gesteckten Teilen:

- MDF-Platte: $85 \text{ mm} \times 35 \text{ mm} \times 3 \text{ mm}$
- PVC-Rohr, basierend auf einer Gardena-Micro-Drip-Verlängerung: Ø7,5 mm × 115 mm

In die MDF-Platte wird 10 mm vom oberen Rand entfernt mehr oder weniger mittig ein 5 mm-Loch

Abbildung 12.9: Adapter am Koffer montiert

Aufbauanleitung

(a) Einzelteile

(b) Zusammen

gebohrt und ein Kanal senkrecht nach oben zum Rand eingebracht. Beim PVC-Rohr bringt man 7 cm vom Rand entfernt auf einer Länge von 3 mm zwei Einschnitte ein, um das Rohr an dieser Stelle auf die Breite des Kanals zu bringen. Die beiden Einzelteile sind in Abbildung 12.10a, der zusammengesteckte Adapter in Abbildung 12.10b abgebildet. Der Adapter wird vor dem Montieren der MDF-Platte am Koffer so ausgerichtet, dass die Rohröffnung genau auf die SMA-Buchse an der Zündbox zeigt.

Nun muss das Antennenkabel durch das Rohr geführt werden, so dass der gewinkelte männliche SMA-Stecker an dem Ende des Rohrs liegt, welches näher an den Einschnitten liegt. Wird ein bereits fertig konfektioniertes Antennenkabel, z. B. das in der Materialliste aufgeführte, verwendet, muss das PVC-Rohr auf kompletter Länge aufgetrennt werden, um das Kabel einführen zu können. Konfektioniert man das Kabel selbst, kann die Buchse auf der Antennenseite nach dem Einfädeln angebracht werden, womit man sich das Auftrennen des Rohrs spart. Ist das Kabel durch das Rohr gefädelt und sind Winkelstecker und Buchse angebracht, sollte der gewinkelte Stecker kurz an der Box angeschraubt und der Adapter zusammengesteckt werden, damit man die nötige Länge für den Schrumpfschlauch zwischen MDF-Platte und Winkelstecker ausmessen kann. Dieser wird dann, nach Abschrauben des Winkelsteckers und Herausnehmen des Rohrs vom "Buchsenende" her aufgeschoben und erhitzt.

Im nächsten Schritt muss das Rohr außerhalb des Koffers gebogen werden, damit die Antenne später senkrecht nach oben zeigt. Hierzu sollte das PVC-Rohr mit einem Heißluftföhn erwärmt und in größerem Radius (Koaxialkabel sollten nie geknickt werden!) gebogen werden.

Zum Schluss wird die Antenne an die Buchse angeschraubt und die Verschraubung mit Schrumpfschlauch überdeckt. Die fertige Antenne, die außerhalb der Einsatzzeiten der Zündbox abgeschraubt im Koffer aufbewahrt werden kann, ist in Abbildung 12.11 dargestellt.

Abbildung 12.11: Einsatzbereite Antenne mit Zuleitung

12.4.4 Gehäuse des Raspberry-Pi-Transmitters

Über je einen der USB-Ports am Raspberry Pi sind der Touchscreen sowie die USB-Soundkarte anzuschließen, für die Displayfunktionalität des Touchscreens wird zusätzlich eine HDMI-Verbindung benötigt.

13 Aufspielen des Bootloaders

Bevor Firmwareupdates über die serielle Schnittstelle eingespielt werden können, muss zunächst ein Programm auf den Controller gespielt werden, dessen Aufgabe es ist, die eigentliche Firmware in den Speicher zu laden und zu starten. Dieses Programm ist der so genannte Bootloader, welcher beim Start des Devices für eine Sekunde überprüft, ob ein Firmwareupdate vorgenommen werden oder die *El Fueradoro*-Firmware normal ausgeführt werden soll.

Abbildung 13.1: Pinbelegung des ISP-Platinensteckers: Ansicht von oben, Gehäuseaussparung an Pin 5. Quelle: mikrocontroller.net

Um den Bootloader auf den Controller zu brennen und einige Grundeinstellungen des Controllers, die so genannten Fuses, welche neben den Einstellungen, welche die Verwendung eines Bootloaders ermöglichen, auch Funktionen wie die Brown-Out-Detektion oder die Taktquelle regeln, wird ein spezielles Programmiergerät zur In-System-Programmierung (ISP) benötigt, welches den Controller in den Resetzustand versetzt und anschließend den Bootloader über die SPI-Schnittstelle an eine festgelegte Stelle im Flash-Speicher des Controllers schreibt – dieses Programmiergerät wird als Programmer bezeichnet. Auf der Platine jedes Devices ist für ISP ein zehnpoliger zweireihiger Wannenstecker vorgesehen, an den gängige Programmiergeräte wie der weit verbreitete *AVRISP mkII* angeschlossen werden. Seine Pinbelegung ist in Abbildung 13.1 gezeigt.

Der Markt an Programmiergeräten ist unübersichtlich, sie existieren in unzähligen Varianten und für die verschiedensten Programmierverfahren. Beim Kauf sollte darauf geachtet werden, dass der gewählte Programmer das ISP-Verfahren beherrscht und beim System-Logik-Spannungspegel von 3,3 V arbeiten kann. Zusätzlich sollte darauf geachtet werden, dass die VCC-Leitung vom Programmer nicht aktiv mit Spannung versorgt wird.

Nach einmaligem Flashen des Bootloaders und EEPROMs wird die ISP-Schnittstelle nicht wieder benötigt, alle weiteren Änderungen können über die serielle Schnittstelle und den Bootloader vorgenommen werden.

Zadig		– 🗆 🗙
Device Options Help AVRISP mkII		✓ ☐ Edit
Driver (NONE) USB ID 03EB 2104	ibusb-win32 (v1.2.6.0)	More Information WinUSB (libusb) libusb-win32 libusbK
1 device found.		WinUSB (Microsoft) Zadig 2.4.721

Abbildung 13.2: Einstellungen in Zadig zur Erzeugung und Installation eines USB-Treibers für den Programmer

13.1 Über raspEasyFire

Über den Abschnitt "El Fueradoro flashen" in der *raspEasyFire*-Oberfläche ist es relativ einfach möglich, den Bootloader mittels eines geeigneten Programmers auf den Mikrocontroller zu schreiben. Hierzu müssen zunächst die aktuellsten Dateien heruntergeladen werden, anschließend ist über ein Dropdownmenü der verwendete Programmer – einige der am weitesten verbreiteten Programmer sind wählbar, weitere Geräte fügt der Autor auf Anfrage gerne hinzu – sowie die zu schreibende Bootloadervariante auszuwählen.

Ist mit dem Programmer eine Verbindung zwischen zu flashendem Device und *raspEasyFire* hergestellt, kann der Bootloader-Schreibvorgang mit der Schaltfläche "Bootloader flashen" gestartet werden. Bei diesem Vorgang werden auch die Standardkonfiguration des EEPROM sowie die passenden Fuseeinstellungen geschrieben.

13.2 Über den PC

13.2.1 Verwendung des AVRISP mkll

Zum Brennen des Bootloaders gibt es ein Kommandozeilentool namens *btldflsh.exe* für den *AVRISP mkII*, welches auf *AVRDUDE* basiert. Um einen mit *AVRDUDE* kompatiblen USB-Treiber für den Programmieradapter zu installieren, gibt es unter Windows das Programm Zadig¹³, in dem vor dem Klick auf "Install Driver" die Einstellungen gemäß Abbildung 13.2 zu treffen sind.

Dem Tool muss als Parameter die iHex-Datei des controllertyp- und frequenzspezifischen Bootloaders übergeben werden.

¹³Zadig-Download: https://zadig.akeo.ie/

Fuse	Wert	Bedeutung	
Low Fuse	0xF7	Kein Taktteiler, kein Clock-Output, Ext. Full Swing	
		Crystal als Taktquelle	
High Fuse	0xD6	Reset-Pin nicht als I/O-Pin, kein Debug-Wire, SPI-	
		Download erlaubt, Watchdog aus, EEPROM nicht lö-	
		schen, Bootbereich = 256 Wörter, Boot-Reset-Vektor	
		aktiviert (=nach Reset Bootloader starten)	
Extended Fuse	0x05/ 0xFD ¹⁴	Brown-Out bei Versorgungsspannung unter 2,7 V	

Tabelle 13.1: Fuse-Einstellungen beim ATmega328P

Für einen ATmega328P mit einer Taktfrequenz von 9,8304 MHz lautet das Kommando:

btldflsh.exe bootload_m328p_9830400.hex

Die für *El Fueradoro* benötigten Einstellungen für Fuses und die Datenübertragung werden auf diese Weise automatisch angepasst. Ebenfalls übertragen wird beim Flashen des Bootloaders eine Standardversion des EEPROMS, so dass die Devices standardmäßig 1 als Unique- und Slave-ID zugewiesen bekommen (Transmitter rekonfigurieren sich dann automatisch beim ersten Start der Firmware).

13.2.2 Verwendung eines anderen Programmieradapters

Selbstverständlich ist das Aufspielen des Bootloaders auch mit anderen Programmern möglich.

Wichtig für die ordnungsgemäße Funktion des Bootloaders sowie später der Firmware ist neben einer fehlerfreien Programmierung auch das korrekte Setzen der Fuse-Bits, welches bei Einsatz eines alternativen Programmieradapters manuell vorgenommen werden muss.

Für El Fueradoro müssen die Fusebits beim ATmega328P gemäß Tabelle 13.1 gesetzt werden.

Wird beim Flashen des Bootloaders das Standard-EEPROM-Image nicht mitübertragen, die herstellerseitige Voreinstellung des EEPROMs also nicht verändert, werden Zündboxen – nach dem Programmieren der "echten" Firmware – zunächst "E" bzw. "e" für "Error" als Unique- bzw. Slave-ID melden, da an den Speicherstellen für IDs und Prüfsummen nicht zueinander passende Werte stehen.

¹⁴Bei der Extended Fuse werden nur die unteren drei Bit verwendet, die oberen fünf sind nicht in Gebrauch und können daher beliebig jeweils mit 1 oder 0 beschrieben und gelesen werden. Werden die nicht-relevanten Bits mit 0 beschrieben, ergibt sich der Wert 0x05, bei Beschreibung mit 1 der Wert 0xFD. AVRDUDE ist leider nicht imstande, die oberen fünf Bits zu ignorieren und meldet daher einen Verifizierungsfehler, falls die Bits mit 0 geschrieben und mit 1 gelesen bzw. mit 1 geschrieben und mit 0 gelesen werden.

Die Zündbox muss dann einmalig kabelgebunden über die lokale Konfiguration auf gültige Werte eingestellt werden.

Wird das Tool *AVRDUDE* verwendet, müssen der Programmername als Parameter hinter "-c" und die Verbindung zum Computer – mögliche Werte sind unter anderem usb oder comXY, wobei XY eine Zahl bezeichnet – hinter "-P" angegeben und an der entsprechenden Stelle in folgenden Befehl eingefügt werden:

avrdude -p m328p -c **PROGRAMMER** -P **VERBINDUNG** -u -Uflash:w:bootload_m328p_9830400.hex:a -U eeprom:w:std_eep.eep:a -Ulfuse:w:0xf7:m -Uhfuse:w:0xd6:m -Uefuse:w:0xfd:m -v

14 Micro-SD-Karte für raspEasyFire vorbereiten

14.1 Image herunterladen und übertragen

Aufgrund der Vielzahl an notwendigen Einstellungen und Zusatzpaketen wird für den schnellen Einstieg ein fertiges *raspEasyFire*-Image auf Basis des Betriebssystems Raspbian zur Verfügung gestellt, welches mit einem geeigneten Tool auf eine Micro-SD-Karte geschrieben werden kann. Das Image besitzt eine Größe von etwa 5 GB und kann in seiner jeweils aktuellsten Version heruntergeladen werden unter:

http://raspeasyfire.de/raspEasyFire.img

Um diese Datei nun so auf eine Micro-SD-Karte (Mindestkapazität 8 GB) übertragen zu können, dass sie von *raspEasyFire* genutzt werden kann, bietet sich unter Windows das kostenlose Tool **Win32 Disk Imager**¹⁵ an. Hier muss nun einfach die soeben heruntergeladene Imagedatei geladen, der korrekte Laufwerksbuchstaber der Mirco-SD-Karte ausgewählt und anschließend der Schreibvorgang gestartet werden, der einige Minuten in Anspruch nimmt. Unter Linux kann mit dem Kommandozei-lentool DiskDump (dd) gearbeitet werden.

Wichtig: Soll unter Windows eine bereits mit einem Image beschriebene SD-Karte neu beschrieben werden, sind zunächst folgende Schritte mit dem Windows-Boardtool DISKPART notwendig, um die Karte erneut nutzen zu können:

- 1. Einlegen der SD-Karte in den Windows-Rechner
- 2. Starten der Kommandozeile durch Drücken der Windows-Taste zusammen mit "R", Eingabe von "cmd" und Klick auf OK.
- 3. Aufrufen des Tools "diskpart"
- 4. In der nun gestarteten Eingabemaske, die mit "DISKPART>" vor dem Cursor beginnt, lässt man die verfügbaren Datenträger (Festplatten und SD-Karten) mit dem Befehl "list disk" anzeigen.

¹⁵Setupdatei zur Installation herunterzuladen unter: https://sourceforge.net/projects/win32diskimager/ files/latest/download

- 5. Anhand der Größenangabe in der dritten Spalte identifiziert man nun die SD-Karte und merkt sich die zugehörige Nummer in der ersten Spalte hinter "Datenträger", z.B. die "2".
- Die im vorherigen Schritt gemerkte Datenträger-Nummer wird nun über den Befehl "select disk NUMMER", also im Beispiel durch "select disk 2" ausgewählt und sollte vom Programm bestätigt werden.
- 7. Durch den Befehl "clean" bereinigt man den Datenträger vollständig.
- 8. Nun muss durch "create partition primary" eine neue Partition erstellt werden.
- 9. Diese Partition wird über "select partition 1" ausgewählt.
- 10. Durch "active" bestätigen.
- 11. Die Partition mit format fs=fat32 quick formatieren.
- 12. Durch "assign" bestätigen.
- 13. Diskpart durch "exit" beenden.

Erst jetzt kann mit dem Win32 Disk Imager ein neues Image korrekt geschrieben werden.

Hintergrund ist, dass das Image zwei Partitionen (Boot- und Datenpartition) enthält, wobei für Windows selbst nur die Bootpartition verarbeitbar ist, da es sich bei der Datenpartition um eine Linux-Partition im ext4-Format handelt, die Windows nicht erkennen kann. Sämtliche Aktionen aus dem Windows-Explorer würden sich ohne die DISKPART-Schritte daher nur auf die Bootpartition beziehen und die Datenpartition unangetastet lassen.

14.2 WLAN-Daten einstellen

Damit *raspEasyFire* problemlos via SSH-Verbindung über WLAN von einem Windows-Rechner, über den erfahrungsgemäß die meisten Anwender verfügen, konfiguriert werden kann, können vor dem Einlegen der Micro-SD-Karte in den Raspberry Pi noch die Zugangsdaten des eigenen Drahtlosnetzwerks auf der Karte hinterlegt werden.

Nach erfolgreichem Übertragen des Images sollte Windows die Karte unter der Bezeichnung "boot" erkennen¹⁶. Im Hauptverzeichnis kann nun eine Textdatei namens "wifidata.txt" angelegt werden, die aus zwei Zeilen besteht. Die erste Zeile enthält die SSID des Drahtlosnetzwerks, die zweite Zeile den Schlüssel. *raspEasyFire* sucht beim Hochfahren nach dieser Datei und wird ein WLAN mit den

¹⁶In Wahrheit besteht das System neben der Boot-Partition noch aus einer weiteren Partition, die aufgrund ihres Formats für Windows aber nicht erkennbar ist.

entsprechenden Zugangsdaten an der korrekten Stelle im System eintragen, so dass eine automatische Drahtlosverbindung hergestellt werden kann.

Sollte *raspEasyFire* nach dem Hochfahren nicht im Netzwerk auftauchen, liegt dies möglicherweise an vorhandenen MAC-Filtern und Zugangsbeschränkungen im Router, die zumindest bis zur ersten erfolgreichen Verbindung deaktiviert werden müssen.

Nun kann die Speicherkarte in raspEasyFire eingeführt und verwendet werden.

Sollte man die Einstellung der WLAN-Daten zu einem späteren Zeitpunkt vornehmen wollen, ist es auch möglich, die "wifidata.txt" im Hauptverzeichnis eines USB-Sticks abzulegen, wie es auch mit zpl-, mp3-, AES-Schlüssel-Dateien oder der "sysinfo.txt" möglich ist. Analog zur "sysinfo.txt" wird die Datei mit den WLAN-Daten nach Anwendung im System in "wifidata.txt.applied" umbenannt.

15 Tipps und Tricks

15.1 5 V-LCD an 3,3 V

Zwar gibt es inzwischen auch LCDs, welche sich von Haus aus für eine Versorgung mit 3,3 V eignen, viele Displays jedoch sind noch für 5 V ausgelegt. Der interne Controller funktioniert ohne Probleme auch bei geringerer Spannung, Knackpunkte sind jedoch die Kontrastspannung für das LCD sowie die Hintergrundbeleuchtung.

Die Kontrastspannung wird zwischen Pin 2 und Pin 3 gemessen und ist verantwortlich für die Lesbarkeit der Schrift auf dem Display. Im "Normalfall" – also bei Betrieb des Displays mit einer Versorgungsspannung von 5 V – wird Pin 3 auf 0 V gelegt, so dass sich eine Kontrastspannung von 5 V einstellt. Liegen an Pin 2 nur 3,3 V an, muss Pin 3 folglich mit einer negativen Spannung verbunden werden, um die nötige Kontrastspannung zu erreichen.

Als Quelle der negativen Spannung dient der RS232-Treiberbaustein, der am Pin V- eine Spannung von -5,5 V zur Verfügung stellt. Über einen Spannungsteiler – im Schaltplan auf Seite 68 von R12 = 3,3 k Ω und R13 = 6,8 k Ω gebildet – zwischen V- und GND wird daher Pin 3 des LCD auf -1,8 V gelegt.

Manche LCDs torpedieren diesen Versuch, indem Pin 3 relativ niederohmig mit GND verbunden wird. Man sollte also im abgeklemmten Zustand den Widerstand zwischen Pin 1 und Pin 3 messen und bei Bedarf den eventuell auf der LCD-Platine befindlichen Widerstand zwischen den beiden Pins auslöten.

Die Hintergrundbeleuchtung wird über die Pins 15 und 16 versorgt. Zwischen diesen Pins befindet sich in Reihe zu den LEDs in aller Regel noch ein Widerstand, welcher den Strom durch die LEDs begrenzt und für eine Spannung von 5 V zwischen den Pins ausgelegt ist. Bei 3,3 V zwischen Pin 15 & 16 erscheint das LCD daher möglicherweise zu dunkel, so dass man den Widerstand durch einen kleineren Wert ersetzen kann, um die Spannungsdifferenz auszugleichen.

Der ursprüngliche LED-Vorwärtsstrom sowie die Aufteilung der Spannung auf LED und Vorwiderstand können durch Anlegen von 5 V zwischen Pin 15 & 16, Spannungsmessung über dem Original-Widerstand und anschließende Division durch den Widerstandswert (korrekt ablesen oder messen) ermittelt werden. Da der Spannungsabfall über den LEDs sich nicht ändert und der Strom gleich bleiben soll, muss der Wert des neuen Widerstands so verkleinert werden, dass bei identischem Stromfluss über ihm 1,7 V weniger abfallen als am Original-Widerstand. Ist z. B. original ein Widerstand von 150 Ω verbaut, über dem eine Spannung von 2 V anliegt (hieraus resultiert eine LED-Vorwärtsspannung von 3 V), ergibt sich ein LED-Vorwärtsstrom von 13 mA. Dementsprechend wäre bei einem Spannungsabfall von nur noch 0,3 V für den gleichen Strom ein Widerstand von 22 Ω einzusetzen.

15.2 Antennenbau

Antennen für die verwendete Übertragungsfrequenz von 868 MHz gibt es in großer Auswahl zu kaufen, eine einfache, omnidirektionale Antenne, welche ein sehr gutes Stehwellenverhältnis von <1,3:1 erzielt, kann aber auch relativ schnell selbst gebaut werden. Auf möglichst exakte Einhaltung der Abmessungen ist dabei zu achten:

- Koaxialkabel RG316
- SMA-Steckverbinder (üblicherweise männliche Ausführung)
- Kupfer- oder Messingröhrchen mit 8 mm Durchmesser und 66,5 mm Länge
- Distanzhülse aus Kunststoff mit 5 mm Länge, 7 mm Außendurchmesser und 3,6 mm Innendurchmesser
- Schrumpfschläuche mit 1,2 mm, 2,4 mm, 4,8 mm und 9,5 mm Durchmesser vor dem Schrumpfen

Die Antenne wird als Sperrtopfantenne bezeichnet und besitzt den in Abbildung 15.1 gezeigten Aufbau. Der oberste Teil ist 88 mm lang und besteht aus dem Innenleiter des Koaxialkabels mit dem ihn umgebenden Dielektrikum. Im mittleren Teil befindet sich ein 66,5 mm langes Röhrchen, welches an seinem oberen Ende mit möglichst kurzer Verbindung an das Schirmgeflecht des Koaxialkabels angelötet wird. Anschließend folgt eine beliebige Länge Koaxialkabel, am Ende schließlich der Steckverbinder zum Anschluss an das Funkmodul.

Der Aufbau der Antenne erfolgt folgendermaßen:

- 1. Von der Rolle RG316 ein Stück der Länge abschneiden, welche später der Gesamtlänge von Antennenspitze bis zum Anschluss an das Funkmodul bzw. einen Adapterstecker entspricht
- 2. Entfernung des Kunststoffmantels auf einer Länge von 88 mm
- 3. Entfernung des nun freiliegenden Schirmgeflechts auf einer Länge von 84 mm, so dass noch 4 mm des Schirmgeflechts verbleiben.
- 4. Auftrennen und Verdrillen des Schirmgeflechts

Abbildung 15.1: Antenne ohne Schrumpfschlauch (links) und komplett fertig (rechts)

- 5. Verdicken des Koaxialkabels mit einem 10 mm langen Stück Schrumpfschlauch, dessen Mitte 66,5 mm vom oberen Ende der Ummantelung entfernt sein sollte.
- 6. Aufschieben der Distanzhülse in die Mitte des soeben verstärkten Teils. Gegen Abrutschen nach unten ggf. mit weiterem Schrumpfschlauch unterhalb der Hülse sichern.
- 7. Großzügiges Vorverzinnen des Röhrchens an einer Stelle der Innenwand
- 8. Überstülpen des Röhrchens und Anlöten des verdrillten Schirmgeflechts an der Innenwand
- 9. Gesamte Konstruktion mit Schrumpfschlauch stabilisieren (nach jedem Schritt schrumpfen!):
 - a) Ein 88 mm langes Stück Schrumpfschlauch 1,2 über den obersten Teil der Antenne
 - b) Ein 90 mm langes Stück Schrumpfschlauch 2,4 über den obersten Teil der Antenne, unmittelbar nach dem Schrumpfen die noch heißen oben überstehenden 2 mm Schlauch durch Zusammendrücken verschmelzen
 - c) Ein 2,5 mm langes Stück Schrumpfschlauch 9,5 über den aus dem Röhrchen herausstehenden Teil der Distanzhülse

Abbildung 15.2: VSWR-Messung der gefertigten Antenne am Netzwerkanalysator

- d) Ein 80 mm langes Stück Schrumpfschlauch 9,5 über Röhrchen und Distanzhülse, so dass auf beiden Seiten etwa 5 mm überstehen
- e) Mit einem 10 mm langen Stück Schrumpfschlauch 4,8 den Übergang zwischen oberem Antennenteil und Röhrchen versiegeln
- 10. Falls nötig: Kabel in Endposition einfädeln, bevor SMA-Steckverbinder am intakten Ende angebracht wird

Um den SMA-Steckverbinder anzubringen, müssen vom intakten Ende aus gemessen zunächst 12 mm des Mantels entfernt werden, anschließend 8 mm des Schirmgeflechts und zuletzt auch 4 mm des Dielektrikums. Nun werden Schrumpfschlauch und Crimpröhrchen auf das Kabel geschoben, anschließend der kleine Stecker am Innenleiter angelötet. Das Schirmgeflecht wird aufgefächert, das Gehäuse aufs Kabel geschoben und das Crimpröhrchen aufgesteckt, vercrimpt und Schrumpfschlauch darüber angebracht. Wenn gewünscht kann – wie in 15.1 rechts zu sehen – Schrumpfschlauch 9,5 als Witterungsschutz über dem gesamten Steckverbinder angebracht werden.

Die in Abbildung 15.2 dargestellte Messung am Netzwerkanalysator zeigt eine sehr gute Anpassung dieser Antenne an 50Ω im Bereich um 868 MHz.

15.3 Kompilieren der Firmware

Falls keine der im Repository zur Verfügung gestellten Hex-Files verwendet werden soll, besteht auch die Möglichkeit, seine eigene Firmware aus den Quellcodedateien zu kompilieren. Hierfür wird der die AVR-GCC-Toolchain benötigt, welche es für Windows z. B. als fertiges Paket WinAVR¹⁷ gibt.

WinAVR entspricht leider schon länger nicht mehr dem aktuellen Stand des GCC-Compilers, man kann entweder bei Atmel¹⁸ oder bei im Sourceforge-Repository¹⁹ von Georg-Johann Lay aktuellere Versionen ziehen und diese über die alten WinAVR-Verzeichnisse kopieren.

Anschließend ist darauf zu achten, dass das Unterverzeichnis "bin" in der PATH-Variable hinterlegt ist, so dass man die dort befindlichen Anwendungen aus jedem anderen Ordner unmittelbar aufrufen kann.

Der Herstellungsprozess gliedert sich in folgende Schritte:

- 1. Kompilieren der Quellcodedateien (.c) in noch nicht gelinkte Dateien (.o)
- 2. Linken zu einer Gesamtdatei (.elf)
- 3. Umwandeln in eine Hexdatei (.hex), welche mit dem Bootloader über die serielle Schnittstelle auf den Controller geschrieben werden kann

Der gesamte Ablauf kann transparent in der Datei "build_hexfiles.bat" im Verzeichnis "Hexfiles" nachvollzogen werden.

15.4 Umrechnung zwischen Watt und dBm

Die Umrechnung zwischen den Einheiten Watt (linear) und dBm (logarithmisch) erfolgt nach folgenden Formeln:

$$dBm \rightarrow W : \qquad P_{W} = 10^{\left(\frac{P_{dBm}}{10} - 3\right)}$$
$$W \rightarrow dBm : \qquad P_{dBm} = 10 \cdot \log_{10}\left(\frac{1000 \cdot P_{W}}{1 \text{ W}}\right)$$

¹⁷Download WinAVR

¹⁸Download Atmel-Toolchain (kostenlose Registrierung notwendig)

¹⁹Downloadlink: Sourceforge

Anhand der Formeln wird klar, dass die maximale Sendeleistung des **RFM69CW** 1250-mal höher als die Minimalleistung liegt: -18 dBm entsprechen 16μ W, 13 dBm hingegen 20 mW.

Addition und Subtraktion in der logarithmischen Einheit sind gleichbedeutend mit Multiplikation bzw. Division in der linearen. Erhöht (verringert) sich die Leistung um 3 dB, verdoppelt (halbiert) sie sich im linearen Maßstab. Addition bzw. Subtraktion um 10 dB bedeuten eine Multiplikation mit bzw. Division durch 10.

Abbildungsverzeichnis

1.1 1.2 1.3 1.4	Systemübersicht El Fueradoro12Die Devices von El Fueradoro13LCD während der Show17Schalter und serielle Schnittstelle an der Zündbox17
2.1 2.2 2.3	Eintrag des USB-RS232-Adapters im Gerätemanager20Einstellungen für Puttytel21Einstellungen in Pyro Ignition Control23
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Ablauf des Konfigurationsprogramms bei Verbindung mit einer Zündbox27Beispiel einer ferngesteuerten ID-Zuweisung28Systemübersicht30Auslesen der gesetzten Sendeleistung32Setzen der Sendeleistung mit anschließendem Auslesen32Auslesen und Neusetzen des AES-Schlüssels33Startbildschirm der GUI35Sendebildschirm der GUI35Netzwerkanzeige der GUI36Lokale ID-Konfiguration37Remote-ID-Einstellung38Benutzeroberfläche UpdateLoader39
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Aufgebautes System raspEasyFire42Startbildschirm nach dem Aufruf von raspEasyFire47Auswahl des Zündplans48Anzeige der gefundenen Boxen50Ändern der IDs53Widerstandsmessung54Bildschirme während der Show58
 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	Schaltplan des Transmitters68Schaltplan der Zündbox69Schaltplan der Zündbox (2. Generation)70Schaltplan der Zündbox (3. Generation)71Schaltplan der Zündbox (3. Generation)72Schaltplan der Zündbox (3. Generation)72Schaltplan der Zündbox (3. Generation)73Layout des Transmitters (keine Originalgröße!)74

6.8	Layout der Zündbox (keine Originalgröße!)
6.9	Layout der Zündbox (2. Generation, keine Originalgröße!)
6.10	Layout der Zündbox (3. Generation, keine Originalgröße!)
6.11	Layout der Zündbox (3. Generation mit 32 Kanälen, keine Originalgröße!) 78
6.12	Layout des Raspberry-Pi-Adapters (keine Originalgröße)
8.1	Pinbelegung des Mikrocontrollers bei Transmitter und Zündboxen
8.2	Belegung Verbindungsstiftleiste Pi-Aufsteckplatine
8.3	Pinbelegung der Aufsteckplatine von oben gesehen
11.1	Ober- und Unterseite des Transmitters für Toner-Transfer-Verfahren/Belichtung 104
11.2	Ober- und Unterseite der Zündbox für Toner-Transfer-Verfahren/Belichtung 105
11.3	Adapterplatine für Funkmodule (8 Stück) für Toner-Transfer-Verfahren/Belichtung 106
12.1	Platinen für Transmitter (oben) und Zündbox (unten)
12.2	Zündboxplatine (1. Generation) vor dem Einlöten der Kabel und MOSFETs 110
12.3	Raspberry-Pi-Erweiterungsplatine mit aufgestecktem Zündmodul und Antenne 111
12.4	Fertig aufgebauter Funkmoduladapter
12.5	Abmessungen (in mm) des LCD
12.6	Bohrschablone für Zündboxoberseite
12.7	Innenansicht des Zündboxdeckels
12.8	Ausschnitt aus der Schaumstoffeinlage für Zündbox und Akku
12.9	Adapter am Koffer montiert
12.10	Antennenadapter
12.1	Einsatzbereite Antenne mit Zuleitung
13.1	Pinbelegung des ISP-Platinensteckers: Ansicht von oben, Gehäuseaussparung an
	Pin 5. Quelle: mikrocontroller.net
13.2	Einstellungen in Zadig zur Erzeugung und Installation eines USB-Treibers für den
	Programmer
15.1	Antenne ohne Schrumpfschlauch (links) und komplett fertig (rechts)
15.2	VSWR-Messung der gefertigten Antenne am Netzwerkanalysator

Tabellenverzeichnis

1.1	Farben und Funktionen der Status-LEDs
2.1	Konfiguration der seriellen Schnittstelle
3.1	Kommandos zur Konfiguration über die serielle Schnittstelle
3.2	Umrechnung Hexadezimal-, Dezimal- und Binärwerte
3.3	Struktur des RFM69-Befehls
3.4	Verfügbare Firmware-Versionen
5.1	Widerstandswerte für Zündkreise bei gegebenem Strom
5.2	Spezifischer Widerstand verschiedener Leitermaterialien
9.1	Quellcodedateien und ihre Funktionen
10.1	Materialliste für den Transmitter
10.2	Materialliste für den Raspberry-Pi-Transmitter
10.3	Materialliste für die Zündbox (1. Generation)
10.4	Materialliste für die Zündbox (2. Generation)
10.5	Materialliste für die Zündbox (3. Generation)
10.6	Materialliste für die Zündbox (3. Generation) mit 32 Kanälen
12.1	Übersicht über benötigte Kabelverbindungen
13.1	Fuse-Einstellungen beim ATmega328P

Danksagung

Vielen Dank an alle, die in irgendeiner Form zur Entwicklung und Verbesserung von *El Fueradoro* beigetragen haben!

Ein ganz spezielles Dankeschön an:

- Marc Weissmann, der mit ursprünglich seinem, mittlerweile unserem gemeinsamen Projekt FIRE – Feuerwerk im Röthelheimpark Erlangen den Ansporn zu dieser Entwicklung gegeben und ihr von Beginn an trotz einiger mittlerweile behobener "Kinderkrankheiten" immer voll vertraut hat. Videos unserer bisherigen mit *El Fueradoro* geschossenen Feuerwerke:
 - * Silvesterfeuerwerk 2014/15
 - * Silvesterfeuerwerk 2015/16
 - * Silvesterfeuerwerk 2016/17
 - * Hochzeitsfeuerwerk April 2017
 - * Hochzeitsfeuerwerk August 2017
 - * Silvesterfeuerwerk 2017/18
- Das gesamte private Umfeld, das die Arbeit am Projekt stets mit Fassung getragen und mit Interesse verfolgt hat.
- Jens Nachtigal, den Hauptprogrammierer und Anstoßgeber zur Entwicklung des Raspberry-Pi-Transmitters.
- Michael Czifra (pyro-michel) für die Unterstützung beim Layout der 32-Kanal-Version.
- Die "Nachbau-Pioniere" Matthias Pee und Cedrik Sikora für Ideen und wertvolle Hinweise.
- mikrocontroller.net für Hilfe in Sachen Hardware und Programmierung.
- feuerwerk-forum. de für Erklärungen zum Thema elektrische Zündung und natürlich die Zündsoftware *Pyro Ignition Control* von User *pyrobla*.

- Saleae für den grandiosen Logic 8, der wertvolle Dienste zur Erschließung des RFM69 geleistet hat.
- Der Brauerei Loscher für Club Mate, den Bastler-Treibstoff.
- Die vielen tollen Open-Source- und Freeware-Lösungen, welche die Softwareentwicklung erst möglich gemacht haben:
 - Die GCC-Community f
 ür die AVR-GCC-Toolchain zum Programmieren des Mikrocontrollers.
 - Die Eclipse-Foundation f
 ür die Programmierumgebung Eclipse, Kees Bakker und Thomas Holland f
 ür die Erweiterung AVREclipse sowie Ben Gardner f
 ür Uncrustify und die damit verbundene Übersichtlichkeit des Quellcodes.
 - Peter Dannegger für den robusten, aber dennoch schlanken Bootloader FastBoot.
 - Leo-Andres Hofmann für die schöne Windows-Oberfläche UpdateLoader.
 - Subversion und TortoiseSVN bzw. Git und GitHub f
 ür die unkomplizierte Versionsverwaltung.
 - LATEX und TeXstudio zur Erstellung des Handbuchs.