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Figure 1. ShapeR introduces a novel approach to metric shape generation. Given an input image sequence, preprocessing extracts per-
object metric sparse SLAM points, images, poses, and captions using off-the-shelf methods. A rectified flow transformer operating on
VecSet latents conditions on these multimodal inputs to generate a shape code, which is decoded into the object’s mesh. (Right) By
applying the model object-centrically to each detected object, we obtain a metric reconstruction of the entire scene.

Abstract

Recent advances in 3D shape generation have achieved im-
pressive results, but most existing methods rely on clean, un-
occluded, and well-segmented inputs. Such conditions are
rarely met in real-world scenarios. We present ShapeR',
a novel approach for conditional 3D object shape gener-
ation from casually captured sequences. Given a image
sequence, we leverage off-the-shelf visual-inertial SLAM,
3D detection algorithms and VLMs to extract for each ob-
ject, a set of sparse SLAM points, posed multi-view images,
and machine-generated captions. A rectified flow trans-
former trained to effectively condition on these modalities
then generates high-fidelity metric 3D shapes. To ensure
robustness to the challenges of casually captured data, we
employ a range of techniques including on-the-fly composi-
tional augmentations, a curriculum training scheme span-
ning object- and scene-level datasets, and strategies to han-
dle background clutter. Additionally, we introduce a new
evaluation benchmark comprising 178 in the wild objects
across 7 real-world scenes with geometry annotations. Ex-
periments show that ShapeR significantly outperforms exist-
ing approaches in this challenging setting, achieving an im-
provement of 2.7 x in Chamfer distance compared to SoTA.

1. Introduction

3D reconstruction is a longstanding challenge in computer
vision, essential for understanding and interacting with the
physical world. Scene-centric methods typically recon-
struct entire scenes as single entities [20, 53, 62, 72, 88, 93],
but produce monolithic representations, often with lim-
ited resolution and missing surfaces in unobserved areas.
Object-centric reconstruction [2, 34, 50, 57, 81, 84] instead
focuses on recovering individual objects within a scene, en-
abling more detailed and complete results.

Recent advances in object-level generative models [42,
80-82, 92], enabled by improved architectures [24, 29, 61],
large-scale 3D datasets [21, 22], and better shape represen-
tations [82, 90], have rapidly advanced object-centric shape
generation. These models produce high-fidelity shapes
from clean, well-segmented, and unoccluded inputs. How-
ever, their performance drops significantly in casual cap-
ture settings, i.e., real-world scenarios with natural, non-
scanning trajectories where users move freely and captures
often include occlusions, background clutter, sensor noise,
low resolution, and suboptimal views (Fig. 2)
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Figure 2. (Top) Objects captured in casual settings pose challenges
like clutter, poor viewpoints, low resolution, noise, motion blur,
and occlusions that are difficult to segment, even interactively.
(Bottom) State-of-the-art 3D models often fail in these scenarios,
while ShapeR remains robust and effective.

To address these challenges, we propose ShapeR, a
large-scale rectified flow model for robust 3D shape gen-
eration from casually captured sequences. ShapeR is de-
signed to leverage complementary information from multi-
ple modalities, including sparse metric point clouds, multi-
view posed images, and machine-generated captions. Given
an input sequence, we first use off-the-shelf SLAM [27]
to obtain sparse point clouds and camera poses. Next, we
apply 3D instance detection [72] to extract object-centric
crops from both images and point clouds, and generate text
captions using vision-language models [52]. These mul-
timodal cues condition a flow-matching [47] transformer,
which is trained to denoise latent VecSets [90] that can be
decoded into complete 3D shapes.

To improve robustness, we apply extensive on-the-fly
augmentations across all input modalities during training.
Unlike prior work that relies on explicit 2D segmenta-
tion [42, 44, 80, 82], ShapeR learns to implicitly segment
objects within images by utilizing the 3D instance points.
Training is conducted in a two stage curriculum learning
setup: the first stage uses large and diverse object-centric
datasets with objects in isolation, where we address the lim-
itations of these contrived settings through extensive point
and image augmentations. The second stage employs syn-
thetic scene data [4], which covers fewer categories but of-
fers more realistic scenarios. This captures diverse object
combinations that single-object datasets cannot model due
to combinatorial complexity.

For evaluation, we introduce a new dataset of in-the-wild
sequences with paired posed multi-view images, SLAM
point clouds, and individually complete 3D shape anno-
tations for 178 objects across 7 diverse scenes. In con-

trast to existing real-world 3D reconstruction datasets which
are either captured in controlled setups [23, 40] or have
merged object and background geometries or incomplete
shapes [7, 87], this dataset is designed to capture real-world
challenges like occlusions, clutter, and variable resolution
and viewpoints to enable realistic, in-the-wild evaluation.
We believe ShapeR represents a key step toward

unifying generative 3D shape modeling [42, 80-82, 92]

and metric 3D scene reconstruction [62, 68, 72, 88, 93]:

ShapeR produces complete, high-fidelity object shapes at

appropriate level of detail for each object, while preserv-

ing real-world metric consistency. We will release all code,
model weights and the ShapeR evaluation dataset. In sum-
mary, our contributions are:

* A rectified flow model for robust 3D metric shape gen-
eration from casually captured sequences, trained with a
robust pipeline that combines sparse point clouds, posed
images, on-the-fly cross-modal augmentations, and a
two-stage curriculum for effective generalization.

* An evaluation dataset of causally captured sequences with
paired images, SLAM points, and 3D shape annotations
for 178 objects across seven scenes, enabling systematic
evaluation under realistic conditions.

2. Related Works

Non Object-centric Reconstruction. Surface reconstruc-
tion has been widely studied using both learned and
optimization-based methods [19, 20, 35, 37, 58, 69]. Recent
approaches such as NeRF [53], 3DGS [39], and their exten-
sions [5, 6, 11, 54, 89] achieve high-fidelity view synthesis
but prioritize appearance over geometric accuracy. SDF-
based implicit methods [43, 76, 77, 85, 86] improve geo-
metric faithfulness while maintaining view quality. Feed-
forward methods [55, 72, 73, 75, 93] directly predict global
scene geometry from posed images, reducing optimization
overhead. However, these methods reconstruct scenes as a
single surface, leaving individual objects incomplete under
occlusion. In contrast, ShapeR performs explicit object-
level reconstruction from sequences, producing complete
geometry for each object.

Conditional Object Reconstruction. Early work explored
class-specific reconstruction models [15, 51, 60, 62] condi-
tioned on images or point clouds. Later methods, such as
Dreamfusion [63] and its extensions [12, 36, 46, 49, 78],
used 2D diffusion models for text-conditioned shape gen-
eration, moving beyond fixed classes. Large Reconstruc-
tion Models [32] and follow-ups [30, 44, 70, 74] scaled
image-to-3D reconstruction and integrated mesh genera-
tion, texturing, and relightable assets, relying on 2D dif-
fusion priors. With large-scale datasets [21], native 3D
diffusion approaches [42, 45, 80, 82, 91, 92] have further
improved fidelity. However, most methods require clean,



well-segmented inputs and lack metric grounding from sin-
gle images, and even amodal approaches [81] struggle in
real-world scenarios. ShapeR differs by leveraging multi-
modal conditioning with sparse metric point clouds, posed
images, and captions, enabling robust, metrically accurate
reconstruction under occlusion, clutter, and viewpoint vari-
ation.

Object-centric Scene Reconstruction. Early approaches
addressed object-centric scene reconstruction through joint
detection and completion [16, 33, 67] or CAD model re-
trieval [2, 3, 41], but often resulted in incomplete or mis-
matched geometry. Later methods [17, 48, 57] recon-
structed individual objects and scene layouts from single
views, but were typically limited to specific classes. Re-
cent work [1, 34, 50, 56, 83, 84] leverages diffusion pri-
ors, open-vocabulary detection, and generative models to
improve per-object geometry and scene assembly, but often
depends on high-quality 2D instance segmentation. While
ShapeR focuses on object-centric rather than joint scene re-
construction, it generates 3D metric shapes conditioned on
point cloud crops from off-the-shelf detectors, which can
be composed for scene-level reconstruction. Unlike prior
methods that degrade with machine-generated segments in
real-world scenarios, ShapeR remains robust to imperfect
segmentation and challenging, casual capture conditions.

3. Method

ShapeR performs generative, object-centric 3D reconstruc-
tion from image sequences by leveraging multimodal in-
puts and robust training strategies. First, a sparse 3D point
cloud and camera poses are extracted using an off-the-shelf
visual-inertial SLAM method [27]. Object instances are
then identified via a 3D instance detection method [72],
leveraging both SLAM points and posed images. For each
detected object, its sparse points, the images in which it
appears, 2D projections of its 3D points in those images,
and a machine-generated caption from a vision-language
model [52] are extracted. These multimodal inputs condi-
tion a 3D rectified flow matching model, which denoises a
latent VecSet [90] and decodes it to produce the object’s
3D shape (Fig. 3). The use of multimodal conditioning,
along with heavy on-the-fly compositional augmentations
and curriculum training, ensures the robustness of ShapeR
in real-world scenarios.

3.1. Multimodally Conditioned Flow Matching

Following recent advances in 3D generative modeling [42,
82, 91, 92], ShapeR formulates object-centric shape gener-
ation as a rectified flow process that denoises latent repre-
sentations learned by a 3D VAE.

3D Variational Autoencoder. We adopt the Dora [13] vari-
ant of VecSets [90] as our latent autoencoder. Given a mesh
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Figure 3. The ShapeR denoising transformer, built on the FLUX
DiT architecture, denoises latent VecSets by conditioning on mul-
tiple modalities: posed images, SLAM points, captions, and the
2D projections of SLAM points observed in those input images.
SLAM points are encoded with a sparse 3D ResNet, images using
a frozen DINOvV2 backbone, poses using Pliicker encodings, and
projection masks via a 2D convolutional network. The denoised
latent is decoded into a SDF, from which the final object shape is
extracted using marching cubes.

S, two point clouds are sampled: (i) uniformly distributed
surface points capturing overall geometry and (ii) edge-
salient points capturing fine detail. These are separately
cross-attended, downsampled, concatenated, and further
processed through self-attention to produce a latent code
z € REX4 where L is variable in {256,512, . ..,4096} and
feature width d = 64. The decoder D predicts signed dis-
tance values s = D(z, x) for a grid of query points z € R?
through cross-attention with the processed latent sequence.
The VAE is trained using

Luae = |ls = sor |3 + BLi (a(218) [ N(0.D). ()

Rectified Flow Model. The latent distribution z ~ ¢(z|5)
serves as the target distribution for flow matching. A de-
noising transformer fy is trained to transport Gaussian noise
21 ~ N(0, I) to the latent manifold 2o, conditioned on mul-
timodal cues ( C ):

Z.It = f@(Zt,t7 C), te [0, 1} (2)

The training objective minimizes the expected squared error
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Figure 4. Incorporating SLAM points significantly enhances ro-
bustness. These points provide a complementary geometric signal
to posed images, encoding aggregated shape information across
the entire sequence.

between the model-predicted and true transport velocity:
Lem = Eq 2, c [Hf@(zt»ty C) — (20 — Zl)||§] 3)

We employ a FLUX.I-like dual-single-stream trans-
former [8], where the first four dual layers cross-attend to
text tokens and subsequent dual and single layers to image
and point tokens. Similar to [42, 92], positional embeddings
are omitted. Dual-stream outputs are concatenated and sub-
sequently processed by several self-attention layers. Both
dual and single stream blocks are modulated with timestep
and CLIP [64] text embeddings.

Condition Encoding. Condition inputs C =
{Cpts; Cimg; Cixi} comprise of the 3D SLAM points,
images, and captions respectively. For Cp, a ResNet [31]
style 3D sparse-convolutional encoder downscales the
point features into a token stream. For Cipg, a frozen DI-
NOv2 [59] backbone extracts image tokens, concatenated
with Pliicker ray encodings of the corresponding camera
poses. The object’s 3D points observed in their respective
frames are projected to 2D to form binary point masks,
which are processed by a 2D convolutional extractor and
concatenated with DINO and Pliicker tokens. For Cly,
captions are tokenized with a frozen TS encoder [65] and a
CLIP [64] text encoder. Notably, no segmentation masks
are used; the object of interest is learned implicitly from the
3D point tokens and 2D projected point mask information.

3.2. Two-Stage Curriculum Learning Setup

As a class-agnostic generative model, ShapeR must learn
priors across diverse categories. In the first stage, we
train on a large-scale object-centric dataset containing over
600K meshes of diverse semantic categories created by 3D
artists. To simulate noisy, real-world inputs, we apply ex-
tensive augmentations to all modalities (Fig. 5, left), includ-
ing background compositing, occlusion overlays, visibility
fog, resolution degradation, and photometric perturbations

on images. For SLAM points, we simulate partial trajecto-
ries, a diverse range of point dropout strategies, Gaussian
noise, and point occlusion. These augmentations are ap-
plied on-the-fly in the data loader in a compositional man-
ner, yielding a virtually infinite stream of unique training
samples. While this stage teaches the model general shape
priors, it does not fully reflect the complexity of real cap-
tures. Hence, we fine-tune the model on a second dataset
consisting of object crops extracted from Aria Synthetic
Environments [4]. Although this dataset is less diverse, it
exhibits realistic occlusions, inter-object interactions, and
SLAM noise patterns (Fig. 5, right).

3.3. Inference

Given a posed image sequence I = I', ..., I and corre-
sponding camera intrinsics & extrinsics IT = II', ... II¥,
we first compute sparse metric point clouds P by tracking
and triangulating high-gradient image regions similarly to
[26]. This provides both 3D point positions and their vis-
ibility association across frames, represented as Py C P,
denoting the subset of points observed in frame I*. An in-
stance detection model [72] is applied on the posed images
and point cloud to predict 3D bounding boxes for object in-
stances. For each object ¢, the corresponding point set P; C
P is refined within its bounding box using SAM2 [66] to
remove spurious samples from neighboring instances. Us-
ing the point—frame association P;x, we identify all frames
where object ¢ is visible and select a fixed number N of rep-
resentative frames I;. For each selected frame I f the points
PN P,; are projected onto the image plane to generate
binary masks M;, approximating the object’s silhouette in
that view. A vision—language model [52] is then prompted
on each object’s representative image to generate a descrip-
tive caption 7;. The complete conditioning set for object ¢ is
thus C; = {P;, I;, I1;, M;, T; }. Before generation, each ob-
ject’s point cloud P; is normalized to the normalized device
coordinate cube [—1,1]3. The flow-matching model pre-
dicts the object’s shape within this normalized space, and
the reconstructed mesh is rescaled back to the original met-
ric coordinate system of P;, ensuring physically accurate
dimensions. Sampling proceeds by integrating the learned
flow:

21 NN(O,I), Zt_ At =Zt+Atfg(Zt,t,Ci), %)

with midpoint sampling. The final mesh is reconstructed as

S, = Rescale(MarchingCubes(D(zo)), Pi), 5)

producing metrically consistent, fully reconstructed meshes
for each detected object ¢, aligned with the real-world scale
and placement of the input sequence.

Implementation Details. The point cloud is derived from

images using SLAM or SfM; specifically, we use semi-
dense point clouds from Project Aria’s Machine Perception
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Figure 5. (Left) We pretrain on 600K object meshes with extensive, compositional augmentations across all modalities, simulating realistic
backgrounds via image compositing, and introducing diverse occlusions and noise in both images and SLAM points. (Right) We then
fine-tune on object-centric crops from Aria Synthetic Environment scenes, which feature realistic image occlusions, SLAM point cloud

noise, and inter-object interactions.

Services [28], obtained via a visual-inertial SLAM system
with Aria’s monochrome cameras and IMUs. During train-
ing, conditioning is performed using two randomly sampled
views per object, while inference uses up to sixteen selected
views at a resolution of 280 x 280 pixels from Aria Mono
scene SLAM cameras. Additional details are provided in
the Appendix Sec. C.

4. Experiments

We evaluate and ablate key components of ShapeR on a
novel high quality dataset against nine leading 3D recon-
struction and generation methods, grouped by the type of
input they exploit and the nature of their reconstruction task.

ShapeR Evaluation Dataset. While several datasets exist
for benchmarking 3D reconstruction [7, 10, 18, 21, 23, 25,
40, 87], most are limited in realism or completeness. Syn-
thetic datasets such as ShapeNet [10] and Objaverse [21, 22]
offer large-scale coverage but lack real-world complexity.
Controlled datasets like DTC [23], GSO [25], and Stan-
fordORB [40] focus on isolated tabletop objects in studio
settings. In-the-wild datasets such as ScanNet [18], Scan-
Net++ [87], and ARKitScenes [7] provide realistic imagery
but lack complete object-level 3D geometry for evaluation
(Fig. 10). To address these gaps, we introduce the ShapeR
Evaluation Dataset, designed to benchmark reconstruction
under challenging, casual capture conditions. The dataset
contains seven casually-captured recordings from distinct
cluttered scenes annotated with 178 diverse high quality
object shapes. It covers a wide range of categories, from
large objects like furniture to smaller items such as re-
motes, toasters, and tools as can be seen in Figs. 6, 7, 11
and 12. For each sequence, we provide multi-view im-
ages, calibrated camera parameters, SLAM point clouds,
and machine-generated object captions. Each annotated
object also includes a complete reference mesh generated

Method CDJ x102  NCt F11
EFM3D [72] 13.82 0.614 0.276
FStereo [79] 6.483 0.677 0.435
LIRM [44] 8.047 0.683 0.384
DP-Recon [56] 8.364 0.661 0.436
w/o SLAM Points 4514 0.765 0.486
w/o Point Augmentation 3.276 0.805 0.667
w/o Image Augmentation 3.397 0.778  0.649
w/o Two Stage Training 3.053 0.801 0.689
w/o Point Mask Prompting 2.568 0.813 0.701
ShapeR 2.375 0.810 0.722

Table 1. Comparison on ShapeR evaluation dataset against posed
multiview to 3D approaches, and an ablation of components.

using internal image-to-3D modeling methods under ideal
conditions, which we manually refined and realigned for ge-
ometric and pose consistency. More details are provided in
the supplementary. All quantitative and qualitative evalua-
tions in the following sections are conducted on this dataset.
Evaluations on further datasets are in the Appendix Sec. B.

Metrics. We evaluate the reconstructed geometry with 3
complementary metrics following prior works [62, 69, 70]:
Chamfer ¢y Distance (CD), Normal Consistency (NC) and
F-score (F1) at 1% threshold. All metrics are computed in
the normalized coordinate space.

4.1. Results

Posed Multi-view to 3D. We compare against
EFM3D [72], TSDF fusion with FoundationStereo
depths [79], DP-Recon [56], and LIRM [44]. These
methods take posed images and predict metric 3D geom-
etry. For monolithic mesh predictors such as EFM3D and
FoundationStereo-based fusion, we extract object instances
by cropping the predicted mesh using ground-truth geom-
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Figure 6. Qualitative comparison on the ShapeR evaluation dataset against posed multiview-to-3D methods. For scene-centric fusion
approaches (EVL, Foundation Stereo), ground-truth meshes are used to segment individual object shapes. For methods relying on image
segmentation masks (DP-Recon, LIRM), we employ SAM2, prompted with bounding boxes, to generate input image masks.

etry as guidance. For DP-Recon and LIRM, which rely
on 2D object segmentations, we provide SAM2-generated
masks. As shown in Tab. | and Fig. 6, monolithic scene
reconstruction methods produce incomplete objects due
to occlusions, while segmentation-based methods degrade
under imperfect masks. ShapeR, by contrast, reconstructs
complete, metric shapes without requiring segmentation
inputs, remaining robust across casual captures.

Foundation Image to 3D. We also evaluate against re-
cent large-scale image-to-3D generative models includ-
ing TripoSG [42], Direct3DS2 [80], Hunyuan3D-2.0 [92],
and Amodal3R [81]. Hunyuan3D-2.0, TripoSG and Di-
rect3DS2 are trained to predict shapes from one or multiple
unposed views and perform well under idealized, clean con-
ditions with minimal occlusion. Amodal3R, which extends
TRELLIS [82], improves robustness by reasoning about oc-
cluded regions and generating amodal completions. We
found that for non-standard viewpoints common in casual
captures, their single-view versions are significantly more
competitive than the multi-view ones, so we report results
using the single-view setting. To ensure their optimal per-
formance, we manually select views with clear object visi-
bility and use interactive SAM?2-based segmentations, while
ShapeR operates fully automatically using multiple posed
views. Our method achieves metrically consistent, com-

Method ShapeR Win Ratet
TripoSG 86.67%
Amodal3R 86.11%
Direct3DS2 88.33%
Hunyuan3D-2.0 81.11%

Table 2. Percentage of users who prefer our method over the
image-to-3d baselines over 660 responses. Our generated meshes
are preferred significantly more often.

plete, and robust reconstructions without any manual inter-
vention as shown in Tab. 2 and Fig. 7.

Image to Scene Layout. We also compare against scene-
level reconstruction methods, MIDI3D [34] and Scene-
Gen [50], which predict multiple object geometries and spa-
tial layout. MIDI3D uses a single image, while Scene-
Gen takes multiple views; both require interactive instance
segmentation. Although effective in simplified settings,
these methods struggle with realistic, cluttered scenes, of-
ten yielding inconsistent object scales and layouts (Fig. 8).
In contrast, ShapeR reconstructs objects automatically with
consistent scale and layout. Comparison to the recent
SAM3D Objects is provided in Appendix Sec. B.

4.2. Ablation Study of ShapeR Components

Effect of SLAM Points. We evaluate the impact of adding
SLAM points as an input modality. As shown in Tab. |
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Figure 7. Qualitative comparison against foundation image-to-3D models. For these baselines, we manually select a view with clear object
visibility and use interactive SAM2-based segmentations to provide optimal input. In contrast, ShapeR operates fully automatically on
multiple posed views and preprocessed inputs, requiring no manual intervention.
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Figure 8. Comparison with image-to-scene methods. MIDI uses a single image and SceneGen uses four views, both with manual object
segmentations. These approaches struggle with object scale and arrangement, while ShapeR reconstructs each object metrically and
independently, maintaining consistent scale and layout across the scene and without interactive segmentation.
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Figure 9. Ablations of components. (a) Without point augmentations, the model overfits to point inputs, missing geometry in regions
without points. Image augmentations address occlusions and incomplete objects crops. Omitting background composition requires pre-
segmentation, which can introduce noisy masks and prediction errors. (b) Fine-tuning on scene-centric crops improves robustness in
challenging scenarios over object-centric training alone. (¢) Prompting DINO features with 2D point projections clarifies which object to
reconstruct in cluttered scenes, reducing confusion from nearby objects and improving reconstruction accuracy.

and Fig. 4, while image-only inputs yield reasonable re-
constructions, incorporating SLAM points significantly im-
proves robustness by providing complementary geometric
information that encodes aggregated shape across the entire
sequence, especially benefiting cases with weak visual cues.

Effect of Augmentations. Tab. | and Fig. 9(a) show that
both point cloud and image augmentations are critical for
robust real-world performance. Removing either leads to
degraded reconstructions under noise and partial obser-
vations. The variant without image augmentation relies
on explicit foreground segmentation, similar to foundation
image-to-3D models, and therefore struggles with noisy
masks, underscoring the importance of synthetic occlusion
and background augmentation over mask dependence.

Effect of Two-stage Curriculum Training. Fine-tuning
on a more realistic scene dataset substantially improves ro-

bustness as shown in Tab. 1 and Fig. 9(b). This confirms
that combining large-scale object-centric pretraining with
realistic scene fine-tuning provides strong generalization to
casual captures.

Effect of 2D Point Mask Prompting. Without the 2D point
mask cues, our method sometimes reconstructs adjacent ob-
jects. Using 2D point masks to guide DINO features mit-
igates this issue and leads to cleaner reconstructions, as il-
lustrated in Fig. 9(c) and Tab. 1.

5. Conclusion

We introduce ShapeR, a multimodally conditioned rectified
flow model for robust 3D shape generation from casually
captured sequences. By leveraging posed images, sparse
SLAM points, and textual cues, ShapeR reconstructs
objects accurately and completely without explicit segmen-
tation. Large-scale training, extensive augmentations, and a



two-

stage curriculum enable strong generalization to real-

world scenarios. We also present the ShapeR Evaluation
Dataset as a benchmark for object-centric reconstruc-

tion under casual capture.

and

ShapeR advances scalable
automatic 3D reconstruction in natural environments.
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ShapeR: Robust Conditional 3D Shape Generation from Casual Captures

Supplementary Material

In this appendix, we provide additional details on the
ShapeR evaluation dataset, further experimental results, in-
cluding results on additional datasets, expanded implemen-
tation details of our method, and a discussion of its limita-
tions.

Digital Twin Catalog (DTC)

D

ScanNet++
P

e §
f:is‘ A\

Stanford ORB Replica

=iy

Figure 10. Comparison of 3D reconstruction datasets. DTC [23]
and StanfordORB [40] offer controlled studio captures of isolated
objects, while ScanNet++ [87] and Replica [71] provide realistic
scenes but lack complete ground-truth shapes. The ShapeR eval-
uation dataset features casually captured sequences with complete
meshes for geometric evaluation (see Figs. 11 and 12).

Samples from Shaper Evaluation Dataset:

Distribution of shape categories:
table

misc.kitchen uncategorized
storage lamp bed

21.59% 20.45% 18.18% 16.48%

|3.41%
devices
(1.7%)

artwork (4.55%) —
misc.bathroom

sitting_furniture

Figure 11. (Top) Examples from the ShapeR evaluation dataset.
Each sub-image shows the annotated ground-truth mesh, a repre-
sentative frame containing the object, the mesh placed within the
sequence, and the projection of the mesh onto the image. (Bottom)
Distribution of object shapes categories in the ShapeR evaluation
set, covering 178 objects across 7 sequences
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A. ShapeR Evaluation Dataset

Existing real-world 3D datasets for object reconstruction
can be classified into two broad categories. Some, like
Digital Twin Catalog [23], StanfordORB [57] and Google
Scanned Objects [25] provide complete 3D shape geome-
try, but only in highly controlled setups. Here, objects are
the central focus, placed on uncluttered, disoccluded table-
tops, and captured in studio-like conditions (see Fig. 10
left). These datasets typically feature relatively small ob-
jects. Others, like ScanNet [18], ScanNet++ [87], Matter-
port3D [9] offer realistic scene arrangements, with clutter
and occlusions captured casually. However, these are not
suitable for object-centric evaluation, as the target geome-
try, usually obtained by 3D scanning, is incomplete in oc-
cluded for unobservable regions (see Fig. 10 right). The
ShapeR Evaluation Dataset addresses these limitations by
providing complete mesh geometry annotations for a se-
lected set of objects, while maintaining casual capture con-
ditions.

As shown in Fig. 12, sequences are recorded using
Project Aria [28] Gen 1 or Gen 2 glasses, with the annotator
casually walking through the scene and collecting images
from the device’s RGB and CV cameras. Aria Machine Per-
ception Services [28] are then used to extract SLAM points
and camera parameters from the sequence. For a selected
set of objects, we obtain 3D shape annotations by moving
each object to an area free of clutter and occlusions, captur-
ing a high-resolution image, and manually segmenting it. A
state-of-the-art image-to-3D model is then used to generate
the 3D geometry. This geometry is manually verified for
plausibility and aligned to the object’s position in the orig-
inal casual sequence using a web interface. This interface
allows annotators to reposition and rigidly deform the shape
in 3D space, guided by SLAM points from the sequence.
Annotators further verify placement and dimensions by pro-
jecting the mesh into the original sequence images.

In total, we annotate 178 objects across 7 real indoor se-
quences, spanning a range of categories. Fig. 1 | shows sam-
ple objects and the distribution of categories in the dataset.

B. Additional Experiments

In this section, we provide additional evaluations of ShapeR
across a variety of datasets and tasks. We include com-
parisons against SegmentAnything 3D Objects [14], assess-
ments on ScanNet++ [87] and Replica [71], results on the
Digital Twin Catalog [23] (DTC), analysis of robustness
trends, and demonstrations of monocular image-to-3D re-
construction.



Disocclude the object and take a
clean, high-resolution image

Object to be annotated marked here by #

Generate geometry using SoTA
image-t0-3D model

Annotation Interface

3D Annotation: Deformation and placement of the shape back into metric 3D space, and
verification using projection into images from the original captured sequence

Figure 12. To obtain pseudo-ground truth geometry for an object in the sequence (left), we first place the object in isolation to avoid
clutter and occlusion, and capture a high-quality, uncluttered image. We then apply segmentation and image-to-3D modeling to generate
the object’s geometry (mid). This geometry is manually aligned and inserted back into the original casual sequence using a web annotation
interface, verified by matching 2D projections to image silhouettes and by checking alignment with the sequence’s point cloud (right).
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Figure 13. DTC Active, DTC Passive, and ShapeR Evaluation
datasets represent a progression from highly controlled capture se-
tups (DTC Active), to slightly less controlled environments (DTC
Passive), and finally to casual, real-world scenes (ShapeR Evalua-
tion). As the datasets become more challenging, baseline method
metrics deteriorate, while ShapeR remains comparatively stable.
Notably, the increase in scene casualness is not linear; ShapeR
Evaluation is significantly more challenging than DTC Passive.

Comparison against SegmentAnything 3D Object [14].
SAM 3D Objects was very recently released and addresses
the single image-to-3D reconstruction task using interac-
tive segmentation. This approach marks a significant im-
provement in shape quality compared to previous image-
to-scene methods like MIDI3D [34] and SceneGen [50],
as well as single image-to-3D models such as Hunyuan3D
[92], Amodal3R [81], and Direct3DS2 [80].

However, SAM 3D Objects is fundamentally limited by
its reliance on single images. As a result, the reconstructed
shapes are not metrically accurate. When scenes become
more cluttered and contain multiple objects, the method
struggles: layout, shape quality, aspect ratios, and rela-
tive scales all deteriorate, as shown in Fig. 16. In con-
trast, ShapeR leverages multiple posed views and additional
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modalities (such as SLAM points) to automatically recon-
struct objects with metric accuracy and robust layout, even
in casual, cluttered environments, while having only ever
been trained on synthetic data. This multimodal approach
enables ShapeR to maintain high-quality, metrically consis-
tent reconstructions and object arrangements without inter-
action, outperforming single image-based methods in chal-
lenging real-world scenarios.

Evaluation on Scannet++ [87] and Replica [71]. Fig. 18
and Tab. 3 present a comparison of ShapeR on third-party
casually captured datasets. For these experiments, we fol-
low the protocol of DP-Recon [56], using their six Scan-
Net++ scenes and seven Replica scenes for evaluation.
Since these datasets do not provide complete 3D geometry
for evaluation (Figs. 10 and 18), we report only recall-based
metrics. Notably, ShapeR produces complete reconstruc-
tions, often surpassing the ground-truth scans in terms of
completeness, as the ground-truth meshes lack geometry in
occluded regions.

Evaluation on Digital Twin Catalog (DTC) [23]. Fig. 17
and Tab. 4 show a comparison of ShapeR against LIRM
[44] on the controlled capture datasets DTC Active and
DTC Passive. Both datasets contain approximately 100 se-
quences each, with objects placed on a tabletop, free from
occlusions and clutter. The passive variant allows for more
free user movement, making it more casual compared to the
active variant, where the user circles the object. As high-
lighted in Tab. 4, ShapeR matches state-of-the-art LIRM
quality on the highly controlled active set and surpasses it
on the more casual passive variant. Additionally, ShapeR
produces sharper details on both datasets, as illustrated in
Fig. 17.



Input Image

Map-Anything
Point Cloud

Map-Anything +
ShapeR

Ny
=l

Map-Anything Point Cloud

Map-Anything + ShapeR

Figure 14. Single image to metric 3D with ShapeR. While ShapeR
is trained to leverage posed multi-view signals, it can be config-
ured for single-image 3D reconstruction without retraining by us-
ing a metric point cloud and camera estimator such as MapAny-
thing [38]. This enables ShapeR to generate metrically accurate
3D shapes from a monocular image.

Robustness Trends. DTC Active, DTC Passive, and the
ShapeR evaluation dataset represent a non-linear progres-
sion from highly controlled to markedly more complex and
casual capture setups. As shown in Fig. 13, ShapeR demon-
strates significantly greater robustness to increased scene
casualness compared to baseline methods such as LIRM,
maintaining high reconstruction quality even as the capture
conditions become more challenging.

Monocular Image-to-3D. While ShapeR is trained using
multiple posed views and SLAM points extracted from
them, it can also be applied to monocular images to pro-
duce metric 3D shapes without retraining by leveraging ap-

15

Input Observations Ours Pseudo-Ground Truth
’ A
" 4
=
<
.. /

A
& _

N

I~ 1

Input scene and 3D detections Missing Detections and Reconstructions

Figure 15. ShapeR limitations. (a) Low image fidelity or lim-
ited views lead to incomplete or low-detail reconstructions. (b)
Closely stacked or attached objects can cause meshes to include
parts of adjacent structures, even when the point associated with
these structures are not in the input (c) ShapeR relies on upstream
3D detection; missed or inaccurate detections result in unrecover-

able objects. ) )
Table Reconstruction performance comparison on Scan-

Net++ [87] and Replica [71] datasets against DPRecon [56]. We
use six scenes from ScanNet++ and seven scenes from Replica as
processed by DPRecon. Note that chamfer distance, normal con-
sistency and recall (R) are calculated in one direction, i.e. only
point present on ground truth meshes are used for evaluation, due
to tha lack of incomplete meshes present in these datasets.

Methods ScanNet++ Replica

CDx102 | NCt Rf CDx10?] NCt Rt
DPRecon [56] 7.69 0.73 045 4.65 0.75 0.57
ShapeR 1.09 0.84 0.91 1.77 0.84 0.82

proaches like MapAnything [38]. As illustrated in Fig. 14,
ShapeR can condition on a single image and its associated
point cloud (obtained from MapAnything) to reconstruct
both individual objects and entire scenes. Further improve-
ments are possible by fine-tuning the model on real data
collected in this monocular setup, as demonstrated in recent
works [14].

C. Implementation Details

The 3D VAE encoder consists of 8 transformer layers and
the decoder of 16 layers, each with a hidden width of 768,
12 attention heads. The VAE is trained for 200K steps with
an effective batch size of 640 across 64 NVIDIA H100



SAM 3D Objects

Input Scene Observation

ShapeR

View 1 View 2 View 3

Figure 16. Comparison with SAM 3D Objects [14]. SAM 3D Objects takes a single image and interactive object segments to produce non-
metric 3D shapes, which are generally accurate but may exhibit minor hallucinations (e.g., predicting five lamps instead of four) and poor
object placement. In contrast, ShapeR leverages posed images from a sequence to generate metrically accurate geometry and consistently
well-placed objects.
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Figure 17. Comparison against LIRM [44] on DTC [23] Active and Passive sequences. Both setups feature tabletop objects without clutter
or occlusions; however, Passive sequences allow more free user movement, while Active sequences involve the user circling the object.
ShapeR performs competitively on Active sequences and surpasses LIRM on the slightly more casual Passive sequences.

16



DPRecon

Input Captures

ScanNet++

Replica

GT Scan

=

Figure 18. Reconstruction results on ScanNet++ [87] and Replica [71] scenes, compared to DPRecon [56]. ShapeR produces complete
reconstructions, often surpassing the ground-truth scans in completeness, as the latter lack geometry in occluded regions.

GPUs. The rectified flow transformer comprises 16 dual-
stream and 32 single-stream blocks, each with 16 attention
heads and a hidden width of 1024. Training is performed for
550K steps using 128 H100 GPUs, progressively increasing
the latent sequence length. The effective batch size is 512.
Both networks are optimized using Adam with a learning
rate of 5 x 1075,
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D. Limitations

While ShapeR advances 3D shape generation under casual
capture scenarios, several limitations remain. First, for ob-
jects captured with low image fidelity or observed in very
few views, reconstructions can be incomplete or lack fine
detail due to insufficient geometric and visual evidence.
Second, when objects have other items stacked or closely
attached (for example, tables supporting other objects), the



Table 4. Reconstruction results on the DTC [23] Active and Pas-
sive datasets, each with approximately 100 sequences, compared
against LIRM [44]. ShapeR achieves comparable performance to
LIRM on the highly controlled Active sequences, and surpasses
LIRM on the more challenging Passive sequences.

DTC Active DTC Passive
CDx10?| NCt FI1t CDx10?] NCt FI?

LIRM [44] 0.90 0.94 092 1.37 091 0.88
ShapeR 0.94 091 0.94 0.95 091 0.95

Methods

reconstructed meshes sometimes include remnants of these
adjacent structures instead of cleanly isolating the target ob-
ject. Finally, ShapeR depends on upstream 3D instance
detection; thus, missed detections or inaccurate bounding
boxes directly propagate to the reconstruction stage, where
missed objects cannot be recovered.
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