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Abstract

The following thesis will cover free semimodules and their exam-
ples. We will define various algebraic structures via Ω-algebras (from
universal algebra) with an emphasis on semimodules. We continue
to define, categorically, the property of an algebraic structure being
free, and show that this is a universal property. We construct the free
semimodule on a set and explore various examples of them appearing
in mathematics. We observe that the free semimodule on a set is a
universal arrow from that set to the forgetful functor and that there is
a functor called the free functor, that is the left adjoint to the forgetful
functor, which provides an equivalent characterisation of the property
of being free, that is when the object is in the image of the free functor.
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1 Introduction

There are seemingly disconnected properties of mathematical structures that
can be unified under a general definition that characterises that property
categorically, that is in each case. Category theory provides us with tools to
form these more generalised characterisations.

One such characterisation of a property is that of an algebra being free. We
can define this property, categorically, by using Ω-algebras to define algebraic
categories and then for any algebraic category C, we form the category C[X] of
tuples consisting of a C-algebra1 and a map from the set X to the underlying
set of the C-algebra. The initial object in this category is the free C-algebra
on X. Throughout, we will return to vector spaces, the motivating example
for this property since every vector space turns out to be free and this is
equivalent to the proposition that every vector space has a basis.

We begin by defining Ω-algebras, a generalised definition of certain algebras
that comes from universal algebra, and providing examples that will be used
later. After this we are able to define a free algebra and the free semimodule
on a set X. Semimodules are a generalisation of vector spaces where we relax
the requirement of the vector space being defined over a field and instead
define it over an arbitrary semiring. Once we define the free semimodule on
a set X, we proceed with examples showing that every vector space has a
basis and providing a categorical formulation of the fundamental theorem of
arithmetic.

It is observed that the free semimodule on a set X is a universal arrow
from X to the forgetful functor SModR → Sets and the property of an
algebraic structure being free means, that algebra is in the image of the left
adjoint to the forgetful functor, called the free functor.

2 Ω-algebras

Let Ω be a graded set (a set Ω equipped with a map lΩ : Ω → N), Ω0 =
l−1
Ω (0), . . . ,Ωn = l−1

Ω (n), . . . , and E a set of identities. The graded set Ω is
referred to as the signature2 and the map lΩ assigns to each ω in Ω an arity
n. An (Ω, E)-algebra, also referred to as a universal algebra or an algebraic

1Objects of an algebraic category C are referred to as C-algebras.
2We can think of Ω as a sequence of disjoint sets (Ωn = {ω ∈ Ω : lΩ(ω) = n})n∈N in

order to avoid using the symbol Ω [Jan20].
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structure, is a pair (A, v) where A is a set and v is an action of Ω on A [ML71].
The action v, referred to as the algebraic structure on A, is a function which
assigns to each operation of arity n, an n-ary operation vω : An → A. The
map v can also be considered as a family (vω : Al(ω) → A)ω∈Ω of operations on
A, or equivalently a map v : Ω →

⋃
n∈NA

An
. We will refer to (Ω, E)-algebras

as Ω-algebras and specify the identities we impose on the operators.
The convention is to use ω(a1, . . . , an) to refer to vω(a1, . . . , an) and A =

(A, v). This allows us to remove Ω and v from the notation. For example, a
monoid M is an Ω-algebra with

Ωn =


{e}, for n = 0,
{m}, for n = 2,
∅ for 0 ̸= n ̸= 2

written M = (M, e,m) rather than (M, v), where e and m are not elements
of Ω but refer to their images under v [Jan15]. We will use this convention in
our definitions of various algebraic structures.

From Ω we form the set Λ of all derived operators. As Mac Lane writes,
for an operator ω of arity n, and n derived operators λ1, . . . , λn of arities
m1, . . . ,mn, the composite ω(λ1, . . . , λn) is a derived operator of arity m1 +
· · ·+mn [ML71]. Briefly, as an example, consider the property of associativity
of addition, in order to formalise this property as an identity, we use derived
operators to form a ternary operator, say λ, defined by vλ(a, b, c) = a+(b+ c)
for every a, b, and c in A. We form a second ternary operator µ defined as
vµ(a, b, c) = (a+b)+c. Associativity can then be imposed on the Ω-algebra by
requiring that vλ = vµ. This motivates our inclusion of the set E of identities
in our definition of an Ω-algebra.

The set E of identities for algebraic structures is a set of ordered pairs (λ, µ)
of derived operators, where the derived operators of each pair have the same
arity. An action v of Ω on A satisfies the identity (λ, µ) if vλ = vµ : An → A
[ML71]. An (Ω, E)-algebra is a set A together with an action v of Ω on A
which satisfies all the identities of E [ML71].

An Ω-algebra homomorphism from A to B is a map f : U(A) → U(B) of
underlying sets (where U is the forgetful functor Alg(Ω) → Sets), such that

f(ω(a1, . . . , an)) = ω(f(a1, . . . , an))

for every natural number n, every ω in Ωn, and every a1, . . . , an in A [Jan20].
The class of all Ω-algebras3, with Ω-algebra homomorphisms as morphisms

3More accurately, the collection of all small Ω-algebras forms a category [ML71].
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and composition defined as the usual composition of homomorphisms, forms a
category called the category of Ω-algebras and is denoted by Alg(Ω) [Jan20].
Categories of this form, for various Ω are called algebraic categories. A
morphism is an isomorphism in Alg(Ω) if and only if the map f is bijective
on the underlying sets [Jan15]. We are able to transport an algebra structure
along a bijection making it an isomorphism in Alg(Ω). That is, if A = (A, v)
is an Ω-algebra, B a set, and f : U(A) → B a bijection, then there exists
a unique Ω-algebra structure w on B making f an Ω-algebra isomorphism
(A, v) → (B,w) [Jan15].

3 Examples of Ω-algebras

The following are examples of Ω-algebras that will be used throughout this
thesis.

A monoid is a system (M, e,m) where M is a set, e is a nullary operation
that picks out a distinguished element of M , and m is an associative binary
operation that satisfies the identity m(e, x) = x = m(x, e) for every x in M .

A semiring is a system (A, 0,+, 1, ·) in which (A, 0,+) is a commutative
monoid and (A, 1, ·) is a monoid satisfying the distributivity of multiplication
with respect to addition and 0,

0 · a = 0 = a · 0
a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

[Jan15].
A ring is a system (A, 0,+,−, 1, ·)4 in which (A, 0,+, 1, ·) is a semiring

and (A, 0,+,−) is a group [Jan15]. If the operation · is commutative then
we refer to the algebra as a commutative ring.

A field is a ring where every element has a multiplicative inverse, that
is, a system (A, 0,+,−, 1, ·,−1 ) in which (A, 0,+,−) and (A, 1, ·,−1 ) are both
abelian groups.

For a monoid (M, 1, ·), an (M, 1, ·)-set is a pair (A,α) in which A is a
set and α : M × A → A a map defined by α(m, a) = ma satisfying 1a = a
and m(m′a) = (mm′)a for all m and m′ in M and a in A [Jan15]. This

4In some definitions, the multiplicative identity 1 is not included and when it is, we
refer to the ring as an unital ring.
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classical definition of an M -set can be restated to make an M -set an algebraic
structure by describing the map α as an M -indexed family of unary operators
(ωm)m∈M on A where ωm(a) = α(m, a) [Jan15].

An M -set can also be defined as a functor. A left M -set is an object in
the functor category SetsM [Jan20]. If X :M → Sets is a covariant functor,
then X specifies an object X in Sets, the image of the unique object of M
under X , together with an endomorphism X (u) : X → X for each morphism
u of M that maps x 7→ ux such that X (u)X (v) = X (uv) and X (e) = 1X .
There is a similar definition for right M -sets as a functor in the presheaf
category SetsM

op

.
Let (R, 0,+, 1, ·) be a semiring, then an R-semimodule is a system (A, 0,+, α)

where (A, 0,+) is a commutative monoid and (A,α) is a (R, 1, ·)-set satisfying
the following identities5,

r0 = 0 = 0a

r(a+ b) = ra+ rb

(r + s)a = ra+ sa

for all r, s ∈ R and a, b ∈ A [Jan15].
Let R = (R, 0,+,−, 1, ·) be a ring, then an R-module is a semimodule over

(R, 0,+, 1, ·), that is, a system (A, 0,+, α) in which (A, 0,+) is an abelian
group and (A,α) is a (R, 1, ·)-set with α : R × A → A a map called scalar
multiplication that maps (r, a) 7→ ra such that the identities of a semimodule
are satisfied. This definition is specifically that of a left R-module. Similarly,
we can define a right R-module. In general, we will use “R-module” to mean
left R-modules. A module is a generalisation of vector spaces where we relax
the requirement of the vector space being defined over a field and instead
define it over an arbitrary ring6.

Vector spaces are exactly modules over a field. For a fieldK = (K, 0,+,−, 1, ·,−1 ),
a K-vector space is a module over (K, 0,+,−, 1, ·) [Jan15].

A semilattice7 (A, 1, ·) is an idempotent commutative monoid. That is, a

5Note that, multiplication of elements in A by elements of the (R, 1, ·)-set corresponds
to “scalar multiplication” (in the case of vector spaces) or, equivalently, the action of the
(R, 1, ·)-set on the monoid (A, 0,+). That is, when writing ra, for r ∈ R and a ∈ A, we
mean α(r, a).

6Modules are also a generalisation of abelian groups (as we will see in the section on the
category of Z-modules) since abelian groups are exactly modules over the ring of integers.

7We sometimes use the notation (A, 1,∧) or (A, 0,∨) and respectively refer to the
semilattice as a ∧-semilattice (meet-semilattice) or a ∨-semilattice (join-semilattice) [Jan15].
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commutative monoid with a2 = aa = a for all a in A. A homomorphism of
join-semilattices is a map f : A→ B of join-semilattices that preserves finite
joins, that is

f(x ∨ y) = f(x) ∨ f(y), f(0) = 0.

Similarly, a meet-semilattice homomorphism is a map f : A → B of meet-
semilattices that preserves finite meets, that is

f(x ∧ y) = f(x) ∧ f(y), f(1) = 1.

Semilattices and semilattice homomorphisms form a category SemiLat. We
will use the notation for meet-semilattices. We can avoid this notational
distinction by referring to the category of semilattices as the category of
idempotent commutative monoids and monoid homomorphisms. The category
of semilattices is a subcategory of Pos, the category of partially ordered sets8

and monotone maps. The choice of using either meet-semilattices or join-
semilattices corresponds to using one of two inclusion functors SemiLat →
Pos.

4 Free algebras

Consider a vector space V , when X is a basis of V , we say that V is a free
vector space on X.9 Now, for any vector space V and W , and a basis X of V ,
if there is a map β : X → W then, there exists a unique linear map from V
to W extending β. That is, there is a unique linear map making the following
diagram commute,

V W

X

i
β

where i is the inclusion map X → V . We generalise this example to define a
free algebra by means of a universal property and will return to the specific
case of vector spaces.

8A partially ordered set (P,R) is a set P together with a relation R which is reflexive,
transitive, and antisymmetric (that is, an antisymmetric preorder).

9It will be shown that every vector space is free, which makes this specification somewhat
redundant.
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Let C be an algebraic category, that is, a full subcategory of Alg(Ω). The
objects of C are called C-algebras. Let X be a set and C[X] the category
of pairs (A,α), where A is a C-algebra and α : X → U(A) a map from X
to the underlying set of A. A morphism f : (A,α) → (B, β) in C[X] is an
Ω-algebra homomorphism f : A → B that extends β making the following
diagram commute,

A B

X

f

α
β

that is, such that fα = β. The free C-algebra on X is the initial object in
C[X] [Jan15].

It can be seen from this definition that the property of a C-algebra
(A,α) being free means that for every C-algebra (B, β) there exists a unique
morphism, extending β, making the following diagram commute

A B

X

α
β

as this is what it means for the C-algebra (A,α) to be the initial object in
the category C[X].

In the case of vector spaces, we used the inclusion map as the map α and,
although this is standard in linear algebra, in category theory we generalise
this, allowing the use of any map that satisfies the commutative diagram.
Such a map will always be injective. We make this adjustment since an initial
object is defined up to isomorphism and so we should be able to replace
(V, i) with an isomorphic pair, say (V, α). But, now the map α is no longer
the inclusion map. We will show that if we change the free C-algebra to
an isomorphic one, the new map α will be injective in all but two cases.
Consider an initial object (A,α) in C[X] for which we do not know whether
α is injective. We can choose another object (B, β) in which β is injective
by taking a C-algebra that is bigger10 than X and β to be any injective map

10The cardinality of U(B) is greater than the cardinality of X.
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X → B. This choice of β makes the following diagram commute

A B

X

f

α
β

and so, fα = β. Hence, α must be injective since β is. However, for the
empty algebra and the one-element algebra, the map is not injective. In order
to make the above construction of β, we need at least one algebra which is
bigger than X and if we have an algebra with more than one element, we
can take the Cartesian product of it with itself sufficiently many times for
it to be bigger than X [Jan22b]. If the algebra has a single element then
the Cartesian product of it with itself will also have a single element and so
would not be bigger than X.

Consider the category C[∅] for some category C. The free C-algebra on
the empty set is the initial object in C [Jan15]. More precisely, let A denote
the initial object in C, then the free C-algebra on the empty set is the pair
(A, ∅A : ∅ → A). Consider the following commutative diagram

A B

X

f

∅A
∅B

where B is any object in C. Since, the empty set is initial in Sets, the
morphisms ∅A : ∅ → U(A) and ∅B : ∅ → U(B) will always exist. Hence, if
(A, ∅A) is initial in C[∅], then A is initial in C since there will always exist a
morphism f : A → B in C and if A is initial in C then (A, ∅A) is initial in
C[∅] since, vacuously, the diagram above will always commute.

5 Free semimodules

Let R be a semiring and X a set. In the case of vector spaces, we have a
field K and a set of basis vectors X. We can then form the vector space V by
taking all K-linear combinations of the elements of X. We can generalise this
procedure and ask what would happen if we took R-linear combinations.
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For any given R-linear combination of elements of X, r1x1 + · · ·+ rn + xn,
we can form a map u : X → R that maps each xi to ri in R. Let F (X) denote
the set of all such maps {u : X → R | {x | u(x) ̸= 0} is finite} and define a
semimodule structure on F (X). Let ηX : X → F (X) be the map that maps
each element x of X to the map ηX(x) : X → R which maps x to 1 in R and
every other element of X to 0 in R. That is,

ηX(x) =

{
1, if x = y
0, if x ̸= y.

The tuple (F (X), ηX) forms an R-semimodule called the free R-semimodule
on X.

No general method to construct free algebras on a set exists, and so
it is difficult for certain algebras. We proceed with a construction of free
semimodules as it admits important examples that are studied in mathematics.

Let R be a semiring and C the category of R-semimodules, the free
C-algebra (A,α) on a set X, called the free R-semimodule on X, can be
constructed as follows [Jan15]. We let A 11 be the set R(X) of all maps
u : X → R such that {x ∈ X : u(x) ̸= 0} is finite12. We impose this condition
as we want this map to be a sum of several elements which come from X and
we are not able to define infinite sums13. We then define the R-semimodule
structure on A by requiring that the operations of the Ω-algebra satisfy the
following identities

(u+ v)(x) = u(x) + v(x),

(ru)(x) = r(u(x))

for every u, v in A, r in R, and x in X. The map α : X → A is defined by

α(x)(y) =

{
1, if x = y
0, if x ̸= y

where α is a morphism in Sets. Now, for any other C-algebra (B, β) in
C[X], there exists a uniquely determined R-semimodule homomorphism
f : R(X) → B that extends β and this homomorphism is given by

f(u) =
∑
x∈X

u(x)β(x)

11Here, A is the set F (X) above.
12Equivalently, it is the set of all families (ux)x∈X of elements in R such that {x ∈ X :

u(x) ̸= 0} is finite [Jan15].
13Defining infinite sums requires limits which require a topology. The structures we are

working with do not have a topology defined on them.
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[Jan15]. This is the universal property of free algebras. Hence, the R-
semimodule (A,α) is free, completing our construction. Defining the map α
as above, allows us to always construct the R-semimodule homomorphism.
To see this, notice that for each map u in A we have that u =

∑
x∈X u(x)α(x),

since for any y in X,∑
x∈X

(u(x)α(x))(y) =
∑
x∈X

u(x)(α(x)(y))

by the R-semimodule structure on A for which every r in R and every map u
in A must satisfy the identity (ru)(x) = r(u(x)) 14. Hence,∑

x∈X

u(x)(α(x)(y)) =

{
u(x), if x = y
0, if x ̸= y

= u(y)

and so any element u in R(X) can be expressed as a linear combination u =∑
x∈X u(x)α(x). Now, in order to construct the R-semimodule homomorphism

f in such a way that it extends β and satisfies u =
∑

x∈X u(x)α(x), we have
to have that

f(u) = f

(∑
x∈X

u(x)α(x)

)
=
∑
x∈X

u(x)fα(x) =
∑
x∈X

u(x)β(x),

and as a result, f is uniquely determined [Jan15].
Given a semiring R, we can form the category SModR of R-semimodules

and R-semimodule homomorphisms. A homomorphism of R-semimodules M
and N is a map f :M → N such that

f(x+ y) = f(x) + f(y) and f(rx) = rf(x)

for all x and y in M and all r in R.

Consider an R-semimodule in the special case where R = {0, 1}, then
we get a field of characteristic 0. However, if we impose the condition that
1 + 1 = 1, then we get a 2-element semiring, and so {0, 1}-semimodules are

14Since α : X → A and u : X → R, α(x) can be identified with an element of A and
u(x) can be identified with an element of R.
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semilattices [Jan15]. To see this, notice that every {0, 1}-semimodule A is
idempotent, since for every a ∈ A,

a+ a = 1a+ 1a = (1 + 1)a = 1a = a.

Conversely, if A is a {0, 1}-semilattice then 1 + 1 = 1 in A implies that
this condition also holds in the semiring End(A) of endomorphisms15 of A.
This means that sending 0 to 0 and 1 to 1 determines a unique semiring
homomorphism {0, 1} → End(A), making A a {0, 1}-semimodule [Jan15].
So, the category of semimodules over {0, 1} is isomorphic to the category of
semilattices.

In this case, the free {0, 1}-semimodule on a set X can be identified with
the semilattice Pfin(X) = (Pfin(X), ∅,∪) of finite subsets of X under set union.
A map u : X → {0, 1} in {0, 1}(X) corresponds to the finite subset u−1(1)
of X, that is the u-preimage of 1, and the addition operation in {0, 1}(X)

corresponds to the set union operation in Pfin(X) [Jan15].

The category of Z-modules is isomorphic to the category Ab of abelian
groups [Jan22a]. There is a forgetful functor U : ModZ → Ab that sends a
Z-module (A,α) to its underlying abelian group (A, e,+, i) where e and i are
determined by e = α(0, a) and i(a) = α(−1, a) and the binary operation +
is determined by a+ · · ·+ a = α(n, a), that is, a added together n-times in
the group is the same as α(n, a). This forgetful functor sends a Z-module
homomorphism to itself.

Similarly, there is a functor which sends any abelian group to its associated
Z-module and any group homomorphism to itself.

The forgetful functor ModZ → Ab is a strict inverse of the associated
Z-module functor Ab → ModZ and so the category of abelian groups and
the category of Z-modules are isomorphic.

A free Z-module is isomorphic to the direct sum of n copies of Z, the free
abelian group on a single generator, for some natural number n.

6 Vector spaces

We return to our motivating discussion of vector spaces. Let K be a fixed
field and V a K-vector space. For any set X, we define the canonical map

15A morphism with the same domain and codomain.
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ηX : X → K(X) by

ηX(x)(y) =

{
1, if x = y
0, if x ̸= y.

This makes the pair (K(X), ηX) into the free K-semimodule on X. That is,
for every map g : X → V there exists a unique linear map h : K(X) → V (a
morphism of K-vector spaces), referred to as the linear map induced by g,
making the following diagram commute

K(X) V

X

h

ηX
g

where the induced map h is explicitly defined by

h(u) =
∑
x∈X

u(x)g(x)

[Jan15].

A linearly independent map is a map g : X → V such that the induced
linear map h : K(X) → V is injective. A subset S of V is linearly independent
if so is the inclusion map S → V [Jan15]. That is, the map h, making the
following diagram

K(S) V

S

h

ηS
i

commute, is injective. This definition of linear independence in terms of maps
can be reconciled with the usual definition by noting that a linear map is
injective if and only if it has a trivial kernel. So a map, g : X → V is linearly
independent if and only if for every u in K(X), h(u) = 0 ⇒ u = 0, that is u is
the zero map, and this is true if and only if∑

x∈X

u(x)g(x) = 0 ⇒ ∀x∈Xu(x) = 0.

In particular, a subset S of V is linearly independent if and only if for every
u in K(S), ∑

s∈S

u(s)s =
∑
s∈S

u(s)i(s) = 0 ⇒ ∀s∈Su(s) = 0.
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That is, a subset S of V is linearly independent if and only if we have that, if
the linear combination is equal to zero, then all the coefficients u(s) of the
linear combination are zero.

A subset S of V is said to be a basis of V if it is linearly independent
and generates V [Jan15]. Suppose g : X → V is linearly independent, then
g(X) ⊂ V generates V if and only if the induced linear map h : K(X) → V is
surjective [Jan15]. So a subset S of V generates V if and only if the linear
map h : K(S) → V induced by i : S → V is surjective.

Since a linear map is injective and surjective at the same time if and
only if it is an isomorphism, we immediately have two other equivalent
characterisations of a basis. A subset S of V is a basis of V if and only if K(S)

is isomorphic to V if and only if the pair (S, i : S → V ) is a free K-vector
space on S which is exactly the free K-semimodule on S [Jan15]. That is,
for any vector space W , there exists a linear map h : V → W making the
diagram

V W

S

h

i
g

commute16. Therefore, to say every K-vector space is free is to say every
K-vector space has a basis [Jan15].

A linear combination of vectors v1, . . . , vn in V is a K-weighted sum∑n
i kivi where each ki is in K. If S is a basis for V then K(S) is the set

of all maps that pick out some combination of elements of K that act as
weights for each element s of the basis S. For example, consider the standard
n-dimensional Euclidean basis E = {e1, . . . , en}, then for u ∈ K(E) (some
choice of K-weights), u(ei) = ki for some ki in K, and a linear combination
of the basis vectors in E is a weighted sum

∑n
i u(ei)ei.

Now, consider the commutative diagram

K(S) V

S

h

ηS
i

then, h(u) =
∑

s∈S u(s)s is a linear combination of vectors s in S. If h is
injective then S is linearly independent since each linear combination h(u)

16We will elaborate further as to why such a linear map exists in the section on free-
forgetful adjunctions.
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corresponds to a unique vector v in V . If h is surjective then S generates
V since every vector v in V can be written as a linear combination h(u) for
some choice of K-weights u in K(S).

For a set X and a map g : X → V , g picks out basis elements of V if
and only if the induced linear map h : K(X) → V is an isomorphism. That
is, g picks out a basis for V if and only if g is linearly independent and g(X)
generates V 17.

There are a couple of special cases that should be noted. The empty set
and the empty map are always linearly independent [Jan15]. Consider the
following commutative diagram

K(∅) V

∅

h

∅
K(∅)

g

and any u ∈ K(∅), then u is the empty map ∅K : ∅ → K. Now, the image of
K(∅) under the induced map h is the empty set and so h is vacuously injective.

The empty set is a basis for the trivial vector space {0} [Jan15]. The
empty set is linearly independent from above and the induced linear map
h : K(∅) → {0} is surjective since the set K(∅) contains only a single element
(the empty map), so the empty set generates {0}. This coincides with our
remark that the free C-algebra on the empty set is the initial object in C
since {0} is initial in the category of K-vector spaces VectK .

If X = {x} is a single element set, then a map g : X → V is linearly
independent if and only if g(x) ̸= 0, in particular, a single element subset
{s} of V is linearly independent if and only if s ̸= 0 [Jan15]. Suppose
g(x) = 0, then in order for hη{x} = g to hold, where η{x} : X → K({x}),
we must have that h(u) = 0 for every u ∈ K{x} which would imply that
the kernel of h is non-trivial, so h is not injective and hence, g is not lin-
early independent. Now, if g is linearly independent, then h is injective and
so it has a trivial kernel, hence x cannot be mapped to 0 in V and so g(x) ̸= 0.

17We can define a basis as a map in this way, however it is rarely done.
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We continue with a proof that every K-vector space is free. We first show
that every maximal linearly independent subset of a vector space V generates
V and using this show that every vector space has a basis and hence, every
vector space is free.

Lemma. If S is a maximal linearly independent subset in a vector space V ,
then V is generated by S [Jan15].

Proof. Suppose S is a maximal linearly independent subset of a K-vector
space V . We can suppose, without loss of generality, that S is nonempty. If S
were empty then for x in V but not in S, there would exist a map u : {x} → K
with u(x) ̸= 0 since {x} is not linearly independent, and so {x} is linearly
independent for all nonzero x in V , which is a contradiction. So let x be an
element of V not in S, then S ∪ {x} is not linearly independent, since S is
the maximal linearly independent subset of V , and so there exists a map
u : S ∪{x} → K, such that the set Y = {y ∈ S ∪{x} : u(y) ̸= 0} is finite and
nonempty and

∑
y∈Y u(y)y = 0. Since S is linearly independent, u(x) ̸= 0

and the restriction of u on S is a map whose existence contradicts the linear
independence of S. We now show that since u(x) is an invertible element of
the field K, x is in the subspace of V generated by S. Since u(x) ̸= 0, u(x) is
an invertible element of the field K and so we can write

x = (u(x))−1u(x)x

= (u(x))−1(u(x)x+
∑
s∈S

u(s)s−
∑
s∈S

u(s)s)

= (u(x))−1(
∑
y∈Y

u(y)y −
∑
s∈S

u(s)s)

= (u(x))−1(
∑
s∈S

u(s)s)

=
∑
s∈S

(u(x))−1u(s)s

and so x is in the subspace of V generated by S [Jan15].

Hence, a basis of a vector space V is any maximal linearly independent
subset of V . We need Zorn’s lemma to deal with the case of infinite dimen-
sional vector spaces. When the vector space is finitely generated, the proof
that every vector space has a basis, can be completed without the use of
Zorn’s lemma [Jan15].
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Lemma (Zorn’s Lemma). Every ordered set, in which every chain is bounded,
has a maximal element [Jan15].

A subset S of an ordered set P is said to be bounded if there exists a p in
P with s ≤ p for all s in S. S is said to be a chain if for every s and s′ in S,
either s ≤ s′ or s′ ≤ s in P 18 [Jan15].

Depending on the axioms of set theory that we are using, we are able
to place Zorn’s lemma as an axiom or deduce it from others. Under certain
conditions, Zorn’s lemma is equivalent to the Axiom of Choice [Jan15].

Theorem. Every vector space has a basis.

Proof. Let V be a K-vector space and let S denote the set of all linearly
independent subsets of V . We need to show that every chain in S is bounded
so we can obtain a maximal linearly independent subset that generates V ,
hence, obtaining a basis for V . If S is a chain in S, then ∪S, its union,
is linearly independent (that is ∪S ⊂ S), making ∪S the maximal linearly
independent subset of V and hence, generates V . To show ∪S is linearly
independent we have to show that for u in K(∪S) such that

∑
s∈∪S u(s)s = 0,

we have that the finite subset X = {x ∈ ∪S : u(x) ̸= 0} is empty. That
is, there are no K-weights u(s) such that u(s) ̸= 0 if

∑
s∈∪S u(s)s = 0. So

there is no linear combination of elements in ∪S that can produce any other
element of ∪S. Now, to show X is empty, consider that since X is a finite
subset of ∪S and X is a chain, X is included in some subset S in S. So we
have that, X = {x ∈ S : u(x) ̸= 0} and

∑
s∈S u(s)s =

∑
s∈∪S = 0. Hence,

since S is linearly independent, by restricting u to S, we obtain that X is
empty [Jan15].

We conclude that every vector space has a basis and so every K-vector
space is a free K-semimodule.

7 Fundamental theorem of arithmetic

The natural numbers form a semiring (N, 0,+, 1, ·). Consider the category
SModN of semimodules over N. This category is isomorphic to the category of
commutative monoids [Jan22a]. Consider any commutative monoid (M, e,+),
then it is a semimodule over the semiring of natural numbers where the scalars

18That is, S is said to be a chain if the order of P induces a linear order on S [Jan15].
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are natural numbers and multiplying an element of the monoid by a natural
number n is defined for x ∈M by

nx = x+ x+ · · ·+ x,

that is x added to itself n times. So every commutative monoid is uniquely a
semimodule over the natural numbers.

Proposition. The monoid (N, 0,+) is the free commutative monoid on a
single element [Jan22a].

Consider the multiplicative monoid of natural numbers (N \ {0}, 1, ·),
being a commutative monoid, it is a semimodule over the semiring of natural
numbers.

Proposition. The monoid (N \ {0}, 1, ·) is the free commutative monoid on
an infinite set, specifically, the set of prime numbers [Jan22a].

This proposition is equivalent to the fundamental theorem of arithmetic:
every natural number can be uniquely represented as a product of powers
of primes (up to permutation of primes). Let P denote the set of prime
numbers and consider the set N(P) of maps u : P → N such that only a finite
number of primes are mapped by u to a non-zero natural number (the rest of
the primes are mapped by u to zero). For each n ∈ N, by the fundamental
theorem of arithmetic we can write

n = pe11 p
e2
2 · · · pekk

for p1, . . . , pk ∈ P and e1, . . . , ek ∈ N. Each map u ∈ N(P) maps a prime to a
natural number that is its power in the prime decomposition of some natural
number. So for each natural number n, there is a map u ∈ N(P) such that
u(p1) = e1, . . . , u(pk) = ek [Jan22c]. For example, the number 30 can be
decomposed into primes as 2 · 3 · 5, so 30 corresponds to the map that sends

2 7→ 1,

3 7→ 1,

5 7→ 1,
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and every other prime to 0. The number 28 can be decomposed into primes
as 4 · 7, so 28 corresponds to the map that sends

2 7→ 2,

3 7→ 0,

5 7→ 0,

7 7→ 1,

and every other prime to 0. The semimodule N(P) consists of all such maps
and it is isomorphic to the semimodule of natural numbers [Jan22c]. This
isomorphism expresses the fundamental theorem of arithmetic.

8 Free-forgetful adjunction

Let A and B be two categories and F : A → B a functor, for any object B in
B, a universal arrow B → F is a pair (A,α) where A is an object in A and
α : B → F (A) a morphism in B such that for any object A′ in A and any
morphism α′ : B → F (A′) in B, there exists a unique morphism h : A→ A′

in A making the diagram

F (A) F (A′)

B

F (h)

α′
α

commute.
Observe that free semimodules are universal arrows. Let X be any set,

R a fixed semiring, and U : SModR → Sets the forgetful functor, then a
universal arrow X → U is a pair (A,α) in which A is a semimodule over R
and α : X → U(A) a map of sets such that for any R-semimodule B and any
map of sets β : X → U(B), there exists a unique semimodule homomorphism
h : A→ B making the diagram

U(A) U(B)

X

U(h)

β
α
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commute. This corresponds exactly with our definition of the free semimodule
on X and so for any set X, the free semimodule on X is the universal arrow
X → U where U : SModR → Sets is the forgetful functor.

Adjunctions arise when wanting to compare categories. We begin compar-
ing categories with an isomorphism, requiring that in order for a category A
to be isomorphic to a category B there must exist an isomorphism A ≈ B
between them. That is, given a functor F : A → B, there exists a functor
G : B → A such that FG = 1B and GF = 1A. When we replace the equalities
FG = 1B and GF = 1A with natural isomorphisms FG ≈ 1B and GF ≈ 1A,
then we obtain the notion of equivalent categories. We can continue weakening
our comparisons by requiring that instead of there being natural isomorphisms
FG ≈ 1B and GF ≈ 1A, we require that there be natural transformations
FG → 1B and 1A → GF , and then the categories are no longer equivalent.
However, this mode of comparison is still of interest and comes up in a number
of seemingly disconnected areas in mathematics. This is called an adjunction
and F and G are said to be adjoint functors.

There are a number of equivalent definitions of an adjunction between
two categories. The ones we will be using are the following.

Definition. 1. For categories X and A, an adjunction A → X is a triple
(F,U, η), in which F : X → A and U : A → X are functors, and
η : 1X → UF a natural transformation such that each (F (X), ηX) is a
natural transformation [Jan20].

2. An adjunction between categories X and A is a four-tuple (F,U, η, ε)
where F : X → A and U : A → X are functors and η : 1X → UF and
ε : FU → 1A are natural transformations called the unit and counit,
respectively, such that the following two diagrams

F FUF UFU U

F U
1F

Fη

εF Uε
1U

ηU

commute [Jan20].

3. An adjunction between categories X and A is a functor F : X → A and
a family ((U(A), ψA))A∈A0

, in which each U(A) is an object in X and
each ψA is an isomorphism homX(−, U(A)) → homA(F (−), A) [Jan20].
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The functors F and U are called the left and right adjoint (of U and of
F ), respectively, and the natural transformations η and ε are called the unit
and counit, respectively.

The third definition can be derived from the definition of an adjunction
between categories X and A as a triple (F,U, φ), in which F : X → A
and U : A → X are functors, and φ : homA(F (∗),−) → homX(∗, U(−)) a
natural isomorphism. The functors homA(F (∗),−) and homX(∗, U(−)) are
the composites

Xop × A Aop × A Sets
F op×X hom

and

Xop × A Xop × X Sets,
X×U hom

respectively [Jan20]. The definition dual to this is a triple (F,U, ψ) where F
and U are as above, and ψ : homX(∗, U(−)) → homA(F (∗),−) is a natural
isomorphism. The most obvious way to define ψ is to take it as the inverse of φ.

The following theorem enables us to define an adjunction between cate-
gories A and X if we have a functor U : A → X and a universal arrow X → U
for each object X in X.

Theorem. Let A and X be categories. Given a functor U : A → X and
a family ((F (X), ηX))X∈X0

in which each (F (X), ηX) is a universal arrow
X → U , there exists a unique way to define F also on morphisms such that it
becomes a functor and the family (ηX)X∈X0 becomes a natural transformation
η : 1X → UF [Jan20].

Let R be a fixed semiring and U : SModR → Sets the forgetful functor.
We are able to use the above theorem to define an adjunction between U and
F by defining F in such a way that it is the right adjunction of U .

Consider that for any set X, the universal arrow X → U is a pair (AX , ηX).
So there is a family of universal arrows ((AX , ηX))X∈Sets0 . We can define
a map F : Sets → SModR on the objects of Sets that maps any set X
to the set AX , where AX comes from the universal arrow X → U . Then
the family of universal arrows can be rewritten ((F (X), ηX))X∈Sets0 and
so by the above theorem, there exists a unique way to define F also on
morphisms so that it becomes a functor and the family (ηX)X∈Sets0 becomes
a natural transformation η : 1Sets → UF . Hence, making the triple (F,U, η)
an adjunction Sets → SModR.
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We define F on a morphism f : X → Y in Sets in such a way that the
diagram

X UF (X)

Y UF (Y )

f

ηX

UF (x)

ηY

commutes. This uniquely defines F on the morphisms of Sets in such a way
that η is a natural transformation [Jan20]. So, for any map of sets f : X → Y ,
the linear map F (f) : F (X) → F (Y ) is defined by

F (f)

(∑
xi∈X

rixi

)
=
∑
xi∈X

rif(xi).

In the case of vector spaces, this means that any map of bases induces a linear
map between the vector spaces generated by those bases.

The unit natural transformation η : 1X → UF of any adjunction (F,U, η, ε)
satisfies the following universal property. If X is any object in X, and A is
any object in A, and α : X → U(A) is any morphism in X, then there exists
a unique morphism f : F (X) → A in A making the diagram

UF (X) U(A)

X

U(f)

ηX
α

commute. That is, for every object X in X, the pair (F (X), ηX) is a universal
arrow X → U .

The forgetful functor U : VectK → Sets, for K a fixed field, has a
left adjoint F : Sets → VectK that maps any set X to F (X), the free
vector space19 on X and any map of sets f : X → A to the linear map
F (f) : F (X) → F (A) with

F (f)

(∑
xi∈X

rixi

)
=
∑
xi∈X

rif(xi).

19Given a set X, we can form a vector space on X consisting of all formal K-linear
combinations of elements of X with a vector space structure on it as done in the earlier
section on vector spaces.
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It can be checked that F is indeed a functor and is appropriately called the
free functor. This adjunction is known as the free-forgetful adjunction.

In order for F to be the left adjoint to the forgetful functor U , it needs to
be the case that, for every K-vector space V and every set X, the following
bijections

ψV (X) : homSets(X,U(V )) ≈ homVectK(F (X), V )

hold. So, for every map of sets f : X → U(V ), we need a linear map
ψV (X)(f) : F (X) → V . We define this map as

ψV (X)(f)

(∑
xi∈X

rixi

)
=
∑
xi∈X

rif(xi).

Now, conversely, given a linear map g : F (X) → V we need a map of sets
φV (X)(g) : X → U(V ) so that the map φV (X) : homVectK(F (X), V ) →
homSets(X,U(V )) is inverse to ψV (X) and this isomorphism is natural. This
map is given by φV (X)(g) = g.

The unit η : 1Sets → UF of the free-forgetful adjunction (F,U, η, ε) :
VectK → Sets is a natural transformation consisting of component functions
ηX : X → UF (X) for each set X that are each the inclusion of X into the
underling set of F (X), the free vector space on X.

The counit ε : FU → 1VectK of the free-forgetful adjunction (F,U, η, ε) :
VectK → Sets is a natural transformation consisting of component linear
transformations εV : FU(V ) → V for each vector space V . Since FU(V ) is
the vector space with one basis vector for each element in U(V ), the linear
map εV takes linear combinations of the elements in the set U(V ) and views
them as vectors in V . Each linear map ϵV satisfies the following universal
property. If V is any K-vector space and X is any set, and f : F (X) → V is
any linear transformation, then there is a unique map of sets h : X → U(V )
making the diagram

FU(V ) F (X)

V

εV
f

F (h)

commute. That is, the pair (U(V ), εV ) is a universal arrow F → V for every
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K-vector space V 20. We can interpret the counit as imposing the condition
that linear combinations of vectors in V themselves be vectors in V .

20This explains the nomenclature “unit” and “counit” as the two notions are dual.
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