Last updated: 2018-08-29
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(20180807) 
The command set.seed(20180807) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: 128fea5 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .vscode/
    Ignored:    code/.DS_Store
    Ignored:    data/raw/
    Ignored:    src/.DS_Store
    Ignored:    src/Rmd/.Rhistory
Untracked files:
    Untracked:  Snakefile_clonality
    Untracked:  Snakefile_somatic_calling
    Untracked:  code/analysis_for_garx.Rmd
    Untracked:  code/selection/
    Untracked:  code/yuanhua/
    Untracked:  data/canopy/
    Untracked:  data/cell_assignment/
    Untracked:  data/de_analysis_FTv62/
    Untracked:  data/donor_info_070818.txt
    Untracked:  data/donor_info_core.csv
    Untracked:  data/donor_neutrality.tsv
    Untracked:  data/exome-point-mutations/
    Untracked:  data/fdr10.annot.txt.gz
    Untracked:  data/human_H_v5p2.rdata
    Untracked:  data/human_c2_v5p2.rdata
    Untracked:  data/human_c6_v5p2.rdata
    Untracked:  data/neg-bin-rsquared-petr.csv
    Untracked:  data/neutralitytestr-petr.tsv
    Untracked:  data/sce_merged_donors_cardelino_donorid_all_qc_filt.rds
    Untracked:  data/sce_merged_donors_cardelino_donorid_all_with_qc_labels.rds
    Untracked:  data/sce_merged_donors_cardelino_donorid_unstim_qc_filt.rds
    Untracked:  data/sces/
    Untracked:  data/selection/
    Untracked:  data/simulations/
    Untracked:  data/variance_components/
    Untracked:  figures/
    Untracked:  output/differential_expression/
    Untracked:  output/donor_specific/
    Untracked:  output/line_info.tsv
    Untracked:  output/nvars_by_category_by_donor.tsv
    Untracked:  output/nvars_by_category_by_line.tsv
    Untracked:  output/variance_components/
    Untracked:  references/
    Untracked:  tree.txt
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(viridis)
library(ggrepel)
library(neutralitytestr)
library(cowplot)
library(plyr)
dir.create("figures/selection", showWarnings = FALSE, recursive = TRUE)Load the call set and extract the allele frequencies which used for the fits of the selection models.
filteredAF = read.table("data/exome-point-mutations/high-vs-low-exomes.v62.ft.filt_lenient-alldonors.txt.gz", 
                        header = TRUE, stringsAsFactors = FALSE)
mut_list = data.frame("sampleID" = filteredAF$donor_short_id,
                      "af_fibro" = filteredAF$nALT_fibro/(filteredAF$nREF_fibro + filteredAF$nALT_fibro),
                      "af_ips" = filteredAF$nALT_ips/(filteredAF$nREF_ips + filteredAF$nALT_ips),
                      "chr" = filteredAF$chrom,
                      "pos" = filteredAF$pos,
                      "ref" = filteredAF$ref,
                      "mut" = filteredAF$alt,
                      "mutID" = paste(filteredAF$chrom, filteredAF$pos, filteredAF$ref, filteredAF$alt, sep = "_"))
mut_list = mut_list[order(mut_list$sampleID),]
write.table(mut_list, "data/selection/ips-fibro-AF.tsv", 
            row.names = FALSE, quote = FALSE, sep = "\t")
mut_list = data.frame("sampleID" = filteredAF$donor_short_id,
                      "af" = filteredAF$nALT_fibro/(filteredAF$nREF_fibro + filteredAF$nALT_fibro),
                      "chr" = filteredAF$chrom,
                      "pos" = filteredAF$pos,
                      "ref" = filteredAF$ref,
                      "mut" = filteredAF$alt)
mut_list = mut_list[order(mut_list$sampleID),]
write.table(mut_list, "data/selection/full-AF.tsv", row.names = FALSE, 
            quote = FALSE, sep = "\t")
dir.create("data/selection/AF", showWarnings = FALSE)
for (sampleID in unique(mut_list$sampleID)) {
  sub_mut_list = mut_list[mut_list$sampleID == sampleID,]
  sub_mut_list = sub_mut_list[sub_mut_list$af >= 0.03,]
  write.table(sub_mut_list, paste0("data/selection/AF/AF-", sampleID, ".tsv"),
              row.names = FALSE, quote = FALSE, sep = "\t")
}Please open the Mathematica notebook (code/selection/fit-dist.nb) and run it by hand (the outputs generated are used in subsequent cells). The notebook fits the negative binomial model for neutral evolution.
In case you do not have access to Mathematica to run the notebook, we provide its output files in data/selection/neg-bin-params-fit.csv and data/selection/neg-bin-rsquared-fit.csv.
The code below runs the neutralitytestr model.
fmin = 0.05
fmax = 0.45
petrAF = read.table("data/selection/full-AF.tsv", sep = "\t", header = T)
donors = unique(as.vector(petrAF$sampleID))
getSampleNtrtest <- function(afDF, sampleID, fmin, fmax){
  # run neutralitytestr on a single sample
  VAFsample = afDF[afDF$sampleID == sampleID, "af"]
  out = neutralitytest(VAFsample, fmin = fmin, fmax = fmax)
  results = c(sampleID,
              out$area$metric, out$area$pval,
              out$Dk$metric, out$Dk$pval,
              out$meanDist$metric, out$meanDist$pval,
              out$rsq$metric, out$rsq$pval,
              out$mutation.rate)
  names(results) = c("sampleID",
                     "area", "pval_area",
                     "Dk", "pval_Dk",
                     "meanDist", "pval_meanDist",
                     "rsq", "pval_rsq",
                     "mutrate")
  return(results)
}
ntrtestrPetrout = t(sapply(donors, 
                           function(sampleID) getSampleNtrtest(
                             petrAF, sampleID, fmin, fmax)))
write.table(ntrtestrPetrout, "data/selection/neutralitytestr.tsv", 
            sep = "\t", quote = FALSE, row.names = FALSE)Plot the selection classification based on the goodness of fit results from neutrality testr and the negative binomial like fit.
ntrtestrPetr = read.table("data/selection/neutralitytestr.tsv", 
                          stringsAsFactors = FALSE, header = TRUE)
negbinfitPetr = read.table("data/selection/neg-bin-rsquared-fit.csv",
                           stringsAsFactors = FALSE, header = TRUE, sep = ",")
negbinfitPetr$sampleID = negbinfitPetr$fname
negbinfitPetr$sampleID = gsub("AF-", "", negbinfitPetr$sampleID)
negbinfitPetr$sampleID = gsub(".tsv", "", negbinfitPetr$sampleID)
rownames(negbinfitPetr) = negbinfitPetr$sampleID
dfrsq = data.frame(sampleID = ntrtestrPetr$sampleID,
                   rsq_ntrtestr = ntrtestrPetr$rsq,
                   rsq_negbinfit = negbinfitPetr[ntrtestrPetr$sampleID, "rsq"])
cutoff_selection_cummut = 0.85
cutoff_selection_negbin = 0.25
cutoff_neutral_cummut = 0.9
cutoff_neutral_negbin = 0.55
donors = c("euts", "fawm", "feec", "fikt", "garx", "gesg", "heja", "hipn", "ieki",
           "joxm", "kuco", "laey", "lexy", "naju", "nusw", "oaaz", "oilg", "pipw",
           "puie", "qayj", "qolg", "qonc", "rozh", "sehl", "ualf", "vass", "vils",
           "vuna", "wahn", "wetu", "xugn", "zoxy")
dfrsq = dfrsq[(dfrsq$sampleID %in% donors),]
dfrsq$candidatelabel = NA
dfrsq$candidatelabel[dfrsq$sampleID == "puie"] = "puie"
filter_selection = (dfrsq$rsq_ntrtestr < cutoff_selection_cummut) & (dfrsq$rsq_negbinfit < cutoff_selection_negbin)
filter_neutral = (dfrsq$rsq_ntrtestr > cutoff_neutral_cummut) & (dfrsq$rsq_negbinfit > cutoff_neutral_negbin)
dfrsq$selection = "undetermined"
dfrsq$selection[filter_selection] = "selected"
dfrsq$selection[filter_neutral] = "neutral"
plt_scatter = ggplot(dfrsq, aes(x = rsq_negbinfit, y = rsq_ntrtestr)) +
  scale_colour_manual(values = c("neutral" = "#007536", "selected" = "#5EF288",
                               "undetermined" = "#CCCCCC")) +
  geom_point(aes(colour = selection)) +
  geom_label_repel(aes(label = candidatelabel), color = "white",
                   size = 2.5,
                   fill = "black", box.padding = 0.35, point.padding = 0.5,
                   segment.color = 'grey50') +
  theme_bw() +
  theme(text = element_text(size = 9), axis.text = element_text(size = 8),
        axis.title = element_text(size = 9), 
        plot.title = element_text(size = 9, hjust = 0.5)) +
  labs(x = "Goodness of Fit - Negative Binomial Distribution", 
       y = "Goodness of Fit - Cumulative Mutations") +
  theme(strip.background = element_blank()) +
  labs(title = "") +
  theme(legend.justification = c(1,0), legend.position = c(1,0)) +
  theme(legend.background = element_rect(fill = "transparent", 
                                         colour = "transparent"), 
        legend.key.size = unit(0.25, "cm")) +
  labs(colour = "Selection")
plt_scatter
| Version | Author | Date | 
|---|---|---|
| 7888ad3 | davismcc | 2018-08-26 | 
Results from the negative binomial model for neutral evolution.
dfAFpetr = read.table("data/selection/full-AF.tsv", sep = "\t", 
                      stringsAsFactors = FALSE, header = TRUE)
dfAFpetr = dfAFpetr[dfAFpetr$sampleID %in% donors,]
fitparamspetr = read.csv("data/selection/neg-bin-params-fit.csv", 
                         stringsAsFactors = FALSE, header = TRUE)
fitparamspetr$sampleID = gsub("AF-", "", fitparamspetr$fname)
fitparamspetr$sampleID = gsub(".tsv", "", fitparamspetr$sampleID)
a = 1
b = 1
fun.1 <- function(x, a=1, b=1) 1/(a*x)*exp(-x/b)
args = list(mean = 2, sd = .5)
dd <- data.frame(
  predicted = rnorm(72, mean = 2, sd = 2),
  state = rep(c("A", "B", "C"), each = 24)
)
# save generate plotting points
grid = seq(0.01, 0.6, length = 500)
normaldens <- ddply(fitparamspetr, "sampleID", function(df) {
  data.frame(
    predicted = grid,
    density = fun.1(grid, df$a, df$b)
  )
})
normaldens = normaldens[normaldens$sampleID %in% donors,]
dfAFpetr$id = sapply(dfAFpetr$sampleID, 
                     function(sampleID) paste0(
                       sampleID, " (rsq ",
                       round(fitparamspetr$rsq[fitparamspetr$sampleID ==
                                                 sampleID],2),")"))
normaldens$id = sapply(normaldens$sampleID, 
                       function(sampleID) dfAFpetr$id[dfAFpetr$sampleID ==
                                                        sampleID][1])
plt_hist = ggplot(dfAFpetr, aes(x = af)) +
  geom_vline(xintercept = fmin, colour = "grey") +
  geom_vline(xintercept = fmax, colour = "grey") +
  geom_histogram(binwidth = (fmax - fmin)/40) +
  geom_line(aes(x = predicted, y = density), data = normaldens, colour = "red") +
  facet_wrap(~ id, scales = "free_y", ncol = 4) +
  theme_bw() +
  theme(text = element_text(size = 9), axis.text = element_text(size = 8), axis.title = element_text(size = 9), plot.title = element_text(size = 9, hjust = 0.5)) +
  labs(x = paste0("Allele Frequency"), y = "# Mutations") +
  theme(legend.position = "none") +
  labs(colour = "") +
  theme(strip.background = element_blank()) +
  labs(title = "")
pname = paste0("selection-neg-bin-fit")
ppath = paste0("figures/selection/", pname, ".pdf")
ggsave(ppath, plot = plt_hist, width = 17, height = 20, units  =  "cm")
ppath  =  paste0("figures/selection/", pname, ".png")
ggsave(ppath, plot = plt_hist, width = 17, height = 20, dpi = 300, units = "cm", limitsize = FALSE)
plt_hist
| Version | Author | Date | 
|---|---|---|
| 7888ad3 | davismcc | 2018-08-26 | 
Results from the cumulative mutations model for neutral evolution.
dfntrtestr = read.table("data/selection/neutralitytestr.tsv", 
                        stringsAsFactors = FALSE, header = TRUE)
plotSampleCumMut <- function(afDF, dfntrtestr, sampleID, fmin, fmax) {
  # plot cummulative mutations as per Sottoriva & Graham
  afDFsample = afDF[afDF$sampleID == sampleID, ]
  rsq = dfntrtestr$rsq[dfntrtestr$sampleID == sampleID]
  # cumsum with decreasing frequency
  afDFsample = afDFsample[order(afDFsample$af, decreasing = TRUE), ]
  afDFsample$cumsum = 1:length(afDFsample$af)
  afDFsample$inverse_af = 1/afDFsample$af
  plt_cummut = ggplot(afDFsample, aes(x = inverse_af, y = cumsum)) +
    geom_vline(xintercept = c(1/fmin, 1/fmax), colour = "darkgrey") +
    geom_point(size = 0.5) +
    geom_line(data = subset(afDFsample, 
                            (inverse_af < 1/fmin) & (inverse_af > 1/fmax)),
              stat = "smooth", method = 'lm', formula = y ~ x, se = FALSE, 
              colour = "red", alpha = 0.5, size = 0.8) +
    coord_cartesian(xlim = c(0, 1/0.01)) +
    theme_bw() +
    theme(text = element_text(size = 9), axis.text = element_text(size = 8),
          axis.title = element_text(size = 9), 
          plot.title = element_text(size = 9, hjust = 0.5)) +
    labs(x = paste0("Inverse AF"), y = "# Cum Mut") +
    theme(legend.position = "none") +
    # remove unnecessary facet
    theme(strip.background = element_blank()) +
    labs(title = paste0(sampleID, " (rsq ", round(rsq,2), ")"))
  return(plt_cummut)
}
pltsCumMut = cowplot::plot_grid(
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[1], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[2], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[3], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[4], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[5], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[6], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[7], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[8], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[9], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[10], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[11], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[12], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[13], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[14], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[15], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[16], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[17], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[18], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[19], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[20], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[21], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[22], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[23], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[24], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[25], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[26], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[27], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[28], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[29], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[30], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[31], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[32], fmin, fmax),
  ncol = 4)
pname = paste0("selection-neutralitytestr")
ppath = paste0("figures/selection/", pname, ".pdf")
ggsave(ppath, plot = pltsCumMut, width = 17, height = 25, units = "cm")
ppath = paste0("figures/selection/", pname, ".png")
ggsave(ppath, plot = pltsCumMut, width = 17, height = 25, dpi = 300, 
       units = "cm", limitsize = FALSE)
pltsCumMut
| Version | Author | Date | 
|---|---|---|
| 7888ad3 | davismcc | 2018-08-26 | 
devtools::session_info()Session info ------------------------------------------------------------- setting  value                       
 version  R version 3.5.1 (2018-07-02)
 system   x86_64, darwin15.6.0        
 ui       X11                         
 language (EN)                        
 collate  en_GB.UTF-8                 
 tz       Europe/London               
 date     2018-08-29                  Packages ----------------------------------------------------------------- package         * version date       source        
 assertthat        0.2.0   2017-04-11 CRAN (R 3.5.0)
 backports         1.1.2   2017-12-13 CRAN (R 3.5.0)
 base            * 3.5.1   2018-07-05 local         
 bindr             0.1.1   2018-03-13 CRAN (R 3.5.0)
 bindrcpp        * 0.2.2   2018-03-29 CRAN (R 3.5.0)
 colorspace        1.3-2   2016-12-14 CRAN (R 3.5.0)
 compiler          3.5.1   2018-07-05 local         
 cowplot         * 0.9.3   2018-07-15 CRAN (R 3.5.0)
 crayon            1.3.4   2017-09-16 CRAN (R 3.5.0)
 datasets        * 3.5.1   2018-07-05 local         
 devtools          1.13.6  2018-06-27 CRAN (R 3.5.0)
 digest            0.6.16  2018-08-22 CRAN (R 3.5.0)
 dplyr             0.7.6   2018-06-29 CRAN (R 3.5.1)
 evaluate          0.11    2018-07-17 CRAN (R 3.5.0)
 ggplot2         * 3.0.0   2018-07-03 CRAN (R 3.5.0)
 ggrepel         * 0.8.0   2018-05-09 CRAN (R 3.5.0)
 git2r             0.23.0  2018-07-17 CRAN (R 3.5.0)
 glue              1.3.0   2018-07-17 CRAN (R 3.5.0)
 graphics        * 3.5.1   2018-07-05 local         
 grDevices       * 3.5.1   2018-07-05 local         
 grid              3.5.1   2018-07-05 local         
 gridExtra         2.3     2017-09-09 CRAN (R 3.5.0)
 gtable            0.2.0   2016-02-26 CRAN (R 3.5.0)
 htmltools         0.3.6   2017-04-28 CRAN (R 3.5.0)
 knitr             1.20    2018-02-20 CRAN (R 3.5.0)
 labeling          0.3     2014-08-23 CRAN (R 3.5.0)
 lazyeval          0.2.1   2017-10-29 CRAN (R 3.5.0)
 magrittr          1.5     2014-11-22 CRAN (R 3.5.0)
 memoise           1.1.0   2017-04-21 CRAN (R 3.5.0)
 methods         * 3.5.1   2018-07-05 local         
 munsell           0.5.0   2018-06-12 CRAN (R 3.5.0)
 neutralitytestr * 0.0.2   2018-05-21 CRAN (R 3.5.0)
 pillar            1.3.0   2018-07-14 CRAN (R 3.5.0)
 pkgconfig         2.0.2   2018-08-16 CRAN (R 3.5.0)
 plyr            * 1.8.4   2016-06-08 CRAN (R 3.5.0)
 pracma            2.1.5   2018-08-25 CRAN (R 3.5.1)
 purrr             0.2.5   2018-05-29 CRAN (R 3.5.0)
 R.methodsS3       1.7.1   2016-02-16 CRAN (R 3.5.0)
 R.oo              1.22.0  2018-04-22 CRAN (R 3.5.0)
 R.utils           2.6.0   2017-11-05 CRAN (R 3.5.0)
 R6                2.2.2   2017-06-17 CRAN (R 3.5.0)
 Rcpp              0.12.18 2018-07-23 CRAN (R 3.5.0)
 rlang             0.2.2   2018-08-16 CRAN (R 3.5.0)
 rmarkdown         1.10    2018-06-11 CRAN (R 3.5.0)
 rprojroot         1.3-2   2018-01-03 CRAN (R 3.5.0)
 scales            1.0.0   2018-08-09 CRAN (R 3.5.0)
 stats           * 3.5.1   2018-07-05 local         
 stringi           1.2.4   2018-07-20 CRAN (R 3.5.0)
 stringr           1.3.1   2018-05-10 CRAN (R 3.5.0)
 tibble            1.4.2   2018-01-22 CRAN (R 3.5.0)
 tidyselect        0.2.4   2018-02-26 CRAN (R 3.5.0)
 tools             3.5.1   2018-07-05 local         
 utils           * 3.5.1   2018-07-05 local         
 viridis         * 0.5.1   2018-03-29 CRAN (R 3.5.0)
 viridisLite     * 0.3.0   2018-02-01 CRAN (R 3.5.0)
 whisker           0.3-2   2013-04-28 CRAN (R 3.5.0)
 withr             2.1.2   2018-03-15 CRAN (R 3.5.0)
 workflowr         1.1.1   2018-07-06 CRAN (R 3.5.0)
 yaml              2.2.0   2018-07-25 CRAN (R 3.5.1)This reproducible R Markdown analysis was created with workflowr 1.1.1