Last updated: 2018-11-12
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(12345) 
The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: 7d1bd9a 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store
Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeaksUsed/
    Untracked:  data/RNAkalisto/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/apaExamp/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_trans/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/example_gene_peakQuant/
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/other_qtls/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf
Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/39indQC.Rmd
    Modified:   analysis/apaQTLoverlapGWAS.Rmd
    Modified:   analysis/chromHmm_enrichment.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/flash2mash.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/swarmPlots_QTLs.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   code/Snakefile
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 7d1bd9a | Briana Mittleman | 2018-11-12 | add code for looking at sig gene peaks | 
The quantified peak files are:
I want to grep specific genes and look at the read distribution for peaks along a gene. In these files the peakIDs stil have the peak locations. Before I ran the QTL analysis I changed the final coverage (ex /project2/gilad/briana/threeprimeseq/data/phenotypes_filtPeakTranscript/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear.pheno_fixed.txt.gz.qqnorm_chr$i.gz) to have the TSS as the ID.
Librarys
library(workflowr)This is workflowr version 1.1.1
Run ?workflowr for help getting startedlibrary(reshape2)
library(tidyverse)── Attaching packages ─────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0── Conflicts ────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()library(VennDiagram)Loading required package: gridLoading required package: futile.loggerlibrary(data.table)
Attaching package: 'data.table'The following objects are masked from 'package:dplyr':
    between, first, lastThe following object is masked from 'package:purrr':
    transposeThe following objects are masked from 'package:reshape2':
    dcast, meltlibrary(ggpubr)Loading required package: magrittr
Attaching package: 'magrittr'The following object is masked from 'package:purrr':
    set_namesThe following object is masked from 'package:tidyr':
    extract
Attaching package: 'ggpubr'The following object is masked from 'package:VennDiagram':
    rotatelibrary(cowplot)
Attaching package: 'cowplot'The following object is masked from 'package:ggpubr':
    get_legendThe following object is masked from 'package:ggplot2':
    ggsavenuc_names=c('Geneid',   'Chr',  'Start',    'End',  'Strand',   'Length',   '18486_N'   ,'18497_N', '18500_N'   ,'18505_N', '18508_N'   ,'18511_N', '18519_N',  '18520_N',  '18853_N'   ,'18858_N', '18861_N',  '18870_N'   ,'18909_N'  ,'18912_N'  ,'18916_N', '19092_N'   ,'19093_N', '19119_N',  '19128_N'   ,'19130_N', '19131_N'   ,'19137_N', '19140_N',  '19141_N'   ,'19144_N', '19152_N'   ,'19153_N', '19160_N'   ,'19171_N', '19193_N'   ,'19200_N', '19207_N',  '19209_N',  '19210_N',  '19223_N'   ,'19225_N', '19238_N'   ,'19239_N', '19257_N')
tot_names=c('Geneid',   'Chr'   ,'Start',   'End',  'Strand',   'Length',   '18486_T',  '18497_T'   ,'18500_T','18505_T',   '18508_T'   ,'18511_T', '18519_T',  '18520_T',  '18853_T',  '18858_T',  '18861_T',  '18870_T',  '18909_T'   ,'18912_T', '18916_T',  '19092_T'   ,'19093_T', '19119_T',  '19128_T',  '19130_T',  '19131_T'   ,'19137_T', '19140_T'   ,'19141_T', '19144_T',  '19152_T'   ,'19153_T', '19160_T'   ,'19171_T', '19193_T',  '19200_T',  '19207_T'   ,'19209_T'  ,'19210_T', '19223_T',  '19225_T',  '19238_T',  '19239_T',  '19257_T')NuclearAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt", stringsAsFactors = F, header=T)  %>% mutate(sig=ifelse(-log10(bh)>=1, 1,0 )) %>%  separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% filter(sig==1)
totalAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt", stringsAsFactors = F, header=T)  %>% mutate(sig=ifelse(-log10(bh)>=1, 1,0 )) %>%  separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% filter(sig==1)examples to look at Nuclear: IRF5, HSF1, NOL9,DCAF16, PPP4C
Total: NBEAL2, SACM1L, COX7A2L
#nuclear
grep IRF5 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/IRF5_NuclearCov_peaks.txt
grep HSF1 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/HSF1_NuclearCov_peaks.txt
grep NOL9 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/NOL9_NuclearCov_peaks.txt
grep DCAF16 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/DCAF16_NuclearCov_peaks.txt
grep PPP4C /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/PPP4C_NuclearCov_peaks.txt
#total
grep NBEAL2 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/NBEAL2_TotalCov_peaks.txt
grep SACM1L /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/SACM1L_TotalCov_peaks.txt
grep TESK1 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/TESK1_TotalCov_peaks.txt  
grep DGCR14 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/DGCR14_TotalCov_peaks.txt  
Copy these to my computer so I can work with them here. I am going to want to make a function that makes the histogram reproducibly for anyfile. I will need to know how many bins to include in the histogram. First I will make the graph for one example then I will make it more general.
Files are in /Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/example_gene_peakQuant
sessionInfo()R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     
other attached packages:
 [1] bindrcpp_0.2.2      cowplot_0.9.3       ggpubr_0.1.8       
 [4] magrittr_1.5        data.table_1.11.8   VennDiagram_1.6.20 
 [7] futile.logger_1.4.3 forcats_0.3.0       stringr_1.3.1      
[10] dplyr_0.7.6         purrr_0.2.5         readr_1.1.1        
[13] tidyr_0.8.1         tibble_1.4.2        ggplot2_3.0.0      
[16] tidyverse_1.2.1     reshape2_1.4.3      workflowr_1.1.1    
loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4     haven_1.1.2          lattice_0.20-35     
 [4] colorspace_1.3-2     htmltools_0.3.6      yaml_2.2.0          
 [7] rlang_0.2.2          R.oo_1.22.0          pillar_1.3.0        
[10] glue_1.3.0           withr_2.1.2          R.utils_2.7.0       
[13] lambda.r_1.2.3       modelr_0.1.2         readxl_1.1.0        
[16] bindr_0.1.1          plyr_1.8.4           munsell_0.5.0       
[19] gtable_0.2.0         cellranger_1.1.0     rvest_0.3.2         
[22] R.methodsS3_1.7.1    evaluate_0.11        knitr_1.20          
[25] broom_0.5.0          Rcpp_0.12.19         formatR_1.5         
[28] backports_1.1.2      scales_1.0.0         jsonlite_1.5        
[31] hms_0.4.2            digest_0.6.17        stringi_1.2.4       
[34] rprojroot_1.3-2      cli_1.0.1            tools_3.5.1         
[37] lazyeval_0.2.1       futile.options_1.0.1 crayon_1.3.4        
[40] whisker_0.3-2        pkgconfig_2.0.2      xml2_1.2.0          
[43] lubridate_1.7.4      assertthat_0.2.0     rmarkdown_1.10      
[46] httr_1.3.1           rstudioapi_0.8       R6_2.3.0            
[49] nlme_3.1-137         git2r_0.23.0         compiler_3.5.1      
This reproducible R Markdown analysis was created with workflowr 1.1.1