Last updated: 2019-02-06

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 6bac9f9

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
        Ignored:    data/perm_QTL_trans_noMP_5percov/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/4suDataIGV.Rmd
        Untracked:  analysis/DirectionapaQTL.Rmd
        Untracked:  analysis/EvaleQTLs.Rmd
        Untracked:  analysis/YL_QTL_test.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  analysis/verifybam_dubs.Rmd
        Untracked:  code/PeaksToCoverPerReads.py
        Untracked:  code/strober_pc_pve_heatmap_func.R
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ApaQTLs/
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/DistTXN2Peak_genelocAnno/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/LianoglouLCL/
        Untracked:  data/LocusZoom/
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeakCounts/
        Untracked:  data/PeakCounts_noMP_5perc/
        Untracked:  data/PeakCounts_noMP_genelocanno/
        Untracked:  data/PeakUsage/
        Untracked:  data/PeakUsage_noMP/
        Untracked:  data/PeakUsage_noMP_GeneLocAnno/
        Untracked:  data/PeaksUsed/
        Untracked:  data/PeaksUsed_noMP_5percCov/
        Untracked:  data/RNAkalisto/
        Untracked:  data/RefSeq_annotations/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/UnderstandPeaksQC/
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/YL_QTL_test/
        Untracked:  data/apaExamp/
        Untracked:  data/apaQTL_examp_noMP/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_GeneLocAnno/
        Untracked:  data/diff_iso_proc/
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/example_gene_peakQuant/
        Untracked:  data/explainProtVar/
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/molPheno_noMP/
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/nuc_10up/
        Untracked:  data/other_qtls/
        Untracked:  data/pQTL_otherphen/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov/
        Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/perm_QTL_trans_filt/
        Untracked:  data/protAndAPAAndExplmRes.Rda
        Untracked:  data/protAndAPAlmRes.Rda
        Untracked:  data/protAndExpressionlmRes.Rda
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  data/threePrimeSeqMetaData.csv
        Untracked:  data/threePrimeSeqMetaData55Ind.txt
        Untracked:  data/threePrimeSeqMetaData55Ind.xlsx
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/CompareLianoglouData.Rmd
        Modified:   analysis/apaQTLoverlapGWAS.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explainpQTLs.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/flash2mash.Rmd
        Modified:   analysis/mispriming_approach.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlapMolQTL.opposite.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/peakQCPPlots.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   analysis/understandPeaks.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 6bac9f9 Briana Mittleman 2019-02-06 add distance plots for QC on APAqtls


I will use this to look at some metrics around the the QTLs from the pipeline for all 55 individuals. In this analysis I found 363 qtls in the total fraction and 623 in the nuclear.

library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ───────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
totQTLs=read.table("../data/perm_QTL_GeneLocAnno_noMP_5percov/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Total.fixed.pheno_5perc_permResBH.txt", stringsAsFactors = F, header=T)%>% filter(-log10(bh)>=1)

write.table(totQTLs,"../data/ApaQTLs/TotalapaQTLs.GeneLocAnno.noMP.5perc.10FDR.txt", row.names = F, col.names = F, quote = F)

nucQTLs=read.table("../data/perm_QTL_GeneLocAnno_noMP_5percov/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Nuclear.fixed.pheno_5perc_permResBH.txt", stringsAsFactors = F, header=T)%>% filter(-log10(bh)>=1)

write.table(nucQTLs,"../data/ApaQTLs/NuclearapaQTLs.GeneLocAnno.noMP.5perc.10FDR.txt", row.names = F, col.names = F, quote = F)

Distance to end of PAS

I want to look at the distance between the QTL snp and the end of a peak. For a positive strand gene this is the end of the peak, for a - strand gene this is the start position of the peak. The peak strand here is opposite of the strand the gene is on.

I will make a python script that will take make the distance file for both the total and nucelar.

I copied these files to /project2/gilad/briana/threeprimeseq/data/ApaQTLs. I will put the QC files here as well.

getDistPeakEnd2QTL.py

#usage getDistPeakEnd2QTL.py "Total" or getDistPeakEnd2QTL.py "Nuclear"


def main(inFile, outFile):
   iFile=open(inFile, "r")
   oFile=open(outFile, "w")  
   oFile.write("PeakID\tPeakEnd\tGene\tGeneStrand\tSNP_chr\tSNP_loc\tEffectSize\tBH\tDistance\n")
   for ln in iFile:
      pid= ln.split()[0]
      peakStrand=pid.split(":")[3].split("_")[1]
      if peakStrand=="+":
          strand = "-"
          end = int(pid.split(":")[1])
      else: 
          strand = "+"
          end = int(pid.split(":")[2])
      gene=pid.split(":")[3].split("_")[0]
      peak=pid.split(":")[3].split("_")[2]
      SNP_Chr=ln.split()[5].split(":")[0]
      SNP_loc=int(ln.split()[5].split(":")[1])
      effectSize=ln.split()[8]
      BH=ln.split()[11]
      Dist= end - SNP_loc
      oFile.write("%s\t%d\t%s\t%s\t%s\t%d\t%s\t%s\t%d\n"%(peak, end, gene, strand, SNP_Chr, SNP_loc, effectSize, BH, Dist))
   oFile.close()  
   
   
if __name__ == "__main__":
    import sys
    fraction = sys.argv[1]
    inFile = "/project2/gilad/briana/threeprimeseq/data/ApaQTLs/%sapaQTLs.GeneLocAnno.noMP.5perc.10FDR.txt"%(fraction)
    outFile = "/project2/gilad/briana/threeprimeseq/data/ApaQTLs/Distance2EndPeak.%s.apaQTLs.txt"%(fraction)
    main(inFile, outFile)

Plot for total:

TotDist=read.table("../data/ApaQTLs/Distance2EndPeak.Total.apaQTLs.txt", header=T) %>% mutate(Fraction="Total") %>% select(Fraction, Distance)
NucDist=read.table("../data/ApaQTLs/Distance2EndPeak.Nuclear.apaQTLs.txt", header=T)%>% mutate(Fraction="Nuclear") %>% select(Fraction, Distance)

BothDist=data.frame(rbind(TotDist, NucDist))
ggplot(BothDist, aes(x=Distance, by=Fraction, fill=Fraction))+geom_histogram(bins=70, alpha=.5) + scale_fill_manual(values=c("deepskyblue3","darkviolet")) + labs(title="Distance From apaQTL to End of Peak" )

Where are the SNP

I want to take all of the SNP locations see what region of the genome they are in. I can use the annotation in /project2/gilad/briana/genome_anotation_data/RefSeq_annotations/ncbiRefSeq_FormatedallAnnotation.sort.bed. I can do this with bedtools intersect if I make a bedfile for the QTLs.

Goal file: chr, loc -1, loc, peak:QTLgene, BH, geneStrand

I can get all of this information most easily from the distance file I made.

QTLfile2Bed.py

#usage QTLfile2Bed.py "Total" or QTLfile2Bed.py "Nuclear"


def main(inFile, outFile):
   iFile=open(inFile, "r")
   oFile=open(outFile, "w")  
   for num, ln in enumerate(iFile):
       if num > 0:
           peakID, peakend, gene, strand, chr, loc, effect, bh, dist = ln.split()
           start=int(loc) -1
           end= int(loc) 
           name= peakID + ":" + gene
           oFile.write("%s\t%d\t%d\t%s\t%s\t%s\n"%(chr, start, end, name, bh, strand))
   oFile.close()



if __name__ == "__main__":
    import sys
    fraction = sys.argv[1]
    inFile = "/project2/gilad/briana/threeprimeseq/data/ApaQTLs/Distance2EndPeak.%s.apaQTLs.txt"%(fraction)
    outFile = "/project2/gilad/briana/threeprimeseq/data/ApaQTLs/%s.apaQTLs.bed"%(fraction)
    main(inFile, outFile)

I will need to sort the output

sort -k1,1 -k2,2n /project2/gilad/briana/threeprimeseq/data/ApaQTLs/Total.apaQTLs.bed > /project2/gilad/briana/threeprimeseq/data/ApaQTLs/Total.apaQTLs.sort.bed

sort -k1,1 -k2,2n /project2/gilad/briana/threeprimeseq/data/ApaQTLs/Nuclear.apaQTLs.bed > /project2/gilad/briana/threeprimeseq/data/ApaQTLs/Nuclear.apaQTLs.sort.bed

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2  forcats_0.3.0   stringr_1.3.1   dplyr_0.7.6    
 [5] purrr_0.2.5     readr_1.1.1     tidyr_0.8.1     tibble_1.4.2   
 [9] ggplot2_3.0.0   tidyverse_1.2.1 workflowr_1.1.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  haven_1.1.2       lattice_0.20-35  
 [4] colorspace_1.3-2  htmltools_0.3.6   yaml_2.2.0       
 [7] rlang_0.2.2       R.oo_1.22.0       pillar_1.3.0     
[10] glue_1.3.0        withr_2.1.2       R.utils_2.7.0    
[13] modelr_0.1.2      readxl_1.1.0      bindr_0.1.1      
[16] plyr_1.8.4        munsell_0.5.0     gtable_0.2.0     
[19] cellranger_1.1.0  rvest_0.3.2       R.methodsS3_1.7.1
[22] evaluate_0.11     labeling_0.3      knitr_1.20       
[25] broom_0.5.0       Rcpp_0.12.19      scales_1.0.0     
[28] backports_1.1.2   jsonlite_1.5      hms_0.4.2        
[31] digest_0.6.17     stringi_1.2.4     grid_3.5.1       
[34] rprojroot_1.3-2   cli_1.0.1         tools_3.5.1      
[37] magrittr_1.5      lazyeval_0.2.1    crayon_1.3.4     
[40] whisker_0.3-2     pkgconfig_2.0.2   xml2_1.2.0       
[43] lubridate_1.7.4   assertthat_0.2.0  rmarkdown_1.10   
[46] httr_1.3.1        rstudioapi_0.8    R6_2.3.0         
[49] nlme_3.1-137      git2r_0.23.0      compiler_3.5.1   



This reproducible R Markdown analysis was created with workflowr 1.1.1