<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />


<meta name="author" content="Briana Mittleman" />

<meta name="date" content="2018-10-11" />

<title>Characterize Total ApaQTLs</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/journal.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-5.0.13/css/fa-svg-with-js.css" rel="stylesheet" />
<script src="site_libs/font-awesome-5.0.13/js/fontawesome-all.min.js"></script>
<script src="site_libs/font-awesome-5.0.13/js/fa-v4-shims.min.js"></script>

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
.html-widget {
  margin-bottom: 20px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">Three Prime Sequencing in Human LCLs</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
<li>
  <a href="license.html">License</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/brimittleman/threeprimeseq">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

<!-- Add a small amount of space between sections. -->
<style type="text/css">
div.section {
  padding-top: 12px;
}
</style>

<div class="fluid-row" id="header">



<h1 class="title toc-ignore">Characterize Total ApaQTLs</h1>
<h4 class="author"><em>Briana Mittleman</em></h4>
<h4 class="date"><em>10/11/2018</em></h4>

</div>


<p><strong>Last updated:</strong> 2018-10-24</p>
<strong>workflowr checks:</strong> <small>(Click a bullet for more information)</small>
<ul>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>R Markdown file:</strong> up-to-date </summary></p>
<p>Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Environment:</strong> empty </summary></p>
<p>Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Seed:</strong> <code>set.seed(12345)</code> </summary></p>
<p>The command <code>set.seed(12345)</code> was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Session information:</strong> recorded </summary></p>
<p>Great job! Recording the operating system, R version, and package versions is critical for reproducibility.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Repository version:</strong> <a href="https://github.com/brimittleman/threeprimeseq/tree/00b1020c35e7fd99f72e33159fb83aa93ac79d4e" target="_blank">00b1020</a> </summary></p>
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated. <br><br> Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use <code>wflow_publish</code> or <code>wflow_git_commit</code>). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
<pre><code>
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/genometrack_figs.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeaksUsed/
    Untracked:  data/RNAkalisto/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/apaExamp/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_trans/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/other_qtls/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf

Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/39indQC.Rmd
    Modified:   analysis/PeakToGeneAssignment.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   code/Snakefile

</code></pre>
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. </details>
</li>
</ul>
<details> <summary> <small><strong>Expand here to see past versions:</strong></small> </summary>
<ul>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
File
</th>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
<th style="text-align:left;">
Message
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/00b1020c35e7fd99f72e33159fb83aa93ac79d4e/analysis/characterizeTotalApaQtls.Rmd" target="_blank">00b1020</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-24
</td>
<td style="text-align:left;">
naive enrichment
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/brimittleman/threeprimeseq/cb92826c3ea92004611fca520339eca1a340dfa4/docs/characterizeTotalApaQtls.html" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/59d9b4a65485bad2cb17c08be92e621641e779f6/analysis/characterizeTotalApaQtls.Rmd" target="_blank">59d9b4a</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
<td style="text-align:left;">
add chromHMM enrichment Total
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/brimittleman/threeprimeseq/12db557d5cefb669743ce772e87469f4fafb16b9/docs/characterizeTotalApaQtls.html" target="_blank">12db557</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/brimittleman/threeprimeseq/d7106c9b421c7ed65f9122dcb0969e1368d9ebb6/docs/characterizeTotalApaQtls.html" target="_blank">d7106c9</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-15
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/fb433ecf5eb591488b513c406f1c61e470bc87a4/analysis/characterizeTotalApaQtls.Rmd" target="_blank">fb433ec</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-15
</td>
<td style="text-align:left;">
make bed with sig snps
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/brimittleman/threeprimeseq/2f4b0831a662261df5e07f407d6753865631001b/docs/characterizeTotalApaQtls.html" target="_blank">2f4b083</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/467b7a2cb69f07c8308a47e80d564e6f7454a8f1/analysis/characterizeTotalApaQtls.Rmd" target="_blank">467b7a2</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
<td style="text-align:left;">
process HMM annoatiotn
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/brimittleman/threeprimeseq/bb6c0de4680784a88af130d761b6a68e683421dd/docs/characterizeTotalApaQtls.html" target="_blank">bb6c0de</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/d889cd4299f4e31346f4bc3569ea4930928a778c/analysis/characterizeTotalApaQtls.Rmd" target="_blank">d889cd4</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
<td style="text-align:left;">
add QTL sig by peak score plot
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/brimittleman/threeprimeseq/f7711104a0967d1f340be88f55e66e9116019c60/docs/characterizeTotalApaQtls.html" target="_blank">f771110</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/477c3f2aec710109a86ccb5c06327e1ca0df3366/analysis/characterizeTotalApaQtls.Rmd" target="_blank">477c3f2</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
<td style="text-align:left;">
add mean exp and var plots
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/brimittleman/threeprimeseq/eb02fbc3fdca9d239eeba2bac84bd1a4d20dc434/docs/characterizeTotalApaQtls.html" target="_blank">eb02fbc</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/f819c8e3a4ef75111646f1ca1e8343711c4133f3/analysis/characterizeTotalApaQtls.Rmd" target="_blank">f819c8e</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
<td style="text-align:left;">
add distance metric analsis total apaQTL
</td>
</tr>
</tbody>
</table>
</ul>
<p></details></p>
<hr />
<p>This analysis will be used to characterize the total ApaQTLs. I will run the analysis on the total APAqtls in this analysis and will then run a similar analysis on the nuclear APAqtls in another analysis. I would like to study:</p>
<ul>
<li>Distance metrics:
<ul>
<li>distance from snp to TSS of gene<br />
</li>
<li>Distance from snp to peak</li>
</ul></li>
<li>Expression metrics:
<ul>
<li>expression of genes with significant QTLs vs other genes (by rna seq)</li>
<li>expression of genes with significant QTLs vs other genes (peak coverage)</li>
</ul></li>
<li>Chrom HMM metrics:
<ul>
<li>look at the chrom HMM interval for the significant QTLs</li>
</ul></li>
</ul>
<div id="upload-libraries-and-data" class="section level2">
<h2>Upload Libraries and Data:</h2>
<p>Library</p>
<pre class="r"><code>library(workflowr)</code></pre>
<pre><code>This is workflowr version 1.1.1
Run ?workflowr for help getting started</code></pre>
<pre class="r"><code>library(reshape2)
library(tidyverse)</code></pre>
<pre><code>── Attaching packages ─────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──</code></pre>
<pre><code>✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0</code></pre>
<pre><code>── Conflicts ────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()</code></pre>
<pre class="r"><code>library(VennDiagram)</code></pre>
<pre><code>Loading required package: grid</code></pre>
<pre><code>Loading required package: futile.logger</code></pre>
<pre class="r"><code>library(data.table)</code></pre>
<pre><code>
Attaching package: &#39;data.table&#39;</code></pre>
<pre><code>The following objects are masked from &#39;package:dplyr&#39;:

    between, first, last</code></pre>
<pre><code>The following object is masked from &#39;package:purrr&#39;:

    transpose</code></pre>
<pre><code>The following objects are masked from &#39;package:reshape2&#39;:

    dcast, melt</code></pre>
<pre class="r"><code>library(cowplot)</code></pre>
<pre><code>
Attaching package: &#39;cowplot&#39;</code></pre>
<pre><code>The following object is masked from &#39;package:ggplot2&#39;:

    ggsave</code></pre>
<p>Permuted Results from APA:</p>
<p>I will add a column to this dataframe that will tell me if the association is significant at 10% FDR. This will help me plot based on significance later in the analysis. I am also going to seperate the PID into relevant pieces.</p>
<pre class="r"><code>totalAPA=read.table(&quot;../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt&quot;, stringsAsFactors = F, header=T)  %&gt;% mutate(sig=ifelse(-log10(bh)&gt;=1, 1,0 )) %&gt;%  separate(pid, sep = &quot;:&quot;, into=c(&quot;chr&quot;, &quot;start&quot;, &quot;end&quot;, &quot;id&quot;)) %&gt;% separate(id, sep = &quot;_&quot;, into=c(&quot;gene&quot;, &quot;strand&quot;, &quot;peak&quot;))

totalAPA$sig=as.factor(totalAPA$sig)


print(names(totalAPA))</code></pre>
<pre><code> [1] &quot;chr&quot;    &quot;start&quot;  &quot;end&quot;    &quot;gene&quot;   &quot;strand&quot; &quot;peak&quot;   &quot;nvar&quot;  
 [8] &quot;shape1&quot; &quot;shape2&quot; &quot;dummy&quot;  &quot;sid&quot;    &quot;dist&quot;   &quot;npval&quot;  &quot;slope&quot; 
[15] &quot;ppval&quot;  &quot;bpval&quot;  &quot;bh&quot;     &quot;sig&quot;   </code></pre>
</div>
<div id="distance-metrics" class="section level2">
<h2>Distance Metrics</h2>
<div id="distance-from-snp-to-tss" class="section level3">
<h3>Distance from snp to TSS</h3>
<p>I ran the QTL analysis based on the starting position of the gene.</p>
<pre class="r"><code>ggplot(totalAPA, aes(x=dist, fill=sig, by=sig)) + geom_density(alpha=.5)  +  labs(title=&quot;Distance from snp to TSS&quot;, x=&quot;Base Pairs&quot;) + scale_fill_discrete(guide = guide_legend(title = &quot;Significant QTL&quot;)) + scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<pre><code>Scale for &#39;fill&#39; is already present. Adding another scale for &#39;fill&#39;,
which will replace the existing scale.</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-3-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-3-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-3-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/eb02fbc3fdca9d239eeba2bac84bd1a4d20dc434/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-3-1.png" target="_blank">eb02fbc</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>It looks like most of the signifcant values are 100,000 bases. This makes sense. I can zoom in on this portion.</p>
<pre class="r"><code>ggplot(totalAPA, aes(x=dist, fill=sig, by=sig)) + geom_density(alpha=.5)+coord_cartesian(xlim = c(-150000, 150000)) + scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-4-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-4-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-4-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/eb02fbc3fdca9d239eeba2bac84bd1a4d20dc434/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-4-1.png" target="_blank">eb02fbc</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
</tr>
</tbody>
</table>
<p></details></p>
</div>
<div id="distance-from-snp-to-peak" class="section level3">
<h3>Distance from snp to peak</h3>
<p>To perform this analysis I need to recover the peak positions.</p>
<p>The peak file I used for the QTL analysis is: /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed.bed</p>
<pre class="r"><code>peaks=read.table(&quot;../data/PeaksUsed/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed.bed&quot;, col.names = c(&quot;chr&quot;, &quot;peakStart&quot;, &quot;peakEnd&quot;, &quot;PeakNum&quot;, &quot;PeakScore&quot;, &quot;Strand&quot;, &quot;Gene&quot;)) %&gt;% mutate(peak=paste(&quot;peak&quot;, PeakNum,sep=&quot;&quot;)) %&gt;% mutate(PeakCenter=peakStart+ (peakEnd- peakStart))</code></pre>
<p>I want to join the peak start to the totalAPA file but the peak column. I will then create a column that is snppos-peakcenter.</p>
<pre class="r"><code>totalAPA_peakdist= totalAPA %&gt;%  inner_join(peaks, by=&quot;peak&quot;) %&gt;%  separate(sid, into=c(&quot;snpCHR&quot;, &quot;snpLOC&quot;), by=&quot;:&quot;)
totalAPA_peakdist$snpLOC= as.numeric(totalAPA_peakdist$snpLOC)

totalAPA_peakdist= totalAPA_peakdist %&gt;%  mutate(DisttoPeak= snpLOC-PeakCenter)</code></pre>
<p>Plot this by significance.</p>
<pre class="r"><code>ggplot(totalAPA_peakdist, aes(x=DisttoPeak, fill=sig, by=sig)) + geom_density(alpha=.5)  +  labs(title=&quot;Distance from snp peak&quot;, x=&quot;log10 absolute value Distance to Peak&quot;) + scale_fill_discrete(guide = guide_legend(title = &quot;Significant QTL&quot;)) + scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<pre><code>Scale for &#39;fill&#39; is already present. Adding another scale for &#39;fill&#39;,
which will replace the existing scale.</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-7-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-7-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-7-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/eb02fbc3fdca9d239eeba2bac84bd1a4d20dc434/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-7-1.png" target="_blank">eb02fbc</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>Look at the summarys based on significance:</p>
<pre class="r"><code>totalAPA_peakdist_sig=totalAPA_peakdist %&gt;% filter(sig==1)
totalAPA_peakdist_notsig=totalAPA_peakdist %&gt;% filter(sig==0)


summary(totalAPA_peakdist_sig$DisttoPeak)</code></pre>
<pre><code>     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-634474.0  -26505.0   -3325.5  -23883.8     492.5  460051.0 </code></pre>
<pre class="r"><code>summary(totalAPA_peakdist_notsig$DisttoPeak)</code></pre>
<pre><code>     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-70147526   -269853     -1269     -6620    266370   5433999 </code></pre>
<pre class="r"><code>ggplot(totalAPA_peakdist, aes(y=DisttoPeak,x=sig, fill=sig, by=sig)) + geom_boxplot()  + scale_fill_discrete(guide = guide_legend(title = &quot;Significant QTL&quot;)) + scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<pre><code>Scale for &#39;fill&#39; is already present. Adding another scale for &#39;fill&#39;,
which will replace the existing scale.</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-9-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-9-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-9-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/eb02fbc3fdca9d239eeba2bac84bd1a4d20dc434/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-9-1.png" target="_blank">eb02fbc</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>Look like there are some outliers that are really far. I will remove variants greater than 1*10^6th away</p>
<pre class="r"><code>totalAPA_peakdist_filt=totalAPA_peakdist %&gt;% filter(abs(DisttoPeak) &lt;= 1*(10^6))

ggplot(totalAPA_peakdist_filt, aes(y=DisttoPeak,x=sig, fill=sig, by=sig)) + geom_boxplot()  + scale_fill_discrete(guide = guide_legend(title = &quot;Significant QTL&quot;)) + facet_grid(.~strand) + scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<pre><code>Scale for &#39;fill&#39; is already present. Adding another scale for &#39;fill&#39;,
which will replace the existing scale.</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-10-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-10-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-10-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/eb02fbc3fdca9d239eeba2bac84bd1a4d20dc434/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-10-1.png" target="_blank">eb02fbc</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
</tr>
</tbody>
</table>
<p></details></p>
<pre class="r"><code>ggplot(totalAPA_peakdist_filt, aes(x=DisttoPeak, fill=sig, by=sig)) + geom_density()  + scale_fill_discrete(guide = guide_legend(title = &quot;Significant QTL&quot;)) + facet_grid(.~strand)+ scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<pre><code>Scale for &#39;fill&#39; is already present. Adding another scale for &#39;fill&#39;,
which will replace the existing scale.</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-10-2.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-10-2.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-10-2.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/eb02fbc3fdca9d239eeba2bac84bd1a4d20dc434/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-10-2.png" target="_blank">eb02fbc</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>This gives a similar distribution.</p>
<p>I did snp - peak. This means if the peak is downstream of the snp on the positive strand the number will be negative.</p>
<p>In this case the peak is downstream of the snp.</p>
<pre class="r"><code>totalAPA_peakdist %&gt;% filter(sig==1) %&gt;% filter(strand==&quot;+&quot;) %&gt;%  filter(DisttoPeak &lt; 0) %&gt;% nrow()</code></pre>
<pre><code>[1] 45</code></pre>
<pre class="r"><code>totalAPA_peakdist %&gt;% filter(sig==1) %&gt;% filter(strand==&quot;-&quot;) %&gt;%  filter(DisttoPeak &gt; 0) %&gt;% nrow()</code></pre>
<pre><code>[1] 16</code></pre>
<p>Peak is upstream of the snp.</p>
<pre class="r"><code>totalAPA_peakdist %&gt;% filter(sig==1) %&gt;% filter(strand==&quot;+&quot;) %&gt;%  filter(DisttoPeak &gt; 0) %&gt;% nrow()</code></pre>
<pre><code>[1] 17</code></pre>
<pre class="r"><code>totalAPA_peakdist %&gt;% filter(sig==1) %&gt;% filter(strand==&quot;-&quot;) %&gt;%  filter(DisttoPeak &lt; 0) %&gt;% nrow()</code></pre>
<pre><code>[1] 40</code></pre>
<p>This means there is about 50/50 distribution around the peak start.</p>
<p>I am going to plot a violin plot for just the significant ones.</p>
<pre class="r"><code>ggplot(totalAPA_peakdist_sig, aes(x=DisttoPeak)) + geom_density()</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-13-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-13-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/eb02fbc3fdca9d239eeba2bac84bd1a4d20dc434/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-13-1.png" target="_blank">eb02fbc</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-11
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>Within 1000 bases of the peak center.</p>
<pre class="r"><code>totalAPA_peakdist_sig %&gt;% filter(abs(DisttoPeak) &lt; 1000) %&gt;% nrow()</code></pre>
<pre><code>[1] 29</code></pre>
<pre class="r"><code>totalAPA_peakdist_sig %&gt;% filter(abs(DisttoPeak) &lt; 10000) %&gt;% nrow()</code></pre>
<pre><code>[1] 57</code></pre>
<pre class="r"><code>totalAPA_peakdist_sig %&gt;% filter(abs(DisttoPeak) &lt; 100000) %&gt;% nrow()</code></pre>
<pre><code>[1] 98</code></pre>
<p>29 QTLs are within 1000 bp of the peak center, 57 within 10,000bp and 98 within 100,000bp</p>
</div>
</div>
<div id="expression-metrics" class="section level2">
<h2>Expression metrics</h2>
<p>Next I want to pull in the expression values and compare the expression of genes with a total APA qtl in comparison to genes without one. I will also need to pull in the gene names file to add in the gene names from the ensg ID.</p>
<p>Remove the # from the file.</p>
<pre class="r"><code>expression=read.table(&quot;../data/mol_pheno/fastqtl_qqnorm_RNAseq_phase2.fixed.noChr.txt&quot;, header = T,stringsAsFactors = F)
expression_mean=apply(expression[,5:73],1,mean,na.rm=TRUE)
expression_var=apply(expression[,5:73],1,var,na.rm=TRUE)
expression$exp.mean= expression_mean 
expression$exp.var=expression_var
expression= expression %&gt;% separate(ID, into=c(&quot;Gene.stable.ID&quot;, &quot;ver&quot;), sep =&quot;[.]&quot;)</code></pre>
<p>Now I can pull in the names and join the dataframes.</p>
<pre class="r"><code>geneNames=read.table(&quot;../data/ensemble_to_genename.txt&quot;, sep=&quot;\t&quot;, header=T,stringsAsFactors = F) 



expression=expression %&gt;% inner_join(geneNames,by=&quot;Gene.stable.ID&quot;) 

expression=expression %&gt;% select(Chr, start, end, Gene.name, exp.mean,exp.var) %&gt;%  rename(&quot;gene&quot;=Gene.name)</code></pre>
<p>Now I can join this with the qtls.</p>
<pre class="r"><code>totalAPA_wExp=totalAPA %&gt;% inner_join(expression, by=&quot;gene&quot;) </code></pre>
<pre class="r"><code>ggplot(totalAPA_wExp, aes(x=exp.mean, by=sig, fill=sig)) + geom_density(alpha=.3)+ scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-18-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-18-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-18-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/f7711104a0967d1f340be88f55e66e9116019c60/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-18-1.png" target="_blank">f771110</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>This is not exactly what I want because there are multiple peaks in a gene so some genes are plotted multiple times. I want to group the QTLs by gene and see if there is 1 sig QTL for that gene.</p>
<pre class="r"><code>gene_wQTL= totalAPA_wExp %&gt;% group_by(gene) %&gt;% summarise(sig_gene=sum(as.numeric(as.character(sig)))) %&gt;% ungroup() %&gt;% inner_join(expression, by=&quot;gene&quot;) %&gt;% mutate(sigGeneFactor=ifelse(sig_gene&gt;=1, 1,0))

gene_wQTL$sigGeneFactor= as.factor(as.character(gene_wQTL$sigGeneFactor))</code></pre>
<p>Therea are 92 genes in this set with a QTL.</p>
<pre class="r"><code>ggplot(gene_wQTL, aes(x=exp.mean, by=sigGeneFactor, fill=sigGeneFactor)) + geom_density(alpha=.3) +labs(title=&quot;Mean in RNA expression by genes with significant QTL&quot;, x=&quot;Mean in normalized expression&quot;) + scale_fill_discrete(guide = guide_legend(title = &quot;Significant QTL&quot;))+ scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<pre><code>Scale for &#39;fill&#39; is already present. Adding another scale for &#39;fill&#39;,
which will replace the existing scale.</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-20-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-20-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-20-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/f7711104a0967d1f340be88f55e66e9116019c60/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-20-1.png" target="_blank">f771110</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>I can do a similar analysis but test the variance in the gene expression.</p>
<pre class="r"><code>ggplot(gene_wQTL, aes(x=exp.var, by=sigGeneFactor, fill=sigGeneFactor)) + geom_density(alpha=.3) + labs(title=&quot;Varriance in RNA expression by genes with significant QTL&quot;, x=&quot;Variance in normalized expression&quot;) + scale_fill_discrete(guide = guide_legend(title = &quot;Significant QTL&quot;))+ scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<pre><code>Scale for &#39;fill&#39; is already present. Adding another scale for &#39;fill&#39;,
which will replace the existing scale.</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-21-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-21-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-21-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/f7711104a0967d1f340be88f55e66e9116019c60/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-21-1.png" target="_blank">f771110</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div id="peak-coverage-for-qtls" class="section level3">
<h3>Peak coverage for QTLs</h3>
<p>I can also look at peak coverage for peaks with QLTs and those without. I will first look at this on peak level then mvoe to gene level. The peak scores come from the coverage in the peaks.</p>
<p>The totalAPA_peakdist data frame has the information I need for this.</p>
<pre class="r"><code>ggplot(totalAPA_peakdist, aes(x=PeakScore,fill=sig,by=sig)) + geom_density(alpha=.5)+ scale_x_log10() + labs(title=&quot;Peak score by significance&quot;) + scale_fill_brewer(palette=&quot;Paired&quot;)</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-22-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-22-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-22-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/bb6c0de4680784a88af130d761b6a68e683421dd/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-22-1.png" target="_blank">bb6c0de</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-12
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>This is expected. It makes sense that we have more power to detect qtls in higher expressed peaks. This leads me to believe that filtering out low peaks may add power but will not mitigate the effect.</p>
</div>
</div>
<div id="where-are-the-snps" class="section level2">
<h2>Where are the snps:</h2>
<p>Download the GM12878 chromHMM annotation. I downleaded this from uscs and put it in:</p>
<ul>
<li>/Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/GM12878.chromHMM.txt<br />
</li>
<li>/project2/gilad/briana/genome_anotation_data/GM12878.chromHMM.txt</li>
</ul>
<p>Column:</p>
<ul>
<li>bin<br />
</li>
<li>chrom<br />
</li>
<li>chromstart<br />
</li>
<li>chromend<br />
</li>
<li>name<br />
</li>
<li>score<br />
</li>
<li>strand<br />
</li>
<li>thich start<br />
</li>
<li>thick end<br />
</li>
<li>item rgb</li>
</ul>
<p>I can make this a bedfile to use a bedtools pipeline:</p>
<ul>
<li><p>chrom (nochr)</p></li>
<li><p>start</p></li>
<li><p>end</p></li>
<li><p>name (txn hetero ect)</p></li>
<li><p>score</p></li>
<li><p>strand</p></li>
</ul>
<pre class="bash"><code>fout = open(&quot;/project2/gilad/briana/genome_anotation_data/GM12878.chromHMM.bed&quot;,&#39;w&#39;)
for ln in open(&quot;/project2/gilad/briana/genome_anotation_data/GM12878.chromHMM.txt&quot;, &quot;r&quot;):
    bin, chrom, start, end, name, score, strand, thSt, thE, rgb = ln.split()
    chrom=chrom[3:]
    name=name.split(&quot;_&quot;)[0]
    fout.write(&quot;%s\t%s\t%s\t%s\t%s\t%s\n&quot;%(chrom, start, end, name, score, strand))
fout.close()</code></pre>
<pre class="bash"><code>fout = open(&quot;/Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/GM12878.chromHMM.bed&quot;,&#39;w&#39;)
for ln in open(&quot;/Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/GM12878.chromHMM.txt&quot;, &quot;r&quot;):
    bin, chrom, start, end, name, score, strand, thSt, thE, rgb = ln.split()
    chrom=chrom[3:]
    fout.write(&quot;%s\t%s\t%s\t%s\t%s\t%s\n&quot;%(chrom, start, end, name, score, strand))
fout.close()</code></pre>
<p>I also need to create a significant QTL snp bedfile for the total qtls. Bed files are 0 bases meaning I want the end to be the position I care about.</p>
<p>chrom, start (pos -1), end (pos), name, score (bh), strand</p>
<p>I can do this in python using the /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt. I will make the script general to use on the total or nuclear file.</p>
<p>QTLres2SigSNPbed.py</p>
<pre class="bash"><code>
def main(inFile, outFile):
    fout=open(outFile, &quot;w&quot;)
    fin=open(inFile, &quot;r&quot;)
    for num, ln in enumerate(fin):
      if num &gt;= 1:
          pid, nvar, shape1, shape2, dummy, sid, dist, npval, slope, ppval, bpval, bh = ln.split()
          chrom, pos= sid.split(&quot;:&quot;)
          name=sid
          start= int(pos)-1
          end=int(pos)
          strand=pid.split(&quot;:&quot;)[3].split(&quot;_&quot;)[1]
          bh=float(bh)
          if bh &lt;= .1: 
              fout.write(&quot;%s\t%s\t%s\t%s\t%s\t%s\n&quot;%(chrom, start, end, name, bh, strand))
    fout.close()

if __name__ == &quot;__main__&quot;:
    import sys
    fraction=sys.argv[1]
    inFile = &quot;/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_%s_transcript_permResBH.txt&quot;%(fraction)
    outFile= &quot;/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_%s.bed&quot;%(fraction)
    main(inFile,outFile) </code></pre>
<p>I am going to try to use pybedtools instead for bedtools for this analysis. First I can add it to my conda environment.</p>
<p>Remove header from HMM</p>
<pre class="bash"><code>import pybedtools 

sigNuc=pybedtools.BedTool(&#39;/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Nuclear.sort.bed&#39;) 

sigTot=pybedtools.BedTool(&#39;/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Total.sort.bed&#39;)

hmm=pybedtools.BedTool(&quot;/project2/gilad/briana/genome_anotation_data/GM12878.chromHMM.sort.bed&quot;)

#map hmm to snps  
Tot_overlapHMM=sigTot.map(hmm, c=4)

Nuc_overlapHMM=sigNuc.map(hmm,c=4)

#save results  

Tot_overlapHMM.saveas(&quot;/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/Tot_overlapHMM.bed&quot;)

Nuc_overlapHMM.saveas(&quot;/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/Nuc_overlapHMM.bed&quot;)</code></pre>
<p>I want to make a file that has all of the numbers for the chromatin regions for downstream analysis.</p>
<pre class="bash"><code>cut -f5 GM12878.chromHMM.txt | sort | uniq &gt; chromHMM_regions.txt</code></pre>
<p>I then manually seperate the numbers from the name with a tab and remove the name line.</p>
<p>Evaluate results for total:</p>
<pre class="r"><code>chromHmm=read.table(&quot;../data/ChromHmmOverlap/chromHMM_regions.txt&quot;, col.names = c(&quot;number&quot;, &quot;name&quot;), stringsAsFactors = F)

TotalOverlapHMM=read.table(&quot;../data/ChromHmmOverlap/Tot_overlapHMM.bed&quot;, col.names=c(&quot;chrom&quot;, &quot;start&quot;, &quot;end&quot;, &quot;sid&quot;, &quot;significance&quot;, &quot;strand&quot;, &quot;number&quot;))

TotalOverlapHMM_names=TotalOverlapHMM %&gt;% left_join(chromHmm, by=&quot;number&quot;)</code></pre>
<pre class="r"><code>ggplot(TotalOverlapHMM_names, aes(x=name)) + geom_bar() + labs(title=&quot;ChromHMM labels for Total APAQtls&quot; , y=&quot;Number of SNPs&quot;, x=&quot;Region&quot;)+theme(axis.text.x = element_text(angle = 90, hjust = 1))</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-29-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-29-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-29-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>This is the count but I want enrichemnt. I need to randomly choose 188 snps from the ones I tested (nominal res) and get the same inforamtion on where they are.</p>
<pre class="bash"><code>shuf -n 118 /project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_NomRes.txt &gt; /project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_trans/randomSnps/ApaQTL_total_Random118.txt
</code></pre>
<p>Now I need to make these into the snp bed format.</p>
<p>QTLNOMres2SigSNPbed.py give this * total or nuclear<br />
* number of snps</p>
<pre class="bash"><code>
def main(inFile, outFile):
    fout=open(outFile, &quot;w&quot;)
    fin=open(inFile, &quot;r&quot;)
    for ln in fin:
          pid, sid, dist, pval, slope = ln.split()
          chrom, pos= sid.split(&quot;:&quot;)
          name=sid
          start= int(pos)-1
          end=int(pos)
          strand=pid.split(&quot;:&quot;)[3].split(&quot;_&quot;)[1]
          pval=float(pval)
          fout.write(&quot;%s\t%s\t%s\t%s\t%s\t%s\n&quot;%(chrom, start, end, name, pval, strand))
    fout.close()

if __name__ == &quot;__main__&quot;:
    import sys
    fraction=sys.argv[1]
    number=sys.argv[2]
    inFile = &quot;/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_trans/randomSnps/ApaQTL_%s_Random%s.txt&quot;%(fraction,number)
    outFile= &quot;/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_trans/randomSnps/ApaQTL_%s_Random%s.bed&quot;%(fraction,number)
    main(inFile,outFile) </code></pre>
<p>Sort output</p>
<pre class="bash"><code>import pybedtools 

RANDtot=pybedtools.BedTool(&#39;/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_trans/randomSnps/ApaQTL_total_Random118.sort.bed&#39;) 



hmm=pybedtools.BedTool(&quot;/project2/gilad/briana/genome_anotation_data/GM12878.chromHMM.sort.bed&quot;)

#map hmm to snps  
TotRnad_overlapHMM=RANDtot.map(hmm, c=4)


#save results  

TotRnad_overlapHMM.saveas(&quot;/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_trans/randomSnps/ApaQTL_total_Random_overlapHMM.bed&quot;)
</code></pre>
<pre class="r"><code>TotalRandOverlapHMM=read.table(&quot;../data/ChromHmmOverlap/ApaQTL_total_Random_overlapHMM.bed&quot;, col.names=c(&quot;chrom&quot;, &quot;start&quot;, &quot;end&quot;, &quot;sid&quot;, &quot;significance&quot;, &quot;strand&quot;, &quot;number&quot;))

TotalRandOverlapHMM_names=TotalRandOverlapHMM %&gt;% left_join(chromHmm, by=&quot;number&quot;)</code></pre>
<pre class="r"><code>ggplot(TotalRandOverlapHMM_names, aes(x=name)) + geom_bar() + labs(title=&quot;ChromHMM labels for Total APAQtls (Random)&quot; , y=&quot;Number of SNPs&quot;, x=&quot;Region&quot;)+theme(axis.text.x = element_text(angle = 90, hjust = 1))</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-34-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-34-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-34-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
</tbody>
</table>
<p></details></p>
<p>To put this on the same plot I can count the number in each then plot them next to eachother.</p>
<pre class="r"><code>random_perChromHMM=TotalRandOverlapHMM_names %&gt;%  group_by(name) %&gt;% summarise(Random=n())
sig_perChromHMM= TotalOverlapHMM_names %&gt;%  group_by(name) %&gt;%  summarise(Total_QTLs=n())

perChrommHMM=random_perChromHMM %&gt;%  full_join(sig_perChromHMM, by=&quot;name&quot;, ) %&gt;% replace_na(list(Random=0,Total_QTLs=0))  

perChrommHMM_melt=melt(perChrommHMM, id.vars=&quot;name&quot;)
names(perChrommHMM_melt)=c(&quot;Region&quot;,&quot;Set&quot;, &quot;N_Snps&quot; )</code></pre>
<pre class="r"><code>chromenrichTotalplot=ggplot(perChrommHMM_melt, aes(x=Region, y=N_Snps, by=Set, fill=Set)) + geom_bar(position=&quot;dodge&quot;, stat=&quot;identity&quot;) +theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title=&quot;Enrichment of Total QTLs by chromatin region&quot;, y=&quot;Number of Snps&quot;, x=&quot;Chromatin Region&quot;) + scale_fill_brewer(palette=&quot;Paired&quot;)
chromenrichTotalplot</code></pre>
<p><img src="figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-36-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of unnamed-chunk-36-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/brimittleman/threeprimeseq/blob/cb92826c3ea92004611fca520339eca1a340dfa4/docs/figure/characterizeTotalApaQtls.Rmd/unnamed-chunk-36-1.png" target="_blank">cb92826</a>
</td>
<td style="text-align:left;">
Briana Mittleman
</td>
<td style="text-align:left;">
2018-10-23
</td>
</tr>
</tbody>
</table>
<p></details></p>
<pre class="r"><code>ggsave(&quot;../output/plots/ChromHmmEnrich_Total.png&quot;, chromenrichTotalplot)</code></pre>
<pre><code>Saving 7 x 5 in image</code></pre>
<p>I want to make a plot with the enrichment by fraction. I am first going to get an enrichemnt score for each bin naively by looking at the QTL-random in each category.</p>
<pre class="r"><code>perChrommHMM$Random= as.integer(perChrommHMM$Random)
perChrommHMM$Total_QTLs= as.integer(perChrommHMM$Total_QTLs)
perChrommHMM_enr=perChrommHMM %&gt;%  mutate(Total=Total_QTLs- Random)</code></pre>
<p>Write this file so I can put it in the nuclear analysis and compare between groups.</p>
<pre class="r"><code>write.table(perChrommHMM_enr, file=&quot;../data/ChromHmmOverlap/perChrommHMM_Total_enr.txt&quot;, quote=F, sep=&quot;\t&quot;, col.names = T, row.names = F)</code></pre>
</div>
<div id="session-information" class="section level2">
<h2>Session information</h2>
<pre class="r"><code>sessionInfo()</code></pre>
<pre><code>R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] bindrcpp_0.2.2      cowplot_0.9.3       data.table_1.11.8  
 [4] VennDiagram_1.6.20  futile.logger_1.4.3 forcats_0.3.0      
 [7] stringr_1.3.1       dplyr_0.7.6         purrr_0.2.5        
[10] readr_1.1.1         tidyr_0.8.1         tibble_1.4.2       
[13] ggplot2_3.0.0       tidyverse_1.2.1     reshape2_1.4.3     
[16] workflowr_1.1.1    

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4     haven_1.1.2          lattice_0.20-35     
 [4] colorspace_1.3-2     htmltools_0.3.6      yaml_2.2.0          
 [7] rlang_0.2.2          R.oo_1.22.0          pillar_1.3.0        
[10] glue_1.3.0           withr_2.1.2          R.utils_2.7.0       
[13] RColorBrewer_1.1-2   lambda.r_1.2.3       modelr_0.1.2        
[16] readxl_1.1.0         bindr_0.1.1          plyr_1.8.4          
[19] munsell_0.5.0        gtable_0.2.0         cellranger_1.1.0    
[22] rvest_0.3.2          R.methodsS3_1.7.1    evaluate_0.11       
[25] labeling_0.3         knitr_1.20           broom_0.5.0         
[28] Rcpp_0.12.19         formatR_1.5          backports_1.1.2     
[31] scales_1.0.0         jsonlite_1.5         hms_0.4.2           
[34] digest_0.6.17        stringi_1.2.4        rprojroot_1.3-2     
[37] cli_1.0.1            tools_3.5.1          magrittr_1.5        
[40] lazyeval_0.2.1       futile.options_1.0.1 crayon_1.3.4        
[43] whisker_0.3-2        pkgconfig_2.0.2      xml2_1.2.0          
[46] lubridate_1.7.4      assertthat_0.2.0     rmarkdown_1.10      
[49] httr_1.3.1           rstudioapi_0.8       R6_2.3.0            
[52] nlme_3.1-137         git2r_0.23.0         compiler_3.5.1      </code></pre>
</div>

<hr>
<p>
    
</p>
<hr>

<!-- To enable disqus, uncomment the section below and provide your disqus_shortname -->

<!-- disqus
  <div id="disqus_thread"></div>
    <script type="text/javascript">
        /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
        var disqus_shortname = 'rmarkdown'; // required: replace example with your forum shortname

        /* * * DON'T EDIT BELOW THIS LINE * * */
        (function() {
            var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
            dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
            (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
        })();
    </script>
    <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
    <a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
-->
<!-- Adjust MathJax settings so that all math formulae are shown using
TeX fonts only; see
http://docs.mathjax.org/en/latest/configuration.html.  This will make
the presentation more consistent at the cost of the webpage sometimes
taking slightly longer to load. Note that this only works because the
footer is added to webpages before the MathJax javascript. -->
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
</script>

<hr>
<p>
  This reproducible <a href="http://rmarkdown.rstudio.com">R Markdown</a>
  analysis was created with
  <a href="https://github.com/jdblischak/workflowr">workflowr</a> 1.1.1
</p>
<hr>


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>