<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="generator" content="pandoc" /> <meta name="author" content="Brina Mittleman" /> <meta name="date" content="2017-11-06" /> <title>Initial Data Exploration Netseq1</title> <script src="site_libs/jquery-1.11.3/jquery.min.js"></script> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" /> <script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script> <script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script> <script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script> <script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script> <link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" /> <script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script> <script src="site_libs/navigation-1.1/tabsets.js"></script> <link href="site_libs/highlightjs-1.1/textmate.css" rel="stylesheet" /> <script src="site_libs/highlightjs-1.1/highlight.js"></script> <link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" /> <style type="text/css">code{white-space: pre;}</style> <style type="text/css"> pre:not([class]) { background-color: white; } </style> <script type="text/javascript"> if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0); } </script> <style type="text/css"> h1 { font-size: 34px; } h1.title { font-size: 38px; } h2 { font-size: 30px; } h3 { font-size: 24px; } h4 { font-size: 18px; } h5 { font-size: 16px; } h6 { font-size: 12px; } .table th:not([align]) { text-align: left; } </style> </head> <body> <style type = "text/css"> .main-container { max-width: 940px; margin-left: auto; margin-right: auto; } code { color: inherit; background-color: rgba(0, 0, 0, 0.04); } img { max-width:100%; height: auto; } .tabbed-pane { padding-top: 12px; } button.code-folding-btn:focus { outline: none; } </style> <style type="text/css"> /* padding for bootstrap navbar */ body { padding-top: 51px; padding-bottom: 40px; } /* offset scroll position for anchor links (for fixed navbar) */ .section h1 { padding-top: 56px; margin-top: -56px; } .section h2 { padding-top: 56px; margin-top: -56px; } .section h3 { padding-top: 56px; margin-top: -56px; } .section h4 { padding-top: 56px; margin-top: -56px; } .section h5 { padding-top: 56px; margin-top: -56px; } .section h6 { padding-top: 56px; margin-top: -56px; } </style> <script> // manage active state of menu based on current page $(document).ready(function () { // active menu anchor href = window.location.pathname href = href.substr(href.lastIndexOf('/') + 1) if (href === "") href = "index.html"; var menuAnchor = $('a[href="' + href + '"]'); // mark it active menuAnchor.parent().addClass('active'); // if it's got a parent navbar menu mark it active as well menuAnchor.closest('li.dropdown').addClass('active'); }); </script> <div class="container-fluid main-container"> <!-- tabsets --> <script> $(document).ready(function () { window.buildTabsets("TOC"); }); </script> <!-- code folding --> <script> $(document).ready(function () { // move toc-ignore selectors from section div to header $('div.section.toc-ignore') .removeClass('toc-ignore') .children('h1,h2,h3,h4,h5').addClass('toc-ignore'); // establish options var options = { selectors: "h1,h2,h3", theme: "bootstrap3", context: '.toc-content', hashGenerator: function (text) { return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase(); }, ignoreSelector: ".toc-ignore", scrollTo: 0 }; options.showAndHide = true; options.smoothScroll = true; // tocify var toc = $("#TOC").tocify(options).data("toc-tocify"); }); </script> <style type="text/css"> #TOC { margin: 25px 0px 20px 0px; } @media (max-width: 768px) { #TOC { position: relative; width: 100%; } } .toc-content { padding-left: 30px; padding-right: 40px; } div.main-container { max-width: 1200px; } div.tocify { width: 20%; max-width: 260px; max-height: 85%; } @media (min-width: 768px) and (max-width: 991px) { div.tocify { width: 25%; } } @media (max-width: 767px) { div.tocify { width: 100%; max-width: none; } } .tocify ul, .tocify li { line-height: 20px; } .tocify-subheader .tocify-item { font-size: 0.90em; padding-left: 25px; text-indent: 0; } .tocify .list-group-item { border-radius: 0px; } </style> <!-- setup 3col/9col grid for toc_float and main content --> <div class="row-fluid"> <div class="col-xs-12 col-sm-4 col-md-3"> <div id="TOC" class="tocify"> </div> </div> <div class="toc-content col-xs-12 col-sm-8 col-md-9"> <div class="navbar navbar-default navbar-fixed-top" role="navigation"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar"> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="index.html">Net-seq</a> </div> <div id="navbar" class="navbar-collapse collapse"> <ul class="nav navbar-nav"> <li> <a href="index.html">Home</a> </li> <li> <a href="about.html">About</a> </li> <li> <a href="license.html">License</a> </li> </ul> <ul class="nav navbar-nav navbar-right"> <li> <a href="https://github.com/brimittleman/Net-seq"> <span class="fa fa-github"></span> </a> </li> </ul> </div><!--/.nav-collapse --> </div><!--/.container --> </div><!--/.navbar --> <div class="fluid-row" id="header"> <h1 class="title toc-ignore">Initial Data Exploration Netseq1</h1> <h4 class="author"><em>Brina Mittleman</em></h4> <h4 class="date"><em>2017-11-06</em></h4> </div> <!-- The file analysis/chunks.R contains chunks that define default settings shared across the workflowr files. --> <!-- Update knitr chunk options --> <!-- Insert the date the file was last updated --> <p><strong>Last updated:</strong> 2017-11-27</p> <!-- Insert the code version (Git commit SHA1) if Git repository exists and R package git2r is installed --> <p><strong>Code version:</strong> c9cf54b</p> <!-- Add your analysis here --> <p>I will use this analysis to look at inital data QC and points of interests.</p> <p>First I looked at the number of reads that mapp to the genome before and after deduplication UMI steps.</p> <p><code>samtools view -c -F 4</code></p> <p>For flag info: <a href="https://broadinstitute.github.io/picard/explain-flags.html" class="uri">https://broadinstitute.github.io/picard/explain-flags.html</a></p> <p>Mayer data: fastq: 137281933<br /> sorted: 120124203 dedup: 2262387<br /> dedup/sorted: 0.01883373</p> <pre class="r"><code>library= c( "18486-dep", "18508-dep", "18508-nondep", "19238-dep", "mayer") fastq= c( 45803834, 70776230, 77223987, 113160855, 137281933) sorted= c(17336796, 43247747, 50189574, 40420633, 17157730 ) dedup= c(1533069, 1776330,1919904, 1870359,2262387) perc= dedup/sorted reads_mapped_dedup= data.frame(rbind(library, fastq, sorted, dedup, perc)) reads_mapped_dedup</code></pre> <pre><code> X1 X2 X3 library 18486-dep 18508-dep 18508-nondep fastq 45803834 70776230 77223987 sorted 17336796 43247747 50189574 dedup 1533069 1776330 1919904 perc 0.0884286231435151 0.0410733534859053 0.0382530443474177 X4 X5 library 19238-dep mayer fastq 113160855 137281933 sorted 40420633 17157730 dedup 1870359 2262387 perc 0.0462723827209732 0.131858177043234</code></pre> <pre class="r"><code>total_reads= sum(fastq) sorted/fastq</code></pre> <pre><code>[1] 0.3785010 0.6110490 0.6499221 0.3571962 0.1249817</code></pre> <p>Make a stacked bar plot to show complexity and coverage.<br /> library, fastq, mapped, dedup</p> <pre class="r"><code>counts= rbind(fastq, sorted, dedup) colnames(counts)= library count_plot=barplot(as.matrix(counts), main="Counts for coverage and complexity", xlab="Library", col=c("lightskyblue2","dodgerblue1","navy"), ylab="Read counts") legend("topleft", legend = c("total", "mapped", "UMI"), col=c("lightskyblue2","dodgerblue1","navy"), pch=20, cex = .75)</code></pre> <p><img src="figure/initial.data.exploration.Rmd/unnamed-chunk-2-1.png" width="672" style="display: block; margin: auto;" /></p> <pre class="r"><code>percent_mapped= sorted/fastq percent_UMI= dedup/fastq percent_not_mapped= 1- percent_mapped - percent_UMI prop=rbind(percent_not_mapped, percent_mapped, percent_UMI) colnames(prop)= library prop_plot=barplot(as.matrix(prop), main="Proportions for coverage and complexity", xlab="Library", col=c("lightskyblue2","dodgerblue1","navy"), ylab="Proportion of sequenced reads") legend("bottomright", legend = c("Un-mapped", "mapped", "UMI"), col=c("lightskyblue2","dodgerblue1","navy"), pch=20, cex = 0.75)</code></pre> <p><img src="figure/initial.data.exploration.Rmd/unnamed-chunk-3-1.png" width="672" style="display: block; margin: auto;" /></p> <p>Undetermined is nothing: it corresponds to random reads</p> <p>From meeting:</p> <ul> <li><p>Allign with star and bwa to compare</p></li> <li><p>compare to <a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&lastVirtModeType=default&lastVirtModeExtraState" class="uri">http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&lastVirtModeType=default&lastVirtModeExtraState</a>=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr7%3A5568588%2D5568715&hgsid=642260271_FLEwDANY0lSWCFhW4QjbmbASDDnB</p></li> </ul> <div id="explore-different-mappers" class="section level3"> <h3>Explore different mappers</h3> <pre class="bash"><code> #index and prepare ref genome: STAR --runThreadN 2 --runMode genomeGenerate --genomeDir /scratch/midway2/brimittleman/star_genome/ --genomeFastaFiles /project2/gilad/briana/Net-seq/STAR_genome/hg19.fa --sjdbGTFfile /project2/gilad/briana/Net-seq/Homo_sapiens.GRCh37.75.chr.gtf --sjdbOverhang 43 # --sjdbOverhang read length -1 STAR --runThreadN 4 --genomeDir /scratch/midway2/brimittleman/star_genome/ --readFilesIn fastq_extr/SRR1575922_extracted.fastq --outFilterMultimapNmax 1 --outSAMtype BAM SortedByCoordinate --outStd BAM_SortedByCoordinate > star/mayer_star_align.bam</code></pre> <pre class="bash"><code>samtools sort -o star.sort/star_mayer.sort.bam star/mayer_star_align.bam </code></pre> <p>Run this on my data as well.</p> <pre class="bash"><code>#!/bin/bash #SBATCH --job-name=star_align_mayer #SBATCH --time=8:00:00 #SBATCH --partition=broadwl #SBATCH --mem=50G #SBATCH --tasks-per-node=4 module load Anaconda3 source activate net-seq STAR --runThreadN 4 --genomeDir /scratch/midway2/brimittleman/star_genome/ --readFilesIn fastq_extr/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.fastq --outFilterMultimapNmax 1 --outSAMtype BAM SortedByCoordinate --outStd BAM_SortedByCoordinate > star/star_18486-dep.bam #to run: sbatch --partition=broadwl --mem=50G</code></pre> <p>Continue with the sort and index the bam.</p> <pre class="bash"><code>samtools sort -o star.sort/star_18486_dep_sort.bam star/star_18486-dep.bam samtools index star_18486_dep_sort.bam</code></pre> <p>Look at the percent mapped with star.</p> <pre class="r"><code>samples=c("18486_dep", "mayer") fastq_star= c(45803834,137281933) bam_star= c(1996777,1993674) bam_star/fastq_star</code></pre> <pre><code>[1] 0.04359410 0.01452248</code></pre> <p>Thats way too low. This didnt work.</p> <p>In the log.Final file.</p> <p>% of reads unmapped: too many mismatches | 0.00%<br /> % of reads unmapped: too short | 79.96%<br /> % of reads unmapped: other | 0.00%</p> <p>“–outFilterScoreMinOverLread 0 –outFilterMatchNminOverLread 0 –outFilterMatchNmin 0” Try to add these parameters on the mayer map.</p> <p>This run gave too many multi-map reads. 64.82%.</p> <p>Try:<br /> “–outFilterScoreMinOverLread 0.3 –outFilterMatchNminOverLread 0.3”<br /> % of reads mapped to too many loci | 63.75%</p> <p>Test length of fastq reads:<br /> Mayer: total 137281933 avg=70.000000 stddev=0.000000 18486_dep: total 45803834 avg=44.000000 stddev=0.000000</p> <p>Try clipping last 10 bases with : “–clip3pNbases 10”<br /> * This didnt work for the mayer data but that is long. I will try it on ours.</p> <p>Our data:</p> <ul> <li>% of reads mapped to too many loci | 31.70%<br /> </li> <li>% of reads unmapped: too short | 55.32%</li> </ul> <p>Other ways to fix this:</p> <ul> <li>try blasting the unmapped reads</li> </ul> </div> <div id="look-into-bwa-mapping" class="section level3"> <h3>Look into BWA mapping</h3> <p>BWA-backtrack - for Illumina seqs up to 100 bp</p> <p>First step is to construt a FM-index for the reference genome.</p> <p>“bwa index -a bwtsw -p /scratch/midway2/brimittleman/BWA_genome/BWA.index STAR_genome/hg19.fa”</p> <p>Added bwa to envirnoment</p> <p>Mapping:</p> <p>bwa aln</p> <ul> <li><p>creates the .sai index files</p></li> <li><p>-n 0.01 1% missmatch allowed</p></li> <li><p>-t 3 spead up by using 3 threads</p></li> </ul> <p>bwa samse</p> <ul> <li>generates alignments in a sam format</li> </ul> <pre class="bash"><code> #$1 ref fa #$2 fastq #$3 output sai module load Anaconda3 source activate net-seq module load bwa bwa aln -t 3 -n 0.01 $1 $2 > $3 #submit sbatch scripts/bwa_aln.sh hg19.copy.fa /project2/gilad/briana/Net-seq/Net-seq1/data/fastq_extr/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.fastq /project2/gilad/briana/Net-seq/Net-seq1/data/BWA/bwa.18486.dep.sai</code></pre> <pre class="bash"><code> #SBATCH --job-name=BWA_samse #SBATCH --time=8:00:00 #SBATCH --partition=broadwl #SBATCH --mem=50G #SBATCH --tasks-per-node=4 #SBATCH --mail-type=END #$1 ref fasta #$2 sai file #$3 fastq file #$4 output sam module load Anaconda3 source activate net-seq module load bwa bwa samse $1 $2 $3 > $4 #run on mayer sbatch scripts/bwa_samse.sh hg19.copy.fa /project2/gilad/briana/Net-seq/data/bwa/bwa.mayer.sai /project2/gilad/briana/Net-seq/data/fastq_extr/SRR1575922_extracted.fastq /project2/gilad/briana/Net-seq/data/bwa/bwa.mayer.sam sbatch scripts/bwa_samse.sh hg19.copy.fa /project2/gilad/briana/Net-seq/data/bwa/bwa.mayer.cut3prime.sai /project2/gilad/briana/Net-seq/data/fastq_extr/SRR1575922_extracted.fastq /project2/gilad/briana/Net-seq/data/bwa/bwa.mayer.cut3prime.sam #run on 18486 dep sbatch scripts/bwa_samse.sh hg19.copy.fa /project2/gilad/briana/Net-seq/Net-seq1/data/BWA/bwa.18486.dep.sai /project2/gilad/briana/Net-seq/Net-seq1/data/fastq_extr/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.fastq /project2/gilad/briana/Net-seq/Net-seq1/data/BWA/bwa.18486.dep.sam </code></pre> <p>Sam to bam:<br /> <code>samtools view -S -b sample.sam > sample.bam</code></p> <p>Check how big the file is:</p> <ul> <li>18486_dep : 796546</li> <li>Mayer: 117726</li> </ul> <p>This is super low mapping as well. Not sure what is going on.</p> <p>For poor quality on the ends- add -q 15 to the bwa aln command. I am trying this on the mayer data.</p> <ul> <li>18486_dep : 805899<br /> </li> <li>Mayer: 121892</li> </ul> <div id="rerun-star" class="section level4"> <h4>Rerun star:</h4> <p>I deleted the reference genome and am reindexing and rebuilding it.</p> </div> <div id="cut-polya" class="section level4"> <h4>Cut polyA</h4> <p>Code from Sebs snakemake will allow me to cut any read that has more than 6 As. It will then keep the read if it is longer than 25 bases long post cut. I will run this on the UMI extracted fastq files.</p> <p>This script is called cut_polyA.sh and is in the /project2/gilad/briana/Net-seq/scripts directory.</p> <pre class="bash"><code>#!/bin/bash #SBATCH --job-name=cut_polyA #SBATCH --time=8:00:00 #SBATCH --partition=broadwl #SBATCH --mem=8G #SBATCH --tasks-per-node=4 #SBATCH --mail-type=END module load Anaconda3 source activate net-seq #$1 fastq file #$2 output cut file name cutadapt --minimum-length 25 -a AAAAAA -o $2 $1</code></pre> <p>Run this script first on 18486 dep.</p> <pre class="bash"><code>sbatch scripts/cut_polyA.sh /project2/gilad/briana/Net-seq/Net-seq1/data/fastq_extr/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.fastq /project2/gilad/briana/Net-seq/Net-seq1/data/cut_polyA/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.cutPolyA.fastq </code></pre> <p>Pre-cut: 45803834<br /> Cut: 40905492</p> <pre class="bash"><code>sbatch scripts/star_allign.sh /project2/gilad/briana/Net-seq/Net-seq1/data/cut_polyA/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.cutPolyA.fastq /project2/gilad/briana/Net-seq/Net-seq1/data/star/star_18486-dep_cutPolyA.bam</code></pre> <p>Cut: 40905492<br /> mapped: 1350684</p> </div> <div id="subjunc-with-alljunctions" class="section level4"> <h4>Subjunc with –allJunctions</h4> <p>I am running subjunc on the polyA cut reads with the –allJunctions to map cononincal and non-connoical exon exon boundaries.</p> <p>This script is called subjunc_all_junc.sh and is in the /project2/gilad/briana/Net-seq/scripts directory.</p> <pre class="bash"><code>#!/bin/bash #SBATCH --job-name=cut_polyA #SBATCH --time=8:00:00 #SBATCH --partition=broadwl #SBATCH --mem=20G #SBATCH --tasks-per-node=4 #SBATCH --mail-type=END module load Anaconda3 source activate net-seq #$1 input extracted fast q #$2 output bam subjunc --allJunctions -i /project2/gilad/briana/Net-seq/Net-seq1/genome/ -r $1 -T 8 > $2</code></pre> <pre class="bash"><code>#slurm-40290339.out sbatch scripts/subjunc_all_junc.sh /project2/gilad/briana/Net-seq/Net-seq1/data/cut_polyA/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.cutPolyA.fastq /project2/gilad/briana/Net-seq/Net-seq1/data/subjunc_all_junc/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.cutPolyA.all.junc.bam </code></pre> <p>Before subjunc mapped 37.85. Now it mapped 38.4%.</p> <p>I am also going to run this on the non polyA cut samples.</p> <pre class="bash"><code>#slurm-40290637.out sbatch scripts/subjunc_all_junc.sh /project2/gilad/briana/Net-seq/Net-seq1/data/fastq_extr/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.fastq /project2/gilad/briana/Net-seq/Net-seq1/data/subjunc_all_junc/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001_extracted.all.junc.bam </code></pre> <p>Before subjunc mapped 37.85. This run is 53.1%</p> <p>Try for mayer:</p> <pre class="bash"><code>sbatch scripts/subjunc_all_junc.sh /project2/gilad/briana/Net-seq/data/fastq_extr/SRR1575922_extracted.fastq /project2/gilad/briana/Net-seq/data/subjunc_all_junc/mayer.extracted.subjunc.all.junc.bam #508 dep sbatch scripts/subjunc_all_junc.sh /project2/gilad/briana/Net-seq/Net-seq1/data/fastq_extr/YG-SP-NET1-18508-dep-2017-10-13_S2_R1_001_extracted.fastq /project2/gilad/briana/Net-seq/Net-seq1/data/subjunc_all_junc/YG-SP-NET1-18508-dep-2017-10-13_S2_R1_001_extracted.all.junc.bam </code></pre> <p>508_dep<br /> dep fastq: 70776230<br /> mapped: 54088856</p> <p>This mapped 76.4%</p> <pre class="bash"><code>samtools sort -o {output} {input} samtools index {input} umi_tools dedup -I {input.bam} -S {output}</code></pre> </div> </div> <div id="extend-mayer-data-exploration" class="section level3"> <h3>Extend Mayer data exploration</h3> <p>I downloaded HeLa S3 Rep1 and the other run for HEK293T Rep1. I ran the snake file in the mayer.data directory as Mayer_hek and Mayer_hela.</p> <p>mayer_hek</p> <ul> <li><p>reads: 358754064</p></li> <li><p>mapped: 128152521</p></li> <li><p>deduplication: 4392741</p></li> </ul> <p>mayer_hela</p> <ul> <li><p>reads: 175303176</p></li> <li><p>mapped: 51362897</p></li> <li><p>deduplication: 6314281</p></li> </ul> <pre class="r"><code>m_fastq= c(358754064,175303176) m_sort= c(128152521 , 51362897) m_dedup= c(4392741, 6314281 ) mayer= c("Hek", "Hela") counts_m= rbind(m_fastq, m_sort, m_dedup) colnames(counts_m)= mayer count_plot_m=barplot(as.matrix(counts_m), main="Counts for coverage and complexity", xlab="Library", col=c("lightskyblue2","dodgerblue1","navy"), ylab="Read counts") legend("topright", legend = c("total", "mapped", "UMI"), col=c("lightskyblue2","dodgerblue1","navy"), pch=20, cex = .75)</code></pre> <p><img src="figure/initial.data.exploration.Rmd/unnamed-chunk-19-1.png" width="672" style="display: block; margin: auto;" /></p> <pre class="r"><code>percent_mapped_m= m_sort/m_fastq percent_UMI_m= m_dedup/m_fastq percent_not_mapped_m= 1- percent_mapped_m - percent_UMI_m prop_m=rbind(percent_not_mapped_m, percent_mapped_m, percent_UMI_m) colnames(prop_m)= mayer prop_plot_m=barplot(as.matrix(prop_m), main="Proportions for coverage and complexity", xlab="Library", col=c("lightskyblue2","dodgerblue1","navy"), ylab="Proportion of sequenced reads") legend("bottomright", legend = c("Un-mapped", "mapped", "UMI"), col=c("lightskyblue2","dodgerblue1","navy"), pch=20, cex = 0.75)</code></pre> <p><img src="figure/initial.data.exploration.Rmd/unnamed-chunk-20-1.png" width="672" style="display: block; margin: auto;" /></p> </div> <div id="session-information" class="section level2"> <h2>Session information</h2> <!-- Insert the session information into the document --> <pre class="r"><code>sessionInfo()</code></pre> <pre><code>R version 3.4.2 (2017-09-28) Platform: x86_64-apple-darwin15.6.0 (64-bit) Running under: macOS Sierra 10.12.6 Matrix products: default BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 attached base packages: [1] stats graphics grDevices utils datasets methods base loaded via a namespace (and not attached): [1] compiler_3.4.2 backports_1.1.1 magrittr_1.5 rprojroot_1.2 [5] tools_3.4.2 htmltools_0.3.6 yaml_2.1.14 Rcpp_0.12.13 [9] stringi_1.1.5 rmarkdown_1.6 knitr_1.17 git2r_0.19.0 [13] stringr_1.2.0 digest_0.6.12 evaluate_0.10.1</code></pre> </div> <hr> <p> This <a href="http://rmarkdown.rstudio.com">R Markdown</a> site was created with <a href="https://github.com/jdblischak/workflowr">workflowr</a> </p> <hr> <!-- To enable disqus, uncomment the section below and provide your disqus_shortname --> <!-- disqus <div id="disqus_thread"></div> <script type="text/javascript"> /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */ var disqus_shortname = 'rmarkdown'; // required: replace example with your forum shortname /* * * DON'T EDIT BELOW THIS LINE * * */ (function() { var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true; dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js'; (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq); })(); </script> <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript> <a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a> --> </div> </div> </div> <script> // add bootstrap table styles to pandoc tables function bootstrapStylePandocTables() { $('tr.header').parent('thead').parent('table').addClass('table table-condensed'); } $(document).ready(function () { bootstrapStylePandocTables(); }); </script> <!-- dynamically load mathjax for compatibility with self-contained --> <script> (function () { var script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; document.getElementsByTagName("head")[0].appendChild(script); })(); </script> </body> </html>