Last updated: 2018-06-22
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(12345) 
The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: eb85223 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
Untracked files:
    Untracked:  Ggsb_logo.r.pdf
    Untracked:  Rplot.pdf
    Untracked:  _workflowr.yml
    Untracked:  analysis/filter_bam.Rmd
    Untracked:  analysis/gencode.v19.annotation.proteincodinggene.saf
    Untracked:  analysis/temp
    Untracked:  analysis/top5_gen_wind200.bed
    Untracked:  data/DaPars_APA_geuvadis.txt
    Untracked:  data/Day7_cardiomyocytes_droNC_seq.bam
    Untracked:  data/Day7_cardiomyocytes_droNC_seq.bam.bai
    Untracked:  data/Day7_cardiomyocytes_drop_seq.bam
    Untracked:  data/Day7_cardiomyocytes_drop_seq.bam.bai
    Untracked:  data/LCL_3utr.txt
    Untracked:  data/LCL_3utrAB.bed
    Untracked:  data/LCL_3utrAB.neg.chr20.bed
    Untracked:  data/LCL_3utrAB_pos.chr1.bed
    Untracked:  data/LCL_3utrAB_pos.chr21.bed
    Untracked:  data/NET3-18486.gene.coverage.bed
    Untracked:  data/NET3-18486.gene.coverage.noSM.bed
    Untracked:  data/NET3-18486.gene.coverage.nosn.nosno.bed
    Untracked:  data/NET3-18486.gene.coverage.notopwind.bed
    Untracked:  data/NET3-18486.tss.coverage.bed
    Untracked:  data/NET3-18486_combined_Netpilot-sort.FC200.cov.bed
    Untracked:  data/NET3-18486_combined_Netpilot-sort.FC200.cov.no0.bed
    Untracked:  data/NET3-18486_combined_Netpilot-sort.exon.cov.txt
    Untracked:  data/NET3-18505.gene.coverage.bed
    Untracked:  data/NET3-18505_combined_Netpilot-sort.FC200.cov.no0.bed
    Untracked:  data/NET3-18508_combined_Netpilot-sort.FC200.cov.no0.bed
    Untracked:  data/NET3-19128_combined_Netpilot-sort.FC200.cov.no0.bed
    Untracked:  data/NET3-19141_combined_Netpilot-sort.FC200.cov.no0.bed
    Untracked:  data/NET3-19193_combined_Netpilot-sort.FC200.cov.no0.bed
    Untracked:  data/NET3-19239_combined_Netpilot-sort.FC200.cov.no0.bed
    Untracked:  data/NET3-19257_combined_Netpilot-sort.FC200.cov.no0.bed
    Untracked:  data/RNAseqGeuvadis_STAR_18486.coverage.bed
    Untracked:  data/RNAseqGeuvadis_STAR_18486.gene.coverage.bed
    Untracked:  data/RefSeqGenes.bed
    Untracked:  data/SRR1575922-sort.bam
    Untracked:  data/SRR1575922-sort.bam.bai
    Untracked:  data/SwitchGear_TSS.bed
    Untracked:  data/UMI_18486_dep_stat.txt
    Untracked:  data/UMI_18486_dep_stat_tab.txt
    Untracked:  data/UMI_18508_dep_stat.txt
    Untracked:  data/UMI_18508_nondep_stat.txt
    Untracked:  data/UMI_19238_dep_stat.txt
    Untracked:  data/UMI_Net3_18486_dedupstat.txt
    Untracked:  data/UMI_Net3_18486_stat.txt
    Untracked:  data/UMI_Net3_18505_dedupstat.txt
    Untracked:  data/UMI_Net3_18505_stat.txt
    Untracked:  data/UMI_Net3_18508_dedupstat.txt
    Untracked:  data/UMI_Net3_18508_stat.txt
    Untracked:  data/UMI_Net3_19128_dedupstat.txt
    Untracked:  data/UMI_Net3_19128_stat.txt
    Untracked:  data/UMI_Net3_19141_dedupstat.txt
    Untracked:  data/UMI_Net3_19141_stat.txt
    Untracked:  data/UMI_Net3_19193_dedupstat.txt
    Untracked:  data/UMI_Net3_19193_stat.txt
    Untracked:  data/UMI_Net3_19239_dedupstat.txt
    Untracked:  data/UMI_Net3_19239_stat.txt
    Untracked:  data/UMI_Net3_19257_dedupstat.txt
    Untracked:  data/UMI_Net3_19257_stat.txt
    Untracked:  data/UMI_mayer_stat.txt
    Untracked:  data/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001-sort.dedup.cov.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.AC093901.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.BTRC.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.RNU5B.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.WDR74.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.chr2.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.insig2.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.ppef2.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.rnu259p.bed
    Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.dedup.cov.insig2.bed
    Untracked:  data/all_RNAmetrics.picard.none.csv
    Untracked:  data/all_files.APA500.coverage.bed
    Untracked:  data/all_files_coverage.bed
    Untracked:  data/all_strand_genecounts_18486.txt
    Untracked:  data/bam_files_chr/
    Untracked:  data/blcl.hg38.sorted.bam
    Untracked:  data/blcl.hg38.sorted.bam.bai
    Untracked:  data/cell_growth_3.21.18.csv
    Untracked:  data/clip_18486_dep.txt
    Untracked:  data/clusters.bed
    Untracked:  data/clusters.hg38
    Untracked:  data/clusters.hg38.3utr.neg.bed
    Untracked:  data/clusters.hg38.3utr.pos.bed
    Untracked:  data/clusters.hg38.bed
    Untracked:  data/dedup_18486_mapqual.txt
    Untracked:  data/drop7_cardio_3utr.txt
    Untracked:  data/drop7_cardio_3utrAB.neg.chr21.bed
    Untracked:  data/drop7_cardio_3utrAB.pos.chr21.bed
    Untracked:  data/ensembl2refseq.txt
    Untracked:  data/eqtl_fullgene/
    Untracked:  data/eqtl_genes_effectsize.txt
    Untracked:  data/eqtl_output.cis.txt
    Untracked:  data/eqtl_output.txt
    Untracked:  data/eqtl_strand_spec/
    Untracked:  data/exon_cov/
    Untracked:  data/fc_genecov/
    Untracked:  data/gencode.v19.annotation.distfilteredgenes.bed
    Untracked:  data/gencode.v19.annotation.egqtlfilter.bed
    Untracked:  data/gencode.v19.annotation.eqtlfilter.bed
    Untracked:  data/gencov_18486.bed
    Untracked:  data/gene_cov_count/
    Untracked:  data/gene_coverage_18486_dedup_hist.txt
    Untracked:  data/gene_coverage_18486_hist.txt
    Untracked:  data/gene_coverage_18508_dep.txt
    Untracked:  data/gene_coverage_18508_dep_hist.txt
    Untracked:  data/gene_coverage_18508_nondep_hist.txt
    Untracked:  data/gene_coverage_19238_dep_hist.txt
    Untracked:  data/gene_coverage_mayer_SRR1575922_hist.txt
    Untracked:  data/gene_dedup_cov_count/
    Untracked:  data/genotypes.rs7144811.txt
    Untracked:  data/growth_curve_3.16.csv
    Untracked:  data/hES.hg38.sorted.bam
    Untracked:  data/hES.hg38.sorted.bam.bai
    Untracked:  data/hg19.GM72.CTCF
    Untracked:  data/hg19.ref.genes.bed
    Untracked:  data/insig2sec.txt
    Untracked:  data/mapped_18486_dep.txt
    Untracked:  data/mapped_18486_dep_max.txt
    Untracked:  data/mapped_18508_dep.txt
    Untracked:  data/mapped_19238_dep.txt
    Untracked:  data/mapped_mayer.txt
    Untracked:  data/mapped_qual_18486.txt
    Untracked:  data/mapped_qual_18505.txt
    Untracked:  data/mapped_qual_18508.txt
    Untracked:  data/mapped_qual_19128.txt
    Untracked:  data/mapped_qual_19141.txt
    Untracked:  data/mapped_qual_19193.txt
    Untracked:  data/mapped_qual_19239.txt
    Untracked:  data/mapped_qual_19257.txt
    Untracked:  data/matrix_expression.txt
    Untracked:  data/matrix_genotypes.csv
    Untracked:  data/matrix_genotypes.txt
    Untracked:  data/merged_Net1.bam
    Untracked:  data/merged_Net1.bam.bai
    Untracked:  data/meta_info_coverage.bed
    Untracked:  data/names_geno.txt
    Untracked:  data/net-3-readmap/
    Untracked:  data/net1_18486_dep_dedup.bed
    Untracked:  data/net1_18486_dep_dedup_chr.bed
    Untracked:  data/net4_readcounts.xlsx
    Untracked:  data/net_pilot_eqtl_expression.bed
    Untracked:  data/net_pilot_eqtl_genotypes.vcf
    Untracked:  data/netcomb_intronicbases.csv
    Untracked:  data/opp_strand_genecounts_18486.txt
    Untracked:  data/opp_strand_genecounts_18505.txt
    Untracked:  data/opp_strand_genecounts_filt_18486.txt
    Untracked:  data/perc_alive_3.16.csv
    Untracked:  data/prom_coverage/
    Untracked:  data/qual_18486_dep.txt
    Untracked:  data/qual_18508_dep.txt
    Untracked:  data/qual_19238_dep.txt
    Untracked:  data/qual_mayer.txt
    Untracked:  data/refseq_250up.bed
    Untracked:  data/run_lm_APA.txt
    Untracked:  data/same_strand_genecounts_18486.txt
    Untracked:  data/same_strand_genecounts_18505.txt
    Untracked:  data/same_strand_genecounts_filt_18486.txt
    Untracked:  data/sort_dedup_3prime_chr2_no0.18486.txt
    Untracked:  data/sort_dedup_chr2_no0_18486.txt
    Untracked:  data/test.txt
    Untracked:  data/three_prime_utr.bed
    Untracked:  data/top5_exonlist.txt
    Untracked:  data/top5_exonlist_18486_fiveprime_cov.txt
    Untracked:  data/top5_exonlist_18486_fiveprime_cov2.txt
    Untracked:  data/top5_exonlist_18486_fiveprime_cov2_filter.txt
    Untracked:  data/top5_exonlist_18486_threeprime_cov.txt
    Untracked:  data/top5_exonlist_18486_threeprime_cov2.txt
    Untracked:  data/top5_exonlist_18486_threeprime_cov2_filter.txt
    Untracked:  data/top5_gen_wind200.bed
    Untracked:  data/top5_gen_wind200.tab.bed
    Untracked:  data/uniq_genes/
    Untracked:  data/windows_200/
    Untracked:  docs/temp
    Untracked:  docs/top5_gen_wind200.bed
    Untracked:  output/Rs7144811_apa_usage.pdf
    Untracked:  output/picard.accrossgenebodies.netpilot.csv
Unstaged changes:
    Modified:   analysis/APA_qtl_RNAseq.Rmd
    Modified:   analysis/LCL_growth.Rmd
    Modified:   analysis/Net_3_explore.Rmd
    Modified:   analysis/Reads_per_pas.Rmd
    Modified:   analysis/UTR_coverage.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/about.Rmd
    Modified:   analysis/bin_windows.Rmd
    Modified:   analysis/check_bamid.Rmd
    Deleted:    analysis/chunks.R
    Modified:   analysis/conda.environment.Rmd
    Modified:   analysis/config.snake.setup.Rmd
    Modified:   analysis/create_blacklist.Rmd
    Modified:   analysis/data_for_ggplot.Rmd
    Modified:   analysis/eqtl_bystrand.Rmd
    Modified:   analysis/explore_umi_usage.Rmd
    Modified:   analysis/extend_APA_qtl.Rmd
    Modified:   analysis/gviz_plots.Rmd
    Modified:   analysis/initial.data.exploration.Rmd
    Modified:   analysis/license.Rmd
    Modified:   analysis/map_stats_from_bam.Rmd
    Modified:   analysis/reads_in_genes.Rmd
    Modified:   analysis/recreate_mayer_figs.Rmd
    Modified:   analysis/strand_spec.Rmd
    Modified:   analysis/test-analysis.Rmd
    Modified:   analysis/three_prime_UTR.Rmd
    Modified:   analysis/update_snakefile.Rmd
    Modified:   analysis/use_deeptools.Rmd
    Modified:   analysis/visualize_genomefeatures.Rmd
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | eb85223 | Briana Mittleman | 2018-06-22 | genic bases | 
| html | f9622a0 | Briana Mittleman | 2018-06-22 | Build site. | 
| Rmd | 0201bd8 | Briana Mittleman | 2018-06-22 | change filter cuttoff | 
| html | 9787ad5 | Briana Mittleman | 2018-06-22 | Build site. | 
| Rmd | 4e3c679 | Briana Mittleman | 2018-06-22 | add percent coverage and correlatin | 
| html | 363ea13 | Briana Mittleman | 2018-06-22 | Build site. | 
| Rmd | 97a0c53 | Briana Mittleman | 2018-06-22 | wflow_publish(c(“analysis/index.Rmd”, “analysis/net-4-explore.Rmd”)) | 
The goal of this analysis is to explore the second batch of pilot netseq data (net4) with the 3 lanes of the original line. This data has been run on 3 lanes.
Net4 lines * 19238
* 19223
* 18497
* 19209
* 18500
* 18870
* 19225
* 18853
I want to use feature counts to summarize how many counds we have in each protien coding gene. There are 20,347 genes in the annotation file.
Make an SAF file instead: Gene id, Chr, Start, End, Strand from the gencode.v19.annotation.proteincodinggene.bed
awk 'BEGIN {print "GeneID" "\t" "Chr" "\t" "Start" "\t" "End" "\t" "Strand"} {print $4 "\t" $1 "\t" $2 "\t" $3 "\t" $6}' gencode.v19.annotation.proteincodinggene.bed  >gencode.v19.annotation.proteincodinggene.saf
fc_gene.sh
#!/bin/bash
#SBATCH --job-name=FC_genes
#SBATCH --time=8:00:00
#SBATCH --partition=gilad
#SBATCH --output=fc_gene.out
#SBATCH --error=fc_gene.err
#SBATCH --mem=20G
#SBATCH --mail-type=END
module load Anaconda3  
source activate net-seq 
#input is a bam file 
sample=$1
describer=$(echo ${sample} | sed -e 's/.*\YG-SP-//' | sed -e "s/_combined_Netpilot-sort.bam$//")
featureCounts -T 5 -a /project2/gilad/briana/genome_anotation_data/gencode.v19.annotation.proteincodinggene.saf -F 'SAF' -g 'GeneID' -o /project2/gilad/briana/Net-seq-pilot/data/fc_genecov/genecov.${describer}.txt $1test on: /project2/gilad/briana/Net-seq-pilot/data/sort/YG-SP-NET3-19257_combined_Netpilot-sort.bam
Create a wrapper:
#!/bin/bash
#SBATCH --job-name=w_fcgenes
#SBATCH --time=8:00:00
#SBATCH --output=w_fcgenes.out
#SBATCH --error=w_fcgenes.err
#SBATCH --partition=gilad
#SBATCH --mem=8G
#SBATCH --mail-type=END
for i in $(ls /project2/gilad/briana/Net-seq-pilot/data/sort/*combined_Netpilot-sort.bam); do
            sbatch fc_gene.sh  $i 
        done
At this point 8 samples have over 100mil mapped reads. They are 18497, 18508, 18853, 18870, 19128, 19193, 19209 and 19239. We are waiting for more reads for 19225 and 18500. Unfortunately maping is low for 19223, but I have not diagnosed the problem yet.
library(workflowr)Loading required package: rmarkdownThis is workflowr version 1.0.1
Run ?workflowr for help getting startedlibrary(dplyr)Warning: package 'dplyr' was built under R version 3.4.4
Attaching package: 'dplyr'The following objects are masked from 'package:stats':
    filter, lagThe following objects are masked from 'package:base':
    intersect, setdiff, setequal, unionlibrary(ggplot2)
library(tidyr)
library(reshape2)Warning: package 'reshape2' was built under R version 3.4.3
Attaching package: 'reshape2'The following object is masked from 'package:tidyr':
    smithslibrary(edgeR)Warning: package 'edgeR' was built under R version 3.4.3Loading required package: limmaWarning: package 'limma' was built under R version 3.4.3cov_18486=read.table("../data/fc_genecov/genecov.NET3-18486.txt", header=TRUE)
cov_18497=read.table("../data/fc_genecov/genecov.NET3-18497.txt", header=TRUE)
cov_18500=read.table("../data/fc_genecov/genecov.NET3-18500.txt", header=TRUE)
cov_18505=read.table("../data/fc_genecov/genecov.NET3-18505.txt", header=TRUE)
cov_18508=read.table("../data/fc_genecov/genecov.NET3-18508.txt", header=TRUE)
cov_18853=read.table("../data/fc_genecov/genecov.NET3-18853.txt", header=TRUE)
cov_18870=read.table("../data/fc_genecov/genecov.NET3-18870.txt", header=TRUE)
cov_19128=read.table("../data/fc_genecov/genecov.NET3-19128.txt", header=TRUE)
cov_19141=read.table("../data/fc_genecov/genecov.NET3-19141.txt", header=TRUE)
cov_19193=read.table("../data/fc_genecov/genecov.NET3-19193.txt", header=TRUE)
cov_19209=read.table("../data/fc_genecov/genecov.NET3-19209.txt", header=TRUE)
cov_19223=read.table("../data/fc_genecov/genecov.NET3-19223.txt", header=TRUE)
cov_19225=read.table("../data/fc_genecov/genecov.NET3-19225.txt", header=TRUE)
cov_19238=read.table("../data/fc_genecov/genecov.NET3-19238.txt", header=TRUE)
cov_19239=read.table("../data/fc_genecov/genecov.NET3-19239.txt", header=TRUE)
cov_19257=read.table("../data/fc_genecov/genecov.NET3-19257.txt", header=TRUE)gene_length=cov_18486$End- cov_18486$StartStandardize by gene length
cov_18486=cov_18486 %>% mutate(st_18486=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18486_combined_Netpilot.sort.bam/gene_length)Warning: package 'bindrcpp' was built under R version 3.4.4cov_18497=cov_18497 %>% mutate(st_18497=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18497_combined_Netpilot.sort.bam/gene_length)
cov_18500=cov_18500 %>% mutate(st_18500=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18500_combined_Netpilot.sort.bam/gene_length)
cov_18505=cov_18505 %>% mutate(st_18505=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18505_combined_Netpilot.sort.bam/gene_length)
cov_18508=cov_18508 %>% mutate(st_18508=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18508_combined_Netpilot.sort.bam/gene_length)
cov_18853=cov_18853 %>% mutate(st_18853=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18853_combined_Netpilot.sort.bam/gene_length)
cov_18870=cov_18870 %>% mutate(st_18870=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18870_combined_Netpilot.sort.bam/gene_length)
cov_19128=cov_19128 %>% mutate(st_19128=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19128_combined_Netpilot.sort.bam/gene_length)
cov_19141=cov_19141 %>% mutate(st_19141=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19141_combined_Netpilot.sort.bam/gene_length)
cov_19193=cov_19193 %>% mutate(st_19193=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19193_combined_Netpilot.sort.bam/gene_length)
cov_19209=cov_19209 %>% mutate(st_19209=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19209_combined_Netpilot.sort.bam/gene_length)
cov_19223=cov_19223 %>% mutate(st_19223=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19223_combined_Netpilot.sort.bam/gene_length)
cov_19225=cov_19225 %>% mutate(st_19225=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19225_combined_Netpilot.sort.bam/gene_length)
cov_19238=cov_19238 %>% mutate(st_19238=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19238_combined_Netpilot.sort.bam/gene_length)
cov_19239=cov_19239 %>% mutate(st_19239=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19239_combined_Netpilot.sort.bam/gene_length)
cov_19257=cov_19257 %>% mutate(st_19257=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19257_combined_Netpilot.sort.bam/gene_length)Join these on the gene name:
names=c("GeneID", "st_18486", "st_18497", "st_18500", "st_18505", "st_18508", "st_18853", "st_18870", "st_19128", "st_19141", "st_19193", "st_19209", "st_19223", "st_19225", "st_19238", "st_19239", "st_19257")
cov_all_df=data.frame(cov_18486$Geneid,cov_18486$st_18486, cov_18497$st_18497, cov_18500$st_18500, cov_18505$st_18505, cov_18508$st_18508, cov_18853$st_18853, cov_18870$st_18870, cov_19128$st_19128, cov_19141$st_19141, cov_19193$st_19193, cov_19209$st_19209, cov_19223$st_19223, cov_19225$st_19225, cov_19238$st_19238, cov_19239$st_19239, cov_19257$st_19257)
colnames(cov_all_df)= namesgenes_detected=function(col, num){
  #takes incov_all_dfl col which corresponds to one library
  tot_genes=nrow(cov_all_df)
  exp_genes=sum(col >num)
  return(exp_genes/tot_genes)
}
detected_genes0=c(genes_detected(cov_all_df$st_18486, 0), genes_detected(cov_all_df$st_18497,0), genes_detected(cov_all_df$st_18500,0), genes_detected(cov_all_df$st_18505,0), genes_detected(cov_all_df$st_18508,0), genes_detected(cov_all_df$st_18853,0), genes_detected(cov_all_df$st_18870,0), genes_detected(cov_all_df$st_19128,0), genes_detected(cov_all_df$st_19141,0), genes_detected(cov_all_df$st_19193,0), genes_detected(cov_all_df$st_19209,0), genes_detected(cov_all_df$st_19223,0), genes_detected(cov_all_df$st_19225,0), genes_detected(cov_all_df$st_19238,0), genes_detected(cov_all_df$st_19239,0), genes_detected(cov_all_df$st_19257,0))
names(detected_genes0)=c("18486", "18497", "18500", "18505", "18508", "18853", "18870", "19128", "19141", "19193", "19209", "19223", "19225", "19238", "19239", "19257")
barplot(detected_genes0, ylim = c(0,1), main="Net-seq Genes detected greater than 0 standardized reads", ylab="Proportion non zero genes", xlab="Library", col = 'Blue')
abline(h=mean(detected_genes0))
| Version | Author | Date | 
|---|---|---|
| 9787ad5 | Briana Mittleman | 2018-06-22 | 
0 is not the most informative detection rate because it could be due to noise. I need to look at the distribution to pick a better cuttoff.
plot(log10(sort(cov_all_df$st_18486, decreasing = T)))
| Version | Author | Date | 
|---|---|---|
| f9622a0 | Briana Mittleman | 2018-06-22 | 
| 9787ad5 | Briana Mittleman | 2018-06-22 | 
I should use .001 or \(10^{-3}\) as a cuttoff.
detected_genes_cut=c(genes_detected(cov_all_df$st_18486, .001), genes_detected(cov_all_df$st_18497,.001), genes_detected(cov_all_df$st_18500,.001), genes_detected(cov_all_df$st_18505,.001), genes_detected(cov_all_df$st_18508,.001), genes_detected(cov_all_df$st_18853,.001), genes_detected(cov_all_df$st_18870,.001), genes_detected(cov_all_df$st_19128,0.001), genes_detected(cov_all_df$st_19141,0.001), genes_detected(cov_all_df$st_19193,0.001), genes_detected(cov_all_df$st_19209,0.001), genes_detected(cov_all_df$st_19223,0.001), genes_detected(cov_all_df$st_19225,0.001), genes_detected(cov_all_df$st_19238,0.001), genes_detected(cov_all_df$st_19239,0.001), genes_detected(cov_all_df$st_19257,0.001))
names(detected_genes_cut)=c("18486", "18497", "18500", "18505", "18508", "18853", "18870", "19128", "19141", "19193", "19209", "19223", "19225", "19238", "19239", "19257")
barplot(detected_genes_cut, ylim = c(0,1), main="Net-seq Genes detected greater than .001 standardized reads", ylab="Proportion genes passing filter", xlab="Library", col = 'Blue')
abline(h=mean(detected_genes_cut))
| Version | Author | Date | 
|---|---|---|
| f9622a0 | Briana Mittleman | 2018-06-22 | 
cor_function=function(data){
  corr_matrix= matrix(0,ncol(data),ncol(data))
  for (i in seq(1,ncol(data))){
    for (j in seq(1,ncol(data))){
      x=cor.test(data[,i], data[,j], method='pearson')
      cor_ij=as.numeric(x$estimate)
      corr_matrix[i,j]=cor_ij
    }
  }
  return(corr_matrix)
}
covall_matrix=as.matrix(cov_all_df[,2:17])
covall_cor= cor_function(covall_matrix)
rownames(covall_cor)=c("NA18486", "NA18497", "NA18500", "NA18505", "NA18508", "NA18853", "NA18870", "NA19128", "NA19141", "NA19193", "NA19209", "NA19223", "NA19225", "NA19238", "NA19239", "NA19257")
colnames(covall_cor)=c("NA18486", "NA18497", "NA18500", "NA18505", "NA18508", "NA18853", "NA18870", "NA19128", "NA19141", "NA19193", "NA19209", "NA19223", "NA19225", "NA19238", "NA19239", "NA19257")
covall_cor_melt=melt(covall_cor)
ggheatmap=ggplot(data = covall_cor_melt, aes(x=Var1, y=Var2, fill=value)) +
  geom_tile() +
  labs(title="Net-seq Correlation Heatplot")
ggheatmap
| Version | Author | Date | 
|---|---|---|
| f9622a0 | Briana Mittleman | 2018-06-22 | 
Line 19223 is the line with mapping problems. I expected this one to have low correlations.
I will use the per_intergenic bases stat from the PICARD RNA metrics results.
genic_bases=read.csv("../data/netcomb_intronicbases.csv", header=T)
genic_bases=genic_bases %>% mutate(Pct_geneic=1-Pct_intergenic)
ggplot(genic_bases,aes(x=Library, y=Pct_geneic)) + geom_col(fill="blue") + labs(y="Pct mapped reads in genic region", title="Percent of mapped bases in genic region")
sessionInfo()R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] bindrcpp_0.2.2  edgeR_3.20.9    limma_3.34.9    reshape2_1.4.3 
[5] tidyr_0.7.2     ggplot2_2.2.1   dplyr_0.7.5     workflowr_1.0.1
[9] rmarkdown_1.8.5
loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17      compiler_3.4.2    pillar_1.1.0     
 [4] git2r_0.21.0      plyr_1.8.4        bindr_0.1.1      
 [7] R.methodsS3_1.7.1 R.utils_2.6.0     tools_3.4.2      
[10] digest_0.6.15     lattice_0.20-35   evaluate_0.10.1  
[13] tibble_1.4.2      gtable_0.2.0      pkgconfig_2.0.1  
[16] rlang_0.2.1       yaml_2.1.19       stringr_1.3.1    
[19] knitr_1.18        locfit_1.5-9.1    rprojroot_1.3-2  
[22] grid_3.4.2        tidyselect_0.2.4  glue_1.2.0       
[25] R6_2.2.2          purrr_0.2.5       magrittr_1.5     
[28] whisker_0.3-2     backports_1.1.2   scales_0.5.0     
[31] htmltools_0.3.6   assertthat_0.2.0  colorspace_1.3-2 
[34] labeling_0.3      stringi_1.2.2     lazyeval_0.2.1   
[37] munsell_0.4.3     R.oo_1.22.0      
This reproducible R Markdown analysis was created with workflowr 1.0.1