Tutorial -6

SOEN-321

Hash Function

One-way function There is no H^{-1} H(x) = y

Arbitrary length input

- Message
- Pre-image

Short fixed length output

- Hash code
- Hash value
- Message digest

Application: Hash Tables with O(1) lookup

Pigeonhole principle

• If n items are put in m containers where n > m, then at least one of the containers has more than one item

• It means, there must exist "collision" $H(x_1) = H(x_2)$, where $x_1 \neq x_2$

Cryptographic Hash Function

1. Pre-image resistance

• Given y, it is hard to find x such that H(x) = y

2. Weak collision resistance

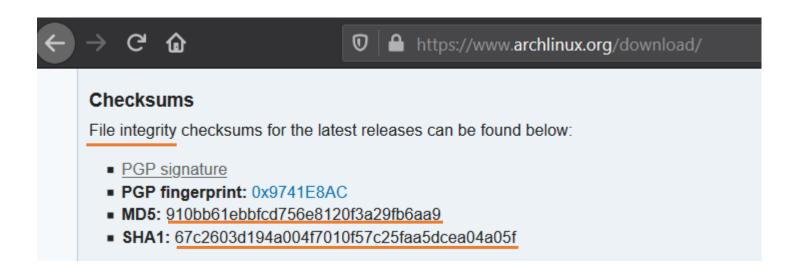
• Given x_1 , it is hard to find x_2 such that $H(x_1) = H(x_2)$ and $x_2 \neq x_1$

3. Strong collision resistance

• it is hard to find any (x_1, x_2) such that $H(x_1) = H(x_2)$

Examples: MD5, SHA1, SHA2, SHA3

Cryptographic Hash Function



Exercise 5-1

Bob is a paranoid cryptographer who does not trust dedicated hash functions such as SHA1 and SHA-2. Bob decided to build his own hash function based on some ideas from number theory. More precisely, Bob decided to use the following hash function:

H(m)= m^2 mod n, n= p × q, where p and q are two large distinct primes.

Does this hash function satisfy the one-wayness property? What about collision resistance? Explain.

1- Pre-image resistant:

Yes, since p and q are secret, then finding the square root $mod\ n$ is a hard problem

2-Weak collision resistant

No, since for any given input m, the attacker can get the same hash value using input -m

3-Strong collision resistant

No, it is easy to choose any pair (m, -m) which yields the same hash

Exercise 6-1

Let x=111 and y=19301. Factor n=21311 using the fact that $x^2 \equiv y^2 \mod n$.

$$x^2 - y^2 \equiv 0 \bmod n$$

 $(x + y)(x - y) \equiv 0 \bmod n$
If n divides $(x + y)(x - y)$, then they share common factors $\gcd(x \pm y, n) = p \ or \ q$
 $\gcd(111 + 19301,21311)$

gcd(19412,21311)
21311 = 19412 + 1899
19412 = 10 × 1899 + 422
1899 = 4 × 422 + 211
422 = 2 × 211 + 0
gcd(19412,21311) =
$$p$$
 = 211
 $q = \frac{n}{p} = \frac{21311}{211} = 101$