
Git &

Handbook

GitHub

Created by JS Mastery

Visit for morejsmastery.pro

Welcome to the Ultimate Git Guide, your go-to

resource for mastering Git, the industry-standard

version control system.

Inside, you’ll find clear explanations of Git commands

with detailed flags and real-world examples.

 Learn not just how to use commands like `git add`,

`git commit`, and `git rebase`, but also when

and why to apply them in real-world scenarios—

whether you're working solo, collaborating with a

team, or contributing to open-source projects.

We’ve included tips and tricks for maintaining a clean

commit history, resolving merge conflicts, and using

Git’s `reset` and `revert` features to undo mistakes

and fix bugs.

Introduction

https://jsmastery.pro JavaScript Mastery

You’ll also explore advanced Git features that can

boost your productivity and make troubleshooting

easier.

With practical advice and best practices, this guide

will help you streamline your Git workflow and use Git

like a pro.

Let’s get started!

Introduction

https://jsmastery.pro JavaScript Mastery

Git is a version control system that allows you to track

changes in your code and collaborate with others

efficiently. It keeps a history of your work, making it

easy to revert changes if something goes wrong.

Using Git brings numerous advantages that enhance

the development process for both individual

developers and teams.

Here are some compelling reasons to incorporate Git

into your workflow:

 Staging Are

 Undoing Mistake

 Integration with Other Tool

 Community and Suppor

 Standard in the Industry

 Version Contro

 Collaboratio

 Branching & Mergin

 Distributed Syste

 Tracking Changes

Why Use Git?

https://jsmastery.pro JavaScript Mastery

Essential Commands

https://jsmastery.pro JavaScript Mastery

Initialize a Git repository

Initializes a new Git repository. This command creates a

new Git repository in the current directory. It sets up the

basic files and directories needed to start tracking changes.

Clone repository

Clones an existing Git repository. This command creates a

copy of an existing repository on your local machine. It

copies the entire history and files of the specified repository

to your local machine.

Essential Commands

https://jsmastery.pro JavaScript Mastery

Add file to staging

Adds a file or directory to the staging area. This command

prepares the changes for the next commit. It adds the

specified file or directory to the index.

Commit with a message

Creates a new commit with a message describing the

changes made. This command creates a new commit with

the changes you made to your local repository. The commit

message describes the changes made in this commit.

Essential Commands

https://jsmastery.pro JavaScript Mastery

Pull changes

Updates the local repository with changes from the remote

repository. It pulls the changes from the remote repository

and merges them with the local changes.

Push changes

This command pushes the local changes to the remote

repository. It updates the remote repository with the

changes you made locally.

Essential Commands

https://jsmastery.pro JavaScript Mastery

Check status

Shows the current status of the repository. This command

shows the status of the repository and the changes that are

currently staged or unstaged.

List branches

This command lists all the branches in the current

repository. It shows the current branch you're on and

highlights it with an asterisk.

Essential Commands

https://jsmastery.pro JavaScript Mastery

Switch a branch

This command switches to the specified branch. It updates

the working directory to match the contents of the specified

branch.

Merge branch

This command merges the specified branch into the

current branch. It combines the changes from both

branches and creates a new commit.

Essential Commands

https://jsmastery.pro JavaScript Mastery

List all commits

This command shows a list of all commits in the repository.

It displays the author, date, and commit message for each

commit the repository has.

List remote repositories

This command lists all the remote repositories associated

with the local repository. It shows the URL of each remote

repository.

Essential Commands

https://jsmastery.pro JavaScript Mastery

Check difference

This command shows the differences between the working

directory and the staging area or the repository. It displays

the changes made to the specified file.

Fetch changes

This command downloads the changes made in the

remote repository and updates your local repository, but it

does not merge the changes with your local branch.

Essential Commands

https://jsmastery.pro JavaScript Mastery

Reset changes

This removes the specified file from the staging area,

effectively undoing any changes made to the file since the

last commit. It does not delete the changes made to a file.

Revert changes

Creates a new commit that undoes the changes made in

the specified commit. It does not delete the specified

commit, but it creates a new commit that reverts the

changes made in that commit.

Advanced Commands

https://jsmastery.pro JavaScript Mastery

Stash

This command allows you to save your changes without

committing them, which can be useful when you need to

switch branches or work on a different task.

Cherry Pick

This command allows you to selectively apply changes

made in a specific commit to your current branch, which

can be useful when you need to incorporate changes made

in another branch without merging the entire branch.

Advanced Commands

https://jsmastery.pro JavaScript Mastery

Bisect

This command allows you to perform a binary search

through your commit history to find the commit that

introduced a bug.

Blame

This command allows you to see who last modified each

line of a file and when they did it, which can be useful when

you need to find out who introduced a specific change or

when a specific change was made.

Advanced Commands

https://jsmastery.pro JavaScript Mastery

Reflog

This command allows you to view a log of all changes

made to Git references, which can be useful when you need

to recover lost commits.

Worktree

This command allows you to work on multiple branches at

the same time in separate working directories, which can

be useful when you need to switch between branches

quickly without losing your current changes.

Advanced Commands

https://jsmastery.pro JavaScript Mastery

Filter branch

This command allows you to rewrite Git history by applying

filters to branches, which can be useful when you need to

remove sensitive data from your Git repository.

Merge Squash

This command allows you to merge changes from one

branch into another branch as a single commit, which can

be useful when you want to maintain a clean commit

history.

Advanced Commands

https://jsmastery.pro JavaScript Mastery

Submodule

This command allows you to include one Git repository

within another Git repository, which can be useful when you

need to use code from one repository in another repository.

Submodule foreach

This command allows you to run a Git command in each

submodule, which can be useful when you need to update

multiple submodules at once.

Advanced Commands

https://jsmastery.pro JavaScript Mastery

Rebase

This command allows you to interactively rewrite Git history

by reordering, editing, or removing commits, which can be

useful when you need to clean up your commit history.

Rebase

This command allows you to apply the changes made in

one branch onto another branch, which can be useful when

you need to update a feature branch with changes made in

the master branch.

Advanced Commands

https://jsmastery.pro JavaScript Mastery

Use Git Hooks

Git hooks are scripts that Git can run automatically before

or after certain events, such as committing or pushing

code. You can use Git hooks to automate tasks, run tests, or

enforce code style guidelines.

Learn about Git Internals

Git is built on a set of data structures that are used to store

and manage code changes. Understanding how Git works

under the hood can help you troubleshoot issues and

optimize your workflow.

Git tips that you might find helpful

Advanced Commands

https://jsmastery.pro JavaScript Mastery

Git tips that you might find helpful

Use Git Aliases

Git aliases are custom shortcuts for Git commands. You can

use aliases to save time and make your workflow more

efficient. For example, you could create an alias for git

status that is shorter and easier to remember.

Use Git Configurations

Git configurations allow you to customize various aspects of

how Git behaves. For example, you can configure Git to

automatically rebase branches when you pull changes, or

to always use a specific text editor for commit messages.

Flags (or options) in Git commands modify the

behavior of the command or provide additional

functionality. They usually start with a single dash (-)

for short flags or double dashes (--) for long flags.

Using flags allows you to customize commands

according to your needs, making your workflow more

efficient.

Importance of Flags

 Customization: Flags let you tailor commands to

your workflow

 Efficiency: Combining flags can save time and

reduce commands.

 Control: Flags provide more control over

operations.

What are Flags in Git?

https://jsmastery.pro JavaScript Mastery

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

-m

Allows you to provide a commit message directly in

the cmd line, avoiding the need to open an editor.

-u

Used with git add. Stages changes to tracked files

only, ignoring untracked files.

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

--amend

Modifies the last commit by adding new changes or

updating the commit message.

--oneline

Used with git log. Displays each commit on a single

line, making the log easier to read.

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

--graph

Used with git log. Visualizes the commit history as a

graph, helping you understand the branch structure.

-b

Used with git checkout. Creates a new branch and

switches to it in a single command.

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

--no-ff

Used with git merge. Forces a merge commit even if

the merge could be performed with a fast-forward.

--rebase

Used with git pull. Reapplies your local commits on top

of the fetched changes, creating a cleaner history.

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

--force

Used with git push. Forces a push to the remote

repository, overwriting changes. Use with caution!

--hard

Resets the working directory and staging area to a

specific commit, discarding all changes.

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

--no-commit

Used with git revert to apply the changes without

immediately committing them.

--no-edit

Prevents Git from opening the commit message editor

when reverting a commit.

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

--soft

To move the HEAD pointer to a specific commit without

changing the staging area or working directory. This

keeps changes staged for a future commit.

--hard

Resets the HEAD pointer, staging area, and working

directory to the specified commit. This command

deletes all changes, so use it with caution!

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

--mixed (default)

Moves the HEAD pointer and updates the staging area

to match the specified commit, but leaves the working

directory unchanged. This is useful for un-staging files.

push

Saves your local changes to a stash and clears your

working directory. You can later apply these changes.

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

stash apply stash@{index}

This command applies the changes from a specific

stash without removing it. Replace {index} with the

stash number (e.g., stash@{2}).

list

Lists all stashed changes, giving you an overview of

what you have saved.

Useful Git Flags

https://jsmastery.pro JavaScript Mastery

pop

Applies the changes saved in the latest stash and

removes that stash entry from the list.

drop

Deletes a specific stash entry, allowing you to clean up

your stash list.

Collaborating on a Team Project

When multiple developers are working on the same

project, Git is essential for ensuring that everyone’s

changes can be integrated smoothly. For instance:

Use Case:

A team is building a new feature for an e-commerce

site. Each developer can work on separate branches

for their part of the feature, such as the frontend UI or

backend API.

When the work is complete, they can merge their

branches into the main codebase without overwriting

each other’s work.

Git tracks changes and makes merging easy.

Real-World Use Cases

https://jsmastery.pro JavaScript Mastery

Handling Hotfixes on a Live Site

Suppose you’ve deployed a website, but a critical bug

appears after launch. You need to fix it without

disrupting ongoing development work.

Use Case:

While the team continues to work on the next release

in the development branch, a dev creates a hotfix

branch from the main branch to address the bug.

Once the fix is applied, it’s merged into main and

immediately deployed, while also being merged back

into development to keep everything in sync.

Key Git Features:

Branching, Staging, Merging

Real-World Use Cases

https://jsmastery.pro JavaScript Mastery

Rolling Back a Buggy Release

Sometimes, a new update introduces bugs that are

hard to fix right away. Git lets you easily roll back to a

stable version.

Use Case:

After a buggy release, the team decides to revert the

project back to the last stable version. Using Git, they

can either revert specific commits that introduced the

bugs or reset the project to an earlier commit.

Key Git Features:

git revert, git reset, git log to view commit history.

Real-World Use Cases

https://jsmastery.pro JavaScript Mastery

Experimenting with New Features

A developer wants to experiment with a new feature

without affecting the main project.

Use Case:

The developer creates a new branch (e.g.,

feature/new-auth-system) to test a new

authentication system. This keeps the main project

clean and unaffected by experimental changes. If the

experiment is successful, they can merge the branch

back into the main project.

Key Git Features:

Branching, Merging

Real-World Use Cases

https://jsmastery.pro JavaScript Mastery

Maintaining a Clean Commit History

In large projects, it’s important to maintain an

organized and clean history of changes.

Use Case:

A developer works on several small fixes and

experiments, but before pushing their changes to the

remote repository, they use Git’s interactive rebase

(git rebase -i) to combine some of their smaller

commits into one, making the history easier to

understand.

Key Git Features:

git rebase -i, git commit --amend.

Real-World Use Cases

https://jsmastery.pro JavaScript Mastery

Maintaining a Clean Commit History

In large projects, it’s important to maintain an

organized and clean history of changes.

Use Case:

A developer works on several small fixes and

experiments, but before pushing their changes to the

remote repository, they use Git’s interactive rebase

(git rebase -i) to combine some of their smaller

commits into one, making the history easier to

understand.

Key Git Features:

git rebase -i, git commit --amend.

Real-World Use Cases

https://jsmastery.pro JavaScript Mastery

Start with the Basics

Before diving into complex workflows, focus on

mastering the core commands (git add, git

commit, git push, git pull, git clone). These are

the foundation of Git, and once you get comfortable

with them, you'll be ready for more advanced topics.

Understand Branching

Branching is one of the most powerful features of Git.

Practice creating new branches (git checkout -b),

switching between branches, and merging them.

It’s a safe way to experiment and keep your main

project intact.

Tips to Master Git & GitHub

https://jsmastery.pro JavaScript Mastery

Commit Often and Meaningfully

Make small, frequent commits instead of one big

commit. This makes your project easier to track and

troubleshoot. Include clear and descriptive commit

messages, so you and your team know exactly what

each change was for.

Explore GitHub Features

Take time to learn how to create Pull Requests (PRs),

review code, and comment on issues. GitHub’s

interface provides collaboration features that

streamline project management and code sharing.

Tips to Master Git & GitHub

https://jsmastery.pro JavaScript Mastery

Practice Staging and Reviewing Changes

Use the staging area (git add) to review what you’re

about to commit.

Check your changes with git status and git diff to

ensure you’re committing the right updates.

Use .gitignore Properly

Learn to set up a .gitignore file to exclude unnecessary

files (like dependencies, build files, or local configs)

from being tracked.

This keeps your repository clean and focused only on

relevant code.

Tips to Master Git & GitHub

https://jsmastery.pro JavaScript Mastery

Get Comfortable with Undoing Changes

Don't be afraid of making mistakes! Git has many

ways to undo changes (git reset, git revert,

git checkout).

Practicing how to roll back commits or reset files can

give you confidence in experimenting with your code.

Learn to Use Git Remotes

Get comfortable using remote repositories like GitHub

Bitbucket or GitLab.

Practice pushing, pulling, and cloning repositories to

collaborate on projects across different machines.

Tips to Master Git & GitHub

https://jsmastery.pro JavaScript Mastery

Use Aliases for Speed

Speed up your workflow by creating Git aliases for

commonly used commands. For example, alias

git st for git status or git co for git checkout.

This saves time on repetitive typing.

Read the Documentation

Git's documentation is detailed and helpful for solving

issues or learning more about specific commands.

If you’re ever stuck or want to explore a specific

command or workflow in-depth, the official docs are

an excellent resource to help you find answers and

understand best practices.

Tips to Master Git & GitHub

https://jsmastery.pro JavaScript Mastery

Practice Collaboration with Others

Work on open-source or team projects to get hands-

on experience with real-world Git workflows like

resolving conflicts and managing branches.

Commit Often, Commit Smart

Make small, frequent commits with clear messages.

This keeps your project history clean and helps you

track changes more easily.

Use Branches for Everything

Always create branches for new features or bug fixes

to keep your main branch stable and organized.

Tips to Master Git & GitHub

https://jsmastery.pro JavaScript Mastery

Here are some naming best practices to keep your Git

workflow organized & easy to understand:

Use Consistent Naming Conventions

 Stick to a clear and predictable format like

feature/, bugfix/, or hotfix/ followed by a

short description.

 Example: feature/user-authentication,

bugfix/navbar-alignment.

Use Lowercase Letters and Hyphens

Avoid spaces or uppercase letters; use hyphens to

separate words for readability.

Example: feature/new-ui-design, not Feature/

NewUIDesign.

Branch Naming ️Practices

https://jsmastery.pro JavaScript Mastery

Be Descriptive, but Concise

 Use clear and meaningful names that describe the

purpose of the branch.

 Avoid vague names like fix or update.

 Example: feature/user-profile-page is better

than just feature/profile.

Include Issue or Ticket Numbers (If Applicable)

If you're working with project management tools like

Jira, include the ticket or issue number in the branch

name.

Example: feature/JIRA-1234-user-auth.

Branch Naming ️Practices

https://jsmastery.pro JavaScript Mastery

Avoid Long Branch Names

 Keep it short and focused. Long branch names are

hard to read and manage.

 Example: hotfix/critical-bug, not hotfix/

critical-bug-in-header-footer.

Use Team-Specific Prefixes (If Needed)

For larger teams, consider using team or project-

specific prefixes.

Example: backend/feature/api-endpoint or

frontend/feature/user-dashboard.

Following these conventions makes collaboration

easier and keeps the repository well-structured and

manageable.

Branch Naming ️Practices

https://jsmastery.pro JavaScript Mastery

The End

https://jsmastery.pro JavaScript Mastery

Congratulations on reaching the end of our guide! But

hey, learning doesn't have to stop here.

If you're eager to dive deep into something this specific

and build substantial projects, our

 has got you covered.

special course on

Next.js

The Ultimate

Next 14 Course

If you're craving a more personalized learning

experience with the guidance of expert mentors, we

have something for you — .Dev Career Accelerator

Dev Career Accelerator

If this sounds like something you need, then don’t stop

yourself from leveling up your skills from junior to senior.

Keep the learning momentum going. Cheers!

