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I our previous e-book, “Mastering BAG" our goal was clear: building enterprise-grade
RAG systemns, productionizing them, monitonng ther performance, and improving them.
Al the core of it, we understood how RAG systems enbance an LLM's ability to work with
specific knowledge by providing relevant context.

In this e-book, we're taking a step further and aslang, *How do we use LLMs to
accomplish end-to-end tasks?" This singular question opens up a dooar: Al agents. A RAG
systemn helps an LLM provide accurate answers based on given context. An Al agent
takes that answer and actually does something with it — makes decisions, executes
tasks, or coordinates multiple steps to achieve a goal.

A RAG-enhanced LLM could help answer questions about pobcy details by pulling rebevant
information. But an Al agent could actually process the claim end-to-end by analyzing the
docurnentation, checking policy compliance, calculating payments, and even coordinating
with other systems or agents when nesded.

The ideas behind agents has existed for years. It can be a software program or another
computational entity that can accept input from its emaranment and take actions based
on rules. With Al agents, you're getting what has never been there before: the ability to
understand the context without predefined rules, the capacity to tune decisions based on
context, and learning from every interaction. What you're getting is not just a bot working
with a fixed set of rules but a systermn capable of making advanced decisions in real-time.,

Companies have quickly adapted, adopted, and integrated Al agents into their workflows.
Capgemini's research found that *10% of organizations already use Al agents, more than
half plan to use tham in 2025 and 82% plan to integrate them within the next three years.”
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Mastering Al Agents

This e-book aims to be your go-to guide for all things Al agents. If you're a leader looking
to guide your company 1o build successful agentic applications, this e-book can serve
as a great guide to get you started. We also explore approaches to measuring how well
your Al agents pedorm, as well as common pitfalls you may encounter when designing,
measuring, and impraving them.

The book is divided into five chapters:

Chapter 1 introduces Al agents, their optimal applications, and scenarios where they
might be excessive, It covers vanous agent types and includes three real-world use cases
to illustrate their potential.

Chapter 2 details three frameworks —LangGraph, Autogen, and CrewAl—with evaluation
cntena 1o help choose the best fit. It ends with case studies of companies using these
frameworks for specific Al tasks,

Chapter 3 explores the evaluation of an Al agent through a step-by-step example of &
finance research agent.

Chapter 4 explores how o measure agent performance across systems, task complation,
quality eontrol, and tool nteracton, supported by five detailed use cases.

Chapter 5 addresses why many Al agents fall and offers practical solutions for successful
Al deployrment.

We hope this book will be & great stepping stone in your journey to build trostworthy
agentic systems.

- Pratik Bhavsar
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What are Al agents?

Let's start by understarding what Al agents are and which tasks you should use them for
to maximize their potential.

Al agents are software applications that use large language modeds (LLMs) to
autonomously perform specific tasks, ranging from answering research questions to
handling backend services, They're incredibly useful for tasks that demand complex
decision-making, autonomy, and adaptability, You might find them especially haipful in
dynamic environments where the workflow invohes multiple steps or interactions that
could benefit from automation.

administratie tasks and manually entening data). Imagine the time that could have gone
into directly engaging with customers, developing desper relationships, and ultimately
closing rmore sales. This is true acress multiple domains and applications: fnance, health
care, tech, marketing. sales, and more.

Let’s use an example to understand this better. Imagine you run an onling retall business
and recaive hundreds of customer inguiries every day about order statuses, product
details, and shipping Information. Instead of answering each and every query yourself, you
can integrate an Al agent into your solution to handle these queries.

Here's how it would typically work:

1. Customer Interaction
A custormer messages your service asking, “When will my order ship?”

2. Data Retrieval
The Al agent accesses the order management system to find the specific order details.

3. Response Generation

Based on the data retrieved, the agent automatically provides an updates to the customer,
such as sending "Your order will ship tormarrow and you'll receive a tracking link via email
once it's on its way.”
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Mastering Al Agents
The return to having an Al agent i multifold here:

*  Super guick response time that keeps your customers happy
*  Frees up your human staff to handle more complex quenes and issues
e |mproves your overall productivity and efficiency

Fig 1.1 is an example of how agents are leveraged for code generation.

Conversation

Switch to Backup —— User

Eval Environment Bl st Al Agent

Errar <falura log>

pters | | 1
' Ratrieval signalura —
- - _}
| sty |
Corfent rasult
Wil =fias ol
Aum last
Suscess

Fig 1.1: Autarmated Al-Driven Developrmant using Al agents




Types of Al Agents

Mastering Al Agents

Mew that we're familiar with what Al agents are, let's look at different types of Al
agents along with their charactenstics, examples, and when you can use them.
See Table 1.1 below to get a quick idea of the types of Al agents and where and
wihen you can uss them.

Mame of the agent Key Characteristics

Fixed Autamation: Tha

Digital Assembly Line

LLk-Enhanced:
Smarter, but Not
Einatein

Rafct: Baasoning
heats Actian

Pafct + RAG:
Groundad Intelfgence

Tac-Ennancad: The
hALiHi- Taskars

Self-Reflecting: Tha
Phioscphers

hAesmony-Entancesd:
The Personalizad
Pensrerioilsas

Erwirorimant
Controllers: Tha World

ohapsars

Sell-Learning: The
Evaluficnaness
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Mo intaelligence, prediciable
betaiorn, rrvlsd Sscops

Context-awara, rula-
cangiranad, stateless

hdilbi-step workfiows,
dynarmes planning, basic
proglerm-sohing

Extermal knowladge
acoass, low hallusnations,
regd-lime dala

hiulti-fool integration,
dyrarmic: execition, Pigh
autormation

hata-cognition,
explainability, salf-
irmgrevernarn

Leargy-tarmm rmsrmoey,
personalizatian, adaptne
learning

Actne erndmonment control,
autorrmcs operation,
faedback-driven

Sutonomous lsaming.
adaptive/scalabla,
eniutiorary Bebaviar

Examples

HFEA amail
auloraspondars, basic
LTS

Email filttars, cartant
moderatian, suppor
tickost raufing

Trawsl plannars, Al
dunpgaon mastans,
projact planning tools

Legal resaarch tooks,
medical assstants,
lechrical support

Code generation toals,
data anahsis bots

Sall-evaluating systems,
CIA Bgerts

Projest managermant Al
persanalizad aszistants

AutolEPT, adagiive
rabotics, amart cities

Meaural natworks, swarm
Al financial pradichion
models

Table 1.1: Typas af agents and b charactaristics

Best For

Repatitive tasks,
stractured data, ne nsed
for adapiahility

Flaxible tasks, high-
voiumedow-stakes. cost-
sanstive scananas

Stratages plarming, rmlti-
staga quariss, dynamic
adjustmants

High-stakes decisions,
dornain-spaciic tasks,
real-firme knowiedge
reads

Complax workllcous

resquiring multiple teols
arnd APls

Tasks requinirg
accountabiily ard

imprevernand

Invidualized
expenences, long-tanm
intaractions

Swvatern cantrol, kaT
infegration, amonomous
aparations

Cutlirg-sdga rasaarch,
autoromaus |Barning
ayslams

o
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Mastering Al Agents

Fixed Automation —
The Digital Assembly Line

This level of Al agents represents the simplest and mast rigid form of autormation. These
agents don't adapt or think—they just execute pre-programmed instructions. They are
like assembly-ling workers in a digital factory: efficient but inflexible. Great for repetitive
tasks, but throw them a curveball, and they'll freeze faster than Internet Explorer.

{See Table 1.2 beiow)

m

Irfaliganda Mo legrning, adaptation, or mamony.

Eahawvior FPredictable and consistent, labaws pre-delined rubss.

Soape Limited to repetitive, wall-defined tasks. Strupgles with unexpectad soananos.
Bast Use Cages Rautra tasks, structursd dala, situations with miremal neasd far adaptabiiity,
Examples RPE for irvoice processing, email autorasponders. basic senpting tooks [Bash,

PowerShell).

Table 1.2: Charactenistics of 8 fixed adomahon agant

The fixed automation workflow [See Fig 1.2) follows a simple, inear path. it begins when
a specific nput (ke a file or data) triggers the system, which consults its predefined
rulebook to determing what to do. Based on these rules, it executes the required action
and finally sends out the result or sutput. Think of it as a digital assembly line where
each step must be completed in exact order, without devation.

Fixed Automation Agent
; Prededfined Exacute Sand Chalput ¢
input Tgoa A Ation Aot
Fig 1.2 Workflow of a fixed automation agent / ! =
iy / >
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Mastering Al Agents

LLM-Enhanced —
Smarter, but Not Exactly Einstein

These agents leverage LLMs to provide contextual understanding and handle
balance intelligence and simplicity, making thern highly efficient for low-complexity,
high-valume tasks. Take a look at their features below in Table 1.3

Corttasdt-snars; levarages LLMS o process ambiguaus inputs with cantadual

Irtsliganss )
FEESCING.
Bahavior Rula-constrained:; decisions are vakidated against pradetined nues or threshalds.
Soape SHadeless; no ong-lerm memony; each task is processad inoepandanty
Ta=ks eauiring Nexibilty with ambiguous t5, high-volumaiow-slakes
Bast Use Cases : L $ R g hing 5 { :
scenanos, and cost-sansitve situatons whan "close anough” i sufficient.
Examplas Email filters, Al-erhancad contant moderation, custarmar suppart classificaion.

Tablae 1.3: Charactanstes of an LLM-enhansed agent

The workflow below (Fig 1.3) shows how these smarter agents process information:
starting with the input, the agent uses LLM capabilities to analyze and understand
the input context. This analysis then passes through rule-based constraints that keep
the agent within defined boundanes, producing an appropriate output. it's like having
a smart assistart who understands context but still follows company policy before
making decisions.

LLM-Enhanced Agent
, LLM Rule-basad Cutput /
e Lk (contaxtual analysis) Constraint Action }
Fig 1.3: Workilow of a LLM-enhanced agant / ! =
J/ / y E
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Mastering Al Agents

ReAct —
Reasoning Meets Action

ReAct agents combine Reasoning and Action to perform tasks that invohee strategic
thinking and multi-step decision-making. They break complex tasks into manageable
steps, reasoning through problems dynamically and acting based on ther analysis.
These agents are like your type-A friend who plans their weekend down to the minute,
Table 1.4 liztz ther charactenstics.

Featura | Description

Reasaniryg ard action; mirmics human protlem-sahing by thinking thraugh a

InteigenGe problam and executiong the next stag.

Behicrioe HEI'I-L‘"E:E muli-ghap warkflows, braaking thems denn inta amallar, acticnabils parls,
Cyramically adjusts strategy based an mew data.

Scaps Assists wath basic open-endad proflesm-sohing, even withow a dirsct salution path.
Strafeqi nirky. rmli-= Lerias, tasks irin PRI ris, andd

Bagt Usa Cases = &l F*-:"'g"'!él laxge g reaniring dy atfusime

Examples It_;JrEuagE agerits sodving mulbi-steg qusnas, Al Dungssan Mastars, profsct planning

Table 1.4: Characieristics of a fixed HaAct agan)

The RedAct workflow starts with an Input Query and then enters a dynamic cycie between
the Reasoning and Action Phase, as you'll see in Fig 1.4. Unlike simpler agents, it can
loop between thinking and acting repeatedly until the desired outcome is achieved before
producing the final Output/Action. Think of it as a problem solver that keeps adusting its
approach - analyzing, trying somathing, checking If it werked, and trying again if needed.

Fixed Automation Agent

[ Haasarirg

[ Ingui Trigge ]—) reapeaat undil cesired cutcome achiswvad [ Tt{':;:]f ]

=

y /
Fig 1.4: Workfow of a ReAct agent / -
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Mastering Al Agents

ReAct + RAG — Grounded Intelligence

Mew, maving on to agents who are much more inteligent, we come to ReAct + RAG
agents that combine reasoning, action, and real-time access to external knowledge
sources. This mtegration allows them to make informed decisions grounded in accurate,
domam-specific data, making them ideal for high-stakes or precision-cntical tasks
{especially when you add evaluations). These agents are your ultimate trva masters with
Google on speed dial. See Table 1.5 to learn how this agent works.

Featura Description

Employs a BAG workdlow, combaning LLRAS with axlarmad krowisdge sourcas

IPESgarcs {databases, APl documantatan) for anbanced context and accuracy.

Bahavier Lises Rafct-shyte reasaning to break down tasks, dynarmically refrieving indormatcn
as naeded. Grounded inreal-fima or demain-spacilic knowledge.

Sen Drassigried for scenarios requinng high accuracy and relavance, mirimizing

m hallcinations.

Bact Lisa Casas High-stakes dﬁnsrzn-rr'ﬂkng.. domain-specilic appicabors, tasks with dyramic
knowledge reeds la.g., real-ima updates).

Erampies Legal rasaarch tools, medical assstants ederencing crical studes, tachnical

trouleshaoting agents,

Table 1.5; Characteristics of a ReAct + RAG agent

Starting with an Input Guery, this advanced workflow combines ReAct's reasoning-action
loop with an additional Knowledoe Retrieval step. The agent cycles between Reasoning.
Action Phase, and Knowledge Retneval (See Fig 1.8) — consulting external sources as
needed — umtil it reaches the desired outcome and produces an Output/Action. It's like
having a problem solver who not only thinks and acts but also fact-checks against reliable
sources along the way.

ReAct + RAG Agent
Roasarrg
Irgput Cuery it untl dasiad outtoms achisved | T ﬂiﬁ’.ﬁ:

Sction Phase e

Krowladge
Fatrigual

Fig 1.5: Workfow of a Basct + BAG agernt / =
[ o, -
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Mastering Al Agents

Tool-Enhanced — The Multi-Taskers

Tool-enhanced agents are versalile problem solvers that ntegrate multiple tools,
leveraging APls. databases, and software to handle complex, mutti-domain workflows.
They combine reasoning, retrieval, and execution for seamless, dynamic task
completion. Think of them as tech-savwy Swiss Army knives capable of combiring
reasoning, retneval, and exscution seamlessly! (See Table 1.6)

Featura Description

Leverages APz, databasas, and software toals to parform tasks, acting 2 a muilt-

IPESgarcs toal irtegrator,

Bahavioe Handles mulli-stap warkflows, dvnarmicaly switching babween toole based on task
TELRIrAmEts.

Sen Automales repetithve ar muti-stags processas by ntegrating and utiizing dhvarse

m taals.

Jobis reguiring diversa tools and APls i tandam for comples or multi-stage

Bast Use Cases S

Exampias Code ganeratan fools [GiHub CoPilot, Sourcegraph's Cody, Wamp Tarminal), dala

analysis bots combinirg multipia APls.

Table 1.8: Charactanstcs of tool-anbanced agants
Starting with an Input Guery, the agent combines reasoning with a specialized todl loop.
After the initial reasoning phase, it selects the appropriate tool for the task (Tool Selection)

and then executes it (Toal Execution). This cycle repeats until the desired outcome is
achieved, leading to the final Output/Action. (See Fig 1.8)

Tool Enhanced Agent

Raasaring
[ Input Cuery ]—) rapaat until desired outcome achisvad ™ ﬂ:{_ﬁ:

Teal Exacufion - Tl Seledction

Fig 1.8 Workdlow of tool-enhanced agants / ! =
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Mastering Al Agents

Self-Reflecting — The Philosophers

These agents think about their thinking. Seff-reflectng agents imtroduce meta-
cognition—they analyze their reasoning, assess their decisions, and learn from mistakes,
This enables them to solve tasks, explain their reasoning, and improve over time,
ensunng greater reliability and accountability, (See Table 1.7)

Feature Description
Exhibéts meta-coonition, evaluating s awn thought progessas and decsEion
s Lt oubcormas:
Batavior Prowidas explanations for acbons, offering transpanancy nitodiis reasening. Laarms
: from mistakes and improves parfanmance ower fimsa,
Siape Suited far tasks reguinng accouniabiliby arsd confinuous imgrovement.
Clually assuranca, sansive dacision-making whers explainability and seif-
Blet Lisa Lasog mprovament ara orudial,
Erampies Al that explairs its reasonirg, sat-avaluating Bamng systams, qually assurarca

(A agants.

Table 1.7: Characienstics of sall-raflectng agends

Starting with an Input CQuery, the agent goes through a cycle of Heasoning and Execution,
but with a crucial additional step: Reflection. After sach execution, it reflects on its
performance and feeds those insights back into its reasoning process. This continuous
leop of thinking, doing, and learming continues until the desired outcome is achieved,
producing the final Output/Action. This is evident in Fig 1.7.

[ Y Executicn

When )
. — desired Dutput ¢ "
Iripat Clussry Feasoning A N ¥ Faflestian

achived ‘

‘[ Feadhack Loap

Fig 1.7: Workdiow of seff-raflecting agents | / ! =

[ /
! Galileo
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Mastering Al Agents

Memory-Enhanced —
The Personalized Powerhouses

Give an agent a litte memoany, and you have the ultimate personal assistant. Memory-
enhanced agents bring personalization to the forefront by maintaining historical context
and remembenng user preferences, previous interactions, and task histony. They act as
adaptive personal assistants, providing talored experiences. and continuous, context-
aware support. These agents remember your preferences, track your history, and
theoratically — would never (ever) forget your coffee order! (See Table 1.8)

Feature I Description

Intaligencs Poesesses lang-tarm mamory, storing and recaling past interactions, prefersncas,

and task progress.
Bahavioe Prowidas contexd-awars parsonalzaton, adapting decisicns and actions based an
user-specific data and histary. Laarns and empeavas avar time.
S Bxcals &t tasks ragquiring mdsidualizad sxpenences, taiorad rscoemmendatians, and
pa rmaintaning cansistendy acrags multips irtaractions,
Bast Use Cases Personalized assistancs, long-tenm ntaractons, tasks spanning multiple sessions;
Examples Profact managemant Al with task history, customar sanica bots fracking

rterachans, parsanaked shopping assistants,
Table 1.8: Charactaristics af memoary-enhanced agents

Look at Fig 1.8: Starting with an Input Query, this agent first recalls relevant past
expenences and preferences (Memory Recall), then uses this context for Reasoning about
the current task. After deciding on a course of action, it executes it (Action/Execution),
updates its memory with new information (Memory Update). and produces the Output.

Raascning Action
[ ? Phase Executian
Marnory -] g Mesniony
wput Lhery ]"’ Racall J » Update CutE

); Updates Long-term Mermary —J

Fig 1.8: Warkfiaow of mamory-enhancad agents

W Galileo B@ 5
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Mastering Al Agents

Environment Controllers —
The World Shapers

Ervironment-controlling agents extend beyond decision-making and interaction—they
activety manipulate and control ervironments in real time. These agents are equipped
to perform tasks that influence the digital landscape or the physical world, making
them ideal for applications in automation, robotics, and adaptve systems, Think smart
thermostats, but on steroids! (See Table 1.9)

Featura ! Description

Avtanamous Barring; refmes models and processes bassd on fsedback. dala, or

Inteligence anvironmertal changes without marusl updates,

B Adaptive and scalabla, adusting to changing cooditions and new tasks. Exhibite
avalutionary bahavior, improwving padammance over imea.

Sen cuited far cutling-edgs research and autorareaus lsaming systams, afferrg high

2 petertial but reguiring carsful monitorng.

Bast Line Sadng Situations whara autonomous learming and adaptation are orudal, such as comgples
resaarch, simuation, or dynarmic emiranments.

Eidinpies Maural netwarks with evolutionary capabilifies, swarm Al systerns, aufanamous

rebolics, hanciad pradiction models.

Table 1.5 Charactenstics of anvirenmerl-cantraling agents

Otserve the workflow in Fig 1.9 carefully. Starting with an Input Query, the agent firsst
observes its surroundings (Perception Phase), reasons about the current state and
required changes (Reasoning Phase), takes action to modify the environment (Action
Fhase), and then receves feedback about the changes (Feedback Phase). This cycle
repeats until the desired goal is met, producing both an Output and changed system state,

Erndronrmeant Cortrol Loop

.I: lterata urthl goal med ]
| a Parteption Fesdback
ULy Phase Action Phese
Priasa
RFaasonin
o Phasa 3 Goal acheved
l Outpul +
Changed State
Fig 1.8: Warkflow of an anvironmert-canirotsd agent
! Galileo
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Mastering Al Agents

Self-Leaming — The Evolutionaries

The hoty grail of Al agemts: those that can improve themselves over time. They leam,
adapt, and evolve without needing constant babysitting. These agents improve
themselves over time, learning from interactions, adapting o new environments, and
evalving without constant human Intervention. They combing elements of reasoning,
memony, ervironment contral, and self-reflection with autonomous learning capabilities
to adapt and optimize their behavior.

Are they the future of AI? Potentially. Are they also termfying? Without evaluations,
observation, regulation, and oversight, very much so.

Featura Description

Altdnamous kaming; refines modsls and procasses basad an feedback, data, or

IFelgenca anvircnmental changes without manus! updates.

Bahawvior Adaptig and scalable; adjusting fo changing conditions and new tasks, Exhibils
avalufionary behavior, improwving parfammance over ime,

Se Suited far cuthng-edge research and autornamaus lBaming systams, afferding high

e potential but requining carsful monitoring.

Bagt Uisa Cases Situations whera autonomous isamirgg and adaptation are crucal, such as complex
rasaarch, simuation, or dynames erawanmanis.

Exdmples Maural matwirks with evslutionary capahilites, swarm Al sysiems, aulanomous

rebiodics, fmancial pradiction models.

Table 1.10: Self-lsarning agants’ charactaristios

Fram the workflow in Fig 1.10, you'll realize how a self-learning agent are akin to an Al
resgarcher that gets smarter with every experiment, constantly refining its methods and
knowlaedge.

Starting with an Input Guery, the agent enters a continuous cycle beginning with the
Learning Phase where it processes available data, moves to Reasoning to analyze it, then
takes Actions based on its analysis. The Feedback Phase evaluates results, leading to

an Bvalution Phase where the agent adapts and improves its models. This cycle repeats
continuously, producing not just an Output but an evolved version of both the sclution and
the agent itseif.

! Galileo
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Mastering Al Agents

Erwirorment Contral ng
‘ Aetion Phasa
Aeasoning Faedback
Phas Phase

Evalution .
[ iyt ey ]’)[ Fhaasr ] [ Phase Em'lﬂm?
’[— Continuous Haration —J Output +

Ewvolved Agant

Fig 1.10: Waorkflow of a salf-learning agant

What's fascinating is that each type has its own sweet spot—there's no "one-size-fits-
all® solution. The key is matching the right agent type to your specific needs, whether
you need the reliable consistency of fixed automation for routine tasks or the adaptive
inteligence of seli-learning agents for cutting-edge research.




Mastering Al Agents

When to Use Agents?

We've looked al the agent typas and where each one excels. That said, you still need ta
be able to gauge where you'll need an Al agent. Agents are highly beneficial when tasks
require complex decision-making, autonomy, and adaptability, They excel in environments
where the workflow is dynamic and involves multiple steps or interactions that can benefit
fraom autormation. You'll see how workflows in different domains can benefit from the use of

Al agents in Table 1.11 below:

Haredling guearies, proniding

Customer Support raal-time assistance, issue
escalation
Research and Data Gatharing, processing, and
Anahsis arakyzing data
Firancial Tradeg Raal-trma dala protessng
Perzanalizad lsarmirg
Education )
EREArENNs
Software Code ganeration, debugging,
Devalopment and taating

Benefits of Using Al Agents

Agants anhancs the efficiency end custamer
axpariancs by atfering fimsly and accurate
raspansss, allowng buman stafl o foses oo mons

Ccomplax iS5ues.

Thay autonomously prinide desp insights trom
largs datasets, helping you understand pattarns
withaut manual effort.

Agents axcel in making quick decisions basad on
rapidy-changing markest condtions.

Thasa agents adapt to asch student's lesarming

pace, offenng failored faedback and supgariing
UL Esrning journsnys aflectivaly.

Agants straamling the developrmant procass by
hardirg . rmpatitive taskes B cading and tasting,
improsing code quality, arvd reducng desalopmsant
time. Thay alEo lkarm and improwe owar ima, which
continealy anhancas thar aesistancs.

Table 1.171: Domains and applications that can bansdit rom the usea of & agents
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VWhen Not to Use Agents?

Agents offer many advantages, but there are certain scenarics in which deploying them
maght nat be the best option.

If thee: tasks you're dealing with are straghtiorward, oceur infrequently, or reguire only
il autormnation, the complexity and cost of implementing Al agents might not make
sense for you. Simple tasks that existing software solutions can handle efficiently do not
necessanly benefit from the added intncacy of agent-based systerns. In such cases,
sticking with tradiional methods can be more efficient and cost-effective.

Also, if your tasks require deep domain-specific knowledge or expertise—like conducting
complex legal analyses, making intricate medical diagnoses. or handling hegh-stakes
decision-making in unpredictable environments —these are typically better left to
expenenced professionals. When you rely solely on agents for these cntical tasks, it can
lead to suboptimal or even harmiul outcames.

That said, fields ke psychotherapy, counseling, or creative writing thrive on the nuances
of human emotion and the creative process —areas where agents largely fall short. In
these domains, the human touch is ireplaceable and essential for achieving meaningful
outcomes.

Implementing agents also requires a significant investment from you in terms of time,
resources, and expertise. If you're running a small business or managing a project with
a tight budget, the costs of developing and maintaining these agents may not justify
the benefits. In highly regulated industries, your use of agents might be restricted due
to compliance and security concemns as well, and ensunng agents adhers to stringent
regulatory requirernents can be very challenging and resource-intensive.
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10 Questions to Ask Before
You Consider an Al Agent

Before you consider using Al agents, you'll need to ask yoursaelf a set of questions to halp
you evaluate if it's actually worth the time, capital, and resources you'll be putting into it:

What is the complexity
of the task?

Is the task simple and repetitive,
or does it imolve complex
decision-making that could benefit
from autarmation?

What is the
03 expected volume of

data or queries?

Will the agent be handle large
volumes of data or queries where
speed and efficiency are crucial?

Can the task benefit
05 from learning and
evolving over time?
Is there a benefit to having a system
that leams from its interactions and

mproves its responses or strategies
over tima?

W Galileo

oz How often does the
task occur?

Iz this a frequent task where
automation could save significant time
and resources, or is it a rare event
that might not justify the investrment?

Does the task require
adaptability?

Are the conditions under which

the task s performead constanthy
changing, reguiring adaptve
responses that an Al can manage?

What level of accuracy
is required?

Is it critical that the task is performed
with high accuracy, such as in
medical or financial settings, where Al
might need to meet high standards?

|



Is human expertise or

07 emotional intelligence
essential?

Does the task require deep domain

knowledge, human ntuition, or

emational empathy that Al cumrently
cannot provide?

What are the regulatory
09 and compliance
requirements?
Are there specific industry regulations

or cormpliance issues that nesd to be
addressed when using AI7

Mastering Al Agents

What are the
08 privacy and security
implications?
Does the task invohe sensitive

information that must be handled with
strict privacy and secunty measures?

What is the cost-
‘ o benefit analysis?

Dees the rsturn on investment in
terms of time saved, efficiency
gained, and overall performancs
outweigh the costs of implementing
and maintaining an Al system?

Take time to evaluate these questions; this will help you better
determire if an Al agent fits your needs and how it could be
effectively implemented to enhance your operations or sanices.




3 Interesting Real-Worlo
Use Cases of Al Agents

Now that we've learmed what agents are and when to and when not to use them, it's time
to go through some interesting real-world use cases of Al agents.

1.Wiley and Agentforce

Company: Al Agent: Use Case:

Wiley Agentiorce by Salesforce Customer senvice automation
Problem: Need:

Wiley faced challenges handling The company needed an
spikes in service calls during peak efficient customer service
times. particularly at the start of new systern to manage the
semesters when thousands of students increased volume and maintain
use Wiley's educational rescurces. positive customer expenences.
Solution: ROI:

Wiley imvested in Salestorce’s Agentforce, an Al agent
designed to enhance customer senvice operations.
This integration has significantly improved case
resolution rates and faster resolution of custormer
quenes, especially during paak times, such as the
start of new semesters when demand splkes.

A 40%+ increase in case
resolution compared to
their previous chatbot, a
213% RO, and $230K
in savings
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2.0racle Health and Clinical Al agent

Company:
Oracle Health

Al Agent:
Chnical Al Agen

Problem:

Healthcare providers faced
documentation and time
management challenges during
patient visits, leading to burmout
and reduced patient engagament.

Solution:

Oracle Health devedoped its

Clinical Al Agent. which autormates
documentation processes and
enhanceas patient-provider nteractions
throwgh a multimodal voice user
interface. This allows providers to
access patient mformation quickly and
generate accurate notes efficienthy.

Use Case:
Enhancing patient-
provider interactions

Need:

There was a need for a solution that
could streamiine clinical workfiows
and improve documentation

accuracy while allowing providers
mare time to interact with patients.

ROI:

AtlantiCare, using the Clinical Al
Agent, reported a 41% reduction
in total docurmentation time,
saving approximatety 66 minutes
per day, which translates to
improved productivity and
enhanced patient satisfaction.




3.Magid and Galileo

Company: Al Agent:

Magid RAG-based system
powersd with real-time
obsarvability capabilities

Problem:

Magid, a leader in consurmer intelligence
for media brands, needed to ensure
consistent, high-quality content in a fast-
paced news environment. The complexity
of diverse topics made it challengng

to uphold aceuracy, and errors could

potentially lead to significant repercussions.

Solution:

Magld integrated Galllea's real-time
observability capabilities into their
praoduct ecosystermn. This integration
provided production monitonng,
relevant metrics for tracking tone
and accuracy. and customization
options tallored to Magid's neads.

Mastering Al Agents

Use Case:
Empowering newsrooms
with generative Al technology

Need:

A rabust observability system
was essential for monitoning Al-
driven workflows and ensuring
the quality of cutputs across
vanous clients. This scalability
was crucial for managing the daily
praduction of numerous stones.

ROI:

With Galileo, Magid achieved 100%
wigihility over inputs and outputs,
enabling custormized offerings

as they scale. This visibility helps
identity trends and develop client-
specific metrics, enhancing the
gecuracy of news delivery.

We'll look at many mare use cases across multiple
domains throughout the rest of this e-baok. We'll
examine how agents have drivengreater

productivity, quicker resalutions, and helped
thimgs get done faster,

In the: next chapter, we're going to kearn features
of three prominent frameworks for bullding Al
agents. Lots of exciting stuff ahead!




FRAMEWORKS FOR
BUILDING AGENTS
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CHAPTER 2
FRAMEWORKS FOR
BUILDING AGENTS

The first chapter examined what Al agents are and when to use them. Belore we move on
to the frameworks you can use to build these agents, let's do a quick recap.

Al agents are particulary useful for dynamic, complex environments like customer support
or data-heavy seclors such as finance, where they automate and speed up processes,
They're also great for personalizing education and streamlirang software development.

Howewver, they are not ideal for straightforward tasks that traditional software efficiently
handies or for fields requiring desp expertise, empathy, or high-stakes decision making,
where hurman judgment |s crucial. The cost and regulatory compliance may also make
them less viable for small projects or heavily regulated industries.

That said, the framework you choose to build these agents can significantly affect their
efficiency and effectveness. In this chapter, we'll evaluate three prominent frameworks for
building Al agents — LangGraph, Autogen, and CrewAl — to help you make an informed
choice.
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LangGraph vs. Autogen vs. CrewAl

Below are three frameworks you can consider when building Al agents:

LangGraph

LangGraph is an open-source framework designed by Langchain to build stateful, multi-
actor applications using LLMs. Inspired by the long history of representing data processing
pipelines as directed acyclic graphs (DAGSs), LangGraph treats workflows as graphs where
each node represents a specific task or function.

This graph-based approach allows for fine-grained control aver the flow and state of
applications, making it particularly suttable for complex workflows that require advanced
memorny features, arror recovery, and human-in-the-loop Interactions. LangGraph
integrates seamlessly with LangChain, providing access to various tooks and modets and
supporting various multi-agent interaction patterns.

Autogen

Autogen is a versatile framework developed by Microsoft for bullding conversational
agents. It treats workfiows as conversations between agents, making it intuitive for users
who prefer interactive ChatGRT-like interfaces.

Autogen supports various tools, including code executors and function callers, allowing
agents to perform complex tasks autonomously. The highly customizable framewark
allows you to extend agents with additional components and define custom workfiows.
Autogen is designed to be madular and easy to maintain, making it suitable for both simple
and complex multi-agent scenarios.

CrewAl

CrewAl is a framework designed to facilitate the collaboration of role-based Al agents.
Each agent in is assigned specific roles and goals, allowing them to operate as a cohesve
urit. This framework is ideal for building sophisticated multi-agent systems such as multi-
agent research teams, CrewAl supports flexible task management, autonomous inter-
agent delegation, and customuzable tools.
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Practical Considerations

For practical censideration, let’s compane LangGraph, Autogen, and CrewAl across several
key aspects.

How easy are they to use?

Ease of use determines how quickly and efficiently you can start using a framework. It akso
affects the learning curve and the time required to build and deploy agents.

Consider LangGraph. This framework visualizes workfiows as graphs using directed
acyclic graphs [DAGs). You'll find this approach intuitive if you're familiar with data
processing pipelines. It makes it easier for you to visualize and manage complex
interactions. You might need a deeper understanding of graph theones, which could
initially steepen your learning cunve,

Then there's Autogen, which models workflows as conversations between agents. If you
prafer interactive, chat-based environments, this framework will likety tesl more natural to
you, Autogen simplifies the management of agent mteractions, allowing you to focus more
on defining tasks and less on the underying complexities. This can be a great help when
you're just starting out.

Crewal, on the other hand, locuses on role-based agent design, whers each agent has
gpecific roles and goals. This framework is desgned o enable Al agents o operate as

a cohesie unit, which can be beneficial for building complex, multi-agent systemns. it
provides a structured approach to defining and managing agents. It's very straghtforward
to get started with CrewAl.

Winner: Autogen and Crewdl have an edge due to their conversational approach and
simplicity.

What tools and functionalities do they support?

Tool coverage is an essential aspect you'll want to consider when evaluating a framework.
It refers to the range of tools and functionalities that a framework supports, enhancing the
capabilities of your agents.
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For instance, LangGraph offers robust integration with LangChain, which opens up a wide
array of tools and models for your use. It supports functionalities like tool calling, memory,

and human-in-the-loop interactions. This comprehensive integration allows you to tap

into a broad ecosystem, significantly extending your agents' functionality. Iif your progect

requires a rich toollat for complex tasks, LangGraph's capabilibes might be particularly
valuahle,

Maoving on ta Autogen, this framework stands out with its support for various tools,
including code executors and function callers. s modular design is a key feature,
simplifying the process of adding and integrating new toals as your project evohees. If
flexibility and scalability are high on your list, Autogen's approach lets you adapt and
expand your toolset as needed without much hassle.

Lastly, CrewAl is built on top of LangChain, which means it inherits access to all of
LargChain's toals. It allows you to define and integrate custom tools tailored to your
specific needs. This capability is ieal if you're looking to craft a highly customized
environment for your agents.

Winner: LangGraph and Crew have an edge due to their seamless integration with
LargChain, which offers a comprehensive range of tools. All the frameworks allow the
addition of custom toals.

How well do they maintain context?

Memory support i crucial for agents to maintain context across interactions, enabling
them to provide more coherent and relevant responsas. There are different types of
memory that agents can use:

Shart- Tarm Mermory Faaps track af recant inferdctions and oloormes.
Lang-Term Marmarny Stores insights and larnings from pas! interactions.
Enfity Memaory Focuses on capturing details about specific entilies.
Contextual Mamory Integratas shart-term, long-term, and entity mamonss:

Table 2.1: Memoary types that agents can use
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LarngGraph supports built-in short-tern, long-term, and entity memony, enabling agents to
maintain context across interactions. It includes advanced features like emor recovery and
the ability to revisit previous states, which are helpful for complex problem-solving.

Autogen employs a conversation-driven approach to support memory, enabling agents
to remember previous interactions and stay contextually aware. This sstup ensures that
agents maintan a coherent context throughout their interactions, which is essential for

tasks that depend on continuity.

CrewAl features a comprehensiie memory system that includes short-term, long-term, and
entity memory. This system allows agents to accumulate experiences and enhance their
decision-making capabilites over time, ensuring they can recall important details across
multiple interactions.

Winner: Both LangGraph and CrewAl have an edge due to their comprehensive memaory
system, which includes short-term, long-term, and entity memony.

Are They Well-Organized and Easy to Interpret?

Structured oulput is vital for ensuring that the responses generated by agents are well-
organized and easily interpretable. Structured output can include JSON, XML, or other
farmats that fadlitate further processing and analysis.

LargGraph allows nodes to return structured output, which can be used to route 1o

the next step or update the state. This makes managing complex workflows easier and
ensures the output is well-organized. An ideal use case is a custormer service system that
routes quenes through different departments based on content analysis, urgency, and
previous interaction histony.

Autogen supports structured output through its function-calling capabilities. Agents can
generate structured responses based on the ools and functions they use. This ensures
that the cutput is well-detined and can be easily processed by other components, A
coding assistant systermn where multiple specialized agents (code writer, reviewer, tester)
need to work together dynamacally 1s a good use case to think of.

CrewAl supports structured output by allowing agents to parse outputs as Pydantic
madets or JSON. This ensures that the output is well-organized and easily interpretable.
You can define the structure of the output to meet thaeir specific requirements. For
example, consider a data processing pipeline in which multiple agents need to transform
and wvabidate data according to specific schemas.
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Winner: LangGraph and CrewAd have an edge due to their ability to define structured
output.

What's the Quality of Documentation?

Docurnentation guality affects how easily developers can understand and use the
framework. Good documentation can reduce the learning curve and improve the averall
developer experience.

LangGraph provides comprehensive documentation, ineluding detailed guides and
exampies. The documentation is well-structured, making it easy to find the information
you need. It covers various aspects of the framework, from basic concepts to advanced
features.

Autegen has documentation with numerous examples and tutorials. The docurmentation
covers various aspects of the framework, making it accessible to beginners and advanced
users alike. It includes detailed explanations of key concepts and features.

CrewaAl provides detailed documentation, ncluding how-to guides and examples. The
docurmentation is designed to help you get started quickly and understand the framework’s
core concepts. it includes practical examples and step-by-step instructions.

Winner: All frameworks have excellent documentation, but it's easy to find more examples
of LangGraph and CrawA.

Do They Provide Multi-Agent Support?
Multi-agent support is crucial when you're dealing with complex applications that invohe
various interaction patterns among multiple agents. This includes:

* Hierarchical
*  Sequential
e [ynamic interactions

When agents are grouped by tools and responsibilities, they tend to perform better
because focusing on a specific task typically yields better results than when an agent
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must choose from many tools. Giving each prompt its awn set of instructions and few-
shot examples can further boost performance. Imagine each agent powered by its own
finehy-tuned large language model—this provides a practical framework for development,
allowing you to evaluate and improve each agent individually without affecting the brogder
application,

LargGraph suppaorts vanous multi-agent patterns, including higrarchical and dynamic
group chats. It lets you easily define complex interaction patterns between agents. lts
graph-based approach aids in visualizing and managing these interactions effectively. In
LangGraph, you explicithy define different agents and their transition probabilities as nodes
in a graph. This method gives you extensive control over constructing complex workflows,
which is essential for managing transition probabilities between nodes.

Autogen emerged as one of the first multi-agent frameworks, framing workflows more as
“conversations” between agents. This corversational model adds flexibility, allowiryg you
to define how agents interact in vanous patterns, including sequential and nested chats,
Autogen's design simpiifies the management of these complex multi-agent interactions,
enabling effectve collaboration among agents.

CrewAl supports role-based Interactions and autonomous delegation among agents. It
facilitates processes like sequential and hierarchical task execution, which are critical for
efficiently managing multi-agent interactions. This setup ensures that agents can wark
together seamlessly to achiave common goals. CrewAl provides a higher-level approach
than LangGraph, focusing on creating cohesive multi-agent “teams.”

Winner: LangGraph has an edge due to its graph-based approach, which makes it easier
to visualize and manage complex interactions.

What About Caching?

Caching is critical for enhancing agent perfarrmance by reducing latency and resource
consurmption. It does this by storing and reusing previously computed resulls, which can

significantly spead up operations.

LargGraph supports caching through its built-in persistence layer. This allows you to save
and resume graph execution at any point. The caching mechanism ensures that previously
computed results can be reused, Improving performance as well.

AutoGen supports caching AP requests so they can be reused when the same request Is
issued.
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All tocls in CrewAl support caching, which enables agents o reuse praviously cblained
results efficiently. This reduces the load on external resources and speeds up the execution
time. The cache_function attribute of the toaol allows you to define finer control over the
caching mechanism.

Winner: All frameworks support caching, but LangGraph and CrewAl might have an edge.

Looking at the Replay Functionality

Replay functionality allows you to revisit and analyze previous interactions, which s useful
for debugging and improving agent performance. This helps you understand the decision-
making process and identity arsas for improvermeant.

LargGraph enhances your debugging and expenmentation capabilities with its time traved
festure. This allows you to rewind and explore different scenanos easily. It provides a
detailed history of interactions, enabling thorough analysis and understanding of each step
In your process.

While Autogen does not offer an explicit replay feature, it does allow you to manually
update the state te control the agent's trajectory. This workaround provides some level of
replay functionality, but it requires more hands-on intervention from you.

Crewal provides the ability to replay from a task specified from the latest crew kickodf.
Currently, only the latest kickoff is supported, and it will only allow you to replay from the
maat recent crew run.

Winner: LangGraph and CrewAl make it easy to replay with inbullt capabilities.

What About Code Execution?

Code execubon capabilities enable agents to perform complex tasks by writing and
executing code. This is particularly useful for tasks that reguire dynamic calculations or
interactions with external systems.

LarngGraph integrates with LangChain to support code execution within s workflows.
You can define nodes specifically for executing code, which becomes part of the
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averall workflow. This integration means you can seamilessly incorporate complex code
exaeculions into your projects,

Autogen supports code execution through its built-in code executors. Agents can write
and execute code to perform tasks autonomously, The framework provides a safe
enviranment for code execution, ensunng that agents can perform tasks securaly.

CrewAl supports code execution through customizable tools. You can define tools that
execute code and integrate them into the agent's workflow. This provides flexibility in
defining the capabilities of agents and allows for dynamic task execubion.

Winner: Autogen might have a slight edge due to its built-in code executors, but the other
two are also capable,

Human in the Loop Support?

Human-in-the-loop interactions allow agents to receive human guidance and feedback,
improving their performance and reliability. This is particulary important for tasks that
require human judgment or intervention.

LangGraph supports human-in-the-loop interactions through its intermuption features. You
can pause the graph execution to provide feedback or make adustments.

Autogen supports human-in-the-loop interactions through its three modes: NEVER,
TERMINATE, and ALWAYS.

CrewAl supports hurman-in-the-loop interactions by allowing agents to reguest human
input during task execution by setting the human_input flag in the task definition. When
enabled, the agent prompts the user for input bedore delivering its final answer.

[ Winner: All frameworks support humans in the loop in different ways.:

How Well Do They Accommodate Customization?

Customization options determine how easily you can tailor the framework to your specific
needs and requirements. This includes the ability to define custom workflows, tools, and
interactions.
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LarngGraph provides fine-grained control over the flow and state of the application. Yau
can customize the behavior of nodes and edges to suit specific needs. The framework’s
graph-based approach also makes it easy to define complex workflows,

Autogen is customizable, allowing users to extend agents with additional components and
define custom workfiows. The framework is designed to be modular and sasy to maintain.

CrewAl offers extensive customization options, Including role-based agent design and
custamizable tools.

[ Winner: All the frameworks provide customization, but the mileage might vary. }

How Good Are They At Scaling?

Scalability is a must 1o ensure that the framework can grow alongside your réguirements.
The framework should sustain its performance and refiability as you incorparate more
agents, tools, and interactions. We have no winners here. All three frameworks offer the
flexibility to scale the system by adding agents, tools, and customizations according to
wour needs.

Winner: It remains unclear which framework scales more effectively as more elements ang
added, We recommend experimenting with them to get a better idea.

Let's Compare Them All

Wedl, that's a lot of infermation to process at oncel Refer 1o the table below (Table 2.2} for a
quick ovenaew of what we discussed in this chapter.

To sum it up:

LangGraph excels Autogen is ideal CrewAl is designed
in scenariogs wherne for conversational for role-based mutti-
workflows can be wiorkflows agent interactions

represented as graphs
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Airtocen and Crewtl] ane more intultve dus 1o
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undesatand the best fit.

All fremieworka support opan-soree LLAs




Popular Use Cases Centered
Around These Frameworks

All the comparnsons aside, herg are some interesting use cases and collaborations
centered around LangGraph, Autogen, and CrewAl.

LangGraph

Chaos Labs has developed the Edge Al Oracle using LangChain and LangGraph for
enhanced decision-making in prediction markets. This systern utiizes g multi-agent counci|
to ensure accurate, objective, and transparent resolutions, Each agent, ranging from data
gatherers to bias analysts and summarizers, plays a role in processing quenes through a
decentralized network. This setup effectively reduces single-model biases and allows for
consensus-driven, reliable outputs in high-stakes environments.

Autogen

Built an top of Autegen, OptiGuide emplays LLMs to simplify and enhance supply chain
operations. It integrates these models to analyze and optimize scenarios efficiently, such
as assessing the impact of different supplier choices. The system ensures data privacy
and doesn't transmit proprietary information. Applied within Microsoft's cloud infrastructure
for server placement, OptiGuide improves operational efficiency and stakeholder
communication and reduces the need for extensive manual oversight.
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CrewAl

Waynabox has transtormed travel planning by partnenng with CrewAl, offering
personalized, hassle-free travel experiences. This collabaration utilizes CrewAl's multi-
agent system to automatically generate tailored itineranes based on real-time data and
individusl preferences. The integration of Al agents —handling activities, preferences. and
tinerary customization—allows travelers to enjoy unique adventures without the stress of
planning. This has helped simplity tinerary planning and enhanced Waynabox's service ta
create a more exciting and seamless travel experience.

I this chapter, we reviewed three frameworks, LangGraph, Autogen, and Crewal,
and how they compare in different aspects, such as ease of use, multi-agent support,
and others (See Table 2.2). We also loked at examples of companies that have used
these framewaorks in different scenarios and domains to ultimatedy focus on thres
factors: reduction of manual “redundant” werk, seamiless operations, and productivity

improvement.

However, it Is also imperative to consider the accuracy and reliability of Al agents. This
takes us to the next chapter, where we'll examine the importance of careful monitoring
and feedback to ensure they provide reliable, well-scurced information, necessitating
evaluation,
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HOW TO
—VALUATE AGENTS

In the previous chapter, we examined three frameworks, LangGraph, Autagen, and
Crewal, and some interesting use cases related to them.

The next important step in our journey is to understand how we can ensure the accuracy
and reliability of Al agents. Why is this important in the first place?

Evaluating Al agents is like checking the work of a new employee, You have to make
sure they're doing their job correctly and reliabhy. Without regular checks and constructive
feedback, it's tough to trust that the information the agents provide is accurate and helpful.

The best way to understand this is through an example. So, in this chapter, we're going
te buld a financial research agent, and we'll cover how, much like humans, agents can be
taught to solve problems by first understanding the issue, making a plan, taking action,
and lastly, evaluating the result.

Let's jumg inl A=A
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Requirements

You can install these dependencies in a Python 3.11 environment.
pip install --guiet -U langgraph==0.2.56 langchain-community==0.3.9
langchain-openai==0.2.11 lavily-python==0.5.0 promptguality==0.69.1

To do so, sign up on Tavly and Opendl to generate an APl key. Save the keys in a .env file,
as shown balow,

OPENAI_AP!_KEY=KKK
TAVILY APl KEY=KKK

Defining the Problem

This chapter aims to build a financial research agent that "thinks" through and acts on
problems within a financial datasetl. We can create a workflow that recenves a question,
breaks it down inte granular questions, searches the web using Tawvily, and anatyzes the
resUlts.

To analyze the results, we use the React agent, which works with the Tavily AP to think.
through and act on problems.
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Define the HeAct Agent

Within your IDE of choice, you can create a new Jupyter Notebook agent.ipynb.

We can import a prebuilt BeAct agent alang with a web search tool called Tawly, While we
use the same agent for all steps in this example, you coulkd use different agents for different
tasks. The best part? You can customize it further in later examples.

Look at Fig 3.1 o understand this better. This code sets up an Al-drven chat agent
named Fred, designed to function as a finance expert in 2024, Fred will use specific tools
and a planning framework to research and answer guestions.

- =
X N

from langchain_openai fsport ChotBpendl
from Langchain_community tools tavily _sesrch lmport TavilySsarchResults
from lLapggraph.prebuilt isport croatc_resct_agont

systen_prompt = “You are & helpful finance export namod Frod in year 2824, Firdt of all you
create a plem to get snemer to the resesrch guery. Then you wse tools to goet anseers to the
guestipns. Finelly yol use the snswers fo sach guestlon in the plam to give your Fimdl
verdict.”

1lm = ChatOpenAl (nodel="gpt-do-mini®]
tools = [TavilySearchfesultsimas_resultesd)]
agant_exedutss = create_rosct_agent(lls, toold, statd sodifier=tyuton_promot)

Fig. 3.1: Setting up the agent
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State Management

Mew, let's talk about how our agent keeps track of evenything it needs to do. Think of it ke
a smart to-do list system with three main parts.

First, we need a way to track what the agent plans to do. We'll use a simple list of steps
written as text strings. This is like having a checklist of tasks the agent needs to complete.

Second, we want to remember what it has already done and what happened with each
task. For this, we'll use a hist of pairs (or tuples in programming terms). Each pair contains
bath the action taken and what resulted from that action.

Lastly, we need to stare two more important pleces of information: the original question that
was asked (the input) and the final answer once the agent finishes its work (the response).

This setup gives our agent everything it needs to function effectivealy.

In Fig 3.2, the PlanExecute class, a dictionary type, manages an execution process,
including input, plan steps, previous steps, and a response. The Plan class, using
Pydantic, defines a structured plan with steps that should be followed in a sorted order.

-

2 oD

import operator

from pydantic import BaseModel, Field
from typing import Annotated, List, Tuple
from typing_extensions import TypedDict

class PlanExecute(TypedDict):
input: str
plan: List[str]
past_steps: Annotated(List{Tuplel, operator.add]
response: str

elass Plan(BasaMaodal):
"""PLan to folltow in future™ "

gteps: Lististr]) = Fleld(
description="different steps to follow, should be in sorted order"

8 :I A

Fig. 3.2: Defining structures for managing and executing a sequential plan of actions

! Galileo
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The planning step is where our agent will begin to tackle a research guestion. We'll use a
special feature called funchion callng to create this plan. Let’s break down how it works.

First, we create a template for how our agent should think. We tell it that it's a finance
research agent working in October 2024, and s job is to break down big questions into
smaller, manageable steps.

This ternplate, called planner_prompt (See Fig 3.3), gives our agent clear instructions:
create a simple, step-by-step plan where each step leads logically to the next. Ensure that
no stéps are missing or unnecessary. The final step should give us our answer.

The code sets this up by using ChatPromplTemplale, which has two main parts:
* A systern message that explains the agent’s role and how it should plan
* A placeholder for the messages we'll send it

ae e

fron Langchain_core. prospts import ChatPromptTenplate

planner_prompt = ChatPromptTesplate.fron_nessages!
[
|
"Tystem”
"rEYoel ora oo flnance reseanch agent working in Det FRI4. For the given
gy eetive, coaeE op wlth § alsgls step By otep glam.
This plap sheuld favolve fndividual tasks, that 4F executed eacrectly wi1l1l yleatd the
correct andwer. B0 oot odd any superfloous steps. The rasvlt of the Final stop should Ge
the Fimal mnswer. Hoke sure that esch step has all the imformstion needed do nat skip
stops. AL the ond use the info collectod to give the final snswer To the sadn guestion
contalning the facts."""
b
L*placehaldor®, “{maanages}™]

Fig. 3.3: Guiding the agent to create a step-by-step plan that should lead to the correct
answer for a green oblective

We then connect this template to ChatOpenAl using gpt-d4o-mini with femperalure set to
O for consistent results. We take gpt-4o-mirn baing low an cost. The “structured output”
part means the plan will come out in a specific format we can easily work with.

When we test it with a real question ke "Should we invest in Tesla given the curent
situation of EVS?" the agent will create a detailed plan for researching this investment
decision. Each step will help gather the information needed to make an informed
recommendation about Tesla stock based on the current electnic vehicle market
conditions. (See Fig 3.4)

! Galileo
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Think of it like creating a research roadmap. We're giving our agent the tools and
guidelines it needs to break down complex questions inte manageable research tasks.

Fig. 3.4: Testing the agent with a question

Think of re-planning as the agent’s ability to adjust its strategy based on what it has already
learmed. This is similar 1o how we might revise our research approach after discovenng
new information. Let's break down how this works.

First, we create two types of possible actions the agent can take:
* Response: \When the agent has encugh information to answer the user's queston
*  Plan: When the agent needs to do more research to get a complete answer

The re-planning prompt is like giving our agent a structured way to think about what to do
rext. It looks at three things:

* The original gquestion (objective)

*  The initial plan it made

» What steps have already been completed and what was learned

Lising this informabion, the agent can decide to ether:
o Creagte new stepa to gather maore needed mformation
e Give a final answer if it has encugh information

The clever part 15 that the agent won't repeat steps it's already done. It focuses only on
what still nesds to be investigated. This makes the research process more efficient and
pravents redundant work. [t's like having a research assistant who can intefligently adjust
thelr approach based on wihat they ve already discoverad.

This process helps our agent stay focused and efficient, only pursuing new information
when nesded and knowing when its time to provide a final answer to the user,

! Gdlileo ;-
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We connect this re-planning ability to gpt-4o with the termperature set to (. By setting the
femperalure to U (See Fig 3.5), we force the model to generate the same response for the
same input. This helps us in making experiments reproducible.

aed

from typing import Union

class Heosponse{BaseRodel):
He“Response to ukor, 4™

responze: str

clons ActlBassMadel);
HEekerion to porform.®"*

gction: Union|Response, Flanl = Field(
detcriptione®Action to perfore. If youo want te respond to weer, use Reaponam. *
*LF you need to further bse tools te get Che snowpe, use Plan.®

replanner_proapt = ChatPromptTesplate. fros_tesplatel

HERFor the given objoctive, coone ip with & ¢imple step by sbep plan. %
Thiz plon sheuld invilvwd individual taska, that 1f executed correctly will yield the
correct anseer. Do no% add any superflosis steps.
Tha result of the Ffinal step sheuld bo the Final smeser. Haoke sure thet emch atop has all
the information necded - oo mot dkip wtope.

¥iur tlll]l.'ﬂtl.'l'!l A8 Thls:
{input)

Your ariginal plan wan this:
{pLan}

You have currently done tho follom steps
{pant_stops}

Update your plan accordingly. If no more steps are hopded nod you cam return To the uaer,
thnn Faspond with that. Otherwise, FLT0 out the plan. Ooly add steps te the plan that still
WEED to be dopm. bp not eeturn previoudly done steps a8 part of the plan. """

1

replannar = raplanner_prompt | ChatOpendl(
stdel="gpt-40", tespirdtora=0
1, with_structured_bitput(bot)
b, A

Fig. 3.5: Replanner_prompt to review and update a given plan based on past actions

! Galileo
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Create the Graph

Think of this graph as a roadmap that shows how our agent moves from one task to
another. We have three main functions that work together:

from typing import Literal
from Langgraph.graph import END

async def execute_step(state: PlanExecute):
plan = state{"plan"]
plan_str = “\n".join({f"{i+1}. {step}" for 1, step in enumerate(plan))
task = planiB]
task_formatted = £"""For the following plan:
{ptan_str}in\n¥ou are tasked with sxecuting step {1}, {task}."""
agent_response = awalt agent_executor.ainvokel
{"messoges”: [("uvser", task_formatted)]}

|
return {

“past_steps": [({task, agent_responsel“messages"][-1].content)],
}

async def plan_step(state: PlanExecute):
plan = await planner.ainvoke({"mossages”: [(“uvser", state[“input“]31})
return {"plan": plan.steps}

async def replan_step(state: PlanExecute):
output = await replanner.ainvoke{state)
if isinstance(output.action, Response):
return 4"response”; output.action.response}
else:
return {"plan": output.action.steps)

def should_end{state: PlanExecute):
if "response” in state and statel"response”]:
return END
else:
return "agent”

Fig. 3.6: Managing and executing using state-based logic
! Galileo
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The execute step tunction handles individuzal tasks. It takes the first tem frorm our plan,
farmats it propery. and has the agent work on it. It's like giving a specific assignment to a
research assistant and getting back their findings. The agent keeps track of what it did and
what it learned.

The plan_step function is where everything begins, When given a question, it creates the
initial research plan. This is like creating a first draft of how 1o tackle the problem.,

The replan_step function is whers the agent decides what to do next. After completing a
task, it looks at what it has learned and aither:

o  Creates new steps if more reseanch s needed

*  Provides a final answer if it has enough information

Finally, we have the should end function, which works like a checkpaoint. It checks
whether we have a final answer ready. It we do, it ends the process. If not, it tells the agent
to continue working. You can see all these functions in the code snippet bedow, in Fig 3.6.
We use StateGraph to create a map that guides our agent through its research joumey via
different actions tt can take. Here's how it flows:

First, we create the basic structure of the workflaw with its three main stops:
* A planning stabon (“planner’)

e A research station ["agent”)

= A reviewing station (“replan”)

Then, we connect these stations in a logical order;

1. Everything starts at the planning station

2. From planning, the agent moves to doing research
3. After research, it goes to reviewing what it learmed

Al the reviewing station, the agent makes an important decision:
o  Either continue with more ressarch if neadad
o O finish up if t has a complete answer

This creates a smooth cycle in which the agent can continue researching until it has
everything it needs to answer the original question. it's like having an imeligent research
assistant who knows when {o dig deeper and when they've found enough information,

Firally, we compile this workfiow inte something we can easily use, just like any other tool
in aur systemn. This makes our rasearch agent réady to tackle real questions and provide
tharough, well-researched answers. See Fig 3.7.

! Galileo
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from Langgraph.graph fmport StateGraph, START
workflow = StateGraph(PlanExecute)

# Add the plan node

workflow.add_node("planner®, plan_stepl

2 KNOE The ANeCuTIONn ITED

workflow.add_node{“agent®, execute_step)

¥ Rdd B reEpLAn nods

workflow.add_nodel"replan”, replan_stepn)
workfLow.add_edge{START, "phlanner=)

i From plan weE go To sSgent

workflow.add_edoga(“pionner®, “agent™)

I From agent, we replan

work#low. add_sdga("agent™, “replan)

workflow. add_conditional_edges!
"FEpLAan™
# Next, wo pass in the function that will determine which node 1s colled next
ahowld_and

[ "agent", END]

# Finally, we compils 1t
i This compiles 1t into a LangChain Hunmable,
i meaning yoo can use- 1t as you would any other runpable

app = morkflow. compilel)

Fig. 3.7: Creating the structure of the workflow

We can visualize the agent workdlow with a mermaid diagram, as shown in Fig 3.8. See the
output in Fig 3.5.

Fig. 3.8: Visualizing the workflow using Mermiaid Charl

! Galileo
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agent

,—[ _start_ ]t_q

=)

Fig. 3.9: Mermaid Chart workfiow output

! Galileo
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Create the LLM Judge

Mext, we create a LM judge to evaluate our agent's performance. This ensures our
agents’ responses adhere to the given context and mantain relevance and accuracy.

The inbuilt scorers make it very easy to set up one for us. We use gpt-4o as our LLM for
the context adherence metnc, with three evaluations per response for better to ensure
great evaluation accuracy. This scorer specifically looks at how well the agent sticks to the
contéxt and provides relevant information.

Mote that we're using GPT-46 to evaluate a smaller Al model, which is ke having an axpert
oversee a novice's work. GPT-4o, with its advanced capabilibes and deep understanding
of language nuances, can be a reliable benchmark tor judging the smaller model's (in our
case, the 4o-mini} responses. See Fig 3.10.

¥ =
[ B K

gotho_scorer = pg.CustonizedChainPollScarerl
scofer nanespl. CustaniredScorerlaes . contoxt _adheronce_phus,
nodel _alias=pg.Aodels.goE_%o0,
nem_fusges=3l

Fig. 3.10: Implementing the LLM as Judge functionality

We then st up a Galileo evalustion callback that will track and record our agent's
perfarmance. I1's like having a quality contral system that monitors our research process.
MNext, we set some basic config for our agent:

e |t can't go through more than 30 cycles (recursion_limit).

e [t must use our evaluation system [callbacks).
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Use Galileo Callbacks

You'll observe in Fig 311 that we're using the Galileo callback, GalleoPromptCallback,
which is used 1o log the execution of chains In applications like Langchain.

With just two lines of code, we can get all the infermation needed to visualize and debug
the traces.

i .

ane

wvaluste_handler = pg.@allleaPramptCallbachiproject nase='finance- resesroch-agent
run_ Amss=f teat' . acorers=] potia_soor arll]

confly = ("recursinn limit™; 36, "calibacun”: [evalueate hendler])

Fig. 3.11: Galleo Callback

We then run our agent with a specific test quastion. The system will process this question
through the research workflow we built earlier.

The code = set up to show us what's happening at each step (that’s what the asyne for
loop does). It will print out each action and result as they happen, letting us watch the
research process in real-time.

Firally, we close our evaluation session with evaluate_handlecfinishl). This saves all the
performance data we collected during the run to the Galileo Evaluate console so we can
see the chain visualization and the agent metrics. See Fig 3.12 and Fg 3.13.

-

inputs = {"input®; “Shovld we invest in Tesls given the current sitvation of EV?Y}

async for event in app.astream{inputs, comfig=configl:
for k., v in event.items():
ik =™ emd Mz

- -

printiv)

evaluate_handler.finishi )

Fig. 3.12: Clasing the svaluation session

! Galileo
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CUTTENT BATESL TrEacE in The

Lisla] i IR L L R TRET

Fig. 3.13: Chain visualzation

You can run several experiments to evaluate the research agent's performance. For
instance, you can use the project dashboard to zee how different test runs performed
based on key metncs (ses Figure 3.14).

The stardout pertarmear was test-3. which eamed the top rank with impressive results.

Performance of test-3:

s  Context Adherencea Scora: 0.844 (High relevance to the research questions)
* Speed: Completed tasks in 84,039 miliseconds (Fastest among all tests)

= Responses Processed: 3 during the run

s  Cost: 50.0025 per run (Low cost)

Overall Test Performances:

= Response Time Range: From 134,000 to 228,000 millisecands

=  Context Adherence Score Range: From 0.501 to 0.855

« MNumber of Responses: Ranged from 1 to ¥ per test

s+ (Cost Efficiency: Remained consistent across all runs, betweaen $0.002 and $0.004 per
rur

These results give valuable insights mto our agent’s capabilities and help identify the most
effective configuration for future research tasks,

W Galileo i
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Fig. 3.14: Galileo's dashboard that shows multiple runs

MNow, you can go inside sach test run to see agent executions (See Fig 3.15). The
dashbaard reveals seven different ressarch queries that our agent processed. Each query

focused on analyzing different companies’ financial metrics. Here's what you'll observe:

* The agent shows vanying performrmance across different samples

* There's an alert noting that six samples had latency greater than 10 seconds, which
suggests room for optimizaton.

Average Latency for run: 210,623 ms

Average Cost for run: $0.004 per execution

This detailed view helps you understand where the agent performs well and where it might
nead improvements in terms of speed and acouracy.
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Fig. 3.15: Detaded view for each test run
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Looking at the trace view (Fig 3.16), you can see a detailed breakdown of an execution
chamn where the context adherence was notably low at 33.33%. The system axplanation
Nelps us understard why:

“The response has a 33.33% chance of being consistent with the context. Based on the
analysis, while some of the figures like those for laler 2022 and 2023 are supporled by
document references (such as 03 2023 and Q4 2023), many earlier quarters' figures
lack direct evidence from the documents or explicit mentions, leading to incomplete
support for claims.”

q ey e H i Thaelimembi

Fig. 3.16: Detailed breakdown of an execution chain to help with evaluation
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This revesls bwo key issues in our agent's performance:;

The agent is citing recent data However, it's making claims
(2022 -2023) correctly with about earier data without proper
proper sources. documentation or references.

Ta imprave this, there are two possible main paths:

1. Improve the retrieval system:
*  Make sure we're gathering sufficient historical data.
» Expand the search scope to nclude earlier quarterly reports.
» Better source verification for histoncal data.

2. Enhance the prompts:
o Add explicit instructions to cite sources for all numencal clams.
*  |nclude requirements to clearly distinguish between verified and unverfied data.
e Add checks tor data completeness before making comparisons.

Lets take a guick lock at what we learned in the chapter. We saw how our agent
implemented the ReAct (Reasoning and Acting) framewaork to:

*  Break down complex questions into smaller steps
*  Plan and execule ressarch tasks systematically
* He-evaluate and adjust its approach based on findings

We also explored the evaluation process using:

= An LLM judge [GPT-4) to assess response quality
o Metrics like context adherence, speed, and cost efficiency
e Galleo's evaluation dashboard for perfformance tracking

That said, testing the finance research agent in this chapter teaches you something
very important and valuable: an Al is only as good as our ability to check its work. By
looking closely at how the agent performed, you could see exactly what it did well {like
finding recent data guickly) and what it struggled with (like backing up older numbers
with proper sources). The evaluation step helped spot these issues easily, showing us
where to improve the agent.

The next chapter is going to get even more interesting (plus, you have five solid use
cases to look atl) as we explore differant metnics to evaluate the Al agents across four
dimensions: System Metrics, Task Completion, Quality Control, and Tool interaction.

! Galileo
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Metrics for

—valuating Al Agents

Before we explore metrics for evaluating Al, let's recall our key insights into agent
envaluation. Using LLM-based judges (like GPT-40) and robust metrics (such as context
adherence), we effectively measured an agent's perfarmance across varous dimensions,
including accuracy, speed, and cost efficiency. We then set up Galleo's evaluation callback
to track and record the agent's performance.

This next chapter will explore vanous metncs for evaluating Al agents using five solid case
studies.

Let’s consider a document processing agent. While it might initially demonstrate strong
paerformance metrics, we may have to probe into several questions:

e |5 it mantaining optimal processing speeds and resource usage?

= How consistently does it complete assigned tasks without human intervention?

e  [Does it reliably adbere to specified formatting and accuracy requirerments?

e |5it selecting and applying the maost approprate toals for each task?

Through & senes of hypothetical case studies, we'll explore how organizations may
transform thear Al agents into reliable digital colleagues using key metrics. These examples
will demonstrate practical approaches to:

* Improving task completion rates and reducing human oversight

*  Enhancing output quality and consistency
*  Maximizing effectve tool utiization and selection

! Galileo




You should remember that the goal isn't perfection but establishing reliable, measurable,
and continuously mproving Al agents that deliver consistent value across all four key

performance dimensions. See Fig 4.1
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o

®

System Metrics

Focus on tachnical performance and
resownce wlifization

Latency per Tool Call

Total Task Completion Time
API Call Frequency

Token Usage per Interaction
Cost per Task Completion
Context Window Utilization

LLM Call Error Rate

L
Quality Control

Evaluate outpul acouracy' and adherence
10 Pequinements

Instruction Adherence
Cutput Format Success Rale

Context Adharence

£
Task Completion

Measure aversd elfectiveness of agent
Agent Success Rate

Task Completion Rate

Steps per Task

Number of Human Requests

*

Tool Interaction
Asgess how affectively the sgent uses

nvalatie lools
Tool Selection Accuracy

Toal Argument Accuracy

Tool Success Rate

fud Galileo

Fig 4.1: Four key performance dimensions to evaluate Al agents
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Case study 1:
Advancing the Claims
Processing Agent

Claim Processing System Overview

=) (=) (==
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Fig 4.2: An overview of the Claims Processing System

b
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A healthears network implemented an Al agent to automate insurance claims procassing,
aiming to enhance efficiency and accuracy. However, this intiative inadvertently introduced
comphance risks, highbghted by several key issues:

* The Al agent struggled with complex claims, leading to payment delays and provider
frustration. Because of the inconsistency in handling these claims, claims processors
spent more time verfying the Al's work than processing new claims.

»  The eror rate in complex cases raised alarms with the compliance team, especially
critical given the stringent regulatory demands of healthcare claims processing.

Functionality

The Al was designed to:

Analyze medical codes

Verify insurance coverage

Check policy compliance

Vahdate provider information

Automatically assess claim completeness and compliance

Caleulate expected payments and generate preliminary approvals for straightforward
claims

Challenges

To counter these issues, the netwerk focused on three key performances indicators to
transform therr Al agent's capabilities:

1. LLM Call Error Rate
* Problem: APl fallures during claims analysis led to incomplete processing and
incorrect approvals.
* Solution: Implementing robust error recovery protocols and strict state
management ensured accurate rollbacks and reprocessing.

2. Task Completion Rate
* Problem: The agent incarrectly marked claims as “complete’ without conducting
all necessary verifications.
* Solution: Mandatory venfication checklists and completion criteria were introduced
ta meet all reguiatory requirements betore finalizing claims.

! Galileo
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3. Number of Human Requests
* Problem: The agent took on complex cases bevond its capability, such as
expenmental procedures or cases requiring coordination of benefits across multiple
policies.
» Solution: Stncter escalation protocaols automatically route high-risk cases to
human experts based on claim complexity and regulatory requirerments.

4. Token Usage per Interaction
* Problem: Unnecessary inclusion of patient details n processing routing claims
heightened privacy risks,
» Solution: Stnct data minimization protocols and context-cleaning practices wene
adopted to ensure that only essential protected health information s used

Outcomes

The enhanced agent defivered:

Faster claims processing
Higher compliance accuracy
Improved rescurce utilization
Reduced rejection rates




Mastering Al Agents

Case study 2:
Optimizing the Tax Audit Agent

Tax Audit System Overview
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Fig 4.3: An averview of the Tax Auditing System
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At a mid-sized accounting firm, their deployed Al audit agent created unexpected
warkflow bottlenecks. While the agent effectively handled routing tax document
processing, the firm was concerned about thres critical issues:

* Lengthy turnaround times for complex corporate audits
* Excessive cormputing costs from inefficient processing
* A growng backlog of partially completed audits requinng manual review

What should have streamlined therr cperations was instead causing senior auditors o
spend more time supervising the Al's work than doing therr specialized analysis. The firm
needed to understand why its significant investment in Al wasn't delivenng the anticipated

productivity gains.

Functionality

The Al audit agent was designed ta:

* Process vanous tax documents, from basic expense receipts to complex corporate
financial statements.

Autornatically extract and cross-reference key financial data in corporate {ax returns.
Systematically verify compliance across multipks tax years.

Vahdate deduction claims against established rules and flag discrepancies for review.
For simpler cases, it could generate prebminary audit findings and reports.

The systerm was integrated with the firm’s tax software and document managerment
systems to access historncal records and precedents.

Challenges

The team focused on thres critical metrics 1o reshape their agent’s capabilities:

1. Tool Success Rate
* Problem: The agent struggled with document processing efficiency, especially with
complex document hisrarchias.
* Solution: Implementation of structured document classification protocols and
validation framewarks improved handling of complex docurments.

2. Context Window Utilization
* Problem: The agent's processing of tax histones in their entirety was suboptimal,
often missing connections between related transactions.
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Mastering Al Agents

* Solution: Smart context segmentation was introduced, allowing the agent to
focus on relevant time periods and maintain historical context. This enhanced the
detection of subtle tax patterns.

3. Steps per Task
* Problem: The agent applied the same level of analysis intensity to all tasks,
regardless of complexity,
»  Solutiom: Adaptive workflows were implemented to adjust analytical depth based
on the complexty of the task.

QOutcomes

The refined capabilities of the Al agent led to:

* Decreased audit completion times
e |Improved accuracy in discrepancy detection
=  More efficient ulilzation of processing resources
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Case study 3:
Flevating the Stock Analysis Agent

Pricrity Triace ‘Walch List Euit Paston

Fig 4.4: An overview of the Stock Analysis System
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At a boutique invastrment firm, their Al-enhanced analysis sandce was under scrutiny as
clients questioned its value. Portiolio managers were overwhelmed by redundant analysis
requests and faced inconsistent reporting formats across client segments.

This situation undermined the firm'’s competitive edge of providing rapid market insights
as analysts spent excessive time reformatting and verifying the Al's cutputs, The inabulity
of the Al to adjust its analysis depth based on varying market conditions resulted in aither
overly superficial or unnecessarily detalled reports, compromising client confidence in the
senvice,

Functionality

The Al analysis agent was developed to:

* Process multiple data streams, including market prices, company financials, news
fepds, and analyst reports.

 Genegrate comprebensive stock analyses by evaluating technical indicators, assessing
fundamental metnes, and identifying market trends across different imeframes.

 Generate customized reports combining quantitative data with qualitative insights for
each analysis request,

=  The system was integrated with the firm's trading platforms and research databases,
providing real-time market intelligence.

Challenges

Through analyzing thres crucial metnes, the team improved the Al agent’s performance:

1. Total Task Completion Time
* Problem: The agent appiied a uniform analysis depth across all stock types,
regardiess of their complexity.
* Solution: Adaptive analysis frameworks based on stock charactenstics wers
implemented to mprove processing efficiency while maintaning insight quality,

2. Qutput Format Success Rate
* Problem: Inconsistencies in how the agent presented market analysis for different
user rokes. Analysts and business managers received inappropriate levels of detal
far their specific needs.
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* Solution: Role-specihc output templates and better parsing of output requirements
were introduced, enabling the agent to format its analyses appropriately for different
audiences while maintaining analytical accuracy,

3. Token Usage per Interaction
* Problem: The agent inefficiently reprocessed entire documents for new gueries,
such as analyzing a company's guarterly earnings report multiple times for related
questions.
* Solution: Improved memory management and progressive analysis techniques
were adopted, allowing the agent to reuse relevant insights across related queries
while ensunng analytical precision.

QOutcomes

The enhancements to the Al agent delvered:

o More precise market analysis
* Faster processing times
o  |mproved resource utilization
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Case Study 4.
Upgrading the
Coding Agent

Development Assistant System Overview

Code Anabyesis
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Fig 4.5: An overview of the Development Assistant System 4

[

5 Ly
V <

! Galileo /

& N )
ABNIASIA.ORG



Mastering Al Agents

A sottware development company implementad an Al coding assistant to enhance
engineering productivity. However, rather than speeding up development cycles, the
assistant became a source of frustration due to freguent disruptions and unreliable
performance, especially during critical sprint deadlines.

Developers expenenced delays as the agent struggled with large codebases and provided
imelevant suggestions that falled to consider project-specific requirements. Additionalty,
nsing infrastructure costs from inefficient resource usage further exacerbated the situation,
prompting a need for transformative improvernents to make the Al assistant & genuine

productivity tool.

Functionality

The Al coding assistant was designed to:

e Analyze codebases to provide contextual suggestions, identify potential bugs, and
racommend optimezations.

*  Hewew code changes, ensuring comphance with project standards and generating
documentation suggestions.

s Handle multiple programming languages and frameworks, adapting recommendations
to specific project needs.

e The system ntegrated with common developrment tools and version control systems,
supporting developers throughout the developrment cycle.

Challenges

By optimizing three pvotal mdicators, the team significantly enbanced the agent's
capabilities:

1. LLM Call Error Rate
* Problem: Frequent AP timeauts when processing large code files and connection
lailures during pesak usage.
* Solution: Robust error handling, automatic retries, and reguest gueuing
mechanisms wera implemented, greatly enhancing API call reliability and minimizing
warkflow disruptions.
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2. Task Success Rate
* Problem: Inconsistencies in the relevance and completenass of code suggestions.
The agent sometimes provided overly complex rewrites for simple style fxes or
inadequate details for required refactonng.
* Solution: Standardized response templates for vanous code issues, including style
guides, bug fixes, refactoring suggestions, and oplimization recommendations,
were introduced, making the agent's suggesbons mone consistently actionable.

3. Cost per Task Completion
* Problem: Inefficient resource allocation in debugging workdlows, using the same
computational power for minor and major tasks.
* Solution: Tiered processing was implemented based on the complexity and scope
of code changes, optimizing resource usage while maintaining high analysis quality.

Outcomes

The optimizations deliverad:

» Enhanced code analysis accuracy
* Improved suggeshon relevance
o Maore efficient resourcs utization
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Case Study 5.
—Nhancing the Leao
Scoring Agent

Lead Scoring System Overview
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Fig 4.6: An ovenview of the Lead Scoring System 4
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A sottware development company implementad an Al lead sconng agent to optimize salas
strategies. Despite the promise of enhancing lead qualification efficiency, the agent was
initially ineffective, leading to misclassification of prospects and declining conversion rates,
Sales reprasentatives found themselves pursuing low-potential leads due to outdated or
naccurate scores, especially dunng peak times, which resulted in increased costs per
qualfied lead and compramised growth targets.

Functionality

»  PEvaluate data from multiple sources like website interactions, email responses, social
media engagement, and CRM records to assess polential customers.

* Analyze company profiles, assess engagement patterns, and generate lead scores
based on predefined criteria.

» Automatically categorize prospects by industry, company size, and potential deal value,
updating scores in real-time as new information became available.

* Integrate with the company's sales tools, providing ssles representatives with priontized
lead bsts and engagement recommendations.

Challenges

1. Token Usage per Interaction
* Problem: The agent repetitvely generated new analyses for similar company
profiles instead of leveraging existing insights.
e Solution: Implementation of intelligent pattern matching and context reuses
improved processing efficiency while maintaining lead guality assessment accuracy:.

2. Latency per Tool Call
* Problem: Performance bottlenecks arose from sequential database quenying
patterns, causing delays.
e Solution: Introduction of parallel processing and smart data caching transformed
the agent's analysis speed.

3. Tool Selection Accuracy

* Problem: The agent inefficiently selected between similar analysis methods, using
more computationally expensive tools for basic tasks.
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* Solution: Developing smarter selection critena allowed the agent to match toal
complexity with the analysis needs, usng simpler tools for straightforward tasks
and reserving mtensive tools for complex cases.

Outcomes

» Faster prospect analysis processing
* Higher lead qualification accuracy
o |mproved resource utilization efficiency

Thess use cases reveal a crucial truth: effective Al agents require careful
measurement and continuous optimization. As these systems becoma more
sophisticated, the ability to measure and improve therr perfarmmance becomes ncreasingly

important.

Here's a quick takeaway:

*  Metric-driven optimization must akign with business objectives
»  Human workforce transformation is crucial for Al success

» Clear outcome targets drive better optimization decisions

* Hegular measurement and adjustment cycles are essential

* Balance between automation and human oversight is critical
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CHAPTER 5
WHY MOST Al AGENTS FAIL
& HOW TO FIX THEM

In the previous chapter, we looked at different metncs for evaluating our Al agents, namely
along four core dimensions: Technical efficiency, Task Completion, Quality Contral, and
Tool interaction. In our journey, we've also seen how agents are powerful tools capable of
autormating complex tasks and processes with many frameworks that make it possible to
buld complex agents in a few lines of code. However, many Al agents fail to deliver the
expected outcomes despite thair potential.

In this chapter, we'll examine why agents fal, providing insights inta common pitfalls and
strategies to overcome them.
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Development Issues

Poorly Defined Task
or Persona

A well-defined task or persona is
essential for effectively operating your Al

agents. It clarifies the agents objectives,

constraints, and expected outcomes,
ensuring that vour agent can make
appropriate decisions and perform
effectively. Without it, agents may
strupgle to make appropriate decisions,
lzading to suboptimal perfarmance.

Define Clear Objectives

You should specify the goals,
constraints, and expected ocutcomes for
each agent.

Craft Detailed Personas

Deavelop personas that outline the
agents role, responsibilities, and
behavior for you.

Prompting

Use research-backed prompting
techrigues to reduce hallucinations for
your agents.

Evaluation
lssues

Evaluation helps you identify weaknesses
and ensures your agents operate reliably
i dynamic emvironments. However,
evaluating agents: performance is
inherently challenging. Unlike traditional
software, where outputs can be sasily
validated against expected results, agents
operate in dynamic environments with
complex interactions, making t difficult for
you to establish clear metrics for success,

Continuous Evaluation

Implement an ongoing evaluation system
to assess your agents performance and
ientify areas for improvement.

Use Real-World Scenarios

Test your agents in real-world scenarios to
understand their performance in dynamic
ervironments.

Feedback Loops

Incorporate feedback loops to allow
for continuous improvemeant based on
performance data.
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LLM Issues
Difficult to Steer

You can steer LLMs towards specific Hierarchical Design
tasks or goals for consistent and reliable
performance. Effective steering ensuras
Eﬂiﬁ ET::‘;E?;;:;ETE i nladu_rc:s'ng the complexity of steering a
are influenced by vast amounts of training singic agent. (See Fig 5.1)

data, which can lead to unpradictable Fine-Tuning

behavior, and fing-tuning them for speacific
tasks requires significant expertise and

Implerment a hierarchical design where
specialized agents handle spectfic tasks,

Continuously fine-tune the LLM based

computational resources. on task-specific data to improve
performance.
Specialized Prompts
Use specialized prompts to guide the LLM
toward specific tasks.
{ Controller Agent }
[ 7 |
Research Agent Planning Agent [ Execution Agent ]
Data Analysis Task Resource Tazk Quality
Collection Breakdown|| Allocation Implementation Control

Fig 5.1: Hierarchical design with specialized agents perdorming specific tasks




High Cost of Running

Hunning LLMs, especially in production
ervironmeants, can be prohibitiehy
expensive. The computational resources
required for inference, particularly

for large models, can lead to high
operational costs. This makes it difficult
tar organizations to scale their agent
deployments cost-effectiveby

Reduce Context

Agents can run for a while in their
iterative bops. Introduce mechanisms to

Mastering Al Agents

e as low context as possible to reduce
the tokens,

Use Smaller Models

Where possible, use smaller models or
distill larger models to reduce costs.

Cloud Soclutions

Usze cloud-based solutions to manage
and scale computational resources
efficiently. Design a serverless system to
save wasting of resources. (See Fig 5.2.)

( AP Gatawany
&
[ B0S Ousue
&
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L“g:;'r"dﬂ' Modal Cacha Cloudiateh
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Fig 5.2: A servarless archileciums whamn Lamibda Controfler makes
irdedflipant dacisions about reouest harcdling

Components of Fig 5.2

+ The SQS Queue acls as our request buffer.
= The Lambda Controller makes inteligent decisions about request handling.
+ Small Model APl for simple completions and basic tasks

* Medium Model API tor moderate complesaty tasks

+= Large Model API for complex reasoning tasks

+ Model Cache for storing frequently used responses to reduce AP| calls
+ CloudWatch to monitor systern health and costs
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Planning Failures

Effectve planning is crucial for agents
to perform complex tasks. Planning
enables agents to anticipate future
states, make informed decisions, and
execute tasks n a structured manner,
Without effective planning, agents may
struggle to achieve desired autcomas.
Hewvever, LLMs often struggle with
planning, as it requires strong reasoning
abilities and the ability to anticipate
future states,

Task Decomposition

Break down tasks into smaller,
manageable subtasks.

Mastering Al Agents

Multi-Plan Selection

Generate multiple plans and select the
most appropriate one based on the
context.

Reflection and Refinement

Continuously refine plans based on new
nformation and feedback. and scale
computational resources efficiently.
Design a serverless systemn to save
wasting of resources. (See Fig 5.2.)
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Fig 5.3: A sirrgle ilostration of bow an agent 4
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multi-plan ssiaction, ard continuous refinermant Task Complata
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Reasoning Failures

Heasoning & a fundamental capability
that enatles agents to make decisions,
aonlve problems, and understand
complex emnironments. Strong
reasoning skills are essential for agents
to interact effectively with complex
ervironments and achieve desired
outcomes. LLMs lacking strong
reasoning skills may struggle with tasks
that require multi-step logic or nuanced
udgment. (See Fig 5.4)

Enhance Reasoning Capabilities

Use prompting techniques like Reflexion
to enhance the reasoning capabilities.
Incorporate external reasoning modules
that can assist the agent in complex
decision-making processes. Thease

Mastering Al Agents

modules can includs specialized
algorithms for logecal reasoning,
probahilistic inferance. or symbalic
computation.

Finetune LLM

Establish training with data generated
with & human in the [oop. Feedback
laops allow the agent to leam from its
mistakes and refine its reasonng over
time. You can use data with traces

of reasoning that teach the model 1o
reason or plan in Varnous acenanios.

Use Specialized Agents

Develop specialized agents that focus
on specific reasoning tasks to improve
overall performance.
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Tool Calling Failures

Ome key benefit of agent abstraction
over prompting base language models
15 the ability to sohe complex problems
by caling multiple toals to interact with
extarnal systems and data sources.
Hobust tool calling mechanisms ensure
agents can perform complex tasks by
leveraging various tools accurately and
efficiently. However, agents. often face
chalenges in effectively calling and
using these ools. Teol calling failures
can occur due to incorrect parameter
passing, misnterpratabion of tool
outputs, or falures N integrating tool
results into the agent's warkflow.

Production Issues

Guardrails

Guardrails help ensure that agents
adhere to safety protocols and
regulatory requirements. This is
particularly mpartant in sensitive
domains such as heatthcare,
finance, and legal services, where
non-compliance can have severs
consequences. Guardrails define the
operational limits within which agents
can function.

Implement rule-based filters and
validation mechaniams to monitor and
control the actions and oulputs of Al
agents.

Content Filters
Use predefined rules to filker
inappropriate, offensive, or harmiul

! Galileo
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Define Clear Parameters

Ensure that tools have well-defined
parameters and usage guidelines for
WOU,

Validate Tool Outputs

Implement validation checks to ensure
that tool outputs are accurate and
relenvant,

Tool Selection Verification

IJse a verfication layer ta check if the
tool selected is correct for the job.

content. For example, content filters can
scan the agent's outputs for prohibited
words or phrases and block or modify
responses that contain such content.

Input Validation

Befare processing, inputs received by
the agent must be validated to ensure
they meset specific crteria. This can
prevent makicious or matformed inputs
from causing unintended behavior,

Action Constraints
Define constraints on the actions that
agents can perform. For example, an
agent managing financial transactions
should have rules that prevent it
from initiating transactions above a
certain threshold without additional
authorization.




Incomporate human-in-the-loop
mechanisms to provide oversight and
intervention capabilities.

Approval Workflows:

Implement workflows whera certain
actions or cutputs require human
approval before execution. For example,
an agent generating legal documents
gan have its drafts reviewed by a human
expert before finalization.

Feedback Loops:

Allow humans to provide feedback on
the agent's performance and outputs.
You can use this feedback to refine the
agent's behavior and improve future
interactions.

Escalation Protocols:

Establish protocols for escalating
complex or sensitive tasks to human
operators. For example, it an agent
encounters a situation it cannot handle,
it can escalate the issue to a8 human
supenisor for resolutian.

Mastering Al Agents

Develop and enforce ethical and
compliance frameworks to guide the
behavior of Al agents.

Ethical Guidelines:

Establish ethical guidelines that outline
the principles and values the agent must
adhere to. These guidelines can cover
areas such as fairness, transparency,
and accountability.

Compliance Checks:

Implement compliance checks to ensure
that the: agent's actions and outputs
align with regulatory requirerments and
organizational policies. For example,

an agent handling personal data must
comply with data protection regulations
such as GDPR.

Audit Trails:

Maintain audit trais that record the
agent's actions and decisions. This
allows for retrospective analysis and
accountability, ensuring that any
deviations from ethical or compliance
standards can be identified and
addressed.
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Agent Scaling

Sealing agents to handle increased Resource Management
workloads or more complex tasks

15 a significant challenge. As the
number of agents or the complexity of
nteractions grows, the system must
gfficiently manage rescurcas, maintain
parformance, and ensure reliability.

Integrate load balancers to distribute
ncoming requests evenly across
multiple agents. This prevents any
single agent service from becoming
overwhelmed and ensures a moare
efficient use of resources.

Scalable Architectures
. Monitor Performance

Design architectures that can efficiently
manage increased workloads and
complexity. Implement a microsenices
architecture where sach agent or group
of agents operates a5 an independent
service, This allows for easier scaling
and management of Indidual
components without affecting the entire

Implement real-time monitoring tools

to track each agent’s performance.
Metrics such as response time, resource
utilization, and error rates should be
continuously monitared to [dentify
potertial issues, (See Fig 5.5)

systermn.
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- Fig 5.5: An illustration that shaws
b wou can add manidaring and
balancars for aasy scale-up ard
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Fault Tolerance

Al agents need to be fault-tolerant

to ensure that they can recover

from emors and continue operating
effectively, Without robust fault
tolerance mechanisms, agents may

faill to handle unexpected situations,
leading to systern crashes or degraded

performancs. (See Fig 5.6)
Redundancy

Deploy multiple instances of Al

agents running in parallel. If one
instance fails, the other instances can
continue processing reguests without
interruption. This approach ensures high
availlabilty and minimizes downtime.
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Automated Recovery

Incorporate intelligent retry mechanisms
that automatically attempt to recowver
frarm transient errors. This includes
exporential backoft strategies, where
the retry interval increases progressively
after each faled atternpt, reducing

the risk of overwhelming the system.
Develop sell-healing mechanisms that
automatically restart or replace faled
agent instances.

Stateful Recovery

Ensure that Al agents can recover their
state after a failure. This involves using
persistent storage to save the agent's
state and context, allowing it to resume
operations from the last known good
state after a restart.

+
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Infinite Looping

Looping mechanisms are essential for Enhance Reasoning and Planning
agents to perform iterative tasks and

refing their actions based on feedback. _ i A
Agents can sometimes get stuck in planning capabilities to prevent infinite

actions without progressing toward their Monitor Agent Behavior

odls. (See Fig 5.7)
J e Manitor agent behavior and adjust to
Clear Termination Conditions prevent laoping issues,

Improve the agent’s reasoning and

Implement clear criteria for success and
mechanisms to break out of loops.
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Through the above examples and workdlow diagrams {Fig 5.1 to Fig 5.8), you'll
notice that while buikding Al agents presents numerous challenges, understanding and
addrassing these common failure points is necessary for success.

By mplementing proper guardrails, ensunng robust error handling, and designing scalable
architectures, you can create agents that wark reliably and provide real value in production
environmenis,

That said, remember that bullding effective agents is an iterative process,

Always start small, test tharoughly, and gradually expand your agent’s capabilities as you
learn from real-world usage. Pay special attention to the fundamentals we've covered—
fram clear task definition and evaluation to proper planning and reasoning capabilities.
This will help you establish a strong foundation when you begin to experiment with your Al

agents.




Term

Lange Languags Mool (LLM)

Al Agent

Agent-Bazad Syatem
Task Aulcenietion

Syetam Latency

Enviity Meamary
Human-n-the-Loop (HITL
Multi-Agent Pettem
Fiie-Beased Agent Deion
State Manegemend
Ciontest Winodow Lilikzaton
LLKA Cal Ernr Aeta

Latency pear Tood Sall
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slossary

Description

An poivenced Al modal that can understand and genarsta hurman-like text by
prechcting the nest word In & ssquence

Sottwane spplcation powened Dy large anguass modals that autonomously perfarm
gpeciic 1asks and makes comples declsions.

An spproach whsra softwars agents work indespendently to-solve problsme through
decision-making end intaractons,

The procasa of using Al 10 perfomm repelithe of comples 188ks without hurran
ntanvention,

The tima deday between when an Al agent secelvas nput and when f provides a
MEEOOTER,

& specialized form of Al memaory that maintans detaled informaticn albout specific
entilies (peopls, crganzaticons,; concepts) acroes mukipis nieractions.

A gystem design approach that integiates humen oversight and intsneentcn ports
within Buformated Al processes.

A struciuned Boproech io organzing mulliple Al agente- inlerections, nolaoing
heererchacal, sequential, and dynemic paliems.

A grehitecturel spproach whars Al agents ere aeagned specfic mies with defined
resporaibiities, toods, and Nieraction pattems within a largar syatem.

Systematically trecking and contraling an Al agsnts internal conditions, memony, and
oot throwaghout ts cpseretion cycke.

A rmetrc measunng how stficiently an &l agent uses is adalable processing capacty
for anahyzng &nd retaning informaticn

Accntical relisbdity rmstr racking the treguency of faled AP requests and processing
errors wihan an Al agant nieracts with &2 undsrlying languegs Mmool

A, performancs nocalor messwing the time detay hebeassen an Al agents request to
uge & specific tool and recaing the toole eeporse.




Clutpest Formiat Sucoass Rabe

Sitepa per Task

Taek Completian Rate

Tooi Selacton Accuraoy

Tohken Usage per Interaction

Hersrchica Desion

Prompting Technigues

Feflesion

Servariesa Architecture

Taek Decompositian

Tool Calling

Mastering Al Agents

A queity metris &ssessing how accurately an Al agent adheres 1o specfied formatting
reduiements and presentation standanss across diferant user rodes and conlaxts.

An efficiency rretnc racking the number of discrete operations an Al agen rquies o
completa a ghven task,

A pomprehensive performance indcator measuring the pecentsge of assgnments &n
Al Boent guccesshully comgdstes without human interantion..

A rratrac avaluating by approprately an Al egent chiooses specdific ook or mathoos
fram is avdlabis toclkit based on task reguirements and complesty,

A resource afficency metrks tracking how many computational units fokens) an Al
BNt conaumsas dunng task processing

A eystarn anchitecture wnere specialized Al agems handa speciic tesks, reducing the
complexiy of atsarng & single aoent.

Research-backed methode 1o guide LLM behavior and educe halucnations n Al
Bgants.

A gpecialzed prorgsting technigus that enfances an &l agenta ressoning capabiities
through salf-refiection and improsemsant,

A cioud-besed systam design where computatonal esources ae dynamically
ellocated based on &l agent workizad demands.

The procass of breskng down comples assonments inio amalear, manegeabls
eubtasks for A Bgents 1o hende affectiveh.

The mechaniam by which &l agents infersct with extamsl syetems and data sourmes
boy Ecbue cOrmgse profilemd through muttpla tool interactions,




