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EXECUTIVE SUMMARY

The rise of generative arfificial inteligence [Al) as a novel frenfier that unigquely
merges advanced levels of inteligence with revolulionary user experiences 5
recdelining the Al landscape for fulure celivlar networks, In parficular, the
transition towards 6G systems has infroduced a mynad of challenges inherent o
their Al-native network design, requiring innovative solufions o enable real-time
network orchestration, inteligent decision-making, and adaptive dynamic
canfiguralions. Meanwhile, the envisioned user expedences for 6G are growing
increasingly complex, exceeding the capabilities offered by vintage wireless
technologies and conventional Al solutions to salisfy their advanced demands.

with its disruptive impact evident across diverse fields, generative Al possesses
immerse potential to tackle these challenges, leveraging its excephonal
capabilfies to manage complex tasks, operate avtonomowly, and adapt
seamlessly to scenarnos beyond its training domain. Remarkably, generalive Al
pravides a transformative opportunity for telecom and cellular networks 1o
ridge this defined gap in 6G systems, thereby shiffing towards a new era wilh
cutting-edge Al innovations across the different system and user levels.

In essence, the introduction of generative Al into the telecom domain i primarily
facilitated by a set of large-scale Al models denoted as large telecom models
(LTMs). These LTMs are specifically designed o tailor the abilities of large scale Al
madels to effectively meet the demands of the telecom ecosystem. The goal of
this white paper s to shed light on the potential of LTMs to revolutionize the
lelecom functions and applications from the theoretical design, implementation,
and deployment perspechlives. whie touching on the regulatory,
standardization, and industial frameworks that govem ther realization In
practice. To this end, this while paper provides an explanatory overview of LTMs
and their distinctive role in the radio access network [RAN] and core natwork,
while expanding the discussion fo cover several key areas that include:

Fundamentals of large-scale Al: Reflecling on the generative architectures and
models that compose large-scale Al, along with recent trends in handling multi-
modal fraining data, pre-fraining and fine-tuning  techniques, alignment
techniques (e.g.. reinforcement leaming (RL} with human feedback), and
deployment strategies on the network.

From large-scdle Al models to LTMs: Moaving beyond the state-ai-the-art large

scale Al models that can be vulnerable in the telecom domain, while
highlighting the necessary modifications to the underying theory of large-scale

Al models to foresee the emergence of LTMs.

LTMs for physical and MAC layer designs: Addressing resource allocation,
spectrum mandgement, channel modeling, and mabilty management, among
ofhers.

LTMs for network management and optlimization: Spanning cdaptive manitoing

and control in emerging frameworks such as Open RAN networks [(ie., O-RAM),

while highlighting the critical role of leveraging LTMs with RBL to enable ,_?ﬂ_/
centric network optimization. 7
ABNIASIA.ORG




Datasets for LTMs: Supporfing the deployment of LTMs with telecom-specific
datasels and providing benchmarks with evalualion frameworks 1o assess the
parformance of LTMs.

Hardware advancements and requirements for LTMs: Focusing on the role of high
compuling platforms o accelerate the deploymen! of LTMs and how Ihe
convergence of the RAN with Al plays a role in enabling LTMs aver future cellular
networks,

New use cases and applications of LTMs: Encompassing distributed LTM
framewaorks over the edge. novel approaches for federated leaming in LTMs, EL
wilh LTMs interaction, intent-based management with LTMs, ete,

Regulatory and ethical considerations for LTMs: Emphasizng thal data
govemance and accountability are crucial considerations to acquire
trustworthy LTM operations.

Industry insights into large-scale Al models and LTMs: Including the current frends
and ongoing projects in the industry that include large action models and on-
device generative Al modeals, recent model breakthraughs such as TelecomGFT,
and praclical challenges thal face LTMs such as the limited decoding rate and
massive model sizes,

Standardization activilies and LTM readmap: Discussing the key efforls to bring
farth LTMs through focus groups within regional bodies, while setting the
roadmap for LTMs by defining thelr roles in network infrastructure, network
management, business operalions with the comresponding fimeline for LTMs e
reach their miestones.

Ultimately, thes white paper serves ds an inaugural roadmap for LTMs in networks
and provides a basis for telecom experts and industry professionals to build on
the slate-of-art in LTMs te push the boundaries of large-scale Al models for naxt-
generation wireless networks.
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OVERVIEW OF LARGE-SCALE Al



1 Overview of Large-Scale Al

1.1 Background and Definitions

Upcoming sixth generatbon of mobile networks (60, are expected 1o provide more services than thein predeces-
aofs, broan ever-growing niember of users, The complexity of managing mobtle networks i amplified by thei
disiributed nature. To-sddress this, Anificial Inelligence (Al algorithms, including deep leaming models and
symbolic approaches mast be deployed at scale across both the radio aceess network (BLAN) and the core metwork.
These algonthims serve as essennal tools to auemate netwoek managenent and handle the growing complexity in

a cost-¢flicient wiy.

While Al algorthms are aleeady used o mebile networks, thea fuonctonaliny s wepieally confived o specific
domains, resulting in siloed deployments that sddress only namew aspects of etwork perfonnance 1] These
Al sysiems strugele o generalize acrose diverse network envivonments. More complen chiallenees, such s these
requining human-like reasoning and planning, sely on symbolic echniques, which in i depend en human-
curated knowledoe bases, However, these knowledge Bases tend 1o be lriitle and diffculs s scale [2],

Crenerative Al1GenAl) algorithims have secently nisen to prominence due W advancersenes b deep leaming ag-
chitectures such as transformeess. which enable nuodels wo capiure complex panems and relatonships wathin barge
datazets [3]. Techobguees such & antoregressive modeling and diffusion processes allow these systems o genorate
high-fdelity owrpas. anging feom lext o unages, by learning the wsderdving data diseribtion. This scalalilivy
combined with the ability o proopt or Gne-tuee models vsing nemimal sepesvision, bas signeficantly redoced the
relbance on human-ansoated data, allowing GenAd msodels gech o Lavge Language Maodels (LLMs) o ourperform
symbolic modéls by Queestion Answering (A tasks [4], bt also deep-learning based Anafickal Meoval Metworky
{ANMNE) such a8 Becurrent Meoral Metworks (EMN=), i rasks such as Autoomaned ;Spm:::h Becoonithon (ASK)
Speech Translation {ST) and Text-to-Speech (TTS)[ 5], Additionally. research shows that LMz, when guided by
well-structured prompis that instract thems to generate intermediate reasoning steps during the oatput process. can
effectively solve complex asithmetc. symbolic and commonsense tasks invelving advanced, System 2 reasoning
[6]. Given this potenteal, it is promising to leverage GenAd i mokide networks at progreassively lasger scales and
with greater decision autlwriy, eltmately siming for fully sawonemous neworks.

Acpecent survey highlizhted multiple areas acioss-all livers of mobile networks sehese reseasch on s application
ol CrenAl algorthms and mexdels i actively wisdeeway [7] 1o chis paper. we focus on Large Telecom Models
{LTMs1 LTMs are Language Models (LM=) that require large amounts of segources, for example training data.
bat abse compute, store asd bandwidih for wse in moebile nevworks.

1.2  Intreduction to Scalable, Large Telecom Models

Frgure | presents o simplified, layvered architeciure of a mobile petwork, highlighung various application areas
for LTMs. The aschitecture incledes a top-level exposare Laver that enables third parttes. such as enerprise cus-
foumers, & interact with the mobile netwark. These interactions may iwvalve specifving iereaie’ . such & roguests
for specific guality of service (Qo%) parameress (2.2 lmits on loeney and packer drop gates, o guaronteed
theoughput). The management Javer oversees operatiens of the mobile network, mscorperating botl subomasted
proceses (e levemaging AL masdels) and hunsae-deiven activines, sucl ax Field Service Ogperations {FSO amd

Ve o ool of aubomcmmons petwurks; an inbenl refers g high-tewed, devlamtive gl or chiective Bal the =sysiem aims (o fwlill skt
defuiling de specific seps roganed
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Figure 1: Owverview of applications of LTMs i a mobile network.

Boftwarm
Code Asgistants  Dpypiopment

motoring hreugh & Metwork Operations Centre (MOC L An ainfrastruciue layver consists of vanous elements of
a mobake revwork. such as BAM, core petwork, transpoit nevwork bevween-and theough core and BAN, as well as
the wircless interface between RAN and User Equipment (UE:

Although LTMs are only a subser of Al models, they fnd broad applicabilay aceoss meluple nevwork layers. We
generally catepnaize applicatbons into two bypes: those that enbarce mobibe network capabilinies by adding new
funciionalities or improving existng ones, and these that operate periphecally w the petwork’s core functions.
interacting direetly with humsans, Examples of such perpheral functaas nclude metwork monitoring in o NOC,
field mawienance operatiens, petwork design and deplovient, g well s the devidlopment of petwork-relaed
software cotpone s

1.3 Large Telecom Models for Telecom Functions

From a top-down peespective, as illusrared v Bgure 1, LTMs play an imgsortant tole in the exposure bayes, senv-
ing as a lnk berween the customer and network domains. Specifically, LTMs can translate high-level, abatract
inteids expressed in the customen's language—snch as natugal linguage na Seevice-Level Agreememt {SLA) doc-
g i—ineo technical requitements that the masagenen Lver can interpret and configwre o the network. Thei
abilicy o undersrand matueal Bngoage amld process wechnial documentation makes LTMs ideal for scaling this
type of translation effickently. thus therelsy enhdneing the personalization of the network expericnce for custormwers.
Adnvither Facet of this personalizatien involves development of wilored sabscription plans. for castomers. including
hilling streetieres and feature offenngs that are specifically adapled o costemer needs, sather than being gener-
ically designed by the mobile mevwork operavon, 1 aneher example of personalizatenfa LTM agems can be
used to abstrsct complexity of lelecom-specific network exposure Application Prograim Intesfaces (AP from the
custgamer, sch as teese spécified for Metwork Exposure Funcion (NEF) amd Service Capability Exposure Func-
tion (SCEF by 3GPP. In this case. i custorser may use an absirsct prompl, such as & matural language interface
10 request services from the notooork, such as monibesing of i's UE, &nd an LTM can cranslate this request 1o
sequence of AP calls.

[ the management laver, LTMs can facilitate the awtomation of metwork operations management, Thes encom-
passes two key aspects: (st the support LTMs can provide for field services, such as the anstallation, commiassion-

“Im Thiml Grmerates: Parinershap Projec (3GMY nmenclaiers, UE are' the neer lemmmabs aceessing the reswork (2 o0, mokile phoogess




ing. and maintenaiee of Radio Base Stations (RBES:E In this conrext, LTMs can serve as digital assisiants; aiding
field service personnel during on-site jasks, Oftien, RBSs are located i remede areas. making it costly 1w semd
personne] Tor fault repairs of scheduled maintenance. Addinoaslly, staffmust be proficient sotonly in the specific
produects on-site o disgrose issues and identily oot casses but also must uaderga safety maining, especially since
faults may ocouc ob radio wower tops. LTM assastants can help mitgate some of these expenses by offenng real-
iy assidtance based on sawateonal aszessments 1o field serviee engineers. The second aspect involves automating
trouble reperting in e NOC. Typieally, sdentifying ssues requiees the agereganon and amalvsis of diverse data
sals, including lops frony vanous systems dnd visual data, LT8s, with thedr capacity 1o be effecively promgsted
for this information through appeoaches like Remieval-Avgmenied Generation (BAG) B8], can process the dati o
generate a troubbe report in natural language, as well as provide recommendations Tor Tault resolution. LTMs can
alen be waed for policy-based mangeement, as they can dynamically inteeprer aisd implement complex netwaerk
pelacies i peal time.

Tiw thie infrastructere layer, we ideatify two separate uses for LTMs The frst is content gencration, whercin
LT, sucly as Geoerative Adversarial Metworks oGAMs ) can Beowtilized to create synthetic data to augment real
network observations. This i3 particularly wseful o cases where real dara s scarce o the nevwork is overloaded
with cormmimicatioon tasks, preventing it from observing ambior transpodting actual data to whene at 25 needed. Fog
crample. of data originates from UE, such as Clhannel Srate Information (C5L reports, then the avalability of thiy
dati depends on the présesce of UE However, there may be instinces whese UE are unavailable, such as when
the petwork aime o generate o model of tee wiseless chanpe] b a specific aged o B ereale 4 coverage mape A
generilive model can be used in such cases o augment real-life network observations. The other aspect involves
conteal delivery over the air interface. pariculady for media-rich, hish-resolwtion content fike high-definition
video, In 60, adopion of Extended Reality (XE) applications = anticipsied 10 rse, abongside the introduction of
new deveces such as vineal realiny and augmented reality headses: Tochnelogies like semantic commuanication,
wihich leverape encoder-decoder generative mindels such as Varlational Avtoencoders { VAES | and transformers
instead of tansmitting rew diata, can significantly reduwee bandwidth requirements per KR session. This redectnon
wistld enable the petwork to scedammiodite @ greater aumber of CONCWTENL SE38 R,

1.4 Large Telecom Models for Peripheral Functions

Ty addition o being embedded in the mobile netwark iself, LTMs can also be ased for functions that support
the mobibe retwork. Ope key area where LTAMs can belp s i perwork deployment and planning. They can
analvee historical and veal-ume data i determine the bear locatoss for new base stations. This analyas includes
lonaking at factors Like population density, user Behavior, and existing retwork coverage, By understanding where
waers are and how they wee the neework, LTMy can suggesa locations that will maximize coverage and mimimize
interlerence.

Audditionally, LTMs can assistin desigaeng nevwork architectures by simulating diffevent scenarios. For instance,
ihey can model how changes in wser demand or petwork traffic mighi affect performance. This helps enghiseers
identify potcatial protlems and make adjustmens before actual deploviment. saving time and resources,

Dy safiware devebopment, LTMs can aotomate routine tasks sech as coding, testing, and documentation. Foa
crampbe, they cai take user requirements written in plain language god gencrate code snippets that Fullifl these
requarements, This can speed up the development process anid reduce the chonce of errors.

Moreover, LTMs can help create synthetic data for testing. When real data is Timited or snavailabbe. this synthetic
data can simulate real-world conditions, allowing developers (o test their software thomoaghly. They can also
generate varions test scenanos o ensure that network applications perform well under different conditbons,




Ansther application of LTMs is as digital assistants, Le. cfatbats that assis users sach as customers and mobile
nepwork operater personne] i navigating complex mobibe standacds, pswell as prodect and network docunenta-
tion. These chatbots con provide instant anawers togeenies aboul technical specifications. regulatory requirements.
oo best praciices in mobile network operations. By offering easy access 1o this information, LTMs can belp reduce
the nme enginecss spend searching for decuments of standards, allowing them o focus moge on critical tasks.

Owverall, weing LTMs for sevwork deployment. planning, and sofiware development can lead o more efficiont
operations and better service for users. By analyring dato. simuelating seenarios, automating tasks. and providing

quick access o anformation. LTMs can support network: engineers and developers in building amd mamtaamng
robast mobile retawocks.

L5 Contribution

Mohile networks consist of a large number of interconsecied podes, which gencrate and transmit kurge amoants
af data. This disiribuled architectuee i< challenging in context of large-seale LT deploviment. Omn a higls level
this paper aims t© provide the reader with an undeestanding o the fllowing challenges related 1o deplovisent of
LThds.

= nderstandimg the background contest, meloding & review of state of the an (SoAd of LTMs algorithms and
deployment archiiectures,

= Understanding the use-cases and mobile network infrastnsciore reguisensents for deplovesens of LTMs i
mohile netwarks, both for traiming bt also for inference,

= Iinderstanding the curvend capabilites of network infrsuuctire and UE. o host amd frain LTMs:

# Drescribing metrics and datasers wo train LTMs and evaluate the accarscy and eredibility of their responses
during inference-tune.

= Linderstunding the regulatory framework: standardization activities and market trends for large-scale adop-
oo nd LThs.

This paper functions as a mulii-disciplinary guide for large-scale deploviment aspects of LTMs. This is done
i form ol a deep-dive into SoA tools and methods for cach of the scalability aspects highlighted: above, The
remainder of this section provides mose anformation on each of these aspects and meludes references o other
secteons of the paper, allowang readers (o directly access the wgpics they are interested in,
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2 Large-Scale Al in Telecom: State-of-the-art

2.1 Owerview of Large-5cale Al in Telecom

S0 netswork will be intelligent networks capable of responding i real-time 16 enserging demands and clhanging
cuvipsnments. 1t will suppore o wide range of applications and scenanod, such ag the Dnemmet of Things, sman
grid, autononwes vehicles, imelligent agrculture, snd so on, The design of Telecom network 15 transforming
fromn pure conmmunkeation orented towasds antent and goal erented. 10will not enly delsver informustion to mest
certain Qos requirements (throughput, latency, reliability), Bar also plan, configure, and oplimize Tunctionalities
and protecols o enviconment copditions and wier demmands.

2.2 Large-5cale Al for Physical and MAC laver design

L ghis section, we discuss some hundansentals of the physical layer which would be enharced by geserative lorge
ol els.

2X1  Al-Based MIMO Detection

MIMO desection refers v te process of ecovenng wansmitied signals at the receiver end moa MIMO comma-
nicatlon system, which 15 ceiteal becanse, whale MIMO albows for the simulianeous wansmission of multiple
data streams over the same frequeney band, the signals from different antennas cen aterfere with cach other
due o moltipatl propaganon and chanpel Gading.  The primary goal of MIMO detection 15 10 separite these
trapsinied sigials and recover the eeiginal data sccarately, The main challenges in MIMO detection arise from
interference between signals wansmitted Tom differsnt sntennos, moise and sther chanee] imparments, and the
high-dimensional detection in systers with many antennas like massive MIMO. Depending on the number of
antennas and the chanmel conditions, various detection algorithms are employed, each with trade-offs in wems of
complexity and performmos. The cument methods for MIMO decciion range from traditional Esear approsches.
like Fero Forcing awd MMSE 10 advanced noa-linear (like Magimom Likeibood and Sphese Decoding L, derative,
and machine leorning-based techamgues. Tahle 2 lists these methods.

Geenerative Al and lasge models (lke deep leaming) can significantly improve MIMOC detection by offenng ad-
vaised cagabilities for hardling comples and dynamic commumsication eovirmumnents, These Al-doven methods
are partkcularly usetful in dealing with the high dimensionalicy, pon-luseariy, asd reel-tme consiramnts typacal of
MIMO svstems, Below are ways in which generative Al and Large nwsdels can help snprose MIMO detectvon

Leviring -Beved Detectton: Deep leaming miodels, particularly Large models ke DN can be rained o map
receved signals dipectly o transmiined svmbols, bypassing traditboml devection technbgues. This is especially
valuable in highly complex and dynomic MIMO systems such as massive MIMO, whete traditonal algogithms
strugele with wov-lisearity and high interference levels. Generative models can learm complex non-linear rela-
tonships bevween ransmitted and received sigials, making them haghly suitable for MIMO-svstems operating
in complex emvirenments. such as those with fading. inerference, and mobilicy. Unlke raditional meechiods thar
sequice specific model ssumptions, they also have easy real-time adagtation and deep leaming models can genee-
alize wiell to various channel conditbnme e iuinime, As we observed, o Liege-seale MIMO systenss, traditisnal
methads can become compuiatopally expensive.  Al-based models ean efficiently scabe and handle these Barge
syatems, redicing computational koad and improving detection spoed.

Crenerative Models for Chanre! Extimation: Generative models such as GANs and VAEs can belp enhance chan-

el estimation gl mdedeling in MIMO sysems, which ts erucial for sccwrate detection. These models can simnulste

realistic wirckess chanee] cnvironments amd assist in generating more accunte channel matrices, improving deog
/4
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iection performance, GANE can be weed 1o penerare gynihetic, yei realistic. chanme]l conditions based on a semall
amsow of real-world data. allowing the MIMO detector 1o adapt 10 vamous channe] conditions dy namically.

Table 2: Summary of the current ML detection metlwods

Lalegory Aleibind Approach Advantage DEalvaniage
Lhear  [hefer= | fero Forcing | Elimaniees mulo-antennain- | aampe and casy wo inpke- | amplites niise, pood ger
lion 12F} werference by mvening the | memt Good for hagh SKE-| formance in ooisy o il
channel mamx T T T conlisinned chansels.
Rlimimmm Mean | Balamces hetween (merier- | Heiel Ban AF 0 oosy | SHEEEly moe compuiaiion-
Equate Error | ence suppaession and moise | chunoels ully comsplex than 2.
(MMSE) | amplibcafion | . B :
Maiched Fher | Maomizes: the  received | Very simple and compas- | Zufférs from  interlerence
IME SHE lor euch tramsmined | boeally effscient | bt pem daba exreama
sinzam.
Mon=Linear Eée= | Successive Inter- | Delects the sirangest sagnal | Emerference  reductios be- | Ermar propa gatiod can gocar
leclinm ference Cancells: | fis sobiracts s coninbu- | wees sireams. tive arder m which the g-
won (S0} tieit froen the received sig- nals ane detecled affects per-
mal. and then detecis the mee Enrmane.
mining signals wenmively:
Mo DkeE T Minkmizes" B2 Fuclidean | Mmimiisg BEE Computsisonal  complexiny
loced gbfl} D | distance hetwesn  the i reaes e pementiully
leclio eeetved  sgmal  and o s wizh the number of tranemit
eamialed version based on antennmy - and  ecdolatise
thie channel patniy | ocader. Inogractical for Grpe
sywlems
Sphere Decoding | Bedoces the compleaity of | Mear- ML performance wath | &6l computabonally expen-
(513 ML detection by search- | lower compdesty srve for lnmge MDD syx-
mg wirihis o cenen: sphere teme, though ik less o
arouid the mocerved sigsal tian: ML
Tierutlye [hetece | Turbo Detecicon | Twvolves (ermve feedback | Chise @ oplomal perfio- | Begames muluple iertinns,
o beetween the equublirer. for | mance imcreasang  desecion delay
deiecion) azsd the decnder, and computativnal lead
Tebiel Propags- | Usex o facice graph md | Bficiest  In osrecidared | Camplexidy ncroases wiih |
twn | BE) perborms profabitiste nfer- | MIMO sysiems. such as | the pumher of  aniennas,
ence, poasing Cmessages” | LDPC-hased svsiems. COHIVeTgence issmes  CBE
between  nodes o rfine urise.
protability estimales.
Compressed Expluoizs the sparsaty of the | Samuhle  for  enderdeier- | Wieeks best when the tram.-
Sensing-Hased signal i systems whese the | mised MR sysiens miled  sagnid his sparee
[kefection mmber of ransmil amennze characienstics.
exceeds the mimber af e-
CEIVE ANLEInas.
“Hybrid  Detec- Comiines manple desec- | Fleshilicy  bo didlesernt | Increased complexity.
tion Techndgoes tion methods w balance bee | dhneel conditsans. A gond
twzen complexity and per- | irede-ofl - befween  perfor-
Ionrance. nuince and complexicy

Moveover. this generated data could be wsed for supervised leaming-based MIMO detectors, enbancing iheir
rubusiness W different signal and chanoel scenarios, even when hmited real-world data s available. By predicting

channel states i real-time, they redece the complexity of explicit channel estimation steps fequired for MO
detection.

Al-Evhanced Joins Brerectlon and Decoding: Deep leaming-based architectares like DetMNet (Detection Network )
and RNNs can imegrate MIMO detection and decoding processes. Al models can joimtly perform both MINO
detection and channel decoding taks, leveraging the careelation berwezn thede steps to enhanee overall sysieen
performance. By leveraging the joint deection-decoding ability, these models reduce the overall complexity of
processing while impeoving the detection pesfomunce. Al-driven architectures that mimie tirbo decoding allow
Tor effickent covor correction and nwore accurate signal recovery b the presence of noise and interference.

Adaprive Détecnion Usimg Resaforcencent Learaing (RLY this category of learning models can be emploved to
dynamically sdapt the detecton strategy based o eeal-tims Teedback from the environmens. BL agents can leam

optirnal detection strategies over time, adjusting 1o changing channel conditions of system parsmeters i main
16
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peiformance, This 15 espectally udeful in faa-changing chanmel conditions, where static detection strabegies may
et perfornm well. RL-based models can optimize MIMO detection without requiing a complete model of the
wireless enwvironeent, leaming the bestactions 1o minimize BER or maximize throughpat. They approaches can
gradually improve performance without reguiring vast aeowsts of raining dota upfront, wnlike supervised deep
learning madels.

222 Channel coding'decoding

Channel codees (channel coder and decoder) are essential technigees i digital commualeptions ased o detect and
correct erors that may occwr during data ransmission over nowse. interference, amd other chonnel impaieme s,
The goal of chanpel coding 15 1o enhance the réliability of data ransmission by introducing redumiancy ot the
transimiited information. allowing the seceiver to detect and correct erpers without the need foe retransmission. It
includes thice parts: the channel encoding adds redundancy wodata o coable ermoe detecton and correcion. The
cliannel decoder waes pedundancy o degect and comrect errors i the received data. Finally, ermor detection asd
cormection which muproves selibality by detccting and codrecting eorors in tansmibed data,

Current channel codec methods are advanced techniques and they bave evoalved significantly v meet the demands
af modern communication sysbems like 56, satelline communications, and digital storage, The main mmethods
include block codes, convolutional codes, wirbo codes_ and low -density parity-check (LOPC) codes, Euch metlvod
has sts own codingfdecoding stratepy based on the type of crvors o aims o detect or coorect. Below b= a shoit
explanation of the maest comimoen methods:

s Biock Codes! Hammiing. Reed-Salomon codes (used for bursting effor corrcion. sorge aysemsh

o Copyvolutional Codeds Used i eeal-time comrmimications, Vieerhi decoding s wadely applied in <atellite asd
mohile swatems.

= Turb Cosbes: Highly efficient For wireless systems, iterative decodiong (440G, 500,

= LDPC Codes: Widely used in moden wireless svstens OWi-Fi, 500 amd siorage systems due so thein near-
capacity performance snd efficien decoding.

o Polar Codes: The latest i clhanpe] coding, selected lor 50 control chanels, offering efficient decoding
through seccessive capcellation.

= HARQ: Combines ARG amd FEC, remansmittang cormupted packets with additional sedundancy For bim-
proved error comection.

Large and generaive models can significantly enbance tse efciency sl pedformance of clunnel codingfdecoding
by introducing data-driven technigues o inpaove error comection. decoding algordthms, and coding optimization.
These improvements have been explorsd in recent research, with Al models showing promise in overconing some
af the traditiopal lBmitations of classical coding welnigues. Here's how geperative Al and large nwodels can help:

fmprerving Decodling Adgorithms: Generative Al and large deep learning maodels can be used fo optimize and
improve decoding algonthims, particutarly 1o sofi-decision decoding amd iterabiive decoding (e.g., for Turbo codes,
LT codesy. Meural networks can be eoieed o leam the decoding process from received nosy sigials ad
autaimatically perform ereor comrectvon, Deep leasning decoders can replace conventiomal methods like the Viterbi
af belel propagation algosithnes, resulting in nasre obest and Gister decsding. BMML oF even more alvanced
madels like LSTMsa. cun ledmn sequéntial data und are particularky well-soited for decoding comvilutienal codes.
These Al-based msdels can owtperform traditional methods when trained on large datasets with vasying wiis




levels. Finally, generative models can predict the Bkelihood of each received Bit and perdorm soft decoding, which
i% particularly useful for LDPC and turbo codes, By beveraging Al decoders can move efficiently hamdle noisy
and corrupied signals amd find the most likely ransmitied sequence with higher dccuracy.

Designing New Celes: Generative Al ean b emploved tio desen mew coding schemes tha sutperfosm traditisnal
codes ke LDPC. Turbo, or Polar codes. By weating coding us a geserative process, Al models cin leasn to create
highly efficient codes optimized For specific communication enviromments, Foe instanee, instead of relying on
predefined codes ke Reed-Solomon or Hamming, newral nerworks can generate codes tailesed o zpecific channel
characieristics of nodse levels, offermng beoer performance in specific applicatons. Al models ke amocmeoders
can be wained 1o simeltaseously leany encoding and decoding procedures. albowing the discovery of wew codes
ihat can lhandle erors move efficiently. Autoencoders can capiure complex channel noise charseteristacs and adapt
the code w the chamsel, Al models can also create adaptive emoe-cormection omdes that evolve based on the
current communkcation enviromment. This adapability s useful by scenarios where channel conditions change
dymamically (c.g.. 50 netwarka)

sty Hybrid Aatormadic Bepeat Regueest | HARQE Generative Al models can optimize HARQ systcms by
predicnong when retransmissions are necessary amd adjusting the coding redundancy dynamically 1o reduce the
need For retransmissions, saving bandwideh and improving throaghpor BL can oplimiee retransmission decisiong
in HARD by leaming from the nerwoirk's feedback. Al models can predecn the aptimal amsownt of redundency
needed for each transmission, improving cfficiency. Generative models can adapiively generate parity bits based
on the channel conditions, instead of relying on fixed redundancy patterns. Thas adupeive approach allows HARG
syatems to be move efcient, reducing rerransmissions in clhallenging conditiens. Moreover. GAN con Create syn-
thetic data that represent possible ramsmission ervors, allowing the system o simulate different channel comditions
and learn optimal HARQ strategies under varous error rates,

Fafennedeg Polar Codes for 5062 Generative Al can enbance Polar Codes, which are used s 56 for control chan-
nels, by improving the successive cancellaton decoding (SCD) process of designing moee efficien decodung
arclhiwetures. Al models can be applied o successive cancellation list deooding (SCLIF improving the decision-
mizking process during decoding by berer estimating the probabilivy of cach bit. This leads 1o better eroos cog-
rection performance. especially i short-block-length polar codes. In addstvon, polar codes rely oo frozen bats
o peduce complexity. Geoeeative Al can dynamically opimize the selecton of frozen bits Based on the channel
conditions, improving the overall code efficiency and eror correction capability, Al-doiven poelar codes can be
optimized for specific wse cases and communication envigonme s,

Giptaising LIFC Coder: LDPC {Low-Density Parity-Clheck j codes are widely osed in sarchess and storage sys-
tems. Geperative Al can oprimize LDPC decoders by aimproving belief propagation (BPy algerithms, or even
developing entirely new graph-based decoding architeciures based on kearsed data. Enhuncing the belief prop-
agatbon algerithm is possible by leaming better message-passing strategios between variable and check nodes.
improvang comvergence specd asd decsding accuraey. Morcover, DINMs can be trmed as decoders that sonulate
the message-passing process of LODPC decoding but with higlser resilience 1w moise amd interference,

213 Resource allwation

Resguree allocation for the physical Biyer i wireless communication systems involves distrbuning and managing
sesources like power. tme. feequency. amd gpatial domains o maximize data throughpst, monmee iMerfercnce,
and amipeove the overall nevwork quality of service (Qod ). Eficient resource allocation s cotical for enswnng
that the physical layer can support higher dats vates, betver reliability, and lower latency, especlally in complex
networks like 3G and beyond, The main composents of resource aliocation at the physacal Liver are power alloca-

tion, subcarnier allocation, time and spatial resource ullocafions, adaptive modulaton and coding, and interferc
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madnagement dsd coordifution.. The current metliods focus o apamizing power, frequency. tme. and spatial re-
sources W enlance performance in terms of troughpuet, lateney, and encegy efficiency. The resource allocation
mtheds at the phiysical layer ase especially vital incomplex systerms like 306, 80, and massive boT, where resowrce
allocation st be adaptive and scalable. Howewer, these methodd continue to evolve with advarees in AL and
ML. Generative Al and large models can enbance rescurce albocation o the phvsical layer by improving real-time
decispon-mabking. predictive analyviies, and sdapeive optimazatioa. These technelogies provide & dara-driven, adap-
vz, and proactive approach 1o managing resourees, allowing for enhanced performance, efficiency. and resilicoce
in complen asd hizb-dessiny aetworks such as 3G and fubege 60 systems,

Diynpride Power Allecanon: Geaerative AL can bearn amd peedict optimal power alliscation strategres Based on
réal-time and historical network conditions; resulting in more efficient use of encrgy and better intesference man-
agemienl BL can continususly aptiomize power allocation by leamang from network Feedback and prontizing
et efficiency.

Freguency wed Sihearvier Allpcation! Al models can beam and allocate frequency seqources made effectively
in systems Like OFDMA by predicting seer demand, channel guality, and minimizing interference among wsers.
By leveraging historical channel data, generative models can predict channel guality for users. improving the
cificiency of feguency allecanon. Al models can also weat resource allocation as a mali-agent game, opaamizing
ablecation stralegles ameng wsers competng for specmin.

Thae Slor Allecarionand Sohediling: Large Al medels can impeove schaduling strategies in tume domain pesoerce
allocation, handling real-time vanations mowger demand and seravork condstions meore adaptively. BRL mmodels
can dyviasnically allscste tme slots based on network feedback, optimizng for throughput, and reducing Litency.
Moveover. Al models o balasee user detend ald faimess, providing tilored tme slot alkocations based on
pririty and resource availabaliny,

Speirial Resencrce ANlocaiiei with Seamyfrming and MO Geoneratve osodels and einfercement learming can
optimize beamfosming and MIMO spatial vesowrces, making it edsser v manage multi-wser interference and boost
speciral efficiency. Generative models can predict opeimal beans directions o maximize signal quality and redoce
interference for each user. Al models group wsers with similar spatial charsctenisiics, opimizing spatial resowerce
allecation aivd menimasing interference.

Aulapeiive Modidlarion g Coding (AMC | Al-based models can predict channel conditions and adapt modulation
and coding schemes dyvamically, optinizing theoughput and emoe rate based on real-nme conditions, Fod ex-
aruple, MNs predicr channel states and avtomatacally seleet the most appropiste modulaton and coding sclense.
masimizang datn rates: of, RL models dysamically adapt AMC schemes based on channel feedbsck. sdeal fog
rapidly changing wincless envirsnments.

Interference. Mamrgemen! and Coordinafion: Generative Al models can be used to simulste and peedict inter-
fercnce patberms isterference under varnons configuritions, wllowing For preemptive adjosnnents (o respurces aml
cohancing network performance under high vser density. Also, ML can improve ColdP by predicting mer-cell
interference. enabling collaborative respurce allocation among base stations:

L4  Reconfipurable intelligent surfaces (RIS)

Lsing hegher freguency bands poses challenges with electromagnetic wave obstractions,. BIS offer a soluton by
actively shaprig wnd controlling electromagrene waves to improve wireless neework performance. Comprising
passive elements or small anennas, RIS can adjust the phase, amplitode, and sometimes polarization of wcoming
aigmals, a&llowang them o steer refllect, of scatter radie swaves without needing active transmisseon power,. Rl




acta like a smarl muireor, seflecting signals and steering them by adjesting the phase, I enhances signal arength
apspecific locatmns, peuses signals o navow beams for mindmal energy loss, and opinizes moliiple signal
paths in wireless communication, reinforcing desired paths and reducing mierference. RIS can provide improved
coverage ad capacity, enhansces the energy efficiency with relatively simple and irexpensive HW compared to tra-
ditwnal imfrastresciure, Neverbeless controdling thousands of elements on B1S soguires sophisticased opamization
algorithmns that can adapt in real-time to changes i the envitonmet.

Current methods for RIS algonthms focas on how io control and mampualate the individual elements of the surface
wrachieve desired signal pescessing outcomes. These metheds geverally fall into categories based on-how the
elements are designed and how they are controlled. Here are the main methods and approaches curmently used in
R1s:

= Passive va. Active RIS (energy consumption ve. signal amplification)

= Phase Slifting (discoete va. coniineos)

= Programmable Mew-matenals celectrical contral being the mosy commean)

= Reflective ve, Transmissive RES (hased onosignal interactaon)

= Hybrid RIS (combining passive and active elementsh

= Drigital vs. Analog Control (accuracy vs. simpliciny)

= Al-Dariven Optumazadion (For dynamie adapration)

= Wircless Power Transfer (foa sell-powered systems )

= High-Frequency RIS immWave amld THz bands fof nest-gen commnicatien)

Geenerative Al und Lorge models like deep leaming and reinforcament leaming can significantly enhance the per-
formsance, optimization, and deployment of RIS o wireless commuonication, the complesity of optimizing RIS-
ansisted systems reguires advanced solutions, and generative Al and large models can provide nnovative ways to
address these challenges. They Impeove real-time adapiive conmnod through BL and deep generative models enables
ynamic and efficient beamfurming. Provide high quality channe] estination and prediction using GANs and large
miodels allow RES to anticipate envieonmendal changes asd optonaze signal paths. Moseover, RIS deplovnent and
cierey efficiency optimizanon by leveraging Al-doven simulations and forecasting methods reduces operational
costs and improves network performance. These models also can contnbute w the (ollowing areas which either
divectly or indirectly can help RIS:

Chanrel Eximranion and Beflection Coefficienr Optimizanon: One of the key tasks in RES-assasted systems is
eptimizing the reflection coefficients (phase shifts) of the RIS elements o maximize SNE, at the receiver This
requires accurate 81 berween the baze station, RIS, and users, which can be challenging to obain in practical
scenarios, especially for large surfaces with many elements, Generative mrdels can generate realistie C51 data,
helping improve channel estimation scouracy v RIS svstems. Furthermore, decp kearning mwodels can dirsctly
lzarn tse mapping between the chanise] conditions and optmal refection coefficents, leading to better and Gister
aptamizarion compared o raditional itentye algonthms.

Endd-ro-End Learming for BiS-Assored Commanicarior: Oplimicng the RIS requires coordination between the
wransmitter, the RIS, and the receiver. Traditional methods sely-on separie opunuzation stages, which imay not
b globally optiial. Moscover, RIS clements are passive and cannot actively adjust their behavior based
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real-time feedback, making veal-time adapition challenging. Eod-to-emd deep leaming models can be used o
jerintly optimize the eotire sy=tem, including the tansmit beamforming, RIS phase shifts, and recedver processing.
BL or Deep BL can further enable BIS o dvisamically adjust s configuration based on real-time cavirommental
feedback.

Grenerative Al for Exvivonment aond Choeel Modeling: RIS svsiems heavily depend on the surroanding envinen-
mient, including obstacles, peflectors. and scattering objects. Accarse environment modeling is exsental o predict
howy RIS shoold be configured 1o enhance the wireless sigral. However. real-world enviconments are comples and
dymamic, making it diffcult o model them accurately In real-time. Generatve Al models, such as GAMz and
VaEs, can be weed to creste realistic A0 modiels of the wireless environment s well as the channel conditions,
allowing RIS systems to be wained and tested in & wide variety of scénaros without requiring cosily real-workd
mEasirerments,

Drter-Dheiven Optidzation of RIS Hadagre Pavameters: RIS devices are eyvpically designed witls fixed lardware
charactenstics, sucl as the nember of reflecting elements 2w the phase-shifting capabilities, However, e lard-
ware design may ol always be optimal for every deplovinent scenario, especially o dysamic ervisanments with
varving intérference, mobiliy, or wser densiny. Duita-driven aptimization of hardware parameters, based on gen-
crative larpe models, allows RIS deveces o be mose adaprable and efficien, ensuring that they are desigred fo
mzximam fexibiliy and pesformance in real-wordd scensreos. By tiunang Al modeds on large datasets that reflect
different deplovment scenarios, the hardware design can be iine-tuned to maximize the performance across o wide

range of ENVEONTENLS,

Al for Real-Time Covirod of RIS v Mobile Enviresmenits: In mobile environisents, where users and objects ane
constantly moving. the wireless chansel can change eapidly, and the optimad RIS configurtion may need o be
upelated in real-tume, Traditiomal opunizstion algomihms ane often oo sbow 1o Keep up with these rapid changes.
Rl-baned approaches enable RIS o adap quickly-and efficiently o real-time changes in the environmsent, such
ax wser mobilioy, changes v interference. or obstacles, This tproves the obustiess and performance of RIS i
dymanmic sotnarios.

Jofnr BES anad Baze Statfod Beasfinieg Osag AN The coosdination bevwezn the RIS amd the base statbon is
crtical o epuammzing the overall sysdem performance. Beamforming at the base stanon and phose shafiieg ot the
RIS e wr be jointly optimazed. which is compeatationadly intensive and challenging in practice. Deep leamng
models can be used oo jeintly epimize both the beamforming at the base statbon and the phase shifis an the RIS,
considering the wireless channel characteristics and user positions. This approach allows the system o maxinize
the received signal power at the user while minimizieg interlecence o other users. redocing the BER. improving
theoughput. and enhancing coverage in challenging environnents,

Gienerdtive Models for RES-Axssted Beasm Peadiction: I sysemes like mumWave and massive MIMO, beam align-
meit between the transmiter 2wl receiver is criscial, snd RIS can pszist by reflecting signabs in optimal ditections.
Crepirative models, such as GAN=. can ke usied o predict the optimal beams and RIS configurations based of par-
tial channel information or user mobility patterns. These masdels can generate likely channel realizations, allowing
the gysten b make maene accierate besim predictions, impeove the accuracy of beam alignment in R1S-ascisted gys-
s, reducing the mme needed for beam raining and impeoving througlpar in dyoamec eavimnneens,

Federaree Learnimg for Dusteibuged RIS Conpol: Tn large-scale deplovisents wath multiple B15s, centrodized con-
sl by become mwfeasible due w compnumication averhesd, prvacy concemns, and scalabiliny 55oes. Disoibuied
learning vvechanksms such as federated leaming can be applied w enable dismbueted RIS conol. Each RIS can
independently learn from locul data, while periodically sharing model updstes with a central server. Thas allows

the global maedel w improve without requiring raw data exchange. This will improve scalability and privacy.
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absd redvces the need for consrant cornmiencacion between the RIS and the cenral controller.

L5 MIMO-IN (Index modulation)

MIMO-IM is an advanced communication technigue that combines MIMO wechnology with Tndex Modulation
(I8 with the goal of impeoving spectral and energy efficiency by modulbating both data symbolds aml amtemni in-
chices for informiation transmissioa. Traditional BIMO system emplovs ol e antennas while MIMO-IM activates
anldy a subset of antennas — the indices of the acuve antenns carry additional infommation. Alhough MIMO-[B
increases the spectral efficiency withoul requiring additional power or basdwidih. there ane major performance
chaltenges. Toinily detection of both the data symbols and the active antenng indices requires more sophisticated
detection algonithms which can mercase computatsoenl complexaty of the detecoon, punicalarly for lacge-scale
MINO ayarems. MEIMO-IM highly depends on accurate CS] estimation foe the correct detsctbon, which beconmes
even move challenging due o the dynamically chonging of the active antenmnas. Fumally, MIMO-IM is sensitive to
interference. especially when depleyed in devse networks. Managing interference while detecting botl antenss
indices wnd svmbaols requires advanced signal processing technigues.

Current methods for MIMO-IM systems ain w improve spectral effciency, energy efficiency, and derection perfor-
mkisce by beveraging the wigue features of IM while addressing the inherent challenges of detection complesioy,
interference, and chamel estimation. Table 3 summarizes these metlods, their advantages; and limatations, The
information in this table iedicares although deterministic Al is helpiul. their maining and accessing o the rght
volduise of the data are matn peoblems. In contrast, Generative Al and large meadels can sagnificancly enhance
MIBAC-IM systemis by optimizing various aspects such as channel estimation. signal detection, resource alloca-
tron, amd perfonmnance under complex scenanos. The opamization of MIMO-IM systems i highly complex, asd
generative Al can bring transformative benefits by addséssing these challénges.

Geen Al and the large models can help MIMO-TM in the following areas: Seproving Clannel Exttmattoa in MIWE-
IM Bvatenn: MIMO-IM systems rely on OS] for efficient detection amd performasce. Traditional chanel estinu-
tion meethods, especially in high-mobility or Bding eovironments, may sol provide e necessary scouncy, leading
10 sub-optenial performance. Generative models, such ag VAEs o GANs. can be used o generate symihetic C51
data w enhance e raiving and accuracy of deep leaming mwodels for channel estimation.  Furthermore, deep
learming models can be waived o estimate the channel more efficiently in a data-driven manner, bypassing the
need for traditional, complex chamnel estmation algorithms, By leveraging Gen AL mode] the channel, MIMO-
M syatems can benein from more accurae and eebost channel estimation. leading o lmpeoved signal derection
and overall svstem performance.

Erifenric i Stgeeal Derecitlon waeh Devp Learning: MIMO-IM sysiems mtroduce anadditional Liyer of complexity
in the signal detection process because dats g transmatted not only throsgh signal modulation but alse theowzh
the indices af the activared amiennas. Traditional detection technigques (e.g., Maximum Likelibood detecrion) may
suffer froan high computational complexity, especially for Large MEMO-IM configurations, Deep leaming models,
such as CNMNaor RMMa. can be tradeed 1o perform signal detection in BMIBMO-IM syatems. These models can Leam
the complex relatonships between e tansmitted signals, the anlenna indices, and the received signal, resalting
i efficient and accurate detection. Al-based detecoomy metheds can significantly pedoce the compitational com-
plexiey whale improving detection accuracy, partecubaely o scenorios with bigh imerference or complex chanmel
conditions,

o edpimizanon of Anrenra Selection and Modidarion: In MIMO-IM, selecting the acave antennss and mod-
wlating the signal ssmulianeously can be a complex task, as it invelves a large combinatoreal search space. Tra-
ditbonal algorithins may oot efficiently find the optin] antenma selecton ind modulation sraegy, espocially i

large-acale MIMOD sysiems. BL or Deep RL cun be applicd to jointly optimize antenna selecton and modulor
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in MIMO-IM systems. By leaming the apomal polcy througl inte:'m:rim with the environment. RL agents can
adapr to changing channel conditions and interference patterns, enswring optimal sesource usage and perfonmance.
RL-based optimization methods allow MIMO-IM systems o dynamdcally sdapt wo varving conditons. keading mo
improved spectral efficiency, eoergy efficiency; aml overall performance.

Enel-ror-End Learning oof MIMO-IM Svstem Cosnporeents: MIMO-IM svstems consia of multiple components. sucl
ax transmivter design. chonoe] estimation, sagnal detection; and decoding, Optimizing each component separately
may not lead o globally optimal perfermance, as the ineractions between components are comglex and pon-linear
End-to-end leamang can be applicd w joimdy optumize the entine MEMO-IM system, from iransmassion o detection
and decoding, By teaiming 4 neural netwark on the Nl system, the nsodel can learn the optimal configusatisne for
cacl component, considesing their interactions., This leamning provides a unified approach that optinuzes the entire
MIMO-IM system, leading w better performance compared o isolated optimization of individual componens.

Table 3: Surmmary of duerrent MIMO-IM methods
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Generarive Al for Claroee! and tecerference Sioudarton; Designing and esting MIMO-IM systems i eealistic

etvirgiments can be challenging due 1w the wide vanety of channel conditions, antecference panems, and mo-

bility scenarios. Acyuiring large amounts of training data Toe AL msdels inosoch eovieonments is expensive a
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nise-conseming. Genenitive Al nwsdels, such as GAMNs, can be used o simulace realistic channel conditons and
interference patterns, allowing MIMO-IM syaiems v be wrained and resied inoa wide range of scenaries without
needing extessive real-world measurcments. These synthetic datasers can help train Al veedebs that perform chun-
nel catimation; signal detection, and interference management. Using generative Al for data sugmentation allows
MIMO-1M swstemes to be more robast to real-world conditions, eading 1o better performance when deployed in
diverse envineninens.

Al for Low-Lateaey Deiteciion aad Resowice Allocanon: MIMO-IM sysaems, parnculary in real-time applicatioing
sucl as 530G and beyond. regquice lvwe-Latency detection and resource allocation we mest the steingem perfonnance
requirensents. Trsdinonal algardthms ey intioduce sigoihcant delayvs, especially @ the size of the sysion grows.
Ligheweight AL models. such as pruned nebrl nevworks or guantized models, con be designed for low-Luency
sigmnal detection and resource allocaion, These models can quickly process the received signals and allocate re-
Spuiress (such as powed oF antennas) with minimal computattosal ovechead. Al-based models can significantly
reduce the detection and resource allocation time in MIMO-IM systems, making them saitable for real-time ap-
plicatiens without sacnficing petfonmanoe,

Retifercerons Learmiing foor Adapreive Arrennn Confgiarion: The optimal cosfiguratien of antennas in MIMO-
IM systems may vary depending on the channel conditions, wser mebilivy, ard mederence, Static or pre-defined
antenng condfigurations may not alwavs lead w epinsal pedermance indynamic envirenments. BL can be used o
adapiively configure the antennas in eeal-time, based on feedback from the environment. An RL agent coan leamn
which antenna configurations maximize system performance under different conditions, dynamically adjusting the
active anteina indices o optamize theoughput or minimsee eooon rabes. BL-based sdapiive antenna cobfl guiation
improves the Aexibality amd adapability of MIMO-IM svstems, enabling theny o maintain high pecforimee o
rapadly changing emaronments.

Al-Assisted Evoy Corvection: MIMO-IM systems can be prome o errors dae w ampesfect detection of both the
travsmined symbols awd the active anteana indices. Tradibonal ervor correction methods, sach as LIPC or Turkso
codes, may e be suffickent o handle the unigue challenges posed by MIMO-1IM. Deep Feaming-based ereos
correcton models, such as neuval decoders, can be waused to cormect both svinbol errors and index detection eroony
in MIMO-IM systems. These models can leam from large datasets of tranamitted and receaved sienals o lmpeove
the error correction process.  Al-based o correction mproves thie reliability and robusteess of MIMO-IM
sysiems, pardculady o challenging channel conditbons where maditional error comecton nay Gl

The shove-menmored methods e cornpared in Table 4 o eoms of the Al approach as well as the maodel size.
Owverall, generative Al and large madels provide powerful toals w enhance the performance, efficiency, and adapi-
ability of MIMO-1M sysiems. By leveraging Al for cliannel estimation, signal dedection, resource allocation. amd
error correction, MIMO-IM svitems can achieve better speciral efficiency, lower fatency, and higher reliahility.
Ab-driven optimieation of anteana selection amd modulation strategles fugther mpeoves the svstens's ability to
adapt o dynamic environnsents, making ot a key enabler for fufure commmunication echnobogics such as 536G and
ey,

2r6 Joint Appriaches

Soretimes it is important o combine some physical functions together, for example joant symbol detection asd
channel estimation. o joint equalization and decoding. By keveraging prodictive modeling, data synthesis, and
adaptove oplimization, gererative moedels provede henter nolze resilience, foster processing times. and impeoved
AECERLCY, even in compdes environments like massive MIMO systems and high-mobality scenanos. Here's how
generative Al end large models can elp i these areas:
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Jeadad Svieafael Deedciion ot Olinnnel Esbmatian: s wireless sysiems, symbol detection and channel estimation
are imerdependent processes. Traditienal meetveds often handle these independestly, which can lead 1o subopinal
performance in ooy o high-interference environments. Generative Al models can simulate channel corditions:
in advance. allowing for bedter svimbol detection visder varying noise kevels and inverference: They can synibesize
data 1o reduce the need for exiessive pilot signals, allowing for betier channe] esiimation with less pverhead.
Sorme cxample metheds coald be GAMN: o VAES Laree newral petworks (eogl RNMap can joutly beam chanmel
charactenstics and symbols, enhancing detection reliability, especially in fading chamsels. Overall, geoerative Al
and large models can joimtly optimicze botk, impeeving accurscy asd effciency.

Table 4: Comparizon of Deterministic vi, Generative Models

| Applicaliom Deternwinisdic A1 | Gemerative A1 Training Model Sio | Inferense Muodel St
Iieprovang channel eslimmaisoe L] 5 Bl o Large | Mleibum u Largo
Eﬂl.u.ﬂa.l.i‘; mgn.llllr."ln.l.l.l\:'l i 58 chaginn Lo Large Frall 1o Mlehiuin

| St ONEZEion Ol anlessa sekec. i Bledeum o Laige I Soiall 1o Medinm

| fum anal meefatalics |

| Emi-to-Eaed Learning of MIRO-184 L] ] Large Laarga

BTSN ’ i

! Generative Al Tor Chaoe| sl In. i Laipe | Meduiin fn Laiye

| Beefvrence Smmulation

| AR for Low- Litescy Dhetecion il % X Sibiiim b Large Faall

| Bemoroe Allvcalios

| Reimforemest Learming for Adap- 1 £ Sl chanimy o Large | wadin

| Eive Amieseg Configueution

[ Al-Assasied Erros Correction i X | Mcdbum b Large | Bcebtun w Large

doinr Eguadization amd Decoding: Joant equalization and decoding wvolve handling inter-syvmbol wterference
(IS0 and correctang chamel-induced distonbons, particularly challenging in high-mobility and high-intecference
crvinenmen. Generative madels con simulate interference scenarios, allowng adaptive equalization rechmigues
that dyvnomically adjest w changes 1o interference. Deep leaming models. such as CMMs can jointly pecform
equalization and decoding tasks, leaming the stucture of both mterference and neise 0 improve decoding reli-
abiliey. Funally, BL models can optimaze equalizatuan sirategies i real-time, adapting o dynamic environmnsenis
and impeoving decoding perfommance. In gerecal, generative Al and lafge models offer predictive analytics and
adaptive equalization wechnigees that improve decoding accurcy anmd speed.

Fuet-ro-End Learning for ftegraned Channel Estimmation, Detection, g Decedting: End-io-end learning ovode 12
use neurdd networks o combine chanpel estimation. svmbol detection. equalization. amd decoding, creating an
optirnized, single-madel pipeline that adapts o complex and fsi-changing eavironments, By jointly leaming all
stepe, generative models reduce processing e and compuiational comgplesity, weal Tor real-tme applications.
Thiz kisd of models ace adageive, maiming across various segnal, iserference, and ooise conditions. making therm
gestlient to channe] impalrments and improving eeror rates. GAMNS are wsed o synthesize realistic channel effects,
trabming fodels o beer adapt 10 real-world interference and poise soenarnos,

LT Wireless Spectrum Sensing

Wirebeas standands continuously evolve, leading o new ways o comnect devices and a massive increase i con-
nected devices. This rapid expansion presems a signficant challenge regarding RE spectrum avallabilicy. Spectnm
sensing enahbes the detection of unused spectrum bands, known as spectnun holes, This allows secondary vsers
weithout dedicated licenses b access the spectrim ot cursently used by prinary, loeased users. This opponunistic
spectium docess coables move effickent spectnun wsage by contineously monitoring the spectrum and identifving
spectram hales, This technbgue is kiown as Drvoamic Spectrum Acoess (DEAD,

Wirchess Specinun Sensing can be caregorized o three main wpes: wraditonal methods such as energy detection,

matcled filesing, eyclo-siationary feature detection. and receiver metrics-based approaches: machine leami
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and déep leaming-based methods: and, more secently, large-scile Al appeoaches. Truditbonal speoirem sénsing,
partieulurly energy detecteon, involves companng the computed signal enerey against a threshaold e determine
the presence or absence ofF a signal. However, this method i chalbenged by noise, interference. incomplete data.
and ervironmental variability. These challengés make it difficult to sot an apmnal theeshold for detection. While
proimnising. machuse leamang and deep leaming techmiques simugele with gemerabi zuton—rmosdels that perfonn well
o 4 specific daa set fhil wo schieve suvalar accugacy o unseen dala.

Sl et al. [9] propose a framework for adapting and enhancing LLM= for wareless commuanication systems and
suggests using few-shon learnmng with LLMs for spectuny sensmg. This wchnigue 13 imponant when deep leammng
madels reguire collecting large amowsts of labeled duea, which is difficalr, With juse a few examples, LLMs can
clfectvely leamn the task and perform comparably o optimal detectors. such as ensergy deteclors, especially b
spenanos with varying signal-to-noise ratios,

Traditional BF sensing methods fce noise, inerference, amd incomplete daa challenges. Wang etal. [ L] propose
an RF sensing hamework based on Gendl for LT systems Gendd enhances moltli-moedal dsta fosion, whicl
in asenteal for 0T systems that depend on diverse semsor inputs; such as BF signals. images, snd audio. By
combiniag these different data types, GenAl-driven systems create osore idélligent and comprehensive sensing
spdutbons. GenAd technigues, like GaNs, VAEs, amd Diffusion Modeis (DM: ), can generate legh-guality symhetic
dhata, de-molse sigrals, and Al the missing mfoemanen. These abalities significantly swengthen the rebabilioy of
RF sensing systems.

Aaemanc Modulanon Classificaion (AMC) can be used for wireless specimim sensing by cdennfying the mod-
wation schemes of primary wsers (PUs). By classifying modulation scheme wsed by PUs: AMC enables wircless
radios te inbelligently detect whether a specirum band bs eccupied o available for secomlary dse, reducting inter-
ference with licensed wsers. This integration of AMC i specimum sensing system improves deteCiyn aecurscy,
enpecially b low Signal-to-Noise Rato (SNR) environments, comgaared to teaditional methods ke energy detec-
tion, Olaboye et al [ 1] proposed e use of machine keaming reodels, such as Mult-Layer Perceparon (MLEP)

and have densonstrated high accuracy in classifving maodulaticn types. Therefore, validated the use of AMCO in
real-time [EA,

2.3 Large-5cale Al for Network Management and Optimization
251 Large-Scale Al in User-centreic Metwork Opthmdzation

Llegr-centric Merwork Opaimizarion lsas beoome a focal point in next-genesation network optimization. This ap-
proach is crucial becanse il addresses the diverse meods and peeferences of individual users, leading o improved
overall oE: Traditemsal uniform service delivery often resalis in varying levels of user satisfaction. User-centric
optamizarion can be applied in vanouws scenanos. such as personalized content delivery, adaplive video stream-
ing. and dyinamie resource allocation 1o moebile nerworks. Despate the emergence of several Dser-centric Mermwork:
Optimzation methods, scourately assessing user requirements. particularly subjective experiences. remains a chal-
lemge. Somse studies have incarporated payehological laws o approximate users” subjective CoE [12]. However,
these appreaches offten fail to caplure the complexity of real-warld applications. An altemative solution involves
using Relsforcement Leaming with Human Feedback (RLHF) paradigms to rain management models. This
methed reqguires ongoing QoE feedback from expents. which is expensive. raises ethical concerns. and is difficult
i impement in veal e, These Hoduitions dead 0o oar first sesearch guestion:

Large-scale Al presems significant potential in User-centric Nerwork Optimizaton due to its ability to process vast
amspits of user daco during raining, enablueg 16 e sannslate user QeE effectively. LLMs-empimwered gencrative
agents can process and undersand complex inswructions i pawral language, serving as a universal inerface §
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vartows Lasks, inclading evaluation |13, 14). Research in [ 13] demanstrates ChanGPT's capaciry to evaloate texiual
coptent across human-aware oriteria such as quality, wae, and coherence. These evaluations lay the groundwork
for extending LLM fuscionality to other domasns, Further stodies in [15] assess the potential of LLMs like
ChatGPT in Compuiational Social Science, examining their performance in classification and geverative tasks i
a pere-shotl manmer. Besults madicse teat LLM s showy fair agrecosenn with humans and can enhance the annotation
procesa, Recent work in | La] veveals that modern pole-playving LLM: can effectively mimmice specific personality
trats, achieving an 82 8% alignmicat with human perceptons. In the context of Large-Scale Al in User-ceniric
Mevwork Optimazation, Al can seeve tao peimay poles:

= Active Selufion Geaerattion: Large-scale Alcan actively generale network optimsization solutions. Scalable
mudel architeotuses suitable for decision-making inclede traafomer-based models with aoention mecla-
mdanss, graph neural networks for network topology wisdersianding, wnd hierarchical reinforcement leaming
models for multi-level decision processes. For example. the autlwors i [17] propose an inovative LTM-
enabied Mixture of Experts (MoEd approach for network optimization. This method leverages the LLM's
advanced ressening capabilivies vy analvae wser objectivies and consiraints, select specialized DRL experis.
and determine the decision wel ghis for each pamicipating expert. The LLM acts as o dynamic gase mevwork,
mEnaging the selection and integration of expert models o addiess new and comples optimization ks
This approsch dempnsirates the podentsl of lagge-scale Al o adupting w diverse wser requireiments aisl
peierating elfective sobutions for network optimizanon problems without the need o wain new models o
ciach specilic sk

# Puigive Optindzaior Sapghent: Large-scale Al cun function s o compopent of optimizanon algorthms,
providing subjective QuE assessments. LLM-empowered generative agents offer & powerful mechanism
o provide human-aware subjective QoE feedback for gemerated content. A QR feedback scheime using
these agenis can simulate diverse wser pecsonalities: By utilidng prompts and assigning one agent per user.
generabive agents can mimic users with vared subjective preferences, delivering evaluations of received
services. For example. the awthors in | 18] progeese a Reinforcement Leaming with LLMs Interaction (RELT)
framework for distoibuted GenAl services. Thas approsch leverages LLM-empowered gencnstave agents to
simuelate wser feedback. The frumework uses the Big Five personality mioded as o basis for configuring
generative agents, aligning with sesearch showing that LLMs con effecuvely simulaie these persopality
iraits. By designing protmps that inclede specific Big Five wait scones; the system enahbles gencrative agenis
o mimie diverse user personalities, These agents then evaluaie generated content. providing subjective
OoE feedback that reflects individual preferences. This method offers a scalable and efficient alternative 1o
human feedback. demonstratng improved pecformance in maximizing sum QoB compared o comventional
methods.

24 Large-Scale Al for Un-crewed Aerial Vehicles (UAYS)

Um-coewed aerial vehicles (UAMS) have recently gained significant sttention dug e thelr excepiional swionomny,
mobality, and sdaprabifity, These atnbates bave expanded their use aorossa bioed specimim of applcations, in-
clisding supveillance. search and rescue missions, healtheare. and maritime communications [ 19]. The convergence
of advancements in UAV technology and Al has yvielded signaficant benefits across uowide range of applications.
For instance, Al-enabled UaANs uiilize facial recognitton (o cohance security applications,. amd real-tnmse vidden
analysis epables monitocing remote areas. I agricelmee, UAVs equipped with Al models assess crop healtl, en-
abling precision fammang that indreases revenees, Additionzlly, Al-doven UANS optindze Fogistics by enbascing
roiste planning and iventedy managenent, theoehy streamlining warelsoese operations and inereasing delivery ef-
ficiency [200 21). Among these advancements, large-scale Al models bove recently anracted considerable aention
in the AV sector [ 22]. The capabilitics of these models in real-time data processing. nataral language wsders
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ing il generation, content recommendarion, sentiment analysis, antomaled eesposse. languige ransbcior, and
content summarizing kave paved the way for new oppocunities within the LAY domain.

Rincemt Lterawre (X3, 24, 25, 26] las ivestgaied tee integration of large-scale Al models ino UAY communica-
tion ayatems W enbance ineraction between human operators and AN s, as woell ag amsong the LAY S themselves.
Traditicaally, UAV: have relied oo pre-programmied commands, offering lmited dynamic interaction capabalities.
However. the inoorporstion of such large-scale AT models; e, LMz, introdsces suppaort for nawiral and intaitive
commtnication methods. For isstance, LM can interpret and cespored (o commands imonatural language. mak-
ing LAY conwol more straighiforwand and epabling the management of complex, real-time mission adjesimens.
Thas evolution ransforms LAY into mare adapiable and practical ols aciosys a wide tange of applications, For
example. in [27] the awhoes provided o framework thd witlizes GPT-2 1o enhance the ntuition of himan-UAY
inferactions.  The framewostk leverages MLP wechriques o allow wsers o controd LAV wxing simple language
cormmasds climinating the peed Tor complex progromining knowledge, By ranslating user insteuctions into
exccutable coxbe, such a framewirk enabbes AV S to carry ot tasks and provide fecdback in natural language. sig-
nificantly simpkifying the control process: Another application s provided o [ 28], i which the authors presented
a framework thar ipegrates OpenAd's GPT-3.3-Tarbo mode] witl an UANV simalatnon sysems e PX4Gazebo
simulabory, o develop a natural langoage-based drone comtrol system. The system's architechire 15 designed o
facilitate seamless interacnon between the wser and the UAV simulsor theeueh o chatbot interface, enshled by a
Pytlson-based middiewszre, This middleware processes natical langdage inputs o the usern, selavs them o the
ChatGPT model using the OpenAl APL sewieves the generated responses, and translates them into cormands that
the simulates can interpret. thereby eabancing the ineractivity amd accessibility of the UAY simulation systens.

Large-scale Al models enable TIAVS o react instantly o dynamdc envirenmental changes and compmaication
demands. The adaptive learning capabilines of soch meosdals enable comtinuous improvement in opecationasl sirate-
gies by feveraging incoming data, thereby enhancing decision-making processes, In [27], the authors introdiaced
a vision-hased sstenomons planning system for AV designed to enhance safety. The sysiem predicts the tra-
jectorses of dynamic obstacles and gencerses safer flight paths by urilizing ManeDer for precise obstacle detection
and Kalwan Filicring for accunue motion estivnation. In ansther work [29), the authoes integrated GPT ovode 1y
and cotnpuler visidn technolsgies into autononsous inspection LAVE 9 enlance their funcuonality in indoor en-
virpnments. The proposed system enables UAV: 1o analyze images captured during flight o gencrate détailed
aobject dicteonaries. Thest dictioparies enable the UAY s 10 recognize and wnderstand vanous elements within theis
envirsment, sllowing them w dynamically adapt their behavios in response to both anticipated and unforeseen
conditions.

Auldinionally, large-scale Al models can enhance UAVS" autoromons decision-making by leveraging communica-
fiob context of environmental data [300. For instance. during a search and rescae operation, live video feeds and
wext repoits from maltiple VAN s can be analyzed and svothesized ssing molui-moedel LM to recommend aseas of
focus o adjust search patterms aceordingly [23], UAV s can also operate in ad-hoc and mesh configurations o fomm
dynamic networks without the need for pre-exising infvasociore. This capabilioy is especially valuable in sit-
tions where establishing permanent network infrastractore 15 impractical, sech as o disaster response. Such self
mizde networks continuesly dizscover pew neighbors and can dvnamically sdjust routes based on the netwaork's
topology ad raffic comditions, thereby. improving scalability and fexibilicy [21].

Large-scale Al also contrbule to simulating and osoedeling the behavior of retworks under different scenasios,
abding in the plonning and decision-making processes for UAY deployments. The GPT series cun simulate various
comimimcation scenarios for UAY waining by generating realistic mission scenanos and responses. This allows
aperatoss o undergo comprehensive rainng, equipping them o handle differem siuations more effectvely and
cobancing their preparedness for real-world operatbons [32]. Large-scale Al models can also assist AV
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understanding petwork waffic panems, enabling them o recommend sdaptive protocols that edece latency and
increase throwughput, especially weder the varving gser comditions often encountered in these networks.

Large-scale Al models can be also wilized o analyie data from the UAVE themselves, including operational logé
and flight data, 1o predict possible Gailures, mantenanee necds, and potential maliciouns attacks, before they happen
[33]. This predictive capability can significantly enhasce the reliabality and lifespan of UAVS, theeeby reducing
downtime and maintenance costs. L [34], the awthess developed enhanced secarity and foremsic analvsis protocods
for LAN S o supont the growing wse of drones across vanows sectors, including those at cisk of crimmal misuse.
They mtroduced a named entiy recognition sysem w exwract mformaton from deoae flight logs. This system
emiploys One-tuned BERT and DisulBERT maodels with annotated data, significantdly improving the identification
ol rebevant entities essential for forensic investigations of droae-related incudents,

2.5 Large-5cale Al for Telecom Use Cases
251 "Qiming” Network Large Model Case Study

China Telecom's "Qiming” Network Lorge Bodel s designed 1o optimize aisd antomate network operations
throagh Al-deiven processes: As modern elecommunicateons petworks boconse increasingly complex. the need
for advanced ols capable of real-time decision-making has grown, The "Qiming'” model leverages vast amounts
of data amd professioml network knowledge o assise in vanons tsks such & petwork planning, maintenanoe.
monibaring, troubleshootng, wnd performence opiivyzation. The model’s geverative capabilities, combined with
knoww led g retriewal and intent recognition. ains o enbance network antononiy, reduce manual intervention, asd
improve operatienal efficiency.

The "Chming” Metwork Large Model employs innovative large osesdel architectares, meeluding incremental train-
ing and feedback oplimization algagithms. These ensiere that e model evalves over timee 1w adapt 10 new netwark
challenges and requirements. 11 s also capable of andling vast amounts of network data, significantly impeoy-
ing operatonal efficiency and reducing the need for manoal inpur. Despite these advamages, the model faces
challenges such as the high computitional cost associated with processing large datsets and traiming the model
Muoveover. the model may soruggle with gepedalization when encountering entiely tew or unforesesn netwaedk
condition:, which requines ongoing opiimizaiion and updates. The "Oiming™ Metwork Large Model exemplifics
haowy large-scale Al can be leveraged o fackle complex network management challenges. 1 serves a a vital tosd for
Ching Telecom, doving the company’s network sutomation efforts and enbancing the efficiency of ls operations.

252 "Qiming” Network Large Model Operational Workflow

The wirk Ao ol the "Qiming ™ nwodel, as llustrated b the aceompanying diagram, outlines a muli-sgep process:

. User Intent and Input: Network operation and maintemsance stafl doitiate the process by providing a specific user
intend, qucl a8 i orequest for petwork optimization of Loubleslsooting.

2 Querving Nevwork Knowledge: The Network Large Model interacts with the knowledge base by querying for
relevant netwinrk konowddedge, This step inclisdes retneving professional knosdedge thar assisis in decision-niaking
processes sich a8 network aptimizsion of apswering user gueries,

3. 0uerving Mevwork Data: The pwode] guenc: actwark doa from databases and other sowces, distinguishing
berween real-tinie and non-real-time data. This dats could include strisics and network swatos, which s coucial
for diagnosing ssees and providing securate recommendations, The interaction witl the B35 (Buziness Support
System). OS5 (Operationd Support Svstem), and MSS (Management Support Svsen) allows for the extraction
of operational data and relevant metries-for a comprehensive analysas,
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4 Decision-Making! Based o the gathered knowledge and dar, the model makes décisions that perain 1o the
nepwork gperation, This could invelve generating answers, recommending solutions, or optimizing retwork func-
tons, Metwork Operation Response: The Network Large Maodel then dispanches the decision back o the siaff
o elirecily inferacts with the network components. The network opecates based on the model's decizions. amd an
acknowledgment | ACK) is sentback; confirming the seccessful implenentaton of the operation.
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Figuse 2 "Orming'" Metwork Large Model Operational Work Qow

253 "Qiming” Metwork Large Model Application Scenarioy

Intelligent Metwork Operathons: The moedel enables the awomaton of metwork 1asks across the entire Lifecy-
cle. from planning and construchen o mantenance and gptimizaton. By usang advanced algerithms, 6 ensues
cllictent, real-time fesponses 10 nepwork issues,

Fault DMagnaesis and Prevention: The mesdel’s ability to process both historical and real-tme data allows ot to
predict potential network failures and provide preventive measures. This elps reduce downtime and ensures @
smootl network expenence for users,

Task Decomposition and Orchestration: The moded can becak down complex tisks into manageable steps.
providing intelligent task orchestranon, This capability improves the speed and accuracy of network maintenance
apnd troubsl s hooting .
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3 Al Theory of Large Telecom Models

A1 From Language to Telecom Models: Challenges and Necessary Modifications

While state-of-the-an LLMs excel in versatile NLP lasks like geesion answenng and sentence completion, en-
suring similar pesfommince wpon integrating them inwe telecoms reguiees farther modifications o teeir undedving
theory and mechanisoss, B instance, simply relying oo a GPT architecture in dealing with network pasane-
ters and KPLe sech as SMNR. Qof; and channel gains coan lead o erroneows mistakes, This 48 oianly due 1o the
linitations inheried foom wexi-based models which are transferred to wlecom models, lesding o the following
diawbacky:

* Limited abstract telecom knowledge: The atiention mechanizm that perfecily capluses the sophisticated
correlations between tokens (08 generally waords ) falls shoot i capiuneg the other relations (ce,. causal,
mathenatical, etc.) that governsuch t | com Eok. o fact, LLMs build their own knowledge thar may
g necessanily refiect the veal-world phenemenon, For instance, an LEM may net properly anderstand the
causdal relation between iscreasing the wansmisswon Degueney and the elevited propagation losses encon-
tered by g wireleds signal. Clearly, one of the most prominent nplications of this lumived knowledge is the
tendency of large models o hallucinaste when generating their repose,

= Lack of mathematical fonndatbons: In general. LM build aheis captised paticms o define the e
matical operations that govern the different telecom tokens. Hence, they lack the proper mathematical foun-
dations that emable them o freely manipelate amd venify the 1okens, For instarce, LLMs may struggle o
paove hoaw the Bx antenna measurements (o2, Reference Signal Recerved Power (RSRP1 mathematically
Aow from the underlving theorems and equations of wireless signal propagation (e g.. pathboss). Aceoed-
ingly, LEMs cannot calculate how the captured parameters can be proven based on the channel informotion
ad tranamit elpnals. This can potenticzlly hinder the validity of the LEM pesulis in diffesent siliations o
limmit thie applications of LLMs in sitwatiens that require reasening and planning. A simple example of this
can be in e foem of & nerwork design problem. Alhough an LLM can elaborue on the design question:
that relate power-at the Tx antenna and the pathloss, it it may mol be abbe wo capture that doubling the propa-
gation distance would acteally decrease the power at the Bx by a factor of 4 Thes, state-of-art LLMs canpot
fully apprebend the telecom fommelatons bebund these felecom iokens.

= Stalic performance: As LLMs are irained o massive datasels wp o @ comain point in tme, they show
a static performance thal may become won-relevam when i comes w0 dynamic and pon-slatkosacy sermngs
stich ad those introduced inothe BAN. Unlike wexr and generally language thar is moaly statie. o dynamic
cnvippnment swch as the RAMN demonds welecom models to admit evolving Enowledee paradagms.

= Absence of guardrabls: Unlike most LLMs tha can be used w boost productivity and enhance perfomince,
ithe robe of LEAMs s telecoms may demand autonomaousiy taking cntical decisions that drive the netwoerk
aperations. To thas end, these actions must adlbese woospeciiic roles and ahade by the guidelines ser by
regulatory bodies feg, FCO, ETSL ete.). Mevertheless, the state-oT-art LLM: - do pot impose any goandrails
inn thedr design. Foe instance, an LM may se1 set the transmit posaer of 2 base dation dhoyve i predeterined
threshaold as it may theeaten i hann individoals

T address these drawbacks, Ligge telecom maedals must consider necessary modifications into thenr Towsdutisnal
language aschitectures belive being implemented in the telecoms sector. Next, we shed light on emerging Al
approaches, such as cansality and newrosvmbolic Al that can potentially fll o che afecementioned gaps in the Al
theory behind Barge telecom models,
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1LY Grounding via causalty

Firat, large telecom models must enable the  roun Inof their telecom tokens so that they hamess trae meantng
and acquire full wnderstanding abilities about their datn. Here, grounding is the process of anchoring the gencrated
responses of these models into real-world knowledge. In the telecom eoms, it the abaliny of large welocom models
i root the telecom tokens {or cmbedded representateons into the physical world and wireless phenomenon. This
crisures that large welecom models maintain coherence o the real-world comest and tue physical phenomicnon.
Effectively, this takes ploce by inteorating the absént logical mechanisms W complement their Knowledge gauge.
A dewoted carlier, these models may lack 0 captwre the cassal dimensions betwesn the tokens Hence, one
methad to enable grounding can be through the framewoerk of causal reasoning. This can Facilivate o level of
cansal umberstamding that sefers to dentifying caese-amd-cffect relationships among vigioas featwres within wine-
less wokens [35], For instance, a vector of chanme! measurements in o wireless envirenment can be ingerpreded
using a cagsal graplh tsar identifies the relationships ameng scattenng objecis and maltipath charactenstics such
as angle of asnval, delay, and path gains [36]. In particular. cau al | cov methods [26] can be leveraged to
identify the cawse wsd efect oelutinns among e netwerk variables that can further be artanged as stroctural casal
mnlels. Asit may be challenging to éxinact the causal viarables and identities when dealing with high-dimensional
ebmervations {e.g., B antenna measirements b, causal representation leaming presentsan ¢ffective solution 1o map
these observations into low-dimensional representotions that capiure oaly the relevint ciaudal vanables. In fact
the capiured representations could be funher clusiered on the basiz of their similacicy into general representa-
tons, Consequently, this can redesce the embeddings space while still ensunng that distinct represcniilions remain
differentiable from each ether. Henceforth, cansal discovery and cansal representation leaming enable can fleer
the high-dimensional wireless observations o o manimally compact and sefficiest embedding space suitable foo
large stile elecom models wath evalving knowledae, Funheomore, telecom owsdels could additionally bolsies
their perdformance through identifying the relevam cavsal variables fromea telecom specific dataset. In particulay,
leveraging BAG can equip barge wlecom maodeks with the secessary wircless and telecom knowledge. As shown
in Fig. 3. adopting RALG Froma telecom specific source dataset can enzble bolsier the performance of telecom
mrdels.

112 Alignment via RAG

Alignmicnr cazures that the outputs of lage telecom models align with the guidelives of MNO. In paricular,
thewe guidelines slvould comply with govermment regulations and adhere to the goals of system designers. Henee,
tebecoam msdels s ensaee that they achieve these gurdeluses without contradicting their initial premise and refine
their ovailable settings wooghide by the guardrls. For isstanee, while vansos comples modubation schemss and
Peamformung prisciples can be discussed in telecom leramee, supponieg such appeoaches might no necessanky
align with the limited st of wansmdssion schemes approved by 3GPP standards. Therefore, ot 43 essential bo
ciswre that telecom madels adhere w the standards and repulations. Funthemmwore, 3GPP siandicds ane updated
petiodically. Hemwee, inis coocial that telecom models remain congistent with these updstes, Ome natable approach
i keep lagge telecom models up 1o dage with standards is w leverage RAG with a dynamically evolving database
10 exerael relevant contexiual information for the wireless tasks enabled by the foundaton model. Moseover. this
alignmeni reguires apn adopiing an BRL itk i | iEdhanism that ensures that the resposses from
the elecom model maxsmizes thse average reward. Here, the rewsard can be defined as proportienal (o the QoE of
network agents. Motably, establishing this dynamically evolving database require s concericd effions from andustry,
academin. and standasdizaton bodies:
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Figure 52 A sample mathematical (VA pasr Froam the wireless specifc dagaset [17).

ALL3  Iypamie performance via instructibiity

Auddiniomally, LIMs struggle w operate in séal-tinie eavinonnsenis axd lick-sdaprababity v changing wireless con-
chitkone aml tasks, T adidress this, large telecom models must ineorporade 0 truct] ltenabling them 1o adjust
their parameters amd behavion in redponse woeyvolving environmients and fasks

Li4 MNeoroe-svmbolic Al s a cornerstone for mathematical reasoning

Rocent sbvances in LLMs focus on sealing Al mosdels 10 enhance generalization capabilitics. While the human
haain reguares enly o Tew svmbohe rules amd cxpenesces e peneralize behavios to wiseen scenarios. LLMA peed
trillions of parumeters 1 scquire knowledge for generalization.  Despite this massive scale, thev olten fail o
perform deductive reasoning. making them vilnerable o extreme of uncammon soenanios. Dnspired by haman
intelligence, & promising approsch is o build a hybrid system that combines the best of both warlds: a symbolic
component that represents mule-based logic and backeround knowledee, erabling logical reasoming, and o peosal
compenent that allews for generalizanion of their behavior under epastemie uncemanty. Swch hvbod msdels ane
citlled newrosymboelic AL Neurosymbolic Al models allow ve buld sample efficient welecom models, Moreover,
they belp o budd insructible wireless sytems, whenein their parameers can be dynamically adaped in response
o the enyigoament or wser feedback.,

As lighlighted in [ 28], pexi-generation Almodels for telecon nuest exhibin long-1erm planokig capabilities. Here,
plannin refers o the capability of network components W propose a sequence of actmls—ememmpissing both
nepwork configurations and actions of connecled autononmows agents—Nby predicting futere environmental states.
Such planming mast ensure that comwecied agents maindain a high guality of experience while satisfying network
intent withewl infervupiion. These capabilities enzble netwarks oo configure actions such & beamforming and
power allecaton, alongside awionemons agent control policizs, enganng that the quoality of expenence for net-
wisrhke agents invelves both autonomows-agents pan of cyber-physical-svsiems and the sevwork infrastictase | is
makimized while satisfying the network et without interruption. Here, intent vefers 1o specific goals that
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netwiork mst achieve, such as maximizing the reework's sustibnability. Herein, maditional Al methods such a4
deep remforcement leaming 1% not sufficient w perform real-time control and network aetions, doe o e over-
head o retraining. Moreover, such dats-diven Al models are not tustwaerthy. and bence their decisions cannot be
irusted as we move towards bublding sutenemous networks, Herein, casal inference enables performing inerven-
fiobs and counterfactuals {36] en the leamed cansal wordd medel, thar describes the interactions of retwork with
the sutoscaous agents. Lsterventions asd counterfacneals [ 16] enable analyzing tle impact of nereoek actions on
quality of expericnce of network agents. Using such effect analysis, network can compuie optimal actbons that
remiediste any deviations from expected guality of expericnce for the network agents,

One promising apprasch w insdll mathematical reasoning is through mvertible svimbolic regressions [39] that
learns underlying cquations that desciibes the physical processes from the duta, Such svmbolic equatbon leamess
can b used 1 learn non-lusear mathematical egqueations uzing symbolic expressions thar cannot be described using
modil-based systems. Such symbolic expressions enlance the explainability of the Al models compared o using
black-hox masdels, that lack interpretability.

32 Onthe Interplay between Data Compression and LLMs

The conmections berween large language models and data compreasion operotes in two complerentary directions.
On the one hand, the principles of compression ane inherently relevant o the design and operation of language
miadels newial networks. However, deploying LELMs in resowrce-cobseaimed soeiinas requires applying conupies-
s technigues W nseet performance and infrismuc e reguinensenls,

LLMs and duta compaessien share a fundamentil goal: seducing redundancy whiale retaining sicaningful infornsi-
tion. As shown bn recent work [40), optimizing the conditional peobability of the nexr token in linguage odels
is wimilar (o the principle of arithmetic (source) coding w minimize the average coding length, This equivalence
highlights that Eanguage models, thioagh their nest-token prediction objective, inhaently pediorm a form o com-
PrEssiL.

This natwral alignmen saggess that the temal mechanizms of LLMs can be Ane-tened o dmprove bobh theis
predicinee accuracy and effcicocy. Techniguwes such as quantization and pruning. whach traditienally belong o
the field of daa compression. can be applied 1o LLM: withour compromising thewr performance. The interplay
Petween data compeession and LLMs not only improves inference efficiency but alse creates opportunitics for
deploving ligheweicht models i dysamecal elecom enyvirenmenis.

The deployment of LLMs i wireless merworks wheee latency, memsory, and energy consteants are critical re-
quires significution model comprescion. Without compressio, the size and computational demands of LLMy
perse signiOcant challenges for real-tme operations at twe cdge.

Cnuntization seduces the ba-width bsed worepresent weighits and Biases from stasland 32-bat floating-poist ko
lower-precizion formats, such o B-bit of 4-bit. It comes o two primany forms: Quantization- Aware Training
(0AT Y and Posa-Traming Chuiantizatkon (FTC). QAT inegraes quantization into the waining process, allowing
the medel o adjusr its paransetess W miligate precision loss. PTO applies quantization after waining, making it
moee practical for pre-twabived models. For lisance, BitMNer [41] proposes a highly efficient quantizstion scheme
by reducing weights o temary values -1, 40, or 1. This achieves a quantization rate of 1.58 hits: per pagaimeier,
resuliing o a 20x reduction v size compared o 32-bat fAoating-poing models, while mainiaining comparable
accuracy amd sighificantly impeoving memory, laency, and encrgy efficiency.

Beyond scalas guantizaton, advanced methods ke vector quantization and variahle-lengith coding offer addational
epportunines for model compresion. Yector guantization leveriges comelations among weights by simuliin
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eusly compressing groups of parameters. reducing seduniduncy more effecovely. This wechnique connects with
prusing techsigues, where unimportant weights are set o zero and excluded fron computations, Murther enbanc-
ing efficiency. Indeed. vector quantzation can be seen a8 @ way of joantly discarded iorelevonn NK- parameters
and approxineating the selecied ones. Additionally, secent wark on lossless entropy coling [42] demonstrates that
evien the expotent bits in floating-pous numbers (FP A2 can be comprzssed withautl compromising accursy.
For ingtance, lossless coding has achicved over 50% reductions in model size. providing substantial savings i
network and storage costs, Whereas users making use of very large language models such as GPFT might expect
it o accomiplish and moee and more diverse tasks, the deployment of LEMs in wireless petworks s expected o
b roore targeted. By delineating the set of goals te LLM has 10 scoomplish, i is posaible o further compiess
the model. Over the past years, goal-eriented compression echnigues have emerged. Tn [43]{44] for instance, i
ig shown low 1o wEilor quantization to the goal Tusction, This approach can be rewsed in model compression by
pricritzing lavers or paramséters based on their influence on task accuracy.

Ty summary, the interplay berween LLM: and compression spans two crucial aspects. First, LLMs inherenily
abign with the principbes of compression through teear predictive objectivies, as highlighted by their mathemat-
icol pquivalence o anthmetic coding. Second, deploving LLMs in webecom environments pecessitaies appiving
advanced compression technagues o meet the siingent requirements for litency, memory, and energy efficiemnc:
Techmigues ke quantization, peosing, and bow rank factorzaiion ae critical not only for efficient deplovinent bt
absy for enabling real-tioe AL capabilities b futeie &40 nerwarks. This dual perspective on LM aiid coopies-
siog haghlightd e importance of coptinged sesearch ot the intersection of Al and information theary, ensurisg
thar LLMs can operate efficiently in diverse amd resource-consirained eovironmments.
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4 Large Telecom Models Architectures & Deployment

4.1 Neural Network Architecture

Thas sectoh provides a comprebensive overview of foundationa! and advanced architeciures crtal for develop-
ing Lorge Al systems inebecommunications. It begins with an explocation of Long Shon-Term Memory {LSTM)
nepworks, highlighting their role in sequeence modeling and temporal data analysis, The diseusseen then mransiaons:
for tse transFormative impact of Transformer aschilecure, detailing i evolution nto eocoder-onky. decoder-oaly.
and encoder-decoder configurations for 1asks like classification, geneeation, amd translation. Canting-edge tech-
nigues such as Mixtuse of Expens (MoE) are introduced, showeasing their efficiency o scaling models.. The
section concludes by contrasting wnl-rodal architecwares. designed for single daca modalities. with madimodal
arclitectiures that infegrate diverse data types, emphasizing tsear potentiol o enharce Al capabilities o complex,

data-rich envirenmens.

4.1.1  Pre-Transformer Architectures

Before the advent of tranaforrmess, nedral network architectures like Becurrent Meural Nevworks (EMNs)L Long
Short-Teem Memory (LSTM) networks, and Gazed Recwrrent Unis 0GRUS ) were the comersions of sequence
madeling. These aschivectures were designed 1o process sequential data, such as texn, tme senies, and speech, by
mikiainang contextwal nfenmnation through fécurneEl connecinong,

Roecurrnt wral t orks B 5

WiFi 3 LET™

Figure d: RMNM and LSTM cells Architeciure

BMMs were amoeng the first peural netoork architectures dessgied 1o handbe sequoentiol dits, making them puag-
ticatlarty suitable for NLF fasks. They process inpul sequences one ebement ai-a time, maimntaming a luidden stsie
ihar captures information from previous dose steps. This ability i constder context made BRNs valoable for tasks
such as language modeling and machine woanshauion, However, waditional RNN= faced challenges iy capluring
oz -teri depemdencies due to the vanishing gradiem problem, limiting their effectivencss in processing longed
seguences [45]

Lann  hort-T rmi M mor L TM t orks

T dededress the Lmatarions of raditional RNNs. Hocheeiter and Sclhinidhaber introdoced LSTM networks o 1997,
though theey gareed widespread adopion around 2084, LSTMs inttoduced memrry cells and gatmg mechanizms
that allow models o retain iaporiant wfermation over long sequences, significantly improving their ability o
handle leng-range dependencics o ext, as shown in Figured [46). Bey feares of LSTM: include meimory cells
for storng infeematicn over exlemded perinds, as well as lput, Forgen and oulput gates o control iRt
Aow. LETM: were growsdlreaking  the early evoluiion of NLE Theie ability w process seguentiol] data and
understand bong-term dependencies made them indispensable fora variety of NLF tasks, including sentiment
analysis, machine wanslaticn. asd text generation. For years, LSTMs were the domd sant arehiteciuee so seguential
data modeling and played a pivotal role i advancing the field.

ity




Drespite these notable strengibhs;, LSTM faced several challenges in the modeen Al Lindscape [47. 46):

o Bealabilivy: LETMs sruggle o scale effectively to the large parameter counts achicvied by wansformes
mdels:

= Compitatienal Eficiency: Traiming LATMs 15 computatemall y intensive, particularly. for Lirge-scale meaod-
els.

* Parallet Processing: The sequential nature of LSTM computation hinders eficient parallelizstion. @ critical
factor for modern high-performance architecmnes,

While LETMs dominated seguence modeling for vears, their computaiional inefficiency and challenges with scal-
ability paved the way for aleermotyve architectures.

4.1.2  Transformers

Teansformers have revolutionized nomaral language processing tagks by outperfonming previous arclitecnres such
as BNN and LETM models. parscularly in bandling long-range dependencaes and paralielizing computations [48].
A ke innovarion in msformsers s the miroduction of selfanrennion mechanisms and pesitional enceding {Figure
5y, Selfarmenion enable the msodel oo weigh the relevance of different input todens dypamically, allowing for
efficient msodeling of dependencies without the need for sequential processing as required by RNNs or LETMs.
Posirional encoding compensates For the lack ol inherent order undersianding in ransformers by embedding posi-
fob informsation into inpat tokens [$#5). These advapcenents, along with transformers” abdliny o scake to massie
dataseis, are major factors behund tlseir widespread seccess across diverse 1asks such as machine wransbation, text
generatlon, and mose [40, 30],

Before applying stiention mechanisms, input sequences such zs wordy or tokens are fust ransformed into dense
viector fepresentatiens thioash an embedding laver. In high-dimensional spoce, similanty bevween cmbeddings
can be measured wsing the det product similarity or the cosine similarity. The dot product of teo vectons vy asd

¥ 15 companed as:
il

Vi-¥I=) v, il

i=l
where a larger doa prodect iadicases higher sumalarity. Allematively, coslne similarity measores the angle beoween
two vectors, normalized by thelr maenitsdes:

Wp-¥a

Tk i1
[Fwal[|]wz]]

cosimelv vl =

which provides o scale-invariant measuee of sunilariny, with values ranging between -1 {completely dissimalar)
and | (adentical ).

The attenticn mechanixm leverages dot prodisct simibariny to compute the relevance between embeddings in a
sequence. Given an input sequence X © B0 whese i 15 the sequence length and J is the embedding dimension,
the model projects the sequence into queries . keys K amd values Voas follows:

O=XW, KE=XW, V=XW, i3

wheere Wo, Wy Wi = R %% gre framable prajecticn matrices, The altention soores are compuiied by aking the dot
pronfuct of the gquery amd key matsices, scaled by —,’.E 1o mitigate lorge valwes. and applying softmax o get the
Wt
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Fugure 5; Transformess Architecture

atlentien weights:

;
Attention (. K.V = softmax (% ] V. ()
!

These atteotion weights are then wsed w compute & weighted som of the value vectors, allowing U model to
attend more o releviang pans of the inpul sequence.

To capture different types of relatonships between tokers, the Transformer uses moltl-hesd attentbon.  Aul-
upke atention heads operve i parallel, with eacl head computing s ewn setof anenion scores and output. The
eutpuis are concatenated and projected back o the origingd embedding dimension «f:

MultiHewdi 0. K. V1 = Coscati heady -2 beads YW 5

where Wy = £ 54 g the learned outpul projection, and # represents the number of heads.

[ the encoder, ameation i3 applied throegh self-attention. where each token in the input sequence attends o
all otser tokens. The goeries. keyvs, and values are derived Trom the sume input sequence X

O=XWy, E=XWr. V=XW, (6

[ the decoder. self-atention is modified by applying causal masking o prevent tokens from attending 1o future

3%
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fokens during tealiing, cnforcing an anioneges81ve sInichire:

r
Masked Atention| K.V ) = softmax {% -+ .H'} v, T
b

where M s the mask matnx blocking future positions,

I ackditionm to self-attention, the decoder inclades eross-attention, where querics Q' come from 1he decoder hidden
states, and keys K and values V¥ are derived from the encoder output H,,.:

=YW K =HaWF™. V=HaW™ i#

Encoder only, decoder anly, encoder-decoder

Transformers can be specialwed by utilizing eitler the encoder-or decoder based on the specihe sk reguirements.
Encoder-only madels, such as BERT and RoBERTa [49. 51 |, are particulagly effective for tasks that necessitate se-
manhc understndang, such as classificaion wnd language processing. Incontst, decoder-only models ke GPT-1
[#0] wre railoped for geneeative 1asks, where the objective s bo predict iokens sequentially o geperate coherent exl
The autoregressive: structure allows these models (o maintain contexiual information scross wequences, resulting
in high-guality language generation, Finally, Encoder-decoder models like TS [32], are bencficial for sequence-
to-geguence tasks. incleding tranclation, suminariation, asd captioning: Do this deup. the encoder ercates a
sepreseniation of the mpast, while the decoder generates the coreaponding output,. Cross-atbenton mechanizms
are conployved woalign the input and output sequences; facilitating cfiecuve mformation wansfer between the two
components [53]. Table § presenrz some Avchieciral Modificaiions of Transtormer Maodels for Various Tasks.

Table 5: Vamanons in Transformer Model Architectiures for Viarous Tasks

Task Allisdie] Input-Chutpul Aluilific slices Ulse Caser
Seyquance Ulowis- BEFET |AE;: Ingna. &5, Chitpii Filly ' coirecied  liver  slded Delecismny  awmiialics in
catten yED Faiftman Baver fiv ¢ lassificatinn P S e T R
LTS ST TN BEET (AE} lighit: Ky & Thitgil HERT. B prodhchion lical fo BERT. Ealrsciive Qi
iz A L= SRR DEET: St amd End start and esd dekens GFIEY & GITN,  Gopemmave  (hy

TS iAL-AR) token posidins T4, T4 = = Ahsmace  and

CAPTY: &4 eaeachive QA [54, 5]

Tewd  Snmmanrs BARY. Pepo- It ®p s, Lhapur ] Smnmaneng  woknical
liom sin. TS JAE- % i dopizmerils [ 55]

AR
Slachine Vransle MhanmiMT I, ®mp s, Chnpurc ] Tradesbating TERIRTY
(i TAE-AR) T disgurmerils [ %45]
Named Emdiiy bR Ta I ®rw. Chripur Cispehiiponal Famd o Pkl iCRI Lmiractmp named entities
e cugmiLisi iAEl g EE Bayer fin vt uslpral Treins Cus iy C v Ersa-
INER) RkAin 5T}
IHabapme =y vlvmes P01 1AR) I ®rw. Chsipur ] AT IEg TTaf A cus-

i Bainer suppeoi [ 5]
Time Series Pro- Teantermes It ®p v, Dargui Temporml  seli-atermon  lage Prodicting network il
abciinn imb ¥l i ded o ercoder. I el abemsmil orecas:
12y | 5T)

Speech  Becogsi- Wi Wer Tk Iopu: Epeoch sigesd ¥, CTa Inpers [or loarag esiraciing CafeEmng cisiomer ©als
Nivem {AEj bk ¥ jiesl) ik i Woaelorms S b fuw anahvsis f 5]

4013 Mixture of Experts (Maok)

The Mixture of Expenis {MoE)is a machine leaming framework desigoed w hasdle complex tasks by dividing
them imo smaller sub-tasks that are distriboted across specialized models. known as “expens” (Figure 6.
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cote iden s 10 utilaze g gateng revwork thar dynamically selecis the most relevant expernts Tor esch lspat, thevely
allowing enly oosmall subsel of experis o be activated. which signifcantly reduces computatbomsal complexiny.
This selective activation not only epimizes resouece usage but alsd enhances the scalabalivy of the model [60. 61].
At a bigh'bevel, the MaoE architeciure consists of several key components:

Experts: These are deep peural nevworks, often feedforwand nerworks. where each expent s waned 1w spe-
ctalize in solving a paracular part of the problem space. The experts are responsible for processing the input ansd
providing output Felevant to their specific donmin, While the input sl experts may be the same, theic lesming
objectives differ based on the par of the thak they are specialized in

Gating Network: The gating metwork takes the inpet and ootpets o set of scores that indicare whach expens
an: most suited for handling the mput. These scores are typically produced wsing a softmss Tunctuon, creating a
probability distribution over the expens. The gating setwork determines which expens will e acuvated based on
the taput data, ensuring only the most gelevont expems are bvalved.

=

y
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P 3 = il
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Figure 6 Maixture of Expers | MoEY Layer

Sparse Activation: MoE operates with sparse activation, meaning only a small number of experts are activated
ab any given e This desstcally reduces the computational load amd makes MoE models highly efficient for
large-scale asks,. The spase sclection of experts s guided by the gating petwork, which emures thar aaly the
beest-suited experis conribuie o the moedels ouput foe a pamticulsr ingut,

Output Combination: The suputs of the selected experts are combinved. wypically using a weighted sum where
ithe werghts come froo the gatng network. The combaned output 25 then waed as the final prediction or decision
Marhematecally, of we have x as the input, the outpun vix) of the MoE model can be expressed as:

A
wxh =) mix)-Eix) i)

Wi
& Moas the votal nonshber of expests.

s wx| Fepresents e pating weight for expert ¢, obiaired theough the softmax laver of the gatng network.
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= Fix) demodes the output of the -th exper

Tealning and Backpropagatien: Dung tradning, only the experts selected by the gating pevwork ave involved
in processing the input and receiving gradient updases. The maodel s wakved eod-10-emd via backprogagation, and
gradients Aow thesagh both the experts and the gating mneteoek.  To ensure balaneed usage of experts, a load-
babancing temm s often ncluded i the loss function. encouraging the gating network to distribute tasks evonly
across expens, The overall boss function is given by:

L= Ligak + A - Loancs {10y

wheere Lo,y s the primary 1ask boss (eog., cross-entmopy ), Lo 5 the regularizaton eerm for boad baloneing, amd
A 15 a regularizanon coefficicat

4.1 Advancements in Cross-Modality Translation: From Unimodal Processing to Mul-
timodal Generative Architectures

421  Uni-madal Architectures

I previus woek, pesearchers hove focused extensively on translsting content fram one modality 0o another.
For instance. the fields of image-to-text dcaptioning ) and texe-to-image generation have gamered significant re-
search anterest, with many works exploring approaches 1w model these-tasks. Image captioning predominanily
uses pnopder-decoder architeciures, where o Convolutional Newral Metwork (CMMN) encodes images and gener-
ares captions via @ Recwment Mewral Meework (BN or Transformier decoder, as explored in muluple snedies
[62, 63, B4, 65] (gee Figunes T and J). Stinilarly. text-to-image generation semaing a challenging task, where varl-
atignal awoencodess and Genceative Adversanal Networks (GANS) have emerged ax the dominan approasches.
Texr-to-mmage generation using VAE: o GANE generally involves conditioning the maodel o an inpat, which is
4 text emibedding. This conditionug allows the mode] to generate images that are semantically aligmed witls the
provided wext In this approach, bow-resolution images are initially created and then iecacively refined into high-
resolution outputs [B6, 67, 68, 69] {see Figure %),

A breaktheough in Generative Models was the wse of the ransfomer architecture - considered the de-facto stan-
dard For natura] lunguage processme tasks - to other modalities, Foeinsance, Adexey et al. introduced m [T)
the YWistn Transformer (VIT ) architecture which epresents a paradigm shift in amage recognition. applying the
rapsformer madel directly 1o sequences of image patches rather than relving on convolutional petworks (CNNs)
{see Figure M0 In the YT framework. an omage is divided into fixed-size patches, typically 1616 pisels, which
are Aatiened and lineardy embedded w0 prodece a sequence of veetors, Each vector in this sequence. akin o a woken
1o bext-based wansformers, represents a distnct patch of the wmage, These embeddings are augmented with posi-
tion- embeddings [ retain spatial informateon amd then passed theough a standasd transfommer encoder comprising
multi-head self-atiention amd feedforward layvers. VIT's reliance on self-atention layers instead of convolutiong
crabdes 16 o owxlel long-vange dependencies across patches globally Tom the carliess Livers, contrasting CRNx
where local receptive ficlds incrementally grow with depth Thas wehitectuse inspired advanceinents i unibed
mltimodal aschiteciuses, where Transformers ane leveraged to peocess b texl and nnages simultaneously.

Ty addition o cross-modal text-visigal generation, ome studies have shown great resalis in audio processing and
generabien alogside texis amd images, For example, a study on cross-rndal audio-visual generation [71] intro-
duces a condional GAM-based architecture designed o generate one modality (either aedio or vigual) based on
ihe ingat from the ether. Their architecidee comprises o networks! & Sousd-to-Image (521 network for genee-
ating drmages from sound and ae Dnage-we-Sound (125) aetwaerk for generating awdio specirogiams from bnag

dl



LI Tiger TanEng slnds

)

ELLTE B I'H-,u Tabe= vk

Fagure 7: Image-to-Text Generation swith CRMN-LISTM Architeciee

|

vl
Pk i s

[ e PR
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Figure % Text-to-lmage Generation with test-conditional convolutionad GAN Architectere as described in [66]

Each network has an encoder, generaine. and diserimumator. For the 821 pevwork, sonnd inpud is tradstormed into
4 bog-mel specirogrum representation (LM3), which is then processed by o CNN-based encoder. This encoding
is combined witls 8 neise vector and fed into the generator. whicl prodieces an dmage that visually represents the
seund (such as a musical instrument being played). The 125 pevwork operates zimilasly, using CNNs w cncode
images and generzle a spectrogram corresponding 1o the expecied audic outpan for that image (see Fagure 11},

422 Multl-modal Architectures

Multimsdaliny, by contrast v Unimodality which imvolves working witl & single type of data, bwolves processiing
and inegrating information from multiple tvpes of data. sach as text, images, audwo, amd video, within a singl
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Figure 11 Cross-modal text-visoal generation consisting of two networks: dap an 52 GAN pevwork asd (b) an
125 GAN perwork. The vetwork s descabed in [71]

model. Multodal peedels abm to learn ncher and maore comprehensive sepresentations by capturing relationships
actiss these diverse data types. This ability is crucial i advancing AL towards nore human-like underscimding
and respomses, as it enables models o utilize complementary imformation across diffesent sourced. Generative
Al miodels are built to produce oew data that chssely resembles a given wmning sor. Multimasdal generanive Al
extepds this by integrating muoluple data types. For example. a mulumedal model wrained on both images and text
can generate an image based on o exind description o, conversely, create a descripton of an image. Similarly.
a mukttimodal model eaieed with texr and audio data can convert et o sealistic speech o mranscribe spoken
wirds uste text. This eohanced versatlity across inodalities allows these models to generate more contextienlly
rich and sdapiable output.

The architecture of a moalteedal large language model (LLM ) s fondamentally bt on a transfomiers backbone,
adupted to process wnd integrate different types of input data [72]. While. there is no unified description for musl-
timodal models architecture. 4 simple way o look at Multimodal models is a sequential call to unimodal models.
For unstance, speech inguts can be handled by Awomane Speech Recognition (ASR) sysiems like Whisper, con-
verting audio v text. Images can be processed osing vision-language models (e, CLIP WT. CNN) for text

extracton. These intermediate outpies, such as text from speechor images. can be then passed o GPT for re
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ing. generabion, oF wlegration with wsee-provided texn For outpat, models like DALL-E can bandle rext-to-image
corversion, while Text-te-Speech sysicms synthesize speech feom generated wext, In contrast, advanoed Multi-
modal archibectures incorporate cross-modal attention lnyers with separate encoders dnd decoders tailogsed 10 cacl
modality o enable inter-modal interactions of a shared encoder-decoder architeciure, where modality-specific em-
beddings are wsed 1o preprocess nputs acconding to ther tvpe, ensunng compatibility acioss modalites [ 73] {see

Figure 12
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Figwre 12 Vision language encoders: conciotenated eneoders amd cross-aligned encoders o8 deseribed in [T2]

4.2.3 Varlations In Self-Attention Mechaniso for Moltimoedal Learning

Sel-uttenuon mechanisms Torm the backbone of Transformer models. Foor meltaosedal scenarios, the inberse tion
berween different modalities isachicved tuoongh specinlized self-attention designs, These designs can b calepo-
rized based on ther mode of intevaction, compoiational complexity, wml sequence handling. In this section, we
describe the main self-atention variams for multimodal Transformers, llustrating their principles. strengths. aosd
linitations { see Figure 133,

Lzt X and X5 denote tee inpues from two arbirary. modalities A and 8, and £y and Zp represens thelr respec-
v token embeddings. The outpat £ denote the token embedding prodeced by the multimedal interactbons. T}
refer to the peocessing of the Transformer lovers. The fomulations discussed age neodality-genostic and can be
generalized v multple modalities.

Early Summation: Early summaticn is a staightfoeward approach where token embeddings: frome different
mdalities are combined through a weighted elemem-wize sum at each token positon. The resaltant embeddings
are then processed by the Transformer layess.

Z =Ty (a5 BZ8) {11y

Cap = (s @ BZeIWRY. Kun= (0202 B2 WY, Vie = a2y & B2p) W (12)

Here, ¢hop, K, and Vg represent the query, key, and valoe matrices after summation. Early surmmation is com-

patationally efficient, bt relees on manually toned weighes, which may Limit s Bexibadity in caplunmng compley
[HTRATHER

Early Concatemation: Incarly concatenation, toker cmbeddings from muliple modalities are concatcnated along
the sequenee dinsension and processed as g unified npat sequence.

£ =T (C1EiZa)) kR
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Figure 13: Tradstormer-hised cross-modal interactions as descibed by Xu, Peng and 2, Xiatian and Clifion,
Dvid A o "Muliimodal learning with sransformess: A survey™ [74]: 1a) Barly Sumanation, (b1 Early Concare-
narien, (o) Hierarchical Amention (nslia-sieam o one-stream ), (db Hierasehical Ancation (one-siream 9 mali-
stream), (epCross-Anention, and (0 Cross-Anention o Concatenation. G Cuery embedding: K- Key embedding.
& Value embedding: TL: Transformers Layer.

Thas metiusd enables each madalicy 1o condition on the context of the others, providing richer multiineodal interac-
tiond, However, it iscredses the sequence lengih, leading o higher computational cdses,

Hierarchical Attention (Mult-Stream to Owe-Streami: Hicrarchical stenton employs independent Trans-
formser streanys for each msdality, whose cutputs are concatenated and Tesed by another Transformes.

Z=TnCiTHiZ).TaiZg1}) {143

This approach represents a late intersctionfesion sirategy amd can be viewed ad a dpecialized form of early con-
catenation,

Hierarchical Attentbon (Chne-Stream to Moltl-Stream): Inothis varonr, coscstenated muslimodal inpues ane
cncoded by o shared Transformes, followed by separate streams for cach modality.

Oy Zp) =Ty (C{Ly ) (15
Ly =Tpaidq). Zp=Tp i 2a) ( L6y

This method balances cooss-imgsdal mteractions swhile preserving modality-specific features.
Crose-Attenthon: Cross-attention coables interaction by cxchanging guery embeddings bevween modalities. Eacly
mnlaliey attends o the other's context,

Zi = MHSA{Qs. K. Vi) (17
Zy = MHSA{Q . K5 ¥z (18}

While efficient, cross-attenticn may Ll w cagiuce global context due o dts Jimited seli-context representation
within each modality.

Crose-Adtention to Concatenation: This method combanes cross-anention with concarenation for global context
miodeling. Cross-attention streams ane concatenated and processed by another Transformer layer.

Zy = MHSA| 0. Ky ¥y ) (19
Zy = MHSA{Q4, K5 ¥a) (20
Z =T {CIZ-Za)) (21

This appresch mitkigares the limitstions of standzlene cross-attention by iegranng global context.

Fumally, each variant has rade-offs in lerms of compuatons] complexity. sequesce lengtly, and interaction rich-
ness, For instance, early concatenation peovides comprehensive comest but is computaionally expensive, while
cross-attention isefficient but context-Innaned.
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Some Telecom Use Cases for Moltimedal Models

[ telecea. malimeadal penerative models sepresent o promising fronder.  As the teleconm lundscape evalves.
the ability of multimodal generative models 1w ayothessee data, predict ourcomes, g offer actiosable insighos
peosatbons them as indispensable tools fos futwre petworks. For instance. the paper [75] presents o multimaodal deep
learning model for mebale petwork traffic prediction, combining CNNe and GNNs o leverage grid and graph data
representations fn capiuring spatiniemporal dependencies {(see Figure 145
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Figure 14: The proposed framework o maobile wathc predicivon a-described in [75]

Gired diuta is modeled using ConvLSTM layers, which combine convolutionzl operations with emporal modil-
ing to capiute loecalized putterns. Por graph data, an Adaprive Graph Convolutional Mepwork { AGGCM ) emplovs
self-wiaptive adjacency matrices to dynamically leam spatial relationships beyond statie proximity, The grd amnd
graph outpus are fused wsing a parametric fuskon layver with learnable weights, optimally balancing their contri-
bautions. Experiments show thos hybrid CNN-GNN framework outpecfonms baselines actoss metrics, particularly
for 58S and call traffec. thoaigh Inemet iraffic remains challenging due o vanahility,. Ablaion studies validate
the imponance of negratng botl modalives and e efecuvencs of CoavE 3TM and AGCM. This work high-
lights the benefits of fusing grid and graph data for aceurate mobile waitic prediction. with applications in resowrce
alleszation, ¢ongesnon management. wml snerey efficiency.

Aupoiher paper [T6] ntroduces o framewaork for inbent-based petwork mamngement i 60 systems, leveraging rnal-
tniwdal Liege language madels (LLMs) 10 traslais high-Fevel user intends ot machine-readable configurations
for meework orchestrators, The framewaork consists of three main components: o Dalogoe Block, an LLM, and a
Translavor. (aee Figure 15)

The Dialegus Block serves as the interfuce for receiving wser bypis, such as sorvice descriptbons and deployment
details.- I extraces key informatbon and forwasds it for processing. The LLM processes these intents asing few-
shot learming 1o specialize in networking domains like Enhanced Mobile Broadband (eMBEB ), Ulira-Reliable Low
Latency Commmunications (PRLLC), and Massive Machiee Type Commumcations 1mbdTC L It generates NEST
1500 oupws, which describe network slices whale meorporating waditional KPL: and modem EV1s. such as
securny and enerey cfficicncy. The Translator converts the NEST 1508 inwo TME-complian Service Ovder APL5
o enauee conspati bility with plafformis ke OpenShee. Thas step maintains wdheence o industry stadasds, sucl
as GET templates, without altering the oniginal NEST 150N,

The framiework was validated threugh a prood of concepr where high-level user intents were successfully rans-
formsed it Operate APLcalls for erwork slice cecation. The Duidogue and Translator blocks were implement

Bl




Figure 15 The proposed framework’s architecise for mtent-based aetwork managenment in 60 sysiems as de-
scribed in [T

as microserviees on Kubernetes, while OpenAl's GPT-3 5-wrbo was employed for inteat processing. The outpats
were integrated o Openilice for exedution fellowing feasibiliny checks. The LLM was fine-tuned for classify-
ing intents and dynarsically generating NEST JS0N wmplates wailored to specific wse cases: During inference.
user inpats wene processed inte TMWME Seevice Orders for exccution by OpenShice, demonstrating the lramework’s
capahility for seamless Metwork-ss-a-Serviee (Naas pdeployment,

Frmally, malicmesdal generatve models unverl mransformative opponuniiies o elecommunecations. dnving ad-
varcements in nebwork operations, service delivery, and user experience. Generative AT will undoubtedly serve as
ihe comerstone of nest-gencration maebile communication systems, where Lirge lapguage momdels (LLMs} juofi-
ciently interpret multimodal intenrs and deliver precise, sctitnable respoises. This inegration promises to redefine
efficicncy, adaptabibity, and witelligence in the telecom industry, Living the foundation for a more connected asd
seamiless digital funise:

4.3 Diffasion model
4.3.1  Principle of diffusbon mosdel

Forward process. The forward peocess (e, aining peoceas) i performed by leratively adding Gaudssian rolse
1o the eitial distnbution s, ~ piz) over T ime steps, gradually approaching an ivomopic Gawssian distmbuation
fp o~ AOT) [77). This process can be viewed as o diserete-time Markov chain, or time step ¢ £ [0, ], the
forward process of 2 s expressed as

=+y1-Be_ +4/ Be: (22)

where o€ (00 1) 12 the nokse scledaling function, typically neodeled as a menotonecally increasing linsar funciion
af toand £ ~ A7 1,

From the score-hased pergpective {ie., the gradientof the log probabality dessity with respect to the data 2 at cach
nisie scale . the forward sochostie differentiable equanon (SDE) can be expressed ag

difls, = —'-f:;—;,dr+ W I ey (23)

= iz pde + glr) dink.
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where fiz.t)=— -'%"f:; 15 the drift term, g1} = ,;E ks the diffusion cocfficbent, div, 15 the standard Wicner process.
Reverse process. The peverse process (Le.. inference process ) aims w recover the orginal inpar data 2 Trom the
navigy sample s A ILE) In DODPM, the reverse-time SDE becomes

A" = [Flzes) — gt ¥y log pla ) di+ i) di

=B v leepts )@+ (24)

where 10,0 )= Wy, log el e b ks the seope function, which i miractable aisd peeds 1o be approximated w<ing & peasal
nebwiork sgls .0l

Since ¥V, logpiz) =¥, logp s | b we can approximate ¥V bog ol b == 55 (5.0} for the reverse process in (24)
by solving the Tollowing minkmizatien problem during the trdning in the foraand process [78]-

= a.rg_ll'm'nf_'n o | B {nid =¥y Ing,r:(:-_'.-|:||]||§] 1 (25
i
where the trained score wetwork ap (2,0 can be denoted by using Tweedie's idemity as
|
sl t) = ¥y, logpls ) = - ﬁfﬂ RN i286)
where @ = | — B and & = [ {1 — o). and the parameter £g (2.0} is the beamed wolse cstimator at towe sép 1.

4.3.2  Siahle Diffusion model for wireless commuinleation

The recetved aignal can be denoted as
d=latn 27

where b is the channet gain and & i the roise subject oo b ~ (0, %),
Kmown h. Leveraging the diffusion model as the prioe, it s straightforwand (o msodify (24 ) w derive the reverse
process of stable diffusion from the posterior distribitbon

-:l::”::.= |_

if =
S~ BV logp(y | £ h]de 4 o/ Balit,

if (28}
5%~ BV do () + Vs o ol )| + o .

By discretmamyg the severse prooess in (281, we lave

(2 + B lsa (28] + Vo log pie|o )+ o B oA (0.0, (24

|
=1 = ﬁ

To solve the reverse process in (295, the main challenge lies in the posterior distribution pi2'|z.h). Although the
relationship beiween the seceived noisy 81 2 and the wansmitied 51 5 s known, the relationship beoween the
intermediate data 2 incchesth step of the forwasd process and = remains ookoown. To tackle this issue, we express
Pl | z)as

Pl 5= [ 0(2 (0] plea | 1) dio (3

where the mean of gl | o) can beapproximasied by a delta functbon o

fiza | o) = dgrizn)- (E3 )
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To estimate the £ |5z |, we cun use the well-iraned soise estimator £g1 2,1} in the forward process (25) to obtain

| _
I=—=lo— 1 — & 8lz.1)). (32}

AnLY
Using (32}, the approximation plz; 2, ) leads to the folbowing formula for the gradient of the Tog-lkelibood:

the estimation Efmfs | =4 as

e || (33}
E—a ) all ol

V;, Jog plz |z ) = -
Unknown /. Motably, the above & only applicable when the instantaneous chansel gain & s kown, and hence
canned be direcdy wsed for the scenarios with smperfect estmation of & (e.g, Massive MIMO commuicationg
ayatems [79]). To solve this assue. a parablel ST (PSDN denoser can be used 1o joimly estimate the chanmel. gain
and rermoye the powee.

# Forward Process: Sioce 2 and k are independent, the posterior probability 55 given by

2o by = pie 2o, W)plm) pih). (34
Theretone, we can teaus two separste fooward processes for 2, and h a5 somidar (o (230 and {32 | respectively.

¢ Feverse Process: Similor o the severse process in (28} and (29}, the reverse process of fy can be expressed

= B

"M = [— e — BV, dog plie) + Vi log ple |z )]+ o/ B (35)

and
1 3 =
LS ﬁ{ﬂl +,[.'L|"F:., Lo p 2 5 0 T + 20 (hyar) | )+ 3 B 47 10.T0:

iz 1o the sparse strectuie of wireless chanmel. we tse &) regularization to sparse the channel gain by
augmenting the diffusion prior thereby better stabalizing the reconstruction. The estimated channel gain is
then upadated as

N o Bt R [P B[ (36)

where @ b the regularization strength

453 Deployvment
Deployurent Sirategles

= Merwork edge deployment: T farge-scale AL deployment within telecom, setwork edge deployment plays a
pavatal robe by brnging computation closer iousers, improving the real-time procesang of data and enabling
moee dynamic services. The edge layer in o nerwork architectere leverages local compuating resoerces, such
as base stations or regional servers, o execate tasks tha traditicnally requared a centealized clowd infras-
ructire.  This distribated deployment reduces latency, optimizes bandwidth usage, amd offers enhanced
persobilization capabilities.

Thee MetGPT framework |80} exemplifies this by implementing o collebontoee aschiteciure between chisl
and edge resources, allwing smaller versions of LLMs o be deploved at the network: edge while more
fesource-intenaive compataiions are relegated o the chowd, Por example, an adge LM can handle location-
based rasks such as completing peompes with local context without the peed v guery the cloud for every
reqquesi. This reduces network traffic and improves response Wi,

Moreover, edge deplovment offers substintial advaniages in ressirce management wnd cost-efficiency.
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aplitting the worklead berween edge and clowd, nevwork providees can avoid overburdening any single pan
of the infrasuuciure. Edze nodes process localized and less demanding tasks, while the cloud hamdles
more comples ek such as multi-modal conent generation or deeper infereace processing. This division
et enly reduces the load e cloud servers but alse oplimizes the use of edge vesources, enhancing both
performance and cosi-effectivesess,

Tiw additicn fo labcmey reduction, edge computing signifcantly contributes we data privacy and securty. Since
semsitive wser data can be processed bocally an the edge rather than ransmitted over fong distances wo cen-
trakized servers, there 15 less exposure o polential cyber thiears. For welecom applications wvolving confi-
dential or Beeation-sensitive data (@2, healtheare or financial seevices ), edge deplovisent matigated privacy
coicems by reducing the nember of datas tronsfers and points of potential mierception.

Funhermore. network edge deployment of LLMs facilitates eontextial awareness in real-time decision-
making. Edpe LLMs can utilize veal-ume data streams from local devices o tailor responses based on
environmenial facrors like network conditions or user behavior. This real-time, contexmally awane capabil-
ity improves the quadity oF service {008 by dynamically adjusting service provisioning, such & adjusting
the bevel of content complexity depending on emwork congestion or local device performance.

[y sumimary. deploving LLMs af the nevwork edge enables 1elecam operators to affer low-latency, persaon-
alized services while maintining a-high degree of data secunity, The aschiteciural Rexshilivy of chosd-edze
collsboriton alsy ensures thal seevices can seale efficiently w meet the demands of prowing user bases
without the peed for massive clowd infrastniciure expansion.

Muobabe (on-device ) deployment: Mobale {on-device b deployment represents a paradigm shift in how large-
scale Al models, panicolagly LEMs, are utlized i moder telecom envitonments. The nse of powerful
muabtle processors and advances in mode] compression technigues have made it feasible o deploy AL mode s
dircctly o user equipment (UE). such s soanphones, IoT devices, and wearables, This enables real-time
Al-driven services to operate locally on devices without selving o constam network conmectivity to closd
of edpe servers,

However, deploying LLMs oa mobile devices is ot without challenses, LLMs, by thedr natuee, are corigw-
tationdlly intensive. For istance, the latest LLMs, like GPT-53 and LLaMA-TE. contzin billions of parame-
ters, making them difficult to fully deploy on devices with limited computing power and nienwry capacity.
Consequently, varons strategics bave cmerged to addeess this e, iclodoeg spdil infercncee amd adaptive
layer splinting.

I splin iaference, the LLM s partitioned ito layers, with the instial layers processed locally on the device
and the inermediate canpuls transmited o edge servers or the closd for further processing:. This straegy
sagnihcantly reduces the computational burden on the device while allowing it to contribute 1o the overall
inference process. For example, user input can be prepeocessed locally o generate inteemediate features
et are then sent e the edge o clood for fiml prediction or respense generation. This approach enables &
hybrid model where both device and edgefeloud resoarces age utilized in tandem.

To further enbunce moebile deplovment, eclniques such as quantization, avodel pruning. and koowledge
distillation ase emploved o shrink model size-and reduce the compatateon requured sithout sacnficing
significont performance. These methods allow even resource-constraingd devices 1o execute sCaled-down
versions of LM while maintaining high levels of accuracy. Konowledee distillation. for example. trains a
smaller “student”™ roodel o replicate the belnveor of a larger "teacher” miodel, coabling the saden mosdel to

peTate

Al




A bngsirtant advantage of mobile deployment @4 its potential for affise functionality. By deploying LLM:
diecctly on devices, telecom providers can enable services that do net require continuons network access.
This iz crucial 10 areas with poor connectrvity or high data costs. Forinstance. an LLM could be used for
virce recognilion, language ranslation. of comexiual assistance lecally. enabling uninterrupted service even
in network-constroaned eavironments.

Mohile deplovosent abss allows for greater personalizanch. Sisce the Al model operatés lecally it can
divecily aocess user-specific data stoved on the device, soch as personal preferences. beoosing history. and
location data, w provide more accurae amd ailored esponses. Thas lecalired compusation alse ensuees
beluer pravacy prodectioa, s densiive wser data reed net be transmitted across networks, rediecing the risk
of unsuthorized occess or data breaches

Fumally, on-device deployment reduces the dependency on centralized infrastruciuee, which can resull in
reduced Luwency and a more cesilient service. In scenanos where nevwork reliabilicy @5 critical. such as emer-
fendy services of navigation assistance, the ability for mobile devices 1o process Al tasks locally ensures a
MoEe CORSISEENT WSEr EXpericnce.

Deployvieent Challemges

= Memwiey and Storage Challenges: To meet the deployment sequiiemeints of LEMFMy, substantial in-
creased indtorage and menvery ave essential womangge the streamiing of collected or generated data during
infierence and the updacing of model paramerers during training or fAne-uning. Conventional etwork archi-
tectures and hasdware may not adeguarely support these elevated storage and mensory demaiis. The scaling
Taw of LLMs and Fivs iedicates that mecocading the parameter size enbances accuracy and enables emergent
abilities. For instance, achleving mmielis-task corsprehension capahilities necessitates a significantly lacger
model size (e, number of parometers ) compared to the size reguired for demonstrating specific anthmetic
remoning abilities by LLMs and FMs (81 ] Consequently, deploving LLMs @nd F¥s wathin current netwerk
architectures and edge devices presents significant challenges, particularly in heterogensous netwarks, The
madels are often oo loree 1o fit into the memaory of these architecores and devices, leading 108 “inesry
iwall” that obsireces their deplovment. Even when deploved, these challenges would also impede LLMs
frorm achieving real-teme pespossivensss, especially inon-device deplovments, wlich 12 crfical for netwoerk
operations amnd fmie-sensitive applicatons. In light of this, accelerated and Lghweight LEM deployment
atrateghbes can be implemented. and collaborative FM inference schemes can be explored in a task-oriented
T,

= Latency: The 5G-and-Beyond network impeses sirict latency requiremznts: In FM-inte grased nevworks, the
naa-eglioible latency introduced by the istegration of Fis 15 beavily task-dependent, making it wsceraln
howy e integration would meet these stringent laency demands,

44 Large Language Model Training

Training s how LLMs gabn the ability wo understand langeage aiwd Tollow instactions [S0)L52]. In this section.
we will discuss the three main tvpes of modeling in LLMs: Pre-training, where the model learms o predict the

nesl woken given a set of wokens [B3]: instucton taining. which tses supervised feamng technigues o weach a
pre-teaised model hew to follow instructions: amd alignment, a supervised methodology 1o tran the model to align

with lueman peeferences [H2).
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44.1 Pretraining

Pre-traimng s the Tomsdatonal process through which Large Language Models (LLMs) acquire their language
understanding and gencratien capehilities. This process relies on large-scabe corpora and extensive maodel architec-
mees, Inthis section, we will Arst explore the methodologies emploved for pre-tainng. followed by a description
of the esseatial steps o prepare data for the trning process. Next, we will discoss fundamental hyperpasametes
aplinnization ecluslgues o facilitate comvergence during maining. Finally, we will outling specific strategies to
address the substantial computational demasds of pre-trining, with a foces on seducing irainkng chme.

Pretraining Methodologies

Lin this section, the different technigues used for pre-training are described. The key difference lies in the train-
ing ohjectve: auleregressive models focus on sequental twoken peediction, masked langeage models seconstruct
mussing okens o leverage bidirectionad context, denoising methods recover commupied inpots, amd conlrsive
iechibguecs emplasize leaming semantic disinctions.

Aireegressive Tralulny

Thas a5 this most compnon gainug used by the GPT and Llama masdel familics, The madel s traised o predict
the next tokén in & sequence given the previoos wokens lefi-to-rght of causal modeling ). The obpective 15 e e
A wisidhirectional epresentation of fexit. Based on [50) the traming objective is o predict the next oken based on
previous wokens. That means

a sequence of tokens representing a text inpat and the paranserer of an LEM, the cavsal langrage modeling wask
15 1o mimdmize the regative log-likelibood loss expressed as:

¥
Fin )=~ logPly | xa )

gl
where « < ¢ denotes the ioken sequence before woken .

Aiklpregressive pretraining serves as the foundation for creating malel s capable of handling various et generation
tusks, anclodig guestion pnswering, story wiing, surmmnarszation, and translation. By predicting the next iodoen b
aseguence based on preceding wkens, this method enables madels W generae ceherent and contextially relevant
fext [Sd].

Measbed Lovrpeiage Modeding (MIM)

L this type of ranng, the model 5 raned o predict masked tokens within o sequence. A pescentage {ep. 15%)
af tkens s randomly masked, and the model lears W predict them wsing their surounding tokens, MEM enabiles
the moeodel v consider the contextof both, precedang and [ollowing words it asequence [44]. BERT {Bidirecticnal
Encoder Representations from Transformers) amd it derivarives ave the osost well-known models tear use this
techpbgue. The fermula for predicting a masked token in Masked Language Maodeling (MLM) can be expressed
ag;

2= - Z bog Py | Xeomiesi ]
I slakel

where oy B8 the masked weken, and vompeq 15 the conbesn arousd ;.

Biecause bidirectional models leveraee information from botl directions i g sequence, they are valuahle for tasks
such as rext elassaficatbon, sentiment analysis, and named oty recogniton ( NER ), wheie understamding the fu
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conbext is key [49].
Dieniodalng Auloercoding

With this technigue. the model 15 raned w reconstroct the osigingl input from o cormagecd version. Corougtions
can e lude masking, shuffling, or adding woise. The modelas tened to predict these masked or cormupaed parts
based on the remaining context [85]. The model foemula can be represented @« follows:

= i log M, | corvuapted| s}
P=1
Two examples of models twained 1o this technigue ave BART and T3. In the case of BART, noise {oken deletion o
permutation) i applied. and the model is trained o reconstnict the onginal inpul [86]. Tn the case of T3 the moise
is applizd 1o a group of consecutive span twkens [87]. The models wrained with De-noksing excel areconstrscting
coroupied inpuis by learming robust, context-aware representations. enabling them v effectively hondbe noisy
of incompleie daa, This swength makes them pasticulady good for text sumimarizatlon (capiunng long-remge
dependencies j, question answering {geoecating coherent answers from noasy contexis), and WXt genertion |B6).

Contrersrive Preteaining

Contrastive. iwvolves learing representatbons by cowtrasting positive and negatve poars of examples. The model
i% raied o dishngussh bevween sumilar and dizsimilar daa points m @ maltkdimensional space where semanti-
cally similor inputs are close wgether and dissimilar data polms are far apart [BE]. The traning formuala can be
represenied as follows:

explsimily F)

Yooexplsimid .yl

Where simif. 4, ) measwres e simulanty between representations.

"

The MLF models wained wath comrastive learing can prodece high-quality sentence covheddines thar can be used
for tasks such as scmantc sdollancy, mformataon reeneval, axd e clustenng (895

Pretraiming Data Preprocessing

Lairge Language Models (LLMs) are frained on datasers containing hundreds of billions 1o tnllicns of wokens
spareed from diverse domains o ensure compeehensive longnage understanding. The wable below shows a swm-
mary of the useal type of dasa and dara sources commonly wsed for model preteaming [90]

Drata obtaused from the sources liseed in Table & canoot be divectly utilized For traineeg mos saw forme To ensure
the effeciiveness of the walmng process. it ks esseatial 1o-apply several preprocessing steps. These steps encom-
pass widely emiployed fechniques such as fAltering o remove low-gquality or ieelevant content, de-duplication o
eliminate redundan data, and provacy peotection i safeguard sensitive mformaton. Additionadly. the dug must
b ctmverted into oumerical representations that can be processed by the model, & step Enown as sokenization.
The following section provides a detailed overview of these preprocessing technigees and their imporiance i
preparing data for pre-wraining.

Prevaining Filterlng

Filiering is & cntical step by preparing the pre-trainlng corpus for Large Language Maodels {LLM=). a5 unfiftered
data can introduce biases and educe linguistic diveesiny [90]). Effective filtering strategics range from simple
heuristics that remove low-guality e [92], w waining madels specifeally designed o identify and exclude un-
desirable content. For example, i [B4], a clagsifier was trakned using high-qualicy data to filier the corpus, whi
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Table & Summeary of Data Sousces for LM Pretrasning [ %))

Type of Saurce

Description

Typical Sources

Wiebpages

Provide diverse linguistic knowl-
edge by crawling duta f5em e
wieh:  inclisdes both  high-qualiny
fe.. Wikipedia) and low-gualiny
CXL

CommanCrawl, Altered web data

Conversation Text

8 P

Enhances comversafional  commgpe-
wnce and performance an QA
tasks: procedsed 0o wee SUUchides
forr mli-parey data.

PushShifiio Reddit corpus, online

aocial media conversatiens

Bassks G!':\"Trs 'I_uf].lﬁljl:ﬁl:é_-texm bepelicial | Books3, BookCorpus2, Pile dataset
for linguastic kiowledge, long-term
dependency modeling. amd coher-
el LAl Zencration.

Brlueltakingual Text Enhamces language wisberstinding | BLOOM (46 langueages), Pal.M
and geweration in muliiple lan- | (122 fanguages). FLM (Chisese
guages, uselul Tor wanslatien and | amd English corpora)
miabtiling sal tasks. |

Scientific Text Impeoves understanding  of sci- | aeXiv poapers, scientific esthooks,
endific knowledge and reasoning | math webpages, scientific publica-
paska: includes complex data re- | tons
QuAring specific preprocessing.

Cislz Enhances program synthesis, res- | Stack  Exchange  [programming

sonimg abilities, amd sccwrate exe- | Qe Ad, GitHub (public  software
cution logic: suppoits solving pro- | repositonies,  code with  com-
gramiming tasks, mensdocstrings)

in [B7]. filvering was achieved by training a model t flag data with abagemally high peeplexioy during pretraining
far T3,

Filtenng strategies can al=o be tulbored o speciic domains, enabling the creatnen of domame-specialized language
mdels: MNotable examples iaclude BloombergGPT, optimized for Gnancial applications [93], and BicBERT, de-
signed te support tasks b the blomedical feld [94). These customized approaches ensure that domalo-relevant
knevwledge is priontized while nuintmng high data quality,

De-duplivation

Drgplication m irakning dara adversely affects model performance, parmiculasly by damageng the imemal soc-
ey responstble for generalization [95]. Consequently, de-duplication of training data 15 a critical prepeocesaing
step prior o pretralning. This peocess must be condecied af multaple levels, sbifressing repeated words, duglicate
senfences within the saie docwement, and redundant content scross different documents [9%]. De-duplication tech-
nigques for pretrasnng datasers can be categorized into theee main approaches: hashing. similarity-based methisds,
and flenng. each addressing doplication ab varivus bevels of granularity. Hashing technigques are efficient for de-
tecting duplicates by crealing unkgee hash values for data, Examples include "Exact Maich Hashing” |97], which
wdentifies duplicates by comparing hash values of entire texis of portions, and MinHash (98] or Locality Sensignae
Hashing (LSH}, which devects wear duplicazes by analyzing sumilasities in hoshed token subsers Similany-based
methods [ocus on ddentifving duplicate or semantically similor content by comparing fext features, Examples
include Shingling and Jaceord Shmilarity [99), which break text into overlapping chunks and compute similanty
spores, ad advanced appeoaches like TE-IDF Yecoor Similarity | 100] &nd Embedding-Based Similariy | 101 ] us-
ing madels like BERT or Senfence-BERT. Multilngual embeddings extend thése technigues o identify duplca
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berween linguages [ 102], Filtering technigques offer scalabie soluticas for large dataseds. For example. Bloom Fil-
ters efficienly Mentify . duplicates without stoging raw datz [ 103 ], and Entropy-Based Filters flag repetitive texis
with loww token distrbstion cotropy | 104].

Privacy presesiion

Privacy protection o LEM mraining seguires removing personally identifable informatien (P from the poe-
trakEing corpus. A strabghiforsand amd effective approsch is 10 wee rule-based methods, such as keyword spotting.
i ddetect and eliminate PIL such as names, addresses; and phone numbers | 105].

Tokenizathsn

Tokenization s the process of segrenting faw text inco individiual tokens, which ae the inputs for LLMs. Three
miain types of tokenizers are commonly wsed: Byie-Pair Encoding (BPE) [ 106]. which iteratively merges freguent
token pairs and is popubar i meodels like GPT-2 and LLaMA: WordPiece, ariginally developed for Google's voice
seasel, which merges token pairs based on the likelihood ieerease i provides for training data and s wsed o0 BERT
[107]: and Unigram Tokenization [ DOR], which sams wal o large sevof subsinngs and removes the lease likeky
iokens seratively, as seen in models like T3, While exizting tokenizers can be used, custom tokenizers tiabored o
the pee-fraining corpus can bmprove model pechomance, especially for spedfic demains | 109].

Hyper-parameter ODptimdzation Understandang hy perparmeterns 15 a critical aspect of taining Large Language
Muodels (LLMs ), as they significantly impact the learning process, convergence speed, and overnll model per-
formance. Propes winng of hyperpagaimetess, such os learning eate; butch size, and regulirization paransetees, i4
easential for efficient training.

Batch Slze Batcl siee, the number of raining samples procéssed before updating model paraisetens, significantly
affects LLM woinkng and sccuracy, Small batch siaes provide frequent updates ard may enbance geseralization
P can introduce poisy gradieats, potentially destabilizing taining. Large bch sizes improve hardware wiliza-
tion asd gradicnt stabilivy but require caretul learming rate scaling o mabnain comvergence and avoid overlitting.
Balamcing bach size 15 critieal for efficient and effective walning of LLMs [110].

Learning Rate Learning rate, a eritbeal hyperparameter in LLM iraiming, determanes the magnimde of weight
updaies duiog epumizaton. - In MLEP models; an incomrectly toned learning eate can lead to slow convergenes of
model divergence, affecting both training effickency and final accuracy. Adaptive learning sate schedules, such
as warm-up and decay siategies, ae often used in LLM frameworks to stabilize waining amd enhance perfor-
mkisce [111). By opuamizing these settings, models can achieve impeovied accursey and Betber peneralization to
unseen dara. The following section peovides a detailed discussion of the hvperpuranseter optimization technigues
referenced above [111].

REegularization Regularization techiigques, swch as dropost, weight decay. and Eabel smosthong. e eritical 1o
mitigating everfitbng in LLM twaining by controfling model complexity and improving generalization. Dropout
randomly descrivates peurons ooreduce reliance oh specific features, weight decay ponalizes large weights to sim-
plify models, and label sppoothing prevents overcontidence in predictions. These methods impoove the robusiness
and accuracy of the model in wnseen data [112]. Gradienn clippang. while not a regulacizaton meethod (o the wadi-
tonil senae of penaliaang madel comglexiny, acts as a form of training stabilization that matgates instabdlity asd
overfitting caused by Lirge, unbourded wpdates [45].

Optimizer An optmizes in LLM waining is an algonthm that adpusts moedel parameiers o mimmize ihe losy
Fuise iy, directly affectng convergenee speed and hoal accuracy. Popalar chioices includs Adam [ 113], which

combines momentuns and adaptive learsing eates for stabality and speed, AdaGrad. effective forsparse daa: a
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AudlarnW {Loshehiboy Huteer, 20090, which improves generalization by decoupling weighe decay regulasization
froem gradient wpdates,

Tralning Parallelism Training large language maodels |LLM:) requices disributing the computational lead due o
the imimense scale of datasets amd model architeciures, which exceed the capacity of a single device, To address
these challenges. various parallelisog technbguees and eplimization strategies, such as daga parallelisme pipeline
parallelisng, fensor parallelism, and mixed precision training. are employed. These methods enable scalable and
clficient pretraimng by reducing cormputational boitlenecks and oprimixing resource ulilvcation. This secton peo-
vides an in-deprh discussionof these technmgiees and their poles iy modern LM waorkiflosws.

Dherer povelleliom

Drata Parallelisin 1z a fundamental approach o improvimg traming throughpat by replicating made] paramietens
and optimezer staves across multple GPUs. The maining corpus 15 desribared among GPUs, allowang esch GEFL
tor process its assigned data and perform Forward and backward propagation independently o compute gradients.
These gradiemts are then aggreeatsd to update the medel acioss all GPL makang the approach lighly scalable by
increasing the number of GRS | LI

Traditional Single GPL training processes all computations on a single deviee, offenng simplicioy but limiied seal-
abiliey [ 115]. The Single Paranseter Server architectune centralizes paranvcies ugsdates, cnalihing multiple workers
1o share grodseaes. though it can become a boitleneck [1146). To address this, Distribured Pagarmeter Server sys-
Teins pariition parameters across multiple servers; reducing updase fatency [117] . Alernatively, the work m [ 1 18]
ermploys a mng-allreduce algorithm for disuibuted gradient updates. Improving communication eMciency anng
GPUs. More advanced approsches, such as the distriboied parameter server with Apex Mixed precision [119],
leverage reduced precision anthmetic (FPLA) o enhance memory efficiency and raining speed. Somlarly, Apex
Mixed-Preciseon (s applied | 1204 w0 achieve robust mulil-pode scalabilioy. A comparative study of these tech-
niques conclsded that the Disiributed Paramerer Server with Apex 1s optimal for single-node scenarios, while
Haopowod with Ageex stinds ot a4 the most sobast solutien for muli-node ewvironments, offering a balonce of
apeed. memory effictency. and scalabilioy [E21].

Pipetine Fevallellsm

IF Daca parallelism focuses on splitting the data scross devices, pipeline pardlielizm focuses on splining the maodel
across devices, The masbel s divided ineo sequemtial stages, with cach stage assigied o o different device, Dista
fows threugh these stages in a pipeline fashion, enabling concurrent computation across different parts of the
madel, Consecutive layers assigned to the same GPLD minimize communication overbead of transmitting hidden
states or gradients. Altheugh this techngee can redoce the traioing tme o straghtforaad implementationg can
lead o lower GPU wilization due 1o wdle-waitsg {"bubbles™) berween GPL s, To addeess thes, GPipe [123] uses
micro-batch processing to masimize hasdware unlizotkon, and employs gradient checkpolnting o reduce meoery
everhesd and PipeDream [123] introduces overlapping computation and communication o minimiee idle tme
and weight stashing to climiname the problem of weight Inconaistenciss acmss micro-batches and ensune raining
CONVETSCACE,

Tesiver Poralletiom

Temaor Parallelicm [114] is a technigue for decormgosing large lanpuage models {LEM ) senoss muoliiple GPUy
by splitting their parameter nuirices, Por instance, in the mamx muliplicatin eperation 1 = XA, the pacinsetes
matrix A can be divided into submatrices Ay and A5 by columns, expressed as ¥ = (XA XA, By assigning A and
Az todifferent GPUs, the operution can be performed in pasallel, with the final result obtained through inter-GF

A



comminication. To owercome the knovwn ssees with Tensor Paraielism, like communication overhead, memdry
constraints, and undenutilization of computationad resmirees during Use pretraining, tee sosdy o [ 124] inooduces
ananterleaved pipeline parallelism schedule that improves throdghpot by over 107%. while maintaining o scalable
mizmary fosprint.

Mixed Preclsion Trabninyg

While 32-Idt has been comomon iy older models like BERT, recent studics [125] have adopred [6-hit Boaing-point
numbers (FPI6} o redece memory. usage End commuonication overhesd. FPLG also leverages the architecture of
GPLUs like NVIDEA ATOD which have twice as many FP LG compuiation units as FP32, enhancing comiputatinal
chficiency. However, FPLG can result i reduced compuainonal accuracy | 125], impacting model perfommance.
To matigate this, Brain Floating Poalnt (BF 1465, which allocates mese exponent bits and fewser siznificant bats than
FP L, weas introduced | L26].

Instruction Tuning As opposed 10 pretraining., which ivolves exposing lacge language maodels (LLM=) to vast
unstructured diatasets wsing wisipsrvised of self-supervised leaming o develop seacrl Linguage understimding
[49], instructon fesing focuses on Goe-tesing these models by rankng them on specific bsinsciion-respase
pairs to berer align with user intend [127]. While pretraining sguips the model with a brodd foundation of lnguis-
tic knowledge, instruction muaing refines this foundation by leveraging curated datasets to optimize the model’s
petformance o specific downstream tasks,

Supervised Fine-Tuning

Supervised Fowe-Tubieg (SFT) inyvolves troinksg the mode] on fabeled datasets consisting of Dnpst-instoec tion-
stput tripdets. The ebjective is v adapt e pre-traaned madel w predict ourpuis aligeed with human-provided In-
structions. The obgective function misimizes the regative log-likelihood of the target sequence v= [y v 07k
conditicned on the wput

b

Forr=— ) log Py, | vz 8],

=]
where! - 8: Model parameters. - w0 Tokens op tor — Lo- Piy | v x0 8 Model's predicted probability for the
nexl token,

Parameter-Efficlent Fine-Tuning Technlgues

These wohnlgues invelve modifving several parameters @ Ane-tune the model, making them compueatiorally
clficient for instroction tralning.

Auaperers

Adapiess [ L28] inteoduce small bottleneck layvers e the model architeciire. During fine-toning. only these
adapeer layers are updated. while the restof the maode] remains frozen, Adaplers aidd a boltleneck strwcture, where
the output is defined as

Hodrpror 0| = Wy - Be LU W - it x] ).

where! - Alch Output from the frozen pre-trained model layer. - W, Down-projection matrx. - W Up-
PEOpECIIOn s,

FPrefiv Twnng

Prehix Tuning prepends @ trainable sequénce (prefiz) o the input of esch rinsfommer Laver, allowing task adapia-
tion without alterng the model’s madn parameters | 129).
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The loss Nesetion for Prefix Tuning is:

T
Heetin = — E log Py, | veyp, px28),
=l

wihere: - po Trainable prefix sdded 1o the input. - 8 Pre-trained mode] paraimeters (frozen),

The advantiges are that it keeps the maodel dntact,
Lony-Ront Adupianion

LeRA intreduces low-rank matrices into the attention lavers of the model, These matrices are fine-nmed while the
rest of the masdbel pemaans frozen | 130],

The weight update 15 represented as:
AW = Wy Wi

whiere! - Wasey: Low-rank down-prajection mumrx. - We,: Low-rank up-projection nutns.
This technique s remory-effickent and énables Ane-toing barge models on limited hardware
OaBA [anizecd Loftd)

QLo extends LoRA by wsing guantized weights o further redisce memorny usage while mainizsining perfor-
manee, QLoRA wses quanstized weights for LoRA updates:

Forara = Frega  with quantized weights,
Advaniages: Purtler redeces computational sequirements. Sutable for fine-tuning an comsumer-grde GPUS.

442 Alignmient

Alignment ix a waming methodology 10 ensure that a model's behavior aligns with human preferences. The goeal
is 1o train meodels that produce outputs which ase oot anly sccurate bat alse safe, ethical. and vsefil according
to bnan-defined criena [ 131). o alignment, the focus s on adaping a ousdel’s predicions or behavion to
meel specific expeciations, even in ambiguous oF high-stakes sceanos. This s pamicolarly impomant for barge
lamgeage meodele (1M, whese unintended outputs (e, biased or harmfol content) could lead w significant
consequences. There are mainly three technigues that fall into the alignment training methodoelogees.

Retnforcement Learning with Human Feedback

BLHF s a training method that aligins large language models (LLMa} with homan preferences by icorpseraiing
huiman feedback into the waning process, Unlike traditeomal nstrection methodologies that rely onlv on super-
vised fine-tuning with predefired datasers. RLHF involves an interactive approsch wheee human evalsators assess
and rank mode] cuipurs, These human preferences are then used 1w fine-tune the model theough reinforcement
learning. leading it o produce owtpuis thar beter align with hurman expectations (820 T this work the awethoers
suggest applying Reinforcement leaming by iraining a reward functaon e capiure humon prefercoces, then Pros-
imial Policy iz used to generate cutputs that mazimize the reward model’s scores aml align the model's belavior
with the human preference.

Rewerd Mode!

&8
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The reward model is trained 1o predict humian preferences using & pairwise comparison loss that ensures that the
rewied model learns 1o ssign higher scores o the outputs preferred by human evaluaors, The reward model 1=
trabisad 1o mlndmicze the Tolloawing loss function:

[
) = — B s [log [ {rg L) — gl )|

(3}

Where:
= 2@ Loss function of the rewasd model with pararnetess @.
# ralx vl Rewird seose predicted by the veward model for inpat v and response v.
= y,: The response labeled as “preferred” by human evalisatons,
= vt The response labeled ax “less preferred”™ by hiwman evaluators.
o 7! Sigmedd function, which transforms the difference in soores into a probability valee.

o 7 Dutaset of prompts x and pairs of responses (v, v, ) ased for training.

{‘1‘:3: Mumbser of possable pairwise comparsens s set of K responses,
= B Expectatbon over all samples (x50 from the dastaser 59
FProweiead Policy Opilaizateon {PPO

The reinforcemen learming algedithm applicd b Proximal Policy Opomizatos (PPOL which hoe-tunes the su-
pervized fine-taned (SFT) model by optimizing responses o customer promps. based on rewards from a rewand
model shile incorporating a per-token KL divergence penalty o prevent over-optimization

o If“"' iy | x) :
objective(@) = £y, 1o ay, |relry) — B log P g Pt Frans | 108 “flf':-l:'J

Where:
= o Paramicters of the leamed BL policy.
. x}‘-[_'.- [ &1 Probability of gencrating respobse v given prompt s under the RL-trained policy.

. x‘EFTn:_'.-I af: Probabibity of generating response v given prompt o umder the siepervised fine-tuned (5FT)
iy,

* Sy - Dataset vsed durdng BL Goe-tuning, which includes prompis and cormesponding rewarde,
» raln ) Reward seore determined by the reward model for the prompl-response pair |, v,

* Porrans Pretraining distributon used for sdditiopsd gradsent updates:

B KL reward coefficient, controlling the strength of the KL divergence penalty.

¢ 3= Pretraining loss copfficient. controlling the welght of pretruning gradients in the PPO wpdate. For "FPOC
models, pas s i,

A4
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= £ Expectation over the respective daasets,
o Jog: Logurithm functbom.
Diveer Poltey Dhpsimization

L [132], PO (Direct Preference Oplumization) is proposed as an alternative 1o PPO for aligning LEMs. DO
simplifies the aligiiment peocess by directly optimizing langeage models based on oman preference data, elimi-
fating the need for mtenmeduie reward miodeling and comples reinforcement learning steps inbiceent i methods
like PPO. The core of DPO involves adjusting the model's policy ma o maximeze the likelibood of peefered
responses over less prefermed ones. This is achieved through a bifary cross-entropy loss function:

. Ve | X) malw | 1) )]
Ry ) = —Eiy v v |10 bt et —f ] e k]
opol T Ter ) e TR [ LT (ﬁ £ Tl | 5] fi Tty | o]

Where:
o Fhpos Loss funcibon for Dhicect Peeference Oplimization.

o @y Policy boing opumized. parameerized by &,

= Epit Reference policy used @5 a baseline for comparkson:

5 v vl A omiplet from the dataser 220 wivere v, 35 the prefemed response and vy s the less peefermed
fesponse for bp

* o Sigmodd function, which maps the input to a probability berween O and 1.
= [: Scaling factor that controls the weight of the leg-probability differences.
= 0 Dhnaset of preference triplets weed for trining,

¢ £ Expectation over all sampled wipbets from the dataset 2,

= Jog: Natural lonzarithm,

443  IHstvibuted Fine-tuning sithin Telecom

In modern telecommunications, LEMS often sequire hne-tuning to meet the specific needs of different business
applications. . Nepwork-based fine-tuning peesents. o new parsdigm, as 60 nerworks ane increasingly equipped oo
support Al-as-a-Service {Alaal ) and Compule-as-a-Service (Caal) [133], providing a robust ifrasireciore for
mdel trvinang [134].

With these advancements, the network isell can serve as a distiibuted comguring platform capable of handling the
compationsl demands of fine-tuning Large-s¢ale models [ 134], Thas shilt enables veone efficient utilization of the
nervwork’s resowrees, allowing for e dynamic offioading of walning thsks and model wpdates across te peework.
Such a network-driven Ane-tuning approach eliminates the peed for central zervers and reduces the computntienal
burden on individual devices, opening the door o new possibilites for optimizing model pecformance across
diverse applications in real-me.
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444 Existing distributed learning framewarks:

Federsted Learming (FL) [135] enables distnbuted devices to main models focally using thewr own dotie and then
share only the model updastes with a central server, ensuring privacy by avoiding the ramsmission of raw dat A
commnen aggregaiion struegy used in FL s FedAwg, whese each client's modef wpdate 35 weighted bosed on the
sipz of its bocal data. While FL enhances privacy, it suffers from several himitanons. paricularly its reliance on
4 single central server, wlicls makes it vulisecable w server ilwre and reducey scalability. Funtherione, (ranig
large models on resowce-constralised devices reomnans chalbenging due o limited compitational resoinces sich a4
processing power, memaory, and bandwidih, The "sieaggler problens” 15 another significont issue, where slower
devices oo petwork connections can disnupt the synchronization process. delaying updates from the entire network
and hindering the efficiency of the learning piocess.

Split Learning {510 [136] provides a solution for resodrce-constrained environiments by offlosding the majonty
of deep neural perwork (DNNI computations to a central sevves, with clieats only processing the nitial layers
af the model using their local data. Clisss then tramsmat intermediate activations (o “smeashed data™) o the
sepver. where further compatanons are performed. While 5L redaces local computation and memory dentands
an clicnis, it intreduces substantal communicaton overhesd, as lorge volumes of data mast be transmitted bo
the cemtral server.  Additienally, selay-based SL approaches, such as Random Walking Snakes (BEWS) [137].
further reduce server dependence by segimenting the mode] and aetividing a sequence of clients-in a “snake-like”
patiern, where mvodel segments e passed berween clicms, While RWS offers some relief from the central sefver
beettbeneck. v sl suffers from ligh commuanication costs and increased velnersbility o disrupticns, pasicalaly
if @y client Fails o participate or expericnces network ssues. Furbermore, the heterogeneous nature of the data
across different clients (Moa-TID data) inteoduees the msk of overfitting o catastrophic forgetting, as clients may
ot have aufficiently representative or consistent data disteibutions.

Besides, by adopting an sncremental update straegy where model paramaerers are updated gradually, Snake Leaen-
ing &lovws for o much more relaxed syochronization raguirement s allowed, Each node inothe sevsork apdates
and shares 4 segment of the model in  sequennal manner, resemblng the wiy the snake cais items and grows, bul
in this case, i grows by comsumang mvode] porammeters an o striciured way, The updstes are done i o serpentine
mainer. meaning that nodes imerementally propagate updates through each layer of the model. ensiring thar eacl
pairt of e model s progeessively refined through collaboration across the wetwork. This reduces the nesd fod
real-time and frequent global syrchronization, o majer bottleseck o waditional distribated learning systems.

Hylsriad meethasds that combane FL and 5L are also béing explored to leverage the steengths of both frameworks. One
such approach, SplitFed Learning [ 138], infegrates FL with 81 by using two servers: one handbes the server-side
mindel computsiions, while the other manages cleear-side synchronization and model updates via FedAsg, This
parallel processmg improves communicaton efficiency bt also iereases the complexiy of the syatem. Another
hyhrid approech, Accelerated FL L), redices the need for frequent commuandcation by adopting o local-loss-
based training ieethad, where separate bocal loss Rusctbons e sed for the chent-sade model and the server-side
el allowing updates ws be muice ndependently without requiring geadiconts from e centrl server. This -
duces the real-time svochionizatkon reguirenents bt still faces challenges selated 1o the communication overhezd
between the federal seever and clients. Despite these effonts o combine FL and SL. these hybeid maodels sull suffer
Trowm persistent issues Hke commancation bottlenecks, server relionce, and maitaining model consistency across
decentralized nodes.

Key challenges:

While esxisting distributed Feaming frameworks sich as Federated Leamning. Splic Leamning. and their lybid vari-
ants have made significant sindes o enabling desributed model traning across edoe devices, they sull encount

il



several key chalkenges,

s Commcatisn Syschionizalion Challenges: Unatable wireless connections, especially in mobile ebyinon-
mients, disrupt the synchronizaton needed for distributed learning. resulting in slower or inconsistent up-
dates, Asynchronous methods can exacerbate this by tnrodecing issues hke "model saleness” and trainkng
inscability.

* Hetepegeneous, Dyvoamic Resource Availabilivy. Unlike cloud computing, 60 resouces are shured across
services, creating dvoamic shifts in the availabiliy of computation power. which complicaies the efficient
peocesaang of leaming tasks. Modes with heterogeseons haidware capabilities further complicate the de-
plovient of effective diswibured learming frameworks.

= [rata Heterogencity: Non-HD daa distibutions across podes ead toblivses and affect model convergence
and stabiliey, diminishing generalizanon abalities. Advanced srategies bevond simple data-bevel inerven-
tons Cauch as sugmentation) are needed 10 address these challenges.

= Model Consisency and Stability: Frameworks thar vely one asynchronous apdaes o decemralized mod-
els often face challenges in maintzining mode] consistency. Disruptions caused by slow nodes or netwark
fablures can lewd o "nsode] staleness™ or inconsistent updates, potentially hindering the stability and con-
vergeace of the model training process,
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5 Datasets

A telecormmunications evolve inta the eva of B0, inteprating large madels into the donam hay Become & comes-
stone for inmovation, These models bold inimense potentaal for autemaiing complex tacks, sucl a8 inteopreting
iechibeal standands, opeimizing serworks, and analyzing channel behavicrs. However, their successful application
in telecommunications faces usigue challenges: the specialized and highly techmcal natore of the fiekd pecessitates
curated, domain-speciic dataseis and novel adaptation wechivigues, To addeess these challenges, researchers have
developed a suite of datasets and wols designed o benclimark. pre-train aid fine-tune LEM: for telecom applica-
tions, From benchmarking ools like TeleCnA o domain-specific pre-training darascts such as Tapec-LLM and
OiperTelecom. and advanced ray racing datasets supporting 60 research, thess: resolrces emposwer large models
o navigate the complexities of wlecom sysiems. Together, they unlock ew possibilities Tor Al-deiven automanion,
resouree optirm Eation, and decision-making in nexi-generation conmmicaticn petworks. ransformang LLMs inko
indispensable allies in the elecommunications demain.

5.1 Benchmarking and Testing Datasets

Benchmorking and festeg datssets play g eritical role in evaloating and enhancing tee capabilinies of LLMs in
specialized domains like telecommaumnications. These datasers serve 1wo primary purposes: sssessing the perfor-
mance of LLMs in understanding domain-specific knowledge and providing targeted resources for fine-tuning
madels o ecedl in apecialized tasks. For instnce. TeleQoA acts ds & benclimarking wol by offering o diverse
seloof muluple-chokee questions designed o evaliate an LLM s telecon knowledoe across varous subsdommains.
This dataset highlighis the steengtes and limdgatons of general-purpose and fine-tuned maodelds, facilitating focused
improvements. Similady, TSpee-LLM provides a comprehensive dataser of 3rd Generation Partership Project
{3GFP) standards, enabling LLMs to better grasp the complexities ofF wlecom technical documents. Together.
these dataseis addeess key challenges o applving LLM3 o telecom, enducing their ability o imderprel, process,
and pespiasd o intncate technical requiscments accarately; A summary of the relevant relecomm datasers s Hsted in
Tahle 7.

511 TeleQuA

TeleQuA s a benchmark dataset 10 assess the telecom knowledge of LLMs [140]. This dataset is composed
by 10000 muliiple-cloice questions amd answers related o different resoarce pablications, sesearcly overviea,
atzndard specifications. standard overview. and elecom lesicon. The fraction of muliple-cholce questions on the
differcit toples are shaown in Fugure 16,

To conatmuct a comprehensive dataser covering the maulifaceiad domain of 1elecommunecations, a substantial
number of quesibons ks sequired. This task s Turther complicated by the specialized satore of telecom krowlodge,
demmanding expertise 1 crall perinent questicns, answers, abd explanations. Mogeover, tse ielecom documicmts we
colleceed often contain highly intrcals informatisn, making i inlfeasible for o wam of haman expes i generaie
guestions and answers that compeehensively cover the diverse rnge of telecom subdomaing. To address these
challenges, TeleQnA uses two LLMs w0 generate and validate the questionsfanswers and indégrates hsman-in-the-
I v werefy the grammmar of the guestions and flee our duplicated andfor degenesated questions. TeleOnA can
e wsed vorest the welecom knowledge of hoth general-purpose LEM s as well as foed-tuned models. An overview
af the entire process can be found in Figure 17

512 Tipec-LLM

Uniderstanding telecom standards requires navigating a wide range of technical documents. inchiling fhose pro-
duced by the MGFE This peacess can be hoth time-consuming amd labor-mtensive. While LLMs offer potent

e



Figure 16: Disiribution of the TeleCuA dataver ansong the categones of the collected source materials [ 1404,

(==
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Figure-17: A high-level overview of the TeleQnA generation poesceas-| L441].
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assiapince in ianaging he exensive IGPP knowledge base, the effectivengss of these models heavily depends on
the availability. of an wclugive dacaset fod proper pre-tratsing aisd fine-mning. In this section, we present T pec-
LIM. anopen-source. eomprehensive daaset that encompasses all 3GPP documents from Beledse 510 Release 19
{spanping the vears 900 po Z023).

Studies have shown that base LLM miodels are peolicient i addressing general telecom-related queries: however.
they stmiggle with more complex questions concerning standards. Despite being rained on extensive web data,
ithese maodels find achallenging 1w peocess technical spectiicatons related 1o wireless commuanication teclusolo-
gies 154, 10, L] Although such specifications are pablecly accessible, their intrecate nature—festuring rables.
formslas. and figures—poses significant difficalties for LLMs, This complexity hindess the models’ ability o
exiract pertinent infermation and deliver accurate responses o wser queries, thereby limating the effectivensss of
state-of-the-at LLMs in generaing precise answers.

Ao inclusive dataset s essential for the pre-training and fne-tuning of LLMs 10 ensise thay effeciively grasp the
compléxitics of the telecony domain, With sech o dataget. L1Ms can serve 2 a valuable teol for engineers and
rescarchers, offerng an assistant model thot can outosomausly comprchend aisd organmize 3GPP technical docu-
it reducing the nead Dor haman imtervention. The TSpee-LLMW dataset offers a well-organized, comprehensive,
open-gource dataset desigoed foe reseanch involving LM, Tv maintaing the nvegrny of the onginal content frogm
the rables and formubas fowsd witli the 3GPP specifications. Additionally, Tipec-fILM encompasses & complene
collection of all 3GPP docwinents from Release § to Release 19, covering e peciod from 1994 i 2025 This gx-
teimsive dataset totals 135 GB. containing M0, 137 docoments and 5535 millon wosds, Impotamtly, cach docmment
within & specific release retins its onginal sodeture, with the contents neither sampled nod consolidited o a
aingle file,

PSpec-LEM Dataxer Creativn: The dataser comprises processed documentation fles from the 3GPPF standurds.
which have Been comverted w markdogn |med) formal w0 enbance compatibility with naneral language process-
ing applications. This dataset is specifically designed for engineers and researchers working with LLMSs in the
welecommuenications sector. The documenis were sourced from the 3GPP website [142] uaing the open-soerce
tord evsiridoed T (0707 which eficiently retcieves all documents from all releases and seres into a designated
chisectory. The dataset wias subsequently proccssed wsing & costom-desigred Pyithon seript. which s available open-
souree 1. This seript emplovs the comnand-line version of LibreOffice 1o process fikes in parallel, significantly
avccelerating the covnversion process, The headless conversion approach s opiimdized for sepver-side opertiong
and hatch-processang tasks, pesulting in a well-structured and versatile dataset ideally suited for naneral language
procesaing tasks nwolving LLM: in the telecom domiain.

We milized a Pyihon script woanalyee the file sizes of morkdown documents within the 3GPP-clean directory.
This analysis spanned all releases and versions of the 3GPP documentation. focusing on the wotal size of the md
fibes, The findings were srgankzed by version and release amd compiled into a report. which was saved in JISON
fommat. Fig. 18 peesenrs the wotal size in megabyies for cach selease. alongside the total word counts i millions.

11|'I.'I:pi A pypl. mrpdpreject Sdannload _dgpe
“hu:pl LA higgingface. -:n.-'nhr.ln'r.n.-':uuul-m.‘l:ba.‘l'.ht.n'?!pﬂ-u_'ﬂ.l'b] ob/malaf pracesy-30FP . iprnk
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Frgure 18 Word counts and file stees For the TSpec-LLM dataset across varwoms YGPP eleases, Data cut-off is
December 2023,

Fig. 19 presents an example from te TEpee- LM dataser. illusratng o the content of Table 7 8-2 fram | 143]
is preserved within the markdown files. This type of content (s crwckal as ot inclodes system garmcters, oon-
lgurations, and other technical details essentiul for understanding and wiilizing wiecom standards. Additionally.
Fig. 20 provides a comparison berween an equeation in s originad docx fermal and its coreesponding represen-
tation in Tipec- LM using LaTeX. This LaTeX formal enhances the processing capabilities of stale-of-the-an
LLMs. making it easier to handle complex mathematical expressions.

Talhle T.0=3: fimulaticn samiumptlions fofr Full calibrcatian
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| Barametes | Valiss=s i
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| BEeR&L Lo | tha, Hi-stceet Canyin: indssr-=fiics |
i | iopan office) |
e e e e e e e e e e
| Carcier EFrequency | B SRz, 30 GHr, 40GRz, TOGHz ]
T ! R T R e TP L PO ST PRI L L oC= AR VL2 P B L (AN PRI S ¥
| Bafdwidth | OMiE for EGHs, And 100MNE for JOGHE, |
| ] &0 GH= asd T @El= [ |
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| | UM& &t &GHE ]
i | i
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| | |
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Figure 19 Hlustraton of the Thpec-LLM datasct content. highlightmg the sumulstion parameters as detailed i
[L143, Tuble 7.8-2).

ABNIASIA.ORG
-



Table 7: Existing datasets for trainmg and testing o an the telecormmunication donsatn,

Thatsost Veur Traiming  Testing Blew Deseription [TPp——
TelcinA, | 156 200 Il W NI samples sy d mubepke Teleoum wisses HagairgFcs
Tele-Heal | 143] 2024 " ¢ THUNE pairs Dipedn-eieded s medn the Tel o T dala s HagZirgFsog
ORANBeonch- LK | 146] 2004 & o 5052 smmples ) (om0 & O-FBAN speciboion docimicnls Tiiilleh
Telco-DPR [147] 204 " ¢ P mamgdes ., Bameldng gnid fom Toar 3y bechndonl dodimments HagzirgFoge
SPECE [ 143] LR LE o o HM o Celiilar pciwink s paadcaom i mnczis il 1) mlisc wcheiica HapgingFacs
TEpic-LLK 104 X W X M wanle Lopp dpcuimanins roam Befease 8 § 1919010 Rakeps 19 (2000 Haggirg s
T et [ R4S) 0d o X 1 5H #ekons Tekecon mimenis febm dillérmi oanes Acn, Jgep, Wikipaha  Hapging Fiecc
e Telecom [ 1455 =l « ¥ 1 TH sobons Tapp documemis & filienng RedPajame 1T wiil selecom Beyaonh "
lustey diay o upslatid as:

PO (T

{ay Orepenad Equation 7.6-9 from [143] §.docx):
[Cloater delay]{ underlipe} is updated as:

Slvwidetilde{vvauli_(njilefcl = (&} \right) = S“lefch{ vbegini{matein]
Phisideriiae|iran})_fn]'Iefef & _{k = I] Yright) -
".f:al:ll"-u'ide:'-u-:Ir]!__lrll:.nl"-';lrE:[ t-lh: = L} wsdghe)l=q{T)
{Vvovaplina[vil {\vext{pmjlhiafe( = {k - L] \right) +
[Wwildehat |r)d [tx.mivlefc) © 1k = L} ‘eighc)™(|T}
[voverline(vi) {(\texE{cxi)\left( ©_{k = k) ‘righti}
[chimatkem[\Deltals & \texk|fozy. jik > 0 %)Y

Voau (mivlefcl t_ {0} \right) +

\tau_ | vmathem{\Delzal ) hleft( £_(01 ‘\right)

] -.!J-.ul'--:l_l'll.'l:-“._ll.'I] (el & \teMElfary K = O %Y
\endimatrix wcight.ly § [Vo6-9)

by Equation represmmiation in Tipec-LLM i.mdh.

Figure 20 Example of the Tipec-LLM dataser content. displaving: (a0 an equation in the onigoeal document
(docx) [ 143, Eqn, 7.6-9] and () s correspoacding represemation in TSpec-LLM ().

The TSpree-LIM dataset is hosted on Hugging Face 5 and it can be downloaded by following the installation
guide provided, To evalaate the efficacy of the dataser, we selected o represemtative sample of 3GPP documents,
generating comesponding technieal gquestions. and assesing the baseline performance of varkous state-of-the-art
LLMs. Subsequently, we implensented a BAG lramewaork o enbance the LM capabilities by rerrieving relevant
context fem the Tapec-LLM dataser Fos detabed information on the evaluation performance. readers are refermed
e | D]

521 Pre-Training and Instruction Tuning Datasets

Prewaming and instruction Deeing datasets ae essential for adapting LLMs o e speciabized needs of the welecom-
munications dopsain, Prefraining datssers, sech as those used by Orange TelcolM [ 130] and OpenTelecom, pro-
vide a foundation by exposing LLMs w0 large volumes of webecom-specific content. including rechnical standards,
research papees, and curated web data. These datasets ensure the models develop a robust urderstanding of tele-
coim terminology, concepts, and comestal pusnces. Instucton wong datazets, like the Telecom Instructions
Draraser, funlser vehne this ksowledgs by eaching models o follow demain-specific insimactions and comglene
specialized tasks, such as protocol geseratton, mathematical modeling, and technscal classification. Together,

5’r|1l|:a£-'|'."hU|:gil::.:i'qva'.'vr cadd pfase 'rusml-mibbakh i TS pre-LLM
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these datasets enable LLMs 10 perform more accuestely and elfectvely acrods o wide range of telecom applica-
tions, bridging the gap between general-purpose Al and domaie-specific expertise.

5X1 Tralning Datasets Used by Ovange Teleol.M

Drovnain adaptation of langoage models peguires carefully curabed datasets that capiune the specific temunology,
concepts, and koowkedge of the target domain. o this section, we descnbe the datasers assembbed by Orange o
create Teleol M, a language model specilically adapted 1o e telecommunications domain, This collecton effor
represents anl example of how domain-specific data can be gathered and stractured for language model adapiation.
Two types of data are consideed: raw texis and sdructions. Raw texis can be used For conunued pretradning of a
generic LM of 1o generate instructions. [nstnictions are there i perform instneceieg -tuming. They can-also be used
o build wesr sens:

Raw Text Collection

The pretraining corpasg for TelcolM contxins BOAM tokens, gathered fron varbows telecommunications ¢lated
soarces. The data collection process fellowed a three-pronged approach:

Technical Documentation (42% of tekens)i: This includes wchakcal specifcations amd white papess from stan-
dards oeganizauons, accounting for 28% of the wkens. The sources are 3GFP, ETS] (Buropean Telecomimmi-
carboms Stendards Instmte ), and RPC (Begeest for Comments § docoments. Additeaally, researel papers from
arkiv's Memworking and Interiet Architecune cutepory contribute 135 of the tokens.

Web Content ( 11% of tokens): This portion is desived from Comimaon Ceawl archives filtered for elecommunications-
related domans, incleding industry organdzatiens lke 30 Ack. SGAmerbeas, and GSMA, equiprment manulaciue-

ey such as Mokia and Huawed, and techiical communitics Like TPvG and Juniper. Furilsomore, Stack Exchange
arclives from relevanl categones such as Metwork Engincerning, Sional Processing, Securaty, and Quantim Com-
puting ane ipcluded.

Selected Content throagh Importance Sampling (47 % of tokensy: Uszing the Dat Selection vid Impotance
Resampling (DSIR) methesd [ 151], additbonal content was seleceed from vasions sources: This Incledes Suack
Owerflow (9% ) with questions ard answers elated to elecommunications, Wikipedia (12%) with anticles about
telecomimuenicaons concepls and echrologies, Open Web Mathematical Texes (107 pelevant o telecomiminmi-
catioms engineering. and AcXily Papers from RedPajma (15% ) selecied based on their relevance to elecomimm-
Carkoms,

Instructlon Dataset

The instiaciion dataset comprises 80,000 insuacton-eatpual pars, cocated through three maie approaches:

Technical Dvecumient Transformation: The source materals mclode standasds and specifications from 3GPR
ATIS, and ETAL The process imvolves dividing documsents oo paragraphs - end prompring GPT= 10 generane
instruction-outpat paies. Post-precessing 15 performed to remove refesences to implicit informatbon suchas figures,
tables, and cquitons, Additiomally, secomiany prompring isoused K expaid shoit answers,

Q&A Pair Transformatbon: Thiz approach utilizes Stack Exchange discussions, specifically focusing on the
Metwork Enpineenng category, Digieal Signal Processing topacs, and securty-related discussions. The TeleQnd
datiuset, a subsample of 000 pairs, is abso wed, Muottigle-choiee questions froan this dataset are converted W an
open-ended format, and chain-of-thought peompting is added 10 generate detailed explaations,

Quality Control Measures: Several quality control measures are implementod. inchuding length fliering to
i



move instuctions witls o pars shiortes than 200 characiers, relerence cleaning we eliminate imstmctons sefemng o
exbernal clements, and relevance yverification using the Zephye-Th asodel v clasqify wleconmumicatbons releviance.

The dataset preparstion ivolved several technical chalkenges. For PDF documents. different extraction meth-
ods were emiploved depending on the content type: tse Mowgat visual tansformer was wsed for technical and
mathematics-heavy docuaments. while PDEMiner was applied to docomsents Trom Common Crawl. Web content
processing followed a pipeline inspired by recent work on large-rcale web datasets | 152, 153, 92], including
lapguage detection, document-wise and Lne-wise flienng, exact and fuzry deduplication, and cdntent quality

ASSERSIMENL,

This dataser collecuon efforn dermonsrates the complexiy of assembling doman-specific raining dawa for Lin-
guage models, The combination of authaontative sources (echnieal stondards ). commuzmity knowledge (QfA
sdtea b, wnd fihered web content proyides & broad covergge of telecommmunications concepds. from formal specifi-
cations o practical applications.

ELZ  OpenTelecom (Pre-Training) Dataset

Mainsiream general-purpose LLMs lack kvowledge and know bow in welecom domain. FPor mstance, SeA LLM s
such as GPT-4 fails almess half part of the specification-related problem o TeleQoA. Therefore, i 1s of great
intereal o enhance or mlapt seneral-purpose LLMs into telecome-specific LM with telecom-relevant kinowledse.
Himwwver, despite various wmount of textuel docwmenis or REF sigpal in ielecom domain. there we few curated
dataset available for LLMs for both pre-traimog and fine-tuning. One possible direction is w flter or select the
welecom-rebevant contents from existng general pre-teaining dataser OpenTelecon in [elecomgpt] fepresents
heww siech approach can be implemented castly.

To select Telecom-specific data from a general-purpose dataser, o mon-exhasive T keywords list from ielecon
texibook, secthon of definitions and abbreviations from open 3GPP techuical specifications amd etc-is buill. 6
cribenia are set to improve the quality and the effectivensws of these keywords in help sdentifying relecon-relevant
conteal while manmmzing the amount of Grrelevant contents rodieced by polyseimy of vocabularies: domain
spechcity, fregueacy in eelecom dizcowrse, distnctiveness with telecom, suthornity amd stamdacds. tmeliness amd
emcrging technologios, clanty and avoidance of ambiguity.

Then for each data sample, two guantities to cvaluane it rebevance o telecons domain are ased: number of elecom
keywinnds tsame keysword will only be counted opeed and telecons keyvword density. The density for g wexe of N
wikrds with a total mimber of M elecom keywinds muatches s & logiy + 1), Thee eeason for using the loganthm of
the rumber of otal words rather itself is o compensate those loag documents. RedPajama-1T, an open pre-raining
dataset consdsting 7 subsets: Commencrawl, C4, Github, Books, Arxiv, Wikipedia and StackExchange. with 1.2
hillion text tokens 15 wsed o showease the approach. In addinion 16 filiering from general-purpose texi, 3GPP
and IEEE standaids are eswacted following the methodology i [undersaand telecom languase. Lina|. The final
dataset of OpenTelecom contains appeoximatcly 1LTH tokens teleom-relovient texts, The details of the category is
surmnsieized in 8,

523 Telecom Instruciions Datasel

Henwever, applying LLMs effectively do the highly specialized and technical field of telecmmunications neces-
sitates fne-tunang-on tsk-specihc datses Instrect mning., where models are trined 1o follow domain-speciGe
instructions, is a promising approach to sddress this challenge, By bubding amd leveraging instroct datasens
apecifically curaed for telecom applications, such as resource allocation, inteference mamagement, and spectan
sharng., LLM = can be adapted o undemsiand and execue telecom-relevant instuctions efficiently. These datase




Tahbe &: OpenTelecom dataset for Continual Pee-training (i mitlion wokens)

Category . Traaning | Vahdanon | Percenaage (%)
IGPP Stundarnd |~ 193 19 L1449
[EEE Sandard 75 .07 045

Paper {ariivy 593 Q 5317
Buosks |9 N2 o1l

Paterst (C4) 2532 20 1505
StackExchange | 519 (3 30

Wikipedia | 189 (2 1.13
Code (Glthuby 2601 2 1549

Toal 167495 [ —

can ipclude seal-world scenarios. annotated techoieal standards (o2, 3GPP docaments). and expen-designed
tasks, enabling the LLMs (o generate acticnable insights taikored to the necds of wireless netwarks. Such bnstruct
tuniag empowers lebecom-specific LEMs to sugpon decision-miaking in nedwork planming, opiunizs resounce uti-
lizatien, and even provede ausomsated troubleshooting, wlmaeely diiving innovaton and opecational effickency m
nekl-generation wireless syswems.

Ongr anstruction dataset, seferred as Telecons Instowct inowhat follosws consists of different eritical tasks in welecom
domain:

= MO Answering: Sclect all comect answers from a MOC),

= Dpen-ended Ouoestion Answering: Answer welecom-relevant question Trom sfandards, rescarch papers of
palents inan opek-eoded manner.

= Technical documents classfication: Classily text from diffesens Tdocs i the related woorking group as
docwmented inthe library of 800,

= Maih Modeling: Cererave acouraie math equation such as channel models for given e description of
ayatem model and problem formubation im the context of welecom with predefined notations,

= Cle Generation: Generate senpu'function for o given taskfuncoionaliey in welecom domatn sach as send-
ing signal idicator and extracting MAC address feom a frame,

o Cipde Infilllog: Lol incomplete seript based on the contexn and the wegeted fonctienaliny. This sk 15 also
kncvarn as FIM catefbavarian2 (2 2effcient ] task which is beneficial for developers or researchers o impoove
clficiency whien generaling telecom-rebevant sciipls.

¢ Code Summary. Suiminacize the core functienalivy of 2 given senpt, incloding wemtifving i the scrip as
1elecomi-relevant or not,

= Code Analysis: Detail the operational logic behind the function, ephasizing the Enowledge and principles
in telecaem domaii.,

¢ General Instruction: Explain concepis, descnbe specifications, idenuly problems, propose solutions. swem-

Eit

ABNIASIA.ORG
-



mareze coment in Telecom stambands, patents, and papers.
s Protocel Instruction: Gererate the peotocol workflows in Telecom standand followiing 2 human pronspt.

[t has bieen that sech welecom-gelevant mstriction dataser can be weed o adapt LEMs 1o elecom-specific LLM s«
and suitperforms e base models for tasks included bnothe datiset.

5.3 Advanced Dataset Design Datasets

Advanced dataset design focuses on creating specialized resources tailoved to solving complex. Lask-specific chal-
lenges in elecommunications. Unlike prétaining and instnsction tanmg datasets, which primanly baild o foun-
daticnal understanding of welecom knoswledge and enharce a model's general adaptabality, advanced datasets are
crafied o addiess specific applications sech as pepwork optimization or svstem-level problem-solving.  These
datasets emphasize structured, task-onented ocumpats, making them imdispenzable for practical Tmplementations.
For esample, Tebe-Drata provides & comprehensive resouree for pretraining amd continual leasiing by combaning
dhiverse welecom content fiom standards and research papers, enabling models w hasdle complex domain-specibc
tasks. Similary, the Dataser for Mevwork Optimization offers sireciured dia for sk like computation offloading
and scheduling, direcily supporting real-world efficiency improvements, Together these datasets bridge the gap
between feundational model capabilities and applicd elecom innovidions, enabling Al e dreive smames amd more
clficient systems.

Al Tele-Data

Audapting LLMS 1o the telecomnmmunication domin regoinss continual pretraining on telecom-specific datasets, One
relevant datszed for this process in the lierauee §s Tebe-Data [ 134, the firsc open-sousce collection of telecom-
munications. materkals composed of four primary sowrces: (1) scientific papers from arXiv, (2} 3GPF stambards.
{3 Wikapedia aricles selevant to telecommmunicatimes, and (4) ielecommunications-relsied websites sourced from
Common Craw] dumgps. This vanery of soarces provides comprehensive covernge of telecommunications kivowl-
edge. facilitating the transfer of expertize across different aspects of the domain, The dataset ks avatlable on
HugpingFace® and has been used for the comtinugl pretraining of Tele-LLMe, the first open-source series of dpe-
clalized LLMs for the telecom indusiry | 154). These madels are also secessible on HuggingFace”

ArXiv

Curatlon. Cmne of the laspest repositones of open-aceess research on wlecommunications consists of preprings
submitted v arXiv. A of Masch 2004, the combised snapahe Ton the computer sebence ad electineal engineeriing
citegories wcludes approgimately G100k papers, Howewer, since these cabegones overlap and cover mopics beyond
telecommusications, tarreted Gliering is required b extract relevant materizl. To address this, the curation process
of Tele-Dhata employs o lingeage model-based Rltering approach. Specifically, the Maxtrdl 8x-7B-Instroct® model
was used, providing it with cach paper’s absiract 1o asgess its relevance tothe relecommimicatons and networking
dormain. The model was prompted o give o baoary Yes or Mo response on whether the paper s relevaint. The loging
af the "Yes" and Mo® iokens were then utilized 1w classify the paper acoording ly,

Cleaning. After curmion, a thorough cleaning process was applied to the papers, invalving: (1 removal of com-
menta, | 2) fatiening of LaTeX sources, (3) substifutkon of uwser-defined macros with standard LaTe X commiands,
4 elimimation of LaTeX pauve commands, asd (51 standardization of ciiation formacs and removal of markup

®ips: hug ginglace. coddmasesdd b bdaanuk Tele- Duta
Thllp-:n Whup pingliee, onfoolled o' AN M satoukfele- lms-Glded Talic De T2 b TRix

*hrtpe: S huggingface. cofnistralai/Hixtrel=AxT8= Instroct=v0. 1
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changes, Figores and tables were excluded 1o focus on inline text and equations. Further devals on this process,
abisng wath an evalustion of the cleaning methods, ere ovalable in | 154],

Standards

Curatlon. Standards are essential in tebecommunscations. ensuring teroperzhility across technologies Trom onal-
uple vendoss, These stamdands are developed and maintained by recognized arganizations such as 3GPP, IEEE
and T Given dts open-access nature, Tele-Data Secuses on incorpocating 3GPP documents, The latest specifi-
cations for each standard in every senes were retrieved through the 3GPP FTP portal”. resulting in o collection of
approximately 2.8k decuiments,

Cleaning. Afver curation, the standards documients underwent a detailed cleaning process, Non-essential sections,
such @ related works and appendices, were removed, and figures and fables were excluded to priositize isline
ext and equations. Ove notable challenge i that equationg by doc files are encoded 0 XML, unlike the LaTeX
frormmat used o arXiy papers. To sbdress this, all doe files were converted 1o docx format, followed by the wse of
docx?iex" to convernt tem into LaTeX format, This conversion ensures consistent formatting of eguations across
document types. sreamlining the training process. Finally, the same cleaning pipcling applicd to arXiv papers was
s on the comverted stamdards LaTeX Ales. ensurmg uniform ¢leashiness and coberence throwg bimst (e datased

Wikipedia

Wikspedia serves ag another valuable source of lelecommunicanons matenal, offering aticles that cover both
technical and domain-specific content. To curate relevant coment, the English subset of the Wikipedia dataset'!.
contammiing G4 million samples, was ubilezed, Giveo the computational cost of applyving puse LLM-based filiering
1o sl a large corpus, b two-steg procéss was employed:

I. Keyword Filterimg: A list of 1000 wlecom-related keywonds, such as telecommunications, Base stanon.
Wi-Fi, and 30, was defined. Amicles contunmg ainy of these kevwords were Aaggped for further evaluation
This step pediced the dataset from 6.4 million to approximately 7 anicles.

[

LLM-based Content Evaluwation: Inthe second step, the Rageed antickes were evaluated vsing the Mivieal
Bx-TB-Instruct model. The firs 10,000 characters of cach anicke were provided w the model, which was
prompied te return a Yes or Mo respotise based on the aiicle’s relevance and technical content. This fillering
crswres the exclusion of non-techrical content, such ag anicles focusing on the history of telecom operators.

Follewing thag poocess, 1935k anicles with technically relevant elecommunications content were curated from
Wikipedia,

Wehsites

The final seurce of eleonmmunications matenal s the Conmen Craw] dataser. a web archive containing data
froom across the intermet. To avedd fsswes with duplicates, non-English content. and offensive material in the raw
dumges, the refined wieb dataset| 155] was used. Thes curated version of Comenon Crawl includes approximagely |
bilbien rows across 28 weeabyies of data.

To further sefine the dotasel, Wikipedia anticles were filiered out 10 avoid redundancy. The same two-step peo-
ciess used for Wikipedia amicles was applied 1o exiract wlecommunications-related content fiom the refined web
dataser Additieaally. content from well-known welecommnications blogs. such ns ShareTechMote, wis inogpo-

“hitpe if fuww, 3gpp. oTE S 5pS
'“htt-pu iFfpithub  condtTanepecs fdocaZtex
Hhrtps: /foggingfaca. co/dataaets/vikisedia/vikipadis
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rated by enhance relevance.. The fnal collection contams content o 740k website links, providing extensive
coverage of elecommunications nformation available on the web, Examples of Tele-Dista ase provided below.
The |...] svmbol is insered below o seduce the size of the srings.

Iy arxiy 143526

Category: arxiy

Contend: Flexible-Position MIMO for Wireless Commaunications: Fundamewtals, Challenges. and Foture Direc-
fiobstn b n Abstract i '\ n The Aexible-position maltiple-input muluple-owtput (IFLP-MIMO) such as Auid anien-
nas amd movable antenniis, 15 a promasing iechnobogy for futune wireless communications |... |

Metadata:

Arxiv id: 230814578

Titke: Flexible-Position MIMO for Winckess Communications: Fusdamentals] Challenges, and Futwre Dirsctions
Abstract: The Aexible-position multiple-inpor multple-ompar (FLP-MIMO0. sech as ||

I sandard 2412

Category: standaid

Content: 3rd Generatbon Parinership Project: ' n Technieal Specafication Group Core Network and Termanls:' i
Inveraorking berween the Public Land Mobile Mepwork {PFLMN Y, n supporting packer based services with', o Wire-
less Local Area Network (WLAN) Access and'n Packer Data Nemworks (PDNY, o {Release: [2)) n Foseword'n This
Techmical Specification (TS) has been produced ||

Metadata:

Serbes: 24

Belease: 12

File_mamne: 20061 -cd)

Iy wiki 5438

Category: wikl

Content: A backbone or core netwisrk is-a part of o competer retwork which imerconnects potworks, providing a
path For the exchange of information bevween different LANs or subnetwoerks. A backbone can e wogether divegse
nebwiorks ...

Metadata:

Title: Backboue network

Uel: hitps:fenwikipedivoigiwikifBac kbone % 20network

I web 71187

Category: weh

Content:]. Ficld of the Invenuonn The present mvention relates’ generally w methods of addressing data packeis
destined 1o o oot fn & communications pevaork, and paniealarly w g methed of defining an addieas for a mobile
tereminalhess |

Metadata:

Uz hoepefwroow. goog le comdpatentaUS6 L4 TORG

532 Dmataset for Metwork OptimEzation

Dratn models. and computing power form the theee pillars of the big model e In the weleocom held, domain-
specific data s especially crucial. However, due o the specsalized and miche naore of research o thas area,
telecom studies cavely release their data. Whether dealing with professional numencal datasets or domain-specific
knewledge bases, there is signficant room for improvement 1o the efficiency and availabiliey of data collectaon

and preparation within the iebecom commumity.

T3



It the context of large models, [149] introduced the first foundation model in the welecom field. [156, 157) pi-
oneered real-world deployvment in mobibe nerworks o suppon downstream wsks, and [ 140, 144] were the first
o create amd reledee stamdard natural language daiasers. The ‘momentwmn generated by these effans in model
implementation and data constreetion is worth further pronotion_

For task-specific models and applications, the diversity and complexity of datasets have bcreased significantly.
However. of the telecom comimumnity aims oo keep pace with sdvancemenis in data mining and AL it is crecial o
accumulate data for specialized tasks publicly. To conteibaic to thas effost, i | [38] we open-sourced the MEMLU
datasel and s acoompanying wsals for the multl-server muold-wser compaiation affoading problem | 159). This
dataset wnclodes solved instances m the form ol graph dat struetures, where the inpat consists of edge featnes
representing offtoading cost informatian from users W their associated servers, and pode features representing de-
vice types, The output compeises edge selectbons, indicating offloading decisions, and edge weights, repeosenting
ihe wllocation raio of computing resobroes. The nstance graghs in this dataser range from 9 w 38 podes. offering
tems of thousands of examples,
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Figure 21 Network opnmization peoblem dac peaduction tool based on MOME.

A shown e Figo 21 our wol can generate data with differcnn objective functionsg or scales ag meeded.  We
have open-sourced the data generation tool, which 15 based o the minimam-cost maximen-Aow (MCME} algo-
rithoe The approsch inwolves vsing the petwork oplimization inpats as aifnbaies and varables on a virfual graph,
thereby comatractng a Ao metwork that traksforms the ongana optimization obective ioto o manbmum Ao cost
problem, . This allows for the direct applicanoen of vanous petwork fow algorithisg, ek as MOME This (ool
cifictently provides optimal solutions for single-objective problems and sub-opumal sodatbons for moali-objecive
problems, With-sufficient time, i can alsq-achiewve optimal solutions for mult-ohjective problems, The algo-
sithm has polynomidl tose and space complexity. For graph optmization problems with up to LOOD nodes. an
iT-1 3N can compue & solution in under | second, with lasger scales sill maintainng acceptable tne perfor-
mance. By switching berwesn different basic netwark Aow algorithins, tse wol can be adapted to label most graph
aptamizanion problems, which encormpass a wide range of retwork ppuniezaton ks,

Thas dataset ared wodset will sesve as a valuable rescurce for advancing the developmsint of task-specific datasers
in ebecommunecations. By providing anopep-souros solution, we aim ioeencousage further research and collaba-
ratbon, accelerating progress in petwork optimization and related areas.
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54 Ray Tracing and 6G-Specific Datasets

Ray wacing and &G-specific datasets are critical for bridging the gap between theoretical rescarch amd redl-waorkd
implementation in nexi-geneeation wireless conumunication systems. Unlike pretrining or tsk-specific datasets
which Tocus on elecom knowlbedge or souciared problem-solving, these datasets ernphasize bigh-fdelity simula-
twons and eeal-workd scenamos to capure the complegities of &0 coviromments, including advanced propagation
phepmmets and oetwork dypwmnics. Theie meegration with LEM: enables AL svdterne o leverage precide dista
for tasks like channel modeling, beam tracking, amd intelligent negwork planning. For instance, datasets such o4
Stonn DeepMIMO, and WAIR-D provide detabed ray traciing ourputs that simulace electromagnetic save prop-
agatbon in diverse environnsents, supporting applications like CS1 prediction and RIS optimization. Addivonally.
the Dratased for Mevaork Al ivrodiesces. high-sesolution, real-worbd data desigied For resowrce sehweduling and dy-
narmie system management w60 networks, Together, these datasers serve as essential resources for fraining Al
il els o achkicve robust, adaptive, aod melligent performance i nesi-genesatban Conrmunication rerwoiks.

541  Ravtracing Ivataset

Ray wacing datasets dre a focal pobit in botl sczdemia and induestry, aiming wo simulate the progagation of elec-
iremagnetic waves in specific scenarios o obtin eleciromagnetic properties and channel characteristics at every
pemnk an space as close to the neal world oz possible, These datasets enable data analysis. model mraining, algorithm
validation, and performance prediction.

Current charmel models can be booadly categonized into three types: statistical models, peometry-hased stochastc
mndels, and deterministic models: . Ray wacing datasets employ deterministe models, which are built based on
clecteomagnetic wave propagation theory and sctwal eovironiwestal measdrements. For a given scenano—whether
indoos or ourdoor—along with the base stanon locatien and asienng conigueations, dewerminisane models leverage
ray bracing techinguees o simlste channel chasacierstics, Thds imodves accounting for the reflection. refracton,
and seabiering of each ray puth wscquire precise mlormation, sech as angle. delay, and polarization, at specific lo-
cations, Because dewerminisic models-can accurately. simulate the propagation characteristics of electrmagnetic
wiaves ina given enviconmend, they enable precise predictions of channel behavioe. As a resalt, fay trecing-based
data generation has becoime the moinstream approach for creatng inelligent communication datasets today.

Ry wacing datasers play a coucial role in the development and deplovment of large models for compmmmication
systems. Large models, such as generative models and deep newral petworks, requice extenssve and high-gualicy
data for effective traning. Bav wacing dstasets, with thebr deterministie modeling capabilities, provide precise
vlectromagsenc wnd chanpel characteristics, making them ideal for powering Lirge models in compmnicitiom
tasks.

These datasets enable Al madels o learm complex channel behavioes, such as patls bose, mulipatl effecis, aml
beamiforming patierms, with high aceuracy. By icorporating ray tracing data, these mwsdels can achieve enhapced
performance in ks like channel soate information (CS1 predietion, beamn wacking [ 160]. aod intelligent reflect-
ing surface (RIS) optimizason [161. [62]). Funhermore, ray tracing datasets allow lagge models 10 generalize
across various scenarios, mcloding isdoor asd outdoor emvirenments, differént antenna configurations, and dy-
narnic maobilicy patiems, ensuring robast and adapive commumication stralegies,

The synergy between ray wacing dacasets apd large models wor only enhances the precision of communication
simukatiens but alse accelerates inndvations in next-generation wircless networks, such as 60 This connection
SrpEwers . comminnkcation sysenss woevolve woward real-time, dats-deiven amelligence, with amproved signal
quality, resource management, and energy efficiency.
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The Stomia dalaset gencration appioach combines classical scene reconstuction awd (ay wacing.

S54.0.1 L Sceme Reconstruction  The construction of Shonng seenanos ig canacd out in Blesder, Inthe scene
reconsiriction phase, we fivst obtain & Google Maps APL Key and select o specific arsa iy OpenStreetdapdO5M)
ax shown in Fig: 220 This generates the basic LoD oeometry of the binldings in thet region as shown in Fig. 23
Then, in Blender, vanous mategials are assigined o the building serfaces, characterized by predehned dicleciric
comstants and magnetic penpeabilities. - The sceme s exponed to an XML Ale wsing the Misuba plugin. Using
Python and Mitsuhi the OptiX ray tacing core on the GPU s utilized, enabling GPU-accelened pasathel ray
tracing.

Figure 22 OSM selecied area

Figure 23: LoD scene constrection cxample

Ea12 X Ray Tracing Forray tracing, the reflection, relvection, scattering. and diffraction effects of elecitro-
magivelic waves o the au wre determined using geometric optics (G0 and uniform theory of diffraction (LT,
These cffects e corvelated with the material properties-of the durfaces iy contact with slectromagnetic waves.
and the elecoromagnetic field intensity & exch ping in the air is compltzd,

21 Geametrle Optics  Electromagnetic waves emitted from the wansmitter are spheccal waves radiating i
all direcivons o e soarce point. However, when the wavelength i relatively shom, the wivefrost of the
clectromagisetic waves can be approsimted locally as o plane wave. This allows the use of geometne opiics o
describe the feld srength at the receiver. Bay tracing using geometnic opics mwolves the following sweps:

* Finding possible propagation rays: According o Snell's lew of reflecton amd refraction, all potential
qay paths between the tmnsmitter and recever are ientified, This step is theosetcally sorvighiforward but
computationally imepsive, pecessitating efficient ray tracing metads. To reduce computational effert and
improve efficiency, only the stronsest cavs (with the least member of reflections aimd refractonspare typleally
colgidered,

= Calculating Snell reflection and transmissben eoefficlents:  Ascaming the clectiremagnetic waves ane
plene waves, the reflecien and wansmession cogfficiems are compared for cach refection and refracton
peant. A Eey constrasat is that the wavelength of the emitted eleciromagnetie wave must be significantly

smialler than the distunce berween the first refectbon point wnd the ransnuines.

= Calcolating wavelvont corvature: For cach ray, the amphiode of the electromagnetic wave s corrected

| o A\

based o the curvatore of the wavelront at the boundary. The curvatuee of the bousdary st B of the same

oader of magiiiode as the wavelengih of the electromiapnetic waves.
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= Vector summation: The anplitudes and phases of all rey paths ane samesed vectocially.

Apcording b geomelrie eptics, the Aeld serength ur the receiver i edpiessed o)
M ) iy
E = Egge ™ 4 3 REA M5 4+ ) TE A e~ Mim
=] =1

where & and N, denote the todal nomber of reflected and refracied rays. respectively ) r, i the propagstion distance
af the w-th ray, & represents thae wave numibes of the -th ray in the mediom: A, s e propagation Tacior of the ¢-th
ray, detenmined by the material properties of the reflecting and refracting media; and E, | are the vai Deld arength
vectors at eeflection and Fefroction points, respectively.

Adthough geormetrc optics has eertuin limacations. it effectvely sldvesses mnmenous challenges i high-frequency
commenication, such as antenna and wave propagation, aceurately describing the feld strengih an the receiver.

2.2 Uniform Theory of Diffractlon  Geometnic optics only considess dirset, refected. and refracted electno-
magetic waves, failing w explam diffraction inve shadow regions. When rays encounter rough surfaces, edges.
of curved surfaces, they cannot penctrate shadow zones, mnd geomcine optics predicts zero feld strength i these
areas. which 18 Inconsistent with real-world observations. To resolve the discontinuity of the electromagnetic field
in geometric epiacs, the uniferm theory of difftaction (UTD) is inrodeced o cormect the feld strength in shadow
TEZHAINE,

Diffraction ks catégoized based on the geometic characteristios of the diffracting surfoce:
i Edge Diffraction

Edge diffraction occwrs when rays encounter the edge of an obpect in a homogensous medivm. Unlike reflection,
where a sigle incident ray produces g sangle reflected ray, an infinite nuimber of diffracted mys ae gencrated
frotn & single incident ray ot the cdge. These vays lie on o cone wath the diffraction poing o the apes. The coee’s
semd-apex angle eguals the angle between the inciéent ray and the edze &, When the mncident rav is perpendictlar
1 the edge {8, = x/2). te cone degenrerates into a planar disk perpendicalar to the edge.

The diffraceed field ot diffraction pdne is given by
Eqg=DEAy

where £ s the diffraction coeficient matrix containing vermcal amd herizoatal informateon: £ represents the
incident feld mateix and Ay = the spreading factor dependent on the distance between the spurce and the flebd
i and the curvature of the edge.

he Apex Diffraction

Apex diffraction tocuss when ravs encounter the apex of an object, Diffracied ravs emanate in all directions from
the ape. forming spherical wavefeonts. Thege fields atenoate fager than edge diffroction Gelds. wnd ther general
asympoiie representation i3 often difficule. In most cases, apex diffraction Helds are neglected.

Dreeph IV

Remcom's Wircless Insite is an RF propagation modeling softwase that integrates sarellite imagery and CAD
processing o deliver advanced radio wave propagation meodels. As a commerncial product. it offers 3D ray racing.
rayv-based Tast metheds, amd conpirical models wanalyvze radio wave propagation and wireless communicat
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Figure 24: Example of DeepMIMO Curdoor Scenano
Figure 25 Example of DeepMIMO Indoor Scenario

Tem

|

Figure 2T: Example of a 20 wodel of a city i Degp-
Figure 26 Example of a DeepMIMO City Overview MIMO

systems b specific leations. With comprelensive modeling. simulaton. and post-processing functionalities.
Wircless lisite efficienily amd accurately predicis the propagation chamctienstics of clecromagisetis waves amd
commtmcation channels in complex environments, including urban, indeas, rural, and mixed-paih scenarios.
crabling Al models 1o be rowed and esed onowore realistic scenanos | 163,

The DeepMIMO dataser [ 144] leverages Wireless Insie’s capabilites in map generation by creating scemres in the
Following formars:. Fig. 24 and Fig. 23 illusrace the outdoor and indoor scenarios supported by DeepbIMVC,
respectively. Meanwhile, Fig. 26 awd Fig. 27 shew Mew York's revmole sensing imagery amd the cosrespondiing
generated 30 scene magp.

WAIR-I»

The Wireless Al Research Dataset (WATR-D | 165] 05 o versatile and user-friendly dataset that simalates realistic
crvirgimenls for o wide range of wirekess AL applications | 166, 167, 168, 1H3]. 1t encompasies a variety of ks,
including sensing tasks such as device localization and eoviFomment reconarectisn, MIMO @asks such as reflection
syatem modeling and beamformang, as well as PHY tasks ke CS1 feedback and chansel cstimation, The feawmines
are g follows.

o Realistiv: The dataset i3 balt on @ foundastion of realism, with D000 scenanios randomly selected from
actoal maps of over M) major cites worldwide. The butbding lavours are carefully desigived b mirsor real-
wirld enviromments, providing & mere aceurate sepresentation of the complexites of urban landscapes.

= Flexible: To cater 1o diverse research needs, the datoset offers a range of fexible features. mcloding:

T8
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Figure 28: Fay tracing example for the WAIR-D dataset

= Ray-tracing generated rays,-allowing wsees to simulate comples propagation cavimonmcats

= Custemizable communication parameters, enabling users 1o wilos the data o cheir specific research
reguirements

= [rata generation capabilives, providieg users with the Hexibality 1o create daora waibored 1o theer specific
wircless Al tasks

= Easy-ro-use: The dataser prontizes usability and provides a comprelensive set of wools to gel users staned
aquickly:

= Drata generation oode.: allowing users to caskly generste data for thedr research needs.
= [rata preprocessing code. streamblinme the dss preparation peeoess

= Bample task trunieg code, providing a starting poant fod users 1o develop and test their wireless AL
models

The ray tracing example for the WAIR-D dataser 15 shown in Fig. 25 Given tse positions of the base statwon
and the user, the wial member of rays can e determined. Rays of different colers sepresent different propagation

pratluz,

542  Datazet for Network Al

With the advent of the 60 era; the decp imegration of communication and Al technobogies has become a key
driving force for the developasent of wireless communication systems. In this process. data, as a core element.
15 critacal for enhincing Al models’ capabilities and expanding their applicaton potenteal. However, the lack of
high-quality public dsasets has limited funher research and develogment of AL models in the compmuemication
feld

To address this challenge, we leverage the imtelligent petwork open imnevation platform o develop a collection
af Al+60 datasets, These nclude Al air interface channel series dage, intelligent planning of anteanas and re-
configurable intelligeni surface (RES) for smart seapons, channel state wformation (OS50 compression feedback,
real-wiorld C51 measeremens, computational resource scheduling for network AL and wireless resource schedul-
ing in celb-free scenanios. These datasets abnwo assist global researchers in analyzing, explonng, and sddressing
challenges elaved to Merwork AL dhereby advancing amd inrovating communication echiologies. The restof this
subsection is a detailed introducion w hese datasets,

i
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Al alr Interface chanmel dataset

This dutsset as desigied for 60 Al dir interface chanie] simulagons, supporting sdvanced festuges sach as large-
scale MIMO near-field commupication and high-specd mobilivy, [t offers flexible configurstions across muliple
regiais, antennas, frequency bunds, and compaemeation links, catenng o diverse research reguiremients.

Currently, the datiset spans the 3.5 GHze, 28 GHz. und 60 GHz feequency bands, facililating investigations inbo sce-
naeos such as blockage, beamforming, and wplinkidownlink channel prediction. The datasers for these Brequency
bands can be sccessed viathe followog URLs:

= 1.5 GHe Daraset
« 2 GHz Dataser
= G GHz Datasen

The difa s generated wing higl-peecisin ray-tracing simielations of outdoor urban sireel covirenmeits, specil-
cilly mony-line-of-sight (MLOST soenanes with muliiple wwer regrons, Witlin cach region, uder poinis ane posi-
toned at itervials of 025 oo 0.5 metees, covering 12 user regioans and encompassing over RGO user pomts.
B siations (BSsp are sraedgacally deploved along the seeets, witl eight BS< configured diffesently 1o ensuie
full seene coverage. The distrbution of BSs and user regions. aleng with the detailed parameter configurations of
B5s and vser termanals, are ustrated i Fig 29 and Table 9, respectively.

Figwre 20 The distwibution of BSs aml user regions.

These datasers include two peimary types oF data generaed through high-precision cay-wacing simalation plat-
forrms. The dats contains ceitical parameters such as delay, borgoneal and vertical deparfuce angles, hogizonial
and vertical arrival angles, phase. power, and patly loss, wetaling billions of samples. The simulation scenarios ane
madeled on outdoor street environments. ineorpogating comion scattererd like baildings and vegetation o closely
approsimrate peal-world conditions. Muluple BSs with visrving antéming aimay confi gusations snd user areas witl a
high density of nser podnts ensure the datasel s diverse and comprehensive, capable of supporting a wide range of
researcly effons.

Antennas and RIS intelligent planning dataset for smarl seaparts

This cliaset s specifically desizied w sbiless the challenges of wireless nepwork planning in seaporn envinen-
msitts. Bt s Based on real-woeld seaport scenasios and utilizes digital twin technodogy to constmct g high-precisis
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Table % Dretaibed parameter configurations of BS and wser terminuds,

{a) B% parameters

B ID  Coorliale Amnbenna

TXI1 1625, 233,72, 2004k 43 w2

TXZ (A=h0l, 18655, 10,0111 Single amlenna

TX3 {2720, 1TA58, .06 Hxd=d

TX4 BIT15, 1 T3, 2NAKL w1

TXS {972, 116.2, 2K0R) Single umtean:

TXih (452,901 1605, 294) Fat w2

TXT (163 1R 558, 200460 4 wd x4

TXE 139371451, 19.92) o =d

(b} User terminal paranyeicrs.
i Height Column Bos Spacing Painls Amleana
EX1 1.5 il 15[ L5 15311 JAx2xl
EX2 1.5 L0 | | 259048 2w |x2
EX3 1.5 Bl 5 kS 15250 2=2=1
EX4 3 Bl SOHI {15 A5 Simgle antenna
EXS5 1.5 i1l g s 12129 Kingle onfenmna
EX4H 1.5 141 a4 s 132t Kingle oniennp
BX7T 1.5 k=1 4 L) 132%  Single undennn
EXH 1.5 kN | g s 11739 Single untennn
X 1.5 1t 19 k5 12129  Single andenna
EX]1O 1S 41 14 5 13269 Kinple andenna
EXID IS5 41 14 k5 13289 Kingle andenna
EX12 |5 il 14 5 11739 Single undenmna
Al
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mlel, The model enedampasses twin modeling of base stations, wincless channels. rminals, and services, while
alse icorperating RIS twin capabilives, lesuppoets network planeing and pecformance validation in dynamically
evolving seaport scenarios, The dataset includes cell and RIS planning resulis, coverage. and network performance
metrics, offering billioas of samples for resecarch and development parpeses. For detdiled infarmation about the
dataset, please visil: antennas and RIS intelligem planning dataset for smarl seaports,

Leveraging the multi-scenatio informuion of antennas and RIS o seaport envirenments, the dataset cisables Al-
diven predictive analvsis of vanous futwre scenanos, This facilitaes the preemptive selection of wireless netwoerk
clensent locations and parzmeler opbimezation, effectively reducing resoarce consumptien while eshancing key
network peiformance metrics.

In seaport scenarios. advanced wireless conumunication technologies enable semote intelligent operation of wi-
maniged container trucks, o cntical Teamre for building senn seaporis. These unmanned tucks have sinpgent
requirginents for petwork gualaty wlong their movement wrapectodics. Ensunng that the planned site bscations meet
the derands of complex seaport envisoninents—characterveed by dynamic changes in comainers. gantry ceanes,
and unmanned trucks—remains a significant challenge asd focus of petwork plonning.

This task constnects @ high-precision digital rwin capability for seaport environnents based on real-wiorld seapon
scenarios. The digital twin encompasses base stations. wireless channels, terminals. and services, and incorporates
RIS twin capabilities. These feamres suppont dynamic netwiak planning and pecformance validation for seapont
sepnanos. The task not ooly prosvades simulatbon capabaiifies for secaport commumications and validation of Al
mdels bt also makes & wealts of multidimensional dasesers available for vesearchers.

C81 compression feedback dataset

Iy 5 techacdogy, MIMOr eshances spectrum and energy efficiency by deploving large-scale antenna asrays at
hase statons. To fully cealize the potential performance gains of Lirge-scale MIMO, base stations fegnie aocuraie
dosnlink CEL for channel-adapisve transmission optimezations, such as precoding. Traditional compressed sens-
ing {8 mcthods rely beavily on peior assumpions shout channel strucoees. Howeves, the CS1 nsatrix i only
approxinmately sparse i e angle-delay doanain, snd vanations between adjacent elements are often correlated.
These methods necessitare comples priod assumpriens and souggle w gearantee relishle recovery performance,

To owercome these Lmiatons, scademia and indusiry bave temed o deep learing, keveraging s powerful opri-
muzation and fiving capabilities, By truining neural networks to kean chanse] stacture inforimation, deep leaming
provides superior reconstruction perlormance and enables rapad snd accurate CS1recovery Trom low-compression
feedback data. The €51 compression feedback dataset offers oML simulaton samples. feaminng channel mod-
cle for both LOS and MLOS scenariod. For more information. please visit: CS1 compression feedback dataser

This datadet combines simulated and real-world measurements o generate channel feauge matriv data It presents
sesearchers with the challenge of compressing usee-side channel featiire information. transmiting i theowgh the
channel, and recovering it at the recewver sade. The uliimare goal & 1o restore chanpel state snformation a3 aecu-
rately as pessible, minimzing lesaes. Exploning thes dataset provides researchers with valsable ools for optimiz-
ing channel-adaptive transmikszion technigues.

The primary objective of this dataset s o owtilize Al-deiven featwre esraction and informmateon compression feed-
back miechanisime. Al models we trained o compress channel mformaton from e wser side. The compressed
dati s wansmatted throwgh the channel and seconstructed at se receiver, ming 1o restore clannel state mfor-
mation with mnial loss usder predefised compression bit constraims. Ao smaller number of compressed bars
reduces trasmissien resource requirements bt may degrade recovery accuracy and feedhack perfrrmance. T
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address this, the dataset requiees model designs for two scenatios: feedback vectons oF 36 bis (Jow-bat feedback)
and 128 hies Thigh-bit feedback), The final peiformance evaluatbon is based on o weishied average of the scones
avross botll seenariod.

Keal-world CS1 measurements dataset

The diitaset wis meeticulously collected from real ferminal devices in commercial netwoek scenarios. The collec-
ok process focused primanty on outdoor open arcas, encompassing two masdes: free-space scemarios and call
scenanos. Thiz appeoach ensures that the dagset captures diverse communication charactenisncs wmder varving
conditions. To cnhance comprehensiveness and diver<ity, multiple tesd points were established, with rotation teats
condcred a1 four angles (F, 005 1BOY, 270 ar cach poant. This not only iweeases the dataset’s practcal uiliy
bait alse aligns o closely wath real-world commanication environinents,

Specibically, daa collection was conducied in autdoor open-aren (NLAOS | single-cell Axed-poin esis Tese pedals
were seloal [0-meter imervals, eesulting in 32 primary podnts,  Addinonally, nine extended points within a. |-
meter madivs of each prinry point were incloded. Parameter configucations reflect the actnial commercial network
seftings ad were obialred through termanad signaling collection, as detailed in Table 1. The tesis comprised tao
spenanos free-space scenarios (with ne uplink o downlink dsta transmission) and call scenarios (whene leomemals
condiecttd voice calls), using teodifferent models of real weominal devices.

The dataset comprises over TARE samples, incleding move than 3,700 emies from both free-space and call sce-
narios, formang a C8] messurement dataser. Thas dataser holds signihcant value for the communications feld.
hridging the oap between theoretical maodels and real-world scenarids that simalation wols offen canpot cover.
Tt odfers accurate and comprehendive data to suppornt rescarch in wireless communication, signal processing. and
COMIAMECALION Y500 G Eation,

The ngorows collection process and diverse charactenstics of the dataser peovide a solid foundateon for-as ap-
plication in the communicatbons domadn. 1L serves as g concrete reference for exploring and opumizing cormmu-
nication technelogics. For mose details, vasil the daaser st For mose aindormation, pléase visic meal-world C51
measuiements dataszes. The release of this dataset s poised o dive techonologieal progress and inmvation i the
communications feld, paving the way for te developament of fulure communicaton sysiems,

Computatbmal resource scheduling for network AT datased

[ 66 mobile infrasructre, the metwork evolves beyvend providing connectivity to offer distribaced comput-
ing services taklored 1w the demands of Al applications. Thesugh fexible and dynamic compatitional fesource
schaduling, the systern endured the efficient allocation of resourees. delivering ubiguitous, high-quality computing
services, The dataser for computational resource scheduling in petwork Al comprises 9 data types, with over
TN samiples in towal. Fer access o the datasen. please visit: computational resowrce scheduling for netwark
Al dataser

Wireless resource scheduling dataset for cell-free scenarios

With the rapid advascement of cell-froe o coherent transmission wechaologies. the amount of scheduling re-
spuirecs i wireless communkcation gystems has significantdy incrested. Teaditional greedy scheduling algorithms
face challenges an teems of maplementation - amd compistaiional complexity when dealing wath o large numibes
of ransmussion poants {TRPa) and wser combinations. Al wechnologies have demonsteated minesse potential in
decisin-ruaking and mapagement tasks by leaming rules 1o ouiput optimal sirategies. aligning closely with the
Fumsctiomal requirements of schedulers,
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Table 1 Actual nerwark parameter configusation..
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The wireless resource scheduling dataset for cell-free scenanos ineledes 15000 samples. Each sample containg
the following features: the current channel characteristics of 120 nsers, including PMI and chinnel gain values: the
predicted chanme] characieristics (FML and channel gain valuesy ar the scheduling time (5 ms latery, and historical
seleduling rates. Foracoess tothe datased. please visit wireless vesource scheduling dataset for cell-free scenarios.
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EVALUATION & BENCHMARKING
OF LARGE TELECOM MODELS



6 Evaluation & Benchmarking of Large Telecom Models

To hariess the full potential of LTMs, it is imperative to establish robust guidelines and frameworks for their evil-
wation and benchiwarking. This chapter addonesses the need for systenatic assessmnent methods talored specifically
for the tebeo domain. As we look twoward the advent of 60, which is expecied to be Al-native, we will inereasangly
rely en Al Consequently, we anteipate the deplovment of a diverse array of models. cacly tailored 1o distinet
agpects of the indusiry.

This is particulorly the cass for emerging Generative Al models; especially Large Language Models. Despite their
peenutial, careent stdte-of-the-an models bke GPT- ercounter signifcant challenges in the welecom donain. Fer
instince, GPFT-4 fails alosost halfof the specification-related problems i Telecom Question Answering (TeleDnal
This sharfall delays the peaential deglovenent of such models i operationad necwaorks, highligheing the necessaty
for enhancing the whecom krowlodge conbedded wathin LMz,

Avsowe are already witnessing signifcant commatment and B&D effores in developing weleo-specific GonAl models.
it i3 essential w develop models that can be broadly categonzed imo several tvpes. each serving unigque e posas
and addressing specific chullenges within the telecom dormam. Such domain-specific LThs are desigied o handle
specialized tasks within the telecom secior, leveraging domain-specific knowledge o enhance performance amd
ACCIETACY.

This chapees begins with an overview of tee key benchmarking metrics that are pertinent o TTMY 0 See. 6.1,
Sec. 2 describes well-known evalwation frameworks developed by the Al commiunity o test LLM capabalines.
Sec. &3 present LM requiremients ad capabilities to realize the mast promiising use cases for GenAl in welecom
networks. Sec 6d explores the role of digital twans o the evaluation of LTMs. Sec, 6.3 and Sec. d.6 discuss
the performance of LLMs on selecom knowledge and 1elecom math madelling, sespectively. Sec. 6.7 present
the evaluatbon resulis of o prompting solutions for LLM-based automation of generating comimit messape in 50
networks. Finally, Sec. 6.8 describes the evaluanen methodobogy built o assess twe LLMs developed by MBOx
and the assacisted resulis,

6.1 Overview of benchmarking metrics

Todday there are thiee main ways W0 dssess a GenAl model: human evaluation, using a secomd model as judge. o
ruiniting a benchmark vest waing well established meetres [ 170 I human evaluation. users inteeact with the LTM
across vareows domarns and real-workd wlecom scenanos. The LTM s owpan is then manvally scored based on
predefinsd evaliation roles, These scores are weaghted according o the impontarce of cach evaluation erterion,
and u final composive score s generted, Usiag oo Libelers w jodge tse GenAl ourputs is very thime-consumiing
and costly.  Alss, this approsch facks flexibility as when the model oF s task ane updited o new evalisation
procesa b pegquired.  Replacing the buman jodge with o GeoAl model i« promisieg ag it reduces the cost amd
e constraints of human evaluation [ 170]. By usiag avtomated tools woocall the LTM's interfece, results across
vartows domakns and evaluation tasks can be obtaired. A thisd-party model or wWsel, acting as the GenAl jidge, can
then compare the LTAM s outpus with reference datasens ioeocompute objective metrics by evaluanng the differences
rerween the LTM s predicieons and the geound uath. Howewer, the GenAl judge may not suspass human evalsation
in aceuracy and guabity. A possible approach to test the GonAl judge 35 1o create a small heman evalpotbon
dataset. which can test the aceuracy of the GenAl judge. Table | shows standisd benchimark tests foe LLMs,
i, GLUE (Geperal Language Understanding Evaloation ) SupeeGLUE. HellaSwag, TruthfulQA, and MMLLU
iMassive Multitask Languasge Understanding), These standard benchmarks typacally nse well-Koown evalisation
mietrics based on the evaluation sask. ez, securacy | 171 ) oe Fl-score | 172] for clasificaton tasks of gueestion-
answering tasks, and Bilingual Evaluation Understwdy {BLUE) [173]) or Recall-Oricuted Undersndy for Gistin
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Table 11: Standard benchmark test for LLMs

Henchmurk Explanitizn Mletrics Relerence URL
Geperal Lianguage Samndardized sel of Canrelation [175] [ 174
Understanding diverse Maiural coellicienis,
Evafuntiom (GLUE) Language Processing accuracy, and Fl
lasks Lo
SuperElLUE Mlore diftical Accuracy, exacl 1177 |17H]
limpuage malch, and F1 scone
unclerstanding wasks
with respect ti
GLUE
HellaSwag Benchmark for AcTuricy [179] | 154
Clmamanseise nafunl
language inderence
Truthful}As Benchmark of Human evalnalien 1121] | 152]
guesisms desapned
ciuse muitaive
[alzehoods
Meeasuring Massive Blulripleschosce Accuracy [183] [154]
Mubltstask Lunguage grestions refaled 1o
Understanding AV tasks including
FARIMLLT mathemalees, hislory,
COMmpaler schence.
itn] ey

Evitlwaticn (ROUGE) [ 174] for evaluating texi similaricy,

Ay LLMs continue oo play @ vital role in botls cesearch and incustral wse cases, thelr evaluation becomes increas-
ingly crivical. specially in specific domain sach as Telacoen, Thare are many choees LLMs botl from comimercial
and open-source models and it s imponant o uaderstand wlat models wochoose b serve an objoctive for a given
s case, IT needs w be evalusted systemancally. B is imporant practice oo measure LLMs performance on
benchmark datasets swith metrics that aee aligned with a given objective. Benchmarking LLM performance re-
quares creatron of evaluanon datasets - based on the specific domain and vse-cases. The indtial point can be usmg
apen sowrce datasets that i widely | Howeser, many of dse cases within telecommunication demain reguire do-
mzin adaganon and as resalt o eviduate tose use coses creating o domiain aisd ask specific datasets are must, The
imporran Fuctors 1o consider on creating domain/tisk relsted dataseis are ther coverage in terms of dsia sounces,
their modalities and variant tasks, Some of the challenges invalved in creating such a favorable datasets is creating
them manually with buman i the leop, which make time consuning and biased. Tn case of evaluating o task o
hand, we need o pay special anentbon o the metrics considered. These are many suggested metics ranging from
classical statistical merrics and model based mewrics. In order 1o have a comprehensive evaluation for each use
case, couple of memcs may be reguired and it b5 impomant e measene, Some of this meincs needs 10 be domain
adapted as well. Example of this ks a metric called BERTScore which measures cosine similanty of embeddings
af canshidate and relerence answers, L case of telecom texts i s miportant o wae embeddings 10 compate siomi-
Larety mserrics. Simalaely if LEM used as o judge ity vital v use telecom sdopied LM aware ax judge. The most
cormman wiy boevaluate the LM is the o measures if the output is sccurate, chear, and informative by checking
it the output from the language model includes any febricated or incosrect infarmsation (ke ballucination). We
should also conaider azpecty of the reode] outgpur such as determining if the language model's ouigal doesn't con-
tzin porentially harmful or offessive condent. Ancther critical mewie 15 functionalicy, which messures the nomber
of operational scenanos the LTM con support,. These metnes assess the model’s abihioy to handle vanous op
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ational contexts in different network domains, The more besiness seenarios the LTM can suppoit, the soonger
its knewledge base and generalization capabilities. A scoring mechanizm can be applied based on the percentage
af test cases the masdel successfully handies sathin these scenamos 10 evaloate its Turetonaliy, Additieaally, we
can apply classic statistical peerrics for evaluating machine beamning madels such as accuracy, precizion. recall and
F1 score. Other Matural Language programining (NLP) metrzcs could be applicd such as BLEL and ROUGE
spore. Another way o evaluste the output of the LLM model is-using stable and performant Langoage Models to
cornpate with the outpist of our madel. We cite the Ben-score amd GFT-5cose as shown in Figuee 33

Cllpesic Statistical Metrics Classic NLP Metrics Model Baved Metrics Frameworks

Accuracy BLEU Bert score HELM

Precisian ROUGE G-Ewval DeapEval

Recall tean Reciprocal Rank {MRR} GFT-score Promptiench

F1 seare._ Edit Destance... ML-Seore LM Evaluatbon Harmnass
BLELRT... LMSYS Chatbat Arena..

Figore 30: Meirics and frameworks for LTM evaluation.

I addition o te metrics presented in Figure 33, we can apply the Metrie for Evalustion of Translation with
Explicit ORdering {METEOR). METEOR iz a Hexible metric onginally created 1o evalaate mochine transkation
quality, but it can also be effectively wilized for assessing LLMs [183]0 It emphasizes: the alipnment betweei
reference and geneyated words, providing fexibility in masching svaonyms and grommatecal vanations. The
soorimg sy sbom ranges from O w1, where higher scores refbect betier alignment, In the context of LLM evaluastion,
METEOE can measure the ooherdnce of generated 1esponses and enable compansons across different models.
Although it provides o detailed evaluation, s complexity and reliznee on the reference corpus can pose challenges.
Owerall. METEOR is a valisable ol for conducting in-depth ascesments of Language models,

Lis el preocess of deploying LTM ovodels within network aperations, it s esseintial ooestablish a robest evalisation
framewor k (o comprehensively awess model pedformasce. Without an etfective evaluation mechonism, the model
may encounier iss0cs during real-workd applicatons, increasing operational risk. The evaluation of LTM can be
tiered across different stages of deployment, with varying sequirements for peeformance mewnics at esch stage:
pilot applicatien stage, eaxpanded application stage. amd Full applicanon stape. the details are ns follows,

(11 Pilot application stage: In the early stages of LTM deplovesent, the model i typically ested o pilet oper-
atices or for performug auxibiary tasks such as faeh digonose and pérformance oplimization, A conspre-
hensive evaluaton plan i3 necessgary 1 assess the model's accuracy, compuational efficiency, and securiny.
This cosures that the LTM can operste within a physical petwork amd supports s wransiton o the next
phase. Given the the relatively low risk and liited scope of application, the sccuracy reguinerents for
mindel predictions wie relatively lower, focusing owsie on aiding seework tasks and leaming from dati pat-
werps. Commputational efficiency may oot be ceitical wthis stage. bt ad dato volumses increase: tiis Decornes
a-mawe significant G Impoctantly, deploving the LT in a system introduces risks related o security,
stahility, and data priviecy. These most be carcfully evaluated o ensure a safe amd reliable deplvymeit.

(2} Expanded application’stage: Following a successful pilon the LTM's scope of use expands o higher-risk
aperationg. such as network secunty. Inthis stage, perforimance expectations. are elevated, and the model
faces increasimgly complex scenanos. The accuracy of s predictions becomes mvore crucial as the mvodel
supports decision-making and optinization effors, To meet operational needs, real-nme processing ad
reaponse capabiliney are requured, and medel explainabiliy becomses a key facoor for gaining st fon
nabwork operators. As the applicaion expasds, the evaluation becones more Agons 1o enswe the mode]
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paedictions and operatons align with the srowing cormplexily of tasks,

(3} Full application stage! Onee the ETM bas demensirated stable pecformancee ot larger scaled, itcan be de-
ploved across the entire network lifecyele, from planning and design o deployment, operations, and main-
tenance. Al this stage. the nsks associarsd with the LTM are highest, necessitating the stnctest evalpatian
mechanisme, The primary evaluation cratesia inclede the model’s ability to make highly accurate inferences.
strong penecalization across diverse. evelving scemarios. and capid updates to meet new requirements, As
the model handles: iepeasing amonnes of duts ond compugation. 15 performance must remain opumal de-
agule rosouice constramms. Degradateon in performance could lead o reduced processing speeds or excessive
mEmory consangpiion, Addidonally, the model muse be seslicnt o security duests and sysiem disruptions,
as any failure could severely impact the oetwork. Fumhermore, explainability becomes o criticad fequire-
mend, ensuring the LT provides clear, consistent, ond imerpretable decismns to network operatons,

6.2 Evaloation Frameworks

This stction presents & sumary of populas evaluation franweworks developed by the Al community 1o test LLM
caprahilatios,

621 HELM

The HELM also known as the Holistic Evaluation of Lapnguasge Models framesork b desigoed o provide a com-
preheisive assessment of LLMs by evaluating multiple dimsensions of their performance, incloding accuracy.
Fairmess, robustness, aml efficiency [186], HELM swus developped by the collabaration of Center for Research on
Fourdation Modelz {CREM), [nstitate for Human-Centered Anaficial Imefligence (HAT and Stanford Universioy.
The idea belibied HELM i o include moltiple memrics and not only centered in the accuracy of the nsoded. It
incorporates a diverse set.of metnes bo capiure varwows aspects of model bebhavior, such as lingelstie guality. fac-
1l accuracy. and ethicul considerations. By offering sandirdized benchmarks, HELM facilitates comparnsons
berween different models across various tasks and datasers: Additionalby. 1t emphasizes pser-centrie evialuation,
taking unie @ccount wser experience and satisfaction, The famework sncowiages itecative improveoscat, allowing
developers W refine models based on evaluation resulis.

Standierdizaion benchmarks dn the comext of s HELM (ramework for evalwating language modeks tvpecally in-

chisde aset of extablished datasets wnd 1asks that allow for consistent comparison across different models. Comimon
types of benchmarks iaclode:

= Natoral Language Understanding (NLUR GLUE and SaperGLUE.

= Natoral Language Generatbon (NLGE already addeessed in the previows Section, it includes the BLEL
aiwd ROUGE iatiees.

= Factual Consistency: datasers that assess the factual aocuracy of goserated ext swch as FEQA (Factual
Evaluation for Question Answenngl.

= Ethkcal and Fairness Metrkes: benchimarks that evaluate bias and fairness, sach as those assssing gended
or racial bias in generated ol

* Robusiness: tests that evaluare how well models perform wider adversaial conditions or with noisy bpits.

o User-Coentreic Metrbes: surveys of wser studies that googe uger satisfaction and exdpenence with mogdel
{FULHILS,
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.22 PromptBench

PromptBench was developed by researchers in academia and Microsoft Research [ 187] in 2024, It is o framewaork
designed 1w evaluaie the performanee of LLMs based on their responses to vasious prompts. I includes a diverse
areay of prompt tvpes that ws different capabilitees of LLMs, such as repsonimg, coeativity, and facteal accursey.
By providing a standasdized methadaology for asessing model pecformance across different tasks and datasets,
PromptBench ensures consistency in evaluation. The famework emphasizes eser-centoic evaluation, beonpe g
promgts that reflect real-world applications and user needs, This focus allings for comparative snalysis, enabling
the assessmenl of multiple models based on el respomses tothe same se1of prompts. Additionally, PrompgBench
ERCOUFAZEs T ative Improvement, promoting contineois refinement of models based on evalwation reselis amd
ey feedhack.

.23 LLN Evaluatbon Harmess

The LLM Evaluution Hamess i3 a framework desigied 1o feeilian the evaluation of LIMs weross vanoos Lasks
and benchmarks [188). was developed by resparchers ot Hugging Face and was introduced in 2022 Irs modular
design allows: for casy Inteeration of different evalustion metrics awd datasets, making 0 adapiable 1w & wide
range of rescarch needs. This flexibility ensures that researchers can tailor the evalustion process to suil specific
abjectives and contexis.

Ohive of e key' features of the LLM Evaluatien Harsess s its inchesion of standardized benchimarks, svhich ensure
conssient evaluation across different models. By supporiing a vanety of tasks, such oz texl gencoatbon, quesiion
answering, and summacization, the hamess enables comprelsensive assessments of model perdformance. 11 also
proyides varous metrics for evaluating aspects lke accuracy, fleency, and relevance, offéring a well-rounded Yiew
ol cach musde]’s capabilities.

Adbdinonally, the LM Evaloation Harmess s designed with o wser-Tnendly interface, making i sccoessible fog
bepth tesearchers snd developers.. This simplicity somplifies the evaluation process, allowosg wsers o focus o
anadyring results vather than navigsting complex tools. Overall, the LLM Evaliwation Himess serves as a valoable
resoures, offenng detuled insights ino mode] copabilities and Bmitation: while promasting best practices e moel
evaluation and development.

24 LMSYS Chathot arena

LMEYE Chatbed Arena s o plafenm where vou can engage with snd evaluate differem large lanpuage models.
Yo cdn pose guestions of provide peompts, and ther compare the resporses from varous nssdels sede-hy-side
[1ED]. This allovws wou e get a sense of their strengihs, weaknesses, and overall capabilities. Mote that LMSYS
chatbot s ased o s Chatbots based o LLMs with prompting rechaigue,

025 deepval

DreepWal = a o] developed by Mierosofi that focuses on cvaluating and analyzing the safety and seliabality of
LLMs [ 1) It uses a technique called seede-evalivenion which leverages LEMs themselves to agsess the quality
and potential basms of other LM outpns,

6.3 Capabilities and Requirements of Large Language Models applied to the Telecom
domain

Telecom use cases have diverse and complex peeds spanning from energy consumptivn to knowledge of standard
documents, which makes challenging for sdentifying the right model o be used for each specific tebecom we ca

gl



Dt this section, the requirements and capabilities @ realize the most promising use caes for Gendd in welecom
nerworks are iirodisced,

6,51 Capabilities of Large Language Models applied to the Telecom domaln

The following cagabilitics allow o realize the st promizing dse cases for LLMs o elecom networks.

AL Seftware developmient L1 Ms shoald wiibe, optimize and osoaantiin sofiveere code, based on patucal
language descnplivas, helping developess rapldly prototype o implemennt solutions. LLMs should also sutomate
tasks sich as debugping, refactoring, and providing suggestiens for peeformance improvements. LEMs shoald be
alsa capable of generating regular expressions (regex), belping users coeate camplex pattern-matching neles from
natiral langeage descraplions.

6.5.1.2 Complance with eotput foemat  LEMs should generate content, whether code, ez, o siruciured
data, that adheres to specific Formsting standards, conventions, of emplates indicaed by the user.

6513 Supports structured data as input LEM: shold B able 1 process, interpret. and fransformm slre-
mred formats like 50N, Extensible Markup Language (XML), Comma-Separated Values (CEV), and database
tshles. By understanding the relatonshaps withine stneciured dica, LLMs can perform tasks sech @s daga extraction,
transformation, valudatbon, and even syathesis of new structured data

6304 Mlathematical and logical reasoning  LLMs should be abbe oo eealize matbsematieal and bogical rea-
aoming. allowing it to perform probdem-solving, caleulaticons, and algorithmie thinking.

6.5.1.5  Tool calling  L1Mx should have tonl invocation capabilities. enablisg o to automomoersdy interact with
variows software tools, Application Programming laerfaces (AP and libracies based on namieal language in-
structions. By recognizing wser intent, LLM con tngger specific actions—Ilike fetching data, performing caleola-
nons, or aubomating tisks—terough coteimial ool without fequining direct manud ingat.

w32  Reguirements of Large Language Models applied to the Telecwmn domain

Telecom operators operate in a consumei=dnyen, cnergy-intensive cvironment. For LM 10 be sadely adopied.
the telecor industry musy conswder their cosc. energy consumgaaon. and safery impacts alongside wechnical evalu-
ations discussed 10 the previous section.

321 Emergy Consumption LLMs demund substinal energy resources, especially during infereince, which
aecues contieously n telecom apphicaticns ke coustomer serviee, Restarch indicates that inference consuines
significantly maore energy than training, a3 it muns i eeal-tee amd seales with weer dermand [ 1911 For telecoi
QTS pimming woopimize energy use, efficient benchmarkang shounbd congedes the model’s architectune, deploy-
mEikl conhguration, and optimazations such & bawching and parallel processang | 192]. Becent stadies reveal thar
hybrid GPU-CPU configurations can reduce energy wse by wp be 7.53%, underscoring the impomance of asdaptive
infrastiuciune design | 193], Ahlsaigh energy consumpiion isaften weeondary to perfonnance i evalustions, there
15 4 growing shift toward prioritzing energy efficiency to wlign with indusiry sustanability goals and redisce oper-
atisnal costs [ 194], By implementing encrgy-aware strategles and infrastructure adaptations, tekecom companics
can balabice real-tiose performance with energy demands. ulimately sapparting a more sustzinable Al deployment
slrabegy.
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6522 Safety Flest Wikl tebecoms manpging vast amounts of sensifive data, robust safery benchmarking is
exsential o mainiain complizeee and wphold costomer st LLMs st be rigoroasly tesied For their hamdling of
personally identifable information (P, financial data, and potenteal safery risks. Frameworks like SafeyBench
and TRUSTLLM provide comprehensive bepchmarks to evaluate privacy, bias, and response appropriatencss.
cpsurikg that LEMs align with telecon’s high standards for data security and ethical AT usage [ 195, 196], Mean-
wihile, ok lke WALLEDEVAL apply mution-based tes1ing 1o agsess model consistency acinss vaned cesiomer
interactions, simalating diverse scenanos o anoover response deviatbons and potential valperobilises [197).

Adddinonally, welecom-specific red-leaming exercises ane msrenental in adentifying indssury-specific rlsks. For ex-
amsple, The Global Tebeo alliance’s Telcol LM ¢a joint venture of five telecom's operstors, SK Telecom, Deutsche
Telekom, e Group, Singiel and Softhank ) incorporated reul-time detection Blters, prompt engineering. and ii-
crative red-teaming practices o enhasce robustness, effectively safeguarding LLMs agasist sdversanal inpaits m
high-siakes customer support envieenments | 198). These targeted measures help ensure thar LLMs can respaon-
sibly manage sensitive wlecom data and provide accurate. consistend suppait, reinforcing both operational safety
and custemer confidepee,

6.4 Digital Twins for evaluation of LTMs

Drigiral twins act a5 sandboxes that sccurately capiure the features and propenies of cellular networks [ 1%, They
cun geproduce o variety of chaenel conditions in ceal tme, seale wea lacge number of podes sed ron the cellular
stwck on teal hardware: Such platfenms include the Keysight Propsmmn cliasnne] emolator | 3043 and Colosseuim
[201, W12, 203], the world s Largest wireless network emulator with handware in the loop,

Dis thee vision of 60 amd beyond, LTMs have been identifed as saitable tools 1o convert high-level intents from
eperaters ints contrel policies amd reconfigucation actions that updaze te retwork configuration w match inents.
While this will nndeniably streamline network provisioning, osonitoring and control, the concern is thart policies
generated by ETMs might be inaccurate or inefficizol. This becomes edpocilly peoblematic m the case where
the contmol policies generated by the LTMs (o8, staning fromn high-level ingents expaessed vin namral language
of high-lovel configurntion fles ) are nod optimal andior could couse Impeoper configorations that micht reswll in
perfermance degradation and even gutages,

Iy this context, it s inportant o provide LTMs developers with o development and testing platform that can
accundely replicale BF and pevwork comdinons, while offering a sandbos cavieenment thal prevens wrong contool
pelicies froan affecting user peiformance.

Drigival pwins a versatile and vobuast framework for evaluating and beachmacking LTMs especially in the aforemen-
tioned cases. Indeed. the deployment of digital twins in this context enables s comprehensive, nsk-free envin-
ment for testing and optimizang these LTMs in a repentable way that not only allows o dentify issues, but also
o benchmiark different LTMs againat the same network conditions and configurations. This appooach of offline
trabming &nd resting of ALML models carrently is the consensus the O-BAMN alliznce has agreed upon as e best
practce [Mu], Hence, digital twins for LTM benchmarkings are o key enabler for O-BEAaM compliant LThs,

T the Fellowing, we identify thres dse cases that would rot oaly bepefit from digital twins, bat also requice theis
use before deploving the LTM™ on production networks.

Padicy Deployment and Effectiveness One of the pomary applications of LTM: in telecommunications i3 genee-
ating policies and nerwork configuratons. Dhgieal twins allow ws o create 2 vinand replica of one or msere cellular
network deplovments where these policies can be implermented and evaloated against a set of targer KPMs. By
simulating vanous petwork conditions. 1wpelogies. taffic profiles and user profiles, we can assess how well
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Table 12: Mustration of Mistal Th, Mixtal {(MoE) GPT-3.5, GPT-4, and active prolessionals scouracy (5 ) acrosy
the varipus TeleQnA catepodies.

LTM-generated policies perform. This iscludes eviluating theie mmpact on network efficiency, reliability, and over-
all performance. The digital vwin enables contimumis monitoring and provides detailed feedback. alliowing us o
refine the LTMs" policy generation algovithng wo ensuge they deliver optimal pecformance in real-waorld scenarios.
Somse wiorks have alfesdy been done for extensively evabmatieg policy optamiziion algosithms en Colosscum, fio
problems such as alicing [205] and specomunm eficieney L2060 We argue the srchitecmse demonstrated in thase
wiprks could pave the way o evaleating LTM policies on such problems.

Misconfiguration Detection and Correction LTMs can also be used for identfying masconfigueratons and is-
sues 0 telecom networks thanks to thelr abalitg o process lorge log Gles and generate summaries that kighlight
crpors and warnings that could poant st dentifying misconfigurations. By leveraging diglial owing, we can creste
coatrolled enviecnments where we nirodisce misconfigurations mtentioally fo generaie testing soemarios as well
ay labeled waindng datnsets. Then, we can use the ETM = ability to dedect these isges o paocess log fles asd
loak for errors and misconfigaratiens. Onee identified, the LTM can peopose corrective actions. which can be
implemented and tested by the digial vwin. This process ensuges that the recommended fxes we efféctive and do
e nadyertently introduce pew problems. Tnothis way, we can geperute & closed-loop testing process where the
dhigatal twin facilitaies the maining and esting of LTMs capable of swomatically idemtifying and commecting any
improger network configuration.

Performance Testing of Intent-hased MNetwork Configurations Another critical application of LTM: 8 recon-
figuring networks hased on speciiic inlents, sucl as optimizing for higher throughpo or lower laency, Digital
twing provide an ideal sandbos for testing the ahility of the LTM in generating network configurtions thal meet
ineeaus but are gencial and vary depending on the specific network deplovment, channel conditions, traffic load
aind e behavier. By simulating different network wpologies, user densites. and traffic parems. we can evaluase
the LTMs" reconfigiration strategies for a variety of intents. and make sure the LTM is able to generalize and
profece policies that are effective independently of the deployment scenario. The digital twin's feedback Boop
allows us 1w measure the performance mprovements and poteatial wade-offs of these reconfigurations, and can
help in fine-tuning generated policies w better match intents and adagt 1o changing operational conditions.

6.5 Assess Large Language Models Telecommunications knowledge

W evalwure the performance of GPT-3.3 and GPT-) weross the varows categoried of the TeleCnA duiaset Faa
comparison, We alis evaluate the performance of two open soorce maodels, o small model Maseral Th, and a
medinm medel, Misieal #8278 mixture of experts (MoE), comparable to GPT 3.5, The results are seported i
Table 12 As anticipatest, GPT-1 consistently ourperforms GFT-3.3; demonstrating aroemd 75 improvensent across
abl categories: We remark thar the open-source alternative Mixwral MoE performs similarly o GPT-3.5, while
Mastral Th significantly anderperforms, which is expected given s small size. Motably, LMz exhibat excepil
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Figure 31 Accuracy (56 companson amoag GFT-3.5, GPT-4, and GPFT-3.5 wath context i the standands specifi-
callims category,

Dy 20 30 40 50 &b Th B0 S0 100
Apcuracy

performance i the bexicon category, which encompasses general tebecom Enowledge and weeminology, schieving
approxiomately 879 accuracy for GPT-1, Conversely, these masdels face challenges when confronted with mone
intricate questions related o srandads, with the highest performing model, GPT-4, achieving a modest 64%
avciracy 1o this domain. Io summany, GPT=-3.5 averaged an accuracy of 67%. while GPT-4 achieved an accuracy
aof Td%,. These results demonstrate that tsese models posseds a solid fowsdation in general elecom expentise.
Howeeser, o attan higher aceuracy in respendang 10 complex ingquanes, unher adaptations to the welecom domain
Are OCCERsEy.

Lv e fimal step, we conducted a performance benchmark comparing active professionals 1o LLM:. The resulis
rewveal thar LEMs and actve professionals exhibit comparable performance in general telecom knowledge. How-
e, b thie case of intricate gueestions related o rescarch and stamfards, LLMs demonsirate the capability e mval
these professionels: This i atmbaied o LEM:" ability to digest and memorize comples and buricate docaments.
Furthermode, it is crecial o recognize the challenge Faced by peofessiomals when responding 1o these geestions,
ax they encompass a broad range of wlecom subdomains that these Dsdividuaals may not be necessarnily actvely
enzaged with in their work. Considecing all faeoors, our resalts andérscone the significant promise thay LM hobd
within this domiting as demonstrated by their competitiveness within thas extensive and comprelensive dstases.

5.1  Infuence of Context

Lritil ehiis senge of our benchmarking process, we have been querving the LLM: withoun acoomgany ing coitex iual
information for the qeestiens.  Mevertheless, in this subsection. our goal @ o iviestigane hiw supplensenting
questions with additional contest affects the accuracy of these masbele.

To accomplish this, we have fociksed on the standards specafications sources, encompassing thousands of echiical
standards pages. Our selection of this category 15 driven by the fact that this s whese LLMs have exhibined the
It performance. With this m mued, we segmented these pages into approxansatedy S00-wond segrments before
generating embeddings for each segment using OpenAl's Ada v2 et embeddings. Moreover, we enployed the
same ChpenAl model to create cmbeddings for the questicns and comesponding options belinging to this categor
Follgawing that, we constructed a digtunce mateix bevwesn the embeddings of esch question-gqions pair and these
af gach segment. The next step iovelyved querying the LLMs by supgdving batcles of five questions-options paars,
and sdditionally, as comext, the top-3 closese segments to the five questor-option pairs based on the distance
matrix. The outcomes of these experiments are dllustrated in Fig, 1.

The LLMs supplensented with-comexiual information reached an accuracy bevel of 6084% which translates into
a relative accuracy enhancement of 22.5% compared 1o the scenaiio lacking context. This gain highlights the sig-
nifecan enhancement i perdorimance achieved by incorposanng comexiual information. demonsirating o cven
less advanced madels Hke GPT-3.5 can mawch the performance of state-of-the-ant GPT-4 model, This aaderscores
he mecessity fora specialized telecom language models, Ane-tuned o trained specifically on telecom-nelated data_

P A )
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Dreveloping such & foundation mode] has the potential to pesh the boundanies of LLMs performance i the telecom
domizin, paving the way Tor a wide cange of wee coses thar demand 1elecom knowledge and expemise.

6.6  Ewvaluation of Telecom Math Modeling

Math modeling i a critical application in (elecom domain. This incledes sccurmely mode] the telecom envi-
rommeit of problens wsng welecom teermnofogy and formalate the sk as ngoroasly defined problems expressed
in mathematical equations. LLM pre-trained or Gne-tuned oa math corpus has shown semarkable performance
in fuath reasoning. such ss DeepScek buh, AlphaProot, awd AlphaGeometry 2. A number of mothematical
benchmagks bave becn used o evaluate the b capability of LLMs, froons GSMEER. MATH. w IMO, AIME
However. using LM do pedorin telecom domain system modeling amld problem formulation requires in-depth
telecom knowledge associated with factual reasoning capababity. Therefore, a benchmark capable of evaluating
the it maodeling capabilitios of LLM: i telecom domain is critical For using LLMs: on telecom matls problems.

[ wwrider b0 have a simple bt elfective benchmark for telecom math modeling, we déveloped a masked equations
in-flling task. Specifically, we first exoact the system modeling and peoblem formulation paragraphs feom ielecom
demain researcly papers or iechnical documents. Then, we mask seme crucial equations represeatimg the modeling
process, sech as system model, channel moedel, modulatien and coeding. The masked squations will be veplaced
by a specul placeholder. Meawwhile, we try to aveid masking equations selated 1o defininons o referming 1o other
documents, sece they are unique 19 the paper mathes than genesal telecom kowledge, Finally, we ask the LLM
o recover these masked eguations, which will be compared with the ground-tnnh o obtuin o guality score: The
LLM will predict merely one equation af a time in order (o ensure the efficiency of munning the benchimark. To
further sioplify the 1ask, we include the groand-tnah equations in the paragraph before the masked equations.

We utilize MathBERT, a vanant of BERT fine-tuned on a large dataset of matl eguations, w evaluste the co-
sine similaiity between the embedding of the predicted equations and the growmsd-tuth, The cosine samilanty of
MathBERT 1« adapted o the operation trees of the equatiens and thies can be uged as o semantic similanty i the
sense of math sinesciure. For a geven equation represented by v and & predected equation © given by an LLM. the
MuthBERT score is defined ax

cos (e vk e V) — coa e v e 1E4))
I — oo (e dvi, e (3]

SCOEC v, V) = t‘llu.'l:{ .I.'I-} = 100

wheere ¢f -1 s the embedding output of tee MathBERT, cos denotes the cosine somilanty between two eobedding
viecinrs: &b represents an ey equation where LLM retirns nothing,  Furthesmore, we mormalize the cosine
similanty 1o the range of [i, 100] with regards to the difference between the ground-truth and the empty answer
Stece the raw cosane sinvilarity between them s uswally geeater thas 0.7, the noomalized scode better aligns watl
the humn cominmn dense.

Exansple resulis of this benchmark on typcal SOTA LEM s showi g Table 13

6.7 Generating Commit Messages for Configuration Files in 5G Network Deployment
Using LLMs: Evaluation

This use case was described in more detadls in Section 8.7, In this Section, the aim is w present the evaluation of
the proposed prempiisg solutions foe the autsmation of generating commit messages. The primary objective of
the study in pages [207] s weexamine the ability of LLMs w autematically generate meaningful commat messages
that are not only technically sccurane but also contextually appropriate for neiwork automation. As presented in
Section ¥, we applied five types of prompoing:
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Wl el Average Bcore =W =500

GPT-4 4938 77 5035
GPT-1.5 4353 151 Albdd
Llzmat-8B-Instruct 40.Th | 3445
Mastral-TH-Lisirsc 3554 .53 2943
Mistral-#xTB 43.642 2:51 41.98

Tahle 13: Pesformance of Telecom Math Modeling Benchmark of S0TA LM

* Peompi 1) Basic Prompt with a backeroand field o cxplain the role we sam the model wy consider when
angwering. the task, the mput, and finally the oatput that contains the desired ouiput format of the comamit
measage as showeased in Figaee 49,

Prompt 2. Proepr with Negarive Instruction

This prompt adds a negative instruction to Prompt L. (Four ouipel modr be stelcile e one lne aned (n the
Fevimad = pvpe = opriaeal seope [0 <desoripiion =" witledo! ery exffa iean like this s the comend? mmeizage!’
eie., teilier befove, ror after). The purpose of the negative instuction i3 o gode the model 16 avord
generating comumil maessages tha doonor meet the sk requirements, such as avouding voclear or averly
sumiplistic statements,

= Prompt 3: Prompl witlow Beposiony Teee

Promipt 3 seosoves information related 1o the code repositary tiee foom Promg 2. This change amas 1o st
the model's performance withour specific code orgamzatonal siruciure information, thereby assessing the
miodel's sensitity o cavimnmeotal dependemcaes.

= Prompt 4: Prompt with one-shiot

Promipt 4 adds a specific commuit message example {oae-slt) 0 Prompt 2. Thes method belps the model
lzam how o consrect commil messages through a concrete example. potentially Improving the accercy
asd pebevance of the genenied information.

= Prompt 5. Prompt wath RAG

Prompt 5 amegraies BRAG imo Prompt 2 theough BRAG technobogy, the model quenes related docunents
of existing data before generatiing commit messages. enhancing the accuracy and nchness of the generated
coent,

We also considersd three models for prompting: Mistral, Llamad and GET-L Two methods of evaluation was
applicd: automated evaliation with metnes amd hunsnevaluation. o the aotomated evalustion theee metnes wene
congidered: METEOR, BLEU and ROUGE.

This manual evalsavioa involved four honan evaluaiors, all of whom are propect stafl members. They reviewed
a randony sample of 0% of the fotil commmits; amounteng o S0 distiees commits, Each comnit was assessed
L] tmees, leadsig tooo potal of 330 bedividual evalostions. Among thege, 30 commits were authored by Buamans,
while 200 were penersted by machines. Since the large-scale GPT seriex developed by OpenAld is not open-source.
we ogted o manwally wiliee the GPT-4 model for eur soadies wy maintain information secusity Ultmatey, we
anly condacted the expenment for promipt 1. Dee o the imitations of the char platform, we were unable
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automuate the retrieval of commil messages: insiead, we had to inpat them manually und generate mubtiple mes-
sages smultapeously. Consequently. our ﬂl.ﬁ:rimeﬁr.al approsch diffeved from that of other madels and was guite
e -CORSEng.

The evaluators fated the commit messages generated usder varions peompts using a scoring seale from | w 3,
defined & follows:

« | Polnt: Dees oot meet standards,
« 2 Polnts: Meets basic standards.
* 3 Polnts: Fully meets standards.
Rastings were based on five critena:
1. Accuracy: Determines if the gencrated comimit message aceurately reflects the code changes.
I, Integrity-What: Assesses whether the commit message fully describes the changes made.
3 Integrity-Why: Evaluates if the comimit message explains the seasons behind the changes,
4, Readability: Checks il te language of the commit message is clear and comectly Formaned.

5. Applicability: Evaluates whether the commit message is relevant in a real software development contexr.

Llarmal - urmes conrd Mimiral - humarsamemi
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Figure 32 Comparing humin evaluation and objective metrics

Aus intereating result womention about the evaluation s the comparisen beoween the b and merics evalua-
fion s dllustrated in Figure 320 In Fig. 32, we compare human evaluation results wath objective metrics through
ranking. The Llamad model exhibit selatively stable scores in both human evaluations and objective metrics. sug-
gesting adegree of comistency bevween human pr-eftfarn:ﬂ. and sutomaied scoring. For humin commits. prompts
or ccasionally promptd vield the best resulis, while for bat commits, prompid consistently sutperforms the
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era. This indicates that promgd, and sometames promaptd, s the top performern acrmss all msermes. Mastral reveals
soane inconsistencies between human evaluations and objective metrics, especially in ot commins, Although ob-
jective wetrics <how very high scores for promp3. human evaluations, while s6ll highe are not s exiseme. This
imaplizs that Mistral may excel in certain astemated metrics, bal human evaluatoss perceive its oatputs differently.
pemsznibly due v subdleties that metrics like BLEU, ROUGE, ard METEQR may nist fully captiere. The favegniny
wiliy seoee 14 consisently around 2, indicaning thar the model streggles to fully wirderstand the contexe of changes.
Aubdinonally, the Appliicaluline score hovers areund 2, except for bot commits with Llamad, suggesting that the
mindels ape nod et flly sesdy (o use witheout uman overssight. Inthis use case, we demonstraied the imporiance
1o use ot evalustion metrics and human evaluation w benchmark madels. However, the human evaluation is
laboriows and fakes time. One way o resolve this is o consider the definition of use case specific metrics for
ewaliaticn,

6.8 Large Model Evaluation System from Telecom Operators

With the rapld devclopment of big model sechnobogy, ielecom operators began o rely more and mwore on bag nwode s
tor impeove the intelligeace of thelr network operation amd maintenance, custemer scrvice and business processes.
I order o enswere the effcient application of big model s wlecom business, operator big medel evaluation systen
crmcrges as The Tones reguare. This system not only focuses oa the intellipence level and task execution ability
of the model, but also systemancally mvestigates its performasce oplimization, secunty pssurance and application
acenand adaptabality.

The design of the operator big model evaluatien system follows the four core dimensions of “ability, task. per-
formsabce, security”, s cach dimensicon revolves around the actoal needs-of the elecom operation. Fipstly, the
ability evaluation mainly investigates the compiehensive pecformance of the mode] s erms of knowledge cov-
Crage. cognitive reasoning, interaction generation, and agent scheduling. Telecom operators need Lange models
that can quackly respomnd o complex tasks such a= network status query, Taalt diagnosas, and resousce scheduling.
Therefore, Eaowledge aimd reasoning ababity are coucial. In additien, Liege models seed to have good interac-
tion capabalines 10 ensure that they can generale accarate respoRses of suggestions when inferactng with wsers,
oporations personncl, or other systems.” The ability of Agent scheduling is the key for lorge mosdels 1w perform
tasks autormatically in a mulii-task environment. especially in the muli-dimensionad epiimization asd resosrce
acheduling seenasios involved i telocom metwarks,

Performanee evaluaton plays an imporant ke in operator lerge-scale madel evaluation. mainly iwvestigating
the inference speed. resource consumption, thioughput and concurnent precesaing ability of te model. Telecob
operaters bave high network scabe and real-ume requirements. 2o large models need o have efficient inference
speed and reasonable urilizatien of computing resowrces:  The evaluation of throughpar and concarrency 15 aimed
ab the precessing abality of the model i the face of large-scale uwser sequests or network operation and maintenance
twsks, v ensure that it can work stably and efficienty in practcal applications, The performance evaluation ilso
covers the adaprability of te model in different hardware eovironments, sech s wheiber the maoded con maintain
cxcellent performance under resousce constraints wiath the supporm of high-pecforinonce processors {(eog., MVIDIA,
Husawei. ete. ).

Secunity evaluation is the basis w ensure the safe operation of large models in the telecom fizld. The application
af big models in the telecom industry involves the paecessing of a lirge dmdount of sensitive information. S0 data
privacy protectemy amd content compliance have becorme important evaluation contents. Thooagh the securnty test
of the model, the evaluation syspem ensares that the coment gemerated does not invodve the disclosure of sensitve
information of vielate industry standards. In addidon, the adversacial attack defense ability s also included i the
enaluation scope, which mainly nvvestigates the robrstpess of the model in the faee of malious mpuls or sttacks
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The security avalibation sysiem ol the operaioe’s large mode] also invoelves the detection and carly waming of
petential secwrity valoerababities w ensire that the maedel will mot canse network secunty incidents when dealing
with complex tasks.

il  ThanGong Large Model Evaluation System

China Telecom TianGong Large BModel Evalusion System provides o comprehensive framework for evalwating
large mndels from the dimeénsions of capabality, esks, perfommance, and security. s muln-lavered. modudar
design ensures that the owode] performa well wall key areas. offering robust support for Large model application:
in the telecom mdustey, Theough the TianGong-syatem, the telecom industry can better-assess amd optimize the
applicatton of Eirge models, promoting the imelizem upgrade of network managerment, custormes service, and
business oerations.

Evaluation

Interaction Evaluation Results Evaluation Rankings Graphical Analysis

Figure 33 TianGoeng Larpe Model Evaluation Systen.

The svstem ks divided into five layvers: evaluation interaction layer, evalustion tool layer, evaluation capability
layer. evaluation data bayer. and evaluation model layer. These lavers work wegether 10 complete  compre-
hensive assessment of the model, The evaluation imeraction laver is the core module for presenting evalsation
resulls, penevating rankings. and producing graphical snalysis. By providing visualizatien and result display. the
evaluatien system not only offers comprehensive data presentation but also makes the complex eviluation resulis
casier for users o understand., facilitating the optimization and improvement of the model s application:

The evaluation ool layer provides aulomated reasoning functions: and scoring mechanisms to standandize and
automate the evalisation process. Theoogl the integeation of awtemated tools, large-scale evaluations can be con-
ducted rapadly, reducing buman interventeon aed ensuring falmess inthe assessment. The compentive meview
mechanism enables dafferent models to be fally compared under the samee tasks. evaloaiing their peclormance in a
peacallel contest. This mechanism s particulacly useful s the welecom industry, whese Ligge-scale. mult-scenino
business tasks peed o be processed sonultaneonsly.

The evaluation capability Liver is the core of the TianGong system and performs decubed grading and assessment
of various medel capabilities. Thee capabality evaloation includes podules for agent evaluation. long-texe proce
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ing. sscuriiy cvaluation, comiand-following capabkilities, and reasoning abatities, Motably, azent cvalisation i4
crtical becouse it assesses the model’s performance in automared task execation, especially in pelecom network
maragemenl where agent efficieney directly impacts metwork optimization and resowrce scheduling. Given the
telecom indusiey frequent need for landling extensive texteal data, such as gencrating reponts of providing net-
wisrk comhguration recommemdations, the TanGong system includes a long-text processing evaluation maodale o
cisire that the model can mamtais legical conswsiency and sccuracy when gencrating bong-form compent. Sddi-
twonilly, the security evaluation module §s a key lesture of the Tian(Gong svatens, testing the model’s ahility bo
handle sensitive inlfomaatien and prastect aganst malicious atmeks, ensuring that the mode] effecuvely safeguands
nervwork security and data privacy during aciual use.

[ s wlso worth soting that cognitive reasondng evaluaion s highly emphasieed i othe TiasGong dystem. This
caprability serves a5 e foumdation for the model's ability v perform complex reasoning and decision-making,
paricularly intasks such as elecom network faelt disgnesis and waffic prediction. The strength of the model’s
reasoning ahility direcily impacts 15 performance in these complex tasks, sothe evaliation system condscts in-
depth assessments to cnsure thar the model s capable of hardling bigh-demand reasoning tsks i real-warld
SCENATHIE,

Uilike general wlecom operator large model evaluatson svstemns, the TianGoong system specihcally incledes an
industry task evaluaton module.  This medule focuses on opimeing the medel for key tasks in the welecom
indusiry, ensuring that i excels o industry-specific tasks. These evaluation tasks inclede network ivaffic prediction,
fnews content genenition, and custoiner service ineraction.  Boe example, oo e network prediction task, the
madel st predict futue ceework waffic and ressdsce demand based on historical daca, belping elecom operatess
preemptively allocate resources and optinuze network performance,  In cusiomer servies interaction ks, the
model is tested on i ability o imeract with costemers, assess responss speed, understand customer intentions.
and generate accurate responses. Theough these task evalwations, the system ensures that the large model pecforms
aptainadly in the core business of the welecom mdustry.

Tis terms of security, the TianGong Large Model Evaluation Sy2tem has catablished detailed secunty evaluation
atzndards o ensure thit the moedel dogs oot pose security tisks when processing sensitive information and gen-
crating content. Through content compliance testing, the svatem ensuses that the model can Glier and Identify
ilbegal information amd senzitive contenl, preventing the geteration of policy-vialating content. Especuilly within
the kegal framevark of the webecom idustry, the model noest meet sirict complisnce requirements to ensure that i
oantpiit does not violate regulstions, The evaluation system also fully tests the mabel"s defense capabilities, ensur-
ing that it can effectively defend against malicioud input. petwodk aftacks and ether theeats. thereby safepuarding
the telecom netwink's seounity,

682 TeleolM Large Model Evaluathoo System

TeleolM, deweboped by Orange, 15 a lunguage model adapied o the welecommuisications demain. The sdapration
process started from the Llnna-2-78 base model and followed two main steps: (1) a domiun sdaptation phase
using & cogpus of SIH0N tokens collected from welecommunications iechnical documenrs (iscloding 3GPE, 1TV,
and ETSI standasds, research papers fromm ark's Networking and Inteenet Axchitecture category. and filtered
web compent from o ebeo-relued domainz); and (2) an insiuction-monisg phase wsemg S0 domatn-specific in-
structions.  These instructions were generated thiough a combination of automatie transformation of echnical
documents and human-curared question-answer pabs from elecommunications forums_ All fine-tunings are full
fine-tunings (a5 oppoed using LaRAd,

The evaluatvsn of TeleolM wis conducted usang muliple wst ses, divided into domain-specific and seneral-

paurpose evalations. This sectien describes the evaluation protscol aid presents the reswlis obtained by Cirding
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Telecom-Specific Tests: Telecom-specific st el have been designed 1o evaliuate the welecom Kiowledge inte-
grated iy TokeollM,

o TeleQuaA Test Set: A collection of 900 multiple-choice questions developed by Huawel to evaluate telecom-
munications knowlkedge, Questions cover vanous aspects of elecommunications echaology, with 4-3 op-
tiops per question and the possibility of multiple comect answers.

= Mokia Cemification Exams! A sel of 632 multiple-chobee questions exiracted from Nokia's official peac-
tice exams. These questions specifically come front the NRS L NRS 1L and SEA certification programs.
Covering WHics i signal peocessing akd petwark cngineceing.

¢ Dywmain-Gienerasted MOQs: Cuestions avtomatically gererated from wechoieal specifications wsing GPT-4.
The source materials included 3GPE ATIS, and ETSI standands, focosing on foomil eechnical knowledge
ARSERAINENL,

General-Purpose Tests: The goal of the gencral-purpose wests 13 o make sue that the adapted LM has ot
significantly forgonen general koowledge.

= OpenBookOa: 300 guestions from the test set of the official OpenBook QA dataset, focusing on elementary-
level seience.

s TruthifulQa: The muoliple-choice subset of the Trothful QA datased, comprising 517 questions on general
knovaledge.

= Big-bench: 600 questons from the Mabuaract norratove understandoeg” subset of the validaton sel.
The evaluation employed different metrics deperding on the task type:
= For multiple-cheice guestiens: accoracy (percentage of corvect answers)

= For guestion-answering tasks: Meteor soores and LLM-based scoring wsing GFT-4 ax a judge (from 1. bad.

o 3, perfecih

Resulis: Tables (4 and 13 present the resulis abtained for different versaons of TelcolM wiing continued pre-
trabning and insiruction-tuning, of instruction-aning ouly. The baseline model ks Llama-2-Th TeleolM veisionsg
are compared o this baseline as well as the chat version of Llama-2-Th, GPTA5. and GPT4. On telecom-specific
taska: Telcol M achieves scores closer to GPT-3.5. beoer tsan tse base Llama2-TB model or (19 chat version.
On geoeral-purpose tasks, TeloollM maintained performance. The question-answering evaluation leads 1o 2imi-
lar conclusiong. The LLM-based seoring shows that lelecem-specife guestions withaut questhons are difficult fos
general Lhs, even GFT4.
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Tahle t4: Performance of TelcoL M on MOQA tasks: telecom domain (lopy; general domain (hottonm).

— Conl. Inst. Telon domain
pre=lr. tuniﬁ,g ATIS IOPP ET3l  TeleQnA  Mokia | Avg
Llama-2-Th a2 a6 (4] 0,56 .24 (.48
Llama-2-Th yes et 50D (152 0.1 (.32 (.53
Llama-2-Th yos yES 72 452 (L4E 0,6t (.35 .53
Llama-2-Th-chat {65 k45 047 0.45 (L15 .47
GPTS k71 5T k6] .61 (.45 (.59
GPT2 LLE- I N RN E 072 k63 A
Model Tl Insi Cieneral purpos: :
peestr. fumng OpeoBockQA TrhfulQA - BrgBeschNarr{A | Avg
Llama-2-Th 0.3% 0.3 027 | 032
Llama-2-Th yes 045 033 n2s 0.15
Llama-2-Th s yes .45 0.1 n.al 0.13
Llama-2-Th=chat 0.50 0.301 022 | 0.3
GFT3S 074 0.l 034 0.5%
OrTa (.83 0.78 .59 0.73

Tahke 13: Performance of Telcol.M of QA witheut context converted from a sabsample TeleQnA.
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7 A Look into the Hardware Advancement & Requirements

7.1 Background

The rapid evolution of AL particulady o the donin of generative Al (GenAl) has crcuted greal demands o
computational infrasracture. . This shift is paricularly evident in the telecommunications industry, which finds
inself an the intersectbon of data management, network operations, and Al deployment.

The telecom indusiry generales and processes an enormoas volume of data, far surpassing masy other seciors.
Aoneal mebale data traffic has been onthe e historcally [208], with doata coming froem varbous sources, iwncluding
call detatl reconds, network performance logs, customer nteractions, amd Internet of Things (10T devices,

This exponential srowth i data volumie 18 scoompanied by pizing customer expectations, resulting i increased
PrEsSUIE Of CUstHMEr senvice agents o provide fastern, more accurate. amd personalized support. Concurrently.
novel use cases are emerging that leverage Al 1o enhance merwork operations, such as “network agents” that
autorssmous iy manage and ophimies petwork performance, alongside peedicineg and preventing outapes [209]. The
ongoing research on Telecom Foundational Medels also present an oppomunry to sunphiy nerwork operations.
enhance development productivity, akd tostwaorthy networks, and boost business prodfitabiliny [210]. These Al-
driven solutions ane hecoming enocial foe telecom companies (0 maintin & compettive edge aml meet the growing
demands of 505G and bevond.

Convergence of massive data scates, heightened customer cxpectations, amld emcrging Al applications present both
chaltenges and opporunities for the telecom indusiry, necessitating rapid advancements in hardware infrastruciure
1o suppert these data-Intensive and computiionally demanding workloads.

7.2 Telecom Companies as Al Factories

Telecommunication commpanies, having an extensive arcay of centralized dstacenters and distrebuted sies close
wrand ar the edge of thelr networks, ae ar a pivond monseat when they can anstorm from Being mesely data
conduits and cleud computing consumers (o being Al-dnven service providers. asd even compute providers i
their own right. As trusted mateud echnology providess, telecoms i many counties are by an ideal posinon bo
prowide sovereign Al for regiosal govemneents, enterposes, and startups, enabling them o butld, customize. and
deploy GenAld applications [211].

By transforming ioto an “Al Factory.” telecoms can leverage accelersted compueting nfrastrsctire, software. and
services in i existing dutacenter footprnt o deliver Al invelligence ab o national scale. In addition o ninnsg
their own Al worklosds for imernal operations and customer services, the Al Factory approach enables telecoms
i evidve fiom being merely an [T conswmer to becoming a provider of infrastiuciure amd seevices themselves.
Thas change in robes creates a mew Bisiness opporusity where customars man their owne Al workloads on ielecom
infrastruciire on a subsceipiion basis. This approach gives telecom companies a competitive edge, as it moves
b froan providing enly commmasdity-based consectavity, to Being o modem Al content, applicsion. and services
paervider.

7.3  The Rise of HPC-Al

The Introductuon of the transforreer neural wecwork architecture by o weani at Google (48] enabled the rapid growtls
and adoptien of LLMs. Coresposlingly, the demands Tor the growth in scale, capabality, and speed of compata-
fiobial resources have skyrocketsd,

Felatively fat growth in CPU computational power compared o the growth in LLM size hus oreated a o
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for laedware secelerators that can keep pace with the demand. Tt was realized in the 200608 that the graphics
processing uail (GPU), a precessor oviginally designed w seceberate veal-tme companer graphics, could alao be
used o pagallelize the matrix multiplcations osid in wearal seeworks [212]. GPLUs fousd & robe as a dedicated
"wector” processor for other computing workloads and gradually becanse an inceeasingly used accelerator in high-
performance compating (HPC) sites throughout the world. 'With the advent of LLMs, GFUSs and other matns
multiplication aceeleraons cvalved 1o beeome indispenzalde wols for AL

TA1L  LLM accelerator chip technology

The burgeoning demansd for LLM tradning and inference bas foeled rapid advancement of GPL iechivology tn
addition e a host of competing acceleratons 1o challenge the dominance of the GPLU as the leading LLM training
and infesence engines. Orignally developed for rendering 3D graphics in paming, GPLUs have evolved into ver-
satile processors widely wsed inamificial melligence (Al machine leameng (ML), data science, vades cditing,
and scientific research,. Forexample. NVIDLA has developed several lines of datscenter GPUs with varving ca-
pabilitees. size, and energy consumplion that sre designod 19 accelerate ntensrve compuiing tasks that can benefit
Troen paraliel processing. AL the tme of this writing, the cumrent NVEDLA Blackwell GPU architecture introduces
specific Transformer Eagines [213] 1o pecform LLM processing using 8-bit floating paint (FPR) precision [204].
with the ability w quantize LLMs down o the FP4 level. In addition to BVIDEA, AMD. Intel, and Google also
profuce GPLU accelesators for AL IBM has develoged accelerutors for thear own £ Senes mainleame plaforms.
Iy addition to GPL-based accelerawes, many olernative Al accelerator architectages are alwe ander development
[2L5].

For seftwane developers 1w leverage the Al accelesation afforded by GPUs, o8 any other accelerator hardwane,
requires o trenslaton layer that makes o easy e add dicectives w waditional CPU-based code thar can offlosd
paaallelizable work o the GPUs bnoa transparent fashion: Because of this requiremest, NYIDIA has develeped
an extensive sed of drivers, libraries and Al frameworks that can be used in o stamd-alone sobstion of waceelersie
other pogalar Al frameworks, Aca lower level, CUDA (Compute Unilcd Device Architectuney albows developers
1o harmess GPU power for pasallel computing. The NVIDIA Collective Communication Library (NCCL) [216]
enables high-pedformance inference and taining over multiple GPUs seross networks, which is exsential for train-
ing the largest LM in use today inoa feasible length of tirese. The NVIDLA Al software stack poovides o haeraecly
ol abswaction Joyers that make GPL acceleranon readily consummable and can be used o cooate a complete GenAl
ceoaystem |27 Comespondingly. any Al accelerator entening the market needs & matase softweare framework o
facilitate s adoption by welecodms.

TA2  The Role of High-Performance Networking in LLM Proceszing

The demand for high-performance computing and acceberators for LM workboads 12 et by an equeal demand fiod
high-perdformance networking. The need for many highly coordinaged amd bow-latency computing resources for
LLM trainung is driving the evoluton of cloud-based resoucces, and o movement from general commodity public-
clotd consumgtion to the use of dedicasd “private clouds” that sdopt the architecre, scaliability, aml perfonmance
of HPC sveterns rypically fowd o scademic and govermment-sponsored supercomputing centers. Tralning LLMS
alsp requires using maliple accelerators in parallel w0 reduce raining times. This is achieved at the server level,
with mabtiple Al accelerators communicating over the FCle bus o using dedicated high-bandwidih connections
such as NVIDIA™ NVLink™ [218].

NVLink Switch technelogy extends NVLink to provide a-topoelogy connecting multiple 'GP Swarting with
NVIDIA Grace Blackwell GB200-bazed systems, up-to 72 GPUs residing in mulapke tvavs of a eompute rack
mizy be connected [219]. As the seale of LLM models grows and high-bandwidih, bow-latency cross-server da
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movement becomes increasingly ceitical o Al training performansce. Fabrics based on the InfiniBasd suindard
[220] have long bed perfommnce in latency amd effective bandwidily, providing lossless data teansfer via RDMA
{direct mermory sccess bypassing CFL buffers), advanced congestion control. and adaptive reuting between fabric
endpoints (221, 223] The InfieBand Trade Association (IBTA) alse promiotes ROMA over converged Eibermet
{BoCE ) as o means of uzing BEDMA over Ethemet fahrses [223]

Dhige 1othe prevalence of Ethernet and the level of familiancy consumers have with it theee has been a large incen-
trve for vendors 1o develop Ethernet with tue HPC-Eevel perfonmance approaching that of InfiniBand. MVIDEA
the mun InfiniBand developer, has developed NYIDLA Specirum™-X, an Etherver solution for igh-perfonnance
Al traning, dut delivers RDMA over comverged Ethernet (RoCE), adaptive souting, and the sanse tebemptoy-
based congestion control using endpoint telemerry found in InfiniBand [224, 225, Spectrum-X requires 1 specific
comhbination of hardwane on both the switcl side (select moadels wath the Spectrum— ASIC and Lo} and on
the SuperNIC side (specific NVIDIA® BlueField®-3 and ComnectX™-8 network interface card (INIC) models vali-
dated amd enahled for Specimum-X) [226, 227]. In addition, the Plira Bthemer Consoreiem, with over 35 memibers,
i5 currently developing a specification to "deliver an Ethermet based open, interopersble, high performance. full-
comimumications stack architecmare o meer the growing nevwork demands of Al & HPC ar scale’ [228].

Oreer the vears, demand hag incesased for many organizations o move wand nunning workloads in public cloads,
evel computation-intensive scientific and Al workloads that have rraditonally been hosted in shared or dedicaied
supercompuiing ceners. One prominent example s NOAA S Cloed-based Wirn on Forecast svstem {Ch-WaolS)
[X29]. The telecom imdesry las also made inrsads into public clouds, Joint sesearch by SoftBank and the Dhni-
versity of Tokye has created o “siateless” 36 core tepwork on Amazon Web Services (AWS) [230]. Deursche
Telekoan amd T-Mobile have collaborated with cload providess o provide cloud-based 50 and Al services with
50 Advanced Solutions {231 ] and Magenta Cloud [232. 233, 234). This performasce demand hos deiven the lagge
chowd service providers (C8Ps) eo provide co-located compuic instances that run oo entire, dedicated bare-metal
seivers with-a high-performance interconect for scalability. An additional imperative for CSPs 15 toavaid net-
wirk faboe congesuon from multiple tenanis, Microsobt Aswre msanees [235] ese InfingBand with pamition kevs
[X36] and advasced congestion control 1o énable meltpke tenant woeklosds 10 man i parallel without interfering
with cacls other. Amazon AWS uses its own high-performnce Elastc Fabric Adapger (EFA) for high-perfoamance
waorkloads |237].

7.4 Building Blocks for Al Infrastructure Deployment

A telecoms are relatively new 1o the concept of building HMC systems. basdwage vendors have started to peovide
roadmaps.  They work with coosystem pastners 10 provede certified reference archileciures {EA%) Tor bailding
apumized and scalable Al infrasouciore-and clead services for waining of and inference on Gendl models.

The evoluticn of HPC i the era of GenAl 13 that of increasing scale and complexioy of infrasteucture ailding
blocks.  PFor architecsures o effectively address the scale of LLMs, the dat cemer bag becoms tee pew uni
of compute rather tham imdividoal seovers, Interconnected GPL, CPUs, memory, stocage, and othed resources
across muliiple compate wodes archesirute lage-scale Al workflows, This infrasescnoe sequares ned only high-
peiformance compuie ind networking previoosly discussed. but carefully desagred swaage, cooling lechnologies,
and power delivery tosustain optimal pecformance and efficiency fod each dste center environment. For companies
thatdio not have expenise in designing, procunnog. and running HPC systems, moving into the realm of large-scale
Al traiking and inference can be o daunting, high-nisk endeavor.

T bower the basrier to-entry, several vemdors provide foundatona] building Blocks to beild, costomize, and degploy
rapidy evolving generutive Al and large language models (LM both on-peem (Dedl, HPE, NVIDLA, Supetimi-
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v, Dieledtte [ 238] and others b and as hosped peivate closds (e.g. CoseWeave [239)h Tumkey data center solutions
accelerate unse-to-delivery and eliminue the complexity of bueildhing o large compaie cluscer. Swech compute in-
frasiuctore was previously only achievable trough intensive dessgn, uning. and tme-consaming optimization of
SURETCOINKING 12500rces,

A example of this building-Block approach are Supermicre SuperClester sysiem design | 240). In these sysiema.
the core compute component for Al aining is a server with B-way NVIDLA HGX H1LGG, HN0, ar Blackwell
GPUs Each GPU isin a dedicated PCle 5.0 sbot and poied with NWVIDTA Quantum-2 400G InfiniBand net-
wirrklng, MYIDLA ConnectX-T nerwork interfiece cands {MNIC: 1 cnable NVIDIA GPUDGrect RDMA and sorage
for direet dats Aows o GPLU memory to mdnimize Litency, The systems ae avidlable in botls air-coiled aisd
liguid-ceoled vamants. NVIDIA® NVLink™ interconnects the GPUs for high GPU asemory badwidth and en-
abkes capacity o rum LLMs cost-gffectively, These solathons are designed in a building-block appeoach, starting
fromm a given "pod” or scalable unie. For scalability, the largest trainkng jobs leverage InfiniBand or Spectnum=X
interconnects for high-speed data passing botween these pods. For example, the leaf-spine network topology in
a SuperCluster allows it o scale from 32 S-way GPLU modes v thesamds of nodes. An added advantage of this
busbding-block appeoach is tha the vender kas already validated performance ar scale and has made component
and design selections thal ensure scalability of performance.

Abong with compute and networking, high-pedformmce storee 5 also anontegeal pascol an Al compunung en-
virenment, Storage ks required for storing model weights, inference query history. checkpoints, and for caching
datn. The storage necded for Al factorics differs from tvpieal enteeprise storage. Fomunately, several vendods
hawe developed scalable solutions that aie designed for Al and cemifed with Al infrastruciuge providers, such a4
BDM (241, VAST Daca [242]. WEKA [243], Dell [244 ], Pure Storage [245], and TRBM [246]. These vendors ofter
angaing suppoit and performance wning of those solutions onee deployed. Sweh storage solutions mesls ideally
into the building-block approach for Al facodies,

7.5 Convergence of ATand RAN

The advent and adoption of 5G technology bas introduced o new level of speed amd capability in metworks, en-
abling them w deliver not only voice, bat alse Inerme-based services, data, and sreaming. This generalization of
ielecom networks into o dets service retwork allows the introduction of L1LM-driven services, A fuher benefit
comes from the flexibility bwile inve 3G network aechitecure, allowing diffesent componeins 10 be siraegically
chiseribinted by different locations, from the radio anit (IR site an the very edge. to DU sites (such @& MSOs), o
the CL which hag moee space and power availabla. This Aexibilivy aleo nieans that coemponenis can be decouplid.
sucl that following Open RAN (O-RAN) specifications enables a merger of the best aolutions for both AN and
Al processing while meeting latency demansds [ 247). This Aexibaling albows smaller foorpomes for Al inference 1o
b lecated closer to the petwork edge, wlere response time s a8 a preminm, while larger-scale computation arad
tratmng can be done s centrshized datacenters.

The merger of Al wath 30060 BAN technodogy, refersed 1ooas "AL-RAN opens o bioad amay of possibilities fog
telecoms, with key avenues being defined by the AL-RAN Allince [248]. The AL-RAN Alliance outlines three
key sviaergies between Al and BAN:

I Al-for-BAN, which focuses on embedding Al mto ralio signal processing o improve BAN perfonnance
mierics such as spectral efficiency,

2. Al-and-BAN, which enables o common acceleruted infrasiructiure to host 30 RAN softwdre and Al work-
loads concurrently as firss demonsirated by o SofiBank amd NVIDIA collaboration [249)), maximizing
platform utlization and creating new Al monetizatien opportusities; and
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3. Al-on-RAN. which considers the requuirervents to ruin AL applications over 3G and 6G infrastructure.

A recent example of this AI-RAN sviergy s demonstrated by KVIDHA AL Aenal™ pluform. [250] which in-
clsdes hardware and software components o coable Al-EAN development and deployment. NVIDEA's Acrial
REAN Computer- | [251] provides a conunon GPU-secelerated infrastrscture e hose 50 radio processang and Al
wiorkloads af the edge. while NVIDIA Aenial CUDA-nccelerated RAN provides the software liboaries 1o butld a
Full stack 3G virtual RAN. This capability enables LEM inferénce 1o be served choser 1o the edge amd provides the
ability to dynamically orchescraote RAN and Al workloads a2 demand changes over the course of a day, maximizing
infrasemacne wtilizstaon [252].

This comvergence of Al and RAN also means that both the RAN and Al infrasguciures can be designed as gne
platform that works tegether seamlessly, not teo separate platforms that need 1o e co-loused amd made e in-
teroperate [133). SofiBank has already completed ihe first Live field ol of ALRAN [254, 255] showedsing ity
supenan performaiee and economics and @5 also deiving the comimercialization of A-RAN with the Lawsch of their
own product — AITRAS [256, 257]. T-Maohile and NYIDLA have recently snnounced a joint AI-RAN innovation
laby with Ericsson and Nokia [258. 259 to define o scaable commierciid Al-RAN solution built on ace elerated
infrasmuciuge.

T.6  Conclusion

LLM-drven services show misch pronouse o the ielecotn indusery an delivering content, provading Al-deiven ser-
vices, facilitating the internal operations, and optimizing network pedormance and mainienance. While telecoms
have trahiomally Focused ondelivering connectivity and content over wired and wireles networking, LEM-diven
applications and advanced compating rechnobogies creste o new oppariuniny Tor tielecoms to also play & role in the
Al value clain [260],

LLMs have been engbled by key advancements in GPUs and other computing secelerators, ax well s advances
in petworking that enable the perfosmant resource scaling and parallel processing required to make LM raining
feasible. Along with high-performance storage. LLM training and lagge-scale inference systems are very similar
o a typacal HPC supercompuiing enviromment. Such complex emvironments take special design ond opecatisnal
expertize nol typically extant in enterpnse computing datacenters. Formnately, key hardware advancements i
computs, networking, ard siorage that deive LM tradning aod infesence woday are o longer exclusively the
purview of large-scale HPC facalities but are beang offered as certified reference architeciires that can be delivered
in o building-block spproach, providing telecoms an onramg to LLM-driven mansformation. Telecom operatons
nowy have the oppoimunily o become patiosnal Al infrasoociure and service providers by bueilding an Al grid
spanning across both centralized Al factovies and distributed AL-RAN datacenters: providing LLM inference at
and near the wetwork cdse,
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8 Applications and Use-Cases

8.1 LTMs at the Edge
H1.1  The Svnergy of LTHs and Edge Computing

The integratbon of large relecommunication models and edge computing represents o pacadigm shift in compta-
tondl and networking techsolegies. Traditbonal cloud-centric rameworks are increasingly supplementad by edoe
computing. which processes dota closer to the source. This evelution is panicularly vital for modem applications
like automromous systems, msdusteial WoT, and sman cities. where seal-time processing, low latency. and privacy
are crucial The fusion of these tvo domains wilizes e immense power of large Al models while addressing the
resouree consteaunts of edge covironmaents. By blending computational advinces with disteibated netwoerks, this
sYnErgy prontises W tansfoom idustrees while overcoming signiticant technical challenges [261, 262,

Large lapguage models are foundational commposents of modern AL with architectuses like GPT-4 and LLabA
empliving Billions of paramseters, These models excel in tsks requiring comtexnil wrdersdanding. such as nataral
language processing, mulumdodal easoning, aid downstream ek geveralization. Their power decives from the
iransfoemer architecture. which uses sell-attention mechanisms to capture loag-term dependencies in data [261.
262):

Despiie their capabilities, deploving LLMs poses significant challenges.  Their enormeus sioe and resource-
intensive mature ofien exceed the compuistional, memory, and energy capacities of edge devices, Techniques
like model proning, queantizstion. and parameter-eMicient fine-tuning have Been developed to address these oon-
strarms. These innevations enafle LLMs o be tailored For specific epplications, makntaining performance while
minimiEing respurce usage [ I63, Jd ).

= The Kole of Edge Computing
Edge computing decentralizes computational power, placing processing closer o data sources,  Unlike
Cload-hased systems. edge computing reduces lsiency by processing daia lecally.  For applications like
autmnamons driving, whene split-second decisions are enitical, this capability ts indispensable. Additonally,
edoe compating minimizes bandwidith usage, as only essential data is transvnitied w cemtralized systems,
asd cnhances privacy by kecpang sensitive information bocalized [ 262, 265].

A growing area within edge computing is colleborative edge systems, whene nusluple edge devices work
ogether w share computationsl loads. This approach trunsforms previcasly wdle resousees into active par-
fcigants in data processing, significantly amproving efficiency [263, 2657

= Integration of LLMs with Edge Computing
The fusion of LLMs: and edge computing sddresses the trade-off between the high performance of Large
miadels and the consrained respurees of edge envirenments. Innovations in maedel optimzatien have made
it feasible o deploy LLM: at the edge. For instance. model quantization educes precision requitemeists,
while pruning reosoves redundant parameters,  Technbgees like BEdgeShard and collsborative edge frame-
wor ks allow LLMs 10 De disiributed scross muluple devices, balancing workloads amd ensuring Taster pro-
ceraing (263, 264),

Moreover, o hybeid clowd-edge svaergy ensbles tse mosl pesturce-intepsive compubitasis 1 be affodded Lo
the chowd while retaindng veal-timee. lapency-sensitive tsks on the edge, This division of labor enseres optimal
performance without overburdening edge devices [206. 263). For example. applications such as video
analytics for public safery or predictive maintenance in iwdustrial settings relv on clowd-edge collebaration
to-analyee mssive datasets in real-time.
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= Applicatiens and Use Cases
The integration of LLMs and edge computing opens doors 1o numerous applications. In awtonemous sys-
tems like robotics or stnan factones, edge computing facilitaves rapid deciston-making. ensuring that tasks
such as ebject recognition or movemen cosrdination occur without delays. For instance, edge-deployed
LLMs albow seal-tioee adjestments i pobotee systems, erhancing both precision and reliability [265].

I healthcare, edpe comprting provides réak-time analytics for diagnostics while preserving paticnt privacy.
Hioapitals aisd clinics can deploy edge-based LLMs for tasks such as apalyzing medical images, process-

ing pauent hustones, or delivening tallored treatmsent plans, reducing the peed 1o transmie sensitive data
cxteimsl servers [2ed, 265).

Smuanphone-based virtual assistants ilustrate the comsamer-facing potential of this integration. Lightweight
LEMs deployed at the edge enable contexi-aware dervices, including personalized recommendations, natugal
comversation capahilities, and localized processing of wier data, These features are vital for ensuring &
seamibess user expecience while adbering to strict privacy regulations [262. 263

[y endusireal ToT. predictive muintenance powered by edge computing and LLMs oprimizes equipmen per-
formance. By processing sensar data locally, companies can ientify unomalies, forecast Failures, and
initiate preventive measieres o real Gme. minimizing downtime and operational coses [263, 265].

# Challenges and Foturve DMrections
Dresplie its promise. e inegrion of LLMs with edge computing faces several challenges. Resowrce
allocation 35 a primary concern, as edge devices must balance their linvited processing poweer with dhe high
demands of LEMs. Effcient algorithms for task schedaling. dyiamae resowrce management, and real-time
afffoading are ciitical for overcoming these lmutations [ 266, 265],

Energy cobsuampiion poses another significant challenge. Training and deploying LIMs at the edge re-
quare inpoeatve solutons o manage power demands sustainably. Research into green Al practices. such-as
cnergy-cilicient hardware designs and adaptive inference technigues. 15 essential for sealing these teclvolo-
e [265].

Secunty and privacy are equally imporiant, Protecting sénsiove data during edge-cloud intesactions sl
safepuarding models againg adversarial stseks are critical for mamtabning wust i these systems. Advanced
encryion methods, secure compmmeation prowocols, el robest model defense mechanisms are areas of
avtive rescarch [264, 266].

Fuiwre directions inclade the development of adapiive LLMs copable of real-time learning in dynamie en-
viesnments. These models could adjust to changing conditions. such a3 varations i network traffic o use
helsavior, witlost requiring complete retrabning . Additonally, inegrating S0 networks with edge cospust-
ing eould further enhance the bandwidth and connecovaty available for deploying large telecommumication
mdels [262. 264

#.1.2  Edge-Enhanced TinyML for Beyond 5 Networks

The growing intesest i the TinyML Foundation, recently renamed the Edge AT Powidation. and the rapid progress
of IGPP towand Al-enabled beyomd 3G perworks highlight a majos hift in communication systems. The pasatlel
cliogts of the TiwML Alliapee and 3GPP suandardization i both RAN (Radio Access Metwoik ) and 54 (Sysieen
Avchicece p illustrate how edge Al s ransformung the design of devices, metworks, amd thear operation.

Thas transformation s evadent in recent advancements such as the emergence of seduced-capabality (RedCap) d
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Vices, progiess in pnlegrating sensing capabalities inwo wireless devices, and the demacratization o pewrl negwaek-
Pamed algorihmes For processing oot only geneor data but also communbcation signala. These advancements neces-
sitate the adoption of sative edge-cnabled schemes.

[ this framiework, sdge LLM (Large Langoage Models) eml edge LTM (Lasge Trassformers Modeis) play a cowcial
role. Models embedded on devices must be traloed and updaied using techmgues like knowledge distiflation, oves
the air madel iransfer [267, 268], enabling devices o seamlessly scoess highly capable computing frameworks
ik suppoet their nanye operations. These mechanisms ensure efficient adapiation o changing envirenmenis and
cohiance the performasce of resource -consirained devices.

H.1.3  Fine-tuning LLMs using Federated Multi-task Lesrnlng

Thee rapid advancement of Large Language Models (LLMs) bas revelutionized natural language processing, en-
abling applications fapgug fom copversational agents o sophisticated coptent generation thanks wo the ability
aof LLMs w be mlu-task meodels [26%9) Howezwer, cusiomuzing these powerfud masdels-wo speciiic domains o
twsks often necessitates extensive Ane-tuning, which can be cormputationally intensave amd reise significant privacy
concems. Trdinonal Bne-muning approaches ivpically require centralized access vo vast amounts of Tubeled data.
which may be impeactical due o dati ownership restnetins, privacy regalations, or the sheer volume of data
imedlvied,

Federated Leamaig (FL) | 270] offers a paradigin shift by enabling moltiple elisnts o collabogatively trin a ghodal
miodel withowt shoring thein local data. This approach inherently peeserves data privacy and reduces the nsks
assoviated with contralized data aggregation.  However, waditional FL algonthims are designed 10 optimize a
single global model, which may ned perform eprimally acrogs diverse tasks o heterogeneous data disiributiong
inherent in different clients, This Bmitateon becomes pamticulady peonounced when fire-amng LLMs, which are
aften deployed across vaned doinains with distinet tasks and reqoiremenis,

Federaed bulis-Task Learning (FMTL [271] extends the FL frarmework by allowing each ¢lient vo wain a person-
abized medel taklored 10 s specific task while still benefiting from the cellective knowledgs of the entire metwaork.
By modeling the interactions among clients as 4 gragh where nodes represent clients and edges gquantify 1ask sin-
iliniies, FMTL facilivites the leammg of individwslized madels tar are both speciadized aisl informed by related
tasks. This approsch not only enhasces model performance on individaal zeks bagalso ensares scalabality and
adagability in heterogencous emvardaments.

Ot of the key challenges in fine-tuping LLMs i the computational and communication overhead associaied
with these models, which can have millions o even billions of parameters. Existing federated fine-tuning of
LLMs leverages parameter-eficient Bne-tuning {PEFT) methads 10 enhance communication efficiency and reduce
tramsable parameters, @5 seen i frameworks that utilize prompt manimg [272]; zeroth-order optumization [273], and
Low-Rank Adaptation (LoBA) [274). However, these approgches typacally leaim o single global maodel through
averaging, which may be suboptimal in beterogeneous environments. To implement FMTL for fine-tuning LLMs,
wee tntioduce BUIRA [275], a pasumeter-cicient algonthom thar integrates LoBRA with an FMTL paradiznm w enable
efficient and effective fine-muning of LLMs in o federaied manner. LoB A decomposed the weight manrices of
LLMs ineo bower-dimensional subspaces: sigiificantly reducing the samnber of trisable parsmeters amd mitigating
the computational and communication overhead typically associzted with LLM taining. In MIRA, cach clicnt
miEindaing abs own st of bow-rank matnees, which are itenisvely updated based on bocal data and segutarized o
abign with similar tsks through a-cenprahized parameter seever. The MIEA algorithm operates through derative
comimmication rounds. In eacl round, a subset of clients i3 selecied o perform bocal updates on their respoctive
I -rank malrices using their private data. Afer completing thee local traanking steps, cliesds wansimit their updaes

to the server, which then applies a regularization step o harmsonize the models based on the similarity graph.
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Figure 34: Perfommince companson of v proposed method amd the baselines on Data-Juicer using the Matugal
[siruetion dstaset.

process ensires that clients with related tasks infoence cach other's model parameters, promaoting collsharton
and knowledge sharing among eliens whale preserving the task-specific sduptations of each clisnt.

Next, we detail oar setup and assess the performance of our proposed method, MIRA. against existing federsed
fine-mumning approaches for large language models (LLMs), specifically comparing it o FedIT [276] amxd FedP-
Tunkng [277). We employed Data-Juicer, o Llama-based LLM madel with 1.3 hillion parameters on the Maweal
[nstruction [275] dataser Following [272], we pre-processed the data by sumpling asound 20% of the maining
wel and 2% of the test set. The federated setup included 800 clients, each with o unigue Tocal task, with 105
of the clients cadomly selecied 1o panticipate in cach communication roumd for S communication roueds. We
measuied performance wsing average raning and testing losses and the Rouge-L soore, whach evaluates texl gen-
cration guality by ddentifying the longest common sebsequence between the model’s output asd referesce tests.
Al experimenis were conducted oo an NYIDLA A LD GPU with 40 GB of VRAM, ensuring thut the bea lvper-
prabameters were sekecied for all metheds o duantain o fair comparisan, In Figere 34, se demonstrate how our
proposed method, MIEA, compares fo the baselines, Specifically, when five-tuning the Data-Tuicer model using
the Mataral Instiuction dataset. MIRA shows better performasce companed 10 bath baselines. i facn Figure 34(h)
shows that MIEA surpasses FedlT, the closest baseline, after approximately NI cormimunication rounds. In Tahle
[6; we evalisare the impect of FMTL on the performance of ivdividueal tasks o assess how effectively MIRA adapis
wreieh sk compared o basehine methods. We randomly selecied four cliemsftasks and recorded the average test
lcss throughout the troinimg perkod. We can see that MIRA achieves a lower average loss for theee out of the four
clicntsftasks, highhghting the effectiveness of FMTL and its abality to accommssdate task-specific reguirements,
in comirast o the model averaging approach of the otler baselines.

8.2 The interplay between LLM/Foundation models and federated learning

The integration of Fowsdation Models {FMs) and Federsed Learming (FL3 [270] presents a transformative ap-
proach w addresing challenges in waining large-scale models while maintaining data peivacy, The constrained
commmcation resonrces and inherent datsfystem heterogenciny inreal-world networks can impede perfonnance
and scalabaliny when deploving FL. By incorporating FMs as a vital element of intelligent netwark infrastrociose,
wir Can uiilize Fhs vo improve FL oaining effciency and enable new applicanon scenarios beyvosd the cagabilitiey
af comventional Al models. Hemee, here s oo Mone-size-fes-all™ scherwe. The integeation of FMs anto an FL sys-
e should be tailored to align with the system’'s charactetsstics, whercin FMy concepiually function as tailored
service providers [279]. In other words, we can think of the usage of FMs into federated edge leaming svstems
in tesms of “Fousdotion Model ax g Service” (FMaa8) principle. Inthe following. we provide a comprehensive
digcussaon on the potential and hmitatkons of tas interplay, illesteated through ovpical wse cases,
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Table L6: Lociltest lss per client for some selected subser of clienis on Dagi-Twicer using the Natueral [nsorsction
dataser

Client Task Algorithm  Test Loss
MIEA z7
Cluizsation Adswering FedlT Ly
FedPTuning 955
MIRA .23
Program Excoution FedIT 17
FedPTuning (.87
MIEA 157
Speaker Identification FedIT a0l
FedPFTuning L1.9%
MIEA 1.0
Explanation FedlT 255

FedPTuning 508

#.2.1  Mutoal Promotion keiween FL and FM=

Aos FM geonw b scale, the nest step after utalizisg all publicly available das s 10 leverage personal dita, whach s
inherenly distributed across wirebess networks. However, domuain-specific FMs in fields such as Loy, healthoare,
and fAnasce Tace significant challenges in accessing the propeictary data due 10 stingent peivacy regulations, FL
provides o strategic solution by enabling FMs. incheding LEMa. to be tained directly on decentralized edge
devices, without the pecd o centralize sensitive data. Thiz collaboratien between Fis and PL harnesses the
strengths of both approsches b evercome theie respeciive limitations, fully unlocking the computing potential of
edze nevworks and estblishing a synergistic relationshap | 280, 201

FL expands data avallabdlity for FAds. By allowine data to remain oncedge devices, FL faeilifares tranusg on
sensitive dats while ensurng privacy coimpliance. This privacy-preserving approach empowers FMs o enhance
their trabning dsing o wide varewy of real-world data that would gberwise be inaccessible. This allows Fhby
o maintain adaprability wisd obustsess serods different 1asks wnd user-spoecific apphcations, such & healthcare
diagiostics of personalized fimancial recommesdation [282, 283]. Additicnally, Feal-woeld data, such as Trom
edge devices and 10T sensors, continuodsly expands. posing challenges for updating FMs. FL enables seamless
fine-tuning of FM: with new data, integrating it incremeantally ot existing models, ensurng the model stays
ap-te-date and adapis effectively w changing envirenments.

FMs boost FL with advanced leatures and fow-shot leaming.  Pre-wraised FMs provide FL with advanced
feanige representations and few-shot leaming capabilines. By leveraging the foundational Knowledge embaed-
ched i FMs, FL can accelerawe its learning process, allowing models o adapt quickly and efficiently w specific
downstream fasks with minimal training. Moseover, Fils' penerative capabalitics can assast in addressing data
heterogeneity challenges in FL, such as by symbesizing additional data 1o impeove madel convergence and overall
performance,




$.12 Empoewering FedFMhs Deployment: Challenges and Solatbomns

Drespiie the promising advantages of integrating FMs o federated semings, several significant challenges remain.
These inclode masaging e substantial compuratisnal requirements and huge communication averhead of raining
and shanng large models, ensuring efficient communecaton berween edee devices and the cental server, and
addressing the heterogencity of devices, data. and models across the petwork, Owercoming these obstacles s
cuegnbial fod realiving e el potential of FL watls Fhs.

High demand for tralning and sharing FMs, The significant sesource demands of FM training. contrasted
with the limited and heterogensous resoustes in FL sysiems, such as conmunication handwidth, computational
g, ald necosery[ 284, pose major challenges o the eficieney of Federated Edge Fine-twning, The freguent
exchange of waining data over lmited bandwidih chaneels [ 2835] creates a comimunication bottleseck, and the
large number of FM parameters further compounds this issae, hindenng the overall training process. To mitigae
these challenges, parameter-efficient trainiing methads have been develoged 1o adapt FMs 1o specific domains o
tasks. These methods typacally freeze the majoriey of FM pasameters and fise-tone oaly o small adapres. thus re-
dueting both the compurational load and communieation overhead, Teclhinkgues such as BitFit | 286). adapuer mnwsg
[LX8], prompt tining [28T], and Low-Bank Adaptation (LeRAY | 130] are cxamgples of these parameter-cfficient
approaches that fecilitale efficient fine-uning in resource-constninsd covirenments. In addidion o these, masdel
compression wehnigeed like nwosdel pruning [2E8], sparsification |2E9], and quantzation [290] we also employed
T Funther enhance resource efficiency. These methods reduce the size and complexity of FMs, enabling more ef-
ficient storage asd transmission sceess FL cliens with limited computational amd memoey capabilities. Together.
these strategies make it feasibde o deploy and hoe-tune FMs in federated learning senings while addsessing the
consrnnts inmposed by deviee resowrces and communteation bandwidth.

Adaptabdlity Adapiability challenges stem feom the need o adjust a FM o specific downstream tasks in FL sel-
nngs, partculady due o hewerogeneity in madels, daa sooeces, and syvstem resowrces across chiems. Different
devices and evitonments in FL svstems often possess varying computationnl capacities, storage, and dats chas-
actenistica, whicl mukes i difficult e uniformly wdapt amd fiee-tune Lirge-scale FM s serosd diverse nodes. To ad-
dreas these challenges, weclinigues such ws Ksowledge Dastillinion wnd Mutual Leasming are employed. Konowledee
distillation [288] helps by wansfesring kivowledge from a larges, mone comples FM 1o a smaller, mone resource-
efficientredel. which can be better suited for deploymient on resouroe-constrained devices, Mutual leammng (2491
ablows Tor bidirectional knowledge exchange between models across clients, improving both model adapuation and
performance consisteney in heterogencows setfings. In response (o the challenges posed by resowrce heterogene-
ity Sphic Leasning has also been proposed. This techmgoe, such a in Fed BERT | 292) allows the miodel 10 be
partitioned between clicnts and servers, where each client procesacs only part. of the model locally. and the rest
af the maedel compatation s iffloaded e the server. This aot only seduces the computatonal Bosden on incdivid-
dal clicnts but also minmuizes the commuskcation oyverhead by redocing the amount of model infogmation teat
needs 1o be exchanged during the training process. These methods wgether bnprove te sdaprabality of FMs i
FL erwironments, cnsuring that models can effectively londie the varying constraints of different clicms while
mainiaining robisst performance on specific tasks,

Oher potential isspes: In addition to the aferementioned cost-intensive properties of FMs, the hallucination of
Fils serves as ansther noo-negligible concems. Haolbectnation presents a significant challenge whan using Fils in
FL sysiems. Do this context, hallwetration refers o the genegation of insccurate of nonfacial nformation by the
Fid. which can be particalarly problematic in crivical awtomated decision-making scenaros, suclas speciiic tasks
in autenemons dioving., Such inaccurmces could result mosevere conseguences, lighlighting the need for robust
mechanizms o detect and mitgare hallecosinme in Fis,
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HE3  The role of FM: in FL-emabled networks

Under the principke of FMaas, FMs can be atilized in existing FL-enabled networks to deliver vanous services
at different slages. such as data pre-processing, taining, and calibeation of the collaboratively rained maodel. as
cutlined below.

FM in pre-processing stage. The imbalanced data commonly présent m real-world wireless networks and the
resulting data heteragereily across cliems pose significam challenges thar limie the waimng performance of FL
aystems. Leveraging one of the well-known capabilities of cenain Fis, “their ability to generate data”, can be
adopted o cnlance model teaining. Possible imegrated systems inclede “Data Augmentvtion at the Edge” amd
“Synihetic Data ot the Server” In such soepaios. FME' role as data augniemnters by incorporating peblic or lescally
generated symhetic data e global distillathon o lecal raksing processes [279), This approsch allows the trained
madiel w leam more balanced representaton knowledge from combived datasets rather than relying solely oo local
private data. As a vesull, i significantly enhasees privacy protection and improves robusiness against adversarial
attacks, such as: gradient inversion.

FM i the trainimg. Ln comventiona deep leamimg. a well-rained maodel can seive as a teacher model to eanslen
kv ledge for waining smaller models {Le. siedent models). Given that pre-trzined foandation maodels (Fhs)
hawe sequited extensave knowledge from massive raaning daasers, s logecal wedesign an integrated sysaem that
getneves and transfers thes knowledge from FMs to enhance small model training within FL-emabbed metworks.

FM for model evaluathu FMs an the edge server could be equipped with enhanced funetionality by accessing
the updated local medels or aggregated model, rebher than merely panicipating in the waining process, Given that
pre-trained Fivs demonstrate excepiionul performance across vanous downsteeann tazks, their performanes can
ber weed ax o benchtark for evaluating somaller models, Currently, performance evaluation and validateon rely o
limized validation and fest datasets. While a raimed model may show seong generalization performance o these
testsets, the Ask of overfiting stll exists. Therefore. the output of an FM could serve as a performance evaluation
crterion Tor smaller nepdels by comparning their outpus against the FM s comesponding outpats. Additionally, m
seenanos invalving maliciwous clienss, FMs could be unlized 1o wdentafy such clients theough outpue verification,
distinguishing bebween malicious and beakgn clients. With pre-trained FMs integrated into FL-¢nabled networks,
ihe edge server could leverage these capabilities For complensentary feodel evaluation services.

.24 FedFM-Empowered User Cases

Speech. With the rapid sdvancements in AL there has been substantial progress o the developasent of speech-
related Fhds, swch as way2vec 20 [59] and Whisper [293]. These models are imerensingly paised witls Federaed
Learning (FL) 10 manage privacy-sensitive andio data, FL's decentralized noture makes it particularly sulied
lor speech spplications where en-device processing and user-specific custoanization are cotical. Audio data is
contimssly genetuied by end-user devices ke smanphenes, making of essenind o keep this dats local for privacy
redwsgans rather thian wansmiming it oo eteml seevers, Additionatly. while FL crables collaboeative model irainisg
auress users o dmprove general accuracy. a universal model may not abways meet the unigue requirements of
individual umers [2%4], highlighting the veed for personalization. Key applicateons of FL in this domain include
Aptomatic Speech Recognition (ASR) [293] and Speech-to-Texg (52T [2946), where FL ensures prvacy while
eonhancing user-specitic model performance.

Recommendation. Federsted Becomimendation (FR ) winss o provide pecsonzlized content to users while cnsunng
data privacy by leveraging decentralized learning [297]. Recently. the wse of LLM: in recommendation syvstems
has gained significam tacton [295] due o their ability o anderstand complex linguage inputs and generalie
acpiss dowtiing. Ome comimon appeeach o adapting Fds for FR invelves fing-tuning them with historical us
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item interaction data, To oplimase resouice dsage mosuch setngs, technigques like FedPEFT. including adapees
winang | 209] and split beaming |30, are often cmployisd,

Beyond paramieter fine-tunbng, LEMS can alse be used oo eero-shor aunner theougl promgt engineering o
assist in recormendation tasks |300). For instasce, GPT-FedRec [302], a twio-stage FR framewark. utilizes
ChatGPT's zeso-shot generalization capabilities. In the st stage. it collaborstes 10 train both ID-based aisd
texi-based retrievers, which are then used 16 generae prompis for GPT. In the second stage, these prompts are
processed by GPT tore-runk the retreeved resulis. Additonaelly. [303] explosed wsing pre-trained BERT models
e cocate tenn descripteon vectors, which ase then imeosperated imoe a recommender system as ensched wpur daa
o imgreved recommendations,

Healtheare. FMs. LLMs, have demanstrated mmarkable siceess i healtheare, excelling in vanous tasks such as
menial health assessments 304, discase dingnosis [305], and drog discovery [306]. However, privacy concerng
arise when sensitive patiend data is uploaded o centralized commercial servers hosting these nsdels, Federated
Learwing (FL) addresses this challenpe by cnabling decentralized model trainkng without cxposing privade data.
affering a secure way to harmess Fids' potential In bealihcare.

O auch example is FedTherapist [307]. a nwhile meatil health monioring sysiem that fine-unes FMs using
FL based on user-genevated specch and kevboard inpats. This svsten has demonstrated high accorscy in predict-
ing meental heabth comdions, weloding depression, stress. and moid Tuctuations. Aoother stwedy [308] explored
the application of FL in soeproving MEE reconstucizon. The sesearchers fine-tuned an FM, pre-trained on public
daasets. using visual prompes from decenralized clinical data. This personalized FL approach veduced cormmu-
nication everhesd while achieving compentnvie perfomance wath Hmited bocal data, highlighting the saahility of
ihe FM-FL combdoation i medical maging anc other healtheare applications.

8.3 Reinforcement Learning with LTMs Interaction (9.4.1)
$.51 RL-Empowered Coanmonkcation

Reinforcement Learning {RL) has achteved significant applications in communicatipna. mcluding network sccess
and rate controd, caching and offioading. network secunty, and connectivity preservation.

= Metwork Access and Rate Contral

Ly nerwork aceess amd rate control, RL s wislized for dyvsamee specirum access. where wsers, such as sen-
sofs dn the [nternet of Things (1eT), select channels based on their states to masimize theooghput Tt also
addresses joint user association and spectrum access. optimizing dats gates and service quality by determin-
ing the best base station aml chammel for weers 1 heterogeneony peeworks] WEH, Addinionally. BL aads in
adaptive rate control, sechoas s Dymamie Adapave Sweaming over HTTP {DASH) systems, where clients
selbece video segment batrates 1o enbance the Quality of Experience {QoEl by balancing average batrate and
minkmizing buffering.

= Caching and Cffliding
I the realon of caching and offivading. RL is employved Tor wireless proactive cachung. where base ata-
nons pre-cache popular content o seduce wansmission-dupbicaton, access delays, cnergy consumption, amd
averall waffic[3 10, This wvolves making decisions on what content to cache and when to replace it based
oap user requests and content populanidy., RL also facilitates dats and compuiation offteading. enabling [oT
devices o offload coanputational tasks o nearby Mohile Edge Computng (MEC) servers, thereby reduc-
ing processing delavs, saving batery encegy, and enbancing security, Mobile users, for mstance, decide
whether to offfoad data to celluk nerworks or WLEAN and select the appropriate MEC server based o
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nabwork comdditons and theie specific peeds,

s Metwork Security and Connectlvity Preservation

Merwork security and connectivity preseryvation are other critical areas where RL s applicd[ 3111 In network
aecurity, BL helps combal jommisg attacks in cognitive radio networks by enabling wseis to learn optimal
strategies for channed selection transmit power adjustment, or vsing AN a5 relavs o avoid iderference.
It also aids in responding o cyber-physical artacks in aitonomous sysiems, such as seli-driving cars, whee
viehiclos bearn o adjust thear speed based on the attacker’s activities toomabniain safe spacing. For connectiv-
ity preservation, L i used b mslu-robot sysiems, Like moplti-UAY perworks. where cach robot dynamically
adjusts s speed and direction o maintain edmmunieation fange and connectan stabatity,

= (Mher Applications

EL is alsp instramental s tralfic engineening amd couting, optinwang daia raffic pabs w0 maximize ael-
veirk utiliny aned minimaee delays[312). It enhasces resource shanng and scheduling in mult-wser oassive
MM swsierns and cloud radio aceess networks, ensunng efficient resource allecation and service quality.
Furthermare, BL suppaorts power caoantrel and data collection in non-Cooperative cognitive radio erworks.
masaive MIMO networks, and wireless sensor networks, optimizing power allocation, sensing, and contral
o impreve network enerey efficiency and wser Gurness, Additionally, BL echmigues are used for divection
af arreval (DA estimation, ssgnal detecison, user associatien, lowd balarcing, user bocalization, amd secess
device detection, keveraging deep leaming to improve accusacy and perfonianee i varieis comimemication
SCETITIE.

#3132  LLM-Empowered 60 Commuonication

= Opiimization and Resource Mamagenent

- Resvurce Allscation

LLMs have significont poteatiyl applicatsons in maximizing specirum efficiency and energy efficiency
i wireless communication resource management. By onalvzeing vast smounts of communication data_
LLM: can optimize spectrum allication, ensuring that fegeencios are wsed more effectively amd ré-
ducing interference. This leads to improved spectium efficiency. allowing networks 1o handbe more
diata and vsers simuolarecusty. Addiienally, LLMs can predict waffic panerns and user demand, en-
abling dynamic sesource allocation that adapts in real-tme 1o changing conditions, thas maximizing
energy efficiency. By amomating network configuraion and Gault detectbon, LM can also reduce the
emergy consumplion ssociated with manosl network managemes tasks. Furtbeemore, in the context
of intelligent edge compuiimg, LEMs can sapport real-time decision-making and jesource opimiza-
tiny, further enhancing Both spectrum-ind energy cfficiency in wireless petworks[311].

- Protocol Understanding
Tix the field of wiseless communication, LLMs are proving o b2 nvaluable for protecol understanding
amd implementanon, These models can analyze and inteopret complex wireless communication proio-
cials, such as 56, LTE, and 'Wi-Fi suandards, Facilitating the development and optimazation of commi-
nication systems. . By leveraging thedr advanced natural language processing capabilities, LEMs can
aisl engineers in decoding protoco] speciicatons, idenfilying potential ssoes, aml cnsuning compli-
amce with iductry vandords. Additionally, LEMs can belp in sutoiating the generation of peotacal
documentation, streamlining the design and wesiing processes, wisd enhancing owerall sysem perfor-
mince. Their ability 1 undersaasd and process vast amouamts of technical information makes LLMs= a
powerful wool in advancing wireless communkcaion technologies[314]
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= (zenerative and Deslgn Solathoas

- Automated Code Deskgn

LLMs lave demonstraced significant potential, partcolarly bn gerecating basdwire description Lun-
auage (HOL ) code, Research mndicates thsat LLMs can st only produce HDL code for simple cogpi-
tational tasks but also play a crucial role in developing more complex wireless petworking prototypes
amd products. Case stadies have shown that LM can substantially enhance produciivity in cdde
refaciomng. seuse; and validanon for researchers and developers. Furhemmore, LLMy have proven
effectve in generating HOL code for advanced wireless signal processing algosithme, such as suwocess-
fielly creating a Ga-potist Yerlog Fast Fowres Transfoom (FFT) pwsdule. These achievements lslghlight
the broad applicability of LLMs in swtomsted code desizn, showeasing their abality 1o handle com-
plex task decomposition aimd molti-step ressoning, thereby driving innovatkon in wincless networking
syatems development|315].

- Generate Metwork Configurations

LLM: are iscreasingly being utlized vo auvomate the generation of setwork configurastons, offee-
mg sighificant benefits w telecom netwirk operators. By wanslating naneral language requirements
ot foomsal specifcueons, LLMs can create high-level amd low-level device configuranons withour
thie feed for extensive manaal inpat[ 3 1a], This capability allows For amomatic network provisianing,
ogimization, and performance wning, as well as security snd complionee configuration]317). Addi-
ooy, LM can assist in faule diagnoesis and troubleshooting. snd support petwoek wirtualizatnon
etforts. By reducing manual effort and impeoving the efficieney. reliability. und security of network
managemienl, LLMs are transforming how petwork configurations are generated amd maintained
complex telecom cnvironments.

— Recommend Troobleshonting solutions

LMz have shown significant potentizl o recommending troubleshooting selutiens for complex tele-
com networks, which reguire resolving both software and hardware faules known as troable reports.
Research has demonsirated the effectiveness of LLMs by this dorain, witlmodels being used @ gen-
erate and rnk multiple possible solutkors for system faults [318], By incorporating transdfer lesming
ansd non-task-specitic webecom dact these models have enhanced their abiliy 1o hamile unseen roukle
peports (3190 The LEM-¢nabled nyetlvod uses troshle veport observiations. headings, and fauli aneas as
anput 1 gencrate the top-K possible sobutions, significamly improving efficiency and enabling Gsier
response abd repair Bmes in felecom retworks [330].

= Predictive Analvtics

- CSI Prediction

Channel State Information (CS1) 5 vital for optimizing wirgless connnundcation systems &5 it pro-
vides detabled insights into chaneel guality and clorseerismnes. LEMs can predict C81 by analyzing
vasl amounts of histofical commumnication data o identily comples patems and resds thar affect
clannel conditiens. By incorporating environmental factors, weer behavios, and device chagactesis-
tees: LEMs can generate maore sccurate OS] predicteons, This predicrive capabilicy nos only enhances
network performance bul also optimizes resousce allocation and reduces channel estinstion emors,
thereby improving overall commumication efficiency. Addinonally, the nuural Lnguage processiing
capabilitics of LLMs can lelp engincers hetter uncerstand and interpret prediction results, Facilitating
miore elfective decision-making[321].

- Prediction-based beamformdng
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Beamforming is & wireless communication echuigue thar enhances sigonal gualicy and redeces inter-
ference by divecting tansmissions wowards specific usees. LLMs can significantly impeove prediction-
based beamforming by analyiing user mobiliy patterins, covirommental changes, and histonical signal
data to forecast oplimal beam divections.. This allows oetworks o dynamically adjuse beamformming
strabegies o meet changing vser demands asd environnental conditions. - By leveraging malimodal
data, LUMs can caprwre dynommic aerwork features and predsct the best beary for current and futue
comdinons[322], This not oaly impeoves conmection stabaliy amd signal qualivy but also seduces energy
consumprion wd inerference. Additionally, LEMs can process large datasels inoreal-time, mazking the
prediction and adjestmient process more effickent aod precise. This Bexibility enhances higl-mmobilicg
wid latency-setsitive applications, paving the way for mare efficiem and intelligent wirekess comimi-
nicalioar ysleins,

— Traffic load Prediction

LLM: have the poteatial to revolwtionize Traflic Load Prediction by leveraging their advanced natural
language peocessig and seascung capabilities. In the context of traffic management. LLMs: can
wterprer and analvee vast amounts of oaffic daco, incheding historcal waffic pawerns, veal-time fiew
anformation, and vartous envirenmental factors. By dedng o, they can whentify andedving trends and
paabteims tat oy oot be easily detectable theough iradinenal satismeal methoeds. The integration of
LLM: into teaffic predictien systems allows for e accusate and neanced forceasts, which can infomm
urban planning, taffic sigoal control, and driver movigation systems. Maoreover, LEMy can adapt to
changing waffic conditions and leagn from new data, continususly improviag their predictive accuracy
over Limse. This humas-minetic spproach w Traffic Losd Prediction oot enly enbhasces the efficiency
of waffic mandgerent bur also contribures oo the devebopment of smarter and more espensive arban
rransportation ecosysienss| 123,

£33 LLM-Enhanced KL

s Information Procesoey
LLMs cain serve as informuation processors an the feld of reanforcement leaming, They can extract fedtune
representations of landlke pateral Tang uuge-based mfommation woaccelerate BL learningi324), For exam-
ple, pre-trained LLM models can be used ag feature representation éxtractors, either by directly using the
frozen pre-trained model or by fise-wining iv with contrastive leaming @ ierease sample efficiency and
generalization, LEM can also act &5 a language translatod. converting diverse and informal mafural anguage
infedrmation e formal wak-specific information 1 assisl the leaming process of the BL apent,

= Reward Designer

LLMs have the poential woact as reward designers o KL, They can leverage pre-trained common-sense
knowvledge, code generation, and in-context leaming abilicy 190 desagn or shape rewand fubctions. Thene are
two ways for LLMs po serve o rewand models: ong 5% wo e an implici reward imaedel thae disectly provides
auiliary or overall feward vabise based on the understanding of task obectives nnd obscrvations, either by
direct promping with language descriptions or by sconng the alignment between the featare representation
of the visual observations and langueage-based instrecticns[323]; the other is to be an explicit roward model
that generates execatable codes of reward functions to transparently specify the logical calculation process
of peward scalars| 336

= World Model Simolator
LLMs can be applicd as Waorld Maodel Siomslavors in the context of BL. They can be traned 1o 1 actas a

irageciory rolloutor, aubo-regressively gerecating accwrate irajectonies for the agent 1o leam and plan| 327
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aof 20 fupcton as i dymamdos repeesentation learner, predicting the latent representation of the world usig
representation learming[325). For example, pre-rasned large-scale models hayve bean used o svitlsesize ra-
Jectories in games, and these based oa action-free video representations have shown improved performance
in visual RL rasks.

= Decision Maker

LLMs can play the role of a decizion-maker in RL. either a5 a direct decision-maker or an indirect decision-
maker. In direct decision-making. LIM ephances the Decision Transformer-based methods with a more
pevwverfal pre-trammed model and proor workd knowledge to solve sparse-reward amd long-horizon Lasks more
ctficiently[329]. For example. by framing the leaming process of offling BL imio o supervised leaming
problem, LEM can predict future sctions based on sequeénce madeling. impraving the sample efficiency
aind generalizavon of the model, I indireet decision-making, LLM instuocts the action selection by either
penerating 4 set of action candidates or providing a veference policy. This helps address the challenges
poed by larpe actlon spaces and natwral language in applications such as msrociion-followisg and wx-
hased games[330]. Por instance, when generating action candidates, RL agents can ferther re-rank them
bazed onthe value function o maximze cemulauyve rewards,

B4 Distributed LTMs
Hal  Integrating Blg Data Analyibes and LLMs

Drisrribuated Large-scale telecommunicarion systems are essential for handling the massive amount of data generated
by moders comimunication netwirks, These systems may oiilize disributed architectmes, big data analytics,
and antificeal intelligence to efficicntly masage, optimize, and secare telecommunications infrasineciures, In this
sectbon, we am o highlight key concepts, challenges, and applications based on recemt research, particularly i
big data analvtics, large-scale wircless networks. and the application of LEMs in telecommunications.

= Big Drata Analyvtics in Telecommunbeations
The ustegration of bag data inio elecommuanications. has revolitioniped the way data i managed and pro-
cesged, Telecommunication perworks generale win emsmsows volume of data Toom varoms soureed, sucly
as senmor nodes, maobile networks, and customer interactions. Efficiently analyzing this dite a5 crecial fo
eplimizing petwork performance, seducing latency, and improving user expeienee,

A significant aspect of big dats analviees in telecommunications involves the so-called Lam da are itecture
[331]. whach is desagoned w bandle massive dots stvcams o real-toe and batch processing modes, This
architectiore enables the simuliancous analysis of histovical data For long-temm ansights amd real-time data

for bnstant decisbon-making. The aeed fur such architecture arises from the ever-increasing complexity of
welecompnenications networks, where real-time decisions are eritical for funetions lke network boad balane-

ing nnd congestion conteal [332]

Moseover, the abiliy w predicr user behavior and nerwork wraffic patterns 15 one of the key applications of
big data analytics, This allows eleconumunications operatons o antickpate netwark loads. allocate resowrces
ctficiently, and svoad service dissuptions, The chalbenge, losvever, ligs o processing the lage volamse of
strucbared wnd unsmucired duta penersied by these networks in real time, especially with the growing
prevalence of ToT and 56 echnologies [332, 111].

= Large-Scale Wireless Networks: Challenges and Solutions
Wirckess neteorks, especially large-seale ones) precent uniges chillenges die 1o the constantly changing
envirgnment in which they operate. Factors such as user mobility, interference, and network-wopology shift
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make it difficult 1 maintain stuble, high-perfommance communkcations. For instance, the signal quality by
a wireless petwork can be affeceed by physical bariers, siech as bubldings or even people. amd by civigon-
mental fscrors ke weather or radio interference [334).

One key approach to managing these networks is rea Llime monitoring and to o og  disderelss
sccess points {APS) must be continweusly menitored o detect Aucations in e nevwork, such as changes
inuser densily o iterference levels, Collécting beacon data {infoemation wransmitied by beacon devices iy
wireless commamicatien that enables deveces 1o discover, ideniify, and mteract with the network o service)
from APs allows petwork adiminisiratoss o mag the network wopelogy and wentify areas where the signal
miy beoweak of congested [335], This data can also be used to opiimize power conflizugations and minimize
interference between neighhoring access poinis [334 ).

Funliermase, lurpe-scale wireless peeworks face the challenge of efficiently distributing users across secesy
pemants, Traditional methods tely on signal strength for user associatbon with APs, which often leads to
inefhcient distribution and nevwork overloading.  Moge sdvanced techniques, such as those incogporating

ot are De nad et or ingf33d), can dynamically adjust user associations based on multiple fac-
1o like channel secwpancy and network load. impeoving network efficiency and enhuncing user expericoce
[334].

Large Language Models (LLMs) in Telecommmunicationg

Apore ecent advancensent in the field of telecommunications is the application LLM=, While LLMs were
initially developed for naaral langeage processing (NLP), thewr potential in ielecormmumications networks
has become increasangly evident. LLMs can be applied to o wide range of 1elecompnimications asks. such
as netwoerk optinuization, waffic prediction, wnd toobleshooting.

One of the major osesof LLM: s in et or tra ¢ redicPodicing traffic patterns in (e lecommmeni-
carins networks i a critical sk, as iCallows opegitors o ooptimeze erwork resoices, aveid congestion.
aid provide better service to usees. LLEMs can Feam from lavge wolumes of hisiesical nevwork dats to predict
future traffic loads with high sccueracy. This predictive capability 15 especially valuable in the era of 30 asd
[aT. where the voluns and varety of daa streams have mcressed dramatically [333).

LLMs can also as<ist in o es ooting net o iBueeslyeing seowork logs and customer service
interactions, LEMs can identily comimon network problems and suggest solunions. This can significantly
reduce downtime and improve the efficiency of network operations. Fanthenwore, LLM= can aid in awtemal-
ing rowtine tasks, such as pevwork configurateon and losd balencing, frecing uphuman eperators to focws o
o complex psaes (333].

Havoeewer, deploving LLM: i elecommunecations networks peesents several challenges. Qiae of the makn
concems 15 the computational cost of eaining and uming these models, Telecommunications networks
alven operate at the network edge. where resources like stovage and processing power are limited. Tech-
nigues such a5 arameter @ cient ne lamiag it edge earnboee been proposed o mitgae these
cliallenges by rediecing the computational boad sequired for training LEMs ab the edge of the seowyork |333).

Fuiure lNrections and Challenges

A elecommunication networks continee 10 evolyve, the rofe of disuabuied arclitectunes, big data analytics,
ad AL models like LLMy will only grow. However, theve are séveral challenges that need to be addiessed
o ully realize the potential of these echnologies.

O magor challenge is the sca a 1ib o distri uted are iteTilaremmunications netwarks are ¢
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apantly expanding insize and compléxity, with the introduction of new teclimslegies like 56 and edpe com-
puting, . Manoging these neeworks requires scalable solutions that can hardle vast amounts of das and
sappon real-time decigion-making scross multiple nodes [332].

Another challenge lies in the 1 ac  and secunfliclecommunications data, With the increasing use of
Al models and diswributed architectwres, enswring the privacy and security of wser data has become more
difficult, LLMs, in pasticular, are suscepible o issues such as data leakage and meslel inversion attacks.
wibere malicions aciors can eeverse-enginger sensilive information from the model’s output.  Addressing
these security coscems 15 cntical for the widespresd sdoption of Al inelecommunications [ 333],

Additiorally, tse integration of mu B moda data souscmsmporant area for futise research. Telecom-
munications networks rely oo o wide variety of data types, including text, image. and sensor data. LLMs
ad other Al models peed 1o be capable of processing and mitegrating thay mulii-modal data o provide move
accirte predictions [ 333).

a2 Communicatbon-efficient Flne-tuning in Decentralized Settings

While the vse of Large Language Modets (LM covers a wide range of appllcanons across vanows Aelds.
scaling these models and sdapting them to specialized tasks and domains eften requice Ane-tuning of pre-trained
mindels. Moovated by the disteibuted watwre of the dats and the effciercy of thuinimg nodels using distriboed
computing over mdny devices, distributed or seni-distributed fne-tunkng is an appealing approach in decentralized
settings. While standard fine-tuning agpeeaches rely on [rst-ocder (FO 1 optimieation metheds, such as Soochastic
Giradient Descent (5GD) and Adam. these methods sefter from lmitatkons teat hinder theis mplementation e
this context. In fact. FO opumization methads rely heavily on backpropagation, which significanily increases
memery overhead, Purthermore, the deviees are supposed o exchange high dimensional wectors of gradients,
wikich presens a cntical challenge, parmcularly o resource-consimned environnsenes like edge devices.

Zeroth-erder (20} opumizatvon represents a poential approach o overcone these challenges, 0 oprmization
ebomgs o the wader field of grodient-free epumizamon. bs based on estimating gradients using finie difference
approsimationg.  These teclnigues rely solely on functon evaluations - 200 information - rather than cxplicit
aradicit informmateon, yet thele algorithmie fameworks closely rescmble those of FO srsdient-based nsethiods.

While several strategies exist for calculating 20 gracdhents, the most peominent one 13 based on rasdomized direc-
nons. which estimates gradients based on finite differences in function values evaluated slong randony directional
vieciors, Given a scalar-valued boss function Ly |, where  resides an o dedimensional space, the 20 sradient
estimate 15 compuied using the central differenee formals:

"-.7"1-1.1=!EE!“ +d] L dw)
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where Wy represcits a random divection vector usually sampled from a wormal dismabotion 47(00 1 2 ds the
mumber of fubction queries which genesally impeoves s etinmation, and & = 0 5@ slep sie pasameter (oflen
referred to as a smoothing paramerer).. The idea of 20 estimmes decives from directional derivanives, where, as
& 0, the finite difference of function valies in the U direction, denoted s LY . u), approximates the directional
derreative VU ) u

Z0 optimization offers several key advantages, making ita valuable ol in varows Aelds. Here are some of s
primany benedits:
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= F0 meihods do ot reguite explicin gradient idommistion. relyang salely on functien valee evalwatoes. This
mikes thern suitable for problems where gradicnts are difficull, expensive. or impossible 10 compute, such
a5 black-box optimization scenarios where only inpui-output relationsbaps are aocessible This s crucial
for applications involving proprictary systems of experimental setups whese intemal compatations are oot
visthle [137; 33E].

= Improved Computational, Communication, and Encrgy Efficiency: Computing Z0 gradients requires only
querving the objective function and applying Gnite difference caleulations, which signihcantly reduces com-
putationil overhead compiared o methods that rely on explicit gradiest compuation. Addinonally, Z0 op-
timizatien does ool reguine storng Lege amounts of inermediate dats, making it memaery-efcient |339).
Moreower, innovitive algorithms can be designed o exchange only scalar values in distriboted setrings,
miking use of the stiuciune of £0 gradient estimures | 324, 341, 342], which allows for high compmasicatian
efficiency. This simplicity 10 computation and communkeation wot oaly speeds ap the optimization process
-deapite the stower comvergence ratés of 20 ws FO- but alse redaces energy consumption |342] which is
partecubarly advantagesus in resowice -constraimed seitikgs, such as embedded systens or on-device machine
learming,

= Reduced Dependency on Model Sirectwre; Unlike gradicwi-based methods, 20 optimizanon does not rely
aal the internal staciuee o specific details of the model. This model-agrostic property & particielady useful
in machine bearning tasks like adversarial testing [543, 344 | and interpretabilicy [345].

Dnse o these advoneages, 200 can be seen as on appealing appeoach for Goe-mnng i decenralized senings. In
[339]. a memory-cfficient zeroth-order optimizer fine-tunes LLMs dsing only forward passes, The algorithm uses
two forward passes fo caleulate the loss funciions with the two peourbanens, which are then wsed o estimaste
he gradient. To cnsuiee consisteney in perterbations when estimating each gk, the method employs candom
seed resetting. This agpeoach elimisates the need to stoee amndom perturbation vectors, thes avaading additisnal
memery ovethead, This method demonstrates companble performance 1@ ine-tunng with backpropagation across
midtiple tasks, inclsding classiboation and 1ext generation, with memdsy usage redisction to the level of inference.
While mansrally, ZO methods need more ierations 1o convesge tha their FO-counterpans, the awthors show teat
ihe per-step specdupan thekr 20 algocitbm can oficn make fine-tuning min fester than a standosd smplemsentotion
of fine-tuning with backpropaganon. Lo sddivon, ds potential exeends w efectvely opamizing non-differentizble
objectives while also mainiaining compatibiling with both foll-parameter and parameter-eficient uning rechnigues
such as LoRA amld prefis tusing,

[24)] extends the work in [3139] o decentralized setings and proposes & commuenicatiok-cMcient decentralized
fine-tuning framework that leverages shared sandomess o minimize the bandwidih cequitemeists for distribuied
model raiving. In this approach, multiple sdge devices collabore by first synchronzng thedr inital model states
and agreeing on @ shared mechanizm o genecate randem peturbations. Each device independemly estimates
gradienis using the method mentioned previously amd shares only scalar gradient peojectvons, minimizing thus
the communication overhead. Devices also share the corresponding seed values, allowing others 1o seconsimuct
the perturbations locally, This ensures consistent gradient aggregation and synchronized model wpdates, all while
muninEing commsemcatnon averhesl by enly ansosimng scalass. Foe toaining the 6.7 bdllion pasameter OFT
madel, 4 pagve baseling of sharing PO gradients berween 4 machises would require 1004 of wrabyvies, compn-
cating the gradients of LoRA would cost 100s of gigabyies. whereas the scalars of the 0 gradients oaly require
cormmimicating a few 10x of kilobyies, This constitutes a huge saving n compuenication fesounces.

[ parallel: Z0 methods have also been explosed in [341. 342] 1o teabi and fine-une models over wireless sysiems.
Tin [341]. 2 povel twe-step Z0-based federated learning (FL) has been proposedt. This method has the advantag




af bscluding the wireless chansel e leamang iself, avoeiding thos decoding and equalizstion ar the receiver,
and allowing o high mumber of devices w partcipate simultaneowsly i the wraining. The ase of 20 significantly
reduces the cormunication overbead to twor scalars per device, improving the communication cfficiency of the
syatem substantially, In [342], the impact of guantization and wireless errors on Z0-based FL las been studied
It has also been showan that Z0-based FL albows For the achievensent of hugh energy and compmanic ation ¢nergy
savings, naking it a promising approach tor edge devices. Even for the slower corvergence eae of 20 methods.
they shiow that there is an imponant saving o convergencs tme needed o compute and transmit the 20 gradients
for thie whaele method's iterations compared to the standaed FL method. Simdlarly, for ensergy comsunpibon, Z0
requires a pegligible amount of compatation/ornsmission coergy compraned v ats PO counberpart.

85 LTMs in Network Optimization
#.51 Reinforcement Learnlng with LTNEE Interaction

L psodern ielecommiuications nepworks, optimizing wser ok 15 sigmfcant. Traditional methods shat selsy mainly
oon ebjective metries, sech & latency, data rate, and packet bose, often Gl shom of capturing the detadked. subjective
experiences of users, This gap metivates us 1o design & more comprehensive appeoach that integrates subjective
QoE pssesments 1o tndly enhance user satisfacton. LThs bave emerged as powerful tsels for this parpose. These
mclels can act ey antelligent agents for users, simulating their wberactions within network management seenariog
and beidging the gap between objective performance metrics and subjeciive user expericnces.

[ this case study, we consider & retwork-abded image geperation service where different users may have vastly
differewt perceptions of the same image lased on their personal preferences amd experiences. For example. even
when geverating images of & dog on a Lla  ahe resulting images can vary significantly fnostyle.  Differcnt
users may have distieer preferences for these ayles. Caporing and responding o these user preferences is vial
for optimizing service delivery m nest-generation network services. However, collecting and analviting extensive
wser bohiavioral data to understand thess preforences nases significant privacy conceims.

To address: these challenges, Reinforcement Learning with LLMs Interaction (RLLI 15 a novel approach o opti-
mize QoE in AIGC services [ 346]. RLL] leverages LLM-cipowered generative agents deploved on edge devices,
sucl us sreanphoncs, to simulabe diverse wser prefercnces wathoul compromising peivacy, These agents abe ubi-
tialized with peompis basged on the Big Fove persosnality frodcs, allowing them (0 mimdc a wide range of user
preferences and behaviors, The RLLL system operates by presenting generated mages v the LLM agent. whicl
evaluates them based on the simulated user’s persopality. These agents provide subjective (oE scores that serve
ay eewards for DRL algorithms, g Presimal Policy Opammzdtion (PPO). The DRL algorithm then leams an
aptamal policy for selecting AIGE service providers (ASPs) to maximize the overall QoE across all users. This
innovative approach enobles peesonalized seevice delivery without the need 0 ransoit seagitive aser data o cen-
trak servers, effectively addressing both QE optimization and priviacy concems. By mitegrating subjective QoE
asgesaments through LEM-powered agenis, RLLI bridges the gap berween obpective nefwoak perfomuance metrics
and users” subjective expenences. Expecimental results demaensirate RLLTs supenonty over benchmark methods
such as rasdom seleciion and DOMN-based alzorthms in maximizing dser QoE, showcasing its potential o enhance
sgpvice delivery i nest-genegation network emvices.

H.52  Traffic predicthen for network optimizathon

The optimization of mobile petworks @5 o process that aims sl determinizg a setwork configuration (parameters,
resouree allocation, ete.) that induces the minimal cest. under Qos and energy performance constraints, The
performance: being highly dependent on the taffic, a precise tn;:nwlcdge of waffic is csqemtizl for an effective
OPEIMIEILION fEDCess.
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A plethora of ogbmizatisn schenies have been proposed Dnthe ltesatare, most of them considering a perfect kivwl-
cdge of the waffic and an instantaneous pdapation of the network w it However, some oplimization scenarios
involve reconfiguration of network elements, sucl as nurseralogy modification for netwark lice liunchizdapration
o the wake-up of resources in deep slecp made. Accurate waffic prediction b= then needed for anticipating opti-
midzatien actions en different time scales, integrating e spatial dinsens o,

LLMs have recently been extended to time series prédiction, with: promising resalis [347]0 The authors of
[48] claim that carrem L1Ms have the potental o revolutionize tme series analysis] facilitstng more elfi-
crenl decision-making and evolving towards a rvore universal form of time senes analyucal imelligence. Further-
i, awthoes of [ 249 showed tat models pee-trabed oo matucal language processnag oF image analvais tasks
cun achieve comparable or sate-of-the -art performasce iy vaeious tame seres analysis tsks, including prodiction
This result indweates that LM stand out for theo ability w transfier kowledge from one domain o angther,

The main challeage in developing pee-trained models for time senes analysis s the lack of lage amounts of
irabming datn Yei o teameal Amacon pre-teaiived a family of models for tine series forecasting called Clironos
[330] bailt ona T3 architecruse [3531] by gathering & Targe database and performing data augmentation. These
madels cutperform traditional and deep leaming echnigques on observed daasets, The idea behind Chronos is that
a language model that peedacts the next whken shoald mot be go daffercnt Trom a moedel tat seeks w predict the
nest value-of o ime senes. W simply reguires moving from an infinkte contmnemss domain, thar of the aumerical
valunes of tme senes. o a finite domain — move precisely, a dictvonary of tokens vaed by LEMz. In other words,
Chronas iokenizes Ume series ot discrete bins through 4 sanaple scaling amd quantization of the real vales, thus
Creating a "“tme senes language”

W progose 1o evaluate the predictive performanee of Chronos on g datased that was noed part of the inng daia
This 15 called “zeso-shot™ prediction. Moie precisely, we have the taffic in Mbit's aggoegated per week from about
twenly huse stations spread over La Rochelle Tin France), from which we seek to predict the futuee values or sach
sine

Before looking at the simulation results. o common practice is wo define a baseline model, which helps establizh a
munkmian level of performance that more sophisticated models will encounter. & widely dsed statestical techivigue
for predeciung network fraffic s the miegrated moving average anioregressive mode ] CARTM A [352], and o variant
mndel thar capiures seasonality: SARIMALISY]. The ARIMA mwode] makes predictions by considenng lagged
values of & time senes while faking into account the non-statonanity of the dato. The simulation resalts are given
Table 17, One can potice that the oumber of parameters does pol always seem w lead o beter perfomume:.
Lisdeed, the Base maodel (2000405 does better than the Large owodel (7000, This is probably due 1o the fsct that a
Targer model with more parasmeters may have & grester abality o lrarn from the trainmg datz, meluding noise oo
amall Aucmiations. This beads o overfitiong, whiere the ossdel performs well on the drakning data, but less well on
data it has never seen.

A najor drawhack of this solution is that tonly models e temparal dimension of the data and it has been shown
by the awtbiors of [354] that removing the LM composent o replacing it with & basic attention layer does not
negatively affect the peediction resalts in the case of an wnivarate fone series. For the moment, this smdy does
neod address tee case of mulivaname ume series. I our case. this comresponds “inuatively”™ wothe fact than if & base
station sees s rafhc increase o0 diecrease shaply, it is very Likely that nelghboring stations wall expesicnce the

A1 FILLEEHAIL,

Thaus. wé propose o foces on o Spatio-Temporal LM {ST-LLM). presented fiesr by the wwihoes of [3135] to
anficipate the fow of bicyckes and 1axis inoa city, Although we are rather looking 1o predict data eraffic, i s

inferesting o evalaste the performance of such 2 model on our time series. We have represeated (Figure 35 a
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Figure 36) the superposition of the tralfic observed and predicied by ST-LLM for sites [ and 240, the chosce 14
complewcly arbiirary,

Figure 33 Traffic prediction ef site 1. Figuie 30: Traffe prediciion of sie 20,

By browsing the prediction curves, we policed that the prcdiction was bad fo some sites. By lokang ur the
gung.raqﬁh:nl position af this site, we see that it i "isolated™ (Figure 371 i the sense that it bas fow neighbors,
and that the distance separating it from its meighbors iz larges One by pothesis iz thar e model, bult o caprure
spatial dependencies, adapis poosly when there is precisely nob much o caplure.
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Figure 37: Prediction for an esolated site.

Even though' it appears that Cheoos performs better than ST-1LLM. jcshould be kept in mind that the madel was
pre-iramsed onmone than 848 observations, compared 1o bareby 18 for ST-LLM.:

Table 17. Companson in weoms of EMSE of different models

Musdel RMSE

SARIMA 32108

Base 25500391

Large 2o AGSAT

ST-LIM 274306

We pow move to the abilicy of LLM to propose accurate predsctiions far in the futwre. Looking at the perfonmance
af ST-LEM for dafferent tme hoeizons (Table TR), we mobioe that it peiforms worse than SARIMA s soon a8 the
horizon is serto 2. The decrease in perfoimance is expecied, but i sboold be kept i mind that s horizon set
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is equivalent to & prediction Tor e ralfic in 2 weeks where seasonality plavs an important role. Thus, o can be
expected that the RMSE would decrease less quickly for o sieall e horizon, ¢, on the second scale. Retraining
ST-LLM o wetwond Araffic data. instead of the curment 2ero-shot approsch is also a promising way Tor increasing
ACCUracy,

Table 18 Compasizon of ST-LLM piedictens over diffesent honizons.

Haogizon - RMEE. |
| 274306
2 352381
3 44 By
4 510582

#5313 Complex Optimization Problem Solving with Generation Al

The anpressave mulo-madal data generation capabilities demansurated by gererative models m the A6 communiry
have enabled thelr application to tasks such as wireless channel coding [336] and data feature extraction [337] i
the telecom commaunity. While these models have achieved remarkable success, they ofien overlook the kev dis-
tinction berween gewcrative wnd disceiminative models. Geperative models learn the jodnt probabality distribuation
of date. i . ), wheress discriminative msodels focus on leacning tse conditicnal probability distcibution, B ).
This difference makes geserative models paniculady adept st addressing the multi-modal oataee of high-gualiy
sedutbon spaces innetwork optimization peeblems, allowing them o gererate better predictions than discoiminative
madels.

Metwork optimization is a frequest challenge in wlecom. paricelacdy in scenarios that nvilve jint sensing, com-
maneation. compuoting, and captrol [358]. These tasks often sequire developing opiunal rescurce allocation sirate-
gies e erther masimiize of mindmeee o obfective functien within specific merwork parameters and consrants. Due
tor the complexity of such problems, the high-quality solistions fonn a probabiliste mule-modal distnbution within
ihe solution space, for which the probabulity density Tunction i typcally unkaown, Disconunative mddels, due to
their determimisine watare, are limibed in their ability to leam sueh comples distributions,

O the other luind. beaming o deseribe the solution space based oo ingun dats offers d brosder gbobal perspective,
leading o boproved solutons, Notably. the distribuion of hieh-guality solutiens o the solution space i sic-
tuned so that the difference in performance between these solutions and the opimal solution i minimal. In this
distribution, the optinal solution hobds tee highest probability, followed by ather high-quality solutions, while the
probabiliry of nen-high-guality solutions approaches zero. The concept of ransforming a singke output selution
into a dastnbution of hagh-quality selutons kas been successhully demensorared s recent reseasch [ 359, 3600 on
two classic combinatonal optiimization problems. the Travelng Salesman Problem (TSP and the Maximum In-
dependent Set (MIS| ppobleny, Significantly, [361 | was the frst o defise the parametrization of the solution space
distribution, providing & comtinuously differentable output target for neural network learing.

There have beea few works that directly employ generative owsdels ad optimizaton selvess, . For exangple, Lirge
langiage models (LEMs ) have been explored o tackle differentiable simple constrained optimization and Lineas
oplimization problems [362]. where feasible solutions are generated itecatively, and the optimal solution s ap-
progimated based on human feedback regarding the qualiny of each generated solution, However, LLMs curfentl




face challenges in handling high-cdimensional problems, and their pesformance often Fails 1o pestfy the practical
coxts of training and iference. Meawnwhile, diffusion gencrative nrodels hive also been studied as it
solvers. Por instapee, |139] amd [360] apply graph diffusion gereeative mdsdels 1o address TSP and MIS peoblems.
However. these problems feame selatively simple objective functions and constraings, leaving the application of
such maodels to more complex setwork eplimization preblems yeu o be fully explosed. Additionally, other re-
searchers [357] have used diffusion models o generate solutions for parely comves optimization problems. Most
of these works do not approach optimization from the perspective of learning high-qualiny solution distributions,
and nene fully reshize the potentinl of diffusion generative models as stendabone solvers for network Gpinizitnon
panblemns,

Dhifusion models are o type of gererative madel that gradually sdds noise woreal dar and learns o demssise i
aeach step [363], The resull of the poising process s W convert the data iio complerely nodsy data, such as
by continuously adding standand Gaussian nokse wntl the data beconses o piere Gaussian distibution. The model
learns wr denodse daga at variows nokse levels, continuously refining the cormaped dac wnnl] clean daga b obtamed.
T e conte st of our reowork optimecaten peobdem, the data being processed s the posing and denoising stages
of the diffuswon model repeeseny the solstion.

Denaising irection Dremmising Proces
oy — iy W - i T ST — Yo

= = == == e L=

M Salution A&  Grousd rernsinal == Densising trajeclory

Figure 38: The denoksing process for the €O, MSR, and N1 peoblems, where each axis of the sub-figere represents
aone-dunensional optimization vamable, and the cobor of each solution point cogresponds o it obpective furciion
valiwe, 1o the first column, OO and MSRE show e isina] denossing dieection, while NU does not, dise 16 304
heranchical nop-conves naruge,

A pnilti-modia] distribation hias g probabilioy dessity funcoen with multiple distinet peaks (e o mesiure of Gaus-

stim and Laplace distribotions) and it exact probability densiy funcrion is oftén impracical o desive. Exis
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research indiciares that in boh theoretical eviduation dsd engaaeenng verification, the generalizaton ermor of diffu-
sion masdels is polynomially =mall rather than exponentially laege with respect te the pumber of training samples
and rooudel capacity [360]. This avoids the curse of dimensionality and suppons the applicaton of daffusion models
i a wider range of problems.

To explore and verify the solution gereration capability of diffusion models fod network: optimization probiems
with complex objectivies and comstrainis, we designed 1 new framework, Diffusion Model-based Solution Gener-
atien (INFFSG ) [364], and comducted exploratory experiments on several typical metwork optimization peoblems.
Specifically. we considered thiree cases: compuiaton offtoading (000 [ 159] o minimieee the oal weighied oostof
tusk Ltency and power consuingeon, maximizing the sam cte of maltiple channels (MSRE {237, amd maximaz-
ing e s rate oo MOMA-UAN gystem (NLD | 365]. We followed the original models for these theee network
oplimizanon problems,

W wse the classic Depoising Diffusion Probabilistic Maoded {DDPM) [363] for model implementation. From Fig.
38 we bave demensirated that the proposed DerrS0 effectively comverges across vanous optimization problems,
transforming the goal of directly inferring the optimal solatkon into fiting o high-guality solution disirbustion.
Als, the optimization performance exceeds the oviginal waorks [1538, 257, 365], see [364] for details.
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Figure 39: The expectation of hiting  for differear number of samples nand varghle dinrension & The doned
lipes represent the lower bounds on fwhere the red and blue dotted Lines coincide.

Adfter demonstrating the effeciveness of the diffusion model in geserating solutrons wcomplex necwork oplamiza-
tion problems, we funher exploged the undedying theory and design of the model. 'We bave addeessed the key
guestions of kow amd why o lzam a high-gualicy solunon diswibution and provided a theoretical lower bound o
ihe number of tmes this distribotien shold be sanpled 1o reach the optimal solution. This theoreical Foumndation
coaldes the gemcrative madel o leamn sub-optimal solutbons and sample tossed the optimal solutioy, Buildisg
on this, we proposed a peoblem musdeling method that reformulates a broad class of nevwork optimization prob-
lema ag graph oprimization tagks, and designed a Graph Diffusion-based Solution Geseration (GDESG) model. Foo
cxperimenial evaluation, we applied ot e the malti-server muali-eser (MSMUY computation offloading preblem.
which is a multi-task NP-hand problem ivolving both classification and regresshon,

A shown m Floo 39, we have denwonstrated thar inceeasing the number of sampling trerations, o boings e ex-
pected protability of hitting the optimal solution, Bl (8], closer to 1, ensuring convergence. Parallel samgpling
significantly redusces the cost compared o serial sampling by sccelerating neural network matfix operations, m:
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Fuigure & Knewbedge-free LLM oplamizer

ing it practcal for veal-werld applicatons. Additicaally, owr implemented GDSG model exhibits nearly  100%
inter-task orthogonality between edge classificutin and edee weight regression, mesning the loss gradients of
baoaby tasks o the same parameter are orthogonal during vainme. benefiung from the diffusson model’s loss fune-
ton setting. Interoes of optunization performance, GDS0G approximates the optimal solwtion with less than 18%
crrod i Tewer thas 20 samplings {see [366] for details ),

Therefore, the diffusion geperation model is applied (o selution generation for complex network oplimization
problems, We have provided not caly theorencal comvergence guaranees bal also empicical validation throwgl
viariows pracicel implementations, demanstrating the signifcant potentaal of thas appiosch.

H.54 Kmowledpge-free LTM for network optimization

Cogventional serwark management algonthms keavily depend on prior knowledge of system models and spe-
cific networking scenanos.. Hoewever, thene 15 a goowing need for o universal optimization feamework where a
singlbe optimization madule can be seamilbessly adopred o diverse petwork imasazemeist tsks wichout relying o
system-specific information. This sequares knowledge-free optimization techniques that operate independemtly of
spenano-specific derails such as ohjective functions, svstem parameters, and setwork configurations, The cone
chalbenge of this appraech lies in developing a hyper-wntelligent black-box optimizer capable of formulating effi-
crenl decision-makimg podicics through its own reasening mechaimisms.

Potential candidates for the kowledge-free optimization method inclode genefic algorithms 1GA) [367] @l re-
inforcement learing (RL appioackes. Rather than selving on mathematical models, these methods utilize opti-
mizatien agents based on stochastic search mechanizms or dewucal netearks (MNNs). However, develogung efficient
agents in these approaches requires significam human involvement, inclading hyperparameter tuning and the de-
sign of training procedures. which must beé meticulously custemibzed for each unique retwork configuration and
peiformance mdicator. As o pesull, tradstbonal methods struggle o generalize cffecrively, limiting their abality to
accoimmodate the diverse and dynamic chazasteristios of fulure wireless netwarks,

Such chalbenges can b addiegsed theough recent large language model (LM optimizer technbguees [368] illws-
traed in Fig, &0, A pretrained LLM 15 utilized a5 an optimizaton module that generates new aolutins based on
its decision histery. For knowkedge-free opensions. an iput promp is designed w0 excliede any system-specific
knowledge such as mathemarical mrdels, channel state information. and application scenarios. Instead, it involves
simiple tisk descriptaons, ¢z, objective (masimization or menimezaton), solutien dimension, and constrainis, past
deciseons and their objective values, and desared ourpur formats sn namral langeage. Ouipors of the LM are
assessed via o fuonction evaluator, and the resulting solution-ohjective pairs are stored inoa memory anat. The best
candidimtes are then sampled from the memory and are utilized for generuting the imput prompt. Such & procedu
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Now you will help me maximize a function with input
variables x1 and x2 which are batween 0 and 1. | have
some [x1, x2] and the function values at those points.,
The pairs are arranged in ascending order based on their
function values, where higher values are better

Input : [0.204 0.878]

Qutput : 1,512
Input | [0.419 0.685]

Output © 1.452

Give me at most 8 new pair [x1, x2] that is different from

all pairs above, and has a function value higher than
any of the above. Do not write code. The output must

end with a pair [x1, x2], where x1, x2 are numerical values.

Figure 411 An example inpus promg

ig repeared wntil the convergence.

The few-shot learning ability. which aligns pretrained LLMs to unseen 1asks by prompiing several examples [369].
is g crucial component of e keowledge-free LLM optmizer framework. I the dnput promp. the best solution-
olyjective pairs act as few-shot examples for selving target network management problems. This helps the LM o
grasp the umderlyving characteristics of the optimizinon problem without invoking any prics isformanon. Through
this few-shot bearnig process, the LEM gradually refines sts decisions, geanerating increasingly effective solutions
kst bead o amproved abjective vilues.

The et effiective actaons are peteyed foom the memory and reintrodweed ino the input prosnpt in suBseguent
iterntioins, Thassell-feedback loog alloavs e LM o dteratively enhance i3 decisions by learsing from listorical
objective values [3T0]. The muli-sep readoning nsechanism mmplemented here embodies the chain-of-thought
process (371, where the LLM o2 guided through a sequence of intermediate reasoning steps. This approach -
proves the decision-making capabilities of the LLM oplimizer without requiriag any peoblem-specific information

The wiability of the LLM opilmizer teclusigues las been examibzed b addressing raveling salesman problen
{TEP) [30R]. mult-objective aptimization [372, 373, 374], and wireless resource management 125ks |375, 376], In
partienlar. the knowled ge-free optimezatien ability of the LLM opoarmizer has been investigated in [376]. Without
mathematical models of objective functions and chamse! s mformaton, wirebess resource allocaiion solutions
aobtained by wang the LLM optimazer exhibin ideatical pedermance to model-based optimazation algoritlms.

The performanee of te GPT-enabled LLM optimezer 15 assessed for salving ransmat power controd tusks i a twio-
user interfesence channel o maximize the minimum gate, The correspording max-min rate probleo bs focmadsed

as
imizemin d log { 14+ —— 2§ Jog 1+ 22 3T
mu.:m-u:ml:un{ g{ = S og| 145 o i
stbjecto 0 land0 5 | (38}
where | stands for the channel gain from ransmiier 11= LY woreceiver (= 102 amd ( incdicates the rransmat

peower of transmiteer & The nput prompt 9 designed as in Fag. 410 GPT= s tasked to generate 8 new solut
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Figure 42 Max-min eate objective function.

viectors based on few-shot examples of pasi splution-obpective pairs soned in the descending order of objective
valwes, Mo explanations aboul setwork configurations, channel gains, and closed-form ehjective functions ane
included in the input prompL

Fig. 42 shows the max-min rate objective funcivon for cenain random chanme] gaimns. The global oprimal solution
for this task is obtained at | . 3| = [1,0.306}, and the corresponding optimal valoe is given as (0.742 bps/Hz. For
the inrtializaten, 4 capdidare selumons that aee digtant from the global opomal solution are promped to GPT.

Fig. 43 plots transmit power control sodutiens geneeated by the LLM optindzer approach at diffesent stedations. Al
ik first ateration. the LLM optinuizes deploys sew solution vectoss i @ wapezoid shape near the initial poants. By
dodng o, it can infer the ascending divection of the objective functioa. [ the subsequent iteration, gew solutiong
are located within a line comesponding 1o the gradient iscending disection. The LLM optimizer further exploats
thiz search direciion o identify the global optimal solution. Selutions oblaieed a0 the 100 erson are closely
located o the global optimal,

Fig. @4 depicts the max-min pale perfirmance with respect to the Berations. FPor (he LLM optimizer. the best
objective valoe over 5 msdependent runs 5 plotted. T s observed that the max-min peeformance of the LLM
opuaizer gradually beereases with the teranons. L pamcalag, the performance s guickly wproved o early
iteratbons. Hoewever, after the @b dteeation, it gets stuck to a cemain point and the perfoimance s no looger
eubanced, Such premature Behavior is 4 peimary clallenge of the LLM optinizer techmigue, which can be tackled
by cmploying muluple LEMs stnulinescesly [373. 376].
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The LIM optimizes remains un is saly research stage, equiring funther investigation @ fully understand g
eptimality and advantages across diverse petwork scenaris and complex optimization problems, In particular,
addressing limibtations such a8 peeniatare convergence and systematically validating the effectiveness of mulli-
LLM approaches are critical next steps. These elffors will pave the way for the LLM optimizer 10 emerge as a
prachcal and scalable alternative or complemsent o iraditicanal knowledpe-based optimizatien methods.

B.6  Network antomation and intent-based management with LTMs

Recemly, Mobile Nevwork Operators (MBNO) are considenng o fully autemaie thear petworks w sedouce man-
agement civsts wnd deployment dasd mainiénancs tme. Figure 62, showeases tse Bevel of netwoark autoieation o4
defined by Thiforum. MNCk aines o resch the level 5 for full awonemons setworks, In ordes, woseach this
autoivomy, the corcept of “mbent” was introduced nstandardization bodics.

L Marnad L1 Pl LY Parilal L3t et i iap
Lioverl Drbrsbaon Chietation & CEw e b ALfnrEETEL s
v jarramic [ X A p— [SPr— o ik
[ et iy
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Apprrabéty Sl soonanig Al woaanon
» el 5§ I

Figure 45, TMPorum aufomation levels [377).

[ sz comiest of the standand organization of elecommunication and echnologees as 3GPE GEMA, ThPorim
and ETSI. The “intertand “intent  asbdwmcepts often refer to o method of defining and configiering eommi-
nications system based on theie inended puipose or putceme. The coneept of intent amd mieni-based svslem 1% an
imporrand part of woerk of those organizations to create mode efficient, flexible. and resporsive telecrmmisnications
syatems and services that meet the necds of users and businesses. For mstance, ThMEBorum defines intents as the
formsad specification of all expectations including eequirements, goals. dnd constraints given woa iechnical system.
[isbent is therefore pusely oo expresion of what needs 10 be achicved rather than indicating how this can be done
[ATHE]. Inaemt based networking (IBN) was mwostly applied i Software Defined Meoworks (SDIN) [379]. SDN s a
concept that imvalves sepacating the control and datz plane of a network, allowing for guack aml autoimated net-
wirrh reprogiamniing. 30 allows Tor the isiroducion of various pew services and enables different industives to
deploy their own custemibasd metworks using network glices. As d resialt, GSMA has proposed & femplate-based
approach. In this approach, IBN vders can personalize their intent for creating a network slice by specifying a
set of actribwies through o Generie Metwork Sldce Template (GST). Afer the introduction of intents in the context
aof SDN controllers. Stamiardization bodies provided multiple definitions of what i5 an  Inlbent For nstance,
the most recent definition of iment by [ETF; ... g ser of operatienal goals that & nevwork should meer and owst-
comses that a network & supposed 1o deliver, defined in a declarve manner withowt specifvang how o achicye
od implement them" [ 380]. The purpose of intent is w0 define asd communcate knowledge about expectations to
a syslern o way that allows sutomated processes w rsason about it and denve suitable decisions and actions.
Lisbenat for meework autonatkon are managed by isenl mapagement functons. Inteat serves thie parpose of definlng
and conveying information abowt expectations w0 o svstemn, This enables aumtomaded processes o analyze and make
appropriale decisions and take actions accordimgly. In the context of network automation, intent is uL.n:m.-._:uul;y

/\

e
|+

111



intend management funcrions of chsed beops as chown in Figure 46, Howeser, i order ts achieve the Revel au-
tomation defined in Figure 62, LLMs are used as a key component in enabling autononsous networks, LLMs are
responsible for learming from data, making decisions. amd executing actions in an autonomsis manoer. They play
a crucial rle in enhancing the capabilities of autosomaeus networks and enabling them (o adape and evolve based
on changing conditiens.  Intents interpretation s cnicial o achieve fully autonomous networks, The mtents are
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Figure 4 Intents interpretations i aulsnemons networks [3T8)].

introduced via muliple chansels as shown o Aguee M customes porial, besiness pontal, order management and
operations portal. For instance, a customer poreal such as a chatbor enables the client o onder a privase 5G slice
for s specific needs (for example w offer 30 connectvity for a stadivm eventh. The clicmts Intents ase expressed
with simgle Matural language and should be rranslated ingo-a description of @ 530G service that answers the clicat’'s
requirements. LLMs such az ChatGPT are very efficient with tex1 analvsis, susnmarising, answering guestinns,
providing explanations, or engagog inanteracuve conversations. Therefore; LM staried o be applied for inent
ingerpretation end management in networks, We can cite multple 1aks where LLMs cowld be applied for invtent
W

* Busimess and service Intent resoluiion: A Business Inteni Resolver ransforms a business request from
samiple service gquestions inm a Product (0F o package of Prodiscis), The service sesolver acta as twe Comima-
nication Service Management Function (CSMF) among the slicing management entities specified by 3GPP
[AEL].

* Intent conflict management: firs siep of infent managensent consists of gathering intents from vanous sowrce
{i.e. portals). Next step i to aggregate the similar intents o simplify management. However, before
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Figure 47: An example of soxsers renting comgray,

implementation step, we need to apply solutions 1o detect potential conflicts between intents, For example.
iy intent o maximize bandwidd might conflicr with an intent 10 ounimize costs,

o lienl asswrance: its o oumibes of procedunes o ensures that the system behayes acconding o the specilied
ineenes fie, SLA o clients requitements ). For assurance of inens, we should detect the res couse of
violateon and propose reconfiguration actions o come back  the desired staie that respects the clienix
inEENIs,

Authoss of [382] developed a wser friendly channels (e, Chatbot and web UD} for cliems o antomate 3G service
ordering using LLM. Th aathors used bert o sovall maskied language model developed by Google. The madel
was finetuned wsing the network entity recogiition NLP task and the product catalos data in order 1o find 2 maich
between a client ments described i nateral banguage and a produce in the catabog, Figuee 47, shiwcases an
exnmple of company that wants o 5S¢ contectivity service (o track its scooters. The company describes in shmple
natural Linguage the need £ oun o scowrer fetal service and need e ek thedr locatton that 18 maeched belibml
using the LLM AP 1o 4 nearest product in the catalog. The clients enters also other intents such as the suppored
lateney and dthe maximum nomber of eombmals,

8.7 Generating Commit Messages for Configuration Files in 5G Network Deployment
Using LLMs

Metwork automation plays a vital roke in enhancing network performinee. Commit mssages detail the vanous
actions mvelved in modifviog netwark configuration fles and deployments. This study presents experiments and
researcl on the astamated pereration of commit messages in the context of 3G petwork deployment.
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Ly contemporary sevword mansgemsent, the concept of Metwork as Code (MAC) 15 gaining traction. MAC fusda-
mentally-applies software development metvodologies wo manage and configure network devices and services. It
enables the management of network configurations throdgh version conteal sysiems aind the implementation of
automated tools and processes, similar o seftware development operations. This methadoelogy not only boosis
operational efficiency and minimizes human errors bot also speeds ap the deployment of network configurations.
The adopteon of NAC greatly enhances the consistency, waceability, and replicability of perwork confgurations.
providing exceptional Aexibility and control in setwork operations.

Oner research o MAC focuses oo the befimost sectvon of Figure 48, which inegrates vender intentions and oper-
aticats ke & nelwock configuration system that icorporates the Open Contabper Imagive (OCT registry and Git
for source conirol. This segment manages "Vendor Tntents” which are specific configuration peeds from external
suppliers, and "Operator Infents” which represent inteenal configurations- established by the network manage-
ment team. We develop and manage these intents through code. aiming for systematic. tracesble: and efficient
deployment and modification of network configurations. thereby improving efficiency. consisency, amd flexihility
10 etwork aperations.

Figure 48: Metwork as a cosde, [207)

Large Language Maodels (LM b utilize deep leaming techinkgiees o automate and enhance vasious computational
processes, including network management. These madels are builton translfonmer architeciure, which emgloys an
atfenticn mechanism w comprebend comeximal relstionships inotext, essential for intenpreting complex network
configuratbons and assisting in coding fasks for NAC practices.

Db network confguration Managerent, precise conumil messages ane exsentbil for version conirol wnd sudit wails.
However. creating these messages manually can be daborious and prome to emrors. LLMs con automatically gen-
erate descriptive and accurate commit messages based on changes inconfiguration Ales. theseby enbancing doca-
mentation gieality and operational ransparcncy.

In v study [207], we investigased the ose of prompt englnecring for the aubomatic. generation of code com-
mit messages by designing and Smplementing Ave distinct peongs. Exch prompt included uniguee clements and
InsEructions o assess teir impact on the quality of the genersted sesulis. T oue use case, we conswdered
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following prompts.

Pramptl: background + instruction + input data + output indicator
LP:uup:E:' Promptl + pegitive prompting

Frooptdd Proopil = Repositery trae

Prooptd:  Promptd + -ane-shat.

FropptS: Promptl + RRG

Figure 49: Prompt] structure [207),

In the following, we describe cach Prompd in more details:

= Frompt 1) Basic Prompt with a background fiebd 1o explain the role we want the model to consider when
answering. the 1azk, the mput. and finally the output that contains the desired owtput format of the commit
mesaage as showcased in Figure 44,

= Prompt 2: Prompewith Negative Instraction

This prompe adds a negative instraction w Prompt L (Four outper masr be strenly ie one line and o e
formay < rype =fopriceal seopef: <description " withoul any evia feaf lke This is e commul message:”
efe., peither before, nor after). The pupose of the aegative instruction Is 0 gulde the model 10 avoid
gr_r|.|=_r.||:l:'|.gI mnmﬁmm:e.a;gﬁﬂm i pot meet the task sequirements, such ws avolding uudmnrmrl}'
!.II!!I.F[].HI.II: Saterments.

Pmmpti’mmnm]nﬁmnuﬂnnrelaledtnihe:n&eupm}mqrmrmﬁnmpt! ﬂdsfhugemmtntﬂat
ihe madel's pu‘ﬁunna.me without qmzlﬁﬂ:mﬂ urgummmul struciure ml’mm‘um.. therehy assessing the
mni_ﬂ‘zz uénﬂuvuy m@vmqmm_#pmdsnu_ﬁ
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= Prompt 4. Proospt syach one-shist

Prompt 4 adds a specific cominil message exumple (one-shol) 10 Prompt 20 This method lelbps the madel
lzam how 1o construct commit messages through o concrete example, potentially impeoving the accuricy
aind pebevance of the generaied information.

= Prompt 5. Proospst swath RAG

Prompt 5 imegrates BAG imo Prompt 2. thecugh BAG wechnobogy, the model quenes related docansents
o exiating data before generating conhmuin messages, enhancing the aocuracy and nchness of the generated
COlCnL.

To test the performance of the different Al maodels GPT-4, Llama3 amd bisteal, we meticulously extracted data
froen & 1otal of 3810 commits. out of which 168 were authored by human developers. and 413 were generated
by automated systems (e, bots), This dataset encompassed avariely of information, inchisding the differences
between comanats (ue., diffs ), commit messages, suthorship derails, and vnigue SHA wdentifiers for each comimil
Such comprehensive data caprure facilitases an i-depih analveis of the project’s evolutionary developrsent and the
incremental modifcations made over tiose. For the evabwation of the different prompt wsing the different models,
wit tsed both auromated and humian eviduation methods, selecting BLEU, ROUGE, and METEOR s owr metricy
for automated asseqsment (LT, 174, 383,

We preseat maltiple evalisation resubts b [207). as resulis we noticed thit overall, LEMs senerally excel in tasks
imenl ving the sutomatic generaton of commat messages, eapecially with Lloma 3 after applying RAG wechngues.
The bat-gererated commits from Lloma 3, enhanced by RAG, demonstrate strong performance b both astemiiied
and human evaluations. This success is likely astrbuted w Llana 35 impeoved ability wo produce well-siruciored
and formaned coment, L coneast, the evalusiion scores for human-genersied commits are more balanced and
consEient across vareus models and prompong methods,

BB Use cases in optical networks

Cenerative AL and LLMs i particular, have gamered wemendous attention sice 2023 0 the eptical network com-
mnity, As an example: a complete workshop titled “How Can Generatree Al be Used for Metwork Operations T
was eeganized at the Masch 2024 edition of OFC, the leading conference in the field,

A opieal petwaorks still vely on manoal operatioa, lorge lanpuage masdels are seen us an opporiunity o case
network operation, by acting as the lunnan imerfece (o the BMS (network management sysiem b, and- absiracting
complex concepts and tasks so that less skilled labor can operate 8 network. o aperations can be shorened sdiod
automated.  When combined with a digital twan, the owpat e, soggestions of desived actionst of an LLM
agent can first be wested within the taan, which acts as a sasdbox, then be pusled to the fiell nevwork. This
combination Al agent (based on LLM vdigial cwin has become popular in the research community, with several
lab experimental demonstzations [ 384) and even Aeld tials I8, 346]

Ao suehe a larpe mashel can be used o5 @ copilot for oprical network managemient. As generalized LLMS bave liole
optical communication/networking backgrowd, they need to be given additional information on one or more of
ihe following: physics of optical seeworks; opticel network management tules: and product information. This can
bz o through providing contexv'pronpl engineening. KAG, andfor Iinn}um.ing..nu eis [ 38, 3RS, 3846, 387]. This
allowws an LLM-based mapagensent system - te advise on cemain problems faced during operation, amd in certakn
cases, W interact directly with the eguipment iseff, when the nerwork state and product informastion are given
theough one tee techiwgees menbioned ahove,
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Typical tsks envisioned to be delegated 1o LEMs mainly permin o setwork management, oeluding bur not
restricted w, network design (iebection of equipment matching operator and physical copsiraini<), resouree alloca-
tion {eg.. routing and speciram altocation ), physical fayer optimization (e.g.. channel power equalization. setting
of various equipment such as the opiical amplifiess) and faull managensent (ool cawse analysis, suggestion for
remediation | [158]

Tiz st cases, the LM 15 simply an intermediate Tayer between the human operaton and the network management
syatem and s role ks interprer a human request and call the nght retwork function, which umplements some
apumiation algorthog, Comect imerpretation of the buman cegeest; a language-ariemed capababity, and calling
b right fesction, can be quantifed in w@emss of AP@ calling accuracy ad in [389, 354, 200].

Iin somee cases, the cognitive ability of LLMs 15 also leveraged 1o perfonm moee advanced tasks. For instance,
an LM was able 1o output an algoritho and the associated code Tor o resource wllocation peoblem (routing sl
spectium allocstion) in (3911 Reasoning ababity i vsed o [392, 384 o anadyee neework logs, ddentfy the oot
cunse of a failure, and propose a solutbon.

Losoking forecard, possible amd desived applicatios for lorge models inelode:

o Pro-active network operatnon, whereby o large mode] peedicis igsses dn the network {pypically, those are
relatiwely slosy degradations susch as an aging board; the most common failures, Rber cuts, are impossible
o predict until a few seconds befone thear occumence, ) This can be done through telemetry o log analysis.
Pro-aciive maintenance then inchedes tuming off and replacing the soon-to-be faulty board, reroute the
traffic befose the failure. etc.

= Securnily enhancement: detect sevwork vilnerabilities theough literature amd code analysis.

= Vianous opegaticn oplimization, sech s adjesing the operation mode of the equipnient to (e its energy
conssEmpaon e the dcurrent or Foreseen) demand.

= Fimally. as large nodels progeess, they could complement or even replace some of the physics that dnve
the optical physical layer equigment. The belavior of most egquipment 35 sell-modeled with physics, but
somme madels can be improved as the man undedving assumptions are Dnsted. and others rely on heavy
computations such as nonlinear differenual equanons solving. 1tas possible tha large models evenneally
find better approxinsations, o even new (move sccimate or Faster) models.

9 LTMs for Network Planning

Part of the following has been seported bn [393).

Oprimization tasks wre critical iy identifving the mese eifective solutions within o complex decislon space., amd they
have become mcncasingly important in the evalving landscape of wirgless communication. Maoving from second-
generatiod petworks, supporting woedce calls and rext peessages, W0 fifth-geperation aul beyond (B3G) metworks,
there has been a giant leap in capacity and capability. These networks are expected w0 provide an umbrella to the
[ternet of Things, machine-to-machine communications, vienal realicy, and sther emeiging applicasions [394).
Commensurate progress has been observed in network planning rechnigues that kave evolved to addeess increasing
nmetwork complexity and the diverse needs of our ever-increasing digitahzed sockery [393]

Ty wireless network planning, the wraditional approsch has been eavily dependent on fhe experience of network
engiseers, cspecially inthe crucial task of selectng positions for the installation of Access Poinis {AP<). Inmor
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recent fimes, their smrategic decisions have been supgorted by radic progagation madel s, for example, tse cmparical
Okomwra-Hatas mode] [296] or deterministic ray-tracing slgorithims [397] w0 predict the received signal strength
and s confinm the suinability of chosen sies.

The sdvent of advanced computational capabalities has shified neteoork planniag towards an algosthmdc-based
approdch. ofien supplementing or replacing human expertize witly opimizaton algoothms. These metlods, par-
ticularly metahewristic algorithms such ad evolutionary strategies |98, 2991, oprimize AP placement and network
coverage wsing detailed radio propasatien models. Successful network planning relics on the oplimization al-
gorithm’s abiliy o kdentify optimal deployiment conbzarations and the optimizaton peclomance 15 confiemed
through progagation pasdels. Becent inmovations, such as optimization algorthms integrating Large Language
Muodels (LEMs) [ 362 A0, 41 ], sleow promasing reselis in efficiently addeessing optimization ssues deseribable
using maweal lengage. However, linde research studies thear applications o complexséenanios such as wireless
network opumizavon, whese integration with expert nusdels is requised.

Against this above backgrousd, we aim o address the challenge of network deployment within the wireless com-
munication sector by seambessly incorporating an LLM-based framework with sophisticated propagation models.
We introduce an LLM-based optimizatien framewark, termed Large Language Model-based combinatorial opti-
miazation (LMCOY, which o owr knowledge 10 unbgee impglementation inowireless communications. This inne-
vabive framework demonsrares notable advantages oover conventional optimizatien wehnigues. Specilicatly, our
experiments suggest thar LMOC not enly surpasses traditioma] selutions in tenns of performance but also reveals
1t adaptability to address anextensive range of asalogous optimization challenges.

9.1 LLM as optimizer in network planning

[Lis plausible that LLMs inberently embed human-like experiences of continuous leaming theowgh reasoning amd
decision-reaking. offering significant potential as epeimizess across various domains.,

i - Iterative optimiation
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Figure 500 Overview of LLM-basod optimizer,

While LLMs exhibit swong opimization capabilities. their Dmitatons—such as hallocinaion, unsable kowl-
edge. and challenges with complex mathematical peoblems necessitate careful prompt design (402]. Techniques
like retrieval-sugmented gencraion (RAGE, amd wansler leaming can signifcantly enbiance their pecformuince aml
accuracy. By suuchiring prompts o inclede system parametens, problem descriptions, and expent Kinswledge,
LLMs can dynamically interact with users to fonm iobust optimization chains. LLMs bave demonstrated impres-
sive optimization abilises in diverse fields, icheding educason, bealthcase, and customer service [S0G, 4068 405,
A6]: Tnowireless comanunication, frarseworks such as WirclesLLM [204] ad madt-agent LLMs [$07] have be
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developed 10 address network challenges.

Lislike eradinonal optinization methods, LLMs leverage pre-teaied knowledge amd comtinuous learning throtgls
paeonpts, enabling efficient problem-solving without detailed step-by-sep programiming.

011 Preliminary

Ao key element of the LLM-based framewosk is the “prompt”, which dynamecally incorporates; {0 the user's
query, {0 boel examples to refine the model’s response amd (4] instructions for processing input. LangChain
[HIR] provides toals foe constructing promps sing specialized emplates tat generate reproducible ext sirings.
accepiing user-defined parameters, s modubiy design enables developers o build apphoations with muliiple
proms, supporting comples and adagptive ineractions with LLMs, simplitving development. and cobancing user
CRPENICEE.

The proposed LMCO framework [393], built n LangChain, aims to replace traditional single-target oplimizers
like evelutionary algonithms amd ant colony optimization [$09. 4 10] inowireless rerwork planning. Unlike con-
vendional methods requining detailed-step-by-step programming, LMOO leverages minimal domain expertize amd
relies on doman-specific informaton provaded theough prompts. Promgas also speeify soret outpar formats oo
add interpretation. Subsequent sections detail the AP placement optimization problem, LMOO's structare. bnpiets,
outputs, and comporent mplementiion.

L2 AP Placement Task fir Metwork Optimization

The primary objeciive of network planning optimization framewaorks s 1 determine the pevwork lopology, e
the numbcer of AP emd thewr locations, that eptimize and mest some target key performance indicators (KPEsL
e.g.. coverage, delay, power supply, or tnstallation ard adorinistretion costs |41 In chis work. we consader the
aplinnizarion sk ol mecting a targer coverage level, @, while minimizigg the installation cosgs, Lo the number
af APs N, The corresponding oprimizatien problem T can be formulated as follows:

ming, v} ¥
i
£33 E B =9
=k
Kmen = Ky = Tpaa. T E A (39
Vo = M = Yo T E 1,
min § e — )L — |} = Bl 4

where (x5, 1 indicates the location of the a-th AP R 15 & function that evaluates the coverage for eacls AP and
we use AD-ray-racing software frem Ranplan [412] for the evaluation of coverage iy this work. Specifically. v,
Tinais Vi Vinas TETEE 10 1he boundary constrabots of AP locations in o sguase scenand, L s the mindmum distance
betwesn APs. lvas secoo | mieter i the following experimenls, ensuring that APs do not overlap, and the constiant

,I.."II:.I. — -y = =L ¥ # [ gusrantees that the distance between any two APy is greater than or equal
o L, Next, we will show how we can 0se the proposed LLM-based framework, e, LMOO o address the above
problzim,

13 LM

A hbeck diaeram depicting the LMOD frosework | 393 is presented 'in Fig. 51, showing the workflow and the
peitoiype prompts cealted for the wilizaton of an LLM o the context of network planning. The frumework enial
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twor muslules, leveraging the is-codiext leaming podential of the LLM, orchesirated by strstegically foemalsted
pronyMa; (¢)an initialization and (i) an LLM-driven deployment optimization modube. whose details are presented
in Algorithns [ and 2. respectively, The anttiabization module i3 used o sutomatically determine the maximuan
number, Moo of APs o be deployed, e dts outpat is Mg Then, given this upper bound, the LLM-driven
optimization modale outpits the sequined number of APs;, NN = M ), and their sespective bocstions. Si e
reaulting 1y a perwork deplovesent that neeead the targer coverage levels:
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AF numiber AF plecement
LLM Ennialirer = tmicialinat LI Chptimivei (= Radio Propaganon Model etrati,
YWeni drd profiesiboal b e Dbl ol &elead dlgaal jarogs il ¥em havy schered v} cormagr with mar
Fallwwng is wfonmnien of & Beergplan (lleer plon infsmemon | st providod.
The Oeso imformalion boi 2o ey il &) Coverags map rewibis o |bipary coverage map|
o8 e Tresr spaice, | means will, 3 messs windew, | meaps dowr | Ideanty ko muamy base o vow wam o plics
Chpra pom e el Ioslion B jplia: thee AP 12 Ther bealking im acharry larpet convesage | *

Gorelsiom acfeved [oovengs ] with 5 Mooy plan map dersm s
EMisrplan} aisd {AT bocasin |

Crreerape map mmilin w 3d wey fremes 1) Snary cotvemagn esg|

{repr o e COveEgs 2 [[rges ooverape|

Ah w prodresaial in B [leld of wirelos sgnal propsgation.

Exzem Forw pelps

[etlily (M A Bocarioess diTerent foan jwed iolis el

Make m improvemesr o0 e peTcEinge =f coversd aPed (0 COVSIPE mIED
Y alvend b e coneiined il | kiof plas bumidary Ll |

Vs ubderstsd din sach AP b e capsbiline o
e cinTTagE meer @ desymeed s

Pt [lag] Mid Safial R diiildiakes
boppiiibliniisally et dislam e

The voverage will be ifEenosd by pivaml
whrificbeh oo ad walla. = kil ol dwri

AT ehencdsl Sar plsced spamehy with m lemn 0 ey
Auilairc Dl L sy gy porefage Wl
minEd g ey e

Figure 51 Tl LMCO framework Bas 3 groups of crecial prompds tha are emploved 1o geide and instroct LWOD
in resalvang wireless optimizstion issucs. The seements enclosed in “[ 37 within the prompt are placeholders that
will be substituted with the relevant content when comumuncating with the LM, it zlso hasa bleck providing
cxpent kvowledge to tee LLENM [393])

The fioor plan comprises a grid of poins depicting the wall lavout, and the constraction materals used, and it
ia represented as o two-dimensional (207 array with different nuinbers indicating the use of a different manenal.
Fimally. the arget coverage refees to the percentage of grid points at which the received sigial swength (R55} is
larges tan o threshold,

The Tuncricnaliey of the LLM for each module is configured theough appropriately designed prompis. The suitably
sebected prompis for the other twe modules, along with their implementation details are discussed inthe following
subsecrions.

Module 1: AP number Inltializer

A mentioned previously. the goal of the AP nomber intializer i o determane the minimem nuember of APs o
cheploy withoue human intervention. Consequently, i tee first instance, a designed promg for the initializaton
madule s provided o the LLM. Based on this prompt, the LEM will genesate a location s e, where the AP will
be deployed. Them a ray tacing simulator is employed o simalate the RSS distrbution in the indoor eavironment
and caleulste the coverage. This cutgut, i e, 15 wilized by LMOCr 196 ascertain o preliminary AP count, setting
the stage for subsequent oprimization processes.

Modute 3: LLM Optimbeer

The second maiule megrates an LLM a8 & combinatonal epamizer. operating in i zeeo-slol Gashion, Again, a de-
signed prosnpl infoems the LLM abo (0 the geometry Layaut, (4 the inbtial oumber of APs indicated by M
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L. (et} the nepwork topokogy. div) the smxined coverage. through o binary coverage heatmap representation {with
 and | indicating above and below the coverage threslold, respectively’s and an aggregated coverage percentage.
Mote thar the lamer constitutes the objective functon of (39) thar the LMOO aspires to maximize the coverage.
T addivion, @ expent Eacaledge peosigr i embedded inthe LLM optimizer prompt, t indace commaon neiwark
engiveering knowledge 1o the LM and orchestrate is actions. Given fese pieces of information, the LLM s
asked 1o provide the pumber of AP AL and their 21 locatione (different from the previoas ones) such that the
coverage is improved. As shwwn in Algonithim 2, this process is repeated iteratively until 1he desired coverage
level s reachked, und @ each Heranon, the BSS asd the coverage are eviluaed with @ ray-tracer for the netwerk
deployment indicsted by the LLM. Duarkng thas iteragive process, the ininal member of available APs s incrcased
by one i the attained coverage is ool mproved for the & consecutive erations,

214 Coverage Evaluation via Ray Traclng

Our target s o identify an optimized configuration of AP locations such that whea they are deploved in our
target envieoninent snd the path less s calealuced using the prepagaton model, the resplung coverage fulfills our
specificd ctena, Fugure 52 showcases a scenamo with a Aoog plan and includes @ path loss mag decived Fron the
strategic posttioning of APs. We begin by setting a path boss theeshobd—any bocation with path loss surpassing
thas thresheld is classified a3 an uncovered zone. We then measuse coverage as the percentage of the area that
achieves satisfactory stgnal strength within the established path loss threshaeld.

Pt ossd 4B |
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Figiere 32 A samiple scenasie encompasses details of the fooplan and the patl lss map compated with cay-tracer

1.5  Baseline Metaheuristic Optimization Algorithm

The performance of LMOD will e compared o Am Coleny Optimization (ACOY, a widely wsed metaheunstic
inspured by e foraging behavior of ants, keown for as effectiveness i combanaresial optimizateon prohlems.
ACD works by simulating "artificial ans” that exploce the oplimization space 10 ienlify near-optimal solutions.
Starting with randeom nitial solutoms, each ant evilwires its resulis w deermine a weight, amilogous o pheromone
levels used by peal ants o ok efficien pathe. Subseguent solutiens e cdiesen probabilisncally based on these
weights, and the process repeats until the ohjective function converges, The weight caloulation and path sebection
probabalities depend on the specific ACO nplementation: this paper adoges a greedy ACO approsch sindlar oo
[413].

1 Evaluatlon in practical use cases

To showease the potential of LMCO w0 solve combinatorial problems and assist network planning we consider
twir uge cases, The firsl experiment s conducted in a conerolled enviromment, wheee a fixed nomber of AP,
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i predetermined 1o achieve an ogtimal coverage meteic. In the second experiment, we pemdve the constrnunt on
the mumber of APs and seek solutong tha woold meet our predefined covernge reguircments, regandbess of the
number of APs deploved. This approsch allows s 1o evaluare the models’ adaptabality and efficiescy i achieving
the target coverage bevels, whach can eotail a varying number of APs In hoth experimental seteps, owr goal is o
cnsire that at beast an 9055 of the building area ie, P = 0.9 the B5S i3 above 00 dBioc. Each mnstance v which
the optimizer caloulated coverage metrics using e proposed AP configuratboms was considered a single eration

T ensure o fair evaluation. we design two expenmental protecols, cach representing a common scenano o wire-
less mevwoik design These scenanos are selecied to assess different aspects of performance.. Boe cach experi-
midital sedup, we condiected 20 1ests wsing Opendd™s gpt-A-urbo-preview aecation as the LLEM within the LBWOD
strategy. We compare the effectiveness of the solutions an the basis of the nuniber of iterations necded wsarisfy
he established coverage criterbon,

Experiment to find a selution in shmple Indoor scenarios

[ ehiks experiment, we first skig the imitialeation phase i the LMOO algonthim due to the sse of a predetermined
number of APs and we conduct tests by two indoor environments, The first one assumes 4 sinple geometric space
mcasirang 23 8m by 20 2 and @ mone complex cosfiguration with dimensions of 58.5m by 630, In both cases,
the pussber of APs used m each scenirio was determaned by prior experimentation. whicl established the aumbes
of APs required o meet the coverage criteri

'ri- B P I ' o
B —
- . =]
L o
- |
Figure 53 Comparative Resubts of AF'Placement in Two Buildffzs. the upper row hu:h.lﬁlk_-ﬂ-; 2 APs and the
lepwvier oow building has 7 APs: leration EfGcicocy of LMOCO sersus ACO

Figure 53 illustrates the resules of this experiment. In b seenarnios. the LMCO storategy significamly oatperlfonms
the ACO method. On average. LMOO regures enly 92 herations o meet the coverage criteria in the simple
acenands with 2°APs compared 1o the 634 Rerations eeeded by A0,

Similarly, in the more complex scenano with 7 APs, LMOO averages 109 ierations, while A00 requires a
subatantial 1394 icerations w achieve comparable coverage levels. Daie b the inherent stochastc nature of botly
abgorithms, theresulis are presented as a bar pla that reflects the distribution of outcomes across 20 isdependent
ety For both scenagios.

Iy an advanced experiment, we wilized the initialization pliase and did ror provide either algontm with informa-
fob on the number of APs needed 10 meer coverpge requivements. LMOO s average lerition coum of % versus
ACCYs 63 in the sunpler geomere space underscores s supetior cofvergence.  The difference beconses mone
pronoueed inthe complex environment, whese LMCO'S steeation count was two orders of mogainsde lower 1)7
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Figure 54: Resultof Beal-wosld Scenanie Ogpilmdzation for AP Placemsent by MO sethout Prios Knoaledge of

the Number of AP

Table 19 Comparison of Average hesatians Bequiced for LMOD and ACO in a real-world comples scenario

Algorithms . LMCO  ACO

[terations IG 2275

Time used(s) 197 | 1802

A expeniment in a veal-wodld scenagio. as depleted in Flgure 54, provides evidence of LMCO's adaptability asd
ferther cosfiems s obusteess, Table |9 presents the average mimber of ieaiions requined by both Gpeimizataon
algormihuns in this seenano, wnd the results indieste @ clear difference in pesformance bepween the LMOOD and
ACO algorithms for AP placensenr,

The result shows that the LMCO algonthoy consistently requared Feswer iferations and time to schieve the desired
coverage criterien s both sansple ad complex envinonments.

1.7 Conelusbon

[y concbission, MO inroduces a novel frameswork foe Lag Lt Lullgha._ll:l_' Model (LEMy based l.r|:'|[|.|'||.|.r_|Li-::-|'| L
wireless communications. [t preseots o flexible and gencralized LLM-based optinizer thar incorporstes expert
knowwledee, cnabling itz application sceess various domains 1o address increasingly complex problems, The
LMCO algonilm demonstrates significant mpeovements o stecation cfficiencey and robusiness. which are cru-
cial for the requirements of large-scale wireless nevwork deployments and real-tme agplications. The comparison
highlights LMOO . supegiovity in handling complex and dvoamie petwork configurations. substantiodly reduc-
ing time and computational overhead. This eatablisles LMOO a5 the prefermed choice tor oplimizing wircless
cofmimincation systens, with potential benefits extending to mber optinsizatbon scenarios.
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Contimieation of this waak will mol enly strengteen the existing capabalities of LMOO within the Geld of wireless
nepwork aptimizaiion o alao explore its scalabilioy and adapiability to challenges across diverse dofmaing,

4.2  LTMs for Immersive communication

With the sdvarcement of XR beadsers amd ompidirectional lecomotion platforms eiabling & Degrees of Freedom
{DaF) [414). the concept of the Interner of Senscs (IeS1 which offers immersive muliisensary cxpenences, is
becoming increasingly achoevable,

Adddinonally, advancements i clowd continuum architecrures have made ultra-low Lency communication possi-
ble, allewing telepresence sysems (o operate seambessly. These wechnologies enable wsers w interact with tele-
apetated covironmsents s ways that simulate the expenience of phvsical presence, providing a heighiémed sense
ol imeeeraion in pemate locations.  Moseover, the rapbd progress n robotics wnd UAVY has opesed op o wide
range of innovative applecations, UAYs, i pancular, are being emploved to improve imnicrsion i VR throwgh
beyond visusl lioe of sight (BYLOS) control [413] [416]. This creates a sense of wleporation, enabling virual
towarisn o distant o inaccessible bocations, and facilitating safe explorstion of kazardous covironments. However,
achieving sub-millisecond delays with multizenzory media = il o challenge. This s due 1o vanous lunigations
related 1o bandwidth conseraims, nevwork delays, and the synchronization of moliple media sreams beyond au-
chice and wizual media. Addinonally, the accurate sepresentation of mulople sensory modalities peesents ignificant
difficuley diee o the cuirent lmitatiens msensos wechnodogy specifically for scent and taste as well ws data pro-
cegaing capabalifizs. Funthermore, AV face addivional challenges wlwen operating at higher alutsdes, The béams
Troms base stations {BS) typlcally designed for ground-level communicaton with downialied snennas, result m
stubopuimal coverage and mwreased interfering notse beams Tor airboone vehicles. This scemario beads 1o freguent
handovers and conpectivity ssees for Aying schicles, thereby exacerbating the difficeliy in maintainisg scamless
commatnication and low Latency reguired for high-fidelity,

Therefore, integranng ETW s wath finely tesed LLMS 8 expected to become one of the foundational paradigms fod
the 105, This combination 15 se1 10 pave the way for-enabling semantic commumcation and synchronzing multiple
sensory modalimies [417]. By leveraging the capabilides of LMz o understand end generate nwanced contesi,
abongside LTM s profickency in minimizing Laency, this approach promises to significantly enhance the fidelicy
and imnsersion of multisensery expenicnces.

The archatecture depicted i Figuse 535 represents an optimal approsch to deliver multiseisory expericnces and cie-
ate digital twins | DT with bow Latency, while abso soving bandwideh, The system will inclode 4 main conposents
that are detaibed bebog

Teleaperated Yehdcle: The wleoperated Vehicle inthis usecase & UAY 15 equapped with a 38007 camernd, an onboard
compute and 4 30 miodemi. The UAV streams s position. and [MS] {Integnational bMobile Subscriber Identity )
o the cloud server. {ther sensorial data such as Video frames, Obpect annotations from franses, vibrdion asd
position are seot o the Edge server.,

Cloud Server: The Cloud server hosts o LTM fine uned on 3GPP doa. Opee the Clowd seever peceives IMS]
Tror thve VAN, Network metrics amd pesition, the LTM can act on the CoS by selecting the opimal profile from
the Core network leveraging Network APL: such as the one developed by GEMA a0 the project CAMARA [415].
Furthermose, throngh the Metwork APL the position of the attached BS can be retrieved, this the LTM can decide

aa rowtisg the UAY o the pearest edge cloud seiver

Edge eloud servers:. The selecied edge server hosts a Ane-tused LLM that specializes i WebXR ol frame-
wiprks, specifically Beac360 and A-Frame. The LLM senerates code for A0 pepeesentalions of ansolaied objec
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Figure 55: Proposed Architectuse For providing real-time multisensory experience through LLM: and LTMs

recerved from the UAN, which wre updarad i real-time Tod the end vser. The generated code s alsezaved ina
database, which cun serve as a 3D map representing a DT of the environment [419].

End User The end vser wears a HMD and can view the surmoundings in 6D0F wsing a locomotion phuform. By
teleoperating the remote UAN with their movenments, they expenence a sensation of fying.

[ conclusion, by feveraging LT and network APls, we can enable intelligent oschestrstion that significantly
reduces metwork delays and enhances communication efficiency. LLMs will play a crucial role inthe creation of
DT and suppnt maliisensory siscaming by gererating additional sensory mesdalitees. Ror instance, LLMs can
eatimate paramieters hke wind speed and temperature from images, while also epumizig bandwidih consumpion
by converting visual and sensor data oo code. Parthermore. by integrating edge cloud servers and teleoperaed
LIAVSE, we can provide ummersive, how-lutency expenences, ensuring real-time updites wnd inleractens s remase
covirsnments:. This approach oot only enhances the fidelity and immersion of the IoS but also offers scalahle
soluthons for creating rch digital representations of physbeal spaces.

%3 Towards Sustainable, Intelligent, and Autonomous Data Centers Enabled by Large
Muodels

Doata centers; ax critical infrasraciure for telecommunications, play 4 vital role n inlerconmection., sborage. ad
computing. ferming the backbone of modern telecommunications. As large-scale and complex systems. they face
significant challenges, including high energy consumption. feliance on manual operations, and luinited ntelli-
gence. Despite considerable research effoms w improve dats cemer operatons, challenges such as data scarciny,
generalizaton, and adaptability remain.. Tl rise of Large models presents both new challenzes and opponunaties
fon optimizing data center operations. T this secnon. we provide an overview of the Bbackerowmd, lmilations, aml
challenges bn existing rescarch on data cemters, aimd propose fiture divectbons for large model empowered data
cegiters, Specificully. we discoss time senes forecadting, PUE aptimization. the development of inelligent aisd
autonomous data centers. dmd present a case stisdy. Through this work, we aim o advance the development «
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moee sustainahle, automomous, asd intelligent data centers,

131 Imtrodoction

Drata centers are sagnificant contributors to energy consumpicon and carbon emissions. . The emergence of barge
models sech as ChatGPT and Llama has led o a dramate serge i demad for computational power within these
cefters. As i resull. energy consumption in data centers is expected 1o inerease substantially in the coming years.
mzking i1.a key focas for both industry amsd govemment effors aimed @ enbancing coergy efficieney dnd reducing
carbon emissions. Consegeently, research ot datz center operations bas attracted considerable atention, asd
governments, along with dia cemer operators, are actively implementing policies and initiatives 1o curb energy
COTIS oD,

Areview of the development histoey and futwre divections of data cemer operations reveals three distinct genec-
ations, based on recheological advancemients and the degree of reliance on manval operations: Theoretical and
Experlence-Based Models Generatlon: Currently, roost data centers depend on expernt-diven manual conteol fod
aperations. However, a8 sysrems-and equipment become inceeasingly. complex. waditional approaches—relving
an theorstical maedels and expenence—~fail 1o fully realize the coergy-saving potental of data ceners and are
absy pieisnae o risks due o their heavy dependence on lianan experise and judgment [420]. Data-Driven Models
Generation: Al-based approaches Tor optimizing Power Usage Effectiveness (PUE) have shown considerahle
potential. Companies such as Baide, Google, and Focebook have successfully implemenied Al techoologies
reduce PUE, and o varey of Al-driven techobgiees have becn adopted in data centers o improve energy effi-
crency [421.422,423), Despite thewr promise, carent Al methods often depend on lange-scale data collection and
wramsing. However, inreal-world production environments, obfameg comprehensive datasets requires ongoung
data accumulation, fecalitated by the widespread deploviment of sensors and other hardware, which can make data
inheremly scarce. This limigation slows the deployment and practcal apphcation of wraditionmal Al approaches.
Ao result, the operations. and managenient of data centers continue o rely heavily on lwman expernse for foult
diggivisis: munioring, management, and analysas, lacking reliable, amomaeed, and intelligent Al-based solutions.
Greneral [ntelllgent Lavge Models Generatlon: The success of lage models such as ChatGPT i various do-
mains iz expectad o bring new oppoctanities for the development of data centers, ushering them into a new phase.

Although large miodels bave demosirated remarkable success aoross vasious tasks, their application in specialized
industries. such as the data center domain, still faces significant challenges. Balancing generalicstion, specializa-
tiob, and cost-effectivenass in large reodel-deploviment las become a cribical obsacle w their indoseial application
Moseover. - esearch i data centers remains largely unexplored in this context. Therefore, this section aims to
provide a roadmap for large model powered data cenpers. covenng arens such as time series forecastng, PUE
oplamizanion, dnd autonomous dsa cemers, It highliglas state-of-the-wn pesearch, wdentifes the challenges asso-
cuited with larze miodels in these areas, and seeks 1o anspire fusther discusswns and research waweard achieving a
sustainable, autonomods, awd generally inelligent data center.

9.32 Large Models for Time Serles Forecasting fn Data Centery

A the demands for fuwee ietelligent data centers, tme senes analyss plavs an impoenant role. . Empowered
by time sefbes analysis, securately forccasting Tor dafa cemter opearticn stafus can be achieved. whicl help o
monitering and PUE optimezation, snemaly detection can lelp operators tmely discover anomaly status in data
center that can greatly helpful to data center safety; predictive maimenance would help operators fisd possible
Fault in sdvance, preventing secogity incidéns. Besides, there are many other erucial tone series tasks in data
centers, including genertion, impatstion and denoising, event detection, trend extracton; eic.. which wall greatly
cihance data center level of inelligence.
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A intelligent dask centers evolve, tme secies analysis plays o ceucial role. Empowered by time senes wechagues,
accurate forecasting of data center pperational status can be schieved., akfing in monitoring and eoptimizing PUE
Anvmaly detection allows operators o guickly identify wreegubarities in the data center. signefcantly enhancing
safery. Predictive maintenance helps operators anticipate potential Gaalis, preventing secanty incidents. Further-
g, other inpostan time senes tasks o data centers, such is geperatkon, imputation, denoisng, event detwcton,
and wend exraction, can substantally enhance the overall inelligence of data center operations.

Rcemtly. there sas been growing ivierest in developang large time senes models, with the aim of making sig-
niftcant advancensents i universal models for dme series forecasting. Similar w the development of large lan-
guage mwedels (LLMs). fmuslation models for thine series forecasting have emerged. The first Fowsdation model,
TimeGET [424], based on wransfornmer aichitecnwe and wrained on [ billion data poinds: demaonsirares high ac-
curscy and strong sero-shot capabilities, Tnoa similar vewn, Lin etal. [425] developed o GPT-sivle architeciune
traied on 1 ballion tme poims. showing promising performance across diverse thme series applications. Lag-
Llama [426] designed Tor peobakibistic univariate tme series forecasting, las demonsteated superion perfonmance
across various me series datasets.

Studies have highlighted the remarkable capabilities of LLMs, prompting explozation it their application in
e seried forecasting,  Consequently, this hag led 1o more disect approaches, specifically the iransfes of LLM
capahilitics into the e senes deman for forecasting. Xue ot al. [427) divectly employed LLMs for forecasting
by transforming momerical upuis and outpuis it language prompis. demonstrating supervor generalization com-
paaced 10 traditiona] nmimenical ferecasting methods. To appdy LLMs to timie senes. Tin et al. [428] aligred time
series and linguage modalities by rainkng text prototypes with frogen LLMe, leveraging the nteenal cagabilities
aof LIMs. Chang et al. [425] pursued o similar approach but peoposed o decper and mvore fAexible fine-tuning
methed to ransfer LM abalities from namra] language to tme series. This appeoach wsed a two-stage fine-tunkng
process: supervised five-tuning For LLMs followed by task-specific downstream fine-tuning.

Remarks: Botl time sevies fowndation maedels and Large masdels tansferred from other domains sepresent promis-
ing approaches for constructing large models for e series ferecasting in data centers. For ime series fouedation
micrdels [ 427, 428]. despite msk diffesences between current foundatnon models and daga center applications, both
fall within the domaobn of time series. This inberent alignment gives tese models a distinet sdvantage in trensler-
ring 1o, or even being directly applied 5, data center domains, In coptrast, large maodels such as LLMs oF other
demain-specific nvedels [424] opevate on different medalities compared to time series dat posing challenges bn
murdality alignment and effective wansfer of domain-specific capabilities 1o tne seoes wasks, To address these
chalbenges. technbgues such as parameter-efficient fine-tuning may be required o adapl these models with min-
imal or mo additional training. Nevertheless, knowledge from ather domuing can provide valuable assistance in
busbding more interpretable models, integraing extemal knowledee relevant to data cemters [429]. Funbermone,
LLMs have significant potential w functiion as agents, enghling breader, more advanced roles. This versatiliny may
pave the way fof schieving gencral intelligence i tine senes applications,

Challenges and Fature Directions: Despite recent advances an large models for time series ferecasting, signf-
icant challenges and eppoctunities remain in their application e data centers. The limitations of current research
and potentaal future duections can be summanzed as folbows:

= Develop Tallored Foundation Models for Data Centers: Constioct tailored foundation models specifi-
cally For data centers, enabling ereergent capabalities such as muli-tsk adapability, generalization acrosy
differént scendrtos, and exceptional few-shotand zera-shot performance. However, these efforts Tace sig-
niftcant challenges. including the cellection and processing of massbve datasets, ensunng data peivacy asd
secure sharing, amd addressing the high costs and compuational demands, These dssuees must be casefull
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addreased o realize the full potential of foundarion models i this domain,

= Efficient and Fast Application to Data Centers: Livestiganing efficient methaeds for ransferring the capa-
Bilities of existing lurge time series models or large visual models o daa centers is highly valuable. This
approach keverages the powerlel inherent abilities of these models. enabling facter deployment compared
o training models from scrutch. Additenally, it faciliaees more diverse functionalities. such ax integrat-
ing wext-based auxiliary information. Thercfore, designing eficient and lightwelght ansfer leaming o
fine-tuning steategees for these large models i crtical o their suceessful application in daga cenbers:

* Unified Thne Serles Large Models Framework for Data Centers: Tire scries tasks i data centers
enbend beyvond forecastng oo include anomaly detecion and other applicatons. The whimae goal i3 o
develop a unified large madel framework capable of sddressing all time senes tasks comprehensively. Oane
promisng approach s o establishoan agent-based framework whese diverse lrge models act as specialized
agents, sach responsible for o specific task, These agents-collaborate theowgls well-organized workflows o
hamdle the entire range of tme series tasks effecuvely.

.53  Large Medels for PUE Optimlzation in Data Centers

[ata centess play a pivetal role in global energy consumpiion and carbon emissions. with their impact progected to
griw significantly, particularly with the increasing deployiment of Targe-scale models such as CharGPT and Llama
[433, 431]. T address these concéms, governments and data ceater operators have introduced varbous policies
and initiatives pirmed at redicing energy consumption [432]. FUE ixa widely recogiized metne [or pssessing
the energy efficieney of data centers. Optmaang PUE has become a primary objective for dat cénter operators,
focusieg on mimmizing energy copsumplion amd carbon emissions [422]. Becent advances have highli ghted daga-
driven approaches as effective alenamves to raditional methods based on expert knowledge and thermadynamic
principles. Ameng these, deep reinforcement beaming (DRL p-based solutiens, such as the DON-based chilles
crergy optimistiog (420, eveot-deiven deep reinforcement learning [433], dand branching doubde-cheeling deep
D-network [422], have demonsirated significan potential.

Large models. with teeir cxtensive koowledge, exceptional genesalization capabilities, and superior reasonuig
abilities, show great potential for advancing optimazatican. Currend rescarch on this wopic can be divided inio tao
main approaches; wsing LLMs a5 optinsizers and optimizing theowgh LLMs. The approach of asing LLMs a2
eptimizers involves leveraging LLMs 10 analyze. reason, and optimize probiems step by step. This method allows
LLMs torhandle opumization tasks in an imelligend, human-like manner. Yang ctal, [434] explore the use of LLMs
ay optimizers by prompting them 1o address scenarsos ivolving the absence of gradients, where apimization
problems are presemted i natural langeage. They demonsiraie the cffecuveness of the OPRO framework on tasks
such as linear regression and the raveling salesman problem. amd show that LLM-bhazed solutions outperfonm
human-designed ones. A sinilar soudy in [435] focwses exclusively on prompt-based optimizaton problems.

Fecent works also explore the approach of oprimizing throagh LLMy, where LEMs are inpegrated with evolu-
tioiiiry algonthins o colance tadivonal optimization metlasds. Lelunan e sl [436) God thar LLMs trained o
gencrate code cansignificantly enhance the effectivensss of mutation operators m genetic programming. LLMs:
can generaie hundreds of novel examples wol scen dunng pre-training. demonstrating thedr considerable poten-
tial for oprimization, Meverson et al. [437] expleit the maueal in-context learning abilities of LLMs 10 create
varnatkon opertors i evelutionary algorithis, Their experiments, which inclede sentenoes, equations, and code,
lead them e conclude thar LLM-based crossover s a Aexible and effective method for optomizateon,. While neasal
architecture search throngh prompt-tuning imay be challenging for LLMs |438]. Chen et al [43%] demonstrste
that LLEMs, when used as general adeptive matalion and crossover opefators, can consistently identify divesse

and high-performing models by divecely gencrating code.  Additionally, Masie et ol [440] combine LLMs= wi
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quality<hiversity algorithims o generate code for reural network search, incorponding an cvolubionady process.
Thetr results demonsicate the competitive performance of LLMs, ever without prior domain-specific kiowledee.
Groogle Deepbind [4:41] hos develoged an evolutionory procedire for searching proarans by paining a pre-trained
LM with a'syswemuitic evaluator, This appeoach has led o genuisely movel discoveries—spduibons that were pot
present in the raming dala—surpasseng existing methods in the Cag Set and Online Bin Packing problenss, Thei
wirk hughlights the exceptional pooentizl of LLMs o explode wischaned ancas. shiweasing their creativity.

Remarks: Large models possess superior capabilities in dnowledge, reasoming. and generalization. positioning
them s promising candidages for erther acting as-optinuzers or collaborating with waditienal optemmization meth-
aada. This evelutaion o optimization epeesents a sew generabion of ustellgen selunons, Bot approsches offer
viahle paths toward leveraging large models for general optimization tasks. When lurge models are used a8 opri-
mizers, they s fully exploit the powertul abilities of LLMs, coabling them o addeess optimization problems b
amore intelligent and interpretable manner, akin to human experts. This appeeach is the most direct way to create
general intelligert optimizers. On the other hasd, when large models collaborare witls tradivional aptimization
misthaads. the combination leverages the strengths of both,  Traditmonal oplimization techmigues are particularly
advantageous for tasks requinng specially designed swaegies, such as fase convergence, learmahle policies, amd
tiloged solutkons for specific classes of problems. Meanwhile, Large models contrbute their vast knowledge ad

experiise. leading o morve effective and intzligent solutions.

Challenges and Fuiure DMrectbons: Desphie the success of applying large models o epumizanon tasks, seveeal
chalbenges remain in realizing & ouly general indellagent eptinazer coabled by laige models. These challenges asd
peteitial furuee resedach directions can be sunpmadized ws foll o

= Enhancing the Mathematical Abilitbes of Large Models: Existing stadies haghlighe somse lmications of
LLMs in optimization, such as difficaltics s ackling lree-scale problems [434] wnd inconsistent perfor-
maEnce For the same problem when presented with diffesent prompts [442]. Consequently, further investi-
gation 15 needed o strengthen the mathematical reasonimyg capabilities of large madels. Chain-of- Thoughts
[443] is a promising appreach et has shown significam imgrovements i anthmetic awd symbolic reason-
i Lasks.

= Bvnergy hetween Large Models and Traditlonal Optimization Methods: Alhoagh Lacpe models aloae
are capabls of making a sagnificant impact, the advantages of waditional epmmizanon methods should Bor
be averlockaed, Collaboration between large mvdels and these methods can yaeld supenior perfomance.
Previous research las explored the inegiation of lurge noodels with evoluionary algonthma. Furthermore,
LLMa can be combined with other classic optimization lechnmgues, such as Bayesian optamization |444)
apd DRL [436]), welocking addinonal potentia] based on the specilic charactersstics of the apiamization
algoanhms.

= Integrating Different Modallthes with Large Maddels: Current rescarch, whether using LLMs a5 optimiz-
crs or combinkng them with other algorithms, primarily selies on nafural language inputs. This reliance Hmics
ihe ability of large models to address oowider ammay of optimization problems. Por instance, LM sirugele
with tisks wvalving large datasets oo graph-sireciured information. These input lmitations can significanty
himder the opumization proceas. Thesefore, moge effors are needed vy integrave vacious modalites within
lagge models, eahancing their capahilities and cnabling them to handle a brosder range of optinizatbon tasks
muoe elfectively,

= Incorporating Data Center Knowledge inte Large Model-Enabled Optimizers: Owe of the core adeay

aisd key strengths of urelizing LLMs in optimization is their abality 1o leverage powerbul internal Ksiswledge.

Haoswoewer, tha integration of domain-specific knowkedge, sisch as that sequired for data cenr nptilm’urjﬁ
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paesents sagnificant challenges. Traankng Liege mvodels for data center opimization froom sceatch, fine-tunbing
cxisting models, or enbancing them with retrieval-augmenicd generation are promixing directions for incor-
porating tuis expertise inbo oplinization asks.

* General Optimizer for Data Centers Driven by Large Models: Dateconters requiee optimuzation across
variongs Tacets, incheding PUE. carbos emisgions, water utilization. operational efhciency. and fault rates.
Crptinizing these aspects necessilates integrating expert kiowledge. diverse documaent sources. and special-
ized ool imo large models. The challenge lies in effectively combinmng these large models with diverse
inpuals amd tools 0 create o general and ntelligent optimizce. This arca remains largely unexplored amd
requires sigmificast further investigation.

.54 Large Models for Intelligenst and Autonousoeus Data Centers

Al Operatons For dats centers is a broad concept that refers 1o utilizing AT techanologies to automate various aspecis
af data center operatbons, This inchsdes not onky tme senes-refated operations and optimezation bt also data anal-
yaag, poat-couse analvsis, doily moaitonng, and mantenance. Despite the development of advanced wehnologies
for dsta center operatinns, these operations sOll heavily wely on manoal peecesses and expen knowledge, which are
nise-conseming. labar-itensive, and prooe o ervoes, The advent of large models, which aim to achiese amibcial
gencral intelligence, brings new gpporunities for developing generally and intelligently autoneanons data center
operations. These rmaodels are expected w enable self-optimization: self-healing, and self-management, leading oo
moge efficeent, reliable, and intelligent data center Gperations:

Several stedies have exploved the application of lasge maodels in Al operations 445, 446, 447]. Log analysis is
a crucial tsk i Al operations. Considering the challenges posed by semi-simuciured bog data with limited gram-
mistical structire, Gupta et al. [445] progose BERTOps, the first LLM that can effecavely zeneralize to muliiple
dosmstream w@sks of log analysis. They butld on BERT-BASE, pre-irain en large-scale public and propretary
I daga 44 L endllion public dat: and 19 million proprictary datal, and fne-tone on specific bog tasks. The pro-
posed BERTOps achipves supenor performance compared o existing methods in log format detection, golden
sigmitl chassification, and faull category prediction. Qingehi operation large model [4498] i proposed o reilize
e intelligent AL operations. In wtilizes several effective iechsologies trgeting varions scenarnos, ineluding log
and alert amilysis, autonsatic Tault repoin generation, alen undersianding. and detecton of logs, alerts. and events.
Specifically. they incorporate fine-tuned LLMe for specilic Al operation tasks, constroct an aperations knowledae
database, and leverage Retreval Avgmented Geveration (EA0) 1o enhance the capabalites of LLMs. They also
impeoyve the reasomng abiliny of LLM= theough prompr engpeering and Chan of Thoughlt (CoT) techiigues o
betier analvee alems and logs, and otilize vartows tools such as databases. algorithms, and code o enhonce general
abilitbes. To sccwrately and Gy evalsaee the performance of Large models on Al operation asks, comprebensive
benchmasks are needed. Lin et al. [447] propose OpsEval, which evaluates LLMs" performance scross thrce
pivolal scenarios: wired petwork eperation. 5g communication operation. and database opecation. It considers
varving shiliy levels encompassing knowledge recall, anadvrical thinking. and practical applicaton.

Remarks: Large models have significant potential for Al suloiomous operations in data cemers. Al operations
are chosely related v watural language processing. o domain where large models have achicved remarkable suc-
cess. This success can doye. advancements in Al aceoss vanous demains. In data centers. logs and alerts are
alten in pateal lsnguage, making large models well-suied for AL operations. . Additonally, LEMg can receive,
process, and generate namsal langueage content, facilitating more wser-fendly eperations and lowering the expee-
nse theeshold requirsd fod daste center management. Beyond natural Linguage procesing. lirge models, wcluding
LLMs, have demonstrated exceptional performanee by variows ancas that can support Al operations. For instince,
their Ccoade generateon capabilities can be crecial ool in developing autoromons systems. Their sirong reasonti
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abilities help wdentify rool causes, wnderstand and analyee operafiona staius, wnd manage complex tasks, Further-
mewe. by leveraging advanced wools, we can enbance tee capabalities of large models i Al operations, Theowglh
effective prompt enginecring, we can improve large models for data cemter operations without additeomal train-
ing. Techuiques such as RAG and the use of external resowrces like knowdedge bases, knowledge graphs, and
descumentation can incorpofate specialized data center kowledge, wanstormng large masdels iato proficient data
cented operalors. Additionally. efficient fine-nming methods can adapt large models w the specific needs-of dasta
CENET operations &t a bow oost

Challenges and Future DHrectbons: Althouagh there are significan potentials and advantzges i applying large
mindels foe autisamous operations, existng works sill fece several deficiencies, Mode effons are oecded 1o
address these challengeés amd make steady progress wawand inpelligent sutonomons dsta eonter opertions,

= Develop Tallored Large Muodels for Autonomous Data Centers: Lavge models wre promising solunong
for Al operaticns; howeser, there s nd iesearch conducted on Al opegations Tor data centers. Duae 1o the
specialized nature of dara centers. previous stsdies cannod be disecily applied. Therefore, developing webl-
tailored Targe models for automomaens data centers remains largely unes ploved. Techniques such as prompt
cngineering, BAG [444]), fraining from seratch, and Ane-tuning pre-trained models cach have their ows
strengths and weakvesses, and the chodce should be based on specific circumstances.

= Comprehensive Ahilities of Large Models ave Indispensable: Autonomous data centers reguine no mn-
wal mnterventions and should be capable of handling all aspects of data center oparations. This ipclodes mot
andy prediction capabilities b also epumizanon, analyss, reasoning, and dats manzsgement. Large models
mibsk process diverse inpat modalities, including text, logs, and data, These diverse abilities are indizspons-
able for lorge models o achieving astonemous data centers. However, developing sech comprebensive
abilities in large neodels rerunns @ significant challenge.

= (Iperathen Reliability of Large Models: Diaia centers store and process lorge amounts of data and seppon
numeros eritical services, meluding comimusication and computing.. Thesefode, the reliabilicy of data
center operations s crucitl. Current investigations slvow than larger models moy become beds seliable |449]).
Large models may generate coatent tiar deviates from Tacts, koown as facial hallucinarso,. More effors
and ivyestizgations ave needed 1o matigate such vocelisbility: otheradse, these ege models cansot be applied
i real production eavisomments,

= Antonsmons Data Center Driven by Large Model-based Agents: While lorge models are incredably
pevaverful. a pure lasge model may stugele v realize antonomous data centers. The fandasienial disttection
Detween dnomans and otfeer codemels Wes in the alility i creale and e fewls, This descripteon, Owoigh
nak entuely accurate. highlights the imponance of tools for human progeess, Each isfuestrial sevolutiog
has been driven by new wools und wechnologies. Inspired by thig ok, autonemons systems shoold wnlize
diverse extermal tonls [450] to overcons lmitations in pre-training data and address specific downsireans
fasks. Enabling dgents with Large mwodels will greatly enhance theie potential and capabalities. representing
apeaanasing avemss oward achieving Arlificsal General Intelligence (AGE For autonomoms data cinters,

9.35  Case Study

W huwve dose anktial works twards imtellagent and autonomsoes data centers emposered by larnge masdels, we
introduce therm as a case studies in this section,

Consedering that conventiona] small models fos predicting daia center staus often face data scarcity i4sues in prac-
tical deployment. While large models show promise in sddressing this chablenge, they encounter obstacles suc
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Figure 30 Architeciure of LOSEC: Capianing local serantie information aliemately across tioe and channel
dimenadons,

as mulivanaie gk, compuiational inensiey, and ineffective information captire. Moreosver, theie applications
in data centers rema largely weexplored. 1o this case studies, we ivestigate local semantic capiure empowerned
laige model for multivaniate unse seies Torecasting Hndata centers. We Arst introduce ome sertes @asks withdn data
centers and propose the Poine Lag {Plagi-Llama feamework with the Lag-Llama backbone e suppart 2ero-shot
forecasting amd fine-tuning for mulbvagiate pont time senes forecastng, To address computational inteasity and
enbance the capabilites of multivanae forecasting. we propose the Local Semantic Capaare (LOSEC) for adapeer
fine-tuning, which capiures local semantic infermation across nme and chaneel dimensions alteonately with low-
complexity. Specifically, tme seres are segmented noo tokens, asl chanigels are clusternsd wogether, formang local
semantic information that can be caprured vwore effectively. Extensive experiments demonstrste that Plag-Llamna
exhibits superior zero-shot capability and that the LOSEC empowered adapter fing-tuning schieves state-of-the-
art perfermance on real-world datazets collected from data cemers, with ablation studies funher validating the
effectiveness of cach mwsdule within the proposed maodels,

Flag-Liama, A Muoltivarkate Tine Serdes Polat Forecasting Framework: We inroduce Plag-Liama, a frame-
wisk crafted for mullivariate tioe series point fogecasting, which extends the capabilities of the poe-wraived Luag-
Llama. The overall architecture is depicted in Fig. 57. In Lag-Llama. historical inputs Xe_p oy £ &8 °F undergo
sequential procesaing imvolving a prigection layer, & masked ransformer decoder layers. and a dasribunon head.
yielding a probabilistic distnbution for esch bme series. To adapd the probabiliste forecasting capabality to podot
forecussing, the pre-trained Lag-Llama excluding the distribation bead, serves as the backbone of Plag-Lluma.
Funthesmese, Plag-Llama imegrates supplementary blocks, sech as te wransfer block and adapeer block. incor-
porates a revised boss function. and employs fine-teming technigues. The transfer block corresponds o the full
fing-tuning methid, while the LOSEC adapter biock implements the adapier fine-muning method. As shown in
Fiz. 57. both methods share g forward pass process, but differ in the backoard pass. Specifically, full fine-minng
involves hackpropagation through both the pee-rrained Lag-Llama model and the transfer bbock, whereas LOSEC
adapter fine-tuning mvolves backpropagation only theeugh the adapter Block and a backwand pass throagh the pre-
trabmed Lag-Llsma. This distincuon anses foem thelr differing eperational mechanksmea. In this work, we propose
an aatuitve aid sero-shod Block that leverages tse average oporation seess featimre dimessions. The dewails
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Figure 57 Plag-Llama! Overview of the architeciore:

LOSEC adapeer fine-tunding are introduced oo the fellowing ssctions.

Loeal Semanti Caplure Empowered Adapter Fime-Tundng: In the full fine-tunisg approach, all paraneiers b
and @ must be adjusted for each task. leading 1o significant computational intensity and resource demands. De-
spite implementing carly seopping and random sampling strategses, Tull ine-tuning remaing prone (o overliting.
Addaprer fine-tuning presests o promisiog meethod for captunng oew corcelatons beyond those established by ornig-
inal maodels, thereby enhancing the capabilites of Lag-Llama i muoltivariaee time series forecasting. However,
exisnng studies [451. 452, 453, 454] fail w adequately capture channel-dependent and other critical informanon.
wisich wold resulis in e signifcant degradation of performasce. Thenefore, wé propose o novel model, LOSEC,
abiming capluring bocal seopantic informmation to compensate deawbacks of base models and achieve SOTA perfor-
FET

To empower Log-Llama witls the shility oo perfornn mulivanae Forecasting, we scek o understand the cornela-
oy between different chanels. However, simple anention-based metheds stuggle o capure this information
due to irrelevont and even interfering data among channels [455). Onginal attention mechanisims ape designed
e capiung: cornclations between words in a sentence; owever, individual channels ina multivariate wme senes
are mofe analegons o leters-in a semence, and therefore do not imberently carry semaniee meamngs. Moteover,
this |ssue extends beyond captunng coreelatbons between channels, affecting the temporal relationships between
ninwe steps as well [456]. To wddress this, we propose the LOSEC model. which constructs and extracts semantic
informatioa for botly the clannel and time dimensions. In this conteéxt, cerain individuals (channels or finse steps)
are gronped together to form meaningiol sermantic units, which we refer fo-as “local semantics” due o thein bscal-
ized natwre. To efficiemly capure local semantic informativn while maintaining complexity, we first extract local
semmantics along the tme dimensien, followed by the channel dimension. This results in twe distinet processes:
local semantic finse capture and local semantie channel capiune, This ensures that the altestion mechanism cin
cifectively perform its role in captoring these relatonships. These local semantic captaees acrass both dimensions
are central to the LOSEC miodel. with its overl] drchiteciure depicted in Figo 56, The LOSEC model i designed
o be bw-complexity. featnng thoee key strategios to educe computational lead: 1) tbe formaton of leeal se-
mznic informatkon across the tme amd channel dimensions, X) alieenating capiures aceoss the time asd channel
dimensions, and 3 dimension-specific simention mechanisms. Detailed discussions of the complesity reduction
and design philesophy bebind these modules are provided in [457].

Experinental Resulis: We compare our proposed metheds with SOTA maodels in the dath center mltivariasie
timee-series forecasting task. The resuliz for three cabegories: supervised, ®ero-shod, and fne-tuning models
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Table 20: Multivamate time series fovecasting performance: The context length 45 sel to B and the peodiction

MODEL MAE MSE SMAPE MASE ARK
SUPERVISED
Autoformer 0.139 0180 26.244 0.184 8.75
Crossformer 0.137 0190 23,863 0.181 8.75
DLinear 0135 0179 24.786 0.178 6.50
FEDformer 0141  0.182  26.858 (.186 9.75
Informer 0.128 0.179 22939 0. 169 3.50
1 Translormer 0.135 0.245 19.451 0.178 6.25
LightTs 0,168 0204 34,194 0.222- 12,50
NS-Transtormer 0.130 0.182 22971 0.171 s i
PatchTST 0,136 0249 19424 0.179 Tia
TimesNet 0130 0187 22.580 0171 5.060)
Translormer 0353 0397 67239 0466 1404
LZERO-SHOT
Plag-Llama 0127 0194  20.579 0. 180 o o
FINE-TUNING
Plag-Llama (Full) 0.153 0176 28.643 0.201 9.25

Plag-Llama (LOSEC Adapter) 0.123  0.177 21980  0.162  2.00

susinasized by Table 20, Leveraging the powerful forecasting capabilities of Lag-Llama and the proposed trans-
fier bbock. Plag-Lizma demonstrates strong @eio-shot pesformance, achieving the second-best MAE and thicd-best
SMAPE, along with an average eank of 575 Although i falls shon of the best pesformance. o sull ranks third
arvong the supervised SOTA models. This superior zero-shot performance indicates that the Plag-Linma frame-
wisrh 15 i promising solutien to address data searcity challenges and expedite deploymicnt within data centers. I s
imporand 1o node that tee origine] Lag-Llama sims o align the overal] distribution with the ground o bhowever,
the simple average laver effectively transfers thesc probabalisae capabilities o podnt forecasting. This is actribied
1o the aymimeriae Student's t-distribution adopeed in Eag-Llmi where leaming ogimal mean values s beneficial
for prohabilistic forecasting. However, full fine-tuning <ignificantly undermines the performance of Plag-1Llama
due to pverfitting, resudting i an average vank of 925, which s even worse than s zero-shot performance. Em-
povvered by the proposed local semantic information cagrure frnmework, the LOSEC adapaer consistently demon-
strates supenar performance compared o other S0TA models, exhibating an averge improvement of 3.34% over
the second-best maodel,

Muore experimental vesuls, deailed atalyaes on few-shot learning, visualization of lecal sevnanie nfismaation
capiure, ablation stnihes, and other aspects, along with compeehensive technical details of this cese study, can be
fowsd in our work [457],
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9.4 LLM-enabled Semantic Communication

Uiderwater communication plays a vital role in enviroamental monblering, marine hology rescarch, and under-
water explovation [458]). Efficient and religkle ransmiassion of maltmaodal duta, incleding images and semsony
infiormation, 15 essential for racking manne eoosystems, studying manne e, and ensunng the success of explo-
ratvon imdasbons [4539). Taditonal methods ke aconstac, optical, and BF communecations domsinate underwaters
coimimpnication [do0]. Acoustic communication. the mosl practbeal for long dstances, sulffers Tom linited band-
widhth {kbps-levely, high Ltency doe 1o the slow speed of sound, and voloerability (o noise, attensagion, and ml-
tipath effects (461, 462], These limatations—ow bandwideh, high laemey, and pooe robusiness—pose signifcant
challenges in complex underwater cnvironments.,

Semantic Communication (5C) based on artificial intelligence has been proposed o address challenges in low-
bandwidih. high-attenuation scenaros (463, 464, 463]. 5C introduces & semantic channel to extract, cnoode. asd
transmil semantic wformation, opiimicing bandwidih wsage and achieving efficient teansmission [4646]; Unlike
traditional sysieims that focies solely on bitstream aceuracy, 5C emplasizes meanngful content ransmission [467,
ApH). However, SC faces key challenges i underwater envieoments. Firsy, nultipath peopagation and Dogppler
shifts lead 10 semantic mismatches, distorting signals and disrupting coherence. which raditonal 5C stroggles o
handle effectively. Sccond, 5C Lacks flexabilioy i priccitizang comcal nifommation for diverse underwatar tasks,
such ay distinguishing berween bmages for environmentd nsopiioing and manne specics detection, This limitation
hinders effcient commubication, poientially delaving critical decision-making o underwster (prations:

To tackle these challenges, we propose o movel SC frumewoerk usisg Large Language Models (LLMsy, Unbike
raditional models, LLM: excel at geperalization amd can prionitize amd flter data based on task-specific needs.
This allows for more efficient data mavagerment and wransmissien, Our framework uses visoal LEMs o process
image data, performung semantic compression-and pricntzaien by cocsling key elements and applying highes
compression e less critical areas. On the receiver side, a wext LM recovery mechanism and 1w ConteolMet
netwiorks help reconstiuct the data and improve semantic coberence, mitgating information mesmatches, This
approach reduces data size to (1L8% of the eiginal and enbhanees sysem resilience agiainst nosse and signal Boas,

The framework, specifically designed for undersater Image transimdssion, i3 proposed. It begins with o query. sont
by individuals above the water surface. which is transmitted 1o the wsderwater environment. Upon reception. the
unalerwater wansmittes ases o wensantie dncoder combined with an LEM-based prosiitization mechanism, This
mschanism identifies and ranks critecal visisal information based on the context of thee query, The priositied dsta
is then compressed for wansmission tuough e underwater communieation channel. AL the receiver’s end, the
information 15 decoded wsing a semantic decoder, supported by a diffusion mode] and LEM recovery mechanizm.
The decoded visual content is then reconstructed and delivesed 10 the individisads abisve the water. This approach
apuamizes the wansmission of visual daa in ooderwater communscation svspens:. The framewark serves muoltiple

PlUTpOsEs:

I LLN-based Semantic Compression and Priovitzation Framework: Lnsodioced 2 nevel semenic com-
muntcation fromework leveraging Large Longuage Models (LEMs) for undeswater image Gansmission.
By understanding user quenes and identifying Key semantic elements o mages, the Damework peeloms
semantic comression el prioritizanien, senificantly reducing the ransmisiion of woib-critical dats amd
enliancing commuication efficiency and adapiability.

[

Integration of Newly Dedgned ControiMet Networks: Developed and integrated vwo specialized Con-
tralNet networks: Key Begton ControlNerand Global Yision CoatrolMet. These networks, combined witls
a-diffusion model, enharce semantic coberence amd effectively address semantic mismaiches in complex
undery ser enviromments,
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3. Achleved Siguificant Data Compresshrn: Achieved o remarkable dota size reduction, compressing rani-
muatted data o enly (LE% of the eriginal size. This appeoach maimains high-guality semantic sfomation
reconstruction. even in high-noise conditions, while significantly reducing bandwidith requirements.

4, Robuost Muoltimasdal Recovery Mechanlsme: Incorporated s LEM-Based szl seeovery mechanism o
the receiver side. combiped with riple gusdance signals in the diffusion madel. This ensures high-precision
and Acmantically coisistent image réconstruction, keveraging joint optimization of ext and visual isforma-
o o impeeve tecovery rohnsteess under challenging commamiciation conditins.

9.5 LTM-enhanced Data Augmentation for Spectrum Sensing in Cognitive Radio Net-
works

Spectrimm sensing 15 a critical function m cognutive sades sevworks, ensghling devices 1o detect unused frequency
bands and avoid interference with Primary Users {PLUsp. Ome effective approach to spectiam sensing 1s aubomalic
seenditlersion clugsifieanion (AN, which is based on the ades that by detecting the modulation schemes used by
PUs, spectum occupancy can be accurately desermined, Onee the modulation sclwimes are identified, the codre-
sponding frequency bands can be marked as unavailable for Secondary Users (SUSL ensuring efficient spectrng
utilization asd minimizing inferference.

AME can b performed gsing large-scake vision models that have demonstrated remarkable success inimage
recognition tasks, Howeves, the accuracy of these models in the context of moduolation classificaion heavily
depends on large-scake labeled datasets. Acquining sech datasets is challenging and resource-intensive, Addition-
atly, if a new modulatien class 15 wtroduced, the existing malel reguines retralning 1o sccommodate the new class.
wliichs 15 both time-consuming and computationally demanding.

To address these challenges, the proposed methodology mvelves ransforming saw in-phase and quadsamre (16
nnsc-seraes data into image representations using technigues like Recurrence Flots (RP). Markov Transstion Fields
{MTF, and Gramaan Angular Fields {GAF L These ransformanons serye mltiphe puiposes:

I. Recurrence Plots ( RP): Recurrence plots (RPsh are a powerful tool for analyring pon-lieear tme serles
cata, allowing for explonng hidden patiems asld structures ool casily detected by conventional methods.
BPs provide a wiy o observe o systermn’s beluvion over thine and identily recunring states o0 cyvceles within
the duta, The construction of a recurrence plot is based on the concept of tecurrence in phase spoce. Given
hi thme series {A,};""_ - the first step is reconstoructing the phase space using deluy embedding, as stated by
Tiken's thearem [469]. This iz done by constrecting delay vector X inan se-dimensional space:

A, FE I PR [ T SO | L

Liv Exguentios (1) o b5 the embedding dimension and 7 4 8 tine delay. The chobee of wend ©ean be opimized
using methods lke the False Nearest Medgghbors (FNN| algocithin (470] for am and the first mindimun of the
miutual informaton fuwctbon for o, The securrence matnx & 15 defived e quantify the recumences of slalés
in phase Space.

R =0E—F =X 1y

In Eqpuation (2}, the recurrence mateix R ; is defined vsing the Heaviside step function & [471] o guantily
whether the distance || X, —X;|| between state vectors X, and X is withioa threshold .

LY, - X,|| = '|'||I [ Xkt = Lprbr
k=g
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[ Eyuation i3}, the distance (X, — X;|| between ale vectors X, and X, i the Euclidean distance in m-
dimensionad phase space, suouming e squased differences of their tme-delayed components.

L ifx=0
Bix) = 43
0 ifx=0

The Heaviside seep function @ix) in Eguation (4} is wsed o retuimn | iEx = 0oand O 0F 5 <= 0, effectively
determibning iF the distance between vectors 15 within the thieshold £,
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Figure 58: Recurmunce Plots for various masdulsion schemes

Figure 38 displays EPs For varioons modulation tvpes. GMSE QPSE, 16-0AN. amd &3-0AM. These plois
reveal the periodicities and repetitive paterns within the signals, highlighting differences in signal dynamics
across the modulation schemes,

Markov Transitton Fields (MTFi:

Markoy Transiton Field {MTF) & anotler technique that tansfonms dme seres data inlo images. This
method was introdweed by Wang and Qates [472]. The central idea is ro evaluate how Likely the time senes
will ransition from one vialue 1o anosther within a given dmeframee. The given time senes a5 divided ine a
fiite number of noo-overlapping intervals acting as the states. For cach paie of states & and 5, the transition
probability of nwoving from 5 oy, inobe-time step s computed. Lastly, an MTF moitns s constrocted where
cach element ML ) correspends tohe ransitien probabality from state 5; W state 5, This matrix represents
the blagkow Transition Field,
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Omece the MTF s constructed, of can e viswalized as an image, where cach pixel intensity s proportional
o the transition prohability berween staies, Figure 39 shows MTF plots for differcisn modulation schenes,
GMSE. QPSE. 16-0AM, and G-CAM. Bxch plot visualizes the transiton probabalites within a signal,
highlighting how different modulation technigees affect signal characieristics.
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Figure 3% MTF Plots For varions modulition schemes

3. Gramlan Angular Fields (GAF): Gramian Angulor Field {GAF) caplures the relatoaships berween cach
palr of pomts in a wme series anoa polar coprdinpee space. While MTF foceses on rransition probobalines.
GAF caprures teimporal comrelations between values i a tiree senics, The glven e senics b5 et normalized
1o bave values i the raage |— 1,1, The somualized e series 15 then ransformed o polir coordinates.
G F walues are calealied based o the type of GAF being used. There wre owo tvpes of GAFs: Summalion
and Juffe rence,

« Grramian Angular Sommation Field (GASF: This ovpe caplures the temporal correlations bebwiecn

values i the time series.

o Gramdan Angular Difference Fleld (GADF: This tvpe captures the temporal anti-comelations be-
pween values in the thme series.

The GAF i3 defined as follows:
GASF = cos[ 8 + 8] RN

GADF = sinf & — &) (45
where & and 8, are the angles corresponding to the ¢-th and j-th points. in the nomalized Lo serigls
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e
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tratsformed s polar codndinaes,
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Figuge &b GADF Plos for varioos modolation schemes

Frgure 60 shows GADE ploets for fowr differemt modulation-schemes. GMEEK, QPSK, 16-0AM, and 64-0AM.
GADF wansforms visualize the relative angular movement between psints in a dme series, providing a detailed
view of the tempesal patterns and seructural differesces in signal behaviowr across vagious modulation tvpes.

Large-scale Al models can efficiemly generate these augmented datasets. Figure 61 shows an example of this
wheere RP plots were generated using Openad’s ChatGPT.

Oiwce the augmented g ge ditaset is generated. the Few-Shot classification technigue can be used for AMC. Few-
shot classificatbon mvelves wsing a (pretained) model v classify images with oaly a limited munber of examnples
per class. Openal CLIPComrastive Language-Tmage Pre-Teamning) model [473] offers a powerful approach o
thix peoblem by learning o associate exn with amages theough embedding both in a shared space. A classifier
can then ke created by providing captions describing the possible labels for generated modolation images ansd
selectang the capreon with the kighest simalarioy. CLIF can b fine-tuned in vansus ways, either by (raiing the
cutire etwiork end-1o-end or fecusing on the inaze encoder one,
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9.6 Agents for Telecommunications (Telecom-Copilots)

The process of understanding, developing, and researching owdern wircless communication ischnologies is often
leingihy and demanding. T reguires systematically exploning throwgh numeroas web pages amd technical specifi-
cation decursents o gather essential infermatien and syothesaze it imo actonable insights. This section exploses
Telecom-Cogilot. a Gen-Al ol desigoed o effickently svotlesize and process infomation from wireless commai-
nication specifications, simplifying complex data for sireamlined analysis and understanding.

The complex nature of techiical specifications poses a significant challenge Tor wisderstanding and refining maod-
o wieleas communication wechookogies. Researchers, engincers, and students often struggle with overwhelming
acronyms and comples erminadogy. compowsded by information scatterad across numerows documents. This
shamering of comtent makes it a labor-inensive and tme-comsuming endeavor. The down of foundatien models,
such az CharGPT, offers a promising solution to this challenge. These models represent asubstantial leap foraard
in delivering synihesized, easily understandable responses 1o user queries aboul wirckess commamnication specifi-
cations and echiologies, steamlining information retrieval and cotnprehension. Whike stte-of-the-an foundation
LEMs are sometimies ¢ffective in addeessing several quenes relaed o modern wireless commamicateon teclinolo-
gies, they often provide responses that are aorelevant o inaceurate, limitng their reliabalicy i this doomadn | 141,
Much ke existing convessational copilots such s ChatGPT, the elecom industry stands o galn significantly
frotn & specialized comversational Al ool desigoed for the symbesis of wireless communication specifications—a
Telecom-Copilot. A Telecom-Copils provides a question-and-ziswer interface spocifically tslored 0 the ele-
comm domain. offering enhanced capabilities o deliver mode accurate and contextually relevant answers on topics
refated 1o the technical specifications of modemn wireless communication techookogies. Asdescribed in [1417, a
Telecom-Copilot can be balt upon foundaeen L1 Ms and features theee key additonal eomiponeats:

= Dpsmain-Specific Database: Poundation models are typically traioed on extensive web-based datasets. How-
ever, wechncal specifications and docoments related v modem wireless communication technobogies, while
publicly available. are olicn not eastly accessible die 10 their niche @nd speclalized nature. This lack of
representation leads o gaps in the abality of giote-of-the-an foundation models 1o iecognize aml gener-
abe pesponses with pattemns rebevant oo wioeless communication systems, To overcome this lmasation, the
Telecon-Copilot syvster supplensents foundation models by extracting and segmenting text from varioos
techncal specifcations, meluding 3GPP releases, Wi stamdacds, and O-RAN decuments, ensuring more
sccwrate and conlexE-aware puipus.

= Context Extractor. The Telecom-Copilot employs a context extractor (e, o RAG framework) to identify
and-refrieve the most relevant text samples from a demain-specific database. These extracted samples are
paovided & contextnal mput w either a base or hne-tuned Toundation model, The framework combines
this comiext with the wer's guery wo generme precise and informed responses. To enswre waceabality, the
spectfication document sentifier is stored for chlation purposes.

= Feedback Mechanism: The copilot may incorporate & robuss feedback Uearwre, enabling users woanteractively
refine their experience. Users can like or dislike sesponses or seek clarification from an expen. When expert
femdback is requested, the system automancally gencrates an ssae s a designated sepositony. This issue
inclades the user gueery, the provided context, and the genersed response.  Expents can then sddress the
e by offering feedbick or contributing additional data. enhancing the svatem's accuracy ond reliabiliay
OVET T
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9.7 LTMs in Network Operations and Maintenance

With the contingous pasgress of mobile communtcation echnology amd the continuows growth of petwork de-
mansd, the aetwark stracture is becoming more and more complex. However, waditional petwork managemsent
can mo longer meet the peeds of fuiure developmend. Tn the future, intelligent awmtonomons networks based on Al-
driven-automated anzlysis and mult-dimensional data perception will provide more flesible and efficient netwaork
stpategies, bt this will alsdé peguire anames network msnaeement methods. Lagge language models {LER«). will
play wn ingsertant sole iy peoanotong the melligent automomy of commpmcation networks. At the same time, they
will abss provide sew application scenaries for the future development of LTMs in the welecommunicstions field.

Typical applhication scenarios of netwark melligent operations asd maintenance (O&M | osclude asomaly detec-
tiop, fauly disgnesis, event warning, and performance optimization. In raditonal nevwork QM. O& M personnel
need o eblain network state informsatkon through meanasl inspectien and data analysiz. which iz meficient. By
inroducing LLM technobogios, netwaork stare information can be mondtored in real-time and efficiently, and the
network can be analyzed and processed theough auemated CM. theseby effcctinely tmproving the stability and
relbabliny of the nerwork. The simplified architectere of petwork operaton and malmenance assisied by ETM s 54
shown in Flgoee 63,
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Figure 63 LTM: simplify network operations asd maintenance.

By callecting varlous pesformance data, oetwark congeston infombation, and netwoerk operation logs in the net-
wierk, and sending real-time network information w LTMs the complete process fnom moniloring 1o processing
can be compleved, esabling intelligent network operation eml mainteiance, Specifically, LTMs will quickly per-
forvn statistical anolysis, then predict the network 1o combination with vanous network service scenanos, perfomi
Fault diagmosis, and provide comésponding operation and maintenance decisions. which will then be sent 16 the
database for stornge. In additen, LThs can also visualize the current and predicted network conditiens. better
displaying nerwork stxms and wends v operation and matmienance personnel, helping them o perform nemwork:
aperation and maintenance more effcicntly and intelligemtly.

Futhermeoge, in combinateon with LLM wechnologies, the anderiying components can be comprelensively an-
alyzed using intent-driven, commumicatbon-petwork-specific ML models and advanced policies. Thas approach
achieves an autonamous [oop of "ol lecalizaten-policy generation-policy veriGcation.” Unlike waditional inel-

ligent D&M methods assisted by manual decision-making, this method wses spatictemporal representation le
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ing for knoawledge inference in setwork eperation stue detection, autamnatically generates and verfies faelt recov-
cry il mulitask management policies, and ensures service bandwidih amd peowor® perfonmance througl tech-
fiques such as bypaszs routing and resource orchestration. Moreover. it can subonomausly perfoem fault répairs
baszed on learning vesulis o suppon network management and stare adjustments, thereby profwting autohimong
network Duldhd

9.8 Large telecom foundation model for the physical-layer

Stwce LEMs lack a profownd wederstanding of physweal-laver wireless signaly, there is a need wodevelop foundation
models specifically wakked w handle any type of das that comprises such signals, Typically, wireless use cases
procvide this data in the form of (10-based) time seres, sampled & vaeying bengths and sapipling rates, However,
such a madel should generally alsoundersiand derved statiztics such as channel impulse responses. chips, power
speciral densities, FET swatisties. ewc. To obdain a semantic undersiamding of wireless signals a wireless foundation
madel can be ramned throwgh the following steps sme-samgde predie i, peesking and derociang as highlighted in
Figiere &4, ln-contrast wo current machiee leaming approsches, tsan focus oo speciiic wireless use cases such as, e.g.
sensing vaing U'WB radar, spectmm management of overlapping techrologies, healih cage sensor data, eic. the goal
af ssch a foundatiog nsede] b2 (e be sk agnostae and offer oniversal knowledge of the beterogenedas time senes i
hese vae cases, Tiods o, thie model must teasform the npat data e o common embedding and £ or ke nzation
space. Time series can be divided along the time dimension ino paches of size p. preserving the tw [and O
channels. Determinkng prcan be challenging wlen targeting multiple use cases {474]. For wareless use cases, the
tokenization strategies investigated Fon natural language processing cannat be directly applicd because the entropy
af different wireless use cases will be different feom texe and even across muktple use cises, These patches cin
e embedded waing a linear projection laver togetler with a pocittonnl embedding dimension. Mex these samples
can be given e.g. to a transformer feundation model which needs to be pre-traimed fist oo different pre-tradning
tueks froan various wse cased. These tasky can bsclode pext-ample prediction. masking. denoiding, efc., and serve
for generalized feature leamang in a sell-supervised fashion, Alter pre-training, downsiresm tisks can be adapied
using fnetuning with supervised, few- o zero-shot leaming or reinforcement leaming. Concerning the use cases
jsensing using UWE sadar, spectrum management of overlapping techmlogies, and healtheare sensor data), the
pre-trabned foundateon model can be Aone-tused o different tasks such ax determining people walking, obstacle
detection, inwrference deecuon. wechnodogy whentfication, and moese. The ewpar of these wasks can include
claszification, prediction or semantic context prediction. Fer example. in additnon to spectoun classification, the
sysiem can predict environmenta] informanon sech as room size, whether the setiing a5 indoor of outdoor. and the
peesence of people. The integration of physical layer information from foundation models wiih LLMs enaliles
nepwork aptamization asd confgurations. This mtegration is achieved by Incorporating semantie context fiom
the foundstion model. & ilusrated in Figure 6. Along with human promaing aed wireless specification asd
standardization documents. LEMs can autormatically adape and opimize wireless netwarks in near real-time.
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10 Large Telco Models: Navigating Regulatory and Ethical Complexities

A large telee models becorse moee embedded aerosy elecom networks, they face significant regubitory and ethi-
cid serutiny. These madels, essential for powering advanced capabulities Like predicuve maintenance, personlized
custeaner intetactons, il sevwork oplmization, also bring challenges in data governance, accountabilioy, asd
privacy. The regulatory landscape is complex. influenced by both regronal laws and the broader global policy
envipeumnent, With thede models increasingly interseciing with sensitive personal data and critical infrastriciine,
establishing robwes governance streetures has become a necessiry for telecom eperstors worldwade.

1.1  Data Governance and Acconntability

Drata govermance in the telecom sector must be pantscularly ngorous dee o the extensive volume and sensitivaty
of dats thai telecom perworks manage. Esmblishing s vobust governance feamework involves implementing clear
protocols for data collection, processing, and swrage, especially for large Al mvodels which often require vast
apnoums of vared data o fusction epinially. Telecom companies need 1o define roles, such as data stewands asd
compliznce officers, whoe can overses data quality @i ensure that datasets are progerly ancnymized, retained, and
wiilized mea way that aligns with both eperatonal meeds and regulastory standards, Ensuring aceountability across
these models means building ransparency e thelr processes, allowing regulaiors and internal stakeholders
unclerstand decision-making, particularly in cestomer servace automation, fraud detection, and network manage-
il

I adstion to data handling. telecom Al models must be developed wath o commiment oo ransparcncy in owi-
coimes,  This ransparescy belps o bkl frus among stakeholders—be ey custonsess, togulalory. boudics, o
interial wers oF the Al sysems. Tres-building in Al decision-making is entical, eapecially when these sys-
tems interact directly with customers, such as by automated sepport imeractions or in delivening targeied service
recommendations.

1.2 The Regulatory Landscape: EU and U5, Differences

The Buropean Union, throwgh its GDPR and the newly proposed Al Act, 15 taking o highly proactve regulalory
stance that emphasizes user rights and stnngent data protection egulrements. GDPR's mfuence oo telecom
Al ks sigoificant. wiil its requirersents for dats mdnimization ad explicil comsent presenting unigue challenges.
These pranciples impasct weleo Al inoways thar extend Beyosd the ireditionad data processing paradigns, given
that o models aee often cross-border by patuge and reguige contimeoas data 10 fnokntaus and opimiee network
performance. Ensunng GDPR compliance means felecom operators: seed to implement complex processes: for
data anomy mizatien and lecalization, potentially increasing operational costs and impacting the effciency of large
Al models

The EU AT Act if adopeed, will furcher add o these challenges by classifying telecom applications under high-
risk categonies, mandating detailed andits, risk sssesaments, and transparency measures, For teloos; this will likely
wanslate e extensive compliance obligatons, pariculady for custonser-facing Al solutiens or applications thar
have significant impacts on user privacy of seevice quality,

L comrast, the Undied Staies peeseats.a more fagmented regalaory landscape, especially given the cureent polit-
ical climate. At the federal level, domiatives like Executive Cader L4110 get forth reqoarements for rransparemsey.
anti-discomination, amd explaiabilivy in Al svsiems. However, with the secent 2024 shifi coswands o Repoblican-
leall adlmapesiatio, there b5 & possibility thae siringent federal oversighit could be reduced or modafied, pamcalarky

as U pertains to regelatery densunds that may be seen wooverly restrictive o innovatkon or economic growth, Fed-

eral Al regulation in the U.S. i< also largely voluntary and lacks the uniform enforcement mechanisms found in
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ELIL placing mewre emphisis on indusiry self-negulation and stare-level Lows like the California Consumer Privacy
At (COPAY and the Californda Privacy Righes Act (CPRA). Telecom commpanies gperating in the U5, face the
undgue challenge of balancing these diverse state sequiremenits with their broader federal obligations.

Griven this evolving Lindscape, welecom operators need (0 remain agile, prepared for potendial shifis in federal
regulations that could either relax or mtensify compliance requirements. In an era where regulations may be
overtumed or significantly aliered, especially as AL continges o alvance and reshage indusiries, telecom operators
will need w establish adaptable compliance siructures that can awifily sespond to these politteal and regulalery
changes.

10,3 Ethical and Operational Challenges in Telco Al

Beyodad regulatosy compliance. ethical consideératons remiun at the forefront of deploving luge weleo Al models.
Griven that these models doreetly affect consumer intcractions and potentially infucnce custoieer tousd, operabors
mial address issues of bias, discrminaticn. and accountabilive. The scale of telecom operations adds a layer of
complexity: while auomated Al models can efficienly manage custemer service and optimize network opera-
fiobs, ey can also seinforce or exacerbabe exisiing biases of ot carefully destgmed ond tested.

To mitigame these rske, welecoms need w embed ethical guidelines imo the Al developrment lifecyele, ensuring
ithat Fanmess, accountability. and ansparency. are prioitized froon model conception through deployment, Thas
approach is particulacly essential i high-stakes applicatnons such as emergency servace routing, fraud detection,
and sutornsated dispute resolutions. whese biased declsdon-making could have serious wnplications for wser trost
and segulitory standing.

10,4 Fuoture Directions and Recommendations for Telco AT Governance

Leoking ahead. welecom providers face bath challenges and apporunities in aligning their Al rodels with evolving
regubatory requirements while maintaining operational efficiency, Enserging trends in Al govemnance, mncluding
adaptove risk assessment; cobtnuoas auditing. and peal-time montlering, peesent avenues for teleo providers o
baolaer therr data governance pracieces in ways that proacuvely addiess both regulatory and ethical considerations.
By embracing these practicees, telecoms can ol oanly impoove theis compliance posture but also establish o more
resihient foundation for respensibile Al deployviment.

Intzemational cooperation will also play a critical sole in hamonizing stamiasds across borders, with telecorm
providers advocating o feansesvorks that aceount fod the unigue. data-intensive natuee of thear networks, Ongi-
nizations such as the OECD and G7 are increasingly involved in fostering consensus an Al governance, offering
telecoms the poential o contibute e globally recognized standards that badge the dividge beoween the ELN's
stringent requirements and the more lexible U8, approach. For telecom operators. active participation in these
internationsal Forums will e esseatial in shaping regulations that are both sobust and feasible for their large-scale
aiperaiions,

Iy suminary, the deployment of large teleo Al models brings a host of regulatory, ethical. and operational consid-
crations that elecom providers must navigate thoughtfully.: By establishing stirong data govemance franseworks.
staying agile in response to shifting ULS. regulawey dyramies, and adbecing w0 rigonows ethical standands, tele-
Ol operatnns cans aot saly comply with cureent requircmenls bl also set g foundation for sustamed. responsible
Al-deiven growtls,
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11 Standardization Activities and Roadmap

The integration of Artificial Intelligence (AL} o the telecommurncations indusery 1s o sapidly evolving feld, aml
standardization actvities are crucial woensure intereperabilivy, securty, amd effickency, Here are some key poingé
about the stamtandization scnvities and rosdmap foe lasge-scake Al in elecom: Standasdization of Large-Scale Al
in Telecom
11.1  Key Standardization Activities

I, ITU-T Y3000 Series:

* Frameworks and Architectures: These provide the strucnine Sor ow AL shiould be integrated wnto
telecorn netwodks, This ionelodes defining the layers, compaonents; and bsleractions necessary for Al to
function within velecom sysienss,

o Progocols: These are seis of miles thas ensuse Al applications can cormumnicare elfectively with each
ather amd with exising telecom sysiems,

¢ Use Cases: The ITU-T Y3000 series inclodes detailed use coses that demsonsirate peactical applica-
tions of Al in pelecom, such as peowork eplimization. prédiciive maintenasee, asd customer service
enhancements.

20 CEMN-CEMNELEC Focus Group:

& Accountability: Standards e cnsure Al svstems are wansparent and that their decisions can be raced
and explained. This is crucial for wust and compliance witly regulations.

# Chiality: Ensuring the data used by Al systens s of kigh quality and appropriate Tor the tasks at hand.
This includes dara sccuracy. completeness, and Gmelivess.

# Secunity and Privacy: Developing standurds to protect data wsed by Al systems from unauthorszed
acorss amd bivaches. This also includes ensuring that AL systems comply with privacy regulations,

+ Ethics and Safery: Guidelines o ensure that Al systems are wed cthically and doonoet pose risks o
users, This inclades avoiding biases i Al decision-making and cosunng the safery of Al applicatisns.

3. GEMA Responsible Al Matunty Boadmagp:

* Vision amd Strategy: Helping orgonizatoens define their Al straegy and vision, ensuring aligmment
with ethical principles and bugivess goals.

* Operating Model: Developang an operating masdel that suppans the deplovmen amd managemenl of
Al systems. This includes voles, responsibilities. and processes,

= Technical Contrals: Implemienung technical measures v ensune Al avsiens ang secure, relizghle, ad
perform as expected.

# Third-Party. Ecosystem:  Managing relationships with thard-pany providers involved in Al develop-
ment and deployment, ensuring they adhere vo the sore standands.

= Change Management and Communications: Ensuring that changes brought about by Al adopion are
aumnaged effcctvely, with clear communication 1o all stakelwlders,
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1.2 Roadmap for Large-Scale Al in Telecom
I. Merwork Infrastructune

* Performance Enhancenent: Integrate Al algontlins to optimize network pecformance by dynamically
mnaging resowrces, reducing litency, and impaoving daa throughput.

* Resource Management: Implement Al solutions o predict and manage network resources cfficienly,
preventing congeston and sptimizing bawbwidih esage.

* Becurity Enhancemems: Use Al-driven security systems o detect and respond 1o theeats in real-time,
enhancing overall nerwork security.

2. Network Management

¢ Orperational Optimization: Deploy Al systems that mendtor actwork opesations continaoasly, identi-
fying and resolving issues proactvely (o nunanuze downtine nd maisenance costs,

= Prediciive Maintenance: WHilize Al to analyze bistorical data and predict when network commponents
might Fail, allowing for timely mainienance and reducing unexpecied outages.

3. Busimess Chperations

o Customer Service Automation: Emplemear Al-powered chathors and virmual assisams w haondle cus-
tormser queries efficiently, providing guick sesponses and reducing the workbsad on humon agents.

o ldellhigoent Applications: Enhance business suppoit systems (BSS) and aperation suppon sysems
(055} with Al to autemate routioe tasks, improve decision-making. and provide nsights- based on
it amalysis,

4. Worieal Applications

* Healthcare: Apply Al for remote patlent mrontoring. predictlve diagnostcs, and personalieed treat-
miend plans, impeoying gatient outcomes and reducing healiheare cosls,

o Antomotive: Enable advanced deives-nsskstance systeins ( ADAS, peedictive malntenance for vehicles,
andd s raffic mamagement systems witl AL

* Smart Caties: Use Al to manage arban anfrastiociuse effictently, incheding traffic nunagensnt, coeigy
COrsungiee, waste managameant, and public safety.

A, Future Networks

o S0 amd Beyond: Develop Al lechnologics wo suppoi the mext genernitionof elecom natworks, focusing
o network slicing, edge computing, and massive 10T deployvments,

o Merwork Intelligence: BEnhance nerwork imelligence with Al w optimize performance. masage com-
plex interactions between different nevwork elements, and provide personalized services 1o users.

¢ len-Driven Merwork Management: Utilize Al 1o anderstand and fulfill user inzenis, antomsating
oetwork configugation wnd manigement based oa high-level user requirements.
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1.3 Timeline and Milestones

& Blhoct-term ¢ 1-2 years):. Focus on istegiating Al o existing serwork munagement syatems and eonhaiscing
EUSIONET SErvice aperitkons,

= Medinm-temn (3-3 vears ) Expand AL applications to venical industries and develop more advanced predic-
v mainienance sl securty solutions.

= Long-term (54 years): Prepane for the full isiegration of Al i foture networks, including 3G and beyoacd,
with a fecus en peteork inelligenee and inteni-dorven g ement,

This roadnap ensunes that Al techoobogies are implemented safely, ethically. and efficiently in the telecom tdus-
try. It outlines clear steps and milestones for integrating Al it varions aspects of w@hecom operations, paving the
way for a amaster, voore efficient fature.

el

ABNIASIA.ORG
- L



INDUSTRY INSIGHTS: CURRENT
TRENDS, MARKET DRIVERS AND
BARRIERS




12  Industry Insights: Current Trends, Market Drivers and Barriers

[ this chapres, we will intreduce the dnitial applicutons of LEM: i the telecompmmications indusiry. LLMy
B Fouad various use cases i fields such as medicine, education, and engineering, including tasks such a8 code
generaticn [476], L the elecommunication sector, LLMs have prmsanly been wsed for the genceation of text
and codé. However, the telecommuntcation indugiry is sow exploring the potential benefis of wsing LLMs i
different wse Ccases 1o oplumiie eoworks and improve performance. [n addition, telecommunication cemganios
are siedving the pofeniial revenue streams foom LEMs. soch as the application of chathots thal sepresent user-
friendly interfaces w sell services. Customers age also ssing LEMs in thear devices, which reguires mione data
usage nevds that should be constdered o the design of the bevond 30 and GG, Operatoes zre actively sddressing
the barviers and drawhacks associated with insplementing LEMs. Inothe Following secnons, we will dive into the
current trends, market drivers, and baeriers noore dedl.

12.1 The application of LLMSs in Telecommunication: Current Trends

Since the appearance of the frst LLMs in the macket such as GPT-1 by OpeaAl and Ben by Google, multiple
studees an the applicaton OF LLM bhas emerged in the telecom sector The frst wee cases considered the usage
ol LEM where the dara s vexr evpe such os the development of Chatbors: thar wnderstand clienis intentions oo
gequireneents for telecommaunication services ondering. In this cazse, LLMs were applicd with fine-tuning technigue
1o understand clignt’s peeds described an naburad language [382, 477 In the folbmwing. we will desciibe a numiber
af tremds and use cases that showease the Gest apgplication of LLM i the telecpmmisnication seeton,

1211 Muoltineedal LLMs

Muloumodal models, ofien referred toas MLLM=, X1LMs and o om ae pesdels whose rraiming has inoos porated
two or more domain-specific taining datasets. resulting in a unafied latent space combining repeesentations from
all mosdalities. It imporiant 1o distinguish between rmeltansedal models oypicilly emploved for tesi-to-media gen-
cration Lasks, dnd models cepically integrating text wnd othes modaliey domains which are designed for derisn-
demitaeitt! -clomaln.... | inderaction tasks,

Uniderlying misdel architectures vary widely, dependont on task tvpe (such as media generation. domain-dimakn
inferaction, of cross-modal reasonang). Stability Al's Stable Diffusion and Stable Aodso fanilies of models, G2
their pames imply. are media dmage and aodio) gencration models based on o diffusion grchitectere which fio
these tasks generate media by progresssvely sefining roisy data inio cobierent image and awdio content.

OpeoAl’s CLIP and Microsofts LLaWA models. decigned for insage-text interaction, employ dual-eacoder ar-
chiteciures. Separate encoders (be . based on transformers for e and Yision Transformers {ViTs) or CNNs for
images) map cacl modality inve-a shared Latent space withoue divectly generating new coment. They are oriented
wr crosa-domain tosks such as media classification amd cross-modal reasoning.

I terms of effects on cooss-madal reasonmg, mode] architeetures can additionally be categonzed by their use
of early Tesion o lawe fusion strategles for dntegrating modalities. Meta's Flaminge model, asing early fusion,
eoinbines data from different modalities ar the input sage, and the mode] processes them jointly throughout the
madel lavers: CLIF emplovs the Lite fusion stravegy and each modality b= processed separanely through distinet
branches, Tor example using text-based encoders for language and Image encoders for visual data, with the final
combination of their laent representations occurring only after this iselated processing. Bary Tusion i more
comptationslly expensive but offers mere tdghtly integrated represemations which could better encode more
comples modal relationships. Late fusion i beter simted o retrieval and mapping tasks where modalites can be
processed indeperdently,
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The same architectures supporting models ogiented o human-consumabile media tasks are of course applicable
for oy modality. For example i the wlecom space, o nualtinssdal model enented to baseband operation tisks
coubd fuse signal charscteristies, speetrum. asd network configuration data in o shared laest space Tor subseguent
prediction and dynamic configuration operations.

1212 LLNSs for network assorance

LLEMs can play a crucial sole in the evolution of petswork asurance, ncloding anomaly detection, predicton and
corrective and preventive measures and actions [TR] By everaging their ability 1o process vast amounts of data
and recegnize pattermns. LLMs can identify unwsaal behaviors in network waffic, predict potential fablures. and
suggest correciive measures in real-time. This istegration not ondy improves aetwork reliability but also oplimezes
resource allocation, ensuring uscamiess wer experience w the hvper-connected world of 66

Warious works have shown the potential of LLM: ab detecting multiple categones of anomalies:

= Lagical anomalies: refer to errors b the Togical flow or strociare of data. whene the sequence o relation-
ships between data points do not folbow expected rules {4790 For example. an LLM could identify logical
anomalies in network logs wlere the sequence of events does not foliow the expected logieal osder, susch-as
a user legoing out before logeang in. These amomalies often indicate mis-confl gurations or posential secuiaty
vilnerabalitics Uit need 1o be addeessed.

¢ Semantic Anomalies: involve inconsistencies in the meaning or context of data, where the content does not
align with the expected semantics but where there isn't any problem with any individual compenent of «
ayatem (480 Besearch have sl that LIS -Based monivor can effectively identify senantic aivomalics i
a muaarer thar shows agreement with huma reasonizg. Inthe contexn of peowork dats, an LEM mighic detect
asemantic anomadly in routing it 2 rouee appears valid symactically but violates expected mouiting polickes o
pattems [481],

= Wisual anomalies: are ivegularies that can be identified dwough visusl mspection of data representations.
LLMs have demoustrated strong peeformances for detecting this ki of ancmalies (4821 In nevwork data,
they are less comman but can be rebevant in the context of perwork monitorng dashboards and visualiza-
tons. Forinsrence. an LM can deweer visual pnomalies in a pevwork traffic heatmap where cemam regiong
show uexpected spikes of drops i acuvity [453]. Another example i identifying unusieal patterns in net-
wodk topology dizgrams, such as g sudden change o the snscture of coniections that might wdicate a
nebwork aneck or failure. Viswal amomalics help noguickEy sdentilfying and diagnosing pssues that might not
b irmediarely appasent theough raw data analysis.

LLMSs can offer significant advantages in analveang network logs, sysiem events, and contexiual dac. Their natural
language processing capabalities allow for the dentification of anomalies that taditional systems might overlook.
By interpreting complex data pattems, LM can detect umsual behaviors indicative of potential imnsions o
futuse anormalics and SEA violatkon, thereby improving the overall secunity ard reliability poctuee of 60 nerworks.

LLMs can also provide valuable isights nte the decision-making processes of Al models, They can present secu-
rity alerts in-an casily understandable foroat, enabling analysts (o make iformed decizions. Thas interpretabiliy
i% cruclal for wdentafyang anomalies. and faciliate corrective procedures in autemated sysiems.

LEMs have a wide rapge of applicatbons in anomialy detection for networks. Below are some notable wse cased
[ehbed:

= Personabized Assistonts: Intelligent assistants powered by LLMs can offer confext-awane inberactions, ;
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ticapating user peeds and esponding prosctvely, This personalization enbances user cxperience while si-
multaneously mononng for apomalies in user behavior,

o Svuicry Log Anomaly Detection: LLMs con ownalyze svsbeny logs o detect anomalics that may indieate
security breaches or operationad FTalwres. Their abality 1o process large volumes of data quickly mokes thern

ideal for real-time monitoring.

= Self-Healing Svstems, Infegrating generative AL siuch as GPT-4, o self-healing systems allows for au-
iomated cosde peneration and repairs. This reduces the need for human mierveniion. opeimizing svsiem
fumctemsaliny and efficiency.

= Event Sequence Prediction: LLMs excel in predicting event sequences. capiuring comiplex behavioral pat-
terns amd dependencies, Thear ability o understand contextual mances enbances the sccuracy of forccasts,
making them wvaluable in vser behavios analysis and wansaction sequences.

= Beal-time Ancamaly Detection: Edge-based LM facilitase predictve mamntznance by wentifying asd mit-
igting anomalies w real-time. By making wformed decisions, these models enhance the seliabilioy and
efficiency of industral operations, ensuring seamless functionality in &G eivionments.

While LLMs offer significam advantzges in apomsady detection, several limitations ad challenges most be ad-
dressed.

1213 Large Action Models {LAMs)

Large Acteons Models (LAM:) represent a fumber evolution of model inferepee integration into code execuiion
chains. [nthis conte the continuum of AL models incledes:

1. Purely text-generation models.
2. Function-calling medels mriggering prodefined APL calls.
3. Tool-calling models intevacting maore lroadly with extesnal systems and uilities.

4, LAMs oechesirating multi-step, goal-osiemed workflsws on multiple platforms. Mol guite synoaymous witl
agenuke systems but with similar charsctegistbes,

A, Dhircct binary outpat LAMS. generating exccutable in-memory progran states for inimediace executon, This
technobogy represents a distant horizon,

Purely tesit generation LM and functiondoel-calling models are both pre-rabsed nsing commsonly available “Big
Text" corpora. Funcuon and wol-calling models. in contrast o the instruction-following and chat Gne-tening of
textgen LM, are Gne-tered wsing datasets which include APL usage. code executpmy, and struciused data (such
as OpenAPL IS0 APL definitiens) for exiemal function-calling wsk capability. The masdel idennfies specifc
function call features within patral language input and maps them 1w predefined, single-step APQ interactions.

Tool-calling models can be consudered as extensions of function-calling models amd are Gne-tused on oore het-
erogeneous dataseds covering & more extensive range of internchions, such as with application suites and mualtiple
wiikines {for cxample, the standard set of wnlites avablable with a Ubunty inseallanoni. The exiended ruinkng pro-
ciess for tool-calling models often involves simulition environmsenis ol ving complex tool wse snd ermor recovery
ACERETHE,

LaMs extend the function/ool-calling model copeept and sappont autoomaeus. multi-sep process interact
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integrating multiple systenss and woods, Funcisafiool-calling msedels are capable of imvoking a single fusetiasg o
foal i respense 10 a nser’s requesi, while LAM: dyoamically manage interacton patterns associaed with complex
workflows. Action models” generate “command” sequences mtended 10 wwigger operations within ather sysiems.
For example, & LAM wourld determine actioins necessary to satisly a natural language request and then generate
what are effectively APE calls o carry ot the previously determaned actons. The cabls ame iexi-based (albeit in
MoEL Cases Commprising dala sirsctures approprizte e the wmrgel ag opposed vo free wx) with disect binagy autpia
siraighi to an external app of even representing an app’s in-memory state a likely capabilioy.

LAM: are usually considered in the same breath as agentic systems, in thar LAMs sepresenn the acmal wsk
crecuion aspect of mult-task, goal-achieving agent redsoning solunons. SilesForce™s sLAN made] family serves
ax an early indicator of model/deplovient sigrnatures oo agentie framewiorks.

I204 Al Native

The Al native concept can be defived as folbows: "Al native is the concepl of having inrinsie trastwonthy A0 capa-
balities; where Al s o natwral par of the fusetiralivg, o emns of desszi, deployment, operation, st moinlenance.
A AL nathve implementation leverages o data-dreiven and knowledge-based ecosystem, where dat'kowledge 14
consuied End prodoced o cealize pew Al-based functioaality o augment and seplace static. mule-based mech-
anksmd with learning apd adapiive Al when needed” [48%] Defnmng Al native: A key enabler for advanced
intelligent ielecom networks[ £55]

Al Mative presupgoses the operation ol an wsdeelying model o sysiem for the delivery of the exposied featwres, for
example. VAE models for anomaly detection and asto-regeessive models (with diverae latent spaces] for generative
and conlrl operations,

Al MNative s typically considered in twe contexts: anchitecture and Deplovesent Modes. Al Natve Architecture
intends the deploymient of Al functionality ina Aexible manner via widely distribated Al modoles delivenng self-
contatned capabilines, AP exposed via Al backends realized ina range of funcoenal apdior spatial centrlization,
in varous amangements suited o a particular stack configuration realizing some feature,

Drisrribiated LM Chps s a key aspect of Al Mative, The obiguitous depleyment of A6 fincticaality miost be ratched
by the abality o deliver sssociared waining and lifecvele managerment operations regardbess of an Al subaysiem's
functional and operatonal location. This carnies an implcation for the wnderlyving data infrastrucioee in terms
of Both dats and hardwase availabiliy, Ideally @ pliyvsical AL Natve deployment suppoits aptimized raiming vis
ibuplicated or shared dsa distribaation combived with optimal GPU faom locationds) pioviding o Pareto-optinal
cost Trong falthough this will ceraindy change over tme as mode] efficiencyf/size and GPLU technology raakistaki
their inprovement trends ). The CAPEX and OPEX impacts stenuming from this resall i a somewhat tasrow TOO
forecast windsw |depending on a C5P's infra update strasegy b

Deployment modes consist of legacy "hard-coded” component replacement: adion augmentation, introduction
af complesely new Al-baged components and imtrodection of "shim"™ Al-based control components acting 44 an
interface pou for e or more legaey components.. The Lamer approach repeesents a rationalized introdecton of
Al fumetionality, providing awtomation and function enhancements to an alecady-deveboped feature base. This
brings with it LLMOPs considerations as described above bu with bower CAPEXOPEX impacts dee 1o the
compuratively lmited scope of Al use,
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1215 LLMs for network automation with intents

The ambatien of reowork aetemation o T Forum iz o enhanee the efficiency of service peoviders by reducing
manal imervention and operatbosal eoats; 1t abms o impeove agiliny, allowing for capid deployment of services
and quicker responses o marker changes. Additonally, nevaork automation seeks wooincrezse reliability by min-
imizing human erreds and cohoncing seevice gquality through auomated processes. This initiative also supports
AT |:|3.' !'u-\_'L|iI:;11.|I|:_.t the introduction of new services amd ':I.'-\_'|!||!r|.l|-..'-£|l.'5-. swch oy BoT. |_'|1:|r'|'!|u[|.']3.'. i _|.:-.!-.1|.
15 b enahle self-manazement of networks, allowing them o self-configune, self-heal, and sclf-opuimize, thevcly

crEating a e Aexible, responsive, and efficient electmmunications eoosysiem.

Moreover, o manual process of ordenng, deployment and adaplatien may ool be sufficient o meet business de-
muzivds, In pamicular, menaround and asserance tmes may requice funher awiomation for seli-adapiation, The
impbementation of machioe keamning echniques should help suremaie how the systemowill be able to adapt bs o
der o guarantee the services of offers to the vericals. Meverheless, the 306060 nertwork management system can
anly adapt amd Reep up with the needs of the compairy iF i knows them This inclsdes Enowdedse of expectations.
including swriet requiremests, but abso peeferences and praoties. This can evolve dypamically as customer needs
chamge. [t 15 therefore the goal of an ustention-based approach to define and communcate Knowledge of expecta-
nons b syatem o s way that albmes autommited processes 1o reason abouot them and decive appropnate decisions
and acticns. Initially, Intent-Based Metworking (IBN) wos essentally a commercial eption for ergondmics and
nmse saving i network management solubions. Early tmplemaniations focised on isbentiens e Suiomiale comimee-
twity control via Boftware Defined networks (SDMN) costrollers and infrastrscnure configuration mntentions such ax
(Open Stack's open-source Group-Bosed Policy (GBP solution:. In stasfands bodies such as the Inemet Engineer-
ing Task Force (IETF), IBN waes equated with configuration management aulomaticn, as in te ANIMA prowp
[4#6]. Eary indusiry solwions include Cisco Digitod Metwork Architeciure, Mokia Aluplane, Apstra Operating
Swstem, Huawet Metwork Model, whach focus oo connectivity configusation and wracking stentions.

Business Intent:

whaa where, wAen, Fow many devices, waal kind af makisty

Business Intent Resolver
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Figure 65 Indent basid mansgerment Framework ThMEBorinm. [487]
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[ntent-based management is a key component of network aotomation. [t focuses on defining desired outcomes o
inteids gather than specifving low tooachieve them. This appeoach allows netwarks o sutemancally configusne,

mikinnge, and optimize themselves based on high-level business objectives. By transluting bosiness intents bt
/
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netwirk policies, inten-hased management énbances agality, réduces complexily, and improves overall network
performance, making i an imtegral pan of modesn perwork swomation steategics: From a very high-level poist-
of-view, the choice las been made o smplersent badiness intent handling through o hierarchy of decision engines
frowm order intene 10 lowes intent levels and seevicedslice deployment action (fulfilliment) as an architecture in tloee
layers illustraged in Figoge &5, Two intent resadvers are defined for intent fulillment as a0 will be funher described
| VT

= Busiess itbent resolver @ from client regmremicnts o prodocts; A& Business Intent Resolver transforms a
husiness request from simiple service questions into a Product (o a package of Products),

= Bervice et resolver from Cestomer Facing Service (CFS) w Resource Facing Service (RFS 1 The Pooduct
can be defined in the catalos and conbgused to adress customer's necds, When the castomer valldaies has
oeder. the system kentifies the CFS ar the origin of the prodiect {the product belng g restricnon of a CFSL
A Service Intemt Resolver (For simpliciey feeguently namsed "Service Besolver™ in the remainder of the
propect’s documentation) wdentifies the echnweal solution relevant for the context . This wehnical Saolutbon
{Resource Facing Service RFS in TMET is the way the Enow How (CFS ) will be delivered.

The application of LLMs for intent tiinslation owolyves leveraging theie natwral linguage processing cagabilities
10 einterpeet and comvert high-level business intents decg.. "1 want 30 conpectivity for the 360 video Lervice” or "'l
need a 36 coverage to rack my compuny bikes in Paris”  inte actionable network configurations. The application
af LLMs fog mment translation plays a-crucial mole in modern network maonagensent by enabling the comversion of
high-leyvel business invents g configurateons and sctiens. LLMs albew clienis wo express theis reguirements i
simple buman natural language, which can then be parsed asd imerpreted accurately. Opee the intent is under-
stood. LMy can gepedate the necessury oonfiguration policies or scripts. Additionally, these models can consider
redl tme network data o ensuee that the gencrated configurtions align witl current network conditrons, They
alen enbance reliobality by detecting potential issees o conflicks in the configurations, Fertheomoee, LLMs can
continusasly leany from user feedback and adjestments. impeoving their accaracy over wme. This inegration of
LLMs it bntend translanon significantly enbances the agility and efficiency of hetwork automation aperations,

1206 LLNs for user feiendly interfaces

Leer-friendly interfoces are crucial for enhoncing wser expericnce and engagement. They samplify inleractions,
making it gasier for wsers o pavigate and accomplish their tasks. Mobake Network Operators do not neglect the
usage of aser-feiemdly nterfaces sueh as Chathos o order W reduce the waiting tnse for chients ad 190 sebomate
their service aedering process. The application of chatbats in telecommunication sector enable for operatins to
cnhince customer expenence, reduce suppor costs, collect wsers feedback’s as-nsights for funiee improvernents
and services,

Chathors are incrensmgly impomant for cliens ag they enbance custosmes service by providing pesant, 2407 sup-
peat, which improves wser experbence and satsfaction. They can hamdle & wide range of inquiries, from answering
frequently asked questions W assisting with wransacuons, thereby reducing wait times and freeing huniin agents
1o focas on more complex issues. Additionally, chathors can gatber valuable data en cusiomer prefercnces and
behiveors, coabling businesses o ailor thew services amd mebrketing suaegies efectively. This not oaly boosis op-
crational effickency bat also fosiers sironger cuscomer rebatbonships. wltimately deiving boyaliy and revenee growih.
Cillecting the customers” expectations is the first 2sleg to end-to-emmd vertical network aubemation. Havieg an ac-
curate representation of tese expectations with a cestain level of abstracton to hide the setwark complexity as
wiell as a user-friendly wnterface 1o commumeate theme wo the management system are the main challenges o face
in order to make 5G80G an automatable and affordable techalogy.
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Before the cmergence of LLMs, chatbots priveanly efied on rule-based systems snd simples rsachine leaming
iechibguecs, For instance, the first chutbot was developed in the mid- 19260 by Joseph Weizenbaum @ MIT called
ELLZA [488]. ELLZA simulaed comversation by using patern matching aisd substimticn technigues o mimdc
a peychotherapiat's espoises. Ircould engage users in dialogue by recognizing keywards and pheases. creating
the iblusion of understanding. Fog these st chatbots, Bule-based systems operated on predefined scripis and
rules, where specific keywords or phrases ingeered predeterimined sesponses. Whale this appeoach was effec-
e o strakghtforwand querles, ot ofen stuggled with complex or ambiguous Linguage, leading to limated wser
ergagensenl wned sutsfacton

Sonse chathors incomporsted basic machine learning wechnigques, such as decision rees o sionple classifiers, ko
cuhance response accuracy. However, these models lacked the depth and contexiual understuncing ihae LLM4
provide. Cwerall, tee carkicr meethods were less capabde of handling the complexity and variability of human lan-
puange. making them less effective compared to the sophisticated capabilities of nsodern LLMs. Nowadavs, thanks
i LLMs, a new modern era enserped for chivtbogs and operators are considerung again the usige of chatbois po
incrzase clients’ satsfuction asd redeee seppon cost. LLMS kave significantly ransformed chatbots by enhancing
their abilivy 1w understand and generate human-like responses. With impeoved compeehension of convext and nu-
ances o language, LLMs enable chathots to engage in more natural @nd osherent conversations. They draw' from
vast dlataseis, allowing them to provide releval mformanon acooss o wide range of wpacs.

Addinopally. LEMs can be fine-tuned for specific iadusirics, making them more effective in specialized appli-
cations, Their capabality o medntin comntext over msltiple exchanges facilivies comples, mult-nom dialogues,
resulting i 4 more engaging user expericnce. Overall, LEMs have elevated chatbas: from basie query-respiase
syatems io sophisticated conversational agens, geeatly impeeving thear wiality and effectivensis. Mowadays, we
hawve miaktipde famous amd effcient example of chatbots sech as ClhatGPT from OpenAl awd Gemind from Google.
Moreover, For the elecommunication sector a number of chatbots was proposed such as TelecomGPT and stn-
dard GPT thae we will explain i the nexr Section 12.1.7.. In addation, authoes of [382], for example propose the
usage of a chathor warth LEMS w automate the cliens’ 50 serviees ordering. This use case was descnbed in more
details i Section 8.

1217 StandardGPT and TelecomGPT

Muosr of LEMs was wained on diverse amd extensive datasets that include books, articles, websites, and ofhes
ext sowrces, allowing e e learn a wide range of wopics. In addstbon, they utilize the rransformess architeciure.
which enable them o capture complex patteons and relatienships o text, This is thanks to the attention mechanism
thast albows the model w weigh the impomanee of different words e g sentence relitive woosach other, enabling it to
unsderstand context wnd relatonships berween words regardless of their position [3]. Several versions of GPT have
been propesed or sdapted for specific use cases, enluancing teir effectivencss in targeted applications. One nmahle
example is Coder-a vaian of GPT-3 fine-tuned foe programming tasks, which can understand and generate code
in muktiple programming linguages, making af particulady useful for software development and coding assistance.
L ehies Section, we diseass about vao examples of fisetuning ChatGPT: StndardGPT and TelecomGPT.

Ohiweof the first use cases raised by operators i to castomiee LLM models such a4 ChatGPT o inclede welecomm-
nication knowledgze and standards speciicanions. The autlsors of [484%] proposed o Aoe-mne Llama2-TH, Misoal-
TB. and Llama3-88 in onder 16 include telecommunication knewledge. bat 2lso math caleulstion capabilities inthe
telecommurcition secior. One example of the prodspt presentied o the paper s s ask the nodel tooweite o Pyilwon
Funise iy 4 counvert an IPyB address From siring fosmal 16 dn integer, o 1o develop a C function that updates the
deceypt statis flag based on the decrvplion resul for o received 80211 frame.

OpenAl alwo proposed o cusbomized ChatGPT calted StandardGPT sccessible at this link: [490]. Sandad G
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like ather custeanized versions of ChatGPT. was developed by OpenAl, the caganization behind the eniginal Chat-
GFT mrodels, DpenAl cresmes general-purpose Al models and offers tools for 0sers o organizatbons o Clusiomize
and optimize them for specific use cases. In this instance, the GFT was ailored with costom sngtrictions o st
tasks refared 1o standards, compliance, and techokeal queres. StandardGPT is desigoed o address a wide ange
of standards m vanous isdustnies and sectors. These include inemational stapdards such @5 TSO and 1EC. which
cover areas such as qualiny mamagement {150 9001 ), environmental manggement (500 L4000 ) and fusctioral
safery (IEC 61508y It also addresses safety and segulatory stamsdards, such & product safety regulations {[EC
SOAAS, [SO 12100} and sccupational bealih and safery sandards (150 4500015, Industry-specific standards ane
anotler focws, with examples like LATE 19449 fod auamotive quality, AS% 1D for serospace, and 150 220060 for
ford sufery. Standards for environmiendal and sustainabilioy monagensent., sucl as IS0 14K awd LEED cerufi-
cation; afe also inclisded. Tn addition. i sddresies ielecomimunication standards that cover o wide range of ascas.
including metwork technokogies, wireless communications, amd telecommunicaien infrastnectare. [0ineludes ITL
atanekards from the Inteenational Telecommmaunicatan Unien, which st global guidelines for broadband, radio com-
muznications. and Interiet protocoelds, as well as IEEE standards like the IEEE #B02 senes for Ethernet and Wi-Fi
Audditionally, it covers 2GPP stindards for maehile etworks such as 4G LTE asd 3G, which are eritical for modem
mohile communication. ETSI stundasds from the Ewropean Telecommunieations Standards [nstinute for maobile
and beoadband networks, and IETF standands For internet protocols ke TCPR are abse within its scope, Fuirther-
moge. StandardGPT can address 506G and next-gensration neteork standards. along with necwork security standards
{e.g., IRMWIEC 27033y and complianee with nationd regulaiery frameworks like those from the FCC in the U5
This broad coverage makes Standad GPT & useful tool for navigating both technical amd regelatory aspects of the
elecommsications mndusury.

OpenAl also proposed o more specific model for elecommunication: TelecomGPT [491]. TelecomGPT inludes
telecommsication knowledge but o is also capable of doing asks-such as YalP and analyzing SIF legs; help
troubleshoostubg volce-over-1P (Yol Py services, analyzing SMPP logs, troubleshooting SME delivers. and undee-
standing Shon Message Pece-to-Peer (SMPP) protecol-related ssoes. TelecomGPr has also the capacity o fetch
vioace and SMS whelesale pricing via the TelecomaXChange Marker It could also pecform Home Location Reg-
ister (HLR)Y lookups to provide real-time information on phone aumbers such as sttas, soaming, and porting
data.

12.2  GenAl On-Device

Large scale generative Al models are sapidly evolving, driven by advancements i both closd and on-device
processing capabilities, The integration of hybeld A architectures, which combine clomgd and edge compting.
is becoming increasingly prevalent. This approach enhances performance, reduces latency, and improves data
poivacy, Cewcrative Al applications are expanding weross vanous domains, including content ereation, digial
assigmants. and swlonomious syatems, The trend wwards moee personalized amd contexi-aoare Al solutions is also
gaining momentum. as these models become move sophisticated and capable of usdertanding and generating
human-like wexe, inages, and other forms of media,

With an installed base of billions of Al-capable phones, PCe, apd otler devices inusers” hands today, the potential
i leverage on-device Al processing for generative Al is already significant and poized o grow steadily in the
coming wears. A key question is swhich generative Al models can mun on devices wath appeopnate perfonmance
and accuracy. The great news 12 that highly capable geneeative Al models are becoming smaller while an-device
processing cigabiliies continue t ngeove. Fig, 66 illustrates & brosl range of generative Al capabalitaes that can
ks on devices using models that range from | o 10 Ballicn parameees, BModels lke Stable Diffusion, with over |
Bilkion parametess, are already runnang on phoanes witl pecformance amd accuracy levels comparable to thear chowd
equivalents. Addinonally, many oter generativie AL models witls 10 billion parameeters of more are expected

L4



ki om devices in the pedr future

On-device Al
can support
a variety of i T
Gen Al models ———— 020 0
A —— [
PE—
e
=]
_—

—mge e i ey

Vi et e grr—————

Frgure Gy (Source: Cualoommy

1221 Generative Al use cases across device catepories

The rase of generative Al with foundation models is deivieg a pew wave of wie cases around contem gemeration,
acasch, and producivity aceoss device categonios, including smartphase. Baprop asd PO anomotive, KR, and IoT
The hybrad AL architeciune will enable genecative Al to provade new and enhanced wser expencnoes aconss these

SEETNCIS.

Laptop and

PC Automotive XR loT

Smartphone

Figuse 67 Tmpectful GenAl use cases seross device categornes

= Insmastphones, geserative Al enhances wearch capabilities and digital assistants, making interactions mone
inluitive and efficient. With owver 1) billion searches conductsd daily amd meobile devices accounting fiod
moee teamn G0 of these searches, the adoption of generative Al is set w significantly ineroase the compuiting
capacily required. especeally for quenes made on amartplones. sers are alveady ransitioning o generalive

Al-based search because it provides supegios answers for many queres.

The popularity of char as a seacch inteelface i also expected o boost the overall nomber of quenes. As clat
iechnology improves and becomes more capable, smsanphones can evolve into woe digital assistants, Users
will ke able to communieate naturally o receive accurate and relevant answers. thanks o the combinag-
tion of precise on-device personas aiwd large language osodels (LLMs) that understand texe. voice, inages.
vides, and other mpuat modalities. Consequentdy, models that kandie natwal language processing, image
understanding, video understanding, text generation. asd more will be o high demand.
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« For laptops and PCs. it boosts productivity 1ools, enshling more sophisticatsd content creation and maiage-
ment. Geperative Al is revolutionizing productivity by swiftly ereating high-quality content from simple
promps. A prime example is Microsoft Office 363 on laptops and PCa. With ever 400 million Mictosoft
Ofice 365 wsers globally, integrating gewerative Al into daily workflows is et o make a substintial inpact
Tasks that once took hours or days can now be completed inominutes. Microsoft 365 Copilog leverages the
pevaver of lagge language models (LLEM combined with user data from the Microsofl Graph-and Microsott
363 apps 1o iransform prompts ionto powerfol prodectivity tools,

Office workers can ubilbee an LLM 6 tee background 1o vead of comgspse emaals in Outlook. draft docanears
in Word, create presentanons in PowerPoint, analvee dati in Excel, o0 collabarute s Teams meetings. Gen-
crative Al models. including natueal Langeage procesaing, lexi-W-1exl generalion, lage generation. video
generation, and programming. demund significant processing power for these frequently used productivity
taska Much of this precessing can ocond on the PC within a device-centrie lyboid Al agchiteciure.

= Inthe dutomotive sector, genecative Al powers sdvanced digital assistasts and supports auimaemous deiving
features, enhiancing safery and user expenence. Todav's Al-deiven cockpits. keveraging data from both
inside and outside the vehicle, provide highly personalized experiences. Similar o smartplones and PCa
in-velicke digital sssistams keep dnvers asd pussengers seambessly connected through a hands-free; natazal
user interface, while also creating new monetzation oppomanities for the ecosysen:

These digieal assistants can aceess a user's peraonal data;, sech os apps, seevices, amd payment information,
as well ag sensor-data from the vebicle, including camerns, radar, lidar, and cellolar vehicle-wo-everyihing
(C-VIX 1 Enterprise APLs enable thisd-party service providers o integrate their offerngs, extending theis
custopmer rélatonships inie the vehicle. For éxamgle, navigation expenences are greatly enhanced witly
pavactive assistance, offering maffic and weather updates that dmpact the driver’s usual rowte, eeomimenda-
tions for recharging the vehicle or purchasing a parking permit, and even cedering the user's favorite meal
with a simple request.

The cockpit media expericnce is also transforosed as e vehicle recognizes eacl occupant and costomizes
their expericnce aml contend, such as music of podeasts. With the fse of io-vehicle augmented reality (AR
chigital assistants can taibor desplays acconding o the preferences of the dover or passengers.

Yehicke maintenance and servicing hecome more proactive amd seamless. By analveing data such as sensor
input, muainienance bistory, and deiving behavior, a digital assestant cian peedict when mainienance 15 needad.
aing generative. AL the assisant can provede repadn mformation of advige on finding the nght service
provider, improving vehicle reliability while reducing time and cost

Aulvanced deiver assistance systems and suenomous- doving (ADASIAD) solutions often struggle wath
uniisaal of unfarmilar objects, especially i poor lighung or challenging weather conditions, leading to
ungrediciable wed sometimaes dangerons oucpmes, To addeesy this, comer case daa must be capiured.
Lebscbed, and wged 10 setrain models. Generative Al can create shmulated comer-case scenanos, prediciiing
the behavior of varioons road agents like velicles, pedestrians: eyclista, and osotoecvelises, These seenarios
help planners decide the drive policy of a-vehwcle. Bodh the drive policy stack and percepiion stack run
locally within e vehicle"s Al computing capabilities. as swict latency reguirements prevent the cloud from
playing a role in decision-making for these Al workloads. As ADASIAD solutions adopt generative AL
miodels with approgeiate post-processing, signficant encrgy-efficient Al compating pewer i vehicles will
b crsential.

* Ewiended Reality (XRE) benefits from generative Al through the creation of immersive 30 content. G
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crative Al holds immense potential for KR, promising o demoeratize 30 content creation and bring vie-
il pvatars o life, The mext gemeration of Al rendering tonls will albow comiem cozaion b use varioos
promps—such as text, speech, images, of video—to generate 3D phjects. sceises. and even entire virmal
wirdlds.  Addsticnally, text-to-text Lorge language models (ELMs) will enable the creation of humais-like
conversabions for avatars that are fully volced and emotive, These advancements will revelutiomze ow we
create and expericnce unmersive content on XE devices.

While the proimise of generotive Al for XE i< undoubiedly exciting. predicting wideapread sdoption 11
chalkenging. Howewer, given the rapid pace of innovanon, sienificant progress is expociod in the coming
yeirs,

For imrnersdive worlds, text-to-image models like Stable Diffusion will soon enable content cocators o gen-
erate realistic pexiures Tor 30 objects. These capabilities are anneipated 1o/be available on snphones, aml
by extension XK devices, within a year,  Deployment in XK will require “disributed processing.” wlere
the headset handles the perception and rendering stack, while the patred smunphone or clood runs the gen-
crative Al model. In o couple of vears, the fisst exi-0-30 and image-to-30 models will likely reach the
cdge. generating high-qualay point clouds of 30 ebjects. A& fow years later, these models will impeoyve
further. geperating high-guality 30 exired objects from sceatch. In abou a decade, funher advancemens
will enable the generauon of entre 3D roos and scenes frem iexoor inages. Evenmally, texr-io-30 amd
video-to- 30 mode s might allow os o step into 200 vinwal worlds ereated from serateh, hmated only by the
UsErs innaghnatio,

Wirteal avatars will Tollow a similar progression.  Texi-to-text models, soch as the 13 billion paronetes
LlLabda, will be wvailable an edge devices, generating neural and intuitive cobversations for avatags. Texi-
To-image models will create new extures and outfits for deese avatars, In the following yeass, image-10-30
and encoderfdecoder models will generate head and full-body avarars Tor welecommunication. Evenally,
vidce prompls, images. o video wall be used o create photessilistic, fally animated, inelligent, and mas-
producible vieual avatars,

The Intemer of Things (loT) sees improvements i operationil efficiency amd customer suppont throwgh
smiarier, more esponsive gysiems. Al i already widely vsed across vorious ToT ventcals including re-
tail, secunty, encrey and wuilites, supply choiy, and asser management, It enhances decksion-making by
analyzing data in near seal-time, optimizes operatienal etficiency. and fosters inonovatlon fof compenitive
differentiation. WoT segments can funher benenn from penerative AL

For instence, In retadl, generative Al can enhance both customer amd employes experiences, A groceny
shoppang agent at anonaiie Kiosk o snea cam can ceeate menus willrecipes based onoweskly sales specials,
bodee constrabnis. and EBamily preferences. Store managers can anicipate off-cycle sules opponunities by
preparing for upcoming events, For example, if @ sporis team 15 coming u em, @ sione mEiniser cal use
generative Al to identify popula branded items and adjust iventory accordingly. Generativie AT can also
help create new store layouwts based on best practees and seccesstul results from other stores in similar
communitied. It can adsist stove meanagers i rearganuaikg shelves to expand space for te most profiteble
beands or minimaee the promasence of out-of-stock ems wsing daca froamn pearky chatn stores,

Ithe erergy and utilities sector, generative Al can help opention teams cpsiate comer-case oad scenanos
and predict electriciey dermand abong seath porennal grid Failures under aousual circumstances, sech as a bot
sumimeee with sireng windd and bocalized Ares in meal areas. This helps manage resowrces betier and avoil
ourages. Cenerative Al can also improve cusiomer service by answening questions about outages or balling.
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The hvbird Al architecture, combining on-device and cloud-based processing, is key W unslocking these innovative
applicateoms, providing enbanced pecformance, privacy, and personalization.

1222 Benefit of GenAl on device

Hyhbrid Al architecture, which combanes on-device and cloud processing, offers significant benefits o cost, coergy
efficiency, performance. prvacy, security, amd personalization. By dhifting some processing 1o edge devices,
reduces the strain o cloud infrasiruciune and lowers costs, especially as generative Al models grow o complesioy.
Edge devices also consuime s energy and provide eeliable performance with lower latency, even dunng high
demand. On-device Al enhances privacy and security by keeping data becal. which s cnacial for bath consurmer aisd
enterprise applications. Additionally, hivbeid Al enables highly personalized experiences by continaously leaming
and adapiing 10 user behaviors and preferences. making it o powerful tool for both individueal and organizaienal
use (492, 493)

123 Market drivers and harriers

The introduction of LLMs created a number of apphications whethes it is for new wse coses oo o replace iradational
approssches in the nerwork management. However, mobile network operators ane considening the new revenue
pessible foom the application of LLMs sucls as the application of LLM: on devices: One way Lo Increass revenue
by using LM, s o seduce labor costs by wsing Aneuned LMz and enbance customer inferactions by using
user-friendly clatbots for clients service osdenng and deployment

T this essence. aulemation is the key for applying LLM in networks. L1 Ms are also considered in the design of
S0 perworks. For anstinee, authors of [208] proposes a split learning system for TEM agemts in 60 merworks,
emphasizing collaboranon berween mobile devices amd edge servers. Lo thas system: mulaple LM witl distinet
roles are distrbubed across these devices and servers to collaboratwvely perfonm wser-agent interactive tasks. The
LLM agents an: divided into three masdules: perception, growsding, and aligoment, which facilitate communics-
tioh bevween modules o address extended user sequirements selated 1o 60 functiens, siech as integrated sensing
and communication, digital twins, and task-oriented communications Additicnally, the aiticle mmodeces o novel
miodel coching algorithm for LLAs (o enhance model utilization incontest. thereby reducing the network cosis
assoviated with the collaboration of mobile and edge LLM agemts. However. the application of LLM has a nuniber

af challenges and limits thar will be addressed in more details m Chaper 130 Tn thes chapter, we introduce seme
of this limies:

o Guepneralizabiliny: A stgnificant challenge in deploying LLMs for ansmaly detection is teeir generalizabiliny
across different domalis. Models trzined on specific datasets may struggle to perform effectively in new
conilesls, Strategies such as domain adapiation. multi-task leaming, amd meta-learmng can enlunce theis

alapahility.

o Hallucimation and Bobosmess: LLM s ave prone 10 generatng false or nusleading information (also called
hallucinations), whicl can wsdermine their rehability,. Implementing vigosous validation meclunisims and
allversanal training can mitigate thede risks) ensuring nsore accurate guipins,

o BEnowledge Boundary: The knowledge boundary of LIMs lirniis their shility o sddress movel events o
wrends, Contingons leamang, wassfer leamning, and the integration of external knowledge bases can help
extend this boundary, improving predictive capabilites.

= Computational Efficiency: The computational demands of LLMs pose challenges for real-time applications.
Technigues sucl as model optimizaton. hardware acceleration. and cloud-based solutions can enhanc
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etficiency, making LLMs more sccessible for organizations.

o Sustabnabalivy: 15 we consider the sustainability of LM many stadies hench-manked the encrgy congming-
tion wimd Cod emissien of LEM raining and inference. I we consider irining lirge models, the cnergy
consumplion i relaed to muobtipe fetors:

— Meele! Slze larger masdels typically require owoie compuiatiomal résources.
= Trabwing Daration: the length of time spent raining the model affects ensrgy consumpaom.

— Bhim Center Effcteacy: The encrgy efficiency of e data centers where the teakning dccws pliys @

crucial role.

= Energy Sowrce. the carbon foedprint depends on whether U energy used i from renewahle sowrces
oF fossil fuels, Mote that secording tooworld meclewr ussociation the coal Ol emission is anownd
2/kwh compared o 12g/kwh for nuclear.

= The tupe of CPUAGPL weed! the chobee of CPU or GPL for training and inference significantly bn-
praces encrgy comsimption, Gercrally, GPUs consumse nvore energy than CPUs,. Therefone, in certabn
aitisatbons, wraining sinaller models, like basic BERT. on CPUs can result in liswer cnergy wsage.

Mobile petwork operaters lack control over the eneegy consumplion associzied with pre-trained models,
which falls under Scope 3 emissions. This makes it challenging for tem o adbere 10 thir sustanabiliny
peals. However, they can implement strategies o mitigate this issue, such as optimizing prompts, sedue-
ing the size of Lrge models. or uillizing small large models (8LMs) when a simpler model with Fewer
parameters 15 adegquare.

To concliede, the imegragon of LLMs ot SG+80G networks presents a transformative opportenity o inpoove
anorsaly detectvon, prodictive maintenonce. and overall security: By addressing the challenges of generalizal iy,
hallucination, amd computstionl cificiency, LLMs can signihcantly myprove the resilience and reliability of nexi-
generalisa cormminication sysiems. As the feld evolves, continwed research and innovation will be essential o
Fully Isarness the potential of LLM: (0 secure the future of conpectivity,
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13 Practical challenges, Opportunities and Future Roadmap

131 Practical Challenges
1301 LTM Infercnce Speed

The challenge in reducing inference time for Large Telecom Models (ETh<) i vital wo achieving real-time perfor-
miasce, particalarly i felecommunications networks where low-lateney is crucial for dynamic spectiim mskage-
ment, waffic routing. and quality of service. Strategies o opiimize inference speed inclede leveraging hasdware
accelerators {eg.. FPGAS o0 telecom-specific ASICs), distributed computing fromeworks, or network Tumsction
vimualizateon (NFV) opimized for LTM deployment. The wse of promng and guantizanon techniques can also
help toowrim unncccsaary computations, but balancing accusecy and speed remalns o challenge in live merworks.
The model anfeiencing litency and tobegance threshald varies acroas the stack. For instunce in Al-Native BAN
architectre a LTM madel operating at L1 would require Tor sieingent inference time bousds then o LT operating
i SMO for managing orchestration,

1312 LTM Model Size

Reducing the size of LThs while maintaining suflicient scourcy is essential Tor real-world deployment, especially
in cdge of petwork core envainonmicns wiene ressunces may be constrined. Technigues sucl as model distillanon,
weight sharing. diwd sparsity-gwdiane optiizatkons belp minimize model size without degrading the model’s abilicy
o manage large-scale weleoom tasks such as watfhe predicuon and fawh deteciwon, Additosally, welecom-specine
adaptations of LTMs are emerging, with slimmed-down architeciores designed Tor specific functions within a
network. redecing the overall model fooiprint

1313 LTM Interoperability

Iy elecommuanications landscape wilizing exensive Al models, such o LLMs, ensunpg scamless comnig-
cation and interactions among diverse enfities is essentnl [494 495, 406]. The configuraton of these Al mode]s
and their interoperability muost establish o shared. cobesive framework. allowing maodels 1o funciion as a syn-
chromzed metwork, especially inadvanced emvironments like 60, This involves adopeiing a standand approach o
milel configuration that encompasses all necessary actributes, fooim versioning (o arclilecture specifics., ensumng
adaptability across varbows systenms [497],

For examiple, data serializateon plays a foundational role in mainaining o aniform configuration aceess hetero-
geneows network components and Al models |4498], Serializaton methods ensere that data sinesctures, including
madel parametess and canfigurations, can be easily converied, transmied. wnd consistently reconstructed, This g4
partcularly crucial for pevwoiks with vaned handware and sofowae ecosysterns, Comn sertalization Toamals,
suely oy JSON or YAML, are instrurmental hese—each offering unbgue benefita and rado-offs in defis of lneman
reddabilivy, complexity, and error sengitivity [499]. Furthermore, metadais and wraining contest bocome equeally
important bere, enabling practical deploveent across similar use cases and supporiing transfer learning (TL) for
tasks warh semantc samilanty. This alignment of model details and trainimg comext ensires consisteney and also
improyes the adaprability of Al mocbels wathin complex merwork scenanos.

To facilitate inieroperabality, it°'s esseanal 1o standasdize the configuration details for large-scale Al models. This
includes defining the model’s architeciure, waining specifics, and system requirements [90]. For example. critical
information ke model ivpe, version, architecture (e.2., Transformer details b, iraining data summaries, and hy-
petparameters {beaming rate, bagch size) must be specafied. Additonally, compliance measures, such us secunty
protecols, encryption stndards, and privacy policies. sbhoubd be documsented and standardized, enshling secure
interactions across petworked componeis.
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Dt prasctical termes, for example, when configuring Al mesdels Tor specialized tebeosn applications lke the Network
Drats Analdvtics Functbon iNWDAF), especially when supponed by different LLM:, B becpmes gssential 1o ensure
seamless interoperabality. With each LLM poreninally varving in architectore, capabilities, and configuration ri-
quirenyents, o unilfied approach i< necessary (o allow them to cooperate efficicntly. This cutatls standasdizing data
formmats, aligning mode] parameders. and symchronizing operational protocols aceoss the LEMs. Sach easures en-
suge that NWDAF can effectively carry oot tasks like nevwork apalytes, valtfic prediction, and anomaly detection
without conflicts or distuptions caused by incensistencies in model interpretation or data andling.

Sophisticated Al-native framewaorks swch as the Sirercasinecy [300] con provide an organized framework for
miaaging data flows and controlling traffic ansong Al models across nodes. This component ssabiles nodes o
cooperate seamlessby, prometing unified decision-making in scenanos like sesonrce allcation and waffic fore-
casting, Through shased formats, peetocols, and AP, AT Interconmect Facilitaies o consistenl inlerscion pro-
cess—esnential fod o dvnamically evolving network environment. wheee podes mest sdapt and retegotiate
real-time.

1314 LTM as optimization methoeds

There is polential For using LTMS s optimization ools within the welecom domain,  LTMs can be employed
i optimize peiwork parametess, sucls as resource allocstion, load baluncing, oo spectnum efficiency. They can
ewien e ised in conguiction with reinforcement leaming models o fie-tane network configuracions o eeal-tvme,
driving improvements in theeaghput Lateney, s netwoark efficiesoy Ongoing research 18 explonng how LT
can also assist in ophmuzing raffic management and eoergy consumption aceoas cellular and IoT networks,

1315 Trustworthy Al and LTMs

Drespite the prowing capabilitnes of Lirge Al models. pamiculasdy an handiing mlimodid ond contextual data.
adapring them to the relecons domadn poses wigue clallenges. Communication networks are dynamic wnd di-
verse, with data generated distributedly across varous sodes and inceeasingly relying on edge architeciunes, ne-
cessrlabing pastsal distributed training of madels. Addinonally, the telecom sector’s comucogaa of apphcations-and
services, and s foundational rele woowr hyper-conneceed digiial society make tustworthiness in LT s of candi-
nal importance, Trostworhiness 15 a milufaceted concept that encompasses several enitical dimensions, including
robastness. ranspaneney, conirollabiliy, explainabilivy, sccountabilivy, fairmess, and privacy.

Trusiworthy Al refecs o systems designed, developed. and deploved wath a focus on ethical, safe, and transpas-
enl praciices. . Such systems must be reliable, ensuring consisient performance; D, avoiding biases that could
eiscrimdnste agsins specific wlividoals or groups: sccountable, with explainable and justifable decisions: and
ransparent, making processes and decisions understandable w sakelolders.

Aecording o ALTAL (Assessiment List for Toustworthy Al trustwaorthy Al rests on taee key pillars maintzined
theoughaut the syatem's lifecyele: Gy lawlulness: adherence tooall relevant laws and regulations: (i) ethical stan-
dands: eobediment of cthical principles. human rights. (fuimess, and societal well-beang. amd {iih robastivess:
restlience and reliabilicy, both techaecally and socially, @ mitgane unistended Tarm.

Trustworthiness is ciucial for LT as they operate apscake, handling sensitive data, global communication, ad
network optimizaton acrogs highly interconnecied nodes. Enswenng privacy, secariiy. and compliance with vegu-
lations like GDPR s paramount. Beyond efficient functeoning, LT85 must be oransparen and auditable vo boabd
confidence among users, businesies, and regulators. I'.'.c].- challenges include mitigation of hallucisations |false
outpues), redisction of hamiul oweomses, and explainabilicy eshancement o make model decisions wisderstind-
dble. Robust training datasets wnd ethical fine-muning are essential For improving faimess and mitigating biase
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Hisweszr, ensuring mustaonly LTy o dyiamoc, tesoimeg-constrained wlecom eavionments peesents challenges
sucls as bias detection, restlicsce o adversarial attscks, privacy preservation, and opecational tansparency. These
chalbenges are amplified by the uniges demands of telecom nevworks, where LTMs are integral to tasks Hke trafbc
maagement, Gl prédicticn, aml routing sensiiive conmmumcation,

Eey challenges o ensunng mestwortly Al include bias and fairpess. whese unconirolled datassets can reinforee
higses, leadmg to unfair outcomes such as imbalasesd rescurce allocation. Hallucinstions semain a concem as
LTMs may generate plavsible bat false owtpats. usdermaning . relability. Lack of transpasency seduces inest and
accountahilioy due w lmited interpretshilicy of model decisions, LTMs are also vulnerable o adversarial aracks.
where ipuls explait network ar dats weaknesses, clallenging resalience us dyviamic emvireninents. Balancing data
paivacy and security with opesationnl ransparency s critical, especially when handling sensitive wser data. Eithical
conlent generation requires continmss safeguards 1w prevent hasmful or unsafe outpats, while sustanability poses
concerns due o the high energy demands of raining asd depleving madels. Addinonally, etsuring haman ient
alignment 15 vital o avioid outpus. that are echnically comect but ethically inappropriate.  Finally, regulatory
compliance with evalving frameworks, sucl as GDPR o the EUT AT A 15 esseatial for maantaining legal and
erlical standards.

Addreasing these challenges demands inperdisciplinasy collabocation, inegrating Al research, ethical frarseworks,
and regulatogy strategies e develop aystems that are both posverful amd tuseworthy, Troseworthy Al 35 a collab-
erative endeavor, requinng aligmment ansong developers, users, policymakers, and soclety o ensure Al serves
humanity efectively, equitably, and evolves hamsonlously alongside homan needs. The dynanic natire of wele-
coin envirobmments—uwith Auctuating traffie, smerging threars, snd evolving wser demands-—funther complicates
thiz effor, requining LTMs o adapt seamlessly while maintuning trust and reliability.

1300 LTM Design Evolution

The design of LTMs 12 evalving o meet the changing needs of madem telecom networks, Early 1.TMs focosed on
ststie tusks Dike fault detectbon, bui newer masdels are increasingly sdaptive, suppocimg dyianie reconfiguration
af netwaorks ad real-tme deciston-making, As elecom netwaorks grow mdre complex, LTM designs mus evalve
fo-address mlti-lavered challenges, such as hybeid cloud-edge deployvments, diverse hardware ccosvsterms, ansd
Muctusting traffic demands.

13.1.7 Emnergy Efficlency

Funming LThs, especially scross large, disinbuted telecon setworks, cin demiand significant energy resources.
A tebecom infrastructure dcabes. energy consumption becdanes o major concern. Efficient power wsage is crini-
cil, especially in edge deployments where energy resources might be lmited. Managing this requinss fow-power
modils. optimized hardware. and intelligent energy management strategies to eisase sustiinagbility ina 207 oper-
atienal environment.

1318 Latency in Distribuoted Metworks

LTMs deploved in a distributed telecom network, partcularly over large geographical regions, lface challenges
with latency, Even with lecal edoe processing, the commundeation between (edge ) noded and ¢enteal dats centers
mizy Inteodiuce delavs, affecting the tmeliness of decisio-moking processes. Optimazing LT for low-latency
eperations in sucl comples, multi-tered emvironments ks crtical, especially for applications sech as netwark
oplamizanion and walfic management that demand real-time response,
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13.1.%  Security and Privacy

With LTMs opersting achess the teleomn infrastructure, they hamdle sensitive data such as call logs, messaging
patterms, and user scivity, This makes them a-target fov potential security breaches. Ensuring that LTMs are
cquipped with strong encrypieoe, data protecton. and awhesticaton methods is essential W prevent unauthorized
access aml preserye the privacy of user dato.

1305140 Scalabdlity Across Heterogeneous Networks

Telecom networks are highly heteragencons, combining 3G, LTE. fiber optics, amd legacy systems Llike 30 i
some pegions. Deploving LTMs acioss such diverse infrasticiures poscs o sigmificant challenge: LTMs must
be adaptable and scalable, capable of working effickently across different mebwork tvpes and aschiteciares, This
challenge becormes more pronounced when the nerwork 13 scaled w sccoinmodate millions of devices,

1.1 Dywnamie Network Envirommeints

Telecom petworks experience constant Auctuations in raffic paterns, wser mobility, amd varying serviee demands.
LTMs st b dynamic and able e adapt in real-time o these comditions.  bodels need 1o be flexible cnough
ik adjust nevwork configurations based on real-ume analysis and evolving seenarios, which adds complexaty o
thelr design and deployment. To overcome these challenges, several advanced methods have been developed o
addres the varighility dnd uncertainty in telecom environments, incleding! Transfer Leaming, Meta-Ledasning aisl
Remforcement Learnbng. Mext we will boefly introduce them and highlight vy they cin be wnlized o comiat
the dynamucity in Telecom networks,

Transfer Learning involves raining a oodel on o large dataset (sowrce task) amd then adaplang it 1o a different
bae refated 1ask (cieget 1ask) with, whamaeely, a smaller datases, This allews the model w wee the knowledge gained
frowm the source 1ask to perform betier on the targer task. Duoe o 8 dynamic envinonment, ransfer leaming can
ke challenging in @ time-evolving target domuin.. Therefore, continaous transler learning helps by exposing the
mindel toos wider range of data duning the mitgal moanoneg phese, makmg it moge adapiable o new amd unseecn
data pawerns. Adapting o pre-trained LEM 1o 2 specific doman s tepeeally peeferable 1o vaining an LTM from
scratch oo domaie-specific data, The tradned LLMs can be robust and generalise well to hamdle different telecom
SOCNATHO,

I general. transfer leaming can sipnificantly benefin LTMs o several practical ways, Oa the one hand, raining
LTMs on massive dunsels (data such s petwork pedformance, customer behavior, amd device usage collecied
Trowm telecam networks) s computitonlly expensioe and fme consuming, On the other haod, elecom data can
b sensitive dnd difficult to obiais in large quantities. Transter learning can help acoelerate model development and
reduce trainang costs while overcoming the lack of daa by ranslferring previoesly beld knowkedge de.g., pemeral
feanies and pattemns selated to network congestion of wser behavior [ 154].

The different use case where LLMs: can exploil Transfer Leaming for can be listed as:

s Metwork manageireit and monitonng: LLMs con be used o process aed interpeet netwark logs, ernon mes-
sages of performance metrics abd then generate recommended solulions [333]. In [289], transfer leaming
and mon-task-speciic telecom data have been incorporated to mmpeove generalisation capabilitees when deal-
ing with upseen Tl repona. By wansfeming knowledge from pre-uaned models (o general rechnical texes
of IT-relsted documents | i telecom-specific problems, LTMs can belp predict network failures, opniise
conhgueations or provide veal-thne recommésdations (501 ). Fine-tming these models on nepaork-specific
data {e.g. Faule logs, SEMP datad belps them understand meanced issees and make predictions based on
histarecal pateens,
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o Frawd Detection wnd Security. Large-scale fraud detection can be impeoved by using LTMs Tor asomaly
depection through the use of transter learning [501). Foo example. o pre-trained model mav have leamon to
detect unusoal parterns in geseral ransaction dora. and this can be tansfersed o the welecommunlcations
sector, By fine-tuning on elecon-specific datasets (ep. wnesnal call partems, sebscription (raed), LT
can help identify sespicisus actvity faster.

= Text Mining for Regulation: Telecom operators need o comply with indusiry regulations, which ofien in-
volves scanning ard amafysing large volumes of docursents. Pre-tamed LTM: can be fne-tused 1o identify
and extract relevant inforrmation feoam contracts, policies and legal docaments | 502). Thas process of wansfer
leaming allows madels 1o understand regulstory language mose effectively than if they were ramed Tong
scratch.

o Customer Suppodt:. Doe to teear strong abality 1o classify costomer commiénis and extract usgeful feedback.
LTMs can be used wopether with transfer laming o accelerute sentimenl afnalysis based on customer feed-
back [303).

Meta-Learnbng. commonly known as “leaming o leam™, 15 an emerging paradigo i ML that aims o design
mwrlels that are capable of quickly adapting w sew and wieseen tasks with mindmad additienal training rather vhan
bzing designed 10 perform well on just one spectfic 1ask. Unlike waditional ML approaches, which reguire a sig-
nificant amount of refraining when exposed o new data, meta-leaming wilizes previoes learning experiences o
adapt for meew bt gelared tasks with minemal training, leveragang comumon pattems abd pries knowledee o gener-
alize across different sks, therefore, reducing the wme and compatationsl respourees needed for adapration. Such
feature is-critical for cnabling LTM s given that wirelass networks operate in comgples and dynamic envinenments,
wieere Toctors such as netwark topology, user mobility, traffic pattems, and intecference con change drasucally i
short periods and space.

Meta-learning uwolves genenilly involves two stages: meta-training and meta-slaptaion, The meta-triining phase
cin be characrerized a5 a bi-level optivnization problem, wiseee two optimazation taks represent the two “learising”
processes of “leaming w barm”. The inner eplimization concentrates on base leasming. which cmployvs specified
hyper-parumeters o fsencrae o policy froa given job . Meanwhile, the outer optunization secks w kearmn the
hyper-parameters by leveraging data sampled from related tasks. The meta-adapiateon step albows the model o
ciectvely adjest wenew tasks after meta-trainmg s Gnished. Using the hyper-parameters leamed duning nscta-
tratming, the model can quickly adjust with-a few samples from the same distribation as the test data, making
it highly cffickent for sew task adaptaton. One pronsinent algovitho tha follows this two-stage fmework iy
Model-Agnoste Meta-Leamang (MAMLY [504). MAML optimizes for an initial set of model paramaters thal can
be rapidly fine-wined for o pew fask asing just o few gradient updoces. with limied ask-specific data. Dursg
the metae-training phase, MAML learns 1o create paraiocters tat are highly sdapeable. and in the meta-sdaptation
phase, the model uses these leamed pasameteess o efficiently fie-tune amd perform well on new tasks. From
prachical poant of view, Meta-Learning LT s can be applied bot oot lumited

= Adaptive raffic management: During evenis such as sports gamics or conoers, whete user density spikes
rapadly mear the vewse location. mels-leaming enables LTMS w adapt swafitly w walfic surges. Having the
LTMs pre-wamned on diverse walfic paiems. these models can use minimal o0 even wo additeonal daa oo
aplamizs the performance, reducing laency and preventing QoS inerrupions.

= High-speed val connectivity: Wireless pevworks i high-speed rail systemss face challenges in mamtasning
stable connections fod passengers moving al over 300 kinfhe Mets-leaming LTMs inamed oo viried mwolbilicy
patteros, can adapt efficiently o optimize hamdovers, ensuring seamless connectivity fof applications like
viden conferencang.
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¢ [oT Device Management i Sman Cities: Managing thousands of IeT devices in dynamic eavironments like
smiart cities reguires efficient task scheduling sl resource allocaton, Meta-leanuing LTy pre-eained on
[oT usage parteris across diverse environments, cain adapt o new devices and tasks, ensuring eficient and
reliable operations with minimal reconfgaration.

By keveraging meta-learning, LTM can become more intetligent and efficient. significantly reducing the dequire-
ment for human interventions amd enabling fasier, automated responses to dynamic changes in nctwark conditions.
A telecom maodels scale o handle increasingly complex networks with higher densitics of conpected devices and
mose demanding applications, meta-leamuog will emierge as a keyv enabler, driving the efficient management and
optimization of these large-scale systems. Iy adaprabilicy will allow telecom operators o meel evolving require-
s, akniain nevwork stabality, and ensure consistent gualiey of seevice i highly varizble and resowce-antensive

COVIEGNIETES.

Reinfiorcement Learndng {RL) 129 maschine leaming paradigin designed o enable imelligen agents o make
seguential decisions by interacting with an environment and leafning from feedbock. In the domain of telecom-
munications, KL has found significant applications in LTWs, which maonage the corvplexings of dvoamic and vari-
dble networks. Telecom systems operate i envirpnments characterized by Nectuating waffic loads, intérference.
wser mebility, and resource constraints, creanng a need for adapiive and robest soluions, BL empowers LTS o
address these challenges by learning optimal policies that maxomize cumalative rewards, such as enhanced o%,
clficient resource utilizanon, and energy savings,

The relevance of BL in wlecommunecations stems from its ababity o adapr i real time w changing neowork:
condidons. EL enables LTMs to dynemically allocate resources such as bandwideh and spectnom, balance network
loads, and manage energy consumpiion. By continuously leaming from feedback. RE-based ITMs can adjust
their policics o meet network demands effectively. For instance, BL madels can optimize the distribacion of
traffic acreds base smntions, reducing congestion and bnproving theowghput. Sinilarly, in energv-intensiave elecom
infrastruciures, BL agents can leam powes-saving strategies while maintaining service quality, contributing o
sustainable netwark operations,

The core-mechanizsm of RL relies on three key components: the agent. the envirenment, and the reward system.
In telecom applications. the ETM acts as the agent. making decigions based on the state of the peraork (the
covirenment). The reward sysem provides feedback on the offectiveness of these decisions, such as reduced
lateney of incieesed network reliabilitg. R capabiliny to balance explocation and exploiation 1= pamicularly
critical b telecom perworks, Explonsion allows the RL agent we s pew actieons and discover potentially beer
pelicies, wlhile exploatation enabled it 1o apply learned strategios 1o maximage immediane rewards. This baldsee i4
exsential for managing the trade-offs inherent by dynamic and respurce-consirained envipeamenis.

Advanced RL echpigues sucl as Deep Reinforcement Leaming (DRL) [305] and Multi-Agent Reinforcement
Learning (MARLY [306] are particulacly suited for telecom applications, DRL integrates BL with deep neoral
networks, enabling LTMs w handle the hizgh-dimenzional state-action spaces typacal of welecom networks. Fo
example. DEL can optimdze 306 network slicmg by efficienly allocsting resources womeet the diverse reqguinements
of erhanced mabile beoadband (eMBER) and altra-reliable bow-lotency communication: { URLLC), MARL oo the
eaher hand, involves multiple BL agents operating in a shared coviconment, making i ideal for disinbuered sysems
such @5 dypamae spectrum sharing and muli-acesss edge comguiing,

Drespite os advantages, wmplenseating BL an LTMs presents challeages, including scalability, computatiosal de-
s, and lateney sensitivity. Telecom netwaorks involve billiows of devices aml interconnected syslene, requiring
BL models to operate efficiently at seale. Real-time decision-making is also critical, as latency delays can compro-
mise serviee guality. Moreover, training RL mwdels derands-extensive data and computatiosal resousces. whi
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cin be addressed throwgl decentrialized approaches like federated leaming and edge computing. Ensuring inter-
pretabidity of RL decisions renins another hurdle, especially in mission-critical applications where tansparency
and compliance are essential,

Leoking ahead. BL is poised o play a pivotal robe by the evolution of welecons networks. Hybaid approactses that
combine BL with technigues like transfer bearning and meda-learning promise greater dapabality and efficiency.
Drismributed RL and encrgv-aware algoiithms will fudber addeess scalabilitg and sestzinabilivy challenges. As
zlecom networks transition o antonomous and Al-deven systems, BL will become a cornerstone of mielligent
autortion, enabling self-optimizing, self-kealng, and self-configunng capabilities. By leveraging BL, LTW s can
crse efficient, resilient, and futuee-ready telecom networks that meet the growing demands of an antercanikecied
wirld.

Orvverall, fubwre LTMs must be designed with agility wmd fexibility oo mind o secommodate varying netwaerk
conditions akd diverse wse cases. This design priseiple 8 crucial Tor ensunng efficient nevwork operations, To
achieve these goals:

= Adoption of Classical MLIAL Approaches: LTMs should keverage both supervised amd unsupervised learn-
ing methads fora wide range of dyvnamic scenarios (307, 508], Such methods can be especially effective i
e cased like dvsamic traffic steering (3094 and sepvice-aware resource olloecation [$10, 511].

o Importapce of Reinforcement Leaming (RLY A< highlighted, RL-based wechisigues are expected 1o be vital
in expanding LTM capabilies. By learming from continuous interactions with the esvironment, BL can
cnabe rrore seanced decisbon-making and sdage effectively 1o real-time conditions.

= Valwe of Data and Teubed Approaches: Dotz wsed to train LTMs o these dvaamic eoviromments will be-
come increasingly valuable. Testhed deployments [312] are seen as critical enablers for generating diverse
and repaesentative datasets [513, 314]. theeely enbancing the trainig and validation of LTS wnder realastic
network conditions.

By integraning these considerntong.: ETMs will be bener equapped to manage future aerwos ks conplexiy, deliv-
cring robust md intelligent netwaork operations.

13012 Data Governance and Compliance

Given the glebal reach of elecom epersors. LTM: muost comply with variows regional regulations on data pro-
tection amd usage, such as GDPR in Evrope or HIPAA for healthease dasa i the U5, Enswring that these models
respect reglonal compliance while mamtaimng opecational efficiency adds anether layer of complexity o their
deployment and design,

131,13 LTM pre-training of 4 physical-layver foundation model

[ comtrast to task-oriented Al solutions, foundation models can help Telecom operators 1o easily adapt to new sit-
wations and applications. To vealice a penecalized understanding of the physical layer uwaing large Telecom models.
selecung effective wokenizsnon and pre-training sirategees such as pext-sample prediction. masking and denedsing
15 esacintial.. However, this s challenging in wireless networks due o the dimitse changes in data sepiesentation
depending on the bse case (g2, the sampling rate o length can vary hased on spectmum manages configurilinong
and considersd techmologies), Adddinonally. the entropy of differcnt wireless wehnologies {e.g., LTE, 5G-NE and
WiFLD ks generally differcnt becanse of the differences in modulation scheme, channel bandwidih usage, traffic pai-
tetn, and load and signal precessing techniguies. Butlding fowdaticn models. wypacally based on the transformes
architecture, involves technigees such as patching and wokenization to ensure @ prodictable input Tormat. Under
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dynamic conditions of lelecom use cases) it remiains an open challenge bow o effecuvely adapt these technigues
due o differences in enropy and data repeesentation. There exist works on lnvestigating tokenization siralegies
for e semes data [515 316) but nod for wiseless tme senes dace Addinonally, collecting large datasers fod
new tasks or use cades'is often challenging and demands significant pesowrces. Pre-wraining foumdation models
ina selfsapervised manner aims o allevaate this by sequening oonly minor model spdates dunng fine-tnning fio
few uae cases with high varery. Mevestheless, designing effective pre-training streategies for muoltiple warelesy
dowenstrean tasks with different data representations remains an epen mescerch guestbon,

13014 LTM Hardware requirement and evolution

Thee hardware requirements for LTMs have evolved with advancements in network infrastructure, pariculary with
ihe shafi toward 3G and beyvond. LTMs wypically reguire high computational power, bandwidih, and low-lacency
hardware, inchsding telecom-speciiic processors and accelerntors. - As welecom bardware evalves, madels need o
e optimised for mewer architechwes such as edge computing modes, NFV infrastiucture, and clowd-native oet-
winrhs, Balancing resounce usage and perfomiance 18 key, especially when deploying LTMy 0 eavinmunents watls
varving levels of comsectivity and hardware capacity. The hardware reguirements for LTMs inclode processing
wnits, memery and sorage. networking and consectivily, and enevgy efficiency. The follewing sections provide dn
in-deptl amalysis of the architectares of CPUS GPUS, TPUs, and NPUs, which play a crucial role in supporting
LThs and other Al models.

CPUs {Central Processing Unbts) are gencral-purpose processors Fowsd o virtually every: computing sy siem
and prnmeanity handbe tasks sech as daa preprocossusg; svstem coordination, and control Aow mumagement in Al
systems, CPLUs typacally consist of multipls coses {ranging from 4 to % o moe in high-end server models ) amd
eniploy complex instruction sets like 286 (used by Intel and AMDy or ARM {found in Apple’s M-series and mobile
procesaors). These instriection seis cuable CPU o execole o wide range of tasks efaciently, wlibough mol optimised
for large-scale parallel processing, which 15 cracial for deep leaming models. CPUs are designed e handle SIWD
{Single Instruction. Multiple Dma) eperanons {317). where a single instroction is applied across multiple data
peints, For exampie, Intel’s AVX-312 extension aceeleraes Aoating-point and integer operations on multiple data
penints samultaEneonsly, improving the speed of Al tasks such as data preprocessing amd feature exteaction, Dhaspiie
these enhancerments, CPUs anll lack the parallelsm of GPUy and TPUs. which Bmacs performance o truinng barse
Al models. Notable CPU products for Al workboads include Intel Xeen Scalable Processors (loe Lake and Sap-
phire Bapids). featuring bigls core comnts (up to G0 coges) and support for AVY-512 instuctond. AMD's EPYC
processors (Milin and Genoa) offer up to 96 cores for high-performance multi-theeaded tasks, These processers
are commonly used by server environments for data prepeocessing, model orchestration. &nd Light inference tasks.
For edge Al applications, ARM-based processors like Apple®s M1 and M2 seres which integrate CPULGPLL and
MNPU components. leverage the ARM architecture to handbe machine leaming tasks efficienty. In contrast. ARM
Cogtes, progessors specifically serve ag CPU coses b are often part of Larger S0 that inelude o separate GPL
and WP for Al tasks in mobile devices and edge computing environmcnis,

GPUs iGraphies Processing Unlis) ase specialised processors optmised Tor parallel computation. making thern
critical for aceelerating deep beaming wsks. Unlike CPUs, which kave o limied numbers of cores, GPUs can con-
tain thansasds of smaller cores designed o hadle Lirge-scale matrix madnplications and femsor operations, which
are easenti fof the iraining el inference of Al models. The architecture of GPUs relies on SIMT (Single Instroc-
tion, Muluple Theeads b, which allows for panidlel execution of the same instruction across multiple threads, This
archiweture is paticulasly well-csited for Al tasks such as matrix multiplications, comvolistion eperstions in pegal
networks, and laspe-scale data processing. Modem GPLs are equipped with YEAM (Yedeo BAMY, a bigh-spe
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mietndry pool that provides fase seeess 9 large datasets and model weighis, reducing the boitlenecks associsted
with slow memory aceess. For deep leaming, GPUs ofen include specialised hardware units soch as Tensor Coses
{avoalable in NVIDIA's GPUR). which sccelerste deep learing compatations, pariculasly matric operations. by
pecforming high-efficiency, low-precision calculations {such as FP 16 o BF16). GFLS are useful for training large
laguage maodels (LM or munning mference on complex tasks such as image classification, natural language
procesaing (NLP), and reinforcement bearning. Leading peoducts i thes space include the NVITDEA ATO0 Tensor
Core GPUL built on the Ampere aschifectune, offering up 10624 wraflops of FP1G performaonce and equipped with
ROGE of HBM2e menory, This GPL is widely wsed for Lavge-scale tealming ansd inference in dita centres. Buased
aa the Hopper architecowre, the newer NYIDLA HIDD Tensor Core GPU provides further performanee improve-
ments. partkcularly in Al-specific wasks, AMD's Tnstinct MIZOD, based on the CONA2 architeciure, is another
eption For Al and kigh-peefomnmance computing (HPC) workloads, offering 1I8GE of HBM 2e memory and over
200 tevallops of FP LG perfermance, For smaller research projects on individoal researchers, WY IDTA S KTX 30910,
a comsumer-level GPU from the Ampere architecture, s a popular chowe, offening 24GR of GDDRESX memory
and robust perfenmnance for meining madels with tens of billions of perameters.. MALL GPUs are widely used
in mobile and embedded sysiems. designed by ARM. These GPUs, such as the Mali-G78 and Mali-G710, are
eplinised for Al inference on devices with cobstrained resousces. Supporting OpenCL and Valkan, they ane com-
moaly found in smanphones und 10T deviees. MALL GPUs handle Al tasks soch as object detection and voice
recognition while rubantainlng bigh etergy efficazncy.

TPUs i Tensor Processing Units). developed by Google. are highly specialised processors designed w accelerae
tensn operations tur are cemral e Al workloads. Unlike GPUs. whick are general-purpose parallel peocessors.
TPUs are specifically designed for matrix wuhiplicanons and tensor opesatiens ased in deep leaming models,
pattbcular by within Cioogle's TensorFhow framework: TPUs wiilise syatolic arrays, specialised handware units thar
cificiently handle matrix multiplications by minimising data movement between processing units. This aschitec-
ure mskes TPUs highly efficient for lorge-scale Al training, allowing theos o owpeifonn GPUS in deep leaming
i kloads that rely heavily onomatrix caleonlaone. TPUL alsa feane High Bandwideh Memody ( HEM ), wihicl 14
critical for hamdling large datasets and speeding up tee tradning of massive neural pevworks. TP can be scaled
thecugh TPU Pods, which combise multiple TPE chips o enable disiributed raining across hundreds or even
thovsands of TPU cores. This makes them ideal for waining lege language models or muolb-modal sysiems that
fequare amimense computatiial poweer. Examples of TPUs inclede the Google TEU wd, whach delivers wp w275
terafiops per chip and is designed for maximum energy efficlency and performance-per-wall in Al minkng tsks
The Google TFU v3 i wn carkier generation that offers 123 wecaflops of Al performance. Both generations of TPUy
are available theowgl Google Cloud, where TPU resources can be rented foe AL workloads, providing scalabiliny
without aeeding physical bardware investment,

NPUs {Meural Processing Units) are processors specifically designed o accelerabe neural network infercnce,
partkcalurly on edge ond mobile devices with crtical power consumption and efficiency. Unlike GFUs or TPA
which are designed for both fraining and inference. NPUz foces on aning inference for pre-trained masdels. of-
e emsplyasising low-latescy, cnergyv-elficient computation. NPUs are tepieally integrated into Sysiem on Chips
{BoCs) alongside CPUs and GFUs, allowing mobdle and embedded devices o handle Al workloads bocally with-
ot effoading compitston to cloud servers. These processors wie oplintised for tasks such as comvodutienal pedral
networks (CMNs ) recwment newral petworks (EMN, and gther peacal network architeciures that sre commonky
used in real-time applications like object detection, speech recogiivon, and bnguage wanshimon, Key feanes of
NPFUs include suppont for quantised models. which reduce the precision of the peural peteodk weights 1o lowes
Bi-widehs (e.g., INTS) witheut significantly impacting accugacy, This enables NPLUs to pecform inference fius
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and with lower poser consumpiion thin GPUs or CPUs, NPUs also feawine on-chip SEAM (up 10 G40MB o some
mdelsh 1o mindmise fuercy in sccessing datn during infecence, Leading examples of NPUs include the ARM
Ethos series, which provides scalable Al performance for edge devices. The Ethos-1U53 ks designed for micro-
controlles amd bow-power applications. making i ideal for oT sensers and wearables. O the other hamd, the
Ethos-NTE targets higher-end devices like smariphones and delivers up oo 2 TOPS, proveding efficient solutions
for mkage recognition, speech processing, and other Al 1asks. The Ethos NPUs offer bigh energy efficiency amd
are opumised for it and intl 6 operations, enhancing their sultability for edge Al applcations. Other cxamples
inclugds the Apple Mewral Engine (ANE), which 15 istegrated into Apple’s M1 und M2 500y, The ANE can pet-
foro up o DL weillion operations persecond (TOPS). making it ideal for on-device Al applications such as facial
recogrition and nataral language processing. Google’s Edge TPU, designed for TensorFlow Lite models, delivers
4 TOPS of Al performance Tor edge and [oT applications. Huawei's Ascead 910, 2 high-pedformance NPL, de-
liwers up o 256 teraflops of FP LG performance, making it suigable for more demanding Al applications.

The architeciual distactions ansong CPLUs, GPLUs, TPUs, and NPUs directly iofluence eheie effcacy i AL appli-
carios, CPLUs offer fexibiliny and are essenial for managing diverse computational tasks, while GPUs, TP
and WPUs provide the parallelism and speclalised processing required for efficient Al model training and infer-
chce. The synergy beiween these hardware compomrents underping LTM systems’ scalability and perfonnance
advancemenls,

Memory and storage wfrastrociuse are cribical for managing the vast datasers and complex inodels uifised
in LETM. High-bandwidih memnmory {HEM) ensures papid datn sccess and processing speeds.  For example.
WWVIDA S HIGE GPLY integrates HBM 2e! signifcantly improving memory bambwidithe which is crecial for train-
ing Luge-scale models. Storage solutions nuest bulance capacity, speed. and relizhility. Solid-S1aie Drives (35105
affer fster data reodeval comgared o iraditonal Hard Disk Deives (HDDs ), thereby reducing botilerecks in daca-
infenaive AL workflows. Prodects such as Samsung s PRIETI3 NWYMe 55D provide high throughpat asd Fow
lateney, facilitating efficient data handling for Al applications. Addinonally, advancensens o pon-volatile mem-
ary techinologics, sech i Inel’s Oplase DC Pecsdstent Memaory, of fer i ivbed appeoach that combines the speed
af DEAM with the peristence of traditionad storage, enhancing the everall performeance of Al sysems,

MNetworking and Connectivity we essential for distnbuped Al systems, facilivoing efficien dam oeansfer and
cofmminication between computational sodes. High-speed interconect techaologics, such as NYIDIAS NV Link
and Mellanox's InfiniBand. provide the necestary bandwidih and Lo latewey: critical for large-scale Al irainkng
and inference tasks. Drata centres that suppon techiokogies sech as LTM freguently employ advanced nerwork-
ing sofutions 10 enable paralte]l processing amd disteibured watneg sceos muktiple GPUs of TPU s For example,
Geoogle's TersortFlow Research Cloud wilises high-speed metworking oo imeroonnect thousamts of TPL cores.
allowing the training of extensive Al models with temarkable efficiency. Furtbermore, advancements in 3G asd
fure wireless wechnolpgies are set o enhance connectivity for edge Al applications, fucilinging real-time data
processing and inference in decentralised environnwents, thereby expanding the capabilities and reach of Al-driven
s utbaons

Energy efficiency is a critical consideration i the design amd deployment of Al hardware, given the substantial
power consumplion associated with raining and operating lasge models. Energy-efficient processing units. soch as
NWIDAS Ampere architecture GPUs, incorporate Beatures like dynamic voltage amd freguency scaling (DVES) 1o
aplmise power wage without compromising performance. Diila centres are increasingly adopling energy-cfficient
cooling selutbons and renewable eoergy sowrces to mitigate the covironmental impact of Al workloads. For exan
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ple, Google's dats centres uttlise machise leaming alporithims 1o munsge coling systems dyvoamically, reducing
energy consumption while mainaining optimal eperationsl conditions.

The Evolution of Hardware reguirements has progressed significantly, driven by the increasing complexity and
scale of Al osodels. Initizlly, AT syseems celied primarily on CPUs, but the advent of deep leaming necessitaed
more specialized processing units capable of hamiling parallel compoiations. This evalution led to the emergence
af GPUs, followed by TPUs and MPUs cach offering enhanced performance tailored too specific AT workloads.
A Al models bave grown i sizeand complexiy. exemplificd by large-scale models like OpenAl's GPT senies
and Meta's LLaMA imemory amd stofage demands bave escalabed, Traiming and deployving these models requane
vast arounts of high-bawdwidih memory snd advanced storage technodogies o manaze and process the exien-
sive dabssets snvalved. For dnstance, GPT=4's tniricate architectore demands significant compuatatiomal resounces,
driving innovitkons in GPL and TPU echvolegies o facilitaie efficient tralning processes. Concurrent with these
advancenents, the need for obust reiworking solutions has intensificd o support the distriboced natare of moderns
Al traiming processes. Traming masdels such as GPT-4 g0 LLaM A involve paralie]l processing across muliiple
GPFUs o TPUs. pelying on high-speed mierconnects - like NYIDIA's NWLink and Mellanox’s InfiniBand 1o en-
sure efficient data trnsfer and synchronisation between computational nodes. Thas distrbuted approsch mot only
accelerates training dnses bui also eohances the wealability of Al sysiems. Enerpy efficiency has wlso becoms a
prabsmaunt concern, spuining the developanen of hardware architectures ad dasta centre desagnos that mdnimise
power consumption while sustaining high computational theoughput, Innovations such as energy-efficient GPUs
and optimsed cooling selutions are cssential w support the intensive demands of trainang large Al models like
GPT and LLaMA. The continusus evolutisn of these hardware compenents refects the dynamic interplay botween
Al advancerments and the echnodogieal inmrations requared (o sappon e,

132  Innovative Opportunities
1321 Trastworthy AT and LTMs

Achieving real-time inference and nuntaining o small model Tootprnt age critical for deploving LTy in tele-
corm settings, bar these constrains often hinder wust-enbhascing features like robust ecvor hatudling and confidence
mistries. Despite these challemges, prediction confidence metacs offer a waliwable innevative epposiunity by quan-
tfying the reliability of LT owpus. High-confidence predictions can wigger auemated actions, swech as fault
fecovery of traffie rerouting, ensuring faster amd more efficient responses. Conversely. bow-confidence predictions
cun propypl fonbher saodveis of humen bteovestion. redueing ercoes dnd cohancing tansgarency by sdapting to
varvimg leviels of uncertainty, This iceraton coables dynamic, informed decigion-making and soengthens st
in LThs,

Coafidence metres ane crucial for detecting anomalies und ensuring system resilience i dyisamic environmsents
[3EE]. A sudden drop in confidence across outputs can signal duta drift, model degradation. or adversanal interfee-
ence, enabling carly corrective actions like retraining of thréshold recalibration fo maistain rebast welecom opera-
fiobs. Addifionally. confidence metrics balonce privacy and transparency: for sensitive user data, high-confidence
predictions can albow denailed explapanons, while low-confidence predictions i disclosures to absirct swm-
maries. This approach reduces the rsk of exposing sensitive information while peeserving inerpretability ard
aeerational reliability.

Confidence msetracs are essential in emerging telecom technologies like Integrated Sensing and Cominmumication
IEAC), where precise coostination between communecation and sensing tasks st occun under Lnked data asd

high uncermainty. They act as safeguards. ensunng LTM decisions remain reliahle and interprewable in compl
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averlapping scenarios. For tasks like spectraom alloeaton of inlerference management, conlidence seoves enhance
st in system recomimendasions, enabling operators wo redpond effectively o rapudly changing conditbons,

To enbance rustworthiness in LTMs, confidence merrecs must be embeddid as o core architeciural component
This peguires baluncing inference speed. masdel size, and interoperability with webecom trust demamds, Lighoweight
confidence estmation methods are essential o meet latency requirements, while privacy-prézerving technigues
like differential privacy ensure explanations don’t expose sensitive data, Additionally, confidence metvics improve
crogs-network synchronization in cascading scevanics, enabling seamlbess, coordinated responses w threats o
anomakies [519].

Embedding confidence-driven strategies inwo LTM design and deplovmeny enables wlecorm nevworks we wckle
practical challenges effectively. These approaches enhonce resalience. securty, and ranspareney. allowing LTh s
o meet the swringent dennnds of next- genesution telecom émvironmients while fostering stakehalder truse

Ciomformal peediction 15 anether potental insovation Tor enhancing mostwonhy Al in large generatve models.
By providing mathematecally rigodous uncerangy quantificaton and caliboed confidence Intervals, it ensunes
ihe reliabality, transpaveney, and robustness of model sutputs seross comples, high-dimensgional modalities sucl
as teatand images, This enables generative models o deliver owtpats with statistcally valed guarantessi—such
ay conflidence doored for text coberence or image Gdelity—addressing concerins like overcontidence. bias. wsd
hallucinations while fostering usder wust and accowntabiliv. Integrating conformal methods also facilivaes real-
tumse mendtonng abd sdagptive feedback. ensusing system reliahility as models scale in complexity amd data size,

1322 LTM in O-RAN architecture

The willingness 1o trodece currently vibrant ideas (such as openseds. virnwalization, ineroperability, moduloriey,
and Ad-oriented (oncuonieg) o wisckess netwaorks los paved te way for the establishment of the O-RBAN AL-
LIANCE. Ogpen RAMN. as such, assumes o transformation of the contemparany wireless architecture and functions
that wall leverage the incorporaton of the above-mentoned features while maximuang the usage COTS handware
and MInLMIZEINS proprictany anes.

The proposed O-EaM architectre [5H1]. s well as desigred interfaces and protocals. suppois. o geneeal, three
control loopa, focosing on differcnt functonalities and refecting theee different time scales. The Mop-RT (Noen-
Feal Time) conteel cycle comcentrates on | secomd o a lenger tme-frame, whereas Near-RT { Mear-Feal Time)
aerites between 10 nuilliseconds w 1y period. The Beal-Tone (BT boop seflects te changes bebow 10 mnillisec-
aals. By defnition, control loops assume the presencs of some comral and omanagement unkl {function, eniity)
responsible for intelligent reactions to the varying sitwations o the metwork. Such a role is entrusted o the RAN
Tupelligent Controblers, BRICs, which operase on a longer (above [ decond) and shoster (hetween 1) milliseconds
and | second) scile, These are called, Mon- and Near-RT RICs, accordimgly. The formmee BIC 15 envisaged as a
patt of the Service Management and Orcheswotion (SMO) and s connected with the laner RIC via the &1 inner-
face. Following the O-RAN specifications [520]. one of the key moles of the NMon-BT RIC is 1o support intelligent
aptimization of the underlying network. To schieve this goal, & vanety of existing machine leagiming (ML) amd
artificial ispelligence (AL 1ools may be atalized. The BIC may benefit from sccess o rich dsts analytics and apply
AUML ressonming. Morepyver, italso manages the ML models within SMO and mstrects the Mear-RT REC about
modiel changes via the mentioned Al inerface (using ML Model Management Service b

As discussed, AVML creates one of the pillass of O-RAN by natively including and embedding artificial el
ligenee into wireless networks. The varkety of envisaged AUML applications is huge, starting from raffic man-
agement and secunty applications thiough energy-efficioney optimization amd ending at conflict manopgement o
detection. Mose informsation about the ML Framework in O-BEAN con be founad in {321 ] and in [204]
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Modular applications. wisely pApps associated with Non-RT BC and b pps with Near-BT RIC, conssitete sig-
nificant compenents of e overall O-RAN ecosystem, Following the microservice concepis, fvApps deliver to
the mobile network operators complewe vet modular functiosalities responsible for the execution of specific func-
tiobs in the wiseless petwork. Examples of such peospective applications are coverage amld capacity optimizanion,
epergy-saying management of waffie management operating on a long dmescale @ Mon-RT, and traffc steenng -
epumizing waflic in o shoner e scale ar Mear-RT RIC. By assumgazon, these applications may benefit from the
wtilization of dedicated AVML solutions. The AUML functionality may be the inhereat feature of the application
irself, however, the applications auy alae petentially equest access to somse existing ML aodels or toils availsble
through the coresponding BIC:. Thix is becawse the sole application is not the sight place for long-tenmn maode|
training and modification: it could rather rely o a pre-traied model created by the msobile network aperabor asd
miaikaged within S0,

Ove of the observations that can be made se far is that O-RAN s onginally asd satively prepased and designed
i incarporate vasios ALUML, including Large Telecom Maodels, LTMs, The key aspect is that LTMs are Lhis
that requine large amounts of resources. Anmalvieing the O-BAN archateciuse and following the inibual agrosments
on ML fromework specified in [2064], the SMO may be the entary responsible for managing the whole process
related 1o LTA application in futine wireless networks, whereas the tandem of BICs - for is aulizatdn towands
better network optimization. Cne of e key challenges in that respect is the seed Toe o huge amount of comguting
povecr and memory o process all the availlable dits effectively in 4 reasenable tme. 1 s often said thar from
the wmplempentateon awd hardware perspective, it is the SMO (and Mop-RT RECY that will bove allecaied more
cormputing resources aisd power o operaie. Thus, SMO with the overall ML managensent loop discassed in [321].
is naturally designed for incorporation of LT wals. Moreover, SMO amd Noo-RT RIC are foseseen o wlilize
access o nch context imformation saved i ourmeseus databases and cogin from vanons sources. Thus, Generative
Al wols may then be used 1o empower multi-irodal reasoning and optimizaton of the nevwork:. The benefits
of muli-modal CTM-based reasoning and inference. toward better network optimization are manifolds. First by
processing hige amounts of data collected over 4 leag time fem the underbying petwork, the Al models may
reflect various features of network functioning. boeth feom o short ad long-tenm perspective. These nvodels may
alen peflect the problem of scale, where different decizions may be made for sialler for fragments of o) networks
with a low numnber of nodes amd different for huge metworks with maultiple base stations and users. Second.
ihe LT models may bencht from combining varions types of information available at the SBMO i the form of
conchmen information. Such context informason may include, for example, the peeferences of particular wsers.
radio-environiment of cadio service mags. bus and wam schedules, or plans of local municipalities in teems of mass
events, By intellizent processing of such datn, LTMs may lead o better optimization decisions. Third, medulis
applicatioms—both eApes and xApps—wall not be capable of utillizusg theis awn LTM. Thus incorporating LTH
as the native part of the O-RAN architecture will give pew opponunities for xApp and cApp desigiers to betier
crzabe their own optimization functions,

1323 LTM om ol Digital Twin

Drigical Twin (DT technology. augmented sitls LTWMs, epdesents o transformatve opporiuiity for sdvascing the
S0 industry into the &5 era By creating seal-ume vinual replicas of wetwork infrasrusctres—including devices,
heane stateons, and communication lisks—DT s epable precise simualation and optimezation of network performance.
The integration of LTMs within DTs enhances their intelligence and adaptabilicy. empowening networks o oot
only mirror physical systems but also analyze, predict, and proactively resolve challenges with unprécedented
chficiency. This svoesgy 15 essential for managing the complesdty of 60 perworks, charscterized by uliva-dense
conpectiviry, intelligent ausomation, and dynamic resource allocaton,

LTha play a pavedal eole o angreeniug DT capabilities, brnging advanced nateral language understanding, e
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Figure b Mext-Generation Logical Metwaork Fraomewaork

soung, and decimop-making 10 network management With their abality 10 process and interpret vast datasets,
LTMs embedded in DT can extrset scnonable insights, optimies sesokroe configuratuoss, and facilitace real-time
decision-moking in 4 human-like manner. Thas allows operatoes 10 simulate complex scenanos. train Al owdels
o ayathene data, and achieve faster and moee accusate predictions of network behavios The resuln ik a closed-
loog system whese LTMs enlance the introspective: predictive, and proaciive modes of DT, doving autonomons
network aperations and costnuods self-opiimization,

[scorporatng LT alzo apens new avenees for awtomation asd innovation i &G networks, For example, LT =
withan DTy can simplify serwork trouhledeooting by imerpreting logs anid metrics in namral bnguaee. enablusg
seamiless collaboration between operators and invelligent systems, They can also streamline policy gemeranon,
adapt 1o shifting network demands. and provide persenalized oetwork experiences foe end-users, From plan-
ning and testng auonsation 1 real-tme AL wainng and dua-doven decisiwon-making, DT enriched wath LThis
position themselves as an essential ionovation for achieving the agility, scalabibiy. and inellizence sequired in

K1~ g nerinn netwirks.

13.3  Framework towards Nexi-0;

Takung e account all the challenges amd innovative enahlers of LTM, we copsolicdale a caomplete frammeswoark.
[t envisions concepsally the complete architectare, stack, and prnciples for creating taly autononwous nesl-
generaticn (Mext-G) networks. Fig: 68 shows the complete logical framework consalidated to covision nesi-
generation aubonomeus networks doven by LTM=. A reference and innovative work explaining and diving mio
these comcepls s MABSTRG [522). The framework s based on state-of-the-aat pinciples amld key enablers fog
creating tuly antonomous aetworks, whicl we analyee thedomeghly in the nest subseetions, including cloud-matve

pamnciples, inem-based nerworking., multi-agem systems and aubomatic control sysiems,

1351 Clond-native Mext-{x Networks

Clond-native panciples are fundamental o realieng the dynamic metwork sutomate requaced for 60 meoworks,
]‘:q..il.'[l.:u]'.u:'|_-.- 10 InEgratumg and managmng LTh = E-_'.: levey aging MuCroscevices architectures, containertzataon, amd
contimss inegrationfconiueees deployment (CLCD) prpelines, cloud-wative desipns enable the masdular, scal-
able. and Rexible infrastructure needed for 6G7s olire-dynamie eavironments,. These principles allow network
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Fusetioins diwd LTRs 1o be deployed, upgraded, and scaled independently, ensuring seamless adaptabiliey o viry-
ing traffic loads, user demamds, and evolving service requirements. This modulagity reduces complexity, shprens
development cycles, and enhances the reliability of automated operaions.

A key benefit of closd-native principles s their apbality o simplify network conhguration and managemen.
Throwgh declarative APLs. avtomated provisioming toeods, amd oschestration feameworks like Kuberneies, oper-
ators can manage complex network configurations efficiently and uniformly across diverse enwvironments, This
streamibines the deployment and optimization of LTMs, which rely oo vast comparatonal resources and dynamdc
dataflows, Moreover, cload-native automateon redeces manual interventions. minimizes confguration errors, and
accelerates the rollout of innovatve nevaork functions. In 60, where teal-tme adipabilicy and inlelligence ane
paaramdunt. clotd-natve prnciples ¢nable a robwst fousdation for dvnamie oechesteation, eficiem ETM deploy-
sl and eontineomes retwork epimi zation, making tsenn islispensable for the et generation of neteork infras-
irieie.

1332 Intent-based Networking (1B}

[neent-based networking (IBN) 18 essential Tor peal-gencranon petworks like 60 because it simglines netwoerk
mkinagement by albwing opendors W specaly high-level objectives rather than detiked configurations, In highly
dynamic and counples environmsents, raditional manoal confguration becomes inpeactical due w the sheer pun-
ber of devices. services, and user demands, 1BM enables operastors to define their desiced utcomes—sich as
latency reguirements, security policies, or bamiwidi allocatisns—and the netwark auntonomowsly sdjises it pa-
rumieters o fulhll these intents. This kevel of automation amd: abstiaction nod enly reduces operational overhesd
bait alses enhances agilivy, allowing the pevwoik v adapt in real-me w changing condstlons and requisensents,

For LT, which are sdbvanced Al models tailosed for telecom applications, IBM provades a fromieworek that-aligns
high-level business ehyectives with nevwork operations. LThs can inerpren tee intents specificd by opecators
and eranslate them into-sctbonable configurations across the retwork infrastmactre. By leveraging IBN, LTMs can
me effectvely aulemale network optimizstion. predict potential ssues, asd inplement proactve measures. This
synergy between IBN amd LT leads 1o smanter, moce responsive networks thal can deliver personalized services.
improve ressiree utilization, and enlance overall user expericnce h hext-generation t2lecom environments,

1333  Optimbzation Methods

Standard optimizatien methods from control theory and autematic contral systems are critical for maintaining sta-
hality and ensuring consistent enforcenwent of network mients o pexi-generation nevwarks like 60 These methods
peovide o mathersatically grounded framework fon maniging the dynamic and vamable comdifions inherent b
ielecom networks, sech s fectoating watfic beads, changing chanee] qualites, awd varying wser demands, By
continussly moaitoring network states and applving control zlgosithms, these methods enable precize adjust-
mes o network confgurations, ensuring Usat the high-kevel intents—soch as latency, throughput. o energy elfi-
crency—are consistently achieved. Thas stabality 15 coucial for delmvenng releable services, even under challenging
and unpredictable conditions:

Lneorporatng optimization technugees o ient enforcement ensures thar networks remain ressleent and adap-
vz, Forexample. methods like model predictive coatrel {MPC) or feedback-based control loops can dynamically
adpust resowrce allocations of GpUMIZE roUling slealegies L response o vel-time vadations o claanel guality o
device mobility. These technigues complemaent the capabilities of LTMs by providing robust mechanisoms o un-
plement the decizions derived from Al systems. Together, they forns o coliesive system whese intents are trans laied
into actionable polickes. monbiered for compliance. and contineally sefined 1o maintabn aetwork performance asd
stahility across diverse and evelving conditions. This integration of standasd sptimization methods ensuees
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naxl-generation nebworks achieve the reliability and efickency reguired for the 80 e

1334 Multl-Agent Networking

Multi-agem sysiems (MASR) play a vital role in aext-generateon perworks, partecolarly in scenorios where mole-
tenant approaches and distoibuted architeciares are prominent &5 shown in Fig. 68, In such envirenments, numee-
ous independent entitics—such 45 tenants, operdton, and services—must coexist and conrdibate within shared
network anfrustactore.. MAS provades o framework where aulonomons agents, representing these cntities, can
collaborste, segotiate, and resolve conllicis o a dynamie and sealable monner. This s erucial for mamtaininsg
network cfficiency. ensuning fair resource allocation. and mitgatng potential dispases in moli-enant seoworks.
Aukdinionally, MAS enables decontrilized decision-making, which is essential for managing the cormplexity and
scale of disinboted S0 neiworks.

LTMs enhance MAS by introducing advanced contextual wnderstanding and nomral Einguage capabilities. These
caprahilaties aflow agents (o mterprel nuanced intents, conimuricate effectively in natural lapguage, and make
decispons aligned with overarching network objectives. For insance, LTWy can facilitate seamless collaboration
berween agenls by interpreung and generating policies or resolving conflicts based on comexmal knowledze of
netwiork combitions and fenant reguirements, By combining MAS warh LTMa. next-gencration networks gain a
robust mechanism for coordination. enabling applications such a5 aULOROMGUES FE0UNCE IAMAEEMICHL proactive
fault handling. and adagtive service provisioning. This synergy ensures that disiributed and mult-tenant networks
remain cobigave. efficient, and responsive o evolving demads,

1335 Small Language NModels (SLEs)

Semall Language Models (5LMs) are increasingly critical for next-generafion networks doe 1o their ability o
provide efficient decision-making while significastly reducing overbead and infrasirsciare demands. Unlike larger
modils. SIM: require less conputationdl powes, memaory. and stoeage. making them wdeal for depleyvment
resource-constrained enwvircnments, Their lightweight architeciure enables them o fic on a single GPU, ensunng
cosl-effective scalabiliy and kwer energy comsumption. Despite their reduced size, S1EMs can deliver suffcient
accuracy and performance for many elecom applications, including inaent ierpeetation, anomaly derection, amd
policy generation, making them a practical solution for real-woeld use cases,

SLMs are partcularly swell-suited for low-lateney asd resource-constrained environmenis. such as those found at
the petwork edge. As edge computing becomes a comerstone of 60 networks, the ability to deploy intelligent
mindels chose w0 the emd-user = essentizl for minimizing Ltency and improving servace sespomsivensss, SEMs can
cllictently operate n these decentralized settings, enabling localized decision-muking und real-tinse wdjustnwentd
without relving oo cenralized infrastiucture. This makes them indispensable for edge-based applcations like
dynamie resource albiseation. real-time monitoeing, and edge device coordination, ensuring that nexi-generation
networks achieve the agilicy and effickency required 1o meet evelving demands,
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