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General Information
1 Contact Information
Prof. Boris Kunyavskii
kunyav@gmail.com

2 Grades
Final Exam: 80%
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Homework: 10%
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Part II

Fields
1 Definition
Definition 1 (Field). The set F is a field if there are operations +, � satisfying
the following properties:

(A1) ∀a, b ∈ F; a+ b = b+ a

(A2) ∀a, b ∈ F; (a+ b) + c = a+ (b+ c)

(A3) There is an element 0 ∈ F s.t. a+ 0 = 0 + a = a

(A4) ∀a ∈ F, ∃ b ∈ F s.t. a+ b = 0

(M1) ∀a, b ∈ F, a · b = b · a

(M2) ∀a, b ∈ F, (a · b) · c = a · (b · c)

(M3) There is an element 1 ∈ F s.t. a · 1 = 1 · a = a(1 6= 0)

(M4) ∀a ∈ F, (a 6= 0),∃ b ∈ F s.t. a · b = 1

(AM) (a+ b) · c = (a · c) + (b · c)

If F is a field, one can define subtraction and division as follows.

a− b=̇a+ (−b)
a

b
=̇a · 1

b

1.1 Examples of Fields
1. R

2. C

3. Fp
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1.2 Examples of Non-fields (Rings)
1. Z, as M4 is not satisfied.

If we define F2 = 0, 1; 0 + 0 = 0; 0 + 1 = 1 + 0 = 1; then, necessarily,
1 + 1 = 0, otherwise, 1 will have no additive inverse.

2 Examples
Example 1. Let p be a prime number.
Fp is defined as follows.

∀m ∈ Z,m = a � p+m

The operations + and � are defined as

a+ b = (a+ b)
a � b = (a � b)

1. Fp is a field.

2. If F is a set of q elements, we can define on F a structure of a field iff
q = pt, where p is prime, t ≥ 1.

Example 2. For a field of 4 elements {0, 1 α, β}, the addition and multipli-
cation tables are as follows.

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 0 1
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Part III

Matrices
1 Definition
Definition 2 (Matrix). Let F be a field, m,n ≥ 1.
Then, A(m × n) is a table consisting of m rows and n columns, filled by
elements of F.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... ...
am1 am2 . . . amn



2 Addition of Matrices
Definition 3 (Addition of matrices). Let A, B be m× n matrices over F.
Then, C = A+B is defined as follows.

cij = aij + bij

2.0.1 Properties

1. A+B = B + A,∀A,B s.t. the sum is defined

2. (A+B) + C = A+ (B + C),∀A,B,C s.t. the sums are defined

3. There is a matrix O, s.t. A+ O = O + A = A

4. For any A,∃B s.t. B = −A

3 Multiplication of a matrix by a scalar
Definition 4 (Multiplication of a matrix by a scalar). Let A be a m × n
matrix over F. Let α ∈ F be a scalar. Then, C = αA is defined as follows.

cij = αaij
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4 Multiplication of matrices
Definition 5 (Multiplication of matrices). Let A be a m× n matrix over F.
Let B be a n× p matrix over F.
Then, C = AB is defined as follows.

cik =
n∑
j=1

aijbjk

Example 3. For matrices A,B, of same size, is AB = BA?

Solution. A =
(

0 1
0 0

)
, B =

(
1 0
0 0

)

∴ AB =
(

0 0
0 0

)
, BA =

(
0 1
0 0

)
∴ AB 6= BA

Remark 1. A 6= O, B 6= O, but AB = O.

5 Zero Divisor
Definition 6 (Zero divisor). We say that a square matrix A 6= O is a zero
divisor if either there is a square matrix B s.t. AB = O, or there is a square
matrix C, s.t. CA = O.

Remark 2. OB = CO = O.
Remark 3. AC = BC ; A = B. In general, we cannot cancel matrices on
either side of an equation.

A =
(

0 1
0 0

)
, B =

(
1 0
0 0

)
, C = O

∴ AB = CB = O&B 6= O

But, we cannot cancel B, as A 6= C.
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6 Theorem (’Good properties of matrix mul-
tiplication’)

Theorem 1.

(AB)C = A(BC) (1.1)
A(B + C) = AB + AC (1.2)
(A+B)C = AC +BC (1.3)

(αA) = α(AB) (1.4)

Proof. Denote AB = D,BC = G, (AB)C = F,A(BC) = H
We need to prove F = H
Let the dimensions of the matrices be as follows.
Am×n, Bn×p, Cp×q
∴ Fm×q, Hm×q

dik =
∑
j

aijbjk

∴ gjl =
∑
k

bjkbkl

fil =
∑
k

dikckl =
∑
k

(
∑
j

aijbjk)ckl =
∑
k

∑
j

aijbjkckl

hil =
∑
j

aijgjl =
∑
j

aij(
∑
k

bjkckl) =
∑
k

∑
j

aijbjkckl

fil = hil

F = H

12



7 Square Matrices
Let A be a square matrix of size n× n, n ≥ 1

7.1 Diagonal Matrices
Definition 7 (Diagonal matrix). We say that A is a diagonal matrix if
aij = 0, whenever i 6= j.

Theorem 2. Let A and B be diagonal n× n matrices.

arr = αr, brr = βr

Then, AB = BA = C,C is a diagonal matrix with crr = arrbrr.

7.1.1 Proof

aij =

0, i 6= j

αi, i = j

bij =

0, i 6= j

βi, i = j

cik = ∑n
j=1 aijbjk = aiibik = αibik =

0, i 6= k

αiβi, i = k

Similarly for BA.

7.2 Upper-triangular Matrices
We say that A is an upper-triangular matrix if aij = 0, whenever i > j.

7.3 Lower-triangular Matrices
We say that A is a lower-triangular matrix if aij = 0, whenever i < j.

Remark

Diagonal matrices are upper-triangular and lower-triangular. Conversely, if a
matrix is both upper-triangular and lower-triangular, it is a diagonal matrix.
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7.4 Theorem
If A and B are both upper-triangular, then AB and BA are upper-triangular
too.

7.4.1 Proof

Denote C = AB.

∴ cik =
n∑
j=1

aijbjk

Suppose i > k, then, either i > j or j > k. So, in each case, atleast one of aij
or bjk is 0.

7.5 Identity Matrix
Let n ≥ 1. We call In the n× n identity matrix.

In =


1 0 0 0
0 1 0 0
0 0 . . . 0
0 0 0 1


7.6 Theorem
Let In be the identity n× n matrix. Then, for any n× n matrix B, we have

InB = BIn = B

7.6.1 Proof

In = (eij); eij =

0, i 6= j

1, i = j

Denote C = InB. We have

cik =
n∑
j=1

eijbjk = eiibik = 1 · bik = bik

∴ C = B ⇒ InB = B

Similarly for BIn = B.
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7.7 Inverse of Matrix
Let A be an n× n matrix. We say that A is invertible if there exist B,C, s.t.
AB = In and CA = In

Remark

A = O is not invertible because OB = CO = O 6= In

Remark

There are non-zero matrices which are not invertible.

Let A =
(

0 1
0 0

)
If possible, let there be C s.t. CA = I2.

Let B =
(

1 0
0 0

)
We have CA = I.
∴ (CA)B = IB
∴ C(AB) = B
∴ CO = B
∴ O = B
But, B 6= 0. Therefore, C does not exist.

7.7.1 If AB = In and CA = In, then B = C

C = CI

= C(AB)
= (CA)B
= IB

= B

7.7.2 Inverse of a Matrix

If A is invertible, i.e. if there exists B, s.t. AB = BA = I, then, B is called
the inverse of A, and is denoted by A−1.
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7.7.3 If AB = I, then BA = I.

7.7.4 If A is invertible, then A cannot be a zero divisor.

If possible, let A be a zero divisor.
Therefore, either AB = O, for some B 6= O; or CA = O, for some C 6= O

Case I: AB = O

AB = O
∴ A−1(AB) = A−1O
∴ (A−1A)B = O

∴ IB = O
∴ B = O

This contradicts the assumption B 6= O

Case II: CA = O

CA = O
∴ (CA)A−1 = OA−1

∴ C(A−1A) = O
∴ CI = O
∴ C = O

This contradicts the assumption C 6= O

7.7.5 If A and B are invertible, then A + B may or may not be
invertible.

If A = B, then A+B = 2A is invertible.
If A = −B, then A+B = O is not invertible.

16



7.7.6 If A and B are invertible, then AB must be invertible.

(AB)(B−1A−1) = A(BB−1)A−1

= AIA−1

= AA−1

= I

Similarly, (B−1A−1)(AB) = I

∴ (AB)−1 = B−1A−1

8 Transpose of a Matrix
Let A be a m× n matrix, A = (aij)1≤i≤m;1≤j≤n

B = At is defined as follows.

bji = aij

8.1 Properties of At

1. (A+B)t = At +Bt

2. (αA)t = αAt

3. (AB)t = BtAt

4. If A is invertible, then, At must be invertible, and (At)−1 = (A−1)t

9 Adjoint Matrix
A∗=̇At

For example,

A =
(

1 1 + i 2− 1
i −5i 3

)

B =

 1 −i
1− i 5i
2 + i 3


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9.0.1 Properties of Adjoint Matrices

1. (A+B)∗ = A∗ +B∗

2. (αA)∗ = αA∗

3. (AB)∗ = B∗A∗

4. If A is invertible, then A∗ is invertible, and (A∗)−1 = (A−1)∗

10 Row Operations on Matrices

10.1 Elementary Row Operations
Let A be a m×n matrix with rows a1, . . . am. We define 3 types of elementary
row operations.

I ai ↔ aj (Switch of the ith and jth rows.)

II ai → αai(α 6= 0) (Multiplication of a row by a non-zero scalar.)

III ai → ai + αaj(j 6= i) (Addition of a row multiplied by a scalar, and
another row.)

EI, EII, EIII are matrices obtained from the identity matrix by applying el-
ementary row operations I, II, III, respectively. These matrices are called
elementary matrices.

10.2 Theorems
Let ei =

(
0 . . . 0 1 0 . . . 0

)
be a 1×m matrix.

Let A be any m× n matrix.
Then, eiA = the ith row of A.

10.2.1 EIA = the matrix obtained from A by an elementary row
operation I

Proof
Let A be any m× n matrix.

18



∴ EIA =



e1A
...

ejA
...
eiA

...
emA


10.2.2 EIIA = the matrix obtained from A by an elementary row

operation II

Proof
Let A be any m× n matrix.

∴ EIA =



e1A
...

αeiA
...

emA


10.2.3 EIIIA = the matrix obtained from A by an elementary row

operation III

Proof
Let A be any m× n matrix.
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∴ EIA =



e1A
...

ai1 + αaj1 · · ·+ ain + αajn
...

ejA
...

emA



=



1st row of A
...

ith row of A+ α(jth) row of A
...

jth row of A
...

mth row of A


10.2.4 All elementary matrices are invertible, moreover, the in-

verses of EI, EII, EIII are also elementary matrices of the
same type.

E−1
I = EI

⇔ E2
I = Im

20



E2
I = EIEI

=



e1EI
...

ejEI
...

eiEI
...

emEI



=



1st row of A
...

jth row of A
...

ith row of A
...

mth row of A



=



e1
...
ej
...
ei
...
em


= Im
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Similarly for EII, to get the inverse, α is replaced by 1
α

EII =



1 0 0 . . . 0
0 1 0 . . . 0
0 0 α . . . 0
... ... ... . . . ...
0 0 0 . . . 1



∴ E−1
II =



1 0 0 . . . 0
0 1 0 . . . 0
0 0 1

α
. . . 0

... ... ... . . . ...
0 0 0 . . . 1


Similarly for EIII, to get the inverse, α is replaced by −α

EIII =



1 0 0 . . . 0
0 1 α . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1



∴ E−1
III =



1 0 0 . . . 0
0 1 −α . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1


10.3 Row-equivalent of a Matrix
A matrix A′ is a row-equivalent of A, if A′ is obtained for A, by a finite
sequence of elementary row operations.

11 Row Echelon Form of a Matrix

11.1 Definition
Let A be an m× n matrix.
Denote the ith row of A by ai.
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The leading entry of a non-zero row ai is its first non-zero entry.
Denote the column where the leading entry occurs by li.

aij = 0 if j < l(i)
aij 6= 0 if j = l(i)

We say that A is in row echelon form(REF) if the following conditions hold.

1. The non-zero rows are at the top of A. (r = the number of non-zero
rows)

2. The leading entries go right as we go down, i.e. l(1) < l2 < · · · < l(r)

3. All leading entries equal 1, i.e. if j = l(i), then, aij = 1

4. Any column which contains a leading entry must have all other entries
equal to 0, i.e. if j = l(i), then, akj = 0;∀k 6= i

11.2 Notation
The REF of A will be denoted by AR.

12 Row Rank of a Matrix
The number of non-zero rows in AR is called the row rank of A. It is denoted
by r.

r ≤ n

13 Gauss Theorem
Any m × n matrix A can be brought to REF by a sequence of elementary
row operations.

13.1 Elimination Algorithm
Step 1 Find the first non-zero column Cp of A.

Step 2 Denote by aip the first non-zero entry of Cp.

Step 3 Switch the 1st and ith rows.
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Step 4 Multiply the 1st row by 1
aip

.

Step 5 Using row operations of type III, make all other entries of the pth column
zeros.

Step 6 Ignoring the top row and Cp, repeat steps Step 1 to Step 5.

13.1.1 Example0 0 0 −1
0 −1 4 7
0 −1 7 6

 R1→R2−−−−→

0 −1 4 7
0 0 0 −1
0 −1 7 6

 R1→−R1−−−−−→

0 1 −4 −7
0 0 0 −1
0 −1 7 6

 R3→R3+R1−−−−−−−→

0 1 −4 −7
0 0 0 −1
0 0 3 −1

 R2↔R3−−−−→

0 1 −4 −7
0 0 3 −1
0 0 0 −1

 R2→
R2
3−−−−→



0 1 −4 −7

0 0 1 −1
3

0 0 0 −1


R1→R1+4R2−−−−−−−→



0 1 0 −25
3

0 0 1 −1
3

0 0 0 −1


R3→−R3−−−−−→



0 1 0 −25
3

0 0 1 −1
3

0 0 0 1


R1→R1+ 25

3 R3−−−−−−−−→



0 1 0 0

0 0 1 −1
3

0 0 0 1


R2→R2+ 1

3R3−−−−−−−−→

0 1 0 0
0 0 1 0
0 0 0 1


13.2 Row Spaces of Matrices
Definition 8 (Row space of a matrix). Let A be a m × n matrix over F.
R(A) is defined as

R(A) = span v1, . . . , vm

where v1, . . . , vm are rows of A.
R(A) a subspace of the vector space of all rows of length n, is called the row
space of A.

Definition 9 (Row rank of a matrix). dim R(A) is called the row-rank of A,
and is denoted by rr(A).
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Theorem 3. Let P be a l ×m matrix. Then

1. R(PA) ⊆ R(A)

2. If P is an invertible m×m matrix, then R(PA) = R(A)

Corollary 3.1.

A′
R∼ A =⇒ R(A′) = R(A)

Theorem 4. If A is in REF, and if r is the number of non-zero rows in A,
then

rr(A) = r

Corollary 4.1. The following are equivalent

1. A R∼ A′

2. There is an invertible matrix P, s.t. A′ = PA

3. R(A) = R(A′)

4. A and A′ have the same REF

13.3 Column Equivalence
Definition 10 (Elementary column operations, column equivalence, column
echelon form, column space and column rank). If A is a m×n matrix, we can
define elementary column operations, column equivalence (A C∼) and column
echelon form (CEF), the column space of A (C(A)), and the column rank of
A (cr(A)).

Theorem 5.

cr(A) = rr(A) = r

Proof. Let r = rr(A) = dim R(A).
Choose r rows of A which form a basis of R(A), WLG, say v1, . . . , vr.
Let

Xr×n =


v1
...
vr


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span(X) = R(A)

Hence, any row of A can be expressed as a linear combination of v1, . . . , vr

vi =
r∑
j=1

yijvj

Let

Ym×r = (yij)

Therefore,

A = Y X

Considering each column of A as a linear combination of columns of Y ,

C(A) ⊆ C(Y )
∴ cr(A) ≤ cr(Y ) ≤ r = rr(A)
∴ cr(A) ≤ rr(A)

Similarly,

rr(A) ≤ cr(A) ∴ cr(A) = rr(A)

Corollary 5.1. The following are equivalent

1. A C∼ A′

2. There is an invertible matrix Q, s.t. A′ = QA

3. C(A) = C(A′)

4. A and A′ have the same CEF
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Part IV

Linear Systems
1 Definition

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Here, all xi are taken to be unknowns, and all aij, bi are given.
A solution to such a system is a collection d1, . . . , dn, s.t. after replacing xi
by di, we get equalities.
We assume that all aij, bi belond to F, and we are looking for solutions di ∈ F.

Given such a system, we define Am×n = (aij), bm×1 =


b1
...
bm

 , xn×1 =


x1
...
xn


Then, we can write the system as

Ax = b

A solution to this system is dn =


d1
...
dn

 , s.t. Ad = b

Let D be the set of all d =


d1
...
dn


D may be empty, infinite, or a singleton set.

2 Equivalent Systems
Two systems Ax = b and A′x = b′ are called equivalent, if every solution of
the first system is also a solution of the second system, and vice versa.
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3 Solution of a System of Equations
We want to bring a given system

Ax = b

to the form

ARx = bR

using elementary row operations.
We denote the augmented or extended matrix of the system as follows.

Am×(n+1) = (Am×n|bm×1)

Then apply Gaussian elimination method to A, in order to get the matrix

(AR|bR)

As AR is obtained from A using elementary row operations,

AR = En . . . E2E1A

where every Ei is an elementary matrix.
Let P = En . . . E2E1. P is invertible, as it is a product of elementary matrices.

AR = PA

∴ ARd = PAd

= Pb

= bR

Conversely, let d be a solution to

ARd = bR

∴ PAd = bR

∴ P−1(PAd) = P−1bR

∴ Ad = b

If we have a system Ax = b, we may and will assume that A is in REF, i.e.
A = AR, b = bR.
Let l(1), . . . l(r) denote the numbers of the columns containing leading entries.
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Let b =



b1
...
br
br+1

...
bm


Therefore,

1 · xl(1) + . . . = b1

1 · xl(2) + . . . = b2
...

1 · xl(r) = br

0 = br+1
...

0 = bm

4 Homogeneous Systems

4.1 Definition
A system of the form

Ax = O

is called a homogeneous system.

Remark

Any homogeneous system is consistent and has a trivial solution x = O

4.2 Solutions of Homogeneous Systems
If r = number of non-zero rows, let t = n− r = number of free variables. If
t > 0 , denote the numbers of the columns that do not contain leading entries
by z(1), . . . , z(t)
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4.2.1 Example

A =


0 1 2 0 0 −3
0 0 0 1 0 −1
0 0 0 0 1 7
0 0 0 0 0 0


Therefore,

m = 4
n = 6
r = 3
t = 3

l(1) = 2
l(2) = 4
l(3) = 5
z(1) = 1
z(2) = 3
z(3) = 6

Therefore,

x2 + 2x3 − 3x6 = 0
x4 − x6 = 0
x5 + 7x6 = 0

Therefore,

x2 = −2x3 + 3x6

x4 = x6

x5 = −7x6x2
x4
x5

 = C3×3

x1
x3
x6



where C3×3 =

0 −2 3
0 0 1
0 0 −7


The free variables x1, x3, x6 can be considered as parameters, x1 = γ1, x2 =
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γ2, x3 = γ3.
Therefore,

x2 = −2γ3 + 3γ6

x4 = γ6

x5 = −7γ6

4.2.2 General Solution

4.2.2.1 Case I: t = 0
If t = 0, there are no free variables, and the system has a unique trivial

solution.

4.2.2.2 Case II: t > 0
xl(1)
xl(2)

...
xl(r)

 = Cr×t


xz(1)
xz(2)

...
xz(t)


C is filled by coefficients of the equations obtained after shifting the terms
containing all zi to the RHS.

4.3 Properties
4.3.1 For a homogeneous system Ax = 0, if c and d are solutions,

then c+ d is also a solution.

Ac = O
Ad = O

∴ A(c+ d) = Ac+ Ad

= O + O
= O

4.3.2 For a homogeneous system Ax = 0, if c is a solution and
α ∈ F, then, αc is a solution too.

Ac = O
∴ A(αc) = α(Ac)

= αO
= O
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4.4 Fundamental Solutions
We define t fundamental solutions or basic solutions, v1, . . . vt.
We define t columns, each of length n as follows.
For the ith column vi, we set

xz(1) = 0
xz(i) = 1

...
xz(t) = 0

and for xl(1), . . . , xl(r),
xl(1)

...
xl(r)

 = C


xz(1)

...
xz(t)

 = ithcolumn of C

4.4.1 Theorem: Any solution d of the system Ax = O can be
obtained from the basic solutions v1, . . . , vt as a linear com-
bination of the basic solutions, d = α1v1 + . . . αtvt

One can choose another collection v′1, . . . , v
′
t s.t. any solution of Ax = O

can be obtained as a linear combination of v′1, . . . , v′t. In such a case, we get
another form of the general solution.

4.5

r ≤ minm,n

If r = n, i.e. t = 0, the system has a unique solution.
If r < n, i.e. t > 0, the system has more than one solutions. Its general
solution can be expressed as in terms of t parameters, where each free variable
serves as a parameter, whose value can be any element of F.
If m < n, then r < n. Therefore, the system has more than one solution.
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5 Non-Homogeneous Systems

5.1 Definition
Consider a system Ax = b; b 6= O. The extended matrix is defined as

Ã = (A|b) =


a11 . . . a1n b1
... ... ...
am1 . . . amn bm


5.2 Solutions of Non-Homogeneous Systems
Let r̃ be the number of non-zero rows in the REF of Ã, i.e. ÃR.

5.2.1 Case I: r̃ = r

b′r+1 = · · · = b′m = 0

5.2.1.1 Case a: r = n, i.e. t = 0
Therefore,

x1 = b′1
. . .

xr = b′r

Hence, the system has a unique solution.

5.2.1.2 Case b: r < n, i.e. t > 0
Therefore,

xl(1) = b′1 + c11xz(1) + · · ·+ c1txz(t)
...

xl(r) = b′1 + cr1xz(1) + · · ·+ crtxz(t)

5.2.2 Case II: r̃ > r

In this case, the (r + 1)th row represents an equation of the form 0 = 1.
Therefore, the system is inconsistent.
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5.3 General Solution
The general solution of Ax = b can be expressed by adding the general
solution of Ax = b and any particular solution of Ax = b.

If c is a solution of Ax = O, and d is a solution of Ax = b, then c + d
is a solution of Ax = b.
Conversely, if d and d′ are solutions of Ax = b, then, c = d′ − d is a solution
of Ax = O.
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Part V

Vector Spaces
1 Definition
Let F be a field. A vector space V , over F, is a set on which there are two
operations, denoted by + and · , where

+ is the addition of elements of V

· is the multiplication of an element of V by an element of F

s.t. the sum of elements of V lies in V , and the product of an element of V
by an element of F lies in V , and the following properties hold.

(A1) x+ y = y + x; ∀x, y ∈ V

(A2) (x+ y) + x = x+ (y + z);∀x, y, z ∈ V

(A3) ∃O ∈ V , s.t. O + x = x+ O = x;∀x ∈ V

(A4) ∀x ∈ V, ∃y ∈ V , s.t. x+ y = O. (y is denoted as −x.)

(M1) α(x+ y) = αx+ αy;∀α ∈ F,∀x, y ∈ V

(M2) (α + β)x = αx+ βy; ∀α, β ∈ F,∀x ∈ V

(M3) (αβ)x = α(βx) = β(αx);∀α, β ∈ F,∀x ∈ V

(M4) 1 · x = x;∀x ∈ V

Elements of V are called vectors, and elements of F are called scalars.

1.1 Examples
1.1.1 Geometric Vectors in Plane

1.1.2 Arithmetic Vector Space

Let F be a field, and n ≥ 1 ∈ Z.
Let V = Fn be a set of ordered n-tuples.
We define

(α1, . . . , αn) + (β1, . . . , βn) = (α1 + β2, . . . , αn + βn)
α(α1, . . . , αn) = (αα1, . . . , ααn)
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1.1.3

Let F be a field, and m,n ≥ 1 ∈ Z.
Let V = Fmn be the set of all (m× n) matrices over F, i.e. a set of ordered
mn-tuples. For X, Y ∈ V , we use the usual definitions of X + Y and αX
from algebra of matrices.

2 Properties
1. αO = O; ∀α ∈ F

2. α(−x) = −(αx)

3. x− y .= x+ (−y)

4. 0x = O;∀x ∈ V

5. (−1)x = −x; ∀x ∈ V

6. (α− β) = αx− βx;∀α, β ∈ F, ∀x ∈ V

2.0.1 Proof of 1

αO = α(O + O
= αO + αO

For αO∃y s.t. αO + y = O.
Therefore,

αO + y = (αO + αO) + y

∴ O = αO + (O + y)
= αO + O
= αO

3 Subspaces
Let V be a vector space over F. Let U ⊆ V . U is called a subspace of V if
the following properties hold.

Axiom 1 O ∈ U
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Axiom 2 If x, y ∈ U , then, (x+ y) ∈ U

Axiom 3 If x ∈ U, α ∈ F, then, αx ∈ U

3.1 Examples
Example 4. Let V be the set of all geometric vectors in plane.
If U1 is the set of all vectors along the x-axis, U2 is the singleton set of a
specific vector along the x-axis, and U3 is the set of all vectors along the
x-axis and a specific vector not along the x-axis. Which of U1, U2, U3 are
subspaces of V ?

Solution. U1 is a subspace of V as it satisfies all three axioms.
U2 is not a subspace of V as it does not satisfy any of the three axioms.
U3 is not a subspace of V as it does not satisfy Axiom 3

Example 5.

F = R
V = C = {α + βi;α, β ∈ R}

where + is addition in C and · is multiplication by real scalars.

U1 = {α + 0i}
U2 = {0 + βi}

Which of U1, U2, U3 are subspaces of V ?

Solution. Both U1 and U2 are subspaces of V , as they satisfy all three axioms.

Example 6. Let V = F, where + is addition in F, and · is multiplication in F.

U1 = {α + 0i}
U2 = {0 + βi}

Which of U1, U2 are subspaces of V ?

Solution. Neither U1 nor U2 are subspaces of V .

Example 7. Let V = {f : [0, 1]→ R}, where + and · is defined as follows.

(f + g)(x) = f(x) + g(x)
(αf)(x) = αf(x)
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O is the function with graph x = 0.

U = {all continuous functions[0, 1]→ R}

Is U is subspace?

Solution. O ∈ R. Therefore, Axiom 1 is satisfied. Similarly, Axiom 2 and
Axiom 3 are also satisfied.

3.2 Operations on Subspaces
Let V/F be a vector space, and U1, U2 be subspaces of V .

U1 ∩ U2 = {x ∈ V : x ∈ U1 and x ∈ U2}
U1 ∪ U2 = {x ∈ V : x ∈ U1 or x ∈ U2}
U1 + U2 = {x ∈ V : x = x1 + x2, x1 ∈ U1, x2 ∈ U2}

Example 8. Let V be a set of geometric vectors in 3D space.
Let U1 be the xy-plane, and U2 be the yz-plane. If U1 ∩ U2 a subspace of V ?

Solution.

O ∈ U1,O ∈ U2 ⇒ O ∈ U1 ∩ U2

x, y ∈ U1 ∩ U2 ⇒ x, y ∈ U1, x, y ∈ U2

⇒ x+ y ∈ U1, x+ y ∈ U2

= x+ y ∈ U1 ∩ U2

Similarly, if x ∈ U1 ∩ U2, αinF, then, αx ∈ U1 ∩ U2. Therefore, U1 ∩ U2 is a
subspace of V .

4 Spans
Definition 11 (Span). Let V/F be a vector space. Let S ⊂ V be non-empty.

span(S) = {x ∈ V : x = α1v1 +· · ·+αmvm, α1, . . . , αm ∈ F, v1, . . . , vm ∈ S}

span(S) is the collection of all linear combinations of finite number of vectors
of S with coefficients from F

Theorem 1. span(S) is a subspace of V
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Proof.

O = 0v ⇒ O ∈ span(S)

x, y ∈ span(S)⇒ x = α1v1 + · · ·+ αmvm, β1w1 + · · ·+ βmwm

⇒ x+ y = α1v1 + · · ·+ αmvm + β1w1 + · · ·+ βmwm ∈ span(S)

x ∈ span(S), α ∈ F⇒ α1v1 + · · ·+ αmvm

⇒ αx = α(α1v1 + · · ·+ αmvm)
⇒ αx = αα1v1 + · · ·+ ααmvm ∈ span(S)

Definition 12 (Spanning sets and dimensionality). Let V/F be a vector
space. A set S ⊆ V is said to be a spanning set, if span(S) = V .
If V has atleast one finite spanning set, V is said to be finite-dimensional.
Otherwise, V is said to be infinite-dimensional.
Remark 4. V may have many finite spanning sets, of different sizes

Definition 13 (Basis of a vector space). Let V/F be a vector space. We
say that B = {v1, . . . , vn} ⊂ V is a basis of V if every vector v ∈ V can be
expressed in a unique way

v = α1v1 + · · ·+ αnvn ;α1, . . . , αn ∈ F

that is, as a linear combination of elements of B.

Definition 14 (Isomorphic spaces). Let V/F and W/F be vector spaces. We
say that V is isomorphic to W if there is a map ϕ : V → W , s.t.

1. ϕ is one-to-one and onto

2. ϕ(v1 + v2) = ϕ(v1) + ϕ(v2);∀v1, v2 ∈ V

3. ϕ(αv) = αϕ(v);∀v ∈ V, ∀α ∈ F

Theorem 2. If a vector space V/F has a basis B = {v1, . . . , vn} consisting
of n elements, then it is isomorphic to the space

W = Fn =



α1
...
αn



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Proof. Let B′ = {e1, . . . , en}, where

e1 =


1
...
0

 , . . . , en =


0
...
1



B′ is a basis of Q, as any w =


α1
...
αn

 ∈ W can be expressed in a unique way

w = α1e1 + · · ·+ αnen

Let ϕ : V → W ,

ϕ(v1) = e1
...

ϕ(vn) = en

For any v = α1v1 + · · ·+ αnvn ∈ V ,

ϕ(v) =


α1
...
αn


Therefore,

ϕ(α1v1 + · · ·+ αnvn) = α1e1 + αnen

= α1ϕ(v1) + · · ·+ αnϕ(vn)

If v 6= v′,

v = α1v1 + · · ·+ αnvn

v′ = α′1v1 + · · ·+ α′nvn

Hence ϕ is one-to-one.

For any w =


α1
...
αn

 ∈ W .
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Let v = α1v1 + · · ·+ αnvn.
Therefore,

ϕ(v) =


α1
...
αn

 = w

Therefore, ϕ is onto.

5 Linear Dependence
Definition 15 (Linearly dependent subsets). Let V/F be a vector space. Let
S ⊆ V be a finite subset. S is said to be linearly dependent if there exist
scalars α1, . . . , αn ∈ F, not all equal to zero, s.t.

α1v1 + · · ·+ αnvn = O

Otherwise, S is said to be linearly independent if all α1 = · · · = αn = 0.

Example 9. Is S = {v1, . . . , vl, v, αv} linearly dependent?

Solution.

(0)v1 + · · ·+ (0)vl + (−α)v + (1)αv = O

Therefore, as not all coefficients are zero, S is linearly dependent.

Example 10. Is S = {v1, . . . , vl,O} linearly dependent?

Solution.

(0)v1 + · · ·+ (0)vl + (1)O = O

Therefore, as not all coefficients are zero, S is linearly dependent.

Theorem 3. Any basis B = {v1, . . . , vn} of a vector space V is linearly
independent.

Proof. Let

α1v1 + · · ·+ αnvn = O

Also,

(0)v1 + · · ·+ (0)vn = O (3.1)
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Therefore, there are two representations of v = O as linear combinations of
elements of B. By the definition of basis, they must coincide.
Therefore,

α1 = 0
...

αn = 0

Hence, B is linearly independent.

5.1 Properties of Linearly Dependent and Independent
Sets

Theorem 4. If S ⊆ S ′ and S is linearly dependent, then S ′ is also linearly
dependent.

Theorem 5. If S ⊆ S ′ and S ′ is linearly independent, then S is also linearly
independent.

Theorem 6. Let S = {v1, . . . , vn}. S is linearly dependent iff one of the vis
is a linear combination of the others.

Proof of statement. Suppose

vn = α1v1 + · · ·+ αn−1vn−1

∴ α1v1 + · · ·+ αn−1vn−1 + (−1)vn = O

Therefore, S is linearly dependent.

Proof of converse. Suppose

α1v1 + · · ·+ αn−1vn−1 + αnvn = O

not all of αis are 0. WLG, let αn 6= 0

∴ vn = − α1

αm
v1 − · · · −

αn−1

αm
vm−1

Theorem 7. Let S = {v1, . . . , vm}. Let w ∈ V . Suppose w is a linear
combination of vis

w = α1v1 + · · ·+ αnvn

Then, such an expression is unique iff S is linearly dependent.
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Proof of statement. Let

w = α1v1 + · · ·+ αnvn

be unique.
If possible, let

β1v1 + · · ·+ βnvn = O

not all βis are zero.
Then,

(α1 + β1)v1 + · · ·+ (αnβn)vn = w

This is another expression for w, and contradicts the assumption.

Proof of converse. If possible, let S be linearly independent. Assume

w = α′1v1 + · · ·+ α′nvn

Therefore,

(α1 − α′1)v1 + · · ·+ (αn − α′n)vn = O

Therefore, S is linearly dependent, which contradicts the assumption.

Theorem 8 (Main Lemma on Linear Independence). Suppose V is spanned
by n vectors.
Let S = {v1, . . . , vm} ⊂ V . Suppose m > n.
Then, S is linearly dependent.

Proof. Let E = {w1, . . . , wn} be a spanning set for V , V = span(E).
Therefore, all elements of S can be represented as linear combinations of
elements of E.

v1 = β11w1 + · · ·+ β1nwn
...

vm = βm1w1 + · · ·+ βmnwn

Let

α1v1 + · · ·+ αmvm = O
∴ α1(β11w1 + · · ·+ β1nwn) + · · ·+ αm(βm1w1 + · · ·+ βmnwn) = O
∴ (α1β11 + · · ·+ αmβm1)w1 + · · ·+ (α1β1n + · · ·+ αmβmn) = O
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Therefore

α1β11 + · · ·+ αmβm1 = 0
...

α1β1n + · · ·+ αmβmn = 0

These equations form a homogeneous linear system with respect to α1, . . . , αm.
As m > n, the system has a non-zero solution. Therefore not all αis are zero.
Hence S is linearly dependent.

Definition 16 (Alternative definition of a basis). B = {v1, . . . , vn} is said
to be a basis of V if B is a spanning set and B is linearly independent.

Theorem 9. If B and B′ are bases of V , then they contain the same number
of elements.

Proof. If possible, let B contain n elements {v1, . . . , vn}, and B′ contain m
elements {w1, . . . , wm}, m > n.
Therefore, B is a spanning set and B′ contains more elements than n, hence
by Main Lemma on Linear Independence, B′ is linearly dependent. Also, B′
is a basis, so it is linearly independent.
This is a contradiction.

Definition 17 (Dimension of a vector space). Let V/F be a finite-dimensional
vector space. The number of elements in any basis B of V is called the
dimension of V .

n = dimV

Remark 5. If V and W are vector spaces over F, s.t.

dim V = dimW

then, V is isomorphic to W

Theorem 10. If S = {v1, . . . , vm} is a spanning set of V , and if S is not a
basis of V , a basis B of V can be obtained by removing some elements from
S.

Proof. If S is linearly independent, then it is a basis.
Otherwise, if S is linearly dependent, it has an element, WLG, say vm, which
is a linear combination of the others.

vm = α1v1 + · · ·+ αm−1vm−1
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Let

S ′ = S − {vm}

S ′ is a spanning set.
Therefore, ∀v ∈ V

v = β1v1 + · · ·+ βm−1vm−1 + βmvm

= β1v1 + · · ·+ βm−1 + βm(α1v1 + · · ·+ αm−1vm−1)
= γ1v1 + · · ·+ γm−1vm−1

If S ′ is linearly independent, then it is a basis, else the same process above
can be repeated till we get a basis.
Therefore, a basis is a smallest spanning set.

Theorem 11. If B0 = {v1, . . . , vn} is a linearly independent set, and if B0
is a basis of V , a basis of V can be obtained by adding elements to B0.

Theorem 12. Let V be a vector space, s.t. dim V = n.
If B satisfies 2 out of the 3 following conditions, then it is a basis.

1. B has n elements.

2. B is a spanning set.

3. B is linearly dependent.

Theorem 13 (Dimension Theorem).

dim(U +W ) = dimU + dimW − dim(U ∩W )

Theorem 14.

U +W = span(U ∪W )

If

U = span(B)
W = span(B′)

then,

U +W = span(B ∪B′)
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Proof. Let v ∈ U +W .
Then,

v = u+ w ;u ∈ U,w ∈ W
u ∈ U ∪W
w ∈ U ∪W
∴ v ∈ span(U ∪W )

Let

v ∈ span(U ∪W ) ∴ v = α1v1 + · · ·+ αkvk ; vi ∈ U ∪W

Let

v1, . . . , vl ∈ U
vl+1, . . . , vk ∈ W

Therefore,

v = (α1v1 + · · ·+ αlvl) + (αl+1vl+1 + · · ·+ αkvk)
∴ v ∈ U +W

5.2 Changing a Basis
Let B = {v1, . . . , vn} be a basis of V , s.t. dim V = n. Let B′ = {v′1, . . . , v′n}.
AsB is a spanning set, all of v′1, . . . , v′n can be expressed as a linear combination
of v1, . . . , vn.

v′1 = γ11v1 + · · ·+ γn1vn
...

v′n = γ1nv1 + · · ·+ γnnvn

Definition 18 (Transition matrix). The matrix

C =


γ11 . . . γ1n
... ...
γn1 . . . γnn


is called the transition matrix from B to B′.
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If B and B′ are considered as row vectors of length n filled by vectors,

v′1 = γ11v1 + · · ·+ γn1vn
...

v′n = γ1nv1 + · · ·+ γnnvn

can be written as

B′1×n = B1×nCn×n

Theorem 15. B′ is a basis of V iff C is invertible.

Proof of statement. Let B′ = BC be a basis.
B′ is a basis, and hence is a spanning set. Therefore, any vector from B can
be expressed as a linear combination of elements of B′.
Therefore,

B = B′Q

= BCQ

Also,

B = BI

Therefore,

I = CQ

Similarly,

B′ = BC

= B′QC

Also,

B′ = B′I

Therefore,

I = QC

Therefore,

CQ = QC = I

Hence C is invertible.
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Proof of converse. Let B′ = BC and C be invertible. Therefore, B′ is a basis
iff B′ is a spanning set.
Let z ∈ V . As B is a spanning set,

z = α1v1 + · · ·+ αnvn

Therefore,

z = Bg

where

g =


α1
...
αn


∴ z = Bg

= B(Ig)
= B(CC−1)g
= (BC)(C−1g)

Let C−1g = f

∴ z = B′f

Therefore, z can be expressed as a linear combination of vectors from B′.

Remark 6. Let B be a basis of V . If

BP = BQ

where P and Q are n× n matrices, then

P = Q

Example 11. Let B = {e1, e2} and B′ = {e′1, e′2}, where

e′1 = e1 + e2

e′2 = −e1 + e2

Solution.

e′1 = e1 + e2

e′2 = −e1 + e2

∴ C =
(

1 −1
1 1

)
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e1 = 1
2e
′
1 −

1
2e
′
2

e2 = 1
2e
′
1 + 1

2e
′
2

∴ C−1 =


1
2

1
2

−1
2

1
2


5.3 Representation of Vectors in a Basis
Let V be a vector space of dimension n. Let B = {v1, . . . , vn} be a basis of
V .
Let z ∈ V .
z can be written as a unique linear combination of elements of B.

z = α1v1 + · · ·+ αnvn

The representation of z w.r.t B can be represented as

[z]B =


α1
...
αn


5.3.1 Properties of Representations

1. [z1 + z2]B = [z1]B + [z2]B

2. [αz]B = α[z]B

3. [z1]B = [z2]B ⇐⇒ z1 = z2

4. ∀


α1
...
αn

 ∈ Fn,∃z ∈ V, s.t. [z]B =


α1
...
αn


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6 Determinants

6.1 Definition
Definition 19 (Determinants). Given an n× n matrix A, n ≥ 1, det(A) is
defined as follows.

n = 1 det(a) = a

n = 2 det
(
a11 a12
a21 a22

)
= a11a22 − a12a21

...
n = n

The determinant of a n× n matrix is the summation of n! summands. Each
summand is the product of n elements, each from a different row and column.

Summand Permutation Number of Elementary Permutations1 Parity

a11a22a33

(
1 2 3
1 2 3

)
0 even

a12a23a31

(
1 2 3
2 3 1

)
2 ((1, 2, 3)→ (2, 1, 3)→ (2, 3, 1)) even

a13a21a32

(
1 2 3
3 1 2

)
2 ((1, 2, 3)→ (1, 3, 2)→ (3, 1, 2)) even

a13a22a31

(
1 2 3
3 2 1

)
1 ((1, 2, 3)→ (3, 2, 1) odd

a12a21a33

(
1 2 3
2 1 3

)
1 ((1, 2, 3)→ (2, 1, 3) odd

a11a23a32

(
1 2 3
1 3 2

)
1 ((1, 2, 3)→ (1, 3, 2) odd

6.2 Properties
Theorem 16. If A, A′ are matrices s.t. all rows except the ith row are
identical, and A′′ is obtained by addition of ith row of A and ith row of A′,
then

det(A′′) = det(A) + det(A′)
1Any permutation can be represented as a result of a series of elementary permutations,

i.e. permutations of 2 elements only. The parity of a particular permutation depends of
the parity of the number of elementary functions required for it.

50



Theorem 17. If A′ is obtained from A by switching two rows, then

det(A′) = − det(A)

Theorem 18. If A′ is obtained from A by multiplication of a row by a scalar
α, then

det(A′) = α det(A)

Theorem 19. If A′ is obtained from A by adding to the ith row the jth row
multiplied by a scalar α, then

det(A′) = det(A)

Corollary 19.1 (Corollary of Property 2). If A has two identical rows, then
det(A) = 0.

Theorem 20. The determinant of upper triangular and lower triangular
matrices is the product of the elements on the principal diagonal.

Theorem 21.

det(At) = det(A)

Corollary 21.1. In all above theorems, the properties which are applicable
to rows, are also applicable to columns.

Theorem 22. If A, B, C are some matrices, and O is the zero matrix,(
Am×m B
O Cn×n

)
= det(A) · det(C)

Theorem 23.

det(AB) = det(A) det(B)

Corollary 23.1. If A is invertible, then

det(A) 6= 0

Proof. A is invertible.
Therefore, ∃P , s.t.

PA = I

∴ det(PA) = det(I)
∴ det(P ) det(A) = 1
∴ det(A) 6= 0
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Theorem 24. If

det(A) 6= 0

then A is invertible.

Proof. If possible let A be non invertible.
Let the REF of A be AR.
As A is non invertible, AR has a zero row. Therefore,

det(AR) = 0

But

det(A) = 0

This is not possible as elementary row operations cannot change a non-zero
determinant to zero.
Therefore, A is invertible.

Theorem 25.

det(A) 6= 0

iff the rows of A are linearly independent iff the columns of A are linearly
independent.

Proof. If possible, let the rows of A be linearly dependent.
Therefore, either all of them are zeros, or one row is the linear combination
of the others.
Case 1 (All rows are zeros).

∴ det(A) = 0

Case 2 (One row is a linear combination of the others). Let

vn = α1v1 + · · ·+ αn−1vn−1

∴ A =


v1
...

vn−1
vn


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vn → vn − α1v1 + · · ·+ αn−1vn−1

∴ A′ =


v1
...

vn−1
O


∴ det(A′) = 0
∴ det(A) = 0

This contradicts det(A) 6= 0. Therefore, the rows of A must be linearly
independent.

If v1, . . . , vn are linearly independent,

dim R(A) = n

∴ r = n

Therefore, there are no zero rows in REF of A. Hence A is invertible.

∴ det(A) 6= 0

6.3 Practical Methods for Computing Determinants

6.4 Expansion along a row/ column
Let A be a m× n matrix, and let Aij be the matrix obtained by removing
the ith row and jth column from A.

det(A) =
n∑
j=1

(−1)i+jaij det(Aij)

6.5 Determinant Rank
Definition 20 (Determinant rank). Let A be any m×n matrix. Consider all
square sub-matrices of A and compute their determinants. If there is an r× r
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sub-matrix of A s.t. its determinant is non-zero, but the determinants of all
(r + 1)× (r + 1) sub-matrices of A are zero, then, r is called the determinant
rank of A.

Theorem 26. The determinant rank of A is equal to the rank of A.

7 Linear Maps

7.1 Definition
Definition 21 (Linear map). Let V and W be vector spaces over the same
field F.

ϕ : V → W

is said to be a linear map if

1. ϕ(v1 + v2) = ϕ(v1) + ϕ(v2);∀v1, v2 ∈ V

2. ϕ(αv) = αϕ(v);∀v ∈ V, ∀α ∈ F

7.2 Properties
1. ϕ(O) = O

2. ϕ(−v) = −ϕ(v)

7.3 Matrix of a Linear Map
Definition 22 (Matrix of a linear map). Let ϕ : V → W be a linear map.
Let

n = dimV

m = dimW

Let

B = {v1, . . . , vn}
B′ = {w1, . . . , wm}
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be bases of V and W respectively.
Let

ϕ(v1) = α11w1 + · · ·+ αm1wm
...

ϕ(vn) = α1nw1 + · · ·+ αmnwm

The matrix

A =


α11 . . . α1n

... ...
αm1 . . . αmn


is called the matrix of ϕ with respect to the bases B and B′.
It is denoted as

A = [ϕ]B,B′

Theorem 27. Let

ϕ : V → W

be a linear map.
Let B and B′ be bases of V and W respectively, and let

A = [ϕ]B,B′

be the matrix of ϕ with respect to B and B′. Then, ∀x ∈ V ,

[ϕ(z)]B′ = A[z]B

Proof. Let

B = {v1, . . . , vn}
B′ = {w1, . . . , wm}

Case 3 (z ∈ B). WLG, let z = vi. Then,

[z]B =



0
...
1
...
0


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i.e. all rows except the ith row are 0.
Let this vector be ei.
Therefore,

A[z]B = Aei

is the ith column of A.

[ϕ(z)]B′ = [ϕ(vi)]B′

is the ith row in the formulae of ϕ(v1), . . . , ϕ(vn).
Therefore, it is the ith column of A.
Case 4 (z ∈ V is an arbitrary vector). Let

z = α1v1 + · · ·+ αnvn

Therefore,

[ϕ(z)]B′ = [ϕ(α1v1 + · · ·+ αnvn)]B′

= [α1ϕ(v2) + · · ·+ αnϕ(vn)]B′

= α1[ϕ(v1)]B′ + · · ·+ αn[ϕ(vn)]B′

= α1 · (1stcolumn of A) + · · ·+ αncn · (nthcolumn of A)
= A[z]B

7.4 Change of Bases
Theorem 28. Let V , W be vector spaces over F, dim(V ) = n, dim(W ) = m.
Let ϕ : V → W be a linear map. Let B, B̃ be bases of V and let B′ and B̃′

be bases of W . Let A = [ϕ]B,B′ and Ã = [ϕ]
B̃,B̃′ be the matrices of ϕ w.r.t.

the pairs B, B′ and B̃, B̃′. Let P denote the transition matrix from B to B̃,
and let Q denote the transition matrix from B′ to B̃′. Then,

Ãm×n = Q−1
m×mAm×nPn×n

Proof. ∀z ∈ V ,

[ϕ(z)]B′ = A[z]B (28.1)
[ϕ(z)]

B̃′ = A[z]
B̃

(28.2)
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We have

[z]B = P [z]
B̃

(28.3)
[ϕ(z)]B′ = Q[ϕ(z)]

B̃′ (28.4)

Therefore,

(28.1) in (28.4) =⇒

A[z]B = Q[ϕ(z)]
B̃′ (28.5)

(28.3) in (28.5) =⇒

AP [z]
B̃

= Q[ϕ(z)]
B̃′ (28.6)

Multiplying on the left by Q−1,

Q−1AP [z]
B̃

= [ϕ(z)]
B̃′

∴ [ϕ(z)]
B̃′ = Q−1AP [z]

B̃

Comparing with (28.2),

Ã = Q−1AP

7.5 Operations on Linear Maps
Definition 23 (Operations on linear maps). Let

ϕ : V → W

ϕ′ : V → W

be linear maps.

ϕ+ ϕ′ : V → W

is defined as

(ϕ+ ϕ′)(v) = ϕ(v) + ϕ′(v)

and

αϕ : V → W

is defined as

(αϕ)(v) = αϕ(v)
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Definition 24 (Composed map). Let

ϕ : V → W

ϕ′ : W → U

be linear maps.

(ϕ′ ◦ ϕ) : V → U

is defined as

(ϕ′ ◦ ϕ)(v) = ϕ′(ϕ(v))

Theorem 29 (Matrix of composed map). Let ϕ : V → W , ϕ′ : W → U be
linear maps. Let (ϕ ◦ ϕ′) : V → U be the composed map. Let dim V = n,
dimW = m, dimU = l. Let B, B′, B′′ be bases of V , W , U respectively. Let
A = [ϕ]B,B′, A′ = [ϕ′]B′,B′′ be the matrices of ϕ, ϕ′. Let A′′ = [ϕ′ ◦ ϕ]B,B′′ be
the matrix of the composed map. Then,

A′′ = A′A

Proof. Let z ∈ V .

[(ϕ′ ◦ ϕ)(z)]B′′ = [ϕ′(ϕ(z))]B′′

= A′[ϕ(z)]B′

= A′A[z]B

By definition,

[(ϕ′ ◦ ϕ)(z)]B′′ = A′′[z]B

Therefore,

A′′ = A′A

7.6 Kernel and Image
Definition 25 (Kernel and image). Let ϕ : V → W be a linear map.

kerϕ .= {v ∈ V : ϕ(v) = O}
imϕ

.= {φ(v) : v ∈ V }
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Theorem 30. kerϕ is a subspace of V and imϕ is a subspace of W .

Proof.

ϕ(O) = O
∴ O ∈ kerϕ

If v1, v2 ∈ kerϕ, then

ϕ(v1 + v2) = ϕ(v1) + ϕ(v2)
= O + O
= O

∴ v1 + v2 ∈ kerV

If v ∈ kerϕ, α ∈ F, then

ϕ(αv) = αϕ(v)
= αO
= O ∴ αv ∈ kerϕ

Therefore, kerϕ is a subspace of W .

ϕ(O) = O
∴ O ∈ imϕ

If w1, w2 ∈ imϕ, then

w1 = ϕ(v1)
w2 = ϕ(v2)

∴ w1 + w2 = ϕ(v1) + ϕ(v2)
= ϕ(v1 + v2)

∴ w1 + w2 ∈ imϕ

If w ∈ W , α ∈ F, then

αw = αφ(v)
= ϕ(αv)

∴ αw ∈ imϕ

Therefore, imϕ is a subspace of W .
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7.6.1 Dimensions of Kernel and Image

Theorem 31. Let ϕ : V → W be a linear map. Then

dim(ker(ϕ)) + dim(im (ϕ))

Proof. Let kerϕ = U , U ⊆ V .
Let B0 = {v1, . . . , vk} be a basis of U .
Completing B0 to a basis B of V ,

B = {v1, . . . , vk, vk+1, . . . , vn}

Let

wk+1 = ϕ(vk+1)
...

wn = ϕ(vn)

Therefore, we need to prove that B′ is a basis of W ′ = im (ϕ), by proving
that B′ is a spanning set and that B′ is linearly independent.
Take w ∈ im (ϕ), so that there is v ∈ V s.t. ϕ(v) = w.
Representing v as a linear combination of elements of B,

v = α1v1 + · · ·+ αkvk + αk+1vk+1 + · · ·+ αnvn

∴ w = ϕ(v)
= ϕ(α1v1 + · · ·+ αkvk + αk+1vk+1 + · · ·+ αnvn)
= α1ϕ(v1) + · · ·+ αkϕ(vk) + αk+1ϕ(vk+1) + · · ·+ αnϕ(vn)
= αk+1ϕ(vk+1) + · · ·+ αnϕ(vn)
= αk+1wk+1 + · · ·+ αnwn

∈ span(B′)

Therefore, B′ is a spanning set for W ′.
Let

βk+1wk+1 + · · ·+ βnwn = O

Therefore, B′ is linearly independent iff

βk+1 = · · · = βn = 0

As ϕ is a linear map,

ϕ(βk+1vk+1 + · · ·+ βnvn) = O
∴ βk+1vk+1 + · · ·+ βnvn ∈ kerϕ
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Therefore, it can be expressed as a linear combination of vectors of B0, which
is a basis of kerϕ.
Let

βk+1vk+1 + · · ·+ βnvn = αk+1vk+1 + · · ·+ αnvn

∴ αk+1vk+1 + · · ·+ αnvn − βk+1vk+1 − · · · − βnvn = O

As {v1, . . . , vn} is a basis of V , all coefficients must be 0
Therefore,

βk+1vk+1 = · · · = βnvn = 0

Hence, as B′ is a spanning set of imϕ and also linearly independent, B′ is a
basis of imϕ.
Therefore,

dim(imϕ) = size of B′

= n− k
= n− dim(kerϕ)

∴ dim(imϕ) + dim(kerϕ) = dim V

Corollary 31.1.

dim(imϕ) = r

where r is the rank of A

Corollary 31.2. Let Am×n be a matrix of rank r. Let C(A) be the column
space of A, and let dim C(A) be the column rank of A. Then

dim C(A) = r

Proof. Define

ϕ : Fn → Fm

s.t. A = [ϕ]B,B′ , where B is the standard basis of F.

B =




1
...
0

 , . . . ,


0
...
1




= {e1, . . . , en}
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∀v ∈ Fn, we have

[ϕ(v)]B′ = A[v]B
If v = ei,

[ϕ(ei)] = Aei

which is the ith column of A. So, the space spanned by {ϕ(e1), . . . , ϕ(en)} is
equal to C(A). But it is also in imϕ.
Therefore,

imϕ = C(A)

and

dim(imϕ) = dim(C(A))
∴ r = dim(C(A))

Remark 7. Let ϕ : V → W be a linear map. Let w ∈ im (ϕ), so that there
is v ∈ V s.t. ϕ(v) = w. Then any v′ s.t. ϕ(v′) = w can be written down as
v′ = v + v0 where v0 ∈ kerϕ.

Part VI

Linear Operators
1 Definition
Definition 26 (Linear operator). A linear operator or transformation

T : V → V

is a linear map from a vector space V to itself.

2 Similar Matrices
Let B and B̃ be bases of V . Let A and Ã be the representing matrices

A = [T ]B
Ã = [T ]

B̃
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Both these are n×n matrices, where n = dim V . Let P denote the transition
matrix from B to B̃. Then,

Ã = P−1AP

Definition 27 (Similarity of matrices). Let A, Ã be n × n matrices. A is
said to be similar to Ã, denoted as A ∼ Ã, if there exists an invertible n× n
matrix P , s.t. Ã = P−1AP .

2.1 Properties of Similar Matrices
1. A ∼ A

2. If A ∼ Ã, then Ã ∼ A

3. If A ∼ Ã and Ã ∼ ˜̃
A, then A ∼ ˜̃

A

4. If A ∼ Ã, then det(A) = det(Ã)

5. If A ∼ I, then A = I

3 Diagonalization
Given a square matrix An×n, decide whether or not A is similar to some
diagonal matrix D. If it is, find D, and P s.t. P−1AP = D.
Alternatively,
Given an operator T : V → V , decide whether or not there exists a basis B of
V , s.t. [T ]B is a diagonal matrix D. If it exists, find D, and B, s.t. [T ]B = D.

Definition 28 (Diagonalizability). If A is similar to a diagonal matrix, A
is said to be diagonalizable. P , s.t. P−1AP = D is called a diagonalizing
matrix for A. D is called a diagonal form of A.

4 Eigenvalues and Eigenvectors
Definition 29 (Eigenvalue and eigenvector). Let A be a n× n matrix over
F. λ ∈ F is said to be an eigenvalue of A, if ∃v ∈ F, v 6= 0, such that

Av = λv

v is called an eigenvector corresponding to λ.
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Definition 30 (Alternate definition of eigenvalue and eigenvector). Let
T : V → V be a linear operator, where V is a vector space over F. λ ∈ F is
said to be an eigenvalue of A, if ∃v ∈ V, v 6= 0, such that

T (v) = λv

v is called an eigenvector corresponding to λ.

Definition 31 (Spectrum). The collection of all eigenvalues of a matrix, or
a linear operator is called the spectrum.

Theorem 1. Let A be a n× n matrix. λ ∈ F is an eigenvalue of A iff

det(λIn − A) = 0

Proof. λ is an eigenvalue of A

⇐⇒ ∃v ∈ Fn, v 6= 0, s.t. Av = λv

⇐⇒ ∃v ∈ Fn, v 6= 0, s.t. (λI − A)v = O

⇐⇒ v =


x1
...
xn



⇐⇒ (λI − A)


x1
...
xn

 = 0 has a non-zero solution

⇐⇒ there are free variables
⇐⇒ det(λI − A) = 0

Theorem 2 (General criterion for diagonalization). Let A be a n× n matrix.
A is diagonalizable if and only if there exists a basis B = {v1, . . . , vn} of Fn
consisting of eigenvectors of A. In such a case, the diagonal entries of D
are eigenvalues of A, and B can be chosen as consisting of the columns of P ,
where P−1AP = D.

Corollary 2.1. If A has no eigenvalues, then it is not diagonalizable.

Theorem 3. Let λ1, . . . , λs be pairwise distinct eigenvalues of an n×n matrix
A, i.e. ∀i 6= j, λi 6= λj. Let v1, . . . , vs be eigenvalues of A corresponding to
λ1, . . . , λs. Then the set S = {v1, . . . , vs} is linearly independent.
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Proof. If possible, let S be linearly dependent. Let S ′ denote a linearly
dependent subset of S of smallest possible size, say l. WLG, let S ′ =
{v1, . . . , vl}.
Hence, ∃α1, . . . , αl ∈ F, s.t.

α1v1 + · · ·+ αlvl = O (3.1)

Multiplying (3.1) on both sides by A,

α1Av1 + · · ·+ αlAvl = O (3.2)
α1λ1v1 + · · ·+ αlλlvl = O (3.3)

Multiplying (3.1) on both sides by λl

α1λ1v1 + · · ·+ αlAvl = O (3.4)

Subtracting (3.4) from (3.3)

α1(λ1 − λl)v1 + · · ·+ αl−1(λl−1 − λl)vl−1 = O (3.5)

Solving,

α1 = αl = 0

This is a contradiction.

Corollary 3.1. Let An×n have n distinct eigenvalues. Then, A is diagonal-
izable.

Proof. Let v1, . . . , vn be eigenvectors of A, corresponding to λ1, . . . , λn. As
they are distinct, by the above theorem, they are linearly independent. The
number of elements in the set {v1, . . . , vn} is n. Therefore, the set is a basis.
Hence, according to General criterion for diagonalization, A is diagonalizable.

5 Characteristic Polynomial
Definition 32 (Characteristic Polynomial). Let A be any n× n matrix.

pA(x) = det(xIn − A)

is called the characteristic polynomial.
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5.1 Properties
1. The roots of pA(x) are the eigenvalues of A.

2. deg pA(x) = n

3. The coefficient of xn is 1.

4. The constant term is α0 = (−1)n det(A).

5. The coefficient of xn−1 is αn−1 = −(a11 + · · ·+ ann).

Theorem 4. If A ∼ A′, then pA(x) = pA′(x).

Proof.

A′ = P−1AP

∴ pA′(x) = det(xI − A′)
= det(xI − P−1AP )
= det(P−1(xI)P − P−1AP )
= det(P−1(xI − A)P )
= �����det(P−1) det(xI − A)����det(P )
= det(xI − A)
= pA(x)

Definition 33 (Alternative definition of characteristic polynomial). Let
T : V → V be a linear operator. The characteristic polynomial of T is defined
as the characteristic polynomial of any representing matrix of T .

Theorem 5. Let f(x), g(x) be polynomials. Then ∃q(x), r(x), s.t.

f(x) = g(x)q(x) + r(x)

and deg r(x) < deg g(x).

Definition 34 (Remainder). If

f(x) = g(x)q(x) + r(x)

r(x) is called the remainder after division of f(x) by g(x). If r(x) = O, f(x)
is said to be divisible by g(x).
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Corollary 5.1. Let f(x) be a polynomial and let α be a root of f . Then f(x)
is divisible by (x− α).

Definition 35 (Algebraic multiplicity of eigenvalue). Let A be a n×n matrix,
and let pA(x) be the characteristic polynomial of A, and let λ be an eigenvalue
of A. The algebraic multiplicity of λ is defined as the largest possible integer
value of k such that pA(x) is divisible by (x− λ)k.

Definition 36 (Eigenspace). Let A be a n × n matrix, and let λ be an
eigenvalue of A. The eigenspace of A corresponding to λ is defined as

Vλ = {v ∈ Fn;Av = λv}

Theorem 6. An eigenspace of a matrix is a subspace of the field over which
the matrix is defined.

Definition 37 (Geometric multiplicity of eigenvalue). m = dim Vλ is called
the geometric multiplicity of λ.

Theorem 7. Let λ be an eigenvalue of An×n. Let k be the algebraic multi-
plicity of λ and let m be the geometric multiplicity of λ. Then

m ≤ k

Proof.

m = dimVλ

Therefore, let B0 = {v1, . . . , vm} be a basis of Vλ.
Completing B0 to B = {v1, . . . , vm, vm+1, . . . , vn}, a basis of Fn.
Let Pn×n be a matrix with columns v1, . . . , vn.

P =
(
v1 . . . vm vm+1 . . . vn

)
P is invertible as v1, . . . , vn are linearly independent.
Consider A′ = P−1AP .

∴ P−1AP = P−1A
(
v1 . . . vm vm+1 . . . vn

)
= P−1

(
Av1 . . . Avm Avm+1 . . . Avn

)
= P−1

(
λv1 . . . λvm ? . . . ?

)
=
(
P−1(λv1) . . . P−1(λvm) ? . . . ?

)
=
(
λe1 . . . λem) ? . . . ?

)
=
(
λIm ?

0 Ã

)
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pA′(x) = det(xIn + A′)

= det
(xIm 0

0 xIn−m

)
−
(
λIm ?

0 Ã

)
= det

(
(x− λ)Im ?

0 xIn−m − Ã

)
= det((x− λ)Im) · det(xIn−m − Ã)
= (x− λ)m · p

Ã
(x)

As A ∼ Ã,
pA(x) = pA′ = (x− λ)mp

Ã
(x)

By the definition of Algebraic multiplicity of eigenvalue, k ≥ m.
Theorem 8. If a matrix An×n is diagonalizable, then its characteristic poly-
nomial pA(x) can be represented as a product of linear factors.

pA(x) = (x− λ1)k1 . . . (x− λs)ks

where ki is the algebraic multiplicity of λi and λ1, . . . , λs are pairwise distinct.
Proof. As A is diagonalizable, let A ∼ D,

λ1 0 0 0 0 0 0
0 . . . 0 0 0 0 0
0 0 λ1 0 0 0 0
0 0 0 . . . 0 0 0
0 0 0 0 λs 0 0
0 0 0 0 0 . . . 0
0 0 0 0 0 0 λs


Then,

pA(x) = pD(x)

= det



x− λ1 0 0 0 0 0 0
0 . . . 0 0 0 0 0
0 0 x− λ1 0 0 0 0
0 0 0 . . . 0 0 0
0 0 0 0 x− λs 0 0
0 0 0 0 0 . . . 0
0 0 0 0 0 0 x− λs


= (x− λ1)k1 . . . (x− λs)ks
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Theorem 9 (Explicit criterion for diagonalization). Let A be an n×n matrix,
s.t. pA(x) splits completely. Then A is diagonalizable if and only if ∀λi of A,
the algebraic multiplicity coincides with the geometric multiplicity.

Proof of statement. If pA splits completely, then k1 + · · ·+ kn = n.
If A is diagonalizable, then by the General criterion for diagonalization, there
is B = {v1, . . . , vn}, a basis of Fn, s.t. each vi is an eigenvector of A.
Dividing v1, . . . , vn into s groups corresponding to λ1, . . . , λs, to each λi, there
correspond at most mi = dim Vλi

eigenvectors, as they are a part of a basis
and hence linearly independent.
Therefore,

n ≤ m1 + · · ·+ms

As pA splits completely,

n = k1 + · · ·+ ks

Also, ki ≥ mi

∴ k1 + · · ·+ ks = m1 + · · ·+ms

moreover, ∀i, s.t. 1 ≤ i ≤ s,

ki = mi

Proof of converse.

∀i, s.t. 1 ≤ 1 ≤ s

∴ ki = mi

As k1 + · · ·+ ks = n,

m1 + · · ·+ms = n
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Let the bases of the eigenspaces Vλ1 , . . . , Vλs be B1, . . . , Bs.

|B1| = m1
...

|Bs| = ms

Let B = B1 ∪ · · · ∪Bs. |B| = n.
It is enough to prove that B is linearly independent.
Let

B = {v1, v2, . . . , w1, w2, . . . , u1, u2, . . . }

Suppose

α1v1 + α2v2 + · · ·+ β1w1 + β2w2 + · · ·+ γ1u1 + γ2u2 + . . . = O

If possible, let at least one coefficient be non-zero. WLG, let α1 6= 0.
Hence, as v1, v2, . . . form B1 which is a basis of vλ1 ,

v = α1v1 + α2v2 + · · · 6= O

Let

w = β1w1 + β2w2 + . . .

. . .

u = γ1u1 + γ2u2 + . . .

Therefore,

v + w + · · ·+ u = O

where v 6= O and v ∈ Vλ1 , w ∈ Vλ2 , . . . , u ∈ Vλs .
But as λ1, . . . , λs are pairwise distinct, v, w, . . . , u are linearly independent.
This is a contradiction. Therefore, B is a basis. Hence, as B consists of
eigenvectors of A, by the General criterion for diagonalization, A is diagonal-
izable.

Theorem 10 (Criterion for triangularization). An operator T : V → V is
triangularizable, i.e. there is a basis B of V such that [T ]B is upper triangular,
if and only if pT (x) splits completely.
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Theorem 11 (Jordan Theorem). Let T : V → V be a linear operator such
that pT (x) splits completely. Then there exists a basis B of V such that [T ]B
is of the form

[T ]B =


J1 0 0
0 . . . 0
0 0 Jl


where each Ji is of the form

λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 . . . . . . 0 0
0 0 0 . . . 1 0
0 0 0 0 λ 1
0 0 0 0 0 λ


where λ is some eigenvalue of T .

Part VII

Inner Product Spaces
1 Definition
Definition 38 (Inner product). Let F be R or C. Let V be a vector space
over F. An inner product on V is a function in two vector arguments with
scalar values which associates to two given vectors v, w ∈ V their product
< v,w >∈ F so that the following properties are satisfied.

1. 〈α1v1 + α2v2, w〉 = α1〈v1, w〉+ α2〈v2, w〉, ∀v1, v2, w ∈ V , ∀α1, α2 ∈ F

2. 〈v, w〉 = 〈w, v〉, ∀v, w ∈ V

3. 〈v, v〉 is a real non-negative number, ∀v ∈ V

Example 12. The dot product of two vectors is defined as follows. Is it an
inner product?

V = Fn

71



〈
α1
...
αn

 ,

β1
...
βn


〉

= α1β1 + · · ·+ αnβn

Solution. All three axioms are satisfied by this product. Hence, it is an inner
product.

Theorem 1 (Sesquilinearity).

〈v, β1w1 + β2w2〉 = β1〈v, w1〉+ β2〈v, w2〉

∀v, w1, w2 ∈ V, β1, β2 ∈ F

Definition 39 (Length). The length of a vector

v =


α1
...
αn


is defined to be

‖v‖ =
√
α2

1 + · · ·+ α2
n

Example 13. Let V be the vector space consisting of all continuous functions
f : [aÂă, b]→ R.

〈f, g〉 =
b∫
a

f(x)g(x) dx

Solution. All three axioms are satisfied by this product. Hence, it is an inner
product.

2 Computation of Inner Products
Definition 40 (Gram matrix). Let V be an inner product space. Let

B = {v1, . . . , vn}

be a basis of V .

GB =


〈v1, v1〉 . . . 〈v1, vn〉

... ...
〈vn, v1〉 . . . 〈vn, vn〉


is called the Gram matrix of the inner product with respect to B.
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Example 14. Find the Gram matrix of V = Fn with standard dot product
with respect to

B =




1
...
0

 , . . . ,


0
...
1




Solution.

GB =


〈e1, e1〉 . . . 〈e1, en〉

... ...
〈en, e1〉 . . . 〈en, en〉



=


1 . . . 0
... ...
0 . . . 1


Example 15. Find the Gram matrix of V = Fn with standard dot product
with respect to

B =


(

3
4

)
,

(
6
7

)
Solution.

GB =
(
〈v1, v1〉 〈v1, v2〉
〈v2, v1〉 〈v2, v2〉

)

=
(

25 46
46 85

)

Theorem 2.

〈v, w〉 = [v]tBGB[w]B

Proof. Let

B = {v1, . . . , vn}

be a basis of V .
The Gram matrix is

GB =
(
〈vi, vj〉

)
=
(
gij
)
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To compute 〈v, w〉, find

[v]B =


α1
...
αn



[w]B =


β1
...
βn



〈v, w〉 = 〈α1v1 + · · ·+ αnvn, β1v1 + · · ·+ βnvn〉
= α1β1〈v1, v1〉+ · · ·+ α1βn〈v1, vn〉

+ α2β1〈v2, v1〉+ · · ·+ α2βn〈v2, vn〉
+ . . .

+ αnβ1〈vn, v1〉+ · · ·+ αnβn〈vn, vn〉
= α1g11β1 + · · ·+ α1g1nβn

+ α2g21β1〉+ · · ·+ α2g2nβn

+ . . .

+ αngn1β1 + · · ·+ αngnnβn

= [v]tBGB[w]B

2.1 Change of Basis
Theorem 3. Let B, B̃ be bases of V . Let P be the transition matrix from B
to B̃. Then

G
B̃

= P tGBP

where P is the matrix obtained by replacing all elements of P by their complex
conjugates.

Proof.

[v]B = P [v]
B̃
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〈v, w〉 = [v]tBGB[w]B
= (P [v]

B̃
)tGB(P [w]

B̃
)

= [v]t
B̃

(P tGBP )[w]
B̃

Also,
〈v, w〉 = [v]t

B̃
G
B̃

[w]
B̃

Therefore,
G
B̃

= P tGBP

3 Norms

3.1 Definition
Definition 41 (Norm). Let V be a vector space over F with inner product.
∀v ∈ V ,

‖v‖ .=
√
〈v, v〉

‖v‖ is called the norm of v.

3.2 Properties
1. Positivity
‖v‖ ≥ 0, ∀v ∈ V
‖v‖ = 0 ⇐⇒ v = O

2. Homogeneity
‖αv‖ = |α|‖v‖, ∀v ∈ V, ∀α ∈ F

3. Triangle Inequality
‖u+ v‖ ≤ ‖u‖+ ‖v‖, ∀u, v ∈ V

4 Orthogonality

4.1 Definition
Definition 42 (Orthogonality). A vector u ∈ V is said to be orthogonal to
v ∈ V if

〈u, v〉 = 0

75



It is denoted as u ⊥ v.

4.2 Properties
1. If u ⊥ v, then v ⊥ u.

2. If u ⊥ v, α, β ∈ F, then αu ⊥ βv.

3. O ⊥ v, ∀v ∈ V .

5 Orthogonal and Orthonormal Bases
Let V be a vector space over F with an inner product. Let S ⊂ V .

Definition 43 (Orthogonal set). S is said to be orthogonal if any two distinct
vectors from S are orthogonal.

Definition 44 (Orthonormal set). S is said to be orthonormal if it is orthog-
onal and the norm of every vector is 1.

Definition 45 (Orthogonal basis). S is said to be an orthogonal basis of V
if it is orthogonal and a basis of V .

Definition 46 (Orthonormal basis). S is said to be an orthonormal basis of
V if it is orthonormal and a basis of V .

Theorem 4. Let S be an orthogonal set such that O /∈ S. Then S is linearly
independent.

Proof. Let

α1, . . . , αm ∈ F
v1, . . . vm ∈ S

Let

α1v1 + · · ·+ αmvm = O

S is linearly independent if and only if

α1 = · · · = αm = 0

α1v1 + · · ·+ αmvm = O
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Multiplying both sides by v1,

〈α1v1 + · · ·+ αmvm, v1〉 = 〈O, v1〉
∴ α1〈v1, v1〉+ · · ·+ αm〈vm, v1〉 = 0

As v1, . . . , vm are orthogonal,

〈v2, v1〉 = · · · = 〈vm, v1〉

∴ α1〈v1, v1〉 = 0

As v1 6= O

〈v1, v1〉 6= 0
∴ α1 = 0

Similarly,

α2 = · · · = αm = 0

Corollary 4.1. Any orthonormal set is linearly independent.

Corollary 4.2. Any orthonormal set consisting of n = dim V vectors is an
orthonormal basis of V .

Example 16. Is the set

S =


(

1
1

)
,

(
−1
1

)
orthonormal?

Solution. The norm of the elements of S is not 1. Hence S is not orthonormal.

Theorem 5. Let B = {v1, . . . , vn} be an orthonormal basis of V . Let v ∈ V .

Let [v]B =


α1
...
αn

. Then,

α1 = 〈v, v1〉
...

αn = 〈v, vn〉
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Proof.

v = α1v1 + · · ·+ αnvn

∴ 〈v, v1〉 = 〈α1v1 + · · ·+ αnvn, v1〉
= α1〈v1, v1〉+ · · ·+ αn〈vn, v1〉
= α1

Similarly, in general, ∀1 ≤ i ≤ n,

〈v, vi〉 = αi

Theorem 6 (Pythagoras Theorem). Let B = {v1, . . . , vn} be an orthonormal

basis of V . Let v ∈ V . Let [v]B =


α1
...
αn

. Then,

‖v‖2 = |α1|2 + · · ·+ |αn|2

Proof.

‖v‖2 = 〈v, v〉
= 〈α1v1 + · · ·+ αnvn, α1v1 + · · ·+ αnvn〉
= α1α1 + · · ·+ αnαn

= |α1|2 + . . . |αn|2

6 Unitary Matrices
Definition 47. Let F = R or F = C. Let A be an n× n matrix. A is said
to be a unitary matrix if

A∗ = A
t = At = A−1

If F = R, unitary matrices are called orthogonal matrices.

1. I is a unitary matrix.

2. If A1 and A2 are unitary matrices, then (A1A2)∗ = A∗2A
∗
1.

78



3. If A is unitary, A−1 is also unitary.

Theorem 7. Let A be an n × n matrix. Let v1, . . . , vn be the columns of
A. Let A be an n× n matrix. Let r1, . . . , rn be the columns of A. Then the
following are equivalent.

1. A is unitary.

2. {v1, . . . , vn} is an orthonormal basis of Fn, with respect to standard dot
product.

3. {r1, . . . , rn} is an orthonormal basis of Fn, with respect to standard dot
product.

Proof. As A is unitary, At is also unitary.

(At)∗ = (At)t

= (A∗)t

= (A−1)t

= (At)−1

A is unitary
⇐⇒ A∗ = A−1

⇐⇒ AA∗ = I

⇐⇒ AA
t = I

⇐⇒ (AAt)ik = Iik

=
n∑
j=1

aijaik

= ri · rk ⇐⇒ {r1, . . . , rn} is an orthonormal basis

Theorem 8. Let V be an inner product space. Let B be an orthonormal
basis of V . Let B′ be another basis of V . Let P be the transition matrix from
B to B′. Then B′ is orthonormal if and only if P is unitary.

Proof of statement.

GB′ = P tGBP
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If B′ is orthonormal,

∴ I = P tIP

= P tP

Therefore, P is unitary.

Proof of converse. If P is unitary,

GB′ = P tGBP

As B is orthonormal,

GB = I

∴ GB′ = P tP

As P is unitary,

P tP = I

∴ GB′ = I

Therefore, B′ is orthonormal.

7 Projections

7.1 Definition
Definition 48. Let S ⊂ V be a set of vectors.

S⊥
.= {v ∈ V |〈u, v〉 = 0∀u ∈ S}

Theorem 9. S⊥ is a subspace of V .

Proof.

〈u,O〉 = 0 ∴ O ∈ S⊥

If v1, v2 ∈ S⊥,

〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉
= 0 + 0
= 0
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If v ∈ S⊥,

〈u, αv〉 = α〈u, v〉
= 0

Theorem 10.

S⊥ = span(S)⊥

Proof. Let v ∈ S⊥, u ∈ span(S).
Let α1, . . . , αm ∈ F, u1, . . . , um ∈ S.
Therefore,

u = α1u1 + · · ·+ αmvm

∴ 〈u, v〉 = 〈α1u1 + · · ·+ αmvm, v〉
= α1〈u1, v〉+ · · ·+ αm〈um, v〉
= α1 · 0 + · · ·+ αm · 0
= 0

Therefore, v ∈ S⊥.
Therefore, S⊥ ⊂ span(S)⊥.
S ⊂ span(S). Therefore, let v ∈ span(S)⊥. Then,

〈u, v〉 = 0

for all u ∈ span(S).
Hence for all u ∈ S,

〈u, v〉 = 0

Therefore, span(S)⊥ ⊂ S⊥.

Definition 49 (Projection). Let V be an inner product space. Let W be
a subspace of V . Let v ∈ V . Let B = {w1, . . . , wm} be a basis of W . The
projection of v onto W is defined as follows.

πB(v) = 〈v, w1〉
〈w1, w1〉

w1 + · · ·+ 〈v, wm〉
〈wm, wm〉

wm
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7.2 Properties
1. πB(v) ∈ W

2. πB(v) = v ⇐⇒ v ∈ W

3. v − πB(v) ∈ W⊥

7.3 Gram - Schmidt Process
Input Any basis B = {v1, . . . , vn} of V .
Intermediate Output Orthogonal basis B̃ = {ṽ1, . . . , ṽn of V
Final Output Orthonormal basis B0 = {v1

1, . . . , vn
0} of V

Step 1 ṽ1 = v1, denote w1 = span{ṽ1} = span{v1}, B1 = {ṽ1}

Step 2 ṽ2 = v2 − πB1(v2) = v2 −
〈v2, ṽ1〉
〈ṽ1, ṽ1

ṽ1

As ṽ2 ⊥ ṽ1, B2 = {ṽ1, ṽ2} is an orthogonal set. Denote W2 =
span{ṽ1, ṽ2} = span{v1, v2}.

Step 3 ṽ3 = v3 − πB2(v3) = v3 −
〈v2, ṽ1〉
〈ṽ1, ṽ1〉

ṽ1 −
〈v3, ṽ2〉
〈ṽ2, ṽ2〉

As ṽ3 ∈ W2
⊥, B3 = {ṽ1, ṽ2, ṽ3} is an orthogonal set. Denote W2 =

span{ṽ1, ṽ2, ṽ3} = span{v1, v2, v3}.

...

Step n The nth step gives B̃n = {ṽ1, . . . , ṽn} which is an orthogonal basis of V .

B0 is obtained by normalization of B̃n.

v1
0 = 1
‖ṽ1‖

...

vn
0 = 1
‖ṽn‖
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Example 17.

B = {v1, v2, v3}

=


1

1
0

 ,
0

2
0

 ,
1

1
1




Solution.

ṽ1 = v1

=

1
1
0


ṽ2 = v2 −

〈v2, ṽ1〉
〈ṽ1, ṽ1〉

=

0
2
0

− 2
2

1
1
0



=

−1
1
0


ṽ3 = v3 −

〈v3, ṽ1〉
〈ṽ1, ṽ1〉

ṽ1 −
〈v3, ṽ2〉
〈ṽ2, ṽ2〉

ṽ2

=

1
1
1

− 2
2

1
1
0

− 0

−1
1
0



=

0
0
1



∴ B̃3 =


1

1
0

 ,
−1

1
0

 ,
0

0
1



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Therefore, normalizing B̃3,

v1
0 =


1/
√

2
1/
√

2

0



v2
0 =

−
1/
√

2
1/
√

2

0



v3
0 =

0
0
1



∴ B0 =




1/
√

2
1/
√

2

0

 ,
−

1/
√

2
1/
√

2

0

 ,
0

0
1




x

y

z

v1

v2

v3v1
0v2

0

v3
0

7.4 Inequalities
Theorem 11 (Bessel’s Inequality). Let {v1, . . . , vm} be an orthonormal set.
Let v ∈ V be any vector. Then

‖v‖2 ≥ |〈v, v1〉|2 + · · ·+ |〈v, vm〉|2

and the equality holds if and only if v ∈ span{v1, . . . , vm}.
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Proof. {v1, . . . , vm} can be completed to an orthonormal basis

B = {v1, . . . , vm, vm+1, . . . , vn}

Using Pythagoras Theorem,

‖v‖2 = |〈v, v1〉|2 + · · ·+ |〈v, vm〉|2 + |〈v, vm+1〉|2 + · · ·+ |〈v, vn〉|2

∴ ‖v‖2 ≥ |〈v, v1〉|2 + · · ·+ |〈v, vm〉|2

The equality holds if and only if

|〈v, vm+1〉|2 + · · ·+ |〈v, vn〉|2 = 0

if and only if

|〈v, vm+1〉|2 = 0
...

|〈v, vn〉|2 = 0

If v ∈ span{v1, . . . , vm},

v = α1v1 + · · ·+ αmvm

Therefore,

〈v, vm+1〉 = 〈α1v1 + · · ·+ αmvm, vm+1〉
= α1〈v1, vm+1〉+ · · ·+ αm〈vm, vm+1〉

as the basis is orthonormal, 〈vi, vm+1〉

∴ 〈v, vm+1〉 = 0

Similarly,

|〈v, vm+2〉|2 = 0
...

|〈v, vn〉|2 = 0

Conversely, if

|〈v, vm+1〉|2 = 0
...

|〈v, vn〉|2 = 0
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let
v = α1v1 + · · ·+ αmvm + αm+1vm+1 + αnvn

∴ 0 = 〈v, vm+1〉
∴ 0 = 〈α1v1 + · · ·+ αmvm + αm+1vm+1 + αnvn, vm+1〉

All 〈vi, vm+1〉 except 〈vm+1, vm+1〉 are 0.
Therefore,

|〈v, vm+1〉|2 + · · ·+ |〈v, vn〉|2 = 0

Theorem 12 (Cauchy - Schwarz Inequality). Let u, v ∈ V be any vectors.
Then

|〈u, v〉| ≤ ‖u‖ · ‖v‖
and the equality holds if and only if {u, v} is linearly dependent.
Proof. If u = O, the equality holds.
Let u 6= O.
Let

u0 = 1
‖u‖

‖u0‖ = 1
Applying Bessel’s Inequality to the orthonormal set {u0},

‖v‖2 ≥ |〈v, u0〉|2

|〈v, u0〉|2 =

∣∣∣∣∣∣
〈
v,

1
‖u‖

u

〉∣∣∣∣∣∣
2

=
∣∣∣∣∣ 1
‖u‖
〈v, u〉

∣∣∣∣∣
2

=
(

1
‖u‖
|〈v, u〉|

)2

= 1
‖u‖2 |〈v, u〉|

2

∴ ‖v‖2 ≥ 1
‖u‖2 |〈v, u〉|

2

By Bessel’s Inequality, the equality holds if and only if
v ∈ span{u0} = span{u}

Therefore, v and u are linearly independent.
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8 Angle
Definition 50 (Angle). Let V be a vector space over R with inner product
〈, 〉. Let u, v ∈ V , u 6= O, v 6= O. The angle between u and v is defined as

cosϕ .= 〈u, v〉
‖u‖ · ‖v‖

9 Triangle Inequality
Theorem 13 (Triangle Inequality Theorem). Let u, v ∈ V . Then

‖u+ v‖ ≤ ‖u‖+ ‖v‖

Proof.

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + 〈u, v〉+ 〈u, v〉+ ‖v‖2

= ‖u‖2 + 2<
(
〈u, v

)
+ ‖v‖2

As <(z) ≤ |z|,

‖u+ v‖2 ≤ ‖u‖2 + 2
∣∣〈u, v〉∣∣+ ‖v‖2

Hence, by Cauchy - Schwarz Inequality,

‖u+ v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

∴ ‖u+ v‖2 ≤
(
‖u‖+ ‖v‖

)2
∴ ‖u+ v‖ ≤ ‖u‖+ ‖v‖

10 Orthogonal Decomposition
Theorem 14. Let W be a subspace of V . Then

V = W ⊕W⊥
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Proof. Let B be an orthogonal basis of V . Consider a projection πB(v).
Therefore,

v = πB(v) +
(
v − πB(v)

)
πB(v) ∈ W

v − πB(v) ∈ W⊥

Therefore,

V = W +W⊥

If possible, let u ∈ W ∩ W⊥. Therefore, u ∈ W and u ∈ W⊥. By the
definition of orthogonality,

〈u ∈ W,u ∈ W⊥〉 = 0
∴ u = 0

Therefore,

V = W ⊕W⊥

Corollary 14.1. Let B be an orthogonal basis of W . Then πB(v) does not
depend on the choice of B.

Proof. As B is an orthogonal basis of W ,

v = πB(v) +
(
v − πB(v)

)
Let B′ be another orthogonal basis of W . Therefore,

v = πB′(v) +
(
v − πB′(v)

)
Therefore,

πB(v) ∈ W
πB′(v) ∈ W

and

v − πB(v) ∈ W⊥

v − πB′(v) ∈ W P⊥
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As

V = W ⊕W⊥

such a representation is unique. Therefore,

πB(v) = πB′(v)

Theorem 15. Let u, v ∈ V , s.t. u ⊥ v. Then

‖u± v‖2 = ‖u‖2 + ‖v‖2

Proof.

‖u± v‖2 = ‖u‖2 + ‖v‖2

= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= 〈u, u〉+ 〈v, v〉
= ‖u‖2 + ‖v‖2

11 Distance
Definition 51 (Distance). Let u, v ∈ V . The distance d(u, v) from u to v is
defined as

d(u, v) .= ‖u− v‖

Theorem 16. Let u, v ∈ V . Then

d(u, v) ≥ 0

and the equality holds if and only if u = v.

Theorem 17. Let u, v ∈ V . Then

d(u, v) = d(v, u)

Theorem 18. Let u, v ∈ V . Then

d(u, v) + d(v, w) ≥ d(u,w)
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Theorem 19. The projection πW (v) is the vector in W closest to v, i.e.

d
(
v, πW (v)

)
= min

w∈W
d(v, w)

Proof. Let v ∈ V . For any vector w ∈ W ,(
d(v, u)

)2 = ‖v − w‖2

=
∥∥∥(v = πW (v)

)
+
(
πW (v)− w

)∥∥∥2

=
∥∥v − πW (v)

∥∥2 +
∥∥πW (v)− w

∥∥2

≥
∥∥v − πW (v)

∥∥2

∴
(
d(v, u)

)2 ≥ d
(
v, πW (v)

)2

12 Adjoint Map
Definition 52 (Linear functional). A linear functional ϕ : V → F is a linear
map, with F considered as a 1 dimensional vector space over itself.

Theorem 20 (Riesz’s Representation Theorem). Let V be an inner product
space, s.t. n = dim V . Let ϕ : V → F be any linear functional. Then there
exists a unique vector u ∈ V , dependent on ϕ, s.t. ∀v ∈ V ,

ϕ(v) = 〈v, u〉

Proof. If possible, let u1, u2 ∈ V , s.t. ∀v ∈ V ,

ϕ(v) = 〈v, u1〉 = 〈v, u2〉

Therefore,

〈v, u1 − u2〉 = 0

Let v = u1 − u2. Therefore,

〈v, u1 − u2〉 = 〈u1 − u2, u1 − u2〉
∴ 〈u1 − u2, u1 − u2〉 = 0

∴ u1 − u2 = 0
∴ u1 = u2
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Therefore, u, if it exists, is unique.

Let

B = {v1, . . . , v2}
B̃ = {1}

be orthonormal bases of V and F respectively.
Let

A = [ϕ]
B,B̃

=
(
α1 . . . αn

)
be the representation matrix.
Therefore,

[ϕ(v)]
B̃

= A[v]B

Let

v = β1v1 + · · ·+ βnvn

∴ [v]B =


β1
...
βn


Therefore,

[ϕ(v)]
B̃

=
(
α1 . . . αn

)
β1
...
βn


= α1β1 + · · ·+ αnβn

= β1α1 + · · ·+ βnαn

= β1α1 + · · ·+ βnαn

=
(
β1 . . . βn

)
α1
...
αn



=
〈

β1
...
βn

 ,

α1
...
αn


〉
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Let u ∈ V , s.t.

[u]B =


α1
...
αn



[ϕ(v)]
B̃

= 〈v, u〉

and

[ϕ(v)]
B̃

= ϕ(v) · 1
∴ ϕ(v) = 〈v, u〉

12.1 Construction
1. Let T : V → W be a linear map.

2. Fix w ∈ W .

3. Let ϕw : V → F be a linear functional, s.t. ϕw(v) = 〈T (v), w〉.
ϕw(α1v1 + α2v2) = α1ϕw(v1) + α2ϕw(v2).

4. By Riesz’s Representation Theorem, ∃!u ∈ V , s.t. ϕw(v) = 〈v, u〉.

5. Define T ∗(w) = u.
Therefore, it can be expressed as

〈T (v), w〉 = 〈v, T ∗(w)〉

12.2 Properties
Theorem 21. Let B be an orthonormal basis of V and let B̃ be an orthonor-
mal basis of W . Let A = [T ]B,B̃ be the representing matrix of T : V → W with
respect to B, B̃. Let Ã = [T ∗]B,B̃ be the representing matrix of T ∗ : W → V

with respect to B, B̃. Then

Ã = A
t = A∗

Theorem 22. If T1, T2 : V → W , then

(T1 + T2) = T1
∗ + T2

∗
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Theorem 23. If T : V → W , α ∈ F, then
(αT )∗ = αT ∗

Theorem 24.
(T ∗)∗

Theorem 25. If T : V → W , S : W → U , then
(S ◦ T )∗ = T ∗ ◦ S∗

13 Special Linear Operators
Definition 53. Let T : V → V be a linear operator, and let T ∗ : V → V is
the adjoint operator.
T is said to be

1. normal if T ∗ ◦ T = T ◦ T ∗

2. self-adjoint if T ∗ = T (If F = R, T is called symmeteric.)

3. unitary if T ∗ = T−1 (If F = R, T is called symmeteric.)
Remark 8. The same terminology is used for square matrices.
Remark 9. If B is orthonormal basis of V , A = [T ]B, then A is the normal,
self-adjoint or unitary according to T .
Theorem 26. Let v ∈ V . T is normal if and only if

‖T (v)‖ = ‖T ∗(v)‖
Corollary 26.1. Let T : V → V be normal, let λ be its eigenvalue, and let
v be an eigenvector of T corresponding to λ. Then λ is an eigenvalue of T ∗,
and v is an eigenvector of T ∗ corresponding to λ.
Theorem 27. If T is normal, λ1, λ2 are its eigenvalues, v1, v2 are eigenvec-
tors corresponding to λ1, λ2 respectively. If λ1 6= λ2, then v1 ⊥ v2.
Theorem 28. Let T be a self-adjoint operator. Then any eigenvalue λ of T
is real.
Theorem 29. Let T : V → V be a unitary operator. Then

1. T preserves inner products.

2. T preserves norms.

3. T preserves distances.

4. T preserves angles (in real case).
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