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(General Information

1 Contact Information

Prof. Boris Kunyavskii
kunyav@gmail.com
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Final Exam: 80%
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Part 11
Fields

1 Definition

Definition 1 (Field). The set I is a field if there are operations +, . satisfying
the following properties:

Al) YVa,beF;a+b=b+a

(A1)
(A2) Ya,beF;(a+b)+c=a+ (b+c)

(A3) There is an element 0 € Fs.t. a+0=04+a=a
(A4)

Ad) YVae F,3beFst. a+b=0

M1) Va,beF,a-b=10b-a

(M1)
(M2) Ya,b€F,(a-b)-c=a-(b-c)

(M3) There is an element 1 € Fs.t. a-1=1-a = a(l # 0)
(M4) Va € F,(a£0),3b€Fst. a-b=1

(AM) (a+b)-c=(a-c)+(b-c)

If F is a field, one can define subtraction and division as follows.

a—b=a+ (—b)



1.2 Examples of Non-fields (Rings)
1. Z, as M4 is not satisfied.

If we define F; = 0,1;04+0=0;0+1 =1+ 0 = 1; then, necessarily,
1+ 1 =0, otherwise, 1 will have no additive inverse.

2 Examples

Example 1. Let p be a prime number.
[F, is defined as follows.

YmeZm=a.p+m

The operations + and . are defined as

1. F, is a field.

2. If F is a set of ¢ elements, we can define on F a structure of a field iff
q = p', where p is prime, t > 1.

Example 2. For a field of 4 elements {0, 1 «, 8}, the addition and multipli-
cation tables are as follows.

B
B
«
1
1

oo™ LR

(ol Rev Rel Ny e

+ 10
010
111
o«
BB




Part 111
Matrices

1 Definition

Definition 2 (Matrix). Let F be a field, m,n > 1.
Then, A(m X n) is a table consisting of m rows and n columns, filled by
elements of F.

a1 a12 ce A1p

g1 dA22 ... Q2p
A=

Am1 Am2 ... Amn

2 Addition of Matrices

Definition 3 (Addition of matrices). Let A, B be m X n matrices over F.
Then, C'= A + B is defined as follows.

Cij = CLZ']' + blj
2.0.1 Properties
1. A+ B= B+ A VA, B s.t. the sum is defined

2. (A+B)+C=A+ (B+C(),VA, B,C s.t. the sums are defined

3. There is a matrix O, s.t. A+0=0+A=A4
4. For any A,dB s.t. B=—A

3 Multiplication of a matrix by a scalar

Definition 4 (Multiplication of a matrix by a scalar). Let A be a m x n
matrix over F. Let a € F be a scalar. Then, C' = aA is defined as follows.

Cij = aaij

10



4 Multiplication of matrices

Definition 5 (Multiplication of matrices). Let A be a m X n matrix over F.
Let B be a n x p matrix over F.

Then, C' = AB is defined as follows.
Cik, = Z aijbjk
j=1
Example 3. For matrices A, B, of same size, is AB = BA?
. 01 10
Solution. A = (O O> ,B = <0 0)

00 01
= (0 %) ma- 0 )

.. AB # BA
Remark 1. A# O, B # O, but AB = 0.

5 Zero Divisor

Definition 6 (Zero divisor). We say that a square matrix A # O is a zero
divisor if either there is a square matrix B s.t. AB = O, or there is a square
matrix C, s.t. CA = Q0.

Remark 2. OB = CO = O.

Remark 3. AC = BC # A = B. In general, we cannot cancel matrices on
either side of an equation.

01 1 0
Az(o 0>,B:<0 0),02@

AB=CB=0&B#0

But, we cannot cancel B, as A # C.

11



6 Theorem (’Good properties of matrix mul-
tiplication’)

Theorem 1.

(AB)C = A(BC) (1.1)
AB+C)=AB+ AC (1.2)
(A+ B)C = AC + BC (1.3)

(aA) = a(AB) (1.4)
Proof. Denote AB=D,BC =G,(AB)C = F,A(BC)=H
We need to prove F' = H
Let the dimensions of the matrices be as follows.
Amxna Bn><p7 Cqu
meq7 meq
di, = Z aijbjk
J
g = ijkbkl
k
fu = dickl => (O aibjk)ow =D aijbjrcu
k k4 kg
hil = Z awg]l = Z CLz’j(Z b]kckl) == Z Z aijbjkckl
J J k k J
fi = ha
F=H
O

12



7 Square Matrices

Let A be a square matrix of size n x n,n > 1

7.1 Diagonal Matrices

Definition 7 (Diagonal matrix). We say that A is a diagonal matrix if
a;; = 0, whenever i # j.

Theorem 2. Let A and B be diagonal n X n matrices.

Qry = O, brr = Br

Then, AB = BA = C,C is a diagonal matriz with ¢, = G,.b..

7.1.1 Proof
{o,z' £ j

Q5 = . .

Qi i=j

0.0
by = ,Z% 7

ﬂi?z =]

o 0,i %k
Cike = 25— @ijbjk = @by, = a;by, = {aiﬁui _

Similarly for BA.

7.2 Upper-triangular Matrices

We say that A is an upper-triangular matrix if a,; = 0, whenever 7 > j.

7.3 Lower-triangular Matrices

We say that A is a lower-triangular matrix if a;; = 0, whenever 7 < j.

Remark

Diagonal matrices are upper-triangular and lower-triangular. Conversely, if a
matrix is both upper-triangular and lower-triangular, it is a diagonal matrix.

13



7.4 Theorem

If A and B are both upper-triangular, then AB and BA are upper-triangular
too.

7.4.1 Proof
Denote C' = AB.

n
oGk = Zaijbjk
Jj=1

Suppose ¢ > k, then, either 7 > j or 7 > k. So, in each case, atleast one of a;;
or b is 0.

7.5 Identity Matrix

Let n > 1. We call I,, the n x n identity matrix.

—_

0
0
I, =

oo o
oo ~ o
o

— o oo

7.6 Theorem

Let I,, be the identity n x n matrix. Then, for any n X n matrix B, we have

1,B=BIl,=DB

7.6.1 Proof

0,7 #j
l,i=7
Denote C' = I, B. We have

I = (eij); €35 =

it = Y €ijbjk = €iibik = 1 - b = biy
=1
..C=B=1,B=20B

Similarly for BI,, = B.

14



7.7 Inverse of Matrix

Let A be an n x n matrix. We say that A is invertible if there exist B, (', s.t.
AB=1,and CA=1,

Remark

A = O is not invertible because OB = CO =0 # [,

Remark

There are non-zero matrices which are not invertible.
01

Let A = 00

If possible, let there be C s.t. CA = I5.

10
Let B = 00

We have C A

S (CA)B=1IB
-.C(AB)=B
-.CO=B
-,.0=18B

But, B # 0. Therefore, C' does not exist.

1.

771 If AB=1, and CA=1,, then B=C

7.7.2 Inverse of a Matrix

If A is invertible, i.e. if there exists B, s.t. AB = BA = I, then, B is called
the inverse of A, and is denoted by A1,

15



773 If AB=1, then BA=1.

7.7.4 If A is invertible, then A cannot be a zero divisor.

If possible, let A be a zero divisor.
Therefore, either AB = O, for some B # Q; or CA = O, for some C' # O

CaseI: AB=0

AB=0

LAY (AB)= A0
S (ATTAB =0

S IB=0
.B=0

This contradicts the assumption B # O

Case II: CA=0

CA=0

S (CAAT =0A™!
L O(AA) =0

S CI=0
=0

This contradicts the assumption C' # O

7.7.5 If A and B are invertible, then A + B may or may not be
invertible.

If A= B, then A+ B = 2A is invertible.
If A= —B, then A+ B = O is not invertible.

16



7.7.6 If A and B are invertible, then AB must be invertible.

(AB)(B'A ) = A(BB HA™
= ATA™!
= AA™!
=1
Similarly, (B~'A ") (AB) =1
(AB)—I — Bt

8 Transpose of a Matrix

B = A! is defined as follows.
bji = ai

8.1 Properties of A’
1. (A+B)!=A"+ B!

[\]

. (@A)t = aA?

w

. (AB)! = B! A!

4. If A is invertible, then, A® must be invertible, and (A*)~! = (A7)

9 Adjoint Matrix

t

A*=A

For example,

(1 1+ 2-1
A‘(@ —5i 3 )
1 —i

B=|[1-17 b5i
2+ 3

17



9.0.1 Properties of Adjoint Matrices
1. (A+B)=A"+B*
2. (0A)* =awA"
3. (AB)* = B*A*
4. TIf A is invertible, then A* is invertible, and (A*)~! = (A~1)*

10 Row Operations on Matrices

10.1 Elementary Row Operations

Let A be a m xn matrix with rows aq, ... a,,. We define 3 types of elementary
row operations.

[ a; +» a; (Switch of the i and ;™ rows.)
I a; = aa;(a # 0) (Multiplication of a row by a non-zero scalar.)

I a; = a; + aa;(j # 1) (Addition of a row multiplied by a scalar, and
another row.)

Ey, Eqp, By are matrices obtained from the identity matrix by applying el-
ementary row operations [[ [ [T} respectively. These matrices are called
elementary matrices.

10.2 Theorems

Let e; = (O ... 0010 ... 0) be a 1 x m matrix.
Let A be any m x n matrix.
Then, e; A = the i*" row of A.

10.2.1 FEjA = the matrix obtained from A by an elementary row
operation [I]

Proof
Let A be any m X n matrix.

18



€1A

.. EIA =

10.2.2 FEpjA = the matrix obtained from A by an elementary row
operation [[1]

Proof
Let A be any m x n matrix.

€1A
cEA= | aeA
emA

10.2.3 EiA = the matrix obtained from A by an elementary row
operation [T]]

Proof
Let A be any m X n matrix.

19



€1A

a1 + Qg1+ Qi+ Ay
L EA = :
GjA

emA
15 row of A
i™ row of A + a(j™) row of A

3 row of A

m™ row of A

10.2.4 All elementary matrices are invertible, moreover, the in-
verses of Fy, Fyp, By are also elementary matrices of the
same type.

Erl'=E
s El =1,

20



EI2 = LiEy
€1EI

ejEI

eibx

6mE’I

15 row of A

7 row of A
i™ row of A
m™ row of A
€1
€j
= =1,
€;
em

21



1
Similarly for Ey, to get the inverse, « is replaced by —
a

100 0
010 ...0
Ey=10 0 a 0
000 ... 1
100 ... 0
010 ... 0
1
LB =100 = ... 0
o By N
000 ... 1

Similarly for Ey, to get the inverse, « is replaced by —«

1 00 0
01 « 0
Ep=10 01 0
0 0O 1
1 0 0 0
01 —« 0
EI—Hl -0 0 1 0
00 O 1

10.3 Row-equivalent of a Matrix

A matrix A’ is a row-equivalent of A, if A’ is obtained for A, by a finite
sequence of elementary row operations.

11 Row Echelon Form of a Matrix

11.1 Definition

Let A be an m X n matrix.
Denote the i*" row of A by a;.

22



The leading entry of a non-zero row a; is its first non-zero entry.
Denote the column where the leading entry occurs by ;.

a; 7 01if j = 1(4)

We say that A is in row echelon form(REF) if the following conditions hold.

1. The non-zero rows are at the top of A. (r = the number of non-zero
rows)

2. The leading entries go right as we go down, i.e. [(1) <ly < --- <I(r)
3. All leading entries equal 1, i.e. if j = [(), then, a;; =1
4. Any column which contains a leading entry must have all other entries

equal to 0, i.e. if j = [(4), then, ay; = 0;Vk # i

11.2 Notation
The REF of A will be denoted by Ag.

12 Row Rank of a Matrix

The number of non-zero rows in Ap is called the row rank of A. It is denoted
by r.

r<nmn

13 Gauss Theorem

Any m x n matrix A can be brought to REF by a sequence of elementary
row operations.

13.1 Elimination Algorithm
Step 1 Find the first non-zero column C,, of A.

Step 2 Denote by a;, the first non-zero entry of C,,.

Step 3 Switch the 1% and ** rows.

23



1
Step 4 Multiply the 1% row by —.
aﬂ)

Step 5 Using row operations of type III, make all other entries of the p™ column

ZEeros.

Step 6 Ignoring the top row and C),, repeat steps [Step 1f to [Step 5|

13.1.1 Example

0 0 0 —1 0 -1 4 7
0 -1 4 7 |22 10 0 0 -1
0 -1 7 6 0 -1 7 6
01 —4 —7 01 —4 —7
00 0 —1]|228 100 3 -1
00 3 —1 00 0 -1
25 25
010 —= 010 —=
3 3
1 n 1
00 1 —— B2 1901 —=
3 3
000 —1 000 1
0100
0010
000 1

13.2 Row Spaces of Matrices

R1*>R1+2:T5R3
— 35

-7
—1

R3s—R3+R1
T

Ri—R1+4R>
RN I

RQ*)R2+%R3
— 5

Definition 8 (Row space of a matrix). Let A be a m x n matrix over F.

R(A) is defined as

R(A) = spanwy, ...

7Um

where vy, ..., v, are rows of A.

R(A) a subspace of the vector space of all rows of length n, is called the row

space of A.

Definition 9 (Row rank of a matrix). dim R(A) is called the row-rank of A,

and is denoted by rr(A).

24



Theorem 3. Let P be a | x m matriz. Then
1. R(PA) CR(A)
2. If P is an invertible m x m matriz, then R(PA) = R(A)

Corollary 3.1.
AR A — R(A) =R(A)

Theorem 4. If A is in REF, and if v is the number of non-zero rows in A,
then

rr(A) =r
Corollary 4.1. The following are equivalent
1. AR A
2. There is an invertible matriz P, s.t. A’ = PA
3. R(A) = R(A)
4. A and A" have the same REF

13.3 Column Equivalence

Definition 10 (Elementary column operations, column equivalence, column
echelon form, column space and column rank). If A is a m x n matrix, we can

define elementary column operations, column equivalence (A ,Q,) and column
echelon form (CEF), the column space of A (C(A)), and the column rank of
A (cr(A)).

Theorem 5.
cr(A) =1r(A)=r
Proof. Let r =11r(A) = dim R(A).
Choose r rows of A which form a basis of R(A), WLG, say vy, ..., v,.
Let

1
Xr><n =

25



span(X) = R(A)

Hence, any row of A can be expressed as a linear combination of vy, ..., v,

T
Vi = Ui
j=1

Let
Yinsr = (yz'j )
Therefore,
A=YX

Considering each column of A as a linear combination of columns of Y,

C(A) C C(Y)
cr(A) <cr(Y) <r=rr(A)
cr(A) <rr(A)
Similarly,

r(A) < cr(A) . cr(A) =rr(A)

Corollary 5.1. The following are equivalent
1AL A
2. There is an invertible matriz Q), s.t. A’ = QA
3. C(A) = C(A)
4. A and A" have the same CEF

26



Part IV
Linear Systems

1 Definition

1121 + a19xs + - - - + a1,x, = by

211 + 9299 + -t aA9n Ty — b2
Am1T1 + A2l + -+ Gpp Ty = bm

Here, all x; are taken to be unknowns, and all a,;, b; are given.
A solution to such a system is a collection dy, ..., d,, s.t. after replacing x;
by d;, we get equalities.
We assume that all a;;, b; belond to I, and we are looking for solutions d; € F.
by T
Given such a system, we define A,,xp = (@ij), bmx1 = | ¢ | Znx1 =
b Ty

Then, we can write the system as

Ax =10
dq
A solution to this systemisd, = | : | ,st. Ad=1b
dy
dq
Let D be the set of all d = | :
dn

D may be empty, infinite, or a singleton set.

2 Equivalent Systems

Two systems Az = b and A’z = ' are called equivalent, if every solution of
the first system is also a solution of the second system, and vice versa.

27



3 Solution of a System of Equations
We want to bring a given system

Ax =1b
to the form

Apx = bp

using elementary row operations.
We denote the augmented or extended matrix of the system as follows.

Aoty = (Amscn|bmsc)

Then apply Gaussian elimination method to A, in order to get the matrix
(Ar|br)

As Ap is obtained from A using elementary row operations,
Ar=E, ... E,E A

where every Fj; is an elementary matrix.
Let P=F, ... ExFE,. P isinvertible, as it is a product of elementary matrices.

Agr = PA
. Ard = PAd
= Pb
=bp

Conversely, let d be a solution to

Apd = bp
- PAd = bg
- P (PAd) = P 'bg
SAd=0b

If we have a system Az = b, we may and will assume that A is in REF, i.e.
A= Ag,b=bg.
Let I(1),...1(r) denote the numbers of the columns containing leading entries.

28



b
b
Let b= "
¢ br+1
bm
Therefore,
l'l‘l(l)—l—...:bl
1~xl(2)+...:b2
1- l‘l(r) = bT
0= br+1
0=by,

4 Homogeneous Systems
4.1 Definition
A system of the form
Ax =0
is called a homogeneous system.

Remark

Any homogeneous system is consistent and has a trivial solution z = O

4.2 Solutions of Homogeneous Systems

If » = number of non-zero rows, let £ = n — r = number of free variables. If
t > 0, denote the numbers of the columns that do not contain leading entries

by z(1),...,z(¢)
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4.2.1 Example

01200 -3
00010 —1
A= 00001 7
000O0O0 O
Therefore,
m =4
n=~06
r=3
t=3
(1) =2
[(2) =4
[(3)=5
2(1) =1
2(2) =3
2(3) =6
Therefore,

$2+2$3—3£L’6:O

1‘4—1'6:0

T + 7$6 =0
Therefore,
To = —2.7}3 + 3.736
T4 = Tg
Ty = —Txg
) T1
2y | = Csug | 13
T Tg
0 -2 3
where C3,3=10 0 1
0 0 =7

The free variables 1, x3, T4 can be considered as parameters, r; = v, o =
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Y2, T3 = 7s3-
Therefore,

Tg = —293+ 3%
T4 = Y6

T5 = =T

4.2.2 General Solution

4.2.21 Casel: t=0
If t = 0, there are no free variables, and the system has a unique trivial
solution.

4.2.2.2 CaselIl: ¢t >0

Zi(1) T2(1)

Zi(2) Tz(2)
. = Uprxt

Li(r) Lz (t)

C is filled by coefficients of the equations obtained after shifting the terms
containing all z; to the RHS.

4.3 Properties

4.3.1 For a homogeneous system Ax = 0, if ¢ and d are solutions,
then c + d is also a solution.

Ac=0
Ad=0
“Alc+d) = Ac+ Ad
=0+0

=0

4.3.2 For a homogeneous system Axr = 0, if ¢ is a solution and
a € F, then, ac is a solution too.

Ac=0
. A(ac) = a(Ac)
= a0
=0
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4.4 Fundamental Solutions

We define ¢t fundamental solutions or basic solutions, vy, ... v;.
We define ¢ columns, each of length n as follows.
For the i column v;, we set

Tx(1) =0
Ty =1
Tx(t) = 0
and for z;1), ..., 7y,
(1) Lz(1)
=C| : | =i"column of C
Zy(r) Lz(t)

4.4.1 Theorem: Any solution d of the system Ar = O can be
obtained from the basic solutions vq,...,v; as a linear com-
bination of the basic solutions, d = ajv1 + ... ayvy

One can choose another collection v}, ...,v; s.t. any solution of Az = O
can be obtained as a linear combination of v, ..., v;. In such a case, we get
another form of the general solution.

4.5

r < minm,n

If r =n, ie. t =0, the system has a unique solution.
If r <n,ie t > 0, the system has more than one solutions. Its general
solution can be expressed as in terms of ¢ parameters, where each free variable
serves as a parameter, whose value can be any element of F.
If m < n, then r < n. Therefore, the system has more than one solution.
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5 Non-Homogeneous Systems

5.1 Definition
Consider a system Az = b;b # 0. The extended matrix is defined as

air ... QA1np bl
A= (Alb) =

am1 --- Qmn bm

5.2 Solutions of Non-Homogeneous Systems

Let 7 be the number of non-zero rows in the REF of A, i.e. Ap.

5.2.1 Casel:r=r
g == b, =0

5.2.1.1 Case a: r=n,ie. t=0

Therefore,
r = bll
z, =10

Hence, the system has a unique solution.

5.2.1.2 Case b: r<n,ie. t>0
Therefore,

Q?l(l) = bll -+ C11T2(1) + e+ C1tT(t)

2 (r) = U} + o) + -+ Cua

5.2.2 Casell: 7>r

In this case, the (r + 1)™ row represents an equation of the form 0 = 1.
Therefore, the system is inconsistent.
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5.3 General Solution

The general solution of Ax = b can be expressed by adding the general
solution of Az = b and any particular solution of Az = b.

If ¢ is a solution of Ax = O, and d is a solution of Ax = b, then ¢ 4+ d
is a solution of Az = b.

Conversely, if d and d’ are solutions of Ax = b, then, ¢ = d’ — d is a solution
of Ax = Q.
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Part V
Vector Spaces

1 Definition

Let F be a field. A vector space V', over FF, is a set on which there are two
operations, denoted by + and - , where

+ is the addition of elements of V'
- is the multiplication of an element of V' by an element of

s.t. the sum of elements of V' lies in V', and the product of an element of V'
by an element of I lies in V', and the following properties hold.

Al) z+y=y+z;Vo,y eV

A3

(

(A2) (x+y)+zx=a+(y+2);Vr,y,z €V
( J0eV,st. O+r=24+0=x;Vz eV
(

A4y Ve e V,Ay e V,st. v +y = 0. (y is denoted as —zx.)

M2) (a+ f)xr = azx + py; Vo, € F,Vx € V

=

3) (ap)x = a(fz) = B(ax);Va, 3 € F,.Vr € V

)
)
)
M1) a(z+y) = azr+ ay;Va e F.Ve,y € V
)
)
) 1l-z=x;Vr eV

(
(
(
(M4

Elements of V' are called vectors, and elements of F are called scalars.

1.1 Examples
1.1.1 Geometric Vectors in Plane
1.1.2 Arithmetic Vector Space

Let F be a field, and n > 1 € Z.
Let V =TF" be a set of ordered n-tuples.
We define

(Oély---;()én)—i_(Bla--wﬁn):<a1+627--~705n+5n)

alag,...,an) = (aaq, . .., aoy)

35



1.1.3

Let F be a field, and m,n > 1 € Z.

Let V = TF"" be the set of all (m x n) matrices over F, i.e. a set of ordered
mn-tuples. For X,Y € V| we use the usual definitions of X + Y and aX
from algebra of matrices.

2 Properties
1. a0 =0;Va e F
2. a(—x) = —(ax)
J.x—y=x+(—vy)
4. 0x =OQ;Vx e V
5. ()zx=—x;Vex eV
6. (¢ — fB)=ax —px;Va,f € FNz eV

2.0.1 Proof of [

a0 =a(0O+0
= a0 + a0

For aOdy s.t. aO +y = Q.
Therefore,

a0+ y = (a0 + a0) +y
0=00+(0+y)
=a0+0
= a0

3 Subspaces

Let V be a vector space over F. Let U C V. U is called a subspace of V' if
the following properties hold.

Axiom 1l Qe U
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Axiom 2 If z,y € U, then, (z +y) € U

Axiom 3 If € U, € F, then, ax € U

3.1 Examples

Example 4. Let V be the set of all geometric vectors in plane.

If U, is the set of all vectors along the x-axis, U, is the singleton set of a
specific vector along the z-axis, and Us is the set of all vectors along the
r-axis and a specific vector not along the x-axis. Which of Uy, Us, Uz are
subspaces of V7

Solution. Uy is a subspace of V' as it satisfies all three axioms.
U, is not a subspace of V' as it does not satisfy any of the three axioms.
Us is not a subspace of V' as it does not satisfy

Example 5.

F=R

V=C={a+ fi;a,p € R}
where + is addition in C and - is multiplication by real scalars.

U1 = {Od + OZ}

Uy =10+ pi}
Which of Uy, Us, Us are subspaces of V7
Solution. Both U; and U, are subspaces of V', as they satisfy all three axioms.

Example 6. Let V =, where + is addition in F, and - is multiplication in F.

U1 = {Oé—|—01}

Which of Uy, Uy are subspaces of V7
Solution. Neither U; nor U, are subspaces of V.

Example 7. Let V = {f : [0,1] — R}, where + and - is defined as follows.

(f +9)(z) = f(z) +g(z)
(af)(x) = af(z)
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O is the function with graph x = 0.
U = {all continuous functions|0, 1] — R}

Is U is subspace?
Solution. @ € R. Therefore, is satisfied. Similarly, and
[Axiom 3 are also satisfied.

3.2 Operations on Subspaces

Let V/F be a vector space, and Uy, Uy be subspaces of V.

UlﬂU2:{$€V:x€U1andx€U2}
U1UU2:{ZE€V3$€U10KI€U2}
U1+U2:{Z'EV2Z'I£U1+.T2,£IZ’1EUl,l'QEUQ}

Example 8. Let V' be a set of geometric vectors in 3D space.
Let Uy be the zy-plane, and U, be the yz-plane. If U; N Uy a subspace of V7

Solution.

0el,,0eU;=0eUnU,

r2yeUynNUs=x,yecUy,x,y € Uy
srcr+yelU,z+yel
=rx+yeU Nl

Similarly, if x € Uy N Uy, ainlF, then, ax € Uy N Uy. Therefore, Uy N U, is a
subspace of V.
4 Spans

Definition 11 (Span). Let V/FF be a vector space. Let S C V' be non-empty.

span(S) ={z €V :z =av1+- -+ apvm,a1,...,am €F,01,... 0, €S}

span(.S) is the collection of all linear combinations of finite number of vectors
of S with coefficients from [F

Theorem 1. span(S) is a subspace of V
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Proof.

O = 0v = O € span(95)

x,y € span(S) = & = vy + -+ + AUy, f1wy + -+ + B,
=c+y=0v1 + -+ Uy + f1wr + - - + Brwy, € span(S)

x € span(S),a € F = ayvy + -+ + apvpy,
= ar = a(agvy + -+ + Q)

= ar = amv + - + vy, € span(S)
]

Definition 12 (Spanning sets and dimensionality). Let V/F be a vector
space. A set S C V is said to be a spanning set, if span(S) = V.

If V' has atleast one finite spanning set, V' is said to be finite-dimensional.
Otherwise, V' is said to be infinite-dimensional.

Remark 4. V may have many finite spanning sets, of different sizes

Definition 13 (Basis of a vector space). Let V/F be a vector space. We
say that B = {vy,...,v,} C V is a basis of V' if every vector v € V' can be
expressed in a unique way

v=o1v1 + - F v, aq,...,a, €F
that is, as a linear combination of elements of B.

Definition 14 (Isomorphic spaces). Let V/F and W/F be vector spaces. We
say that V' is isomorphic to W if there is a map ¢ : V — W s.t.

1. ¢ is one-to-one and onto
2. (p(Ul + UQ) = gO(Ul) + QO(UQ);Vl}l,UQ eV
3. p(av) = ap(v);Yv € V.Va € F

Theorem 2. If a vector space V/F has a basis B = {vy,...,v,} consisting
of n elements, then it is isomorphic to the space

aq
W =TF" =

Qn
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Proof. Let B' ={ey,...,e,}, where

1 0
ep=1\|:|;---sn=
0 1
Qg
B’ is a basis of ), as any w = [ : [ € W can be expressed in a unique way
aTL

w= e + -+ aye,

Let p: V — W,
p(v1) = e
@(Un) = €n

For any v = aqvy + -+ - + v, €V,

a7

p(v) =

Therefore,

olaqvy + - + auu,) = aqe + age,

= anp(v1) + -+ + anp(vn)
If v# v,

V=V + -+ oy,

/ / /
v =o0qv1 + -+ o,

Hence ¢ is one-to-one.
aq
Foranyw=1| : [ € W.

Qp
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Let v = vy + - - - + v,

Therefore,
a1
pv)=|: |=w
Qp
Therefore, ¢ is onto. [

5 Linear Dependence

Definition 15 (Linearly dependent subsets). Let V/F be a vector space. Let
S C V be a finite subset. S is said to be linearly dependent if there exist
scalars aq, ..., q, € F, not all equal to zero, s.t.

o + - Fapy, =0

Otherwise, S' is said to be linearly independent if all ¢y = --- = a,, = 0.
Example 9. Is S = {v1,...,v,v,av} linearly dependent?
Solution.

O+ + 0+ (—)v+ (av =0
Therefore, as not all coefficients are zero, S is linearly dependent.
Example 10. Is S = {vy,..., v, O} linearly dependent?
Solution.

0)vy +---+(0)vy,+ (1) O =0
Therefore, as not all coefficients are zero, S is linearly dependent.

Theorem 3. Any basis B = {vy,...,v,} of a vector space V is linearly
independent.

Proof. Let
avy + -+ v, =0
Also,

0)vy+-+-+ (0)v, =0 (3.1)
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Therefore, there are two representations of v = Q as linear combinations of
elements of B. By the definition of basis, they must coincide.
Therefore,

o] = 0
a, =0
Hence, B is linearly independent. O

5.1 Properties of Linearly Dependent and Independent
Sets

Theorem 4. If S C S" and S is linearly dependent, then S’ is also linearly
dependent.

Theorem 5. If S C S" and S’ is linearly independent, then S is also linearly
independent.

Theorem 6. Let S = {vy,...,v,}. S is linearly dependent iff one of the v;s
s a linear combination of the others.

Proof of statement. Suppose

Up =101 + -+ Qp1Un1
s+ ap v, + (=D, =0
Therefore, S is linearly dependent. O]

Proof of converse. Suppose
QU1 + Q1 Up—1 QU = ©)

not all of ;s are 0. WLG, let av,, # 0

. aq Qn—1
‘Un:_ivl_..._
O O

O

Theorem 7. Let S = {vy,...,vn}. Let w € V. Suppose w is a linear
combination of v;s

W= V1 + - + o,

Then, such an expression is unique iff S is linearly dependent.
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Proof of statement. Let
W= v + -+ Uy,

be unique.
If possible, let

Biog + -+ Bty = O

not all 3;s are zero.
Then,

(a1 + v+ - -+ (0 fn)v, = w
This is another expression for w, and contradicts the assumption. O
Proof of converse. If possible, let S be linearly independent. Assume
w=ajv + -+ U,
Therefore,
(g —a))vy + -+ (o — ) )v, = O
Therefore, S is linearly dependent, which contradicts the assumption. O

Theorem 8 (Main Lemma on Linear Independence). Suppose V' is spanned
by n vectors.

Let S ={vy,...,u,} C V. Suppose m > n.

Then, S is linearly dependent.

Proof. Let E = {wy,...,w,} be a spanning set for V, V = span(F).
Therefore, all elements of S can be represented as linear combinations of
elements of E.

U1 = Bllwl + -+ Blnwn

Um = 6m1w1 4+ ﬂmnwn
Let

vy + -+ apv, =0
oo (fruwy + - A Brawn) - F a(Braws + -+ Bnwy) = O
(alﬁll + -+ amﬁml)wl +---+ (alﬂln +---+ O‘mﬁmn) - @
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Therefore

o+ oy b =0

a161n+ +amﬁmn =0

These equations form a homogeneous linear system with respect to aq, . . ., ayy,.
As m > n, the system has a non-zero solution. Therefore not all «;s are zero.
Hence S is linearly dependent. m

Definition 16 (Alternative definition of a basis). B = {vy,...,v,} is said
to be a basis of V if B is a spanning set and B is linearly independent.

Theorem 9. If B and B’ are bases of V', then they contain the same number
of elements.

Proof. 1f possible, let B contain n elements {vy,...,v,}, and B’ contain m
elements {wy,...,w,}, m > n.

Therefore, B is a spanning set and B’ contains more elements than n, hence
by Main Lemma on Linear Independence, B’ is linearly dependent. Also, B’
is a basis, so it is linearly independent.

This is a contradiction. O]

Definition 17 (Dimension of a vector space). Let V/F be a finite-dimensional
vector space. The number of elements in any basis B of V is called the
dimension of V.

n=dmV

Remark 5. If V and W are vector spaces over F, s.t.
dimV = dim W

then, V' is isomorphic to W

Theorem 10. If S = {vy,...,v,} is a spanning set of V', and if S is not a
basis of V', a basis B of V can be obtained by removing some elements from

S.

Proof. 1f S is linearly independent, then it is a basis.
Otherwise, if S is linearly dependent, it has an element, WLG, say v,,, which
is a linear combination of the others.

Um = QU1 + - - + Qpp1Up—1
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Let
S'=8—{vn.}

S’ is a spanning set.
Therefore, Vv € V

vV = Blvl + -+ Bm—lvm—l + Bmvm
= f1v1 + -+ B—1 + Bm(@1vr + - + Qp—1Um—1)
=7V + - Ym—1Um—1

If S is linearly independent, then it is a basis, else the same process above
can be repeated till we get a basis.
Therefore, a basis is a smallest spanning set. O

Theorem 11. If By = {vy,...,v,} is a linearly independent set, and if By
is a basis of V', a basis of V' can be obtained by adding elements to By.

Theorem 12. Let V be a vector space, s.t. dimV = n.
If B satisfies 2 out of the 3 following conditions, then it is a basis.

1. B has n elements.
2. B is a spanning set.
3. B s linearly dependent.

Theorem 13 (Dimension Theorem).

dim(U + W) =dim U 4+ dim W — dim(U N W)
Theorem 14.

U+ W =span(U U W)

If

then,

U+ W =span(BU B')
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Proof. Let ve U+ W.

Then,
v=ut+w ;ucelwelW
veUUW
weUUW
-.v € span(U U W)
Let

vespan(UUW) v =aqv; + -+ ogvy ;0 €eUUW

Let
v1,...,0 €U
Vg, .-, 0 €W
Therefore,

v= (v + -+ ) + (v + -+ - + akog)
velU+W

5.2 Changing a Basis

Let B ={v1,...,v,} be a basis of V, s.t. dimV =n. Let B’ = {v{,..., v, }.
As B is a spanning set, all of v/, . .., v/, can be expressed as a linear combination
of vi,...,v,.

V] = Y1101 + 0+ Yn1n

'U;l = Y1nU1 + -+ YnnUn

Definition 18 (Transition matrix). The matrix

Y1 - Vin
C: . .

Ynl --- Tnn

is called the transition matrix from B to B'.
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If B and B’ are considered as row vectors of length n filled by vectors,

V] = Y1101 + 0+ YaUn

Uy, = Va1 + - YanUn
can be written as
Ban - BIXnOan
Theorem 15. B’ is a basis of V iff C' is invertible.

Proof of statement. Let B’ = BC' be a basis.
B’ is a basis, and hence is a spanning set. Therefore, any vector from B can
be expressed as a linear combination of elements of B’.

Therefore,
B=BQ
= BCQ
Also,
B =BI
Therefore,
I=CqQ
Similarly,
B' = BC
= B'QC
Also,
B'=B'I
Therefore,
I =QC
Therefore,
CQ=QC=1
Hence C' is invertible. [
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Proof of converse. Let B = BC and C be invertible. Therefore, B’ is a basis

iff B’ is a spanning set.
Let z € V. As B is a spanning set,

2=V + -+ o,

Therefore,
z = Bg
where
(631
g =
ay,
.z=Bg
= B(Iyg)
= B(CC™ g
= (BC)(C™'g)
Let C7lg=f
.z2=DB'f

Therefore, z can be expressed as a linear combination of vectors from B’

Remark 6. Let B be a basis of V. If

BP = BQ

where P and () are n X n matrices, then

P=Q

Example 11. Let B = {ej,e2} and B’ = {e], €5}, where

/
e =e1+ €

!
€y = —€1 t+ €3
Solution.

/
e =e1+ e
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L, L,
€1 = 561 562
L, L,
ey = 561 + 562
1 1
_ 2 2
O = 11
2 2

5.3 Representation of Vectors in a Basis

Let V be a vector space of dimension n. Let B = {vy,...,v,} be a basis of
V.

Let z € V.

z can be written as a unique linear combination of elements of B.

Z =0V + -+ Uy,
The representation of z w.r.t B can be represented as

051
2] =
ay,
5.3.1 Properties of Representations
1. [2’1 + ZQ]B = [21]3 + [22]3
2. |az|gp = alz|p
3. [21]3 = [ZQ]B = 21 = 29

al Oél
4. V € Fn,ﬂz I~ V, S.t. [Z]B =

[0 7% Qnp,
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6 Determinants

6.1 Definition

Definition 19 (Determinants). Given an n x n matrix A, n > 1, det(A) is
defined as follows.

n=1
n=2
n=n

det(a) = a

21

d 11 Qi)
et = 11022 — (12021
22

The determinant of a n X n matrix is the summation of n! summands. Each
summand is the product of n elements, each from a different row and column.

Summand | Permutation | Number of Elementary Permutation Parity
1 2 3 0

a11022033 1 2 3 even
1 2 3

a12a230a31 <2 3 1) 2 ((1, 2, 3) — (2, 1, 3) — (2, 3, 1)) even
1 2 3

13021039 <3 1 2) 2 ((]., 2, 3) — (]_, 3, 2) — (37 1, 2)) even
1 2 3

a13a22031 <3 9 1) 1 ((17 2, 3) — (3, 2, ]_) odd
1 2 3

12021033 9 1 3 1((1,2,3) = (2,1,3) odd
1 2 3

a11093032 (1 3 2) 1 ((1,2,3) — (1,3, 2) odd

6.2 Properties

Theorem 16. If A, A" are matrices s.t. all rows except the i™® row are
identical, and A" is obtained by addition of i row of A and i™® row of A’,

then

det(A”) = det(A) 4 det(A)

1Any permutation can be represented as a result of a series of elementary permutations,
i.e. permutations of 2 elements only. The parity of a particular permutation depends of
the parity of the number of elementary functions required for it.
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Theorem 17. If A’ is obtained from A by switching two rows, then
det(A") = —det(A)

Theorem 18. If A’ is obtained from A by multiplication of a row by a scalar
«, then

det(A") = adet(A)

Theorem 19. If A’ is obtained from A by adding to the i row the j* row
multiplied by a scalar o, then

det(A") = det(A)

Corollary 19.1 (Corollary of Property 2). If A has two identical rows, then
det(A) = 0.

Theorem 20. The determinant of upper triangular and lower triangular
matrices is the product of the elements on the principal diagonal.

Theorem 21.
det(A") = det(A)

Corollary 21.1. In all above theorems, the properties which are applicable
to rows, are also applicable to columns.

Theorem 22. If A, B, C' are some matrices, and Q is the zero matriz,

Ame B
( 0 Cnxn) = det(A) - det(C)

Theorem 23.
det(AB) = det(A) det(B)
Corollary 23.1. If A is invertible, then
det(A) #0

Proof. A is invertible.
Therefore, 4P, s.t.

PA=1
oo det(PA) = det(1)
codet(P)det(A) =1
oo det(A) #0
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Theorem 24. [If
det(A) #0
then A is invertible.

Proof. 1f possible let A be non invertible.
Let the REF of A be Apg.
As A is non invertible, Agr has a zero row. Therefore,

det(AR) =0
But
det(A) =0

This is not possible as elementary row operations cannot change a non-zero
determinant to zero.
Therefore, A is invertible. O

Theorem 25.
det(A) #0

iff the rows of A are linearly independent iff the columns of A are linearly
independent.

Proof. 1f possible, let the rows of A be linearly dependent.
Therefore, either all of them are zeros, or one row is the linear combination
of the others.

Case 1 (All rows are zeros).
codet(A) =0
Case 2 (One row is a linear combination of the others). Let

Up = QU1 + -+ + Qp_1VUn—1
U1
A=

Un—1
(%%
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Up —> Up — QU1 + -+ -+ Qp_1Un_1

(%1
Un—1
O
(4) =0
=0

codet(A
. det(A)

This contradicts det(A) # 0. Therefore, the rows of A must be linearly
independent.

If vq,...,v, are linearly independent,
dimR(A) =n
S.r=n

Therefore, there are no zero rows in REF of A. Hence A is invertible.

codet(A) #0

6.3 Practical Methods for Computing Determinants

6.4 Expansion along a row/ column

Let A be a m x n matrix, and let A;; be the matrix obtained by removing
the i'" row and j*® column from A.

det(A) = i(—l)i+j@ij det(A;;)

6.5 Determinant Rank

Definition 20 (Determinant rank). Let A be any m x n matrix. Consider all
square sub-matrices of A and compute their determinants. If there is an r x r
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sub-matrix of A s.t. its determinant is non-zero, but the determinants of all

(r+1) x (r+ 1) sub-matrices of A are zero, then, r is called the determinant
rank of A.

Theorem 26. The determinant rank of A is equal to the rank of A.

7 Linear Maps

7.1 Definition

Definition 21 (Linear map). Let V and W be vector spaces over the same
field F.

p: V=W
is said to be a linear map if
L. (v +v2) = p(v1) + (vg); Yur,v0 € V
2. p(aw) = ap(v);Yv € V,Va € F

7.2 Properties
1. p(0)=0
2. p(=v) = —p(v)

7.3 Matrix of a Linear Map

Definition 22 (Matrix of a linear map). Let ¢ : V' — W be a linear map.
Let

n=dmV
m = dim W
Let
B =A{v,...,u,}

B ={wy,...,w,}
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be bases of V and W respectively.
Let

o(v1) = apwy + - -+ + A1 Wiy,

(P(Un) = QW1 + * 0 F QWi
The matrix

a1 ... A1p
A=

XAyl . Omn

is called the matrix of ¢ with respect to the bases B and B’.
It is denoted as

A=[plp s
Theorem 27. Let
p: VW

be a linear map.
Let B and B’ be bases of V' and W respectively, and let

A= MB,B'

be the matriz of @ with respect to B and B'. Then, Vx € V,

[p(2)] = Alz]B
Proof. Let
B=A{v,...,u,}

B = {wl,...,wm}
Case 3 (z € B). WLG, let z = v;. Then,
0

s = | 1
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i.e. all rows except the it" row are 0.
Let this vector be e;.
Therefore,

Alz]p = Ae;

is the i column of A.

[p(2)]B = [p(vi)] B
is the ¢*® row in the formulae of ¢(v1),. .., (vy,).
Therefore, it is the i*" column of A.

Case 4 (z € V is an arbitrary vector). Let
2 =01V + -+ o,
Therefore,

[p(2)]B = lp(aavy + -+ + anvn)] B
= [anp(v2) + -+ - + anp(vn)] B
= arfp(vi)lp + -+ + anfe(va)] s
= ay - (1%column of A) + -+ + ayc, - (n™column of A)
= Alz]p

7.4 Change of Bases

Theorem 28. Let V, W be vector spaces over F, dim(V) = n, dim(W) = m.
Let ¢ : V.— W be a linear map. Let B, B be bases of V and let B' and B’
be bases of W. Let A = [¢]pp and A = [p|5 5 be the matrices of ¢ w.r.t.

the pairs B, B’ and B, B'. Let P denote the transition matriz from B to B,
and let Q) denote the transition matriz from B’ to B'. Then,

A -1
Amxn = memAanPan

Proof. Vz €V,
[p(2)]p = Alz]B 28.1
()5 = Alzlz (28.2
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We have

[2]p = P23 (28.3
[p(2)]s = Qle(2)]5 (28.4
Therefore,
n @) —
Alzls = Qle(2)]5 (28.5)
n @) —
AP[z]5 = Qle(?)|5 (28.6)

Multiplying on the left by Q~1,

QAP = [p(2)]5
~le(2)l5 = QAP

Comparing with ([28.2)),
A=Q'AP

7.5 Operations on Linear Maps
Definition 23 (Operations on linear maps). Let
o: V=W
oV =W
be linear maps.
o+ V=W
is defined as
(0 +¢)(0) = p(v) + ¢ (v)
and
ap: V=W

is defined as
(ap)(v) = ap(v)

57



Definition 24 (Composed map). Let
p: V=W
oW —=U
be linear maps.
(o) V—=U

is defined as

(¢ o p)(v) = ¢'(p(v))

Theorem 29 (Matrix of composed map). Let o : V — W, o' : W — U be
linear maps. Let (po ') : V — U be the composed map. Let dimV = n,
dimW =m, dimU = 1. Let B, B', B" be bases of V., W, U respectively. Let
A=lplpp, A = [¢|p p be the matrices of v, ¢'. Let A” = [¢' o ¢|p pr be
the matrix of the composed map. Then,

A" =AA
Proof. Let z € V.

(¢ 0 p)(2)]mr = [¢'(0(2))]B
= Alp(2)]
= A/A[Z]B

B/

By definition,
[(¢" 0 p)(2)]pr = A"[2]5
Therefore,

A" =AA

7.6 Kernel and Image
Definition 25 (Kernel and image). Let ¢ : V' — W be a linear map.

kero ={v eV :¢(v) =0}
im g = {p(0) v e V)
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Theorem 30. ker ¢ is a subspace of V' and im ¢ is a subspace of W.
Proof.

»(0)=0
SO €ekerp

If vy, vy € ker ¢, then

p(v1 + v2) = p(v1) + p(v2)
=0+0
=0
C.U + vy €EkerV

If v € kerp, a € F, then

plaw) = ap(v)
= a0
=0..av €kery

Therefore, ker ¢ is a subspace of W.

»(0)=0
S0 €eimy

If wy, we € im ¢, then

wy = p(vy)
wy = p(v2)
Sowy +wy = @(v1) + p(v2)
= ¢(v1 + v9)

SLwp Fwe € Imp

IfweW, aecl, then

aw = ap(v)
= p(av)
Coow € imp

Therefore, im ¢ is a subspace of W.
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7.6.1 Dimensions of Kernel and Image
Theorem 31. Let o : V — W be a linear map. Then
dim(ker(y)) + dim(im (¢))

Proof. Let kerop =U, U C V.
Let By = {v1,...,v;} be a basis of U.
Completing By to a basis B of V,

B={v1,..., U Uks1,---,Upn}

Let

Wr+1 = SO(Uk+1)

wy, = p(v,)

Therefore, we need to prove that B’ is a basis of W' = im (), by proving
that B’ is a spanning set and that B’ is linearly independent.

Take w € im (), so that there is v € V s.t. ¢(v) = w.

Representing v as a linear combination of elements of B,

V=001 + - QU+ Q1 V1 + 00 QpUy
L w = ()
= (o) + -+ + U + Qg Uk + -+ Q)
= a1p(vr) + -+ (Vi) + apa1 (V) + - 4 anp(vn)
= p10(Vig1) + -+ (V)
= Q1 Wht1 + ° -+ Qply
€ span(B’)

Therefore, B’ is a spanning set for .
Let

6k+1wk+1 +oe 4+ ﬁnwn =0
Therefore, B’ is linearly independent iff

Brpr = =B =0

As ¢ is a linear map,

O(Brr1Vkt1 + -+ + Bovy) = O
S Bra1Vke1 + oo 4 Buun € ker g
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Therefore, it can be expressed as a linear combination of vectors of By, which
is a basis of ker ¢.

Let
Br1Vhir + -+ Batn = Qpp1Vpyr + -+ Uy
S0Vt F o QU — BV — <0 — Batn = O
As {vy,...,v,} is a basis of V, all coefficients must be 0
Therefore,
Bk—l—lvk-l—l == ann =0

Hence, as B’ is a spanning set of im ¢ and also linearly independent, B’ is a
basis of im .
Therefore,

dim(im ¢) = size of B’
=n—k
= n — dim(ker ¢)
. dim(im ¢) 4 dim(ker ¢) = dim V'

Corollary 31.1.
dim(im ) =7
where r is the rank of A

Corollary 31.2. Let A,y xn be a matriz of rank r. Let C(A) be the column
space of A, and let dim C(A) be the column rank of A. Then

dimC(A) =r
Proof. Define
p:F*"— F™

s.t. A = [p|p p, where B is the standard basis of F.

B={|:1],...,
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Yv € F", we have

[p(v)]p = Alv]p
If v=oe¢,
[p(ei)] = Ae;

which is the i*" column of A. So, the space spanned by {p(e1),. .., ¢(e,)} is
equal to C(A). But it is also in im ¢.
Therefore,

imp = C(A)
and

dim(im ¢) = dim(C(A))
c.r=dim(C(A))

]

Remark 7. Let ¢ : V. — W be a linear map. Let w € im (p), so that there
isv eV st pw) =w. Then any v’ s.t. ¢(v') = w can be written down as
v' = v + vy where vy € ker .

Part VI
Linear Operators

1 Definition

Definition 26 (Linear operator). A linear operator or transformation
T:V =V

is a linear map from a vector space V to itself.

2 Similar Matrices

Let B and B be bases of V. Let A and A be the representing matrices
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Both these are n X n matrices, where n = dim V.. Let P denote the transition
matrix from B to B. Then,

A=PlAP

Definition 27 (Similarity of matrices). Let A, A be n x n matrices. A is
said to be similar to A, denoted as A ~ A, if there exists an invertible n x n
matrix P, s.t. A= P 1AP.

2.1 Properties of Similar Matrices
1. A~ A

2. If A~ A, then A~ A

3. IfANﬁand;lN;Nl,thenANE
4. If A ~ A, then det(A) = det(A)
5. f A~ 1 then A=1

3 Diagonalization

Given a square matrix A, ,, decide whether or not A is similar to some
diagonal matrix D. If it is, find D, and P s.t. P~*AP = D.

Alternatively,

Given an operator T': V' — V, decide whether or not there exists a basis B of
V, s.t. [Tp is a diagonal matrix D. If it exists, find D, and B, s.t. [T]g = D.

Definition 28 (Diagonalizability). If A is similar to a diagonal matrix, A
is said to be diagonalizable. P, s.t. P"'AP = D is called a diagonalizing
matrix for A. D is called a diagonal form of A.

4 Eigenvalues and Eigenvectors

Definition 29 (Eigenvalue and eigenvector). Let A be a n x n matrix over
F. X\ € I is said to be an eigenvalue of A, if dv € F, v # 0, such that

Av =M

v is called an eigenvector corresponding to A.
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Definition 30 (Alternate definition of eigenvalue and eigenvector). Let
T :V — V be a linear operator, where V' is a vector space over F. \ € [ is
said to be an eigenvalue of A, if Jv € V v # 0, such that

T(v) =M
v is called an eigenvector corresponding to .

Definition 31 (Spectrum). The collection of all eigenvalues of a matrix, or
a linear operator is called the spectrum.

Theorem 1. Let A be a n X n matriz. A € F is an eigenvalue of A iff
det(Al, — A) =0
Proof. X\ is an eigenvalue of A

<~ JvelF" v#0, st Av= >\
— eF v#0,st. (M —A)v=0

1
= U=
Tn
T
<= (M —A)| : | =0 has a non-zero solution
Tn

<= there are free variables
<= det(\Ml —A) =0

]

Theorem 2 (General criterion for diagonalization). Let A be a n X n matriz.
A is diagonalizable if and only if there exists a basis B = {vy,...,v,} of F"
consisting of eigenvectors of A. In such a case, the diagonal entries of D
are eigenvalues of A, and B can be chosen as consisting of the columns of P,
where P~YAP = D.

Corollary 2.1. If A has no eigenvalues, then it is not diagonalizable.

Theorem 3. Let Ay, ..., \s be pairwise distinct eigenvalues of an nxn matrix
A, de. Yi# G, N # N Let vy,...,vs be eigenvalues of A corresponding to
A,y As. Then the set S = {vy,...,vs} is linearly independent.
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Proof. If possible, let S be linearly dependent. Let S’ denote a linearly
dependent subset of S of smallest possible size, say [. WLG, let S’ =

{v1,...,u}.
Hence, dayq,...,a; € F, s.t.

U + s+ o = ©) (31)
Multiplying (3.1) on both sides by A,

a1 Avy 4+ -+ oqAvy =0 (3.2)
011>\1U1 + -+ Oq)\ﬂ)l =0

Multiplying (3.1) on both sides by A,

o\ + -+ oAy =0 (3.4)
Subtracting from
ar(A = N)vp+ -+ o (N1 — AN)vy =0 (3.5)
Solving,
ar=o;=0
This is a contradiction. O

Corollary 3.1. Let A, x, have n distinct eigenvalues. Then, A is diagonal-
izable.

Proof. Let vq,...,v, be eigenvectors of A, corresponding to Ay,...,\,. As
they are distinct, by the above theorem, they are linearly independent. The
number of elements in the set {vy,...,v,} is n. Therefore, the set is a basis.
Hence, according to [General criterion for diagonalizationl A is diagonalizable.

m

5 Characteristic Polynomial
Definition 32 (Characteristic Polynomial). Let A be any n x n matrix.
pa(z) = det(zl, — A)

is called the characteristic polynomial.
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5.1 Properties
1. The roots of pa(x) are the eigenvalues of A.
2. degpa(z) =n
3. The coefficient of 2" is 1.
4. The constant term is ag = (—1)" det(A).

5. The coefficient of 2" is a1 = — (a1 + -+ + Gpp).
Theorem 4. If A ~ A, then pa(x) = pa(z).
Proof.
A =P AP
copar(x) =det(zl — A)
= det(x] — P"'AP)
=det(P ' (x)P — P"'AP)
=det(P Y (zI — A)P)

— dettPHT det(w] — A)det(PT
= det(z] — A)

= pa(z)
]

Definition 33 (Alternative definition of characteristic polynomial). Let
T :V — V be a linear operator. The characteristic polynomial of 7" is defined
as the characteristic polynomial of any representing matrix of 7'.

Theorem 5. Let f(z), g(x) be polynomials. Then Jq(z),r(x), s.t.

and degr(z) < deg g(x).
Definition 34 (Remainder). If
f(x) = g(x)q(x) +r(z)
r(z) is called the remainder after division of f(x) by g(z). If r(x) = Q, f(x)
is said to be divisible by g(z).
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Corollary 5.1. Let f(x) be a polynomial and let o be a root of f. Then f(x)
is divisible by (x — «).

Definition 35 (Algebraic multiplicity of eigenvalue). Let A be a n xn matrix,
and let pa(x) be the characteristic polynomial of A, and let A be an eigenvalue
of A. The algebraic multiplicity of X is defined as the largest possible integer
value of k such that p4(x) is divisible by (z — \)*.

Definition 36 (Eigenspace). Let A be a n X n matrix, and let A\ be an
eigenvalue of A. The eigenspace of A corresponding to A is defined as

Vi ={v e F"; Av = v}

Theorem 6. An eigenspace of a matrixz is a subspace of the field over which
the matriz is defined.

Definition 37 (Geometric multiplicity of eigenvalue). m = dim V), is called
the geometric multiplicity of .

Theorem 7. Let \ be an eigenvalue of A, x,. Let k be the algebraic multi-
plicity of X and let m be the geometric multiplicity of \. Then

m <k
Proof.
m = dim V),

Therefore, let By = {v1,...,v,} be a basis of V).
Completing By to B = {v1, ..., Um, Umi1,---,Un}, a basis of F".

Let P,x, be a matrix with columns vy, ..., v,.
P:<v1 cer Um Upgl o ... vn)
P is invertible as vy, ..., v, are linearly independent.
Consider A’ = P71AP,
APTAP =P A(n o U Upan oo )
= p~! (Avl oo Avy Avpar Avn)
:P’l(/\vl D *)
= (P‘l()\vl) R S 0. *)
:()\61 co Aey) xoLL. *)
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pa(x) = det(zl, + A"

m
= det ((xém )-8 A>)
— *
= det <(x OA)Im Ly — A)
= det((z — \)I,) - det(zL,_p, — A)
= (z = A)" - pz(z)
As A~ A,
pa(x) =pa = (x — A\)"pz(2)
By the definition of [Algebraic multiplicity of eigenvalue, k > m. O

Theorem 8. If a matriz A, «, is diagonalizable, then its characteristic poly-
nomial pa(x) can be represented as a product of linear factors.

pa(z) = (x = A" . (x = Nk
where k; is the algebraic multiplicity of \; and Ay, ..., As are pairwise distinct.

Proof. As A is diagonalizable, let A ~ D,

A0 0 0 0 0 O
0 0 0 0 0 O
0O 0 X O 0 0 O
0O 0 0 ° 0O 0 O
0 0 0 As 00
o 0 0 0 O 0
0O 0 0 0 0 0 X

r—XN O 0 0 0 0 0
0 0 0 0 0 0
0 0 z—XN 0 0 0 0
= det 0 0 0 0 0 0
0 0 0 0 z—X, 0 0
0 0 0 0 0 0
0 0 0 0 0 0 x— M\,



]

Theorem 9 (Explicit criterion for diagonalization). Let A be an n x n matriz,
s.t. pa(x) splits completely. Then A is diagonalizable if and only if Y\; of A,
the algebraic multiplicity coincides with the geometric multiplicity.

Proof of statement. If p4 splits completely, then k; + - - - + k,, = n.

If A is diagonalizable, then by the |General criterion for diagonalizationl there
is B ={vy,...,v,}, a basis of F", s.t. each v; is an eigenvector of A.
Dividing vy, ..., v, into s groups corresponding to A, ..., A, to each \;, there
correspond at most m; = dim V), eigenvectors, as they are a part of a basis
and hence linearly independent.

Therefore,

n<my+--+mg
As py splits completely,
n==ky+--+ks
Also, k; > m;
k4 kg =my 44 m,
moreover, Vi, s.t.1 < < s,

k:i:m,-

Proof of converse.

Vi, st.1<1<s
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Let the bases of the eigenspaces V),,..., V), be By, ..., B;.

|B1| = my

|BS| = M

Let B=ByU---UBs. |B| =n.
It is enough to prove that B is linearly independent.

Let
B ={vy,ve,...,wy,we,... U, U, ...}
Suppose
QU1 + QoUo + -+ - 4 frwy + Paws + - -+ yug +yus + ... =0

If possible, let at least one coefficient be non-zero. WLG, let a; # 0.
Hence, as vy, v9, ... form B; which is a basis of vy,

v =101 + agug + - - - # O

Let
w = Biw; + Bows + ...
U = YUl + YoU2 + ...
Therefore,

vtw+-tu=0

where v # Q and v € V), w € V),,...,u € Vj,.

But as A1, ..., \s are pairwise distinct, v, w, ..., u are linearly independent.
This is a contradiction. Therefore, B is a basis. Hence, as B consists of
eigenvectors of A, by the [General criterion for diagonalization| A is diagonal-
izable. ]

Theorem 10 (Criterion for triangularization). An operator T : V — V is
triangularizable, i.e. there is a basis B of V' such that [T'|p is upper triangular,
if and only if pr(x) splits completely.
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Theorem 11 (Jordan Theorem). Let T : V — V be a linear operator such
that pr(z) splits completely. Then there exists a basis B of V' such that [T|g
is of the form

Jg 0 0
[T]B =10 "-. 0
0 0 J

where each J; is of the form

A1 0 0 00
OoAx 1 0 00
0 0 ° 0 0
0 0 O 1 0
00 0 0 X1
00 0 0 0 A

where A is some eigenvalue of T'.

Part VII
Inner Product Spaces

1 Definition

Definition 38 (Inner product). Let F be R or C. Let V be a vector space
over F. An inner product on V is a function in two vector arguments with
scalar values which associates to two given vectors v, w € V their product
< v,w >€ F so that the following properties are satisfied.

L. (101 + agva, w) = a1 vy, w) + ag(v, w), Yui,ve,w € V, Yoy, ap € F
2. (v,w) = (w,v), Vo,w eV
3. (v,v) is a real non-negative number, Yo € V

Example 12. The dot product of two vectors is defined as follows. Is it an
inner product?

V=F"
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a 51
< N N >=alﬁl+---+anﬁn
oy Bn

Solution. All three axioms are satisfied by this product. Hence, it is an inner
product.

Theorem 1 (Sesquilinearity).

(v, Brwy + Bawa) = Bi{v, wi) + Ba{v, wa)
Vo, wi,we €V, f1,fp € F
Definition 39 (Length). The length of a vector

651

Oy,
is defined to be
loll = vag +---+af
Example 13. Let V be the vector space consisting of all continuous functions

f:[aA&,b] — R.

(og) = [ F(@)gle) de

Solution. All three axioms are satisfied by this product. Hence, it is an inner
product.

2 Computation of Inner Products

Definition 40 (Gram matrix). Let V' be an inner product space. Let
B ={vy,...,u.}
be a basis of V.

(vi,v1) ... (v1,0,)
GB: . .

<vn;v1> (vn,.vn>

is called the Gram matrix of the inner product with respect to B.
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Example 14. Find the Gram matrix of V' = F" with standard dot product
with respect to

1 0

B - E M ) :
0 1

Solution.

(e1,e1) ... (e1,en)

GB — . .
(en 1) .. (en,en)
1 0
0 ... 1

Example 15. Find the Gram matrix of V' = " with standard dot product
with respect to

Solution.

Gy = <<v1,v1> <u1,02>>

<112,U1> <U2;UQ>
(25 46
~ \46 85
Theorem 2.
(v, w) = [V]EGplw]g
Proof. Let
B=A{v,...,u,}

be a basis of V.
The Gram matrix is

G = ((vv)) = (9)
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To compute (v, w), find

(631
[v]p =

B
wlp=| :

Bn

(v,w) = {aqvy + -+ + @, P11 + -+ + Brn)

= a1 By (v, v1) + -+ 1B (v1, vn)

+ @BV, v1) + - -+ + 2B (va, V)

+ ...

+ @ B1{(Vn, 1) + -+ + @B (U, Up)
=ogufr+ -+ Ginbn

+ @292 P1) + -+ + Q22

+...

+ @ngn1 B+ -+ WnGnnBn

= [v]3Gplw]s

2.1 Change of Basis

Theorem 3. Let B, B be bases of V.. Let P be the transition matriz from B
to B. Then

Gz = P'GgP

where P is the matriz obtained by replacing all elements of P by their complex
conjugates.

Proof.
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(P[v]5)'Ga(Plu]p)
= []5(P'GpP)[w]5
Also,
(v,w) = []5G5lw]5
Therefore,
Gz = P'GgP

3 Norms

3.1 Definition

Definition 41 (Norm). Let V' be a vector space over F with inner product.
Yo eV,

[o]] = /{v, v)

||v]| is called the norm of v.

3.2 Properties

1. Positivity
[o]| =0, Vv eV
v =0 <= v=0

2. Homogeneity
lov| = |al[lv]l, Vv € V,Va € F

3. Triangle Inequality
lu+ ol < lull + [lvll, Yu,v € V

4 Orthogonality

4.1 Definition

Definition 42 (Orthogonality). A vector u € V' is said to be orthogonal to
veVif

(u,vy =0
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It is denoted as v L v.

4.2 Properties
1. If w L v, then v L u.

2. fu Lo apel, then au L Po.

3. 0O Lv,YveV.

5 Orthogonal and Orthonormal Bases

Let V' be a vector space over F with an inner product. Let S C V.

Definition 43 (Orthogonal set). S is said to be orthogonal if any two distinct
vectors from S are orthogonal.

Definition 44 (Orthonormal set). S is said to be orthonormal if it is orthog-
onal and the norm of every vector is 1.

Definition 45 (Orthogonal basis). S is said to be an orthogonal basis of V/
if it is orthogonal and a basis of V.

Definition 46 (Orthonormal basis). S is said to be an orthonormal basis of
V' if it is orthonormal and a basis of V.

Theorem 4. Let S be an orthogonal set such that © ¢ S. Then S is linearly
independent.

Proof. Let
Ay, ...,y €F
V1y... Uy € S
Let

a1 + -+ v, = 0
S is linearly independent if and only if
o =-=0, =0

vy + -+ AUy, =0
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Multiplying both sides by vy,

(v + -+ 4 apom, v1) = (0, vy)

Soar (v, vr) 4 F (U, v1) =0
As vy,...,v,, are orthogonal,

(vg,v1) =+ = (U, V1)

(1/1<U1,?J1> =0

As vy #0
(vi,v1) #0
coap =0
Similarly,
Qg ="+ =0Qp =0

Corollary 4.1. Any orthonormal set is linearly independent.

Corollary 4.2. Any orthonormal set consisting of n = dim V' vectors is an
orthonormal basis of V.

Example 16. Is the set

={()-()}

orthonormal?
Solution. The norm of the elements of S is not 1. Hence S is not orthonormal.

Theorem 5. Let B = {vy,...,v,} be an orthonormal basis of V.. Let v € V.
ai
Let [vlg = | : |. Then,

Op

a1 = <U7 Ul)

a, = (v, v,)
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Proof.

V=001 + o+ Qpy
Sov,vn) = (oqvr F - 4 @Ry, vr)
=y (v1,v1) + - + @ (vp, V1)

= Oél
Similarly, in general, V1 < i < n,

<U7 Ui> =y

]

Theorem 6 (Pythagoras Theorem). Let B = {vy,...,v,} be an orthonormal

a1
basis of V. Letv € V. Let [v]g = | : |. Then,
an
ol = Jaa * + - - + Jaa[?
Proof.
2
[oll” = (v,v)
= (1 4+ + QpUn, 101 + - + ApUp)

= 0@ + -+

=l + ... ||

6 Unitary Matrices

Definition 47. Let F=R or F = C. Let A be an n X n matrix. A is said

to be a unitary matrix if

A=A = A=A

If F = R, unitary matrices are called orthogonal matrices.

1. [ is a unitary matrix.

2. If A} and A, are unitary matrices, then (A;A45)* = ASA;T.
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3. If A is unitary, A~! is also unitary.

Theorem 7. Let A be an n X n matriz. Let vy,...,v, be the columns of
A. Let A be an n x n matriz. Let rq,...,r, be the columns of A. Then the
following are equivalent.

1. A is unitary.

2. {v1,...,v,} is an orthonormal basis of F™, with respect to standard dot
product.

3. {r1,...,rn} is an orthonormal basis of F", with respect to standard dot
product.

Proof. As A is unitary, A is also unitary.

(A" = (A%
1)

%»%a

(
= (
= (
= (49"

A is unitary
— A*=A"1
— AA* =1
— AA' =1
< (Azt)lk = ]ik
= Z Q5 Qif
j=1
=r; Tx < {ry,...,r,} is an orthonormal basis

]

Theorem 8. Let V' be an inner product space. Let B be an orthonormal
basis of V. Let B' be another basis of V. Let P be the transition matrix from
B to B'. Then B’ is orthonormal if and only if P is unitary.

Proof of statement.

Gg = P'GgP
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If B’ is orthonormal,
. I=PIP
=P'P
Therefore, P is unitary.

Proof of converse. If P is unitary,
GB/ - PtGB?
As B is orthonormal,

Gp=1
GB/ = Ptﬁ

As P is unitary,

PP=1
GB/ =1

Therefore, B’ is orthonormal.

7 Projections

7.1 Definition

Definition 48. Let S C V be a set of vectors.
St = {v e V|{u,v) =0vu € S}

Theorem 9. S* is a subspace of V.

Proof.
(u,0) =0..0e St

If v;,v9 € S*,

(u, 01 +v2) = (U, v1) + (u, v2)
=0+0
=0
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If v e S,

(u, ) = afu,v)
=0
0
Theorem 10.
S+ = span(9)*
Proof. Let v € S+, u € span(S).
Let aq,...,m €F, uy, ..., u, €5.
Therefore,
U= Uy + -+ XU,
{u,v) = {oqug + -+ + QpUm, V)
= a1(u1,v) + - 4+ @y (Upm, v)
=a; 0+ +a,-0
=0
Therefore, v € S*.
Therefore, S+ C span(S)*.
S C span(S). Therefore, let v € span(S)+. Then,
(u,v) =0
for all v € span(.S).
Hence for all u € S,
(u,v) =0
Therefore, span(S)+ c S*. O

Definition 49 (Projection). Let V' be an inner product space. Let W be
a subspace of V. Let v € V. Let B = {wy,...,w,} be a basis of W. The
projection of v onto W is defined as follows.

(v, wy) ot (v, W) w
(V) = 7<w1,w1> 1+ + 7<wm’wm> m
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7.2 Properties
1. mg(v) e W
2. mp(v) =v <= veW

3. v—mp(v) € Wt

7.3 Gram - Schmidt Process

Input Any basis B = {vy,...,v,} of V.
Intermediate Output Orthogonal basis B = {vy,...,v, of V
Final Output Orthonormal basis B® = {v;!,... v,°} of V

Step 1 v; = vy, denote wy; = span{v;} = span{v,}, By = {v{}

. Vg, V1) —
Step 2 vy = vy — g, (V2) = v — <f, i>v1
<U17U1

As vy L vy, By = {v1,v3} is an orthogonal set. Denote W, =
Span{{)\i @\2/} = Span{vh U2}‘
<U27 U~1> —~ <U37 @)

Step 3 v3 = v3 — g, (v3) = v3 — o le>vl— (5.03)

As U3 € Wyt, By = {U1,03,03} is an orthogonal set. Denote Wy =
Spa’n{val? 1757 173} - Span{vl7 Vo, U3}'

Step n The n' step gives B, = {v1,...,v,} which is an orthogonal basis of V.

B is obtained by normalization of B,,.

1
0
V1~ = 7=
[[or]]
1
0
Up = 77—
T wll
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Example 17.

{U17 V2, 'U3}

B =

Solution.

N
= | — © RN,
</U\
o o O -
(
_ | -
—
s - ~
~f~ = — o .
S|E ~— J >
- (AN EaN]
NU _ -
~ P e
| — — O
—_—— oo - —
o
>
Il Il Il Il
o o
IS NB
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Therefore, normalizing Bs,

1/\/5
1110: 1/\/5
0
_1/\/5
UQOZ 1/\/5
0
0
U30: 0
1
AN VoA
B =<z Ve L0
0 0 1

/Ul

7.4 Inequalities

Theorem 11 (Bessel’s Inequality). Let {v1,...,v,} be an orthonormal set.
Let v € V' be any vector. Then

2 2 2
[ol]7 = [{v, o0) " + - -+ [0, vm)

and the equality holds if and only if v € spanf{vy, ..., v, }.
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Proof. {vy,...,v,} can be completed to an orthonormal basis

B:{’Ulw"avmavm-&-l?"'avn}

Using |Pythagoras Theorem),

oll* = [¢v, o) " + -+ {0, 0m)[* 4 [0, v ) |* - 4 {0, 0a)
ol = o, o) P o, v

The equality holds if and only if
(0, V) - (0, 00)F = 0
if and only if

(v, i) = 0

(v, va)[* = 0
If v € span{vy, ..., v,},
V=V + -+ QU
Therefore,

(U, V1) = (@101 + -+ + QUi Umng1)

= a1 (U1, Umy1) + 0+ (U, Umgr)
as the basis is orthonormal, (v;, V1)
S AU, Umg1) = 0
Similarly,

[V, Vms2)|* = 0

(v, va)|* =0
Conversely, if

(v, i) = 0

(v, 02" =0
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let
V=1V + 0+ QU+ Qe 1Umy1 + Qi Uy
2.0 = (v, V1)
S0={qv1 + - + QU + Qi 1Uma1 + U, Una1)

All (v5, Upmy1) except (U1, Vmg1) are 0.
Therefore,

(0, Ve )[* - (0, 00)F = 0
O
Theorem 12 (Cauchy - Schwarz Inequality). Let u,v € V' be any vectors.
Then
[(w, 0)] < lull - [Jo]
and the equality holds if and only if {u,v} is linearly dependent.

Proof. If uw = Q, the equality holds.
Let u # O.
Let

Applying Bessel’s Inequality| to the orthonormal set {u°},

2 2
[l = 1{v, u?)]

By [Bessel’s Inequality| the equality holds if and only if

v € span{u’} = span{u}

Therefore, v and u are linearly independent. ]
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8 Angle

Definition 50 (Angle). Let V' be a vector space over R with inner product
(,). Let u,v € V, u# O, v # Q. The angle between u and v is defined as

(u, v)

Ccos p =
]l - ]l

9 Triangle Inequality
Theorem 13 (Triangle Inequality Theorem). Let u,v € V.. Then

[u 4 vl] < flull + [|vf]

Proof.
lu+v|]* = (u+ v, u+ )
= (u,u) + (U, v) + (v,u) + (v, v)
= [lll® + (w,v) + (u, 0) + [Jo||*
= [[ull® + 2R ((u, v) + [|v]*
As R(z) < |z,

2 2 2
lu+ vl < flull® + 2 |(u, v})| + o]

Hence, by [Cauchy - Schwarz Inequality]

lu+oll” < Jlull® + 2ullllo] + ([0
2 2
o™ < (flull =+ loll)
ol < el 4 [l

10 Orthogonal Decomposition
Theorem 14. Let W be a subspace of V. Then

V=waowt
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Proof. Let B be an orthogonal basis of V. Consider a projection mg(v).

Therefore,

v=mg(v)+ (v—mpv))

7TB(’U) eWw
v—mpv) € Wt
Therefore,
V=W+Wwt

If possible, let w € W N W+,
definition of orthogonality,

(ue Wyue W) =0

Sou=0
Therefore,

V=WaeWwt

Therefore, v € W and u € W+. By the

]

Corollary 14.1. Let B be an orthogonal basis of W. Then mg(v) does not

depend on the choice of B.

Proof. As B is an orthogonal basis of W,

v = WB(U) + (U —7TB<U))

Let B’ be another orthogonal basis of W. Therefore,

v = TB/(U) + (U — WB/(U))
Therefore,

mp(v) € W
’/TB/(U) eWw

and

v—ng(v) € W+
v—7p(v) € WFL
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As
V=waew"
such a representation is unique. Therefore,

7TB(’U) = g (’U)

m
Theorem 15. Let u,v € V, s.t. w L v. Then
2 2 2
lu £ o]” = [[ull” + [|v]
Proof.
2 2 2
Ju £ 0" = [[ul]” + (o]
= (u,u) + (U, v) + (v,u) + (v, v)
= (u,u) + (v, v)
2 2
= [Jull”+ [o]
m

11 Distance

Definition 51 (Distance). Let u,v € V. The distance d(u, v) from u to v is
defined as

d(u, v) = [Ju = v]|
Theorem 16. Let u,v € V. Then
d(u,v) >0
and the equality holds if and only if u = v.
Theorem 17. Let u,v € V.. Then
d(u,v) = d(v,u)
Theorem 18. Let u,v € V. Then
d(u,v) + d(v,w) > d(u, w)
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Theorem 19. The projection my (v) is the vector in W closest to v, i.e.
d (v, mw (v)) = min d(v, w)
Proof. Let v € V. For any vector w € W,
2 2
(d(v, u))” = [lv = w]|

= H(v = mw(v)) + (7w (v) — w)

P+ 7w (v) = w
I

|

= [lv—7mw(v) ’
2 |v—mw(v)

o, w)? > d (v, T (v)°

12 Adjoint Map

Definition 52 (Linear functional). A linear functional ¢ : V' — F is a linear
map, with F considered as a 1 dimensional vector space over itself.

Theorem 20 (Riesz’s Representation Theorem). Let V' be an inner product
space, s.t. n=dimV. Let ¢ : V — F be any linear functional. Then there
exists a unique vector u € V', dependent on ¢, s.t. Yv € V,

p(v) = (v, u)

Proof. 1f possible, let uy,us € V', s.t. Yo € V,
p(v) = (v, u1) = (v, ug)

Therefore,
(v,u1 —ug) =0

Let v = u; — uy. Therefore,

<U,U1 - Uz) = <U1 — Uz, U1 — U2>
<U1 — U2, U1 — UQ) =0
JoU — Uy = 0

.U = U9
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Therefore, u, if it exists, is unique.

Let

B ={vy,..., v}
B={1}

be orthonormal bases of V' and F respectively.
Let

A= [@]B,E

:(061 an)

be the representation matrix.
Therefore,

Let

Uzﬂlvl—f'"'—'—ﬁnvn

B
vlp=1:
B
Therefore,
5
)z = (o1 - an) | :
Bn

= a1+ -+ anfy
:Blal—i_"'—'_ﬁnan
= far + -+ + Buon

g
:(ﬁl . ﬁn) :
a,
< B aq >
s e
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Let u e V, s.t.

[ulp = 7
[p()lz = (v, w)

and

[p(v)]5 = ¢(v) - 1
sop(v) = (v, u)

12.1 Construction
1. Let T : V — W be a linear map.
2. Fixw e W.

3. Let ¢, : V — F be a linear functional, s.t. ¢, (v) = (T'(v), w).
Pu (101 + av2) = 10y (V1) + A2y (v2).

4. By [Riesz’s Representation Theorem| Jlu € V| s.t. p,(v) = (v, u).

5. Define T*(w) = w.
Therefore, it can be expressed as

<T<U)’w> = <UvT*<w)>

12.2 Properties

Theorem 21. Let B be an orthonormal basis of V and let B be an orthonor-
mal basis of W. Let A = [T'|p 5 be the representing matriz of T : V — W with

respect to B, B. Let A = [T*] 5.5 be the representing matriz of T* : W — V.
with respect to B, B. Then

A=A =4
Theorem 22. IfT,, T, : V — W, then

(T + 1) =Ty + 1Ty
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Theorem 23. If T:V — W, a € F, then
(1) =aT™

Theorem 24.
()’

Theorem 25. IfT:V - W, S: W — U, then
(SoT) =T"0S*

13 Special Linear Operators

Definition 53. Let T': V — V be a linear operator, and let 7% : V' — V' is
the adjoint operator.
T is said to be

1. normal if T* o T =T o T
2. self-adjoint if 7* =T (If F = R, T is called symmeteric.)
3. unitary if 7* =T-! (If F = R, T is called symmeteric.)

Remark 8. The same terminology is used for square matrices.

Remark 9. If B is orthonormal basis of V', A = [T|g, then A is the normal,
self-adjoint or unitary according to 7'

Theorem 26. Let v € V. T is normal if and only if
[T ()|l = 1T (v)|
Corollary 26.1. Let T : V. — V' be normal, let \ be its eigenvalue, and let

v be an eigenvector of T' corresponding to A. Then X is an eigenvalue of T*,
and v is an eigenvector of T corresponding to X.

Theorem 27. If T is normal, Ay, Ao are its eigenvalues, vy, vo are eigenvec-
tors corresponding to A1, Ag respectively. If Ay # g, then vy L vs.

Theorem 28. Let T be a self-adjoint operator. Then any eigenvalue X of T
s real.

Theorem 29. Let T : V — V be a unitary operator. Then

1. T preserves inner products.
2. T preserves norms.
3. T preserves distances.

4. T preserves angles (in real case).
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