Nan Hanagud
6/29/2017
y(t) = g(t) + s(t) + h(t) + ε
g(t): growth function : Logistic growth model with non-constant carrying capacity with changepoints or linear growth model with changepoints. Changepoints are used to model changing rates of growth.
s(t): seasonality (weekly or yearly)
h(t): holidays
ε: error
## ds y
## Min. :2015-01-01 Min. : 0
## 1st Qu.:2015-08-07 1st Qu.: 2
## Median :2016-03-13 Median : 9839
## Mean :2016-03-13 Mean : 7305
## 3rd Qu.:2016-10-18 3rd Qu.:10925
## Max. :2017-05-25 Max. :14694
Create a training set - let’s use 2 years so we can let it detect growth/seasonality.
df_train<- df[df$ds < as.Date("2017-01-01"),]
summary(df_train)
## ds y
## Min. :2015-01-01 Min. : 0
## 1st Qu.:2015-07-02 1st Qu.: 2
## Median :2016-01-01 Median :10015
## Mean :2016-01-01 Mean : 7384
## 3rd Qu.:2016-07-01 3rd Qu.:11023
## Max. :2016-12-31 Max. :14694
m <- prophet(df_train) future <- make_future_dataframe(m, periods=30) forecast <- predict(m,future)
m <- prophet(df_train) future <- make_future_dataframe(m, periods=90) forecast <- predict(m,future)