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Abstract: Active inference describes (Bayes-optimal) behaviour as being motivated by the minimi-
sation of surprise of one’s sensory observations, through the optimisation of a generative model
(of the hidden causes of one’s sensory data) in the brain. One of active inference’s key appeals is
its conceptualisation of precision as biasing neuronal communication and, thus, inference within
generative models. The importance of precision in perceptual inference is evident—many studies
have demonstrated the importance of ensuring precision estimates are correct for normal (healthy)
sensation and perception. Here, we highlight the many roles precision plays in action, i.e., the key
processes that rely on adequate estimates of precision, from decision making and action planning to
the initiation and control of muscle movement itself. Thereby, we focus on the recent development
of hierarchical, “mixed” models—generative models spanning multiple levels of discrete and con-
tinuous inference. These kinds of models open up new perspectives on the unified description of
hierarchical computation, and its implementation, in action. Here, we highlight how these models
reflect the many roles of precision in action—from planning to execution—and the associated patholo-
gies if precision estimation goes wrong. We also discuss the potential biological implementation
of the associated message passing, focusing on the role of neuromodulatory systems in mediating
different kinds of precision.

Keywords: active inference; action; motor control; precision; predictive coding

1. Introduction

Active inference is a normative framework describing (Bayes-optimal) behaviour and
cognition as motivated by the minimisation of surprise of one’s sensory observations [1].
This motivation is grounded in the Free Energy Principle [2], which posits that adaptive
agents must occupy a limited region of states—separating internal from external states—to
survive (statistically, this separation of self and non-self can be defined via a Markov blanket,
cf. [3]). The agent can achieve this through minimising surprise (which, formally, can be
approximated by a quantity called variational free energy) by aligning the predictions of
its generative (predictive or “forward”) model and the sensory observations it receives.
Thus, active inference can be formulated as a process theory, i.e., a mechanistic account of
behaviour and the underlying brain functions, centred on the idea that the brain employs
and optimises a model of the hidden causes of the sensory data it receives, approximating
Bayesian inference [4]. As such, it falls into the category of Bayesian brain or “predictive
processing” approaches, but it has a special place among those due to its scope and the
detail of its formulation, including the mathematics of message passing and belief updating
and their potential neurobiological implementation in cortical hierarchies [1,5,6].

Most notably, active inference extends beyond perceptual inference to explain action
and behaviour in terms of inference within generative models; i.e., motor control is de-
scribed as inference and model optimisation as well, where actions are generated to fulfil
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predictions, in parallel with the updating of predictions through perceptual inference. Thus,
active inference is a framework with intriguing (and partly unique) assumptions about
how the brain controls action and behaviour, which has attracted not only theoretical and
experimental neuroscientists, but also psychologists and philosophers [7–13].

One of active inference’s key appeals is its conceptualisation of precision as defined
within generative models, and its possible implementation in neuronal circuits. Precision,
in short, is a form of confidence in the reliability of (neuronal) signals, which can bias or
modulate neuronal communication and inference in the brain [4,14,15]. In other words,
precision encodes “How much do I trust this information”. What exactly this means
in each case—what it implies functionally—depends on the kind of information, the
kind of computation, and the kind of brain region or network at play. Generative world
models comprise a set of prior and conditional probability distributions whose inversion
determines these computations. Precision is an attribute of all of these distributions and is
associated with their inverse variance or negentropy. Thus, precision can mean the gain
applied to corrective signals, i.e., prediction errors, at the level of sensation and movement—
a notion that is important in engineering and motor control (e.g., [16,17]). Neurobiologically,
this gain might manifest in population-level synaptic gains, which appear to be the loci
of action of various neurochemical modulators [14,18,19]. At other levels, precision can
mean a confidence estimate in which several world models are “correct” [20–22]. Both
notions can be combined in hierarchical models for action—a particular promise of the
active inference framework.

A key characteristic, independently of the level or kind of computation, is that pre-
cision must be estimated; i.e., the brain does not know from sensory signals alone how
reliable they or their models are. Beliefs about precision are formed through inference
by the generative model (sometimes called “second-order inference” to contrast it with
inference about the causes of sensation per se; [23–25]). It is imperative for the brain to
acquire these beliefs (precision estimates) correctly, otherwise many pathologies of action
and perception emerge [26] (see below). Many papers have discussed the role of precision
in perceptual inference, demonstrating the importance of ensuring precision estimates are
right for normal (healthy) sensation and perception (e.g., [27–31]).

Here, we want to highlight the many roles precision plays in action, i.e., the many
key processes in action that rely on adequate estimates of precision, from decision making
and planning to the production of movement. We shall give a brief overview of empirical
findings demonstrating the importance of precision estimation at various levels of action,
from decision making and planning to the production of movement. Secondly, we shall
discuss recent methodological developments in the generative models for active inference,
which demonstrate the value of the precision concept in action. The concept of precision
was, of course, not invented for or within the active inference (or predictive coding)
framework. Still, in large part thanks to work by Karl Friston and his group, there are now
very elegant ways to mathematically model precision in its various roles within generative
models for active inference. Furthermore, these methods allow us to link the underlying
equations to neuronal activity. We shall briefly introduce the key concepts of modelling
precision (we give a non-mathematical overview, as the associated generative models have
been introduced in great detail elsewhere; see, e.g., [1,15,32,33]). Of particular interest to
us are recent developments of so-called “mixed” models—hierarchical generative models
spanning multiple levels of discrete (categorical) and continuous active inference. These
kinds of models open up new perspectives on the unified description of computations in
action, spanning mechanisms from decision making and action planning to overt movement.
We shall highlight how these models reflect the many roles of precision in action—from
planning to execution—and the associated pathologies if precision estimation goes awry.
Thereby, we shall also discuss the potential biological implementation of the associated
message passing, focusing on the role of neuromodulatory systems in mediating precision.
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2. Precision at Different Levels of Action

To highlight the importance of inference about precision and uncertainty in action,
imagine the following example: You are a quarterback in possession of the football, and
you want to make the optimal play to score your team some points. You must make several
decision, such as: Which of the many plays you and your team have studied during training
shall you initiate? Should you pass the ball now, or first run to a better spot? Then, of
course, you must throw the pass in the best possible way, which means you must guide your
muscle movements, correct your movement in response to sudden changes in the game
such as a hostile player tackling you (i.e., you must know which sensations in your arm’s
sensors you or another agent have generated, respectively), and many more factors. On top
of this, you must constantly monitor the game, which you will probably use your vision
and audition for. Sometimes, you can perhaps not very clearly see where your selected
teammate is, but you hear them yelling instructions, so you focus your attention more on
what you hear, perhaps neglecting vision. Figure 1 schematically illustrates this example.
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Figure 1. Some processes of an action where precision estimates are essential: A toy example shows a
quarterback passing the football to a specific teammate indicating several important components of
(active) inference that rely on adequate estimates of precision. The underlying computations cover
processes ranging from decision making (e.g., Which play do I select? Where should I run to in
order to be able to pass optimally?) to overt movement (contractions of the appropriate arm muscles
throughout the throwing movement) and many more that are not shown, including motivational
factors and habits, action understanding, joint action, and communication. Precision plays a key role
in all of these processes, but a somewhat different one depending on the exact nature of inference.
For instance, at “higher” cognitive levels, the player must decide which of several pre-studied plays
he initiates. Here, one can describe precision as the confidence in the selected (optimal) sequence
of actions. At “lower”, e.g., sensorimotor levels, precision can be described as a multiplicative gain
on sensory signals. This can mean implementing sensory attention when selectively focusing on
one particular teammate, and a similar bias in determining the weights of sensory cues during
multisensory integration. Multisensory integration is essential to guide action, e.g., integrating visual
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and proprioceptive body position information to guide movement, or integrating seen and heard
information about a teammates’ location. Not least, this notion of precision is key to how muscle
movement is produced and controlled along the active inference framework: sensory attenuation is a
prerequisite for the enaction of motor predictions and a potential clue for determining agency and
self–other distinction. Note that some of the illustrated processes can be cast as based on discrete or
even categorical inference (such as deciding on one among several plays), whereas others require
inference in continuous time to track continuous trajectories of sensory data coming from the world
(such as guiding a movement or attending to data from a particular sensory channel). Active inference
offers a framework to model action through the combination of discrete and continuous state space
models, thus capturing the interplay between the illustrated cognitive vs. sensorimotor processes,
and the different roles of precision therein.

This toy example is by no means thought to capture the entirety of action planning and
motor control, but to simply illustrate that there are many different (e.g., sensory vs. motor
vs. cognitive) processes in action that depend on adequate estimates of precision. Thereby,
precision can mean different things: from an estimate of confidence in a selected action
policy to a multiplicative gain applied to continuous sensory signals. Active inference
offers a way to account for these potential differences by formalising action in hierarchical,
“mixed” models. Roughly, these models comprise layers where inference operates in
discrete time steps, or continually.

To understand why this is important, consider the fact that most decision making and
action planning seem to be discrete or even categorical in nature, e.g., preparing a sequence
of steps followed by throwing a pass, or choosing one among several alternative pre-studied
plays. Conversely, sensation, attention, and movement generate continuous data: to play
optimally, we need to know where our teammates are now, and where they will be next—in
other words, we need to track their continuously changing states in the world. The same
holds for guiding muscle movements. This is fundamentally different from categorical
decisions such as selecting the optimal play among several alternatives, and from selecting
the sequence of actions required to initiate the play, before actually committing to it. In the
active inference framework, the underlying inference can be formalised slightly differently,
operating in terms of discrete or continuous states (Figure 2). These different formalisations
are more parsimonious for certain kinds of decisions or control; they also intuitively map
onto differences in the associated mental or physical processes. We shall now give a brief,
non-technical overview of the generative models used to capture this (for a mathematical
treatment, see [32]).

First, it should be noted that, historically, active inference has been modelled as motor
control in continuous time (using generalised coordinates of motion; i.e., speed, acceleration,
jerk), based on an extension of predictive coding formulations of perceptual inference to
include movement via spinal reflex arcs [34–36]. Now, as noted, the generative models used
for active inference can be set up in an alternative way; i.e., they can also be formalised
as operating in discrete states, modelling inference (belief updating) about processes that
evolve in “steps” rather than continually. This notion of active inference follows a specific
formulation of partially observable Markov decision processes, featuring a notably different
computational architecture from, e.g., predictive coding or variational filtering. A particular
distinction is the possibility to specify multiple alternative (counterfactual) goals and action
sequences and to evaluate them based on their expected free energy, thus defining active
inference as planning rather than motor control per se [32,37]. However, the discrete and
continuous state space formulations are not mutually exclusive—quite the contrary: both
conform to the free energy principle and can be described in terms of belief updating and
model optimisation (for a comprehensive comparison, see [33]). The Bayesian message
passing of both formulations can be plausibly associated with the neuronal populations
in the cortical column, i.e., assigning different computations to different cell types in
different cortical layers of the canonical microcircuit [5]. Simulations and computational
models of empirical cortical responses have associated precision with the gain afforded to
synaptic inputs onto pyramidal cell populations in supragranular (i.e., superficial) cortical
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layers [38–40]. In predictive-coding-inspired models, those cells are thought to communicate
“bottom-up” information (i.e., prediction errors) to higher cortical levels [5]. Importantly,
while neural activity represents different quantities in each model (posterior probabilities in
discrete-time models vs. the statistics of probability densities in continuous-time models),
precision can be linked to the gain afforded to synaptic inputs onto superficial pyramidal
cells in both approaches [19]. However, each kind of model is best suited to a different
set of computational problems that an active inference agent needs to solve and, as we
shall see below, their combination is what is needed to adequately capture action in its
entire richness.
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Figure 2. Continuous, discrete, and mixed models for (active) inference. (A): Inference in continuous
time via a continuous state space model in terms of generalised coordinates of motion. This kind
of model generates data (i.e., trajectories) in continuous time, using generalised coordinates of
motion (speed, acceleration, jerk, etc.) to represent the trajectory. The details of this model are
explained in [32]. The key point here is that a continuous trajectory of sensory observations o (o′,
o′′,. . ., corresponding to speed, acceleration, etc.) is modelled as caused by a hidden state x and
its derivatives (x′, x′′,. . ., where the interactions between the temporal derivatives are determined
by an equation of motion f prescribed by a hidden cause v) through a nonlinear mapping g, plus
random fluctuations ω. This elegantly captures the fact that the world generates sensory inputs
continually, and, furthermore, that we act upon the world through continuous muscle movements.
For this reason, these formulations are typically used to model sensation and movement, for instance,
based on prediction error minimisation in predictive coding schemes. (B): Inference in a discrete state
space formulation. The key difference to the model shown in (A) is that we are seeing a sequence of
three distinct hidden states s1–s3, which each generate corresponding an observable outcome o1–o3

through a matrix (A specifying the likelihood mapping). The states are linked by transition matrices
B, which, in turn, depend on the current policy (sequence of actions encoded by π; G represents the
probability distribution over policies based on expected free energy; D represents the initial state;
see [32]). In contrast to the trajectory generated by the model in (A), this model generates data in
discrete steps. These formulations lend themselves to model discrete or even categorical inference of
the sort that, presumably, guides decision making or action planning. (C): “Mixed” model of action



Entropy 2024, 26, 790 6 of 21

comprising a discrete state space level sitting “on top” of, and linked to, a continuous state space
level, each displayed as a Bayesian network. The upper discrete level generates “chunks” of data
in discrete time (the Bayesian network represents conditional dependencies) and, thus, models
categorical decisions or discrete action plans; the lower continuous level generates data in continuous
time (the Bayesian network represents generalised coordinates of motion). The link between the
levels happens as the outcomes of the discrete model determine a hidden cause that prescribes the
generalised motion of continuous hidden states, generating continuous sensation. Here, the upper
level could select an optimal action sequence (such as a particular throwing movement), which allows
the generation of muscle movements through proprioceptive predictions via the lower level (thus,
actually throwing the football). Precision estimates play an important, but different, role in several
computations at both levels of this model (see Figure 1 and main text). Adapted from [32], Figures 1,
5 and 8 under the CC-BY 4.0 licence.

3. Precision in Sensation and Movement (Continuous Inference)

Sensation and movement production are inherently intertwined, which is particularly
emphasised in the active inference framework where sensation guides perceptual decision
making for action, which, again, generates new sensory data. The world generates sensory
signals continually, and to move within it, our brain should control our muscles continually
as well. Consequently, the sensory and motor processes at the interface with the environ-
ment (the associated message passing) are best captured by continuous state space models,
i.e., predictive models generating data (e.g., trajectories) in continuous time. A simple
way to represent a trajectory in continuous time is in terms of generalised coordinates of
motion (speed, acceleration, jerk, etc.), which has been the formulation of choice in these
models [1]. In other words, these models capture the brain’s inference of how its sensations
were caused by continuous states of the world [19]. As noted, this has been the classical
way of modelling active inference in predictive coding schemes, i.e., through a dynamic
minimisation of continuous prediction error signals [5,6,41].

Precision, in these formulations, has the function of scaling forward prediction errors
at each level by their estimated reliability; i.e., sensory signals that are believed to be less
noisy (more reliable) are afforded a greater weight [41]. This is thought to be implemented
through changes in the synaptic gain of pyramidal cells in supragranular cortical layers
communicating “bottom-up” signals [5,38,39]; interactions with inhibitory interneurons
may also play a role [40]. Evidence for the functional role of the precision weighting
of prediction errors has been obtained in electrophysiological and imaging studies and
through mathematical simulations (e.g., [23,40,42,43]). This intuitively links precision at
these levels of inference to the concept of sensory attention and attenuation [19,23,44].
Much empirical and theoretical work has focused on this role of precision as sensory
gain [21,29,30,35,44–48]. In the following subsections, we focus on three important aspects
of action, in which precision—formalised as continuous gain control—has been assigned a
key role: multisensory body representation, movement production, and agency attribution
or self–other distinction.

3.1. Sensory Attention and Attenuation in Multisensory Body Representation

Although not being a strictly “motor” process, multisensory integration is crucial for
planning and guiding action, because it ensures a coherent and more precise estimate of the
state of the body (effector) for guiding action. It is well established that a more accurate state
estimate can be reached by combining information from multiple sensory modalities [49,50].
For instance, the quarterback in Figure 1 may combine visual and somatosensory (haptic
and proprioceptive) information to grasp the football in a way that will allow, e.g., adding a
specific spin to the throw (although this is probably something that benefits novices; expert
players will likely not need to look at their arm or the ball anymore). Precision, in its role
as sensory gain, can up- or down-weight sensory signals, thus augmenting or attenuating
their impact on inference, i.e., on cue combination and the resulting multisensory estimate.
In brief, the combined estimate will be biased towards the more precise (reliable) cue. That
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multisensory integration (or cue integration) can be biased by precision estimates has been
demonstrated and reviewed extensively elsewhere [15,51–53]. This assumption is also
at the core of Bayesian approaches to body ownership [8,9,54–57]. Here, a particularly
intriguing example is the so-named rubber hand illusion [58], in which a participant
experiences illusory ownership over a visible fake hand placed next to the real, unseen
hand, and exhibits a recalibration of the perceived real hand position towards the fake
hand. Bayesian models have captured the illusion based on a “dominance” of relatively
more precise visual over (less precise) proprioceptive hand position estimates, which,
together with a strong prior for having one hand only, leads to inference that the seen
hand is “mine” [57,59,60]. Intriguingly, electrophysiological and brain imaging studies
suggest that the brain could enhance the natural differences in precision between vision
and proprioception to better resolve the multisensory conflict during the rubber hand
illusion. In brief, these studies suggest that somatosensory information from the hand side
subject to the illusion is selectively attenuated, while visual information in general seems
to be up-weighted [61,62]. This would suggest a key role of top-down precision control
in shaping the body representation, e.g., under unusual conflicts as in the rubber hand
illusion [63].

Presumably, a similar sensory bias of the multisensory body representation by pre-
cision can also operate when we act. For instance, the relative weighting of visual vs.
proprioceptive signals for the estimation of the body’s state can be biased top-down to
augment visuomotor adaptation and learning. Several studies have suggested that, despite
the importance of sensory prediction errors for motor learning, somatosensory attenu-
ation during the early learning phase of visuomotor conflicts may enhance visuomotor
adaptation—presumably by speeding up intersensory recalibration (e.g., [64]; see [63]
for a review). Moreover, we could show that participants can deliberately change the
relative weight assigned to visual vs. proprioceptive body position depending on their
behavioural relevance during visuomotor conflict tasks, and that those changes can be seen
in hemodynamic and oscillatory responses over the corresponding sensory cortices, much
like one would expect gain control to operate along predictive coding formulations [65,66].
This further underwrites the importance of tuning precision estimates for flexible body
representation; i.e., the context-dependent weighting and integration of (incongruent) seen
and felt body position for action [57,67].

3.2. Sensory Attenuation for Movement Initiation

The second key role of precision as sensory gain pertains to movement production
itself. This originates from active inference formulations based on an extension of predic-
tive coding schemes with motor reflexes—specifically, from the key assumption of those
formulations that movement is produced through the minimisation of proprioceptive pre-
diction errors [34–36,47,68]. As noted above, in predictive processing approaches based
on predictive coding, the model’s beliefs (probabilistic representations) capture statistical
regularities in the environment and are optimised by accommodating prediction errors;
this corresponds to perceptual inference. Active inference extends this idea to include
movement; i.e., behaviour is explained in terms of inference on the causes of proprioceptive
sensations [36]. Thus, descending signals from the primary motor cortex are conceptualised
as proprioceptive predictions (i.e., about dynamic muscle or joint states [1,36]). Spinal
reflex arcs, i.e., monosynaptic (or, in some cases, polysynaptic) loops of primary sensory
afferents and motor neurons in the spinal cord, are then thought to minimise the error
between predicted and actual proprioceptive states, whereby they cause muscle movements
that approximate the predicted joint state [34]. Thus, the agent is now equipped with a
complementary way to deal with prediction errors, as it can now act on the environment
to directly reduce them. In other words, it can change the world (i.e., its sensory input)
instead of changing its mind [1].

It should be noted that this “enaction” of proprioceptive predictions by the motor
system is among the points of disagreement between active inference and optimal motor
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control [69,70]. In short, the assumption that descending signals from the primary motor
cortex are proprioceptive “predictions” rather than motor “commands” eliminates the
need for a cortical “inverse” model, which, in optimal control formulations, computes
the motor commands required to reach the action goal [69]. Instead, the “pure forward
model” approach of active inference [1,70] relegates the inverse model to spinal reflex arcs,
which reduce the prediction error resulting from the mismatch of predicted and actual
proprioceptive data [36,68]. Despite these differences, however, both accounts are largely
compatible, as they converge on the notion that actions (and movements) are predicted and
controlled largely by internal generative (“forward”) models in the brain [70,71]. Likewise,
both accounts emphasise the importance of sensory attenuation, albeit with different
underlying mechanisms.

Here, active inference entertains one unique assumption, namely, that sensory attenu-
ation is required to move. This results directly from the aforementioned conceptualisation
of behaviour in terms of inference on the causes of proprioceptive sensations, where the
spinal reflex arc minimises proprioceptive prediction errors. Note that descending proprio-
ceptive predictions, as assumed by active inference to drive muscle movements (see above),
are per se counterfactual; i.e., I am not really moving, and not actually receiving those
proprioceptive signals that the descending “motor” signals predict. Along the classical for-
mulation of (perceptual) inference, the resulting prediction error should be accommodated
by updating the model beliefs; i.e., changing my predictions. This, however, would result
in immobility, as movement would no longer be predicted. The solution to this problem is
thought to lie in sensory attenuation, i.e., in selectively suppressing the precision afforded
to proprioceptive signals. As a result, the descending proprioceptive predictions are now
thought to be dominant. The organism does not update them, but chooses another way to
directly minimise the prediction error: it changes the proprioceptive data itself. This means
nothing else than that the organism moves, thus generating the predicted proprioceptive
trajectory. In short, in active inference, sensory attenuation is a requirement for movement
initiation. This is to the extent that a failure to correctly initiate or maintain movement
can be modelled as a failure of adequate sensory attenuation. There is considerable experi-
mental evidence demonstrating sensory attenuation during movements and at the time
of movement initiation consistent with active inference. For movements, somatosensory
attenuation has typically been studied using the electrical stimulation of the median nerve.
This produces a somatosensory evoked potential (SSEP) recordable at multiple levels of
the somatosensory pathway to provide a measure of the magnitude of the afferent volley.
Cortical EEG recordings have shown that there is a suppression of the primary and sec-
ondary complexes of the SSEP during active and passive movement [72]. The attenuation
of SSEPs has also been shown during motor preparation before the EMG onset of active
movement [73,74]. Furthermore, patients with Parkinson’s Disease who have bradykinesia
(a deficit in movement initiation and maintenance of movement) show significantly reduced
or no attenuation of the primary SSEP component when off dopaminergic medication, but
this is restored when administered such medication [75,76].

In short, in active inference, sensory attenuation is the complement of sensory atten-
tion. To produce movement, the agent has to attend away from proprioceptive data by
attenuating their gain, decreasing the confidence in them. Note that this does not mean that
the agent is uncertain about motor control or movement itself, but, momentarily, about its
sensations [47]. This may be mediated by low-frequency neuronal synchronisation [77,78].

Interestingly, this account offers an explanation for certain phenomena observed under
visuo-proprioceptive conflicts, as in the rubber hand illusion (see above), i.e., the generation
of apparently involuntary unseen hand movements towards the location of a displaced
fake hand (observed empirically and replicated in simulations [79]). In brief, in the active
inference approach, the seen hand location could bias proprioceptive predictions of the
felt, unseen hand position; the involuntary hand movements can be seen as an “enaction”
of those proprioceptive predictions [80]. Something similar may also happen in motor
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contagion and visuomotor interference, and in related confusions of “agency”, as described
in the following subsection.

3.3. Sensory Attenuation of Reafference and Its Relation to Agency

It is well documented that sensory reafference (self-generated movement feedback) is
relatively suppressed [81,82]. Within the active inference framework, this can be explained
by the fact that the precision of the corresponding sensory signals is attenuated to allow
movement (see above). This implies a key role of precision control (sensory attenuation)
in self–other distinction [43,63,83]. This becomes particularly evident when considering
disturbances of agency attribution. For the present purposes, we roughly define “agency”
as the experience or feeling of being in control of “one’s” actions per a self-attribution of
movement and its sensory consequences. Many accounts of pathological behaviour have fo-
cused on aberrant predictive mechanisms, casting atypicalities in sensation and perception
in, e.g., psychosis or in the autism spectrum as prediction failure [27–29,84–87]. In short,
along active inference, the distinction between self and other, in part, relies on the fact that
“self-generated” sensations (i.e., those predicted by the motor system) are attenuated in or-
der to allow movement (see above), whereas externally generated sensations are not [43,44].
Thus, a relatively attenuated proprioceptive sensation can be a cue that I am performing a
voluntary act, while enhanced proprioceptive signals would, conversely, signal that some-
one or something else caused my movement [44]; potentially, this can be extended to other
types of reafference, e.g., vision [88]). This renders precision estimation a key feature of
agency attribution and self–other distinction in social settings. Correspondingly, simulation
studies have shown that a number of characteristic phenomena in schizophrenia/psychosis
can be explained by an imbalance in precision between higher hierarchical areas (where it
is too low) and lower—e.g., primary sensory—areas (where it is too high). These include
impaired smooth-pursuit eye movements, reduced evoked responses to unexpected stimuli
in sensory oddball tasks, reduced sensitivity to some visual illusions, and, in particular,
a loss of attenuation of self-generated sensations (reviewed in [89]). The latter has been
demonstrated in the force-matching task [90], although note that self-produced sensations
could be magnified both by reduced attenuation (increased precision) and/or by impaired
prediction (increased prediction errors), and few studies test both possibilities. Evidence
has been found of both problems in schizotypy [91]. Heightened sensations, including from
somatic senses, can often result in delusions about foreign objects or external influences on
the body in schizophrenia. Interestingly, patients with functional neurological disorders
who suffer from symptoms such as paralysis or dystonia without evidence of neurological
damage also show reduced sensory attenuation in the force-matching task [46], implying
that loss of agency (for self-generated motor symptoms) may have a similar mechanism
across these disorders [30].

A final interesting showcase of the importance of precision for self-agency and self–
other distinction can be found in the phenomena of motor contagion or visuomotor in-
terference. As mentioned, the relative precision assigned to visual and proprioceptive
information determines its impact on the brain’s multisensory estimate of hand posture
and position (see above). Achieving the balance between these two senses is key for bodily
identification and self–other distinction, as it determines whether a seen movement is sim-
ply observed (other body) or whether it is executed (own body; [43,68,83]). This explains
why observing the incongruent movements of conspecifics biases our own movement
execution [66,92–94]. Similarly, new-borns first show a pronounced imitation of observed
movements, which could be explained by an automatic activation of a body representa-
tion that does not yet distinguish between self (i.e., movements associated with visual
and proprioceptive consequences) and other (i.e., movements associated with only visual
consequences [12,56]). In certain psychiatric and neurological conditions, such as catatonic
schizophrenia, Tourette’s syndrome, or after prefrontal lesions, a similar “echopraxia” can
be observed. This can be thought of as a loss of control. In active inference formulations,
specifically, it implies a loss of control over one’s expectations of sensory precision, resulting
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in aberrant attention and attenuation, i.e., an inadequate weighting of sensory evidence
that causes an automatic update of a body model and, in some cases, may lead to explicit
misattributions of agency and pathological self-experience [48,95,96]. This renders the
execution of control over sensory precision (the context-dependent selective emphasis or
suppression of sensory evidence, i.e., sensory attention and attenuation) a key mechanism
of bodily self-identification and self–other distinction [63]. Yet, at the same time, it enables
us to be empathetic and to understand our conspecifics’ action intentions [43].

4. Precision in Action Planning (Discrete Inference and Mixed Models)

Above, we summarised how body movements are produced according to continuous
(active) inference. This can be seen as “driving action selection in the present to change
currently available sensory data” [1] (p. 9). In contrast to this, an alternative formulation
of active inference accommodates planning, i.e., inference to select the optimal course of
action in the future [32,37].

The prominent way of modelling this is as inference in discrete time via hidden Markov
models or partially observable Markov decision processes (see Figure 2A). Roughly, the
corresponding models comprise policies (which represent sequences of actions), hidden
states, and observable sensory data generated by the latter. As states evolve over time
according to transition matrices, each action plan (policy) can be evaluated in terms of how
likely it is to generate preferred observations. This anticipated fulfilment of preferences is
evaluated as part of the policy’s expected free energy (for details, see, e.g., [32,97]). The
other aspect of expected free energy deals with a prior belief that policy selection will lead to
the resolution of any uncertainty, offering an exploratory complement to the “exploitative”
preference fulfilment. In these formulations, precision can be associated with beliefs about
uncertainty in the mapping of outcomes onto hidden states, in the state transitions, or
about action policies [19]. As we shall see below, these different forms of uncertainty can
be elegantly linked to different processes of action planning.

The preference for a different formulation arises from the fact that, in contrast to
continuous-time joint movements and the sensations driving them, decision making and
action planning are categorical in nature; therefore, their underlying processes are very
intuitively modelled in discrete time [98,99]. In fact, one can even argue that very soon
after leaving the level of sensory receptors, one can speak of discretised representations in
the neuronal hierarchy, such as classical receptive fields [1].

Practically all actions require planning and moving, i.e., inference in discrete and
continuous state spaces. Even our simple example in Figure 1 requires the selection of an
optimal action policy and the enaction of the movement, i.e., the predicted proprioceptive
states. How can this be accommodated, and how can these levels interact? This has
recently been addressed within the active inference framework through the development
of hierarchical, “mixed” generative models [32]. These models encompass more than
one level of belief updating, encompassing both discrete and continuous-state spaces (see
Figure 2B for an example). This is needed to capture inference underlying action because
action entails several processes ranging from discrete (categorical) decisions to continuous
sensation and movement (see Figure 1). Thus, in such mixed models, discrete inference
will occupy the higher levels of the hierarchy, while continuous inference will underwrite
sensation and movement. This means that the lowest level of these models will necessarily
be continuous, because it is the agent’s interface with the world in continuous time [1].
Yet, these continuous levels must link to categorical states, as discrete action planning is
informed by continuous sensory data, and (discretely) selected actions generate sequences
of (continuous) movements.

In discrete as well as continuous formulations (Figure 2A,B), precision is thought to
be implemented via the weighting of synaptic inputs. However, the locus of this synaptic
weighting varies depending upon the probability distribution with which that precision is
associated. In other words, while the role of precision as synaptic gain control is universal,
the association of precision with different distributions in the (brain’s) generative model
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means that “precision” will mean something slightly different at each level of the model
hierarchy. For those precisions associated with likelihoods (i.e., conditional distributions
linking hierarchical levels), we might anticipate an effect on superficial pyramidal cells
that mediate the ascending connections from one cortical region to another. However, for
precisions over (for example) policies we might pursue, the relevant synapses might be
expected in the basal ganglia, where monoamines such as dopamine can modulate the
actions selected. Fast changes in synaptic efficacy such as these (as opposed to slower
processes like learning) can plausibly be linked to the action of neuromodulatory systems
in the brain (see below).

In line with this, we have recently applied such a hierarchical mixed model to capture
the computational architecture underlying sequential, goal-directed pointing movements,
encompassing multiple discrete levels modelling target selection and action planning, and
a continuous level generating joint (arm) movements [100]. By applying simulated lesions
to different precision parameters, we could reproduce behavioural changes resembling
those associated with either anatomical lesions or neuromodulatory pathologies, mapping
the computational architecture onto the known anatomy of movement (Figure 3A). We
briefly summarise the main findings in the following section.

Entropy 2024, 26, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 3. Using hierarchical active inference to simulate action and its pathologies. (A): Mapping 
inferential message passing onto the known anatomy of movement. Here, to simulate pointing 
movements to three visual targets, we used a hierarchical mixed model with two linked discrete 
levels, inferring pointing sequences and intermediate attracting points for movement, respectively; 
the lower level linked to a continuous level, as in Figure 2. The top schematic (small A) shows the 
mapping of two discrete levels of the mixed model, concerned with target and action selection, onto 
frontoparietal cortices and structures of the basal ganglia. The bottom schematic (small B) shows 
the relationship between the lower discrete level and the continuous level of the model, which ulti-
mately issues proprioceptive predictions that are enacted by movement through spinal reflexes in 
continuous time. For details, see [100]. (B): This architecture was used to simulate pointing move-
ments to three visual targets under different synthetic lesions. The black lines in the left plots show 
the trajectory of the simulated arm; the red spheres represent the sequence of attracting points se-
lected by the (lower) discrete model that determine short trajectories for the continuous model (rem-
iniscent of the concept of motor “chunking”). The right plots show the corresponding changes in 
shoulder rotation and flexion, and elbow flexion. From top to bottom: Overestimation of sensory 
precision did not impair movement, but exaggerated tendon reflexes (not shown). Reducing the 
precision of the beliefs about action policy selection produced “akinetic”, small-amplitude move-
ments. The overestimation of the anticipated smoothness of sensory fluctuations over time pro-
duced hypermetric overshoots at the end of each movement. Finally, reducing the precision associ-
ated with linking the discrete model levels concerned with target and action policy selection, re-
spectively, produced an apparent confusion whenever the target position changed. Reprinted from 
(Figures 5 and 6 in [100]), under the CC-BY 4.0 licence. 
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inferential message passing onto the known anatomy of movement. Here, to simulate pointing
movements to three visual targets, we used a hierarchical mixed model with two linked discrete
levels, inferring pointing sequences and intermediate attracting points for movement, respectively;
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the lower level linked to a continuous level, as in Figure 2. The top schematic (small A) shows the
mapping of two discrete levels of the mixed model, concerned with target and action selection, onto
frontoparietal cortices and structures of the basal ganglia. The bottom schematic (small B) shows the
relationship between the lower discrete level and the continuous level of the model, which ultimately
issues proprioceptive predictions that are enacted by movement through spinal reflexes in continuous
time. For details, see [100]. (B): This architecture was used to simulate pointing movements to three
visual targets under different synthetic lesions. The black lines in the left plots show the trajectory
of the simulated arm; the red spheres represent the sequence of attracting points selected by the
(lower) discrete model that determine short trajectories for the continuous model (reminiscent of the
concept of motor “chunking”). The right plots show the corresponding changes in shoulder rotation
and flexion, and elbow flexion. From top to bottom: Overestimation of sensory precision did not
impair movement, but exaggerated tendon reflexes (not shown). Reducing the precision of the beliefs
about action policy selection produced “akinetic”, small-amplitude movements. The overestimation
of the anticipated smoothness of sensory fluctuations over time produced hypermetric overshoots
at the end of each movement. Finally, reducing the precision associated with linking the discrete
model levels concerned with target and action policy selection, respectively, produced an apparent
confusion whenever the target position changed. Reprinted from (Figures 5 and 6 in [100]), under the
CC-BY 4.0 licence.

The idea behind this work was to simulate a simple task in which movement planning
and execution are necessary, but can be disambiguated from one another. Three targets
were placed in fixed locations in a 3D space, with one highlighted as the target to aim
for. Periodically, the highlighted target would change. The highest level of the generative
model dealt with transitions between the highlighted target states, with each time step
predicting a short sequence of discrete positions for one’s hand at the level below. Finally,
the discrete hand positions at each time point were used to predict short trajectories in
continuous time, using the generalised coordinates of motion apparatus alluded to above.
During the inversion of this model, the expected free energy was used to select alternative
hand positions, which, via the continuous model at the lowest level, led to proprioceptive
predictions that were fulfilled through (reflexive) actions.

Several forms of precision were important here. At the continuous level, this included
two key types of precision. The first was the inverse variance of the anticipated sensory data
(“sensory precision”). When this was increased—as if the descending corticospinal tracts
that attenuate precision during movement (see above) were interrupted—we found rela-
tively normal movement, but greatly exaggerated tendon reflexes elicited by introducing
an unexpected proprioceptive stimulus (see Figure 3B). This is typical of so-called ‘upper
motor neuron’ pathologies, which range from stroke [101] to motor neuron disease [102].
The second precision at the continuous level determined the anticipated smoothness of
sensory fluctuations (i.e., their autocorrelation over time). The augmentation of this preci-
sion resulted in hypermetric and ataxic-like behaviour of the sort associated with cerebellar
syndromes [103,104].

Neither of the above precision parameters affected the ability to decide upon the
correct (highlighted) target, just the execution of the movement to reach that target. In
contrast, manipulations to decrement the precision of policy selection led to an almost
akinetic picture, in which no target could be selected with any degree of confidence and the
simulated arm remained somewhere in the middle. This might reflect the difficulty in motor
initiation seen in Parkinsonian patients with dopamine depletion [105]. Finally, we found
that reducing the precision that linked between the highest hierarchical level—dealing with
changes in the highlighted target—and the level dealing with discrete sequences of hand
positions resulted in a form of perseveration, in which every change in target position was
associated with a very delayed (but ultimately successful) change in the motor plan to reach
the new target. We might think of this form of precision attenuation as the effect of a frontal
disconnection syndrome [106], with disconnection being the most extreme form of loss of
synaptic gain [107,108]. Figure 3B shows the respective simulated pointing trajectories.
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In sum, the hierarchical mixed models briefly described above offer a great tool to
investigate the neurocomputational basis of action. Specifically, they provide the possibility
to simulate lesions to certain brain systems, e.g., those tentatively associated with the
implementation of precision, as described in the following section.

5. How Are Different Kinds of Precision Implemented in the Brain?

One of the appealing characteristics of active inference is that it can be a process
theory, i.e., a mechanistic description of how Bayesian message passing can be mapped
onto neurobiological computations [1]. Inter alia, this allows the generation of empirically
testable predictions based on the assumed generative model that our brains are using,
which may ultimately inform the construction of artificial agents [16,17,109]. Thus, the
inferential (Bayesian) message passing in active inference can be mapped onto the canonical
cortical microcircuit [5,6]. This can be achieved for continuous-time formulations, as in
predictive coding, and discrete-time formulations such as partially observable Markov
decision processes, albeit with some subtle differences [1,33].

In both formulations, precision estimation can be cast as gain control, reflecting the
confidence in probability distributions, e.g., the weight afforded to prediction error signals
or the confidence in a policy or likelihood mapping. The associated fast changes in synaptic
efficacy (as opposed to those related to slower learning processes) can, in principle, be
linked to neuromodulation [1,18,19,110,111]. In particular, the focus on neuromodulation
allows a very intuitive distinction between the different kinds of precision in action [14,19].

Among the numerous neurotransmitters of the central nervous system, some have
received particular attention in this formulation; with respect to precision and uncertainty,
those are acetylcholine, dopamine, and noradrenaline (or norepinephrine [14,112–114]. The
cholinergic, dopaminergic, and noradrenergic systems are often referred to as “neuromod-
ulatory” systems, in contrast to neurotransmitters that are classically assigned a primarily
excitatory or inhibitory role, such as Glutamate or GABA (although these can also influence
attentional processes by acting on, e.g., cholinergic projections; cf. [114]). This is due to
several characteristics of the respective neurons and their synaptic effects; for instance, in
contrast to, e.g., Glutamate or GABA, neurons producing acetylcholine, dopamine, or nora-
drenaline are predominantly located in a few nuclei in the brainstem, from where they have
more or less widespread connections to large parts of the brain [14,111]. This means that a
single neuron can influence processes in many (e.g., cortical) neurons simultaneously—a
role that lends itself to a global modulatory mechanism such as precision [19]. Figure 4
shows a schematic of the main cholinergic, dopaminergic, and noradrenergic pathways of
the brain.

Broadly, the cholinergic system can be seen as a top-down control mechanism, ulti-
mately originating from the prefrontal cortex through its control over cholinergic neurons,
e.g., in the basal forebrain, which modulates processing in sensory cortices [112]. One of its
likely roles is in the control of (selective) attention [38,115]. Thus, it has been established
that cholinergic neuromodulation can be modelled as enhancing sensory or “expected”
precision [14,38]. In discrete-time models, this would correspond to the likelihood precision,
i.e., how confident one is that hidden states will cause certain observable outcomes [19]. In
our example (Figure 1), cholinergic modulation would be at play at the lower sensorimotor
levels such as sensory attention and attenuation.

The dopaminergic system has classically been linked to movement production and
action selection, in large part because its main pathways target predominantly motor struc-
tures in the basal ganglia [35,100]. Active inference models have also linked dopaminergic
activity to the precision of cues that afford action [35], which, in discrete-time formulations,
corresponds to the precision of action policies—i.e., the confidence in action plans [19,116].
In our example, dopaminergic modulation would influence the selection of a specific play
and movement.
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Finally, the noradrenergic system seems to encode the certainty in (precision of) model
predictions where noradrenergic responses of the brainstem locus coeruleus signal low
certainty. Put differently, a substantially increased noradrenergic signalling from the locus
coeruleus would signal “global model failure” [22] in light of unexpected errors [14]; i.e., it
signals that the current model is gravely wrong and needs updating in light of incoming
sensory evidence. This becomes relevant in learning and model updating, particularly
when learning depends on the estimated volatility of the environment [117]. One way
to conceptualise this is that noradrenaline deals with confidence in how predictably the
world changes (i.e., it signals precision in transition probabilities)—a view that is evidenced
by modelling of pupillometric data during the online manipulation of volatility [118].
Evidence for this key role of noradrenergic precision estimates comes from the study
of autism spectrum conditions: computational models of empirical behaviour suggest
that the overly “precise” perception—and the resulting over-reactivity to environmental
changes and corresponding difficulties in adaptive learning—in the autism spectrum may
result from hyperactive noradrenergic signalling [86,119]. These results fit very nicely with
predictive coding accounts of brain function, specifically, with the idea of noradrenaline
encoding precision of model predictions [87,120].

Joint investigations of all three of the above neuromodulatory systems are still rare, but
one computational study using pharmacological manipulations of all three neuromodula-
tors overall confirmed the association of acetylcholine with uncertainty about cue-outcome
associations; dopamine with action selection; and noradrenaline with learning from unex-
pected changes [113]. The role of serotonin in attention and precision is less clear [114,121],
but it may be linked to preferences or the precision of interoceptive likelihoods [1]. In
sum, there are still many outstanding questions about the neuromodulatory mechanisms
of precision to be answered by future work.

Of course, neuromodulation is only one possible way to mediate precision estimates;
for instance, they could also be computed and communicated through the induction of
oscillatory coherence, i.e., synchronisation between cortical areas [6,47,122]. For instance,
low-frequency oscillations in the “alpha” range have classically been assigned a functional
role in mediating top-down (selective) sensory attention [78,123]. In many studies, atten-
tion to stimuli in various sensory modalities has been linked to a suppression of alpha
power in the respective sensory cortical areas (besides augmenting gamma power). Simi-
lar attentional suppression has been observed over sensory cortices in the neighbouring
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“beta” frequency range [115,124,125]. However, beta oscillations originating from the motor
system seem to have a different functional role. Thus, Palmer et al. [47,77] proposed that
the desynchronisation in the beta range typically observed during movement reflects an
increased uncertainty in the current proprioceptive signals. In other words, this interpreta-
tion assigns sensorimotor beta oscillations a role in sensory attenuation, in line with the
assumption that an attenuation of proprioceptive signals is required to move (see above).
This interpretation of motor beta oscillations as mediating sensory attenuation potentially
complements the role of sensory alpha/beta oscillations in sensory attention.

Importantly, the association of different kinds of precision with different neuromodu-
lators and the synchronisation of different frequency bands is not mutually exclusive. On
the contrary, there is good evidence to assume a related mechanism where, for example,
cholinergic mechanisms could mediate the attention-related synchronisation of neuronal
populations via its inhibitory effect on interneurons [112,115]. More work is needed to
establish such a relationship, and to draw a clear precision-related functional distinction
between different neuromodulators and neuronal synchronisation in different frequency
bands, but the above studies are valuable first steps.

6. Conclusions and Outlook

To conclude, the precision concept has proven very valuable on many levels of describ-
ing brain function and behaviour, from cognitive control and decision making to sensory
attenuation and motor reflexes. Of course, the reviewed contributions have not answered
all questions, and they have opened up new ones. A major line of open questions surely
pertains to the implementation of active inference and precision in the brain. Some of the
key assumptions of the framework are disputed, and there is a need for properly designed
empirical studies that contrast them with other accounts of brain function and motor
control [6,33,126]. For instance, gain modulation may be associated with more (and/or
different) computations than changing precision [127,128]. An exciting empirical research
direction is the link between neuromodulators, neuronal synchronisation, and the different
kinds of precision discussed above. One specific question in this line of research pertains to
the timing of precision in active sampling, i.e., involving the coordination of action and
effector movements operating on different time scales [97,129] and a potential “entrain-
ment” of sensory attention by behavioural rhythms [130,131]. We did not discuss inference
underlying the balance between explorative and exploitative behaviour, but it is likewise
an important decision for action where adequate precision estimates (e.g., as confidence in
control) are essential and determine behavioural flexibility, switching between tasks, and
balancing the impact of habits vs. goals in action planning [99,132,133].

In the field of schizophrenia/psychosis research, a crucial open question is the mecha-
nism behind the various precision changes that one can infer from behaviour. For example,
higher hierarchical (e.g., prefrontal or hippocampal) loss of precision could be due to re-
duced synaptic gain from NMDA receptor dysfunction [134], or reduced neuromodulation—
e.g., of the prefrontal cortex by dopamine 1 receptors [135] or muscarinic receptors [136]—
but reduced attenuation in sensory areas may be due to disinhibition (loss of interneuron
function) or poorly understood actions of dopamine in the sensory striatum [137]. Con-
versely, other studies have found that striatal dopamine activity seems to strengthen the
precision of prior beliefs about sensations, not sensory input [138,139], a possible mecha-
nism for hallucinations and a likely contributory factor to delusions [140].

A very important field to which the concept of precision in generative models can
contribute on many levels are cyber–physical interactions, i.e., interactions involving the
control over robotic or virtual bodies (avatars). Robotics itself is a specific field of applica-
tion, where Bayesian (active) inference can be implemented to control action [16,17,109].
Equipping artificial agents with separate estimates in, e.g., action policies and likelihood
mappings may prove useful for generating truly human-like behaviour. This includes
social–cognitive processes like action understanding, agency attribution, and joint action,
which all rely on learning the appropriate balance between sensory attention and attenu-
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ation [43,83,93]. More generally, cyber–physical interaction means learning control over
alternative bodies and, often, in different “realities”, as adopting control over a virtual or
remote-controlled robotic body will provide the user with different sensory information
and different degrees of freedom for movement. Thus, the adoption of a virtual or robotic
body can be likened to a switch to a different reality: a different world and a different body
representation [63]. This poses many complex problems to the embodied self [12,141,142],
including how to adjust one’s precision estimates on several levels of inference for optimal
(flexible) behaviour.

We have already emphasised the importance of tuning precision estimates for aiding
visuomotor adaptation, i.e., the integration of novel seen and felt bodily information
for action (see above and [63,94,115,124]). The same likely factors into adaptation to a
different sensorimotor mapping in cyber–physical interactions. Furthermore, precision
can act as sensory attention and attenuation to enhance immersion: an attenuation of
distracting signals from the “physical reality” could help attend to those of the desired
(virtual) reality; this can mean simple things such as a person playing virtual reality games
ignoring the weight or limited field of view of the virtual reality headset, or visuomotor
lags introduced by systematic delays in the hardware. But it is unknown what the limits
and consequences of this learning are. For instance, in which of these cases is the model
(body representation) adjusted, when is a new model learned, and how efficiently can we
switch between models? One interesting question is whether there is some sort of sensory
attenuation when switching between physical and virtual body representations (or vice
versa), similar to what has been discussed for movement initiation above. There are further
potential roles of precision in cyber–physical interaction, related to perceptual inference.
For instance, estimates of interoceptive precision can mediate a sense of “presence”, such
as being in the virtual reality [13,143]. This could perhaps link to a higher-level role of
precision as model certainty (see above), undermining the sense that the current world-
and self-model is “right” [8,20]. In short, there are many possible roles of precision when
switching between physical and virtual body representations and, correspondingly, many
theoretical and empirical questions that can and should be addressed from within the active
inference framework.
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