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ABSTRACT
BACKGROUND: Adolescence heralds the onset of considerable psychopathology, which may be conceptualized as
an emergence of altered covariation between symptoms and brain measures. Multivariate methods can detect such
modes of covariation or latent dimensions, but none specifically relating to psychopathology have yet been found
using population-level structural brain data. Using voxelwise (instead of parcellated) brain data may strengthen latent
dimensions’ brain-psychosocial relationships, but this creates computational challenges.
METHODS: We obtained voxelwise gray matter density and psychosocial variables from the baseline (ages 9–10
years) Adolescent Brain Cognitive Development (ABCD) Study cohort (N = 11,288) and employed a state-of-the-
art segmentation method, sparse partial least squares, and a rigorous machine learning framework to prevent
overfitting.
RESULTS: We found 6 latent dimensions, 4 of which pertain specifically to mental health. The mental health di-
mensions were related to overeating, anorexia/internalizing, oppositional symptoms (all ps , .002) and attention-
deficit/hyperactivity disorder symptoms (p = .03). Attention-deficit/hyperactivity disorder was related to increased and
internalizing symptoms related to decreased gray matter density in dopaminergic and serotonergic midbrain areas,
whereas oppositional symptoms were related to increased gray matter in a noradrenergic nucleus. Internalizing
symptoms were related to increased and oppositional symptoms to reduced gray matter density in the insular,
cingulate, and auditory cortices. Striatal regions featured strongly, with reduced caudate nucleus gray matter in
attention-deficit/hyperactivity disorder and reduced putamen gray matter in oppositional/conduct problems.
Voxelwise gray matter density generated stronger brain-psychosocial correlations than brain parcellations.
CONCLUSIONS: Voxelwise brain data strengthen latent dimensions of brain-psychosocial covariation, and sparse
multivariate methods increase their psychopathological specificity. Internalizing and externalizing symptoms are
associated with opposite gray matter changes in similar cortical and subcortical areas.

https://doi.org/10.1016/j.bpsc.2024.03.006
Large-scale datasets comprising both biopsychosocial and
neuroimaging measures—such as the UK Biobank (1) and the
Adolescent Brain Cognitive Development (ABCD) Study (2),
each with .10,000 participants—hold great promise for the
discovery of complex associations between the brain, its ge-
netic heritage, and its sociocultural environment. In such
datasets, it is possible to go beyond standard univariate ana-
lyses based on a priori symptom clusters (e.g., diagnoses) or
brain regions and examine latent dimensions (or modes) of
covariation across many brain and psychosocial variables (3)
using multivariate statistical methods such as canonical cor-
relation analysis (CCA) (4) and partial least squares (PLS) (5).
The first attempt to do so applied CCA to psychosocial and
functional connectivity measures in 461 participants from the
Human Connectome Project (6) and found that a single mode
ª 2024 Society of Biological Psychiatry. Pu
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of covariation resembling a general intelligence factor that also
included social outcomes (e.g., income, life satisfaction vs.
drug and alcohol use) was related to connectivity in predomi-
nantly default mode brain areas (7). Modes similar to this have
subsequently been found in other datasets (8,9) and using
other methods (10).

However, a potential disadvantage of the multivariate
approach is that the resulting modes of brain-psychosocial
covariation contain so many psychosocial variables that their
complexity hinders interpretation. It has been difficult to
robustly identify specifically mental health–related modes
within large-scale datasets that relate brain structure to psy-
chopathology (7–9) [unless the psychosocial data are confined
to mental health items only (11–13)]. Furthermore, effect sizes
are small (14).
blished by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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One potential way to improve brain-psychosocial correla-
tions may be to use voxelwise instead of parcellation-based
brain data, although this has rarely been attempted in large-
scale population datasets [with some exceptions (15)]. How-
ever, this potentially greater accuracy comes at a substantial
computational cost and with the risk that latent dimensions will
be even harder to interpret and subject to much more over-
fitting (16). Interpretability can be much improved, however,
using sparse methods—such as sparse PLS (SPLS)—that find
modes containing fewer variables (11,17) (also, parcellations
and frameworks such as NeuroSynth can always be applied to
voxelwise data post hoc). Notably, if the underlying brain-
psychosocial association is also sparse (e.g., the
hippocampus-centered atrophy in dementia), SPLS can
outperform CCA methods at recovering the true associations
in simulated data, with comparable out-of-sample correlations
(10). Conversely, if the underlying brain-psychosocial associ-
ation is highly distributed, a sparse method will generally
produce modes with weaker out-of-sample correlations than
nonsparse methods (10). Overfitting means discovering
spurious associations that will not generalize to unseen data-
sets. When the dimensionality of the data exceeds the number
of subjects—as voxelwise imaging data does, by at least an
order of magnitude—this problem is especially acute. It can be
mitigated by using regularization, both to enable solutions
when the dimensionality exceeds the sample size and to
reduce overfitting, and a rigorous machine learning–based
approach, in which associations detected in a training sam-
ple are assessed for statistical significance in an unseen
holdout sample, using permutation-based statistics. Regulari-
zation can be performed during the optimization of CCA/PLS
itself, as in L2-norm (ridge) or L1-norm (sparse) regularizations,
which force weights to be small but nonzero or sparse,
respectively.

These analyses are based on the premise that robust esti-
mations of the covariation patterns between imaging and
behavioral measures can uncover novel patterns of brain
structure or function that underlie mental health disorders
(18–23). Changes in structural brain measures during adoles-
cence may be related to neurodevelopmental processes such
as synaptic pruning and myelination, which are thought to be
altered in some mental disorders [e.g., schizophrenia (24) and
compulsive and impulsive disorders (25)]. In particular,
although novel dimensional and/or hierarchical symptom-
based classifications have been proposed (26,27), it is likely
that including neurobiological information, e.g., imaging, will
help delineate which disorders or symptoms are related or
distinct and describe their key modes of variation (28). For
example, a study that used CCA to link clinical and functional
brain measures in children found some transdiagnostic modes
(comprising irritability, anxiety, and attention-deficit/
hyperactivity disorder [ADHD] and also irritability and disrup-
tive behavior) and 1 unique mode (anxiety alone) (23). A similar
study that combined structural and functional imaging data
with clinical data from 19-year-olds found a similar trans-
diagnostic (irritability, anxiety/depression, and inattention)
mode and a more unique (ADHD-related) mode (11). Scores on
such modes could potentially be used for risk stratification (21)
or outcome prediction (29). Doing this during adolescence is
especially important because it is the developmental period
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when many mental health disorders first manifest (30) and thus
may be the optimal time to try to mitigate or prevent their
onset. However, mental health–related effects may be more
weakly expressed in the brain in adolescence compared with
adulthood, and adolescent brains differ from standard adult
templates, e.g., those used to distinguish gray and white
matter.

In this study, we address the above problems with high
dimensional multivariate analyses by using a sparse method,
SPLS (31), to increase the likelihood of identifying robust
modes that are specific (e.g., to mental health), a rigorous
machine learning framework (17) to prevent overfitting, and a
state-of-the-art segmentation method (32) that generalizes
well to nonstandard (e.g., adolescent) images. We chose not to
constrain the psychosocial variables to only mental health–
related items (except for a sensitivity analysis in Supplement
1), because many other factors may affect mental health—
and neurodevelopment more broadly—during childhood, e.g.,
poverty, local deprivation, access to recreational activities, and
racism. We analyzed the ABCD Study dataset, the largest
existing adolescent psychosocial and neuroimaging dataset
(N = 11,880). It is a population (i.e., nonclinical) sample, but it is
enriched for children with behavioral problems (33). We used
only the structural magnetic resonance imaging (MRI) data,
because functional connectivity can have lower reliability (34)
and replicability (23) and be more challenging to interpret, and
while functional measures sometimes have a slightly stronger
relationship to psychopathology than structural ones, the dif-
ference does not tend to be large (and sometimes the reverse
is true) (3,11,12,14,29,34,35).

Our key questions were 1) whether the computational cost
of using voxelwise gray matter variables (instead of
parcellation-based measures, which are more standard at this
scale) would be compensated for by increasing the sensitivity
(i.e., the brain-psychosocial correlation) of the results, and 2)
whether employing a sparse approach (SPLS) could find
specific, interpretable latent dimensions within these very high-
dimensional data, especially related to psychopathology.
METHODS AND MATERIALS

The ABCD Study is a single-cohort prospective longitudinal
study of 11,880 children ages 9 to 10 years (and their parents/
guardians) recruited across 22 sites, to be followed up for at
least 10 years (https://abcdstudy.org). We downloaded struc-
tural MRI data and behavioral, clinical, cognitive, and socio-
demographic (termed psychosocial below) data from the
(baseline) ABCD Study Curated Annual Release 2.0.1. The
analysis is detailed in Supplement 1 and is summarized below
and in Figure 1. The full acquisition protocol, including the
small differences between scanners, has been fully described
elsewhere [see Section 2 and Appendix in (2)].

In brief, voxelwise gray matter images were obtained from
the structural MRI data using the Multi-Brain toolbox (32),
which produces spatially normalized tissue segmentations for
each scan. The individual gray matter maps were then
smoothed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm) using a
10-mm full width at half maximum Gaussian kernel and then
averaged to create an average gray matter map. A common
mask was created, selecting voxels with a.10% probability of
eptember 2024; 9:915–927 www.sobp.org/BPCNNI
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Figure 1. Preprocessing and analysis pipeline.
The left side of the figure summarizes the pre-
processing steps for the brain and psychosocial
variables. See Supplement 1 for a full description of
the structural magnetic resonance imaging (sMRI)
and psychosocial preprocessing steps. Many psy-
chosocial variableswere excludedbecause the ratio
of their most common answer to the remainder was
.99:1 or because .10% of values were missing.
Different sparse partial least squares (SPLS) ana-
lyses were conducted using either voxelwise or
parcellation-based gray matter data; the latter
comprised 166 parcels in the Anatomical Labelling
Atlas 3 atlas or 234 parcels in the network-based
atlas. Within the SPLS and machine learning frame-
work, the green box represents the 80% of partici-
pants randomlyselected tobe in the trainingset, and
the redbox represents the 20%ofparticipants in the
holdout or test set. Within the training set, 5-fold
cross-validation was performed to optimize the
SPLS hyperparameters cu and cv (according to
generalizability and stability criteria; see
Supplement 1); the folds are shown demarcated
with gray lines, and the validation sets are shown
in blue. Once the hyperparameters had been
optimized, the model was trained on the full
training set and evaluated on the holdout set by
permuting the labels 500 times. ABCD,
Adolescent Brain Cognitive Development Study;
BMI, body mass index; TBV, total brain volume.
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containing gray matter in the average gray matter map, and
applied to each participant, which resulted in a total of 124,398
voxels, each scored with the probability of its containing gray
matter in that participant (brain data). Psychosocial question-
naire variables potentially relevant to mental health were
selected (see Figure 1 and Supplement 1). The data were then
deconfounded (for sex, age, total brain volume, body mass
index [BMI], and scanner type) and standardized (i.e., the
standardized variables had a mean of 0 and a standard devi-
ation of 1).

SPLS was then employed to find latent dimensions (or
modes) of maximal covariation between the voxelwise gray
matter density and psychosocial variables, defined by Xu and
Yv (where X and Y are the data matrices containing brain and
psychosocial data, respectively, and u and v are the weight
vectors which indicate the contribution of each variable to the
mode of covariation). The level of sparsity of the weight vectors
is controlled by hyperparameters cu and cv, which were opti-
mized using 5-fold cross-validation within the training set (80%
of participants), using joint generalizability and stability opti-
mization criteria. These select hyperparameters that maximize
the mean out-of-sample correlation across all folds and the
average overlap of the weights, respectively. Once the hyper-
parameters were optimized, the SPLS model was fitted to the
whole training set and assessed using the correlation of the
latent dimensions in the holdout set (20% of participants).
Permutation testing was used to assess the significance of the
holdout correlation. In addition to visualizing the sparse
weights, we plotted the nonsparse brain loadings (the corre-
lations of each variable with the mode score; see Supplement
1) to show how each mode relates to the entire cortex.
Biological Psychiatry: Cognitive Neuroscience and Neuroi
To assess the benefit of using voxelwise brain data as
opposed to parcellation-based brain data of substantially
lower dimensionality, we repeated the machine learning anal-
ysis using mean gray matter volumes of 166 anatomical par-
cels of cortex, cerebellum, and thalamus [Anatomical Labelling
Atlas 3 (36)] or of a network-based parcellation of 234 areas
[the Schaefer-Choi-Buckner atlas (37–40)], both of which are
detailed in Supplement 1.

We performed a principal component analysis of the psy-
chosocial variables alone and assessed the extent to which the
brain-psychosocial SPLS modes captured the largest sources
of variance in the psychosocial data (7) (see Supplement 1 for
details).

Finally, we compared the extent to which psychosocial
scores on the SPLS modes (from ABCD Study data collected
at baseline, year 0) and scores from the psychosocial-only
principal components correlated with important outcomes in
years 1 to 3, such as school grades, suicidality, and substance
use (see Supplement 1 for details).

RESULTS

Six Modes Related Voxelwise Brain Gray Matter to
Psychosocial Measures

Six latent dimensions (or modes) of brain-psychosocial
covariance achieved statistical significance (assessed using
the Pearson correlation) in the holdout set (Figures 2–4). We
illustrate the loadings of both brain and psychosocial modes in
Figures 2–4 (psychosocial variables with loadings of |r| .

0.15—up to a maximum of 40—are shown in the figures, but
the full list of weights on each mode is provided in Supplement
maging September 2024; 9:915–927 www.sobp.org/BPCNNI 917
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Figure 2. Modes 1 and 2 psychosocial and brain loadings. (A) The theme of mode 1, its brain-psychosocial Pearson correlation, and the permutation-based
p value and the number of brain and psychosocial variables selected (i.e., with nonzero weights) are shown. Pearson scores refer to Matrix reasoning tests and
the RAVLT. The weights themselves are shown in Supplement 1. Here, the loadings, proportional to the correlation of each variable with the brain/psychosocial
scores on that mode (also see Equation 3 in Supplement 1), are shown. The upper part of the figure shows the psychosocial loadings, colored according to the
questionnaires in the legend. Only the loadings of |r| . 0.15 are shown, up to a maximum of 40 variables. On the bottom row, loadings on the brain are plotted
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2). The brain and psychosocial weights, hyperparameter opti-
mization details, and correlations between brain and psycho-
social scores in the training and holdout sets are plotted in
Figures S1–S6 in Supplement 1, along with the anatomical
details of both loadings and weights on cortical, cerebellar,
and subcortical regions (Tables S5–S16 and S17–S22 in
Supplement 1, respectively). We describe each of them in
detail below.

Mode 1 (r = 0.30, p , .002) (Figure 2A; Tables S5 and S6 in
Supplement 1) related higher intelligence and socioeconomic
status (e.g., income, lack of neighborhood violence/crime,
extracurricular activities, with poor sleep and a single parent at
the opposite end) to lower gray matter in frontoparietal, medial
temporal, and cerebellar regions and increased gray matter in
primary sensorimotor and thalamic regions.

Mode 2 (r = 0.24, p , .002) (Figure 2B; Tables S7 and S8 in
Supplement 1) described overeating (being overweight, over-
eating, bingeing, weight control) or issues related to sleep
apnea (snoring, overtired). High loadings (i.e., obesity) were
associated with increased occipitotemporal and orbitofrontal
(i.e., visual and limbic) gray matter.

Mode 3 (r = 0.25, p , .002) (Figure 3A and Tables S9–S11 in
Supplement 1) ranged from high scorers who have a Hispanic
background and family from outside the United States, speak
Spanish or another language besides English, and are Catholic
to low scorers who are not Hispanic and whose parents speak
English well (but no other language) and never married. High
scorers had more gray matter in temporal (auditory, opercu-
lum) and parietal, i.e., language-related, areas and the pre-
cuneus and less gray matter in the frontal and motor cortex
(especially left-sided) and temporal pole.

Mode 4 (r = 0.042, p = .030) (Figure 3B; Tables S11 and S12
in Supplement 1) comprised symptoms of ADHD, including the
3 key domains (hyperactivity, impulsivity, and inattention).
These symptoms related to reduced gray matter in subcortical
and cortical limbic (and attentional) areas—the caudate (ac-
counting for .60% of the weights), most of the thalamus,
nucleus accumbens, hippocampus, amygdala, insula, and
orbitofrontal cortex—and increased gray matter in the sub-
stantia nigra, ventral tegmental area, raphe nucleus, and areas
of cortex, cerebellum, and thalamus that are related to
sensorimotor function. Given the weakness of this correlation
and the potential for confounding by medication or movement,
we performed additional analyses to ensure that the results
were robust (see Six Modes Relate Voxel-wise Brain Grey
Matter to Psychosocial Measures and Figures S4 and S7A in
Supplement 1).

Mode 5’s (r = 0.14, p , .002) (Figure 4A; Tables S13 and
S14 in Supplement 1) psychosocial loadings can be summa-
rized best as relating anorexia and internalizing symptoms
such as anxiety (worries, fearful, nervous, self-conscious),
=

and normalized to within 21 and 1; note that the cerebellum is not shown, and su
for the loadings on cerebellum and specific subcortical regions). On the bottom
participant in the training (blue) and holdout (red) sets. (B) This panel shows the
weights are so sparse (2 variables) that the scores form a trimodal distributio
Assessment; KSAD3, Parent Diagnostic Interview for DSM-5: Background Items
NSC2, Neighbourhood Safety/Crime Survey; PDEM, Parent Demographics Surv
Involvement Questionnaire; SDS, Sleep Disturbance Scale; TBX, NIH Toolbox Ta
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depression (feeling worthless, unhappy, guilty), and obses-
sionality (cannot ignore certain thoughts, picks nose/skin, fears
s/he might do something bad) and lack of activities to
increased gray matter in the frontal (especially medial and
orbital) and insular/auditory cortex and lower gray matter in the
raphe nucleus, substantia nigra, ventral tegmental area, and
thalamus.

Mode 6 (r = 0.10, p , .002) (Figure 4B; Tables S15 and S16
in Supplement 1) accounted for children with parental conflict
and oppositional defiant disorder (ODD) symptoms (arguing
with authority, temper tantrums), and—loading more weakly—
some conduct disorder symptoms (disobeying rules, cruelty,
lying, threatening others), which were associated with
increased gray matter in the caudate, locus coeruleus, amyg-
dala, and right rostral prefrontal cortex, and reduced gray
matter in the insular, cingulate, and auditory cortices and nu-
cleus accumbens.

The within-modality variances or cross-modality covariance
in the holdout set explained by each mode are shown in
Figure 5A. In terms of brain-psychosocial covariance
explained, mode 1 (15.7%) explained much more than the
other modes (1.8%–5.1%); in total, 13.3% of brain variance,
10.1% of psychosocial variance, and 34.2% of brain-
psychosocial covariance was explained by the 6 voxelwise
SPLS modes. Subgroup analyses, in which the brain-
psychosocial correlations in the same 6 modes were
assessed separately within distinct groups (by sex and so-
cioeconomic status), are detailed in Table S23 in Supplement
1. All correlations were present in all subgroups, which im-
plies that the results are generalizable.
Comparative Analyses

Alternative analyses were conducted in which the voxelwise
brain gray matter probabilities were averaged within 166
anatomical parcels (Anatomical Labelling Atlas 3) or 234
network-based parcels (Schaefer-Choi-Buckner atlas). The
analyses were otherwise identical to the voxelwise SPLS
analysis. The results are detailed in Figures S8–S15 in
Supplement 1. The anatomical and network-based analyses
identified 5 and 3 (respectively) modes, all of which (except 1)
were very similar to the corresponding modes of the voxelwise
analysis; confusion matrices demonstrating the correlation
between averaged brain and psychosocial scores on these
modes are shown in Figure 5C (see Figure S7B in Supplement
1) for separate confusion matrices for brain and psychosocial
modalities.

The main difference between the parcellation and voxelwise
analyses was that the correlations in most modes (except
mode 4) were smaller when using the parcellation methods
(Figure 5D). The voxelwise analysis also found more significant
bcortical loadings are projected onto the medial surface (see Supplement 1
right is a scatter plot showing the brain and psychosocial scores for each
results for mode 2 in the same format as (A). Note that the psychosocial
n (bottom right). CBCL, Child Behaviour Checklist; FHX1, Family History
; KSAD4, Parent Diagnostic Interview for DSM-5: Mental-health diagnosis;
ey; RAVLT, Rey Auditory Verbal Learning Test; SAIQ, Sports and Activities
sks.
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Figure 3. Modes 3 and 4 psychosocial and brain loadings. (A) Results for mode 3 are shown in the same format as Figure 2A. (B) Results for mode 4 are also
shown in the same format as Figure 2A. Some considerable outliers in brain score are also visible on the left of the bottom right plot; however, these (training)
subjects did not drive the test correlation. ACC1, Acculturation Survey: Child; ACC2, Acculturation Survey: Parent; CBCL, Child Behavior Checklist; KSAD3,
Parent Diagnostic Interview for DSM-5: Background Items; KSAD4, Parent Diagnostic Interview for DSM-5: Mental-health diagnosis; PDEM, Parent De-
mographics Survey; PGBI, Parent General Behaviour Inventory—Mania.

Latent Mental Health, Cognition Modes in Adolescents

920 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging September 2024; 9:915–927 www.sobp.org/BPCNNI

Biological
Psychiatry:
CNNI

http://www.sobp.org/BPCNNI


Figure 4. Modes 5 and 6 psychosocial and brain loadings. (A) Results for mode 5 are shown in the same format as Figure 2A. (B) Results for mode 6 are also
shown in the same format as Figure 2A. BIS, Behavioral Inhibition/Behavioural Approach System Scale; CBCL, Child Behavior Checklist; FES2, Family
Environment Scale—Family Conflict; FHX1, Family History Assessment; KSAD3, Parent Diagnostic Interview for DSM-5: Background Items; KSAD4, Parent
Diagnostic Interview for DSM-5: Mental-health diagnosis; KSAD5, Parent Diagnostic Interview for DSM-5: Conduct Disorder; PDEM, Parent Demographics
Survey; PGBI, Parent General Behaviour Inventory—Mania; PST2, Prosocial Behaviour Survey; SAIQ, Sports and Activities Involvement Questionnaire.
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A

C

D

B Figure 5. Comparisons of analysis methods. (A)
This bar plot shows the percentage of variances
explained in the holdout set by each mode, both
within each modality (brain or psychosocial) and
across both modalities (brain-psychosocial covari-
ance), for each of the 6 voxelwise sparse partial least
squares (SPLS) modes. (B) This confusion matrix
plots the Pearson correlations between the aver-
aged brain and psychosocial scores across in-
dividuals for each mode in the (voxelwise) analysis
using all psychosocial variables and the analysis
using only mental health–related variables. (C) These
confusion matrices plot the Pearson correlations
between the averaged brain and psychosocial
scores across individuals for each mode in the
voxelwise analysis and the anatomical (Anatomical
Labelling Atlas [AAL3]) parcellation analysis (left) or
the network-based parcellation analysis (right). It is
clear that the first 3 modes of each were very similar
to the voxelwise analysis, as is mode 4 in the
anatomical parcellation analysis. See Supplement 1
for additional details and the similarity of the sepa-
rate brain and psychosocial scores. (D) This bar plot
shows the Pearson correlation strengths for all SPLS
modes found in the voxelwise analysis and the
corresponding (i.e., containing similar variables)
modes in the anatomical (AAL3) parcellation and
network parcellation analyses. Only 3 modes were
found in the network parcellation–based analysis; 5
modes were found in the anatomical parcellation–
based analysis, but the last one had no equivalent
in the voxelwise analysis, so it is not plotted here.
The correlations were stronger in the voxelwise
analysis for the modes that were common to all
analyses.
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modes, but this was not a consistent attribute (e.g., if BMI was
not included as a confound, the parcellation-based analyses
found more modes) (data not shown).

The sensitivity analysis using only mental health–related
psychosocial variables identified 3 mental health-related
modes (Figures S16–S18 in Supplement 1). One of these
was similar to mode 2, and the others related to mixtures of
conduct problems, IQ, and internalizing and externalizing
symptoms (Figures 5B and S19A; discussed in Supplement 1).

See Supplement 1 for comparison of the brain-psychosocial
modes from the main analysis with the psychosocial principal
components (see Correlation with Unmodelled or Future
Outcomes and Figures S19B, S20 in Supplement 1); the
latter had slightly stronger correlations with future outcomes
than the former.
DISCUSSION

The goal of this study was to examine whether latent di-
mensions of brain structure and psychosocial covariation,
including those specifically related to psychopathology,
could be found in adolescents. Using an SPLS approach, we
identified 6 latent dimensions (or modes of covariation) in
922 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging S
11,288 9- and 10-year-olds, which explained one-third of the
brain-psychosocial covariance. Three modes showed moderate
correlations (r = 0.24–0.30) with psychosocial variables related
to intelligence and income, overeating, and being bilingual
(with a Hispanic background). Four modes were related to
mental health—binge eating, ADHD symptoms, anorexia, and
internalizing symptoms, and oppositional defiant symptoms
(respectively)—but the last 3 showed weaker correlations with
gray matter density (r , 0.15). Nevertheless, the fifth mode
adds to recent evidence that dopamine function may be
related to internalizing and depression symptoms (as well as
ADHD), and the sixth mode links noradrenaline to conflict and
defiance (discussed below). The voxelwise SPLS analyses
showed stronger brain-psychosocial correlations than
parcellation-based analyses. Another advantage of the SPLS
analysis is that the sparsity can improve specificity and
interpretability—especially of the psychosocial weights, which
for modes 2, 3, and 6 contain only 2, 8, and 7 psychosocial
features, respectively (Figures S2–S4 in Supplement 1).

Next, we evaluate each mode in turn. Mode 1 related higher
IQ and socioeconomic status to lower gray matter in atten-
tional and executive (frontoparietal) regions but higher gray
matter in sensorimotor regions. A previous multivariate
eptember 2024; 9:915–927 www.sobp.org/BPCNNI
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analysis of ABCD Study data (9) found a relationship between
IQ, income, and reduced anterior but increased posterior
cortical thickness (mode 5). Note that thinner cortex is asso-
ciated with higher intelligence in children w10 years age; in
adults, intelligence is related to thicker cortex (41,42). Other
studies have shown relationships between IQ and increased
surface area (and reduced thickness) in similar prefrontal and
parietal areas and the opposite relationships in occipital and
motor areas (43,44), just as we did in mode 1. However, IQ is
most likely an effect rather than a cause of these changes.
Regarding likely causes, socioeconomic status is strongly
related to IQ (8), and deprived backgrounds may in part drive
these cortical gray matter effects via a lack of educational
stimulation (45). Mode 1’s brain loadings are very similar to the
associations of cortical thickness with socioeconomic status
(46) [and of cortical surface area with family income (47)], which
may reflect accelerated adolescent cortical thinning induced
by deprivation. Lower cerebellar gray matter (which dominates
the positive weights for this mode) (Table S17 in Supplement 1)
may be related to environmental aspects of socioeconomic
status (48). Unfortunately, most neuroscience studies ignore
socioeconomic status despite its clear effects on neurobiology
(49) and physical and mental health (50). Longitudinal analyses
are required to disambiguate the respective contributions of IQ
and socioeconomic status.

Mode 2 related overeating to increased occipitotemporal
and orbitofrontal gray matter. This replicates a finding of a
relationship between increased BMI and occipital thickness in
.3000 children of similar age (51), and increased occipital and
orbitofrontal thickness being related to BMI in adolescents
(52). However, in adults, the opposite relationship exists: BMI
is related to thinner lateral occipital and ventromedial prefrontal
cortices (53,54). The effect of higher BMI on slowing adoles-
cent global cortical thinning (52) does not explain this localized
pattern, however, because BMI was regressed out. Further-
more, although cortical gyrification is reduced with extremes of
weight loss and gain and normalizes with weight restoration in
anorexia (55), this effect spares the occipital cortex (51).
Interestingly, polygenic risk for obesity is related to both lower
lateral occipital area and lateral orbitofrontal thickness, with the
latter showing a mediating effect on obesity itself (56). Thus,
this mode may comprise areas with functional relevance to
cognitive models of obesity (52), i.e., processing of visual food
cues and their reward value in goal-directed decision making.

Mode 3 found covariance between being bilingual (with a
Hispanic background) and increased (left) temporoparietal but
decreased frontal gray matter. Although left parietal volume is
associated with bilingualism (57), this mode may seem at odds
with findings that bilingual (vs. monolingual) children have
more gray matter (i.e., less developmental loss) in both parietal
(including precuneus) and frontal regions (58), as do adults
(59). Note, however, that bilingual proficiency (in bilingual
samples) is related to thinner left frontal areas in both children
(60) and adults (61). Similarly, interpreters learning a novel
language showed increased gray matter in both left frontal and
left superior temporal areas, associated with worse and better
performance, respectively (62).

Mode 4 related ADHD symptoms to reduced caudate and
increased substantia nigra gray matter. Previous meta-
analyses in ADHD have noted reduced gray matter in the
Biological Psychiatry: Cognitive Neuroscience and Neuroi
striatum (63), insula, and amygdala (64), with these effects
being more pronounced in untreated individuals (65). Other
smaller studies have also found reduced gray matter in the
thalamus in ADHD (66,67). To our knowledge, increased gray
matter in the substantia nigra/ventral tegmental area in ADHD
is a novel finding and does not appear to be an effect of
stimulant medication. Similarly, it is highly unlikely that motion
effects drive specific relationships with the caudate and sub-
stantia nigra. Intriguingly, these results resemble the cortical
area and subcortical volume reductions seen in children with
ADHD diagnoses (n = 2246, n = 1934 control participants) in
the ENIGMA (Enhancing Neuro Imaging Genetics through
Meta Analysis) dataset (68) but do not resemble the (minimal)
changes in those same measures found in ADHD diagnoses
(n = 949; n = 9787 control participants) in the ABCD Study
dataset itself (69). Factors contributing to these differences
across datasets could include the quality of subcortical seg-
mentation, reliability of diagnosis (vs. symptom question-
naires), and balance of cases/controls.

Mode 5 related anorexia and internalizing symptoms (and
lack of activities) to increased gray matter in the medial/orbi-
tofrontal and insular/auditory cortex. These brain areas are
strongly associated with the influence of emotion on decision
making and regulation of emotion itself [ventromedial and
orbitofrontal cortex, also frontal pole (70)] and inhibitory control
(cingulate cortex), mood and interoception (insula), and audi-
tory and language processing (Heschl’s gyrus, Rolandic
operculum). Unlike mode 4, this mode associated psychopa-
thology with reduced gray matter in subcortical serotonergic
and dopaminergic areas (and the thalamus).

The cortical weights resemble the cortical thickness
weights of mode 5 in another analysis of the same dataset (9),
which was also related to internalizing problems (but also
attentional and externalizing problems, lower income, and
IQ). One of the strongest contributors to the mode was the
ventromedial prefrontal cortex, one of the 2 cortical areas in
which increased gray matter was related to transdiagnostic
pathology in a meta-analysis of 132 studies in children and
adolescents (71). This region was also one of the most pre-
dictive areas for transdiagnostic mental health problems us-
ing functional connectivity data from the ABCD Study cohort
(22,72).

This may indicate that thicker cortex, i.e., slower neuro-
development in these mainly cortical emotion-processing
areas increases the risk of psychopathology. In older partici-
pants, however, the opposite relationship exists: the p factor is
associated with thinner cortex (especially in frontotemporal
areas) in adults (73), and a large (N = 15,892) meta-analysis of
voxelbased morphometry studies in adults showed that gray
matter reduction in the anterior cingulate and bilateral insula
was common to schizophrenia, bipolar disorder, depression,
obsessive-compulsive disorder, addiction, and anxiety (74).
Similarly, the ENIGMA consortium found that thinner fronto-
temporal cortex and increased thalamic volume (the reverse of
mode 5) was common to the first 4 of these disorders (75).
Overall psychopathology has been related to globally
decreased gray matter in adolescence (8–23 years), perhaps
indicating accelerated neurodevelopment (46) [or brain aging
(76)], although internalizing symptoms were associated with
global increases in the same dataset (20,77).
maging September 2024; 9:915–927 www.sobp.org/BPCNNI 923

http://www.sobp.org/BPCNNI


Latent Mental Health, Cognition Modes in Adolescents
Biological
Psychiatry:
CNNI
It is interesting to note that activities such as American
football loaded on the opposite end of this mode. Given this
correlational analysis, whether activities are likely to reduce
internalizing symptoms (and/or whether children without
internalizing symptoms are more motivated to engage in ac-
tivities) is unclear, but other studies have found that exercise
is an effective treatment for depression (78), including during
adolescence (79).

Mode 6 related ODD symptoms to lower gray matter in the
insula and cingulate cortex but increased gray matter in the
caudate, locus coeruleus, and amygdala. This mode was
interesting because it differentiated ODD from ADHD symp-
toms in mode 4 (although in the repeated analyses, these
modes were combined into an ADHD/ODD mode; see
Supplement 1). Previous studies have struggled to differentiate
brain structural changes in ADHD and ODD because they are
highly comorbid (80,81). Work that has included very large
studies and meta-analyses have found that ODD is related to
reduced gray matter in both the insula (82–84) and cingulate
(84,85); however, a smaller study found increased gray matter
in the right rostral prefrontal cortex (80), as is also seen in this
mode. The novel contribution of this study is in demonstrating
subcortical changes that are related to ODD (82,85), namely a
larger locus coeruleus and smaller nucleus accumbens. These
are interesting given the hypoarousal (86) and reduced repre-
sentation of expected value found in ODD (87) and that suc-
cessful treatments boost noradrenergic and dopaminergic
function (88).

When comparing the voxelwise and parcellation-based
methods for the SPLS analysis, the most important (and
reassuring) point is that most of the modes in the voxelwise
and 2 (network and anatomical, respectively) parcellation-
based methods were very similar, with almost identical vari-
ables on the psychosocial side and strong correlations be-
tween the brain and psychosocial scores across the different
methods (Figure 5C). The major difference is that the voxelwise
approach generally yielded higher out-of-sample correlations
(Figure 5D). It would be interesting to perform a more sys-
tematic analysis, to assess correlation strength as a function of
resolution, and gauge whether finer parcellations [of up to 1000
areas (37)] have similar performance to voxelwise methods.
Based on this preliminary analysis, however, the only advan-
tage of using parcellated brain data in the SPLS analysis is the
lower computational burden; otherwise, voxelwise data yielded
stronger brain-psychosocial correlations in the current study.

Hopefully, some limitations can be addressed using novel
data and/or methods. It will be important to replicate these
latent dimensions in a sample of participants of similar age and
to assess their evolution in the ABCD Study sample during
development. Longitudinal data are crucial to understanding
how neurodevelopment is related to brain function; for
example, both increased and decreased gray matter volumes
have been associated with the same psychopathologies in the
same studies [of internalizing symptoms (20) and autism/ADHD
(18)]. These could reflect both abnormally delayed and accel-
erated developmental processes (respectively), which would
impede the detection of effects in cross-sectional data. Lon-
gitudinal data will also potentially permit more mechanistic
insights than these cross-sectional data allow. Although the
ABCD Study sample is very large and enriched for
924 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging S
psychopathology, the proportion of participants with current
psychiatric diagnoses is still low (the most common is ADHD at
9%, with unspecified eating disorder at 8% and ODD and
suicidal ideation both at 6%), and clinical datasets of similar
size [e.g., the Healthy Brain Network (89)] may yield greater
insight into (and stronger correlations in) brain-
psychopathology relationships.

Despite their relatively weak correlations, modes 4, 5, and
6 suggest 2 additional conclusions. One is that when latent
variable discovery methods such as factor analysis are
applied to ADHD and other psychopathology scales (e.g.,
depression, psychotic disorders, obsessive-compulsive dis-
order), the results differ depending on whether brain data are
included. Using symptoms only, ADHD symptoms tend to be
absorbed into an externalizing factor along with conduct and
oppositional symptoms (26,27,90) or associated with
obsessive-compulsive disorder symptoms (91). When incor-
porating brain structure, ADHD tends to be separated from
these other disorders [although not always; see (92)], as in
mode 4 here and likewise in the ENIGMA meta-analysis of
N z 20,000 (75), and interestingly, when independent
component analysis is applied to symptom data instead of
factor analysis (12).

Secondly, dopaminergic midbrain areas (bilateral substantia
nigra pars compacta and left ventral tegmental area) featured
among the highest loadings/voxel not only in the ADHD-related
mode but also in the internalizing mode. Interestingly, psy-
chopathology was related to increased gray matter in these
dopaminergic areas in mode 4 but decreased gray matter in
mode 5. A role for dopamine in depression has long been
hypothesized (93) but is controversial (94,95). Nevertheless,
recent work has shown that dopamine D2 receptor effects in
prefrontal areas (also found in mode 5) are related to antide-
pressant actions and effortful stress responses (96), and
boosting dopamine activity makes brain responses of partici-
pants with depression to a reward-related task (in functional
MRI) more similar to those of control participants (97). Given
the range of psychopathology in mode 5, dopamine may have
relevance not only for depression but also for other maladap-
tive stress responses. These points illustrate the advantage of
including the brain in latent variable analyses of
psychopathology.

Lastly, it is striking that prodromal psychosis symptoms did
not contribute more strongly to the latent dimensions; this is
discussed in Supplement 1.
Conclusions

We used SPLS and a rigorous machine learning framework to
uncover 6 modes of covariation between voxel-wise gray
matter density and psychosocial variables from adolescents
ages 9 to 10 years in the ABCD Study dataset. There were
interesting relationships between psychopathology and
changes in gray matter density: for overeating and occipito-
temporal and orbitofrontal increases; for ADHD symptoms and
decreases in striatal (especially caudate) and cortical atten-
tional areas but increases in the substantia nigra and raphe; for
internalizing symptoms and increases in prefrontal areas and
decreases in raphe and substantia nigra; and for ODD symp-
toms and increases in the caudate, locus coeruleus, and
eptember 2024; 9:915–927 www.sobp.org/BPCNNI
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amygdala. Notably, internalizing symptoms were related to
increased and oppositional problems to reduced gray matter
density in the insular, cingulate, and auditory cortices.

The next goal will be to delineate the mechanistic pro-
cesses that underlie these associations and whether they can
be harnessed to generate or repurpose treatments (21,98),
e.g., dopaminergic agents for depression (97,99) or trans-
cranial magnetic stimulation. For example, correlating the
modes with brain gene expression maps could establish more
links to underlying neurobiology (100) and potential drug
targets (98).
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