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ABSTRACT Unmanned Aerial Vehicles (UAVs) are indispensable in promoting the development of remote
sensing technology. Nevertheless, the tasks of object recognition in remote sensing images based on UAV
platforms face major difficulties and challenges due to the complex and variable background environments
and the high-density distribution of objects. This paper proposes an object detection algorithm for UAV
remote sensing images—YOLO-Remote, which aims to improve detection accuracy by enhancing YOLOv8.
This algorithm innovatively integrates the SaElayer module to enhance the focus on remote sensing targets
and improve network efficiency. Additionally, it introduces the Efficient-SPPF structure, which effectively
expands the network’s receptive field and promotes deep learning capabilities. To address sample imbalance
and improve bounding box localization and classification performance, the study also designs the Focaler-
MDPIOU strategy. With these comprehensive optimizations, YOLO-Remote achieves significant progress
in network architecture. Experiments were conducted on the NWPU VHR10 and RSOD datasets, and the
experimental results show that compared to the base model YOLOv8n, the improved model’s average
precision increased by 2.7% and 3.2% respectively, demonstrating its superiority in the field of object
detection for UAV remote sensing images.The code is available at https://github.com/QuincyQAQ/Yolo-
Remotehttps://github.com/QuincyQAQ/Yolo-Remote.

INDEX TERMS Object detection, YOLOv8, SPPF, remote sensing images.

I. INTRODUCTION
In recent years, the demand for remote sensing targets has
been growing across various fields, covering a wide range
of applications. For example, in battlefield monitoring [1],
disaster response [2], environmental research [3], power
maintenance [4], and surveillance and inspection [5], drones
have shown outstanding performance in remote sensing tasks,
significantly improving operational efficiency. Compared
to traditional satellite remote sensing technology, current
remote sensing images have made great strides in clarity
and accuracy. Nonetheless, challenges remain in capturing
distant targets, small objects, heavily obscured items, and
weak feature recognition.

The associate editor coordinating the review of this manuscript and
approving it for publication was Farid Boussaid.

In the field of drone-based remote sensing, the chal-
lenges of target recognition mainly stem from variations
in image scale, uneven and dense distribution of objects,
especially the frequent occurrence of small-sized targets
[6], [7]. Unlike natural images taken from the ground,
the wide-field view captured by drones provides more
comprehensive visual information but also complicates scene
composition and diversifies target categories, inadvertently
increasing background noise in the target detection process.
Additionally, aerial observation at a medium scale, due to
long-distance shooting, background obstacles, and changing
lighting conditions, often makes target identification more
difficult. In practice, tasks such as fine-grained classification
of vehicle types frequently arise, and the existence of such
highly similar targets undoubtedly raises higher requirements
for the detection model’s accurate differentiation capability.
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Traditional target detection techniques revolve around
three core steps: feature extraction, classification mechanism,
and region selection [8]. This process begins with searching
for potential target regions within candidate images, followed
by extracting features and performing classification. Given
that targets can appear in any corner of the image and their
sizes and aspect ratios are uncertain, it is necessary to use
a multi-scale sliding window strategy to traverse the image
to locate potential targets. Although this method can roughly
mark the target’s location, its high time complexity, window
redundancy, and poor region matching significantly hinder
the efficiency and quality of feature extraction. Especially
when the target’s aspect ratio changes significantly, even a
full image scan may fail to capture well-matched feature
regions, highlighting the severity of time consumption issues.
In the feature extraction stage, common techniques include
local binary patterns, scale-invariant feature descriptors, and
histograms of oriented gradients. However, the variability
in target shapes, complex lighting conditions, and diverse
background environments greatly challenge the robustness
of features, making it difficult to consistently maintain high
efficiency [9].

Overall, traditional detection methods have highly
variable effectiveness, are easily influenced by external
conditions, and have significant limitations in practical
applications.

With the accelerated and deepened progress of technology,
visual target detection occupies a crucial position in practical
deployments. In recent years, numerous tech startups like
Sense Time and Megvii have emerged in this field [10].
At the same time, the importance of computer vision
technology in the autonomous driving industry is increasingly
evident, with pioneering companies like Tesla leading the
innovation in visual perception technology for autonomous
driving. Despite a series of advances in drone visual
detection, challenges remain, mainly due to two aspects:
first, the fundamental differences between drone-collected
images and natural scene images increase the difficulty
of precise target recognition; second, general detection
algorithms are inadequate in handling the variability of target
sizes in remote sensing images, resulting in unsatisfactory
performance [11].

To overcome these challenges, this study designs a model
specifically for remote sensing target detection based on
the advanced YOLOv8 framework—YOLO-Remote. Exper-
iments on the NWPU VHR10 and RSOD public datasets
demonstrate its outstanding detection accuracy. Specific
improvements include: first, integrating an innovative Sae-
Layer component in the backbone network, significantly
enhancing the model’s detection accuracy; second, adopting
an optimized spatial pyramid pooling and fusion (SPPF)
module, effectively broadening the network’s receptive
field and strengthening feature extraction efficiency; finally,
introducing an original Focaler-IOU strategy, effectively
addressing the sample imbalance problem in target detection
for remote sensing images.

II. RELATED WORK
A. TARGETED DETECTION
Target detection technology, as a crucial branch of computer
vision, plays a decisive role in the performance of various
visual tasks and applications, thus becoming a focal point
across industries. In academic research circles, it is a core
topic within computer vision publications, with a significant
number of papers discussing target detection published
annually. According to statistics, over the past decade, the
number of related papers recorded in the Google Scholar
database has exceeded 15,000. In industrial practice, many
tech giants such as Google, Sense Time, Megvii, Facebook,
Huawei, and Baidu have made substantial investments in this
field, assembling research and development teams to explore
it in depth. Additionally, from a policy perspective, target
detection is regarded as a crucial component of the artificial
intelligence technology matrix, with countries worldwide
actively promoting research and application expansion in this
area.

In the early days, target detection algorithms mainly relied
on manually designed features combined with simple clas-
sifier operations, with Adaptive Boosting (AdaBoost) [12]
being a typical example. During this period, a series of classic
target feature description algorithms emerged, including
Haar features and Histogram of Oriented Gradients (HOG)
features. Since 2012, however, with the rapid advancement
of deep learning technology, significant improvements in
computing power, and the emergence of large-scale open
datasets and evaluation standards, a series of milestone
research achievements such as Region-based Convolutional
Neural Networks (R-CNNs) [13], SSD [14], You Only
Look Once (YOLO) [15], and Detection DETR [16] have
successively emerged. Compared to previous manual feature
construction methods, deep learning technology has greatly
simplified the feature design process, achieving automatic
feature learning and integrating feature extraction and
classifier trainingwithin the same framework, thereby driving
unprecedented rapid development in this field.

Among the schools of target detection technology, single-
stage detection models divide the image into multiple cells,
each responsible for determining the presence of objects
and their types and positions, with YOLO and SSD being
prime examples. In contrast, two-stage detection methods
execute the task in two steps: first, generating candidate
boxes with a high likelihood of containing targets, and
then in the second stage, performing detailed classification
and precise localization of these boxes, with Faster R-CNN
[17] being an outstanding representative of this approach.
While two-stage methods are slightly inferior in real-time
performance, they are renowned for their higher detection
accuracy and excellent performance across multiple datasets.

B. UNMANNED AERIAL VEHICLE TARGET DETECTION
Multi-target recognition from a drone perspective introduces
several challenges, such as the increased number of small
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objects, feature-poor information contained in a single
viewpoint, low detection efficiency due to uneven distribu-
tion of target types, noise interference encountered during
detection, missed detections and false positives caused by
size variations, and inference delays. This chapter discusses
the improvement strategies scholars have developed from two
perspectives to address these issues.

When using a drone perspective for multi-target recog-
nition, single-stage detectors like the YOLO series and
SSD are widely used due to their substantial advantages.
Many researchers have focused on the specific algorithmic
challenges of the drone perspective and have tackled them:

To address the phenomenon of numerous small targets
in a wide-open field of view, Liu et al. integrated the Liu
Res Unit_2 design into the backbone network of YOLO
and the ResNet module, and combined dual ResNet units
in the residual block of Darknet. This effectively mitigates
the problem of small target omission caused by observational
limitations, considering that the limited observational scope
reduces probability estimation [18]. Researchers like Saetch-
nikov introduced the YOLOv4 eff model, which adopts
a backbone and neck network structure with quadruple
cross-stage partial connections and uses the Swish activation
function, setting the letter-box size to 1 to maintain efficient
utilization [19]. To overcome object misdetection caused by
size variations in drone overhead images, Li et al. designed
an SSD variant that combines attention mechanisms and
dilated convolutions, using dilated convolutions to replace
traditional convolutions and integrating low-level feature
maps of small-sized objects with high-level feature maps
for processing [20]. Compared to single-stage detection
algorithms, two-stage target recognition algorithms exhibit
different working principles. Directly applying ground per-
spective algorithms to drone-shot videos is ineffective and
requires specific optimizations based on the characteristics
of drone images. Key improvements can be summarized as
follows:

Avola constructed a multi-stream architecture to process
multi-scale images, adapting to the dense conditions of small
targets in sky scenes. This architecture was integrated into
Fast R-CNN as the backbone, forming theMS-Faster R-CNN
detector to ensure continuous stable detection in drone video
sequences [21]. Stadler, on the other hand, utilized Cascade
R-CNN as the detector, reducing the default anchor box size
to match smaller targets and increasing the total number of
predicted targets. To address insufficient feature information
from a single viewpoint, Azimi et al. used a joint network to
extract visual features and combined a graph convolutional
neural network with a long short-term memory network
(LSTM) to comprehensively analyze the visual, structural,
and time-series features of the targets [22]. To solve the
problem of processing speed reduction caused by dispersed
targets in the sky environment, Yang incorporated the concept
of clustering and proposed the ClusDet system. This system
first uses the clustering network CPNet to generate target
clustering regions, then employs ScaleNet to evaluate the

target sizes within these regions, and subsequently sends
these regions to DetecNet for target recognition, thereby
reducing the computational burden and ultimately achieving
efficient detection [23].

III. PRINCIPLES AND IMPROVEMENTS
A. YOLOv8
In comparison with YOLOv5 and YOLOv7 algorithms,
YOLOv8 has achieved significant improvements in short-
ening training cycles and enhancing recognition accuracy.
Additionally, its model weight file occupies only 6MB of
space, making it easily deployable to any embedded device.
With its rapid and efficient operation, it is well-suited
for real-time detection tasks.As the successor to YOLOv5,
YOLOv8 inherits and further develops its predecessor,
offering models in various sizes including N, S, M, L,
and X to accommodate diverse application scenarios. This
algorithm not only achieves significant breakthroughs in
accuracy but also ensures a smooth training process and
broad hardware platform compatibility, enabling flexible
deployment.For input processing, YOLOv8 employs innova-
tive data augmentation strategies such as Mosaic technology
and adaptive anchor box estimation algorithm. Mosaic
technology enhances the diversity of the detection dataset
through random scaling, cropping, and layout reorganization
of images. Adaptive anchor box calculation optimizes anchor
box configuration through precise difference computation
and reverse iteration based on the initial anchor box pre-
diction output.On the output side, YOLOv8 revolutionarily
replaces the traditional coupled head design with a decoupled
head structure, separating classification and regression tasks
into two independent branches. This decoupling strategy
allows each task to focus more effectively, addressing
localization deviations and classification errors in complex
scenes. Furthermore, the algorithm incorporates the DFL
strategy and implements an anchor-free target detection
method, enabling the network to quickly lock onto the
target’s surrounding area. This results in prediction boxes that
closely fit the actual boundaries, thereby enhancing detection
accuracy.

B. IMPROVEMENT
1) SaELayer
The SaElayer module [24] is an innovative design, as shown
in Figure 1, that skillfully combines the efficient charac-
teristics of the Squeeze-and-Excitation Network (SENet)
module with the inter-layer dense communication advan-
tages of DenseNet, aiming to enhance network perfor-
mance. Furthermore, this module creatively incorporates
fully connected layer designs with multi-scale branches that
have different width configurations. This strategy greatly
enhances the network’s ability to capture and integrate global
contextual information, providing a more comprehensive
and in-depth understanding for target detection in complex
remote sensing images. By integrating the SaElayer into
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YOLOv8n, the network’s attention to critical detection
features in remote sensing images is significantly enhanced,
allowing it to more keenly identify and focus on target
areas. Additionally, it achieves effective network resource
management. Specifically, this design optimizes the use of
network bandwidth, effectively reducing the computational
resources and time costs required during model training, thus
accelerating the model convergence process and improving
training efficiency.

FIGURE 1. Schematic diagram of the SaElayer structure.

2) EFFICIENT-SPPF
YOLOv8 adopts a structure called Spatial Pyramid Pooling
Fusion (SPPF), which combines serial and parallel pooling
mechanisms to broaden the network’s receptive field. How-
ever, this approach may show limitations in certain situations
due to its fixed-size pooling strategy, which may not
fully accommodate the multi-scale requirements inherent in
remote sensing image target detection tasks. Additionally,
it struggles to capture the fine details and comprehensive
contextual information crucial for the resolution of remote
sensing targets.

Integrating a broader receptive field into the deep neural
network architecture is particularly important for enhancing
the model’s contextual understanding capabilities, which is
critical for accurately performing remote sensing target detec-
tion tasks. Expanding the receptive field helps encompass a
wider range of surrounding information, reducing misjudg-
ments and improving the model’s semantic understanding
and feature extraction efficiency, especially when handling
complex scenes or detecting small objects. It ensures that
each convolutional output contains more information.

Commonmethods for increasing the receptive field include
applying additional convolution and pooling steps to the
feature map. However, these operations can lead to the
loss of feature information and come with higher compu-
tational costs. As a widely used technique in the field of
image segmentation, ‘‘dilated convolution’’ [25] successfully
expands the receptive field while maintaining the original
resolution of the feature map, bypassing the downsampling
and upsampling steps. This convolution technique introduces
a ‘‘dilation rate’’ parameter that defines the spacing between
pixels when the convolution kernel processes them. The
specific differences between standard convolution and dilated
convolution are illustrated in Figure 2.

FIGURE 2. The red represents standard convolution (dilation rate = 1,
receptive field = 3); the green represents dilated convolution (dilation
rate = 2, receptive field = 5).

Therefore, we chose to incorporate dilated convolution
technology into the existing SPPF module, naming it
Efficient-SPPF. The structural details are shown in Figure 3.
The specific improvements are summarized as follows:

1) After the final max-pooling step of the standard SPPF
structure, a set of parallel dilated convolution layers
are added, using dilation rates of 2, 4, and 8, thereby
constructing a diversified receptive field to cover
convolution kernels of different scales.

2) A residual connection path is introduced to alleviate the
gradient vanishing problem and enhance the model’s
ability to capture global image features. This residual
path consists of an average pooling layer, a single 1 ×

1 convolution layer, and an upsampling operation.
3) Two customized fusion strategies are adopted for

different channel numbers of the feature map to
optimize information integration.

The Efficient-SPPF design not only deepens the network
structure and broadens the receptive field but also ensures the
efficiency of the model during deep learning while maintain-
ing the original resolution of the feature map. Through this
design, the model can extract image features from multiple
dimensions, thereby comprehensively grasping contextual
and background information, effectively compensating for
the remote sensing target details that might be missed in
traditional feature extraction processes, especially for small
objects and targets in complex backgrounds. These series of
improvements significantly enhance the detection accuracy
and generalization ability of our model.

3) Focaler-MDPIoU
a: FOCALER-IoU
When performing remote sensing target recognition tasks,
encountering the problem of sample imbalance is a common
phenomenon. Samples can be categorized into two types
based on the difficulty of detection: easy-to-process samples
and challenging samples. From the perspective of target size,
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FIGURE 3. The Efficient-SPPF structure diagram.

targets of regular size are usually considered easy-to-process
samples, whereas small targets are classified as challenging
samples due to the high difficulty in accurate localization.
In recognition tasks dominated by easy-to-process samples,
focusing on the bounding box regression process for these
samples has been proven to effectively enhance detection
performance. Conversely, when dealing with tasks primarily
composed of challenging samples, it is essential to prioritize
and optimize the bounding box regression strategy for these
samples to address the detection difficulties.

To accommodate the specific attention to different regres-
sion samples in remote sensing target detection tasks,
we adopted a linear interval mapping technique to reshape the
IoU (Intersection over Union) loss function, aiming to opti-
mize the boundary regression performance. Its mathematical
expression is as follows:

IoU focaler
=


0, IoU < d
IoU − d
u− d

, d ≪ IoU ≪ u

1, IoU > u

(1)

Here, IoUfocaler represents an improved concept of Focaler-
IoU [26], while IoU retains its basic Intersection over
Union meaning. Both are set to operate within the range
[0,1],specifically with values in the range [d, u]. By finely
tuning the parameters d and u, we can guide IoUfocaler
to give varying degrees of importance to different types
of regression instances. The corresponding loss function is
described as follows:

LFocaler−IoU = 1 − IoU focaler (2)

In the process of object detection, BoundingBox Regres-
sion (BBR) is a crucial component for achieving precise
object localization. Mainstream advanced detection models,
including Faster R-CNN, DETR, and the YOLO family, all
adopt BBR strategies to accurately pinpoint object locations.
The Yolov7-tiny model employs a Comprehensive IoU
Loss (CloU) [27],which is an enhanced IoU-based loss
function, as the core metric for optimizing its localization
performance Compared to the loss functions used in previous
YOLO series, the CloU loss function integrates the overlap
area between the predicted and ground truth boxes, the
distance between their center points, and their aspect ratio
information. This integration significantly enhances the
precision of bounding box convergence, while also making
the regression process smoother and more stable. The

mathematical formulation of CIoU is defined as follows:

LCIoU = 1 − IoU +
ρ2(b, bgt )

c2
+ αv (3)

b: MPDIoU
Facing this challenge, Ma and colleagues [28] introduced
an innovative loss function on top of the existing CloU
loss function—Minimum Points Distance IoU (MPDIoU).
The uniqueness of this method lies in its use of the vertex
coordinates (top-left and bottom-right) of the predicted and
ground truth boxes to comprehensively analyze the presence
or absence of overlapping regions, the spatial displacement
between the box centers, and the actual size deviations of
the box dimensions. This approach optimizes and simplifies
the loss calculation process. Specifically, labeling the ground
truth box as Bgt and the predicted box as Bprd , the
mathematical formulation of MPDIoU can be reconstructed
as follows:

MPDIoU =
Bgt ∩ Bprd
Bgt ∪ Bprd

−
d21

w2 + h2
−

d22
w2 + h2

LMPDIoU = 1 −MPDIoU (4)

In expression 4, w and h represent the horizontal and verti-
cal dimensions of the input image, respectively. d1 measures
the straight-line distance between the top-left vertices of the
ground truth box and the predicted box, while d2 measures
the same distance for the bottom-right vertices of these two
boxes. IoU is defined as the ratio of the intersection area to the
union area of the groumd truth box Bgt and the predicted box
Bprd . In the example shown in Figure 4, assume the dashed
box represents the image under analysis, with the pentagon
marking the target location within the image to be identified.
The solid box on the left represents the actual annotation box
Bgt , while the solid box on the right is the model’s predicted
box Bprd Specifically, assume the top-left coordinates of Bgt
are (xgt1 , ygt1 ). and the bottom-right coordinates are (xgt2 , ygt2 ).,
while the corresponding top-left coordinates of Bprd are
(xprd1 , yprd1 ). and the bottom-right coordinates are (xprd2 , yprd2 ).
Then, the conversion formulas for each parameter in the
MPDIoU formula can be further detailed as follows:

d21 =

(
xprd1 − xgt1

)2
+

(
yprd1 − ygt1

)2
d22 =

(
xprd2 − xgt2

)2
+

(
yprd2 − ygt2

)2
wgt = xgt2 − xgt1 , hgt = ygt2 − ygt1
wprd = xprd2 − xprd1 , hprd = yprd2 − yprd1 (5)

The horizontal and vertical extents of the ground truth
box are represented by wgt and hgt , respectively, while the
corresponding dimensions of the predicted box are given by
wprd . and hprd .. Through further mathematical transforma-
tions, this fundamental data can reveal key parameters such as
the area of overlap or non-overlap between the predicted and
ground truth boxes, the differences in their center coordinates,
and the width and height differences. All these components
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essentially derive from the basic information set of the
top-left and bottom-right vertex coordinates of the ground
truth and predicted boxes. This indicates that the MPDIoU
loss function deeply exploits the geometric properties of the
bounding boxes, while achieving effective simplification and
optimization in computation.

FIGURE 4. Geometric illustration of MPDIoU.

As illustrated in Figure 4, the structure diagram of
MPDIoU ensures that when the width and height of the
predicted box and the ground truth box maintain a linear
proportion, the loss value is lower when the predicted box
falls within the ground truth box compared to when it falls
outside. This mechanism effectively distinguishes between
the two different states, thereby promoting the accuracy of
bounding box regression. During model training, MPDIoU
also incorporates parameter tuning within the deep regression
model, driving each predicted box to converge towards its
corresponding ground truth box, with the ultimate goal of
reducing the disparity between the bounding boxes.

c: FOCALER-MDPIoU
This article combines the ideas of Focaler-IoU and MPDIOU
to propose a new loss function called Focaler-MDPIOU.
It aims to alleviate the problem of sample imbalance in
remote sensing targets, while improving the localization
accuracy and classification performance of detection boxes.
The specific formula is as follows:

LFocaler−MPDIOU = LMPDIOU + IoU − IoUFocaler (6)

C. YOLO-REMOTE ALGORITHM NETWORK
We apply the above improvements to YOLOv8n. As shown
in Figure 5, the YOLO-Remote algorithm network diagram,
specifically, we use the Efficient-SPPF structural layer to
replace the original SPPF in YOLOv8n, thereby expanding
the network’s receptive field. Additionally, we add the
SaElayer after the Efficient-SPPF structural layer to focus
more on the feature information of remote sensing targets.
We also use Focaler-MPDIOU to alleviate the problem of
sample imbalance in remote sensing targets.

IV. ANALYSIS OF EXPERIMENTAL RESULTS
A. DATASETS
To verify the effectiveness of the YOLO-Remote network,
we conducted experiments using the NWPUVHR-10 dataset,

which contains 3,651 objects across 10 classes: airplane, ship,
storage tank, baseball diamond, tennis court, basketball court,
ground track field, harbor, bridge, and vehicle. Additionally,
we used the RSOD dataset for further validation. This
dataset includes four classes of objects: airplane, playground,
overpass, and oil tank, with a total of 4993 airplanes in
446 images, 191 playgrounds in 189 images, 180 overpasses
in 176 images, and 1586 oil tanks in 165 images. The training
set of the RSOD dataset consists of 454 images, the test
set consists of 99 images, and the validation set consists of
97 images.

B. EXPERIMENTAL STEPS
All experiments in this paper were conducted using deep
learning techniques. To ensure the reliability and consistency
of the experimental results, all experiments were performed
in a unified environment, and no pre-trained models were
used. This means all models were trained from scratch.
The experimental configuration, as shown in Table 3.5,
mainly includes setting the input image size to 640 ×

640 pixels, batch size to 32, training epochs to 300, and
initial learning rate to 0.01. We chose SGD as the optimizer,
with a momentum parameter of 0.937, and introduced
a weight decay factor of 5e-4 to optimize the training
process.

C. EVALUATION INDICATORS
The performance of the model is assessed using a set of
metrics comprising precision (P), recall (R), mean average
precision (mAP), and average precision (AP) per class.
AP acts as an indicator for the detection accuracy of
individual classes, whereas mAP aggregates the AP scores
from all classes and divides them by the total class count to
provide an overall performance measure. Specifically, in this
research, mAP0.5 denotes the mean average precision at
an intersection over union (IoU) threshold of 0.5, which
quantifies how well the forecasted bounding boxes align with
the ground truth ones.

P = TP/(TP+ FP)

R = TP/(TP+ FN )

AP =

∫ 1

0
P(R)dR

mAP =
1
N

∫ 1

0
P(R)dR (7)

When assessing the model’s efficacy, true positive (TP)
indicate the instances where the model accurately classified
positive samples. Conversely, false positive (FP) signify the
number of times the model incorrectly labeled negative
instances as positive. Additionally, false negatives (FN)
account for positive samples that the model failed to
recognize, instead categorizing them as negative. These
fundamental metrics form the basis for determining precision,
recall, and additional key performance parameters.
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FIGURE 5. YOLO-remote algorithm network.

TABLE 1. Ablation experiments on the NWPU dataset.

D. ABLATION EXPERIMENTS
To validate the effectiveness of each improvement module
in our proposed method, ablation studies were conducted
on the aforementioned dataset. The Sequential Attention
Enhancement Layer (SaELayer), the Efficient-SPPF atten-
tion module, and the Focal Refinement with Multi-Distance
Peak Intersection-over-Union loss (+Focaler-MDPIOU)
were sequentially integrated into the baseline model. The
experimental outcomes are presented in the table provided.

Table 1 illustrates the results of the ablation experiments
conducted on the NWPU VHR-10 dataset. In this study,
our approach incrementally incorporated three improvement
modules - SaELayer, Efficient-SPPF, and Focaler-MDPIOU
- into the YOLOv8n algorithm, observing varying degrees of
performance enhancement with each addition. Specifically,
the separate integration of SaELayer and Efficient-SPPF
respectively led to an increase in accuracy by 0.7%,
a rise in mean Average Precision (mAP) by 1.6%, and
an augmentation in F1 score by 1.3 points. Notably, the
inclusion of Focaler-MDPIOU yielded the most substantial
improvements, boosting accuracy by 3.4%, mAP by 1.6%,
and the F1 score by 1.7 points. When both Efficient-SPPF
and Focaler-MDPIOU were applied concurrently, the mAP
saw a 1.7% enhancement compared to the baseline network.

The integration of all three modules, culminating in
the YOLO-Remote algorithm, achieved the optimal uplift

across all evaluation metrics. This comprised an accuracy
improvement of 1.1%, a significant rise in recall by 5.1%,
a 2.7% boost in mAP, and a 2.7-point increase in the F1
score. Remarkably, this comprehensive upgrade came with
only amarginal increase in both the number of parameters and
floating-point operations. Collectively, the outcomes of these
ablation experiments robustly substantiate the efficacy of the
three introduced modules and the YOLO-Remote algorithm.

Table 2 presents the outcomes of the ablation experi-
ments conducted on the RSOD dataset. Building upon the
YOLOv8n algorithm, we individually integrated the SaE-
Layer, Efficient-SPPF, and Focaler-MDPIOU enhancement
modules, observing remarkable performance enhancements.
Specifically, the introduction of SaELayer alone resulted
in a 2.3% increase in mAP and a 1.0% rise in F1 score.
Following the integration of Efficient-SPPF, accuracy was
enhanced by 1.4%, mAP rose by 0.9%, and the F1 score
also saw a 1.0% improvement. Furthermore, the inclusion
of Focaler-MDPIOU led to a 1.8% boost in precision,
a 1.6% growth in mAP, and a 1.7% increase in the
F1 score. When both SaELayer and Efficient-SPPF were
employed simultaneously, the mAP witnessed a 1.7% uplift
compared to the baseline model.The synergy of all three
modules, embodied in the YOLO-Remote algorithm, yielded
the optimal enhancements across all evaluation criteria,
achieving an mAP of 92.7%, representing a 3.2% increase
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TABLE 2. Ablation experiments on the RSOD dataset.

TABLE 3. Comparative experiments of different algorithms on the NWPU dataset.

over the baseline model, and an F1 score improvement of
3%. These ablation experiment findings decisively validate
the efficacy of the three newly introduced modules and the
YOLO-Remote algorithm as a whole.

Table 3 The paper presents the YOLO-Remote algo-
rithm, which is compared with several existing algorithms,
showcasing its outstanding performance across multiple key
metrics and demonstrating a clear advantage over competing
models. Specifically, YOLO-Remote achieved an accuracy
rate of 92.7%, surpassing Yolov5n by 0.4% and Yolov6n
by 2.3%, highlighting its superior capability in correct
classification. Its recall rate is 0.893, which is 4.44% higher
than Yolov6, indicating better performance in identifying all
positive samples. In terms of mean Average Precision (mAP),
YOLO-Remote reached 0.927, outperforming Yolov6 by
2.4%, RT-DETR by 9.9%, and RT-DETR-resnet101 by 12%,
demonstrating consistent and stable detection performance
across different thresholds. Its F1 score is the highest among
all models at 0.89, indicating an optimal balance between
precision and recall. Additionally, compared to classical
two-stage algorithms, YOLO-Remote exhibits significant
advantages across all metrics.

Moreover, YOLO-Remote boasts a model size of
3,122,670 parameters and a computational demand of
8.3 GFlops, reflecting a relatively low complexity. This
balanced combination of efficiency and performance makes
it well-suited for deployment in resource-constrained
environments. In summary, the YOLO-Remote algorithm
excels not only in delivering high performance but also in
maintaining low resource consumption, thereby showcasing
its practicality and efficiency in real-world applications.

From Table 4, it is evident that the YOLO-Remote algo-
rithm model demonstrates exceptional performance across
multiple key performance indicators, notably outperforming
several comparativemodels. Specifically, the proposedmodel
achieves an accuracy of 0.917, which represents respective

improvements of 3%, 2.3%, 0.6%, and 13.4% over Yolov5n,
Yolov6n, Yolov8n, and RT-DETR. Its recall rate reaches
89.3%, marking increases of 4.1%, 3.8%, 4.3%, and 23.6%
in comparison to these models. In terms of mean Average
Precision (mAP), the proposed model attains 92.7%, surpass-
ing Yolov5, Yolov6, Yolov8n, and RT-DETR by 3.5%, 2.4%,
3.2%, and 19.4%, respectively.

Regarding computational resource consumption, although
the YOLO-Remote model has a slightly higher number of
parameters and computational load compared toYolov8n, it is
considerably less demanding than the RT-DETR model. This
illustrates that the YOLO-Remote model not only possesses
substantial performance advantages but also maintains a
commendable balance in computational efficiency. Overall,
by maintaining a low computational cost, the YOLO-Remote
model achieves outstanding performance across various
evaluation metrics, thereby exemplifying the superiority of
the proposed algorithm.

E. ANALYSIS OF EXPERIMENT
Figure 6 illustrates the trends of mAP0.5 and mAP0.5-
0.95 for two algorithms on the NMPU dataset under the
same number of training epochs. It is evident from the figure
that, as the models converge, the improved YOLO-Remote
algorithm consistently outperforms the original YOLOv8n
algorithm in both mAP0.5 and mAP0.5-0.95. This indicates
that YOLO-Remote indeed has a significant advantage in
enhancing object detection performance.

Figure 7 presents the evolution trends of the mAP metrics
at a 0.5 threshold and within the 0.5 to 0.95 range for two
algorithms on the RSOD dataset, after an equal number of
training iterations. The figure clearly shows that as themodels
stabilize through training, the optimized YOLO-Remote
algorithm consistently surpasses the basic YOLOv8n algo-
rithm in both mAP metrics. This result strongly demonstrates
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TABLE 4. Comparative experiments of various algorithms on the RSOD dataset.

FIGURE 6. Comparative graph of key performance indicators between YOLO-Remote and YOLOv8n on the NWPU dataset.

FIGURE 7. Comparative graph of key performance indicators between YOLO-Remote and YOLOv8n on the RSOD dataset.

that YOLO-Remote significantly improves performance in
remote sensing image object detection tasks.

Figure 8 shows the Precision-Recall curves of YOLO-
Remote and YOLOv8n on the NWPU and RSOD datasets.
From the figure, it can be seen that YOLO-Remote
(orange curve) maintains higher precision than YOLOv8n
(blue curve) at most recall levels. This indicates that
YOLO-Remote not only sustains higher precision at high
recall rates but also performs more stably across the entire
recall range, with a lower false detection rate. Therefore, the
improved YOLO-Remote algorithm outperforms YOLOv8n
in object detection, offering higher detection precision and
stability.

Figure 9 compares the detection performance of the
baseline model YOLOv8n and the improved algorithm

YOLO-Remote on two remote sensing target datasets.
The figure is divided into four rows: the first row
shows the original images, the second row shows the
ground truth images, the third row shows the detec-
tion results of YOLOv8n, and the forth row shows the
detection results of the improved YOLO-Remote algo-
rithm. It is clear from the comparison that the improved
YOLO-Remote algorithm significantly outperforms the
baseline YOLOv8n algorithm in remote sensing target
detection.

From the detection results, it can be observed that
YOLOv8n tends to miss or falsely detect targets in some
complex backgrounds, while YOLO-Remote demonstrates
higher accuracy and robustness. Specifically, YOLO-Remote
excels in locating target boundaries and capturing target
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FIGURE 8. Comparative graph of key performance indicators between YOLO-Remote and YOLOv8n on the NWPU and RSOD datasets.

FIGURE 9. Comparative visualization of detection results on two remote sensing target datasets.

details, indicating that this algorithm has a stronger advantage
in handling small targets and complex scenes in remote
sensing images. Therefore, the improvedYOLO-Remote pro-

vides more reliable detection results in practical applications,
offering better technical support for remote sensing image
analysis.
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V. CONCLUSION
In this study, a new algorithm, YOLO-Remote, is proposed.
By introducing SaeLayers, Efficient-SPPF with dilated con-
volution, and Focaler-MPDIOU into the YOLOv8 algorithm,
it successfully addresses the challenge of detecting remote
sensing targets in complex backgrounds. Experimental val-
idation shows that the improved algorithm in this study
performs exceptionally well on both UAV remote sensing
image datasets and satellite remote sensing image datasets.
Specifically, the mAP on the NWPU dataset increased by
2.7% compared to the baseline model, and the mAP on the
RSOD satellite remote sensing image dataset increased by
3.2% compared to the baseline model, demonstrating the
strong practicality and effectiveness of the proposed YOLO-
Remote algorithm.
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