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a b s t r a c t

Knowledge Graph (KG) provides high-quality structured knowledge for various downstream
knowledge-aware tasks (such as recommendation and intelligent question-answering) with its unique
advantages of representing and managing massive knowledge. The quality and completeness of
KGs largely determine the effectiveness of the downstream tasks. But in view of the incomplete
characteristics of KGs, there is still a large amount of valuable knowledge is missing from the KGs.
Therefore, it is necessary to improve the existing KGs to supplement the missed knowledge. Knowledge
Graph Completion (KGC) is one of the popular technologies for knowledge supplement. Accordingly,
there has a growing concern over the KGC technologies. Recently, there have been lots of studies
focusing on the KGC field. To investigate and serve as a helpful resource for researchers to grasp the
main ideas and results of KGC studies, and further highlight ongoing research in KGC, in this paper,
we provide a all-round up-to-date overview of the current state-of-the-art in KGC.

According to the information sources used in KGC methods, we divide the existing KGC methods
into two main categories: the KGC methods relying on structural information and the KGC methods
using other additional information. Further, each category is subdivided into different granularity for
summarizing and comparing them. Besides, the other KGC methods for KGs of special fields (including
temporal KGC, commonsense KGC, and hyper-relational KGC) are also introduced. In particular, we
discuss comparisons and analyses for each category in our overview. Finally, some discussions and
directions for future research are provided.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Knowledge Graphs (KGs) describe the concepts, entities, and
heir relations in a structured triple form, providing a better abil-
ty to organize, manage and understand the mass of information
n the world [1]. In recent years, KG plays an increasingly impor-
ant role in lots of knowledge-aware tasks, and especially brings
itality to intelligent question answering, information extraction,
nd other artificial intelligence tasks [1–3]. There are a number
f large-scale KGs such as DBPedia [4], Freebase [5], WordNet [6],
nd YAGO [7] (as shown in Table 1), which have been widely ex-
loited in many knowledge-aware applications. Facts in these KGs
re generally represented in a form of triple: (subject, predicate,
bject), which be regarded as the fundamental data structure of
Gs and preserves the essential semantic information of KGs [8].
Although KGs are of great value in applications, they are

till characterized by incompleteness because a large amount of
aluable knowledge exists implicitly or misses in the KGs [1].
ome data indicate that the deficiency rate of some common basic
elations in the current large KGs was more than 70% [9], while
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other less universal relations are even more lacking. Knowl-
dge Graph Completion (KGC) aims to predict and replenish
he missing parts of triples. As one of a popular KGC research
irection, Knowledge Graph Embedding (KGE) (or Knowledge Graph
epresentation Learning) has been proposed and quickly gained
assive attention. KGE embeds KG components (e.g. entities and

elations) into continuous vector spaces to simplify the manipula-
ion and preserve the inherent structure of the KG simultaneously
10–15]. Recently, there have been lots of studies focusing on the
GC field. To facilitate the research of the KGC task and follow
he development in the KGC field, more and more review articles
o sort out and summarize the recent KGC technologies.

Accordingly, several previous overviews on the KGC tech-
iques are provided:

• Wang et al. [16] make the most relevant review with re-
spect to KGC studies from 2012 to 2016. They first coarsely
group KGE models according to their input data (the in-
put data including facts only or incorporating additional
information. The additional information in [16] involves en-
tity types, relation paths, textual descriptions, logical rules,
and a slight mention of several other information, such as
entity attributes and temporal information). Then they fur-

ther make finer-grained categorizations based on the above
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Table 1
Several famous KGs.
KG Fact Entity Relation Relying resource

DBpedia 538M 4.8M 2813 Wikipedia, Expertise
YAGO 447M 9.8M 114 WordNet, Wikipedia
Freebase 2400M 50M 37781 Wikipedia, Expertise,

Swarm-intelligence
NELL 0.4M 2M 425 Human-supplied
Wikidata 65M 15M 1673 Freebase, Swarm-intelligence
CN-DBPedia 222M 16M – Wikipedia, Expertise
Google KG 18000M 570M 35000 Freebase

grouping (e.g., the methods that only consider facts involve
two categories, distance-based KGC methods and semantic
matching-based KGC). However, the work [16] is not a spe-
cific overview for the KGC task, this overview just takes KGC as
one of the downstream applications that KGE technologies can
support.
• Gesese et al. [17] make a brief summary of KGC tasks that

only adds less than ten more recent articles compared with
[16]. Moreover, the work [17] mainly focuses on the KGE
technology related to literal information. The literal informa-
tion in [17] indicates the text descriptions, numerical values,
images, or their combinations.
• Rossie et al. [18] summarize 16 recent Link Prediction (LP)

models based on KG embeddings. However, the work [18]
does not refer to other KGC tasks, such as Triple Classi-
fication (TC) and Relation Prediction (RP) (we will give a
specifical introduction to these KGC tasks in Section 2.1).
• Also, the other two overviews [19,20] briefly list and state

several KGC-related studies. They neither make a thorough
and careful introduction to specific KGC technical details nor
cover major KGC approaches. In addition, several surveys
[21–23] focus on the KG field but do not discuss specific
works on KGC.

With the development of technologies such as Transformer
and pre-trained language models (e.g., BERT) in the past few
years, a large number of novel KGC techniques have appeared,
which are either not covered or summarized in detail in the
existing surveys. Besides, except for the information mentioned
in [16,17], more kinds of additional information such as entity
neighbors, multi-hop relation paths, and third-party data sources
are used in the KGC field. Intuitively, the KGC methods based on
the additional information should be divided into much wider
scopes with more details.

Compared with the overviews above, in this paper we pro-
pose a more comprehensive and fine-grained division overview
on Knowledge Graph Completion (KGC). Our paper covers al-
most all of the mainstream KGC techniques up to now. Our
overview provides more careful classification for the different
level of KGC categories. In detail, we make the following main
contributions:

(1) From the perspective of comprehensiveness, we provide a
more comprehensive and systematic survey about the KGC
field. We pay particular attention to the literature from
2017 to now, which is either not summarized in [16] or
not detailedly introduced in the other previous overviews
[17,19,20], and [18]. Also, we consider some special KGC
techniques, including Temporal Knowledge Graph Comple-
tion (TKGC), CommonSense Knowledge Graph Completion
(CSKGC), and Hyper-relational Knowledge Graph Comple-
tion (HKGC).

(2) From the perspective of detailed classification and summa-
rization, we summarize the recent KGC researches into two
2

main categories depending on whether rely on the addi-
tional information of KGs: KGC merely with the structural
information of KGs and KGC with the additional information.
For the former category, KGC methods are reviewed under
three categories: Tensor/matrix factorization models, Trans-
lation models, and Neural Network models. For the latter
category, we further divide it into two sub-categories: KGC
methods based on the internal information inside KGs and
KGC methods relying on the extra information outside KGs.
When we introduce the internal information-based KGC
methods, we take account of five categories of information,
including node literals, entity-related information, relation-
related information, neighborhood information, and rela-
tional path information. Moreover, extra information-based
KGC includes two families: rule-based KGC and KGC based
on third-party data sources.

(3) From the perspective of comparison and analysis, for each
KGC category, we carry on the detailed comparison of di-
verse granularity in both theory and experiment of intro-
duced KGC methods. We also make thorough analysis and
summary on it. On this basis, we give a global discussion
and prospect for the future research directions of KGC.

The remainder of the paper is structured as follows: we first
give an overview of KG notations, definitions, technological pro-
cess, datasets, evaluation criteria, as well as our categorization
criteria in Section 2; then we discuss the two categories of KGC
methods relying on the structural information of KG and using
the additional information in Section 3 and Section 4; next, our
review goes to three special technologies of KGC in Section 5. In
Section 6, we make a discussion on outlook research directions.
Finally, we make a conclusion in Section 7.

2. Notations of knowledge graph completion and our catego-
rization criterion

We first give some notations of KGC in Section 2.1. Then
we further introduce a general process of KGC (see Section 2.2),
where several key steps of KGC are provided. Further, we summa-
rize the main KGC datasets and evaluation criteria for KGC in Sec-
tion 2.3. We also briefly introduce the knowledge graph refine-
ment (KGR) technique, which is related to KGC (see Section 2.4).
Final, we give our categorization criterion (see Section 2.5).

2.1. Notations of KGC

To conveniently introduce various KGC models, this paper
gives some notations of KGC as follows: we define a knowledge
graph (KG) as G = (E, R, C), where E = (e1, e2, . . . , e|E|) is the set
of all entities contained in the KG. The total number of entities is
|E|. R = (r1, r2, . . . , r|R|) represents the set of all relations in KG
with counts of |R|. T ⊆ E × R × E represents the whole triple
et in the KG. Each triple is represented as (h, r, t), h and t mean
the head entity and the tail entity, and r is the relation between
the head entity and the tail entity. During KGE, the entities h,
and relations r in the KG are mapped to the constantly low
imensional vectors: vh, vr and vt . We define the scoring function
f KGC models as s(h, r, t) to estimate the plausibility of any fact
h, r, t). In training phase, we formally define their loss objective
s L.
KGC can be divided into three subtasks: triple classification,

ink prediction and relation prediction. Triple classification is
an important task in KGC which determines whether to add a
triple to KGs by estimating whether this triple is true or not. Link
prediction task refers to the process of finding the missing entity
when the head entity or tail entity in the triple is missing. Rela-
tion prediction judges the probability of establishing the specific
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Fig. 1. The general KGC process.

elations between two entities. The three subtasks of KGC can be
ormulated as follows:

riple classification (TC): Given a triple (ei, rk, ej), the goal is to
etermine whether the current triple is true.

ink prediction (LP): Given a triple (?, rk, ej) or (ei, rk, ?), the goal
s to predict the missing head entity or tail entity ‘‘?’’.

elation prediction (RP): Given the partial triple (ei, ?, ej), the
oal is to predict missing relations between ei and ej.

2.2. An overview of KGC process

In this part, we give a general introduction to the whole
technological process of KGC in Section 2.2.1. In addition, we
describe two training techniques: negative sampling and ranking
etting in Section 2.2.2. Fig. 1 illustrates the typical workflow of a
GC process.

.2.1. General KGC procedure
As it can be seen in Fig. 1, generally, a KGC process involves

hree parts: model learning, candidate processing and facts
identification.

• Model learning. First, before building a KGC model, there is
usually a pre-processing step in charge of data preparation, which
includes negative sampling (sometimes it is not a necessary step,
it also can be done online during model training) and datasets
splitting. The negative sampling aims to add a variable amount of
negative examples into the original KG to respond to the problem
that KGs only contain positive examples [24]. The datasets split-
ting is responsible for splitting the pending KG data into a training
set, a validation set, and a testing set. The split datasets will next
be used to train and evaluate the KGC model. Then, the KGC model
usually is a classification model or a ranking model, whose target
is predicting whether a candidate triple is correct or not for a KG.
Generally, the learned KGC model tends to undergo an evaluation
process to be assessed through a variety of evaluation metrics. A
satisfied assessed result usually means a good KGC model.

• Candidate processing. The candidate processing aims to obtain
verifiable triples. Those triples will be checked by the learned
KGC model in model learning. The candidate processing starts
with candidate set generation, which generates a candidate set
(the set of candidates are the triples that possibly be correct
but are not present in the KG) relying on algorithms or manual
works. Since the initial generated candidate set tends to be very
large regardless of whether the candidates are promising or not,

it has to further subsequently go through a candidate filtering

3

[25] step to preemptively remove those unlikely candidates and
simultaneously keep as many promising candidates as possible.
Usually, the filtering work is accomplished by generating several
filtering rules (also known as ‘‘pruning strategies’’) and applying
these rules to the candidate set to produce the condensed set of
most promising candidates [26].

• Facts identification. Finally, the learned KGC model in model
learning is applied to the above set of promising candidates gen-
erated by candidate processing, resulting in the set of missing
triples that are considered correct and are likely to be added into
the KG [26].

2.2.2. Two training techniques: Negative sampling and ranking set-
ting

(1) Negative sampling

Basic idea of negative sampling. The existing triples in a given
KG are all correct triples, i.e., (h, r, t) ∈ T , where T means
a positive triple set. Since a KGC model needs to be trained
and verified with the help of negative triples, it is necessary
to perform negative sampling, i.e., to construct negative triples
and build a negative triple set T ′. In general, the negative sam-
pling is to replace one entity or relation (there are two options
in practice: replace only entity elements or replace both enti-
ties and relations in a triple) randomly from a correct triple to
make it become an incorrect triple. For example, for the case
of (Bill Gates, gender,male), when we replace ‘‘Bill Gates’’ with
other random entities in the KG, such as ‘‘Italy’’, a negative triple
(Italy, gender,male) is formed, and it is a negative triple (whose
label is ‘‘false’’). However, sometimes the triples formed after
random replacement are still true. For example, in the above
example, if the head entity is randomly replaced with another
entity ‘‘Steve Jobs’’ in the KG, we find that the triple becomes
(Steve Jobs, gender,male) and it is still valid. Under this situation,
we normally consider filtering out this kind of ‘‘negative triple’’
from T ′.

Sampling strategy. We introduce three kinds of common sam-
pling strategies: uniform sampling (‘‘unif’’), Bernoulli negative sam-
pling method (‘‘bern’’) [15], and generative adversarial network
(GAN)-based negative sampling [27].

• Uniform sampling (‘‘unif’’) is a comparatively simple sampling
strategy, which aims to sample negative triples according to the
uniform distribution of sampling. In this way, all entities (or
relations) are sampled in the same probability.

• Bernoulli negative sampling method (‘‘bern’’) [15]: due to the
unbalanced distribution of the number of head entities and tail
entities corresponding to a certain relation, i.e., the existence of
multiple types of relations including ‘‘one to many’’, ‘‘many to
one‘‘, and ’’many to many’’ relations, it is not reasonable to re-
place the head entities or the tail entities with a uniform manner.
Therefore, the ‘‘bern’’ strategy [15] replaces the head entity or
the tail entity of a triple under different probabilities. Formally,
for a certain relation r , ‘‘bern’’ counts the average number of
head entities corresponding to per tail entity (denoted as hpt)
and the average number of tail entities corresponding to per head
entity (denoted as tph) in all triples with the relation r , and then
it samples each head entity with probability tph

tph+hpt , similarly,
it samples each tail entity with probability hpt

tph+hpt . The ‘‘bern’’
sampling technique performs well in many tasks, it can reduce
false-negative tags than ‘‘unif’’.

• GAN-based negative sampling [27]: Inspired by the wide appli-
cation of generative adversarial network (GAN) [27], Cai et al.
[28] change the way of generating negative samples to GAN-
based sampling in a reinforcement learning way, in which GAN
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Fig. 2. The data example in Freebase.

generator is responsible for generating negative samples, while
the discriminator can use translation models to obtain the vector
representation of entities and relations, then it scores the gen-
erated negative triples and feeds related information back to the
generator to provide experience for its negative samples genera-
tion. Recently, there have appeared a series of negative sampling
techniques based on GAN (e.g. [29–31]), relevant experiments
have shown that this kind of methods can obtain high-quality
negative samples, which are conducive to classify triples correctly
in the training process of knowledge representation model.

(2) Ranking setting
In link prediction (LP) task, the evaluation is carried out by

performing head prediction or tail prediction on all test triples,
and computing for each prediction how the target entity ranks
against all the other ones. Generally, the model expects the tar-
get entity to yield the highest plausibility. When computing the
predicted ranks, two different settings, raw and filtered sce-
narios, are applied. Actually a prediction may have more than
one valid answer: taking an example with the tail predicting
for (Barack Obama, parent, Natasha Obama), a KGC model may
associate a higher score to Malia Obama than to Natasha Obama,
i.e., there may exist other predicted fact that has been contained
in the KG, e.g. (Barack Obama, parent, Malia Obama). Depending
on whether valid answers should be considered acceptable or not,
two separate settings have been devised [18]:
• Raw setting: in this case, valid entities outscoring the target

one are considered as mistakes [18]. Thus for a test fact (h, r, t)
in a testing set, the raw rank rankh of the target head entity h is
computed as follows (analogous for the tail entity):

rankh = |e ∈ E\{h} : s(e, r, t) > s(h, r, t)| + 1

• Filtered setting: in this case, valid entities outscoring the target
one are not considered as mistakes [18], they are filtered out
when computing the rank: for the test fact (h, r, t), the filtered
rank rankh of the target head entity h is computed as (analogous
for the tail entity):

rankh = |e ∈ E\{h} : s(e, r, t) > s(h, r, t) ∧ (e, r, t) /∈ T | + 1

2.3. Datasets and evaluation metrics

Here we introduce some most frequently used datasets for
KGC (see Section 2.3.1) and several evaluation metrics for KGC
(see Section 2.3.2).

2.3.1. Datasets
We describe the datasets mainly developed on two KGs: Free-

base and WordNet, and report some of their important attributes
in Table 2.

• Freebase: Freebase is a public KG, whose content is added
all by users. Moreover, Freebase also extracts knowledge from
opening KGs as a supplement [26]. The fundamental data items in
Freebase including ‘‘Topic’’, ‘‘Type’’, ‘‘Domain’’, ‘‘Property’’ and so
4

Table 2
Common KGC benchmarks and their attributes.
Benchmark Entity Relation #Training #Validation #Test

WN11 38696 11 112581 2609 10544
WN18RR 40493 11 86835 3034 3134
FB13 75043 13 316232 5908 23733
FB15k 14951 1345 483142 50000 59071
FB15k-237 14541 237 272115 17535 20466

on. We give a demonstration to illustrate the data in the Freebase
as Fig. 2. TopicMiyazaki Hayao is a cartoonist in the field of cartoon
domain, but a director in movie domain. It can be seen that
Freebase is a database consists of multiple domains expanded
by topics, the graph structure of every topic is controlled by its
type and type properties. Typically, the subset FB15k and FB13 of
Freebase, as well as the improved FB15k-237 based on FB15k, are
generally used as experimental benchmarks for method detection
in KGC:
(1) FB15k: FB15K is created by selecting the subset of entities
that are also involved in the Wikilinks database and that also
possess at least 100 mentions in Freebase [11]. In addition, FB15K
removes reversed relations (where reversed relations like ‘!/peo-
ple/person/nationality’ just reverses the head and tail compared
to the relation ‘/people/person/nationality’). FB15k describes the
ternary relationship between synonymous sets, and the synonym
sets that appear in the verification set and testing set also ap-
pear in the training set. Also, FB15k converts n-ary relations
represented with reification into cliques of binary edges, which
greatly affected the graph structure and semantics [18]. FB15K
has 592,213 triples with 14,951 entities and 1345 relations which
were randomly split as shown in Table 2.
(2) FB15k-237 is a subset of FB15k built by Toutanova and Chen
[32], which is aroused to respond to the test leakage problem due
to the presence of near-identical relations or reversed relations
FB15k suffering from. Under this background, FB15k-237 was
built to be a more challenging dataset by first selecting facts
from FB15k involving the 401 largest relations and removing all
equivalent or reverse relations. Then they ensured that none of
the entities connected in the training set are also directly linked
in the validation and testing sets for filtering away all trivial
triples [18].
•WordNet [6]: WordNet is a large cognitive linguistics based KG
ontology, also can be regarded as an English Dictionary knowl-
edge base, whose construction process considers the alphabetic
order of words and further form semantic web of English words.
In WordNet, entities (called synsets) correspond to semantics,
and relational types define the lexical relations between these
semantics. Besides, WordNet not only contains multiple types of
words such as polysemy, categories classification, synonymy and
antonymy, but also includes the entity descriptions. Furthermore,
there are various post-produced subset datasets extracted from
WordNet, such as WN11, WN18, and WN18RR:
(1) WN11: it includes 11 relations and 38696 entities. What is
more, the train set, the validation set, and the test set of WN11
contain 112581, 2609, and 10544 triples, respectively [11].
(2)WN18: it uses WordNet as a starting point and then iteratively
filters out entities and relationships with too few mentions [11,
18]. Note that WN18 involves reversible relations.
(3) WN18RR: WN18RR is built by Dettmers et al. [33] for re-
lieving test leakage issue in WN18 that test data being seen by
models at training time. It is constructed by applying a pipeline
similar to the one employed for FB15k-237 [32]. Recently, they
acknowledge that 212 entities in the testing set do not appear in
the training set, making it impossible to reasonably predict about

6.7% test facts.



T. Shen, F. Zhang and J. Cheng Knowledge-Based Systems 255 (2022) 109597

u
m

M

i
r
t
H
t
t
s

A
t
u
c

O
f

Table 3
Detailed computing formulas of evaluation metrics for KGC.
Metrics Computing formula Notation definition Task

MRR MRR = 1
|Q |

∑i=1
|Q |

1
ranki

Q : query sets; |Q |: queries numbers;
ranki: the rank of the first correct answer for the ith query

LP, RP

MR MRR = 1
|Q |

∑i=1
|Q | ranki Q : query sets; |Q |: queries numbers;

ranki: the rank of the first correct answer for the ith query
LP, RP

Hits@n Hits@n = 1
|Q | Count(ranki ≤ n),

0 < i ≤ |Q |
Count(): the hit test number in the top n rankings among test
examples;
Q : query sets; |Q |: queries numbers;
ranki: the rank of the first correct answer for the ith query

LP, RP

MAP MAP = 1
|Q |

∑
q∈Q APq APq: average precision of the query q;

Q : query sets; |Q |: queries numbers
LP, RP

Accuracy Accuracy = TP+TN
TP+TN+FP+FN TP: true positive; FP: false positive;

FN: false negative; TN: true negative
TC

Precision Precision = TP
TP+FP TP: true positive;

FP: false positive
TC

Recall Recall = TP
TP+FN TP: true positive;

FN: false negative
TC

F1 score F1 = 2∗Recall∗Precision
Recall+Precision — TC
2.3.2. Evaluation metrics
In this section, we recommend evaluation metrics generally

sed in KGC. Table 3 shows detailed computing formulas of these
entioned metrics.

ean Reciprocal Rank (MRR): MRR is widely used in the ranking
problem which tends to return multiple results, such as LP and RP
task for KGC. When dealing with such problems, the evaluation
system will rank the results by their scores from high to low.
MRR evaluates a ranking algorithm according to its ranking of the
target answer. The higher the target answer ranks, the better the
ranking algorithm. In a formulaic view, for a query, if the target
answer ranks nth, then the MRR score is calculated as 1

n (if there
is no target answer among returned results, the score is 0).

Mean-Rank (MR) and Hits@n: Similar to MRR and generally used
n the Top-K ranking problem, MR and Hits@n are common met-
ics in KGC evaluation, especial in LP and RP tasks. MR represents
he average ranks of target entity (or relation) in the testing set;
its@n (usually, n = 1, 3, 10) indicates the proportion in the
esting set that predicted target entities (or relations) ranks in
he top n. The ranks are computed according to each prediction’s
coring.

ccuracy: Accuracy refers to the ratio of correctly predicted
riples to the total predicted triples, it usually is applied to eval-
ate the quality of classification models in TC task for KGC, its
alculation formula is demonstrated in Table 3.

ther evaluation metrics: There are other evaluation metrics
or KGC tasks, such as Mean Average Precision (MAP) pays
attention to the relevance of returned results in ranking problem.
Some metrics closely related to ‘‘accuracy’’ in measuring the
classification problems, like ‘‘recall’’, ‘‘precision’’ and ‘‘F1 score’’.
Compared with MR, MRR, Hits@n, and ‘‘accuracy’’, these metrics
are not continually employed in the field of KGC. The detailed
computing formulas of these mentioned metrics can be found in
Table 3.

2.4. Knowledge Graph Refinement (KGR) vs. KGC

The construction process of large-scale KGs results that the
formalized knowledge in KGs cannot reasonably reach both ‘‘full
coverage’’ and ‘‘fully correct’’ simultaneously. KGs usually need
5

a good trade-off between completeness and correctness. Knowl-
edge Graph Refinement (KGR) is proposed to infer and add miss-
ing knowledge to the graph (i.e., KGC), and identify erroneous
pieces of information (i.e., error detection) [24]. Recently, KGR
is incorporated into recommender systems [34]. Tu et al. [34]
exploit the KG to capture target-specific knowledge relationships
in recommender systems by distilling the KG to reserve the useful
information and refining the knowledge to capture the users’
preferences.

Basically, KGC is one of the KGR subtasks to conduct inference
and prediction of missing triples. Error detection (e.g., [35,36]) is
another KGR subtask for identifying errors in KGs. Jia et al. [36]
establish a knowledge graph triple trustworthiness measurement
model that quantifies the semantic correctness of triples and
the true degree of the triples expressed. But note that KGC is a
relatively independent task to increase the coverage of KGs for
alleviating the incompleteness of KGs. In our current overview,
we focus on the KGC techniques, and the issues about KGR can
refer to [24,34].

2.5. Our categorization principle

The main full-view categorization of our review on KGC stud-
ies is shown in Fig. 3.

To follow the experienced rapid development of KGC models,
we provide wide coverage on emerging researches for advanced
KGC technologies. We include the main literature since the begin-
ning of KGC research as comprehensive as possible and take care
of the far-reaching and remarkable approaches in detail. We di-
vide KGC methods into two main categories according to whether
using additional information: Structure (triple) information-
based KGC methods and Additional information-based KGC
methods (the additional information typically refers to some
other information that included inside or outside of KGs except
for the structure information, such as text description, artificial
rules). Moreover, we further consider the source of additional
information — depending on whether it comes from the inner
KG, we classify the additional information into two finer subclasses:
internal side information inside KGs and external extra in-
formation outside KGs. In addition, we introduce some KGC
techniques targeting certain fields, like Temporal Knowledge
Graph Completion (TKGC), CommonSense KGC (CSKGC) and
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yper-relational KGC (HKGC). We also make a detailed compar-
ison and summary among the methods of each small category.
We give a global discussion and prospect for the future research
directions of KGC. Specifically, our categorization principle is as
follows:

• Structure information-based KGC methods: which only use
the structure information of internal facts in KGs. For this cat-
egory, KGC is reviewed under semantic matching models and
ranslation models according to the nature of their scoring func-
ions. The semantic matching models generally use semantic
atching-based scoring functions and further consists of ten-

or/matrix factorization models and neural network models. The
ranslation models apply distance-based scoring function;

Additional information-based KGC methods: which cooperate
ith additional information (the inside or outside information of
Gs except for the structure information) to achieve KGC. For this
ategory, we further propose fine-grained taxonomies respective
nto two views about the usage of inside information or outside
nformation:
1) Internal side information inside KGs involved in KGs, includ-
ng node attributes information, entity-related information, relation-
elated information, neighborhood information, relational path infor-
ation;
 N

6

(2) External extra information outside KGs outside KGs, mainly
including two aspects: rule-based KGC and third-party data
sources-based KGC.

• Other KGC technologies: we take additional attention on some
other KGC techniques, such as Temporal KGC, CommonSense
KGC and Hyper-relational KGC.

. Structural information-based KGC technologies

In this section, we focus on KGC technologies relying on struc-
ure information only, give an account of several categories of
ethods belonging to this kind of KGC technologies: Semantic

Matching models in Section 3.1 and Translation models in Sec-
tion 3.2.

3.1. Semantic matching models

Semantic Matching models is a kind of models which com-
pute semantic matching-based scoring functions by measuring the
semantic similarities of entity or relation embeddings in latent
embedding space. In this category, we introduce two subclasses:
Tensor/Matrix Factorization Models (see Section 3.1.1) and Neural
etwork Models (see Section 3.1.2).



T. Shen, F. Zhang and J. Cheng Knowledge-Based Systems 255 (2022) 109597
Table 4
Characteristics of Tensor Factorization (TF) KGC methods.
Model Highlight Score function Loss functiona Parameters & Constrains

Tucker-based TF methods

TuckER [37] Tucker decomposition,
multi-task learning

s(h, r, t) =W ×1 vh ×2 vr ×3 vt Bernoulli Llog W ∈ Rde×dr×de ,

vh, vt ∈ Rde , vr ∈ Rdr

DEDICOM-based TF methods

RESCAL [13] Three-way bilinear TF s(h, r, t) = vT
hMrvt L2 vh, vt ∈ Rd,Mr ∈ Rd×d

LFM [38] Bilinear TF,
decomposing the
relation matrix Rj ,
decreasing parameters
of RESCAL

s(h, r, t) ≜
yTMry′ + vt

TMr z + z ′TMrvt + vt
TMrvt ,

Rj =
∑d

r=1 α
j
rΘr = urv

T
r

Llog Rj ∈ Rp×p,

y, y′, z, z ′ ∈ Rp

ur , vr ∈ Rp, αj
∈ Rd

Tatec [39] 2-way and 3-way
interactions models,
hard regularization,
soft regularization

s(h, r, t) = s1(h, r, t)+ s2(h, r, t)
s1(h, r, t) = vT

r1vh1 + vT
r2vt1 + vT

h1
Ddiagvt1

s2(h, r, t) = vT
h2
Mrvt2

Lmarg
+∆soft/hard

vhi , vti ∈ Rdi , i = 1, 2
vr1 , vr2 ∈ Rd1 ,

Mr ∈ Rd2×d2

ANALOGY [40] Bilinear TF,
normality relation matrix
commutativity relation matrix

s(h, r, t) = vT
hMrvt

MrMT
r = MT

r Mr , ∀r ∈ R,

MrMr ′ = Mr ′Mr , ∀r ∈ R.

Llogistic h, t ∈ Rd,Mr ∈ Rd×d

REST [41] Subgraph tensors building,
RW-based SGS,
predicate sparsification operator,
Focused Link Prediction (FLP)

for quary (h, r, ?) : ve = vT
hMrA

s(h, r, t) = vT
hMrvt

L2 vh, vt ∈ Rd,Mr ∈ Rd×d

A ∈ RNe×d

CP-based TF methods

DistMult [42] RESACL + diagonal matrices s(h, r, t) = vT
hMr diagvt max Lmarg Mr diag = diag(r), r ∈ Rd

ComplEx [43] Complex values
CP-based TF model

s(h, r, t) = Re(vT
hMr diag v̄t )

= Re(
∑d−1

i=0 [vr ]i · [vh]i · [v̄t ]i)
Lnll +∆L2 vh, vt ∈ Cd,

Mr diag = diag(vr ), vr ∈ Cd

SimplE [44] Bilinear TF model,
utilizing inverse relations,
fully expressive-evaluation metric

s(h, r, t) = 1
2 (sCP (h, r, t)+ sCP (h, r−1, t))

sCP =
∑d−1

i=0 [vr ]i · [vh]i · [vt ]i

Lnll +∆L2 vh, vt ∈ Rd, vr ∈ Rd

DrWT [45] Fine-grained types inference,
domain knowledge modeling,
leverages additional
data outside KG,
4th-order TF

s(E, F ,G,H) = χ

= Cdiag ×s E ×p F ×o G×d H
L2 chi ∈ RS×O×P×D,

Cdiag ∈ Rd×d×d×d,

E ∈ RS×d, F ∈ RO×d

G ∈ RP×d,H ∈ RD×d

TriVec [46] ComplEx with three
components score function,
three parts entity/relation
-representation

s(h, r, t) =
∑d−1

i=0 ([v
1
h ]i[v

1
r ]i[v

3
t ]i

+[v2
h ]i[v

2
r ]i[v

2
t ]i + [v

3
h ]i[v

3
r ]i[v

1
t ]i)

Lls +∆N3 vh, vt ∈ Cd, vr ∈ Cd

Additional training technologies

Ensemble
DistMult [47]

Reproduces DistMult,
parameter adjustment,
fine tuning technology

s(h, r, t) = vT
h ·Mr diag · vt

s′(h, r, t) = P(t|h, t) = exp(s(h,r,t))∑
t̄∈ϵh,t exp(s(h,r,t))

max Lmarg Mr diag = diag(r), r ∈ Rd

Regularizer
-Enhanced Model
[48]

R1 multiplicative-
L1 regularizer

s(h, r, t) = Re(vT
hMr diag v̄t )

= Re(
d−1∑
i=0
[vr ]i · [vh]i · [v̄t ]i)

Lnll
+∆R1mL1

Mr diag = diag(vr ), vr ∈ Cd,

R1(Θ) =∑
r∈R

d−1∑
i=0
|Re([vr ]i) · Im([vr ]i)|,

R2(Θ) = ∥Θ∥22
Constraints
-enhanced Model
[49]

NNE constraints,
AER constraintsb

s(h, r, t) = Re(vT
hMr diag v̄t )

= Re(
∑d−1

i=0 [vr ]i · [vh]i · [v̄t ]i)
Lnll +∆L2 Mr diag = diag(r), r ∈ Cd;

0 ≤ Re(e), Im(e) ≤ 1;
s(ei, rp, ej) ≤ s(ei, rq, ej),
∀e, ei, ej ∈ E

(continued on next page)
3.1.1. Tensor/matrix factorization models
Here we introduce a series of Tensor Factorization (TF) models

in detail and make a summary table (Table 4) for conveniently
exhibiting the characteristics of these models. Recently, tensors
and their decompositions are widely used in data mining and
machine learning problems [13]. In KG field, the large-scale ten-
sor factorization has been paid more and more attention for KGC
tasks.

Based on a fact that KG can be represented as tensors (shown
in Fig. 4), KGC can be framed as a 3rd-order binary tensor comple-
tion problem, tensors can also be regarded as a general method
to replace common methods, such as graphical models [50]. For
7

KGC, the relational data can be represented as a {0, 1}-valued
third-order tensor Y ∈ {0, 1}|E|×|R|×|E|, if the relation (h, r, t)
is true there meets Yh,r,t = 1, and the corresponding three
modes properly stand for the subject mode, the predicate mode
and the object mode respectively. TF algorithms aim to infer
a predicted tensor X ∈ R|E|×|R|×|E| that approximates Y in a
sense. Validation/test queries (?, r, t) are generally answered by
ordering candidate entities h′ through decreasing values of Xh′,r,t ,
yet queries (h, r, ?) are answered by ordering entities t ′ with de-
creasing values of Xh,r,t ′ . In that context, numerous literature have
considered link prediction as a low-rank tensor decomposition
problem.



T. Shen, F. Zhang and J. Cheng Knowledge-Based Systems 255 (2022) 109597

r
b

c

Table 4 (continued).
Model Highlight Score function Loss functiona Parameters & Constrains

N3 regularizer [50] CP + p-norms regularizer s(h, r, t) = sCP =
∑d−1

i=0 [vr ]i · [vh]i · [vt ]i Lnll +∆N3 vh, vt ∈ Rd, vr ∈ Rd

Ωα
p (v) =

1
3

∑R
r=1

∑3
d=1 ∥v

(d)
r ∥

α
p

B-CP [51] CP + binary value parameters,
Bitwise Operations

s(h, r, t) = χ =
∑

i∈[d] v
(b)
hi ⊗ v

(b)
ti ⊗ v

(b)
ri

v
(b)
hi = Q△(vhi), v

(b)
ti = Q△(vti),

v
(b)
ri = Q△(vri)

Q△(x) = △sign(x) =
{
+△ if x ≥ 0,

−△ if x < 0

LCE chi ∈ {0, 1}Ne×Ne×Nr

vhd, vtd ∈ {+△,−△}d

vrd ∈ {+△,−△}d

QuatE [52] ComplEx in
hyper-complex space

s(h, r, t) = Q rotation
h · Qt ,

Qx = {ax + bxi+ cxj+ dxk},
Wr = {ar + br i+ cr j+ drk},
Q rotation
h = Qh ⊗W ◁r ,

W ◁r =
Wr
|Wr |

Lnll +∆L2 Q ∈ HNe×d,W ∈ HNr×d;

x = h, t;
ah, bh, ch, dh ∈ Rd

;

at , bt , ct , dt ∈ Rd;
ar , br , cr , dr ∈ Rd

JoBi [53] Joint learning:
bilinear TF model +
auxiliary model (using entity
-relation co-occurrence pairs)

JoBi ComplEx:
sbi(h, r, t) = Re(vT

h diag(rbi)v̄t ),
stri(h, r, t) = Re(vT

h diag(rtri)v̄t )

Lnll vh, vt , vr ∈ Rd

Linear & Quadratic
Model [54]

‘Linear + Regularized’,
‘Quadratic + Regularized’,
‘Quadratic + Constraint’
‘Linear + Constraint’

s(h, r, t) = vT
hMrvt Lquad + C/Rc vh, vt ∈ Rd,Mr ∈ Rd×d

aLll (Lnll), Lls , L2 , Lquad , Lmarg and LCE are (negative) log likely-hood loss, log softmax loss, L2 loss, quadratic loss, margin-based ranking loss and cross entropy loss
espectively, and ∆ indicates the regularization terms in loss function.
‘NNE’ and ‘AER’ represents non-negativity constraints and approximate entailment constraints.
‘C/R’ means Constraints and Regularations in [54].
c
t
t

3
b
D
b
t
t
D

χ

Fig. 4. Knowledge Graph as Tensors [41].

3.1.1.1. Tucker-based TF methods. The well-known TF approach
Tucker [55] decomposes the original tensor χ ∈ RN1×N2×N3 into
three matrices A ∈ RN1×M1 , B ∈ RN2×M2 , C ∈ RN3×M3 and a smaller
core tensor Z ∈ RM1×M2×M3 , specifically in the form of

χ ≈ Z ×1 A×2 B×3 C,

where ×n denotes the tensor product along the nth mode. Factor
matrices A, B and C can be considered as the principal compo-
nents in each mode if they are orthogonal. Typically, since M1,
M2, M3 are smaller than N1, N2, N3 respectively, thus Z can be
regarded as a compressed version of χ , whose elements express
the interaction level between various components.

TuckER [37] based on Tucker decomposition to the binary tensor
representation, it is a powerful linear model with fewer parame-
ters but obtains consistent good results, this is because it enables
multi-task learning across relations. By modeling the binary ten-
sor representation of a KG according to Tucker decomposition as
Fig. 5, TuckER defines the score function as:

s(h, r, t) = W ×1 vh ×2 vr ×3 vt

where W ∈ Rde×dr×de indicates the core tensor, vh, vt ∈ Rde

and vr ∈ Rdr represent the head entity embedding, tail entity
embedding and relation embedding respectively. It is worth not-
ing that TuckER can derive sufficient bounds on its embedding
dimensionality, and adequate evidence can prove that several
linear models (such as RESCAL [13] and DistMult [42] that will
be mentioned later) can be viewed as special cases of TuckER.
8

Fig. 5. Visualization of the TuckER architecture [37].

However, Kolda and Bader [56] indicated that Tucker de-
omposition is not unique because the core tenser Z can be
ransformed without affecting the fit if we conduct the inverse
ransformation to A, B and C .

.1.1.2. Decomposition into directional components (DEDICOM)-
ased TF methods. Contrary to Tucker decomposition, the rank-r
EDICOM decomposition [57] is capable of detecting correlations
etween multiple interconnected nodes, which can be captured
hrough singly or synthetically considering the attributes, rela-
ions, and classes of related entities during a learning process.
EDICOM decomposes a three-way tensor χ as:

k ≈ ADkRDkAT , for k = 1, . . . ,m

where the matrix A ∈ Rn×r indicates the latent components,
the asymmetric matrix R ∈ Rr×r reflects the global interactions
between the latent components, whereas the diagonal matrix
Dk ∈ Rr×r models the participation situation of the latent compo-
nents in the kth predicate. Under this circumstance, DEDICOM is
suitable for the case where there exists a global interaction model
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for the latent components and its variation in the third mode can
be described by diagonal factors [13].

RESCAL [13] is an early three-way DEDICOM-based model for
KGC, which interprets the inherent structure of dyadic relational
data. By employing a three-way tensor χ (as shown in Fig. 6),
here two modes are identically formed by the concatenated en-
ity vectors of the domain and the third mode holds the relations
atrix in the domain. The score of a fact (h, r, t) is defined by a

bilinear function:

s(h, r, t) = vT
hMrvt , (1)

where vh, vt ∈ Rd are entity embeddings, and Mr ∈ Rd×d is an
asymmetric matrix associated with the relation that models the
interactions between latent factors.

LFM [38] is a bilinear TF model extending RESCAL, to overcome
the relational data growing issue thus to model large multi-
relational datasets. Similar to RESCAL, LFM embeds entities in
d−dimension vectors, encodes each relation into a matrix Mr j as
a bilinear operators among the entities, where 1 ≤ j ≤ Nr , Mr ∈

Rd×d. For efficiently modeling large relational factor, (h, r, t), LFM
first redefines the previous linear score items as the following
form to take account of the different interaction order including
unigram, bigram, and trigram orders between h, t and r:

(h, r, t) ≜ yTMry′ + vh
TMrz + z ′TMrvt + vh

TMrvt (2)

where the parameters y, y′, z, z ′ ∈ Rd, which participate in the
calculation yMry′, vh

TMrz+z ′TMrvt terms, together with vh
TMrvt ,

these three terms represents uni-, bi- and trigram orders of
interactions between h, t and r . The another improvement on
RESCAL is decomposing the relation matrixMr over a set of p-rank
matrices Θr (1 ≤ r ≤ p) with:

Mr =

p∑
r=1

αj
rΘr (3)

where Θr = urw
T
r for ur , wr ∈ Rd, αj

∈ Rp. The Θr constrained
by the outer product operator efficiently decreases the number of
the overall parameters compared with the general relation matrix
parameterization process in RESCAL, which greatly speeds up the
computations relying on traditional linear algebra. LFM normal-
izes the terms appearing in formulas (2) and (3) by minimizing
the negative log-likelihood over a specific constraint set.

Tatec [39] cooperates with both 2-way and 3-way interactions
models to capture different data patterns in respective embed-
ding space, which obtains a better performance outstripping the
best of either constituent. Different from the closest relative
model LFM, Tatec combines the 3-way model and constrained 2-
way model but pre-trains them separately. Tatec learns distinct
embeddings and relation parameters for the 2-way and the 3-
way interaction terms so that it avoids the problem of reducing
9

the expressiveness of the 2-way interaction terms caused by joint
parameterization. The combinatorial score function of Tatec as:

s(h, r, t) = s1(h, r, t)+ s2(h, r, t)

where s1() and s2() correspond to the 2-way and 3-way term as
the following forms:

s1(h, r, t) = vT
r1vh1 + vT

r2vt1 + vT
h1Ddiagvt1

s2(h, r, t) = vT
h2M

rvt2

where vhi , vti are embeddings of head and tail entities in Rdi space
(i = 1, 2), vr1 , vr2 are vectors in Rd1 , while Mr

∈ Rd2×d2 is a
mapping matrix, and D is a diagonal matrix that is independent
of the input triple. Depending on whether jointly update (or
fine-tune) the parameters of 2-way and 3-way score terms in a
second phase, Tatec proposes two term combination strategies to
effectively combine the bigram and trigram scores, fine tuning
(Tatec-ft) and linear combination (Tatec-lc), the former simply
adding s1 term and s2 term and fine-tuned overall parameters in
s, while the latter combines twos in a linear way. Besides, Tatec
attempts hard regularization or soft regularization for the Tatec-ft
optimization problem.

ANALOGY [40] is an extended version of RESCAL, it is interested in
explicitly modeling analogical properties of both entity and rela-
tion embeddings, applies a bilinear score function used in RESCAL
(shown in formula (1)) but further stipulates the relation mapping
matrices must to be normal as well as mutually commutative as:

normality : MrMT
r = MT

r Mr , ∀r ∈ R

commutativity : MrMr ′ = Mr ′Mr , ∀r ∈ R

The relation matrices can be simultaneously
block-diagonalized into a set of sparse almost-diagonal matrices,
each decomposed matrix equips O(d) free parameters. Besides,
ANALOGY carries out the training process by formulating a differ-
entiable learning objective, thus allows it to exhibit a favorable
theoretical power and computational scalability. Relevant evi-
dence has shown that multiple TF methods, such as DistMult [42],
HolE [58], and ComplEx [43] that will be mentioned later can be
regarded as special cases of ANALOGY in a principled manner.

REST [41] has fast response speed and good adaptability to evolve
data and yet obtains comparable or better performance than
other previous TF approaches. Based on the TF model, REST uses
Random Walk (RW)-based semantic graph sampling algorithm
(SGS) and predicate sparsification operator to construct Ensem-
ble Components, which samples a large KG tensor in its graph
representation to build diverse and smaller subgraph tensors (the
Ensemble Architecture as Fig. 7), then uses them in conjunction
for focused link prediction (FLP) task. Experimental results show
that FLP and SGS are helpful to reduce the search space and
noise. In addition, the predicate sparsification can improve the
prediction accuracy. REST can deliver results on demand, which
makes it more suitable for the dynamic and evolutionary KGC
field.

3.1.1.3. CANDECOM/PARAFAC (CP)-based TF methods. The most
well known canonical tensor decomposition method relevant to
KGC field might be the CANDECOM/PARAFAC (CP) [59], in which
a tensor χ ∈ RN1×N2×N3 was represented as a sum of R rank one
tensors x(1)r

⨂
x(2)r

⨂
x(3)r , thus:

χ =

R∑
x(1)r · x

(2)
r · x

(3)
r

r=1
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Fig. 7. Ensemble Architecture in REST [41].

Fig. 8. The tensor operated via CP and the score of a triple (h, r, t) [50].

here · denotes the tensor product, r ∈ {1, . . . , R}, and x(i)r ∈ RNi .
Fig. 8 shows the representation of CP decomposition and the
scoring of a given triplet. In particular, the smallest r contained
in the decomposition of given χ is called the canonical rank of
χ . Although the current implementations of CP on standard KGC
benchmarks are known to perform poorly compared to more
specialized methods, CP owns a surprising expressive ability, thus
a series of works attempt to understand the limits of CP and
further extend it for KGC.

DistMult [42] replaces the dense matrix in RESACL [13] with
diagonal matrices to significantly reduce parameters of RESACL,
the score function is defined as follows:

s(h, r, t) = vT
hMr diagvt (4)

where Mr diag = diag(vr ). However, DistMult represents embed-
ding vectors with real values may make it model symmetric
representation of relations only due to the symmetric nature of
the product operator on real numbers.

Moreover, Holographic Embeddings (HolE) [58] is not a CP-
ased method, but it can model asymmetric relations as well as
ESCAL, and also achieves the same simplicity as DisMult by only
erform an efficient circular correlation. With the commutative
ircular correlation of tensors, HolE can generate compositional
ixed-width representations, i.e., it allows Rd

× Rd
= Rd, which

ignificantly reduces the parameter number but remains high
calability, economical computing capability, and easy training.

omplEx [43] first uses complex values embeddings in a complex
pace to handle both symmetric and antisymmetric binary rela-
ions, where each embedding is represented using two vectors
real and imaginary numbers). In addition to that, ComplEx also
epresents those tail entities as the complex conjugate of them,
o that it can encode both symmetric and asymmetric relations.
10
What is more, shown as formula (5), ComplEx’s bilinear energy
function consists of various interaction parts unlike DisMult with
only one bilinear product component.

s(h, r, t) = Re(vT
hMr diag v̄t ) = Re(

d−1∑
i=0

[vr ]i · [vh]i · [v̄t ]i) (5)

where vh, vt , vr ∈ Cd, Re() indicates an operate to obtain the real
part of a complex value. [vx]i represents the ith element of vx and
v̄t means the conjugate of vt . The spacial style of every compo-
nents with combination of real numbers and imaginary numbers
interprets the ability of ComplEx to model antisymmetry relations
in KGs. Noting that HolE is shown to be a special case for ComplEx
whose conjugate symmetry is imposed on embeddings.

SimplE [44]: Inspired by Canonical Polyadic (CP) [59], SimplE
improves it by utilizing the inverse of relations to handle the
poor performance problem in CP caused by the independence
of the entity vectors. SimplE considers two vectors vr , v

−1
r for

ach relation r , the similarity score function of SimplE for a triple
ei, r, ej), ei, ej ∈ E is defined as the average of the CP scores for
ei, r, ej) and (ej, r−1, ei), this setup allows the two embedding of
each entity to be learned dependently and makes the SimplE be
considered as a bilinear model, scores each triplet as:

s(h, r, t) = 1/2(sCP (h, r, t)+ sCP (h, r−1, t))

sCP =
d∑

i=1

[vh]i · [vr ]i · [vh]i

SimplE also use a log-likelihood loss to avoid over-fitting. Sim-
plE model is not only fully expressive, it performs very well
empirically despite (or maybe because of) its simplicity.

DrWT [45] aims at fine-grained types inference in KGs, it ex-
plicitly models domain knowledge and leverages additional data
outside KG, the anchor linked Wikipedia page document of enti-
ties, and the extra relations mapped from additional data sources.
DrWT uses CP based 4th-order Tensor Factorization which fac-
torizes each 4th-order domain-relevance weighted tensor χ ∈
RS×O×P×D as:

s(E, F ,G,H) = χ = Cdiag ×S E ×P F ×O G×D H

where the diagonal core tensor C ∈ Rd×d×d×d and the feature ma-
trices E ∈ RS×d, F ∈ RO×d,G ∈ RP×d and H ∈ RD×d are the model
parameters that have to be learned, and the scoring s(E, F ,G,H)
is the tensor product to multiply a matrix on dimension x with
a tensor. DrWT is an attempt for explicitly leveraging domain
knowledge in KG, and for utilizing the additional large amount
of interactions among multiple entities and text descriptions. On
the other hand, it further discusses probabilistic inference based
on collective multilevel type classification and latent similarity of
typed entities.

TriVec [46] is an efficient novel TF-based KG embedding model
for stand benchmark datasets and/or more challenging datasets
for practical application scenarios. TriVec improves the Com-
plEx by replacing the four-parts embedding score function of
ComplEx with three components style and representing each
entity and relation utilizing three parts, which enables TriVec to
deal with both symmetric and asymmetric relations. Moreover,
TriVec adapts a kind of combined form loss function for training,
where applies the traditional ranking loss with the squared er-
ror and the logistic loss, and the multi-class configuration with
negative-log softmax loss simultaneously. TriVec also prepares a
new benchmark dataset, NELL239, and produces a real biological
application dataset based on the Comparative Toxicogenomics
Database (CTD) database especially, which aims at assessing the
practical significance of TriVec.
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.1.1.4. Additional training technologies. The scalable and efficient
erformance of these bilinear models have encouraged lots of
tudies to investigate boosting the DistMult and the ComplEx
odels by exploiting different training objectives and regulariza-

ion constraints [47,50].

nsemble DistMult [47] reproduces DistMult [42] through sim-
le parameter adjustment and fine-tuning technology, and gets
etter scores than most previous KGC methods. Ensemble Dist-
ult employs a softmax function normalizing, imposes it on the
riginal score function in DistMult, which turn the formula (4)
nto:

(h, r, t) = vT
h ·Mr diag · vt

′(h, r, t) = P(t|h, t) =
exp(s(h, r, t))∑
t̄∈ϵh,t exp(s(h,r,t))

here ϵh,t is the candidate answer entities set for the (h, r, ?)
uery.
Ensemble DistMult concludes that increasing the number of

egative instances can have a positive impact on the results,
nd the batch size also has an impact that a larger iteration
atch size can promote the model effect. It is highlighted that
he question in doubt that whether a model is achieved through
etter algorithms in theoretical or merely through more extensive
arametric search. By the way, since the filtered scenario assumes
hat there is only one correct answer among the candidates in
he KG, which is unrealistic, Ensemble DistMult puts forward a
roposal that it is necessary to pay more attention to the original
aw scenario rather than the filtered setting, however, this requires
he use of other information retrieval metrics, such as Mean
verage Precision (MAP).

egularizer-Enhanced Model [48] also aims to improve ComplEx
y designing a novel L1 regularizer called R1 multiplicative L1
egularizer, which can support modeling both symmetric and an-
isymmetric relations. The regularizer R1 in a form of an L1-norm
enalty to allow the sparsity of pairwise products. More specif-
cally, this L1 penalty term is expected to help guide learning
vector for relation r in accordance with whether r is sym-
etric, antisymmetric, or neither of them, as observed in the

raining data due to the real and imaginary parts of a relation vec-
or govern the symmetry/antisymmetry of the scoring function
or the relation. Since parameters are coupled componentwise,
he proposed model can also deal with non-symmetric, non-
ntisymmetric relations which have varying degrees of symme-
ry/antisymmetry. Setting the vector component items in vector
represents the overall parameters of the model, the regularizer

erms as follows:

1(Θ) =
∑
r∈R

d−1∑
i=0

|Re([vr ]i) · Im([vr ]i)|, vr ∈ Cd

2(Θ) = ∥Θ∥2

lthough the non-convex R1 termmakes the optimization harder,
xperiments reports that multiplicative L1 regularization not only
utperforms the previous standard one in KGC, but also is robust
nough against random initialization.

onstraints-enhanced Model [49] imposes simple constraints on
GC, introduces non-negativity constraints (NNE) on entity repre-
entations to form compact and interpretable representations for
ntities, and approximate entailment constraints (AER) on relation
epresentations for further encoding regularities of logical en-
ailment between relations into their distributed representations,
hese two constraints are:

d (6)
NE : 0 ≤ Re(ve), Im(ve) ≤ 1,∀e ∈ E, ve ∈ C

11
ER : s(ei, rp, ej) ≤ s(ei, rq, ej),∀ei, ej ∈ E (7)

n the formula (6), non-negativity constraints are imposed on
oth the real part and the imaginary part of the entity vector,
hich states that only positive properties will be stored in entity
epresentations. Note that 0 and 1 are all-zeros values and all-
nes values of d-dimensional vectors, and ≥,≤,= denote the

entry-wise comparisons. In the formula (7), it formally describes
that when there has a strict entailment rp → rq, then the triple
score must meet one request that if (ei, rp, ej) is a true fact with
a high score s(ei, rp, ej), then the triple (ei, rq, ej) with an even
higher score should also be predicted as a true fact.

As Lee and Seung [60] pointed out, non-negativity, in most
cases, will further induce sparsity and interpretability. Except for
improving the KG embedding, the proposed simple constraints
impose prior beliefs upon the embedding space structure but do
not significantly increase the space or time complexity.

Weighted Nuclear 3-Norm Regularizer Model (N3) [50] also
improves basic CP model by testing a novel tensor nuclear p-
norms based regularizer, it first indicated that the regularizer
based on the square Frobenius norms of the factors [42,43] mostly
used in the past is not a tensor norm since it is un-weighted. Then
this paper introduces a variational form of the nuclear 3− norm
o replace the usual regularization at no additional computational
ost with the form of:

α
p (v) = 1/3

R∑
r=1

3∑
d=1

∥v(d)
r ∥

α

where p = 3 when it is a nuclear 3-norm, and v
(d)
r , d = 1, 2, 3

means the tensor of subject mode, the predicate mode and the
object mode respectively. Finally, Lacroix et al. [50] discuss a
weighting scheme analogous to the weighted trace-norm pro-
posed in Srebro and Salakhutdinov [61] as:

Weighted(Ωα
p (v)) =

1
3

R∑
r=1

3∑
d=1

∥
p
√
q(d) ⊙ v(d)

r ∥
α

where
√
q(d) represents the weighting implied by this regulariza-

tion scheme. Surprisingly, under the using of the nuclear p-norms
[62] and the Reciprocal setting, the tensor regularizer recreates a
much successful result of CP decomposition (even better than ad-
vanced ComplEx), and this reflects a phenomenon that although
the effect of optimization parameters is well known, neither the
effect of the formula nor the effect of regularization has been
properly evaluated or utilized. This work suggests one possibil-
ity: when each model is evaluated under appropriate optimal
configuration, its performance may make great progress, this ob-
servation is very important to assess and determine the direction
for further TF study for KGC.

Binarized Canonical Polyadic Decomposition (B-CP) [51] ex-
tends the CP model by replacing the original real-valued param-
eters with binary values. Only conducts the bitwise operation for
score computation, B-CP has been proven a successful technique
obtains more than one order of magnitude while maintaining
the same task performance as the real-valued CP model. Specif-
ically, setting D is the number of rank-one tensors, and △ is a
positive constant value, B-CP binarizes the original factor ma-
trices A, B ∈ RNe×d and C ∈ RNr×d in CP with: A(b), B(b)

∈

{+△,−△}Ne×d, C ∈ {+△,−△}Nr×d, thus the original boolean
tensor χhrt ∈ {0, 1}Ne×Ne×Nr is turned into:

s(h, r, t) = χhrt =
∑

v
(b)
hi · v

(b)
ti · v

(b)
ri
i∈[d]
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here v
(b)
hi = Q△(vhi), v

(b)
ti = Q△(vti), v

(b)
ri = Q△(vri) are binarized

hrough:

△(x) = △sign(x) =
{
+△ if x ≥ 0,
−△ if x < 0,

ere the binarization function can be further extended to vectors:
△(x) means a vector with ith element is Q△(xi).
By deriving a bound on the size of its embeddings, B-CP is

roved to be fully expressive.

uatE [52] is an extension to ComplEx on hyper-complex space.
uatE creatively introduced hyper-complex representations to
earn KG embeddings more expressively, it uses quaternion em-
eddings, hyper-complex-valued embeddings with three imagi-
ary components to model entities and considers the rotations in
he quaternion space to represent relations. In QuatE, each entity
mbedding is represented by a quaternion matrix Q ∈ HNe×k, and

the relation embeddings are denoted by W ∈ HNr×k, where k is
the dimension of the embedding. For a triplet (h, r, t), denotes
Qh = {ah + bhi + chj + dhk : ah, bh, ch, dh ∈ Rk

} and Qt =

at + bt i + ct j + dtk : at , bt , ct , dt ∈ Rk
} as the head entity h

and tail entity t respectively, while the relation r is expressed in
r = {ar + br i + cr j + drk : ar , br , cr , dr ∈ Rk

} (in a quaternion
= a + bi + cj + dk, the a, b, c , d are real numbers and i, j, k

re imaginary units and are square roots of –1). Then the scoring
unction with the use of quaternion inner product:

(h, r, t) = Q ′h · Qt

he Q ′h means the head entity rotation conducted with the Hamil-
on product:
′

h = Qh ⊗W ◁r

nd W ◁r = p + qi + uj + vk is a unit quaternion by normalizing
he relation quaternion Wr , which calculated by:

◁

r (p, q, u, v) =
Wr

|Wr |
=

ar + br i+ cr j+ drk√
a2r + b2r + c2r + d2r

ompared to the complex Hermitian operator and the inner
roduct in Euclidean space, the Hamilton operator provides a
reater extent of expressiveness, it can aptly capture latent inter-
ependencies (between all components), and support a more
ompact interaction between entities and relations. It is also
orth mentioning that the rotation over four-dimensional space
as more degree of freedom than complex plane rotation. Since
uatE is a generalization of ComplEx on hyper-complex space
ut offers better geometrical interpretations, it also satisfies the
ey request of symmetry, anti-symmetry, and inversion relations
earning. Noting that when the coefficients of the imaginary units
and k are all set to zero, the obtained complex embeddings will
e the same as in ComplEx yet the Hamilton product will also
egrade to complex number multiplication, while even obtains
he DistMult case when it further removes the normalization of
he relational quaternion.

oBi [53] designs an auxiliary model using entity-relation co-
ccurrence pairs for joint learning with the base model (can be
ny bilinear KGE models). The occurrences of entity-relation pairs
ould overcome data sparsity well, and also bias the model to
core plausible triples higher. JoBi creatively contains two copies
f a bilinear model, the base triple model is trained about the
riple’s labels, while the pair model is trained on occurrences
f entity-relation pairs within the triples. For the triple (h, r, t),

the scoring functions sbi and stri for the pair and triple models
respectively are shown as:

T
sbi(h, r, t) = Re(vhdiag(vrbi )v̄t )

12
stri(h, r, t) = Re(vT
hdiag(vrtri )v̄t )

here v̄t denotes the complex conjugate of vt , and Re(x) de-
notes the real part of the complex vector x. The two modules
are jointly optimized during training, but during test time it
merely uses stri models, that is the reason why the additional
auxiliary module does not affect the number of final parame-
ters of the trained model. JoBi also utilizes entity-relation pair
occurrences to improve the distribution of negative examples
for contrastive training, which allows the model to learn higher
quality embeddings with much fewer negative samples. Finally, a
negative log-likelihood loss of softmax and a binary cross-entropy
loss are used for stri and sbi respectively, further the two losses
re combined via a simple weighted addition with a tunable
yper-parameter α:

L = Ltri + αLbi

Linear & Quadratic Model [54] presents a group of novel meth-
ods for embedding KGs into real-valued tensors, including four
modules, ‘Linear + Regularized’, ‘Quadratic + Regularized’,
‘Quadratic + Constraint’ and ‘Linear + Constraint’, where two of
the models optimize a linear factorization objective and two for
a quadratic optimization. All in all, it reconstructs each of the k
elation slices of the order-3 tensor χ as:

k ≈ AαRkAT
β (8)

where A is the collection of p-dimensional entity embeddings, R
is the collection of relation embeddings. The matrices Aα and Aβ

are elements contained in A which meet Aα, Aβ ∈ RNe×d with d
is dimension of both entity and relation embeddings. The whole
augmented reconstruction minimized loss objection are formed
as:
L =minA,Rf (A, R)+ g(A, R)+ fs(A, R, C)
+ fρ(A, R, C)+ fLag (A, R, C)

(9)

where f (A, R) means the reconstruction loss reflecting each of the
k relational criteria in the formula (8), the g(A, R) term repre-
sents the standard numerical regularization of the embeddings,
fs(A, R, C) using similarity matrix C proposed in this work to
onduct knowledge-directed enrichment with extra knowledge.
dditionally, the two terms fρ(A, R, C)+fLag (A, R, C) in the formula
9) respectively reflects the added knowledge-directed enrich-
ent items about new regulars and constraints. This work can
asily use prior background knowledge provided by users or
xtracted automatically from existing KGs, providing more robust
nd provably convergent, linear TF methods for KG embedding.

.1.1.5. Performance analysis about TF models. We integrate ex-
erimental results on WN18 and FB15K datasets from most of the
ver-mentioned models (as shown in Table 5). Fig. 9 shows the
erformance of TF models on WN18RR and FB15K-237 datasets
or further analysis.

. Preliminary Performance Analysis
From Table 5, we can see that the improved extension meth-

ds based on the original linear tensor decomposition models
such as Complex) have achieved high competitive MRR, Hits@10
nd accuracy results, which can be summarized as follows:
1) Regularization analysis: In WN18, Manabe et al. [48] and
acroix et al. [50] try to use different regularization techniques
o improve the traditional TF method, they both obtain satisfying
erformance. In [48], the proposed multiplicative L1 regularizer
‘ComplEx w/ m L1’) emerges powerful comparability and even
xceeds the previous baselines. The method in [50] performs well
ecause it applies the nuclear 3-norm regularizer (‘ComplEx-N3-
’). Additionally, the work [50] resets multi-class log-loss and
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Table 5
Statistic about experimental results of TF models on WN18 and FB15K. We use the bold and italic to mark the scores ranking first and second under the same
metrics respectively.

WN18 FB15K

MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR

RESCAL [13] 0.89 0.842 0.904 0.928 – 0.354 0.235 0.409 0.587 –
DistMult [42] 0.83 – – 0.942 – 0.35 – – 0.577 –
Single DistMult [47] 0.797 – – 0.946 655 0.798 – – 0.893 42.2
Ensemble DistMult [47] 0.79 – – 0.95 457 0.837 – – 0.904 35.9
ComplEx [43] 0.941 0.936 0.945 0.947 – 0.692 0.599 0.759 0.84 –
ComplEx w/std L1 [48] 0.943 0.94 0.945 0.948 – 0.711 0.618 0.783 0.856 –
ComplEx w/mul L1 [48] 0.943 0.94 0.946 0.949 – 0.733 0.643 0.803 0.868 –
ComplEx-NNEc [49] 0.941 0.937 0.944 0.948 – 0.727 0.659 0.772 0.845 –
ComplEx-NNE+AERc [49] 0.943 0.94 0.945 0.948 – 0.803 0.761 0.831 0.874 –
ANALOGY [48] 0.942 0.939 0.944 0.947 – 0.725 0.646 0.785 0.854 –
RESCAL + TransE [31] 0.873 – – 0.948 510 0.511 – – 0.797 61
RESCAL + HolE [31] 0.94 – – 0.944 743 0.575 – – 0.791 165
HolE + TransE [31] 0.938 – – 0.949 507 0.61 – – 0.846 67
RESCAL + HolE + TransE [31] 0.94 – – 0.95 507 0.628 – – 0.851 52
SimplE [44] 0.942 0.939 0.944 0.947 – 0.727 0.66 0.773 0.838 –
ComplEx-N3-Sa [50] 0.95 – – 0.96 – 0.8 – – 0.89 –
CP [51] 0.942 0.939 0.945 0.947 – 0.72 0.659 0.768 0.829 –
CP-FRO-Rb [50] 0.95 – – 0.95 – 0.86 – – 0.91 –
CP-N3-Rb [50] 0.95 – – 0.96 – 0.86 – – 0.91 –
ComplEx-FRO-Rb [50] 0.95 – – 0.96 – 0.86 – – 0.91 –
ComplEx-N3-Rb [50] 0.95 – – 0.96 – 0.86 – – 0.91 –
B-DistMult [51] 0.841 0.761 0.915 0.944 – 0.672 0.558 0.76 0.854 –
B-CP [51] 0.945 0.941 0.948 0.956 – 0.733 0.66 0.793 0.87 –
QuatE [52] 0.949 0.941 0.954 0.96 388 0.77 0.7 0.821 0.878 41
QuatE-N3-R [52] 0.95 0.944 0.954 0.962 – 0.833 0.8 0.859 0.9 –
QuatE+TYPEc [52] 0.95 0.945 0.954 0.959 162 0.782 0.711 0.835 0.9 17
TuckER [37] 0.953 0.949 0.955 0.958 – 0.795 0.741 0.833 0.892 –

a ‘‘S’’ means the Standard learning.
b ‘‘R’’ denotes the Reciprocal learning.
c ‘‘NNE’’, ‘‘AER’’ and ‘‘TYPE’’ denote the non-negativity constraints, approximate entailment constraints [49] and the type constraints [52], respectively.
o
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selects a larger rank scope for a more extensive search about op-
timization/regularization parameters, which are also the reasons
for the good performance of it. Approaches that apply nuclear
3−norm regularizer still show extraordinary talents in FB15K, but
most of the improvements are statistically significant than those
on WN18.
(2) Constraints on entities and relations: The results of
‘ComplEx-NNE+AER’ [49] demonstrate that imposing the non-
negativity and approximate entailment constraints respectively
for entities and relations indeed improves KG embedding. In
Table 5, ‘ComplEx-NNE’ and ‘ComplEx-NNE+AER’ perform better
than (or as equally well as) ComplEx in WN18. We can find an
interesting sight that by introducing these simple constraints,
‘ComplEx-NNE+AER’ can beat strong baselines, including the best
performing basic models like ANALOGY and those previous exten-
sions of ComplEx, but can be derived such axioms directly from
approximate entailments in [49]. Exerting proper constraints
to the original linear TF models is also very helpful for KGC,
just as in WN18, the constraints used ‘ComplEx-NNE+AER’ also
out-performs ComplEx and other traditional TF models.
(3) Different dimension space modeling: In addition, the explo-
rations of new tensor decomposition mode in different dimension
space also achieve inspiring success. From Table 5 we can observe
that on WN18, the quaternion-valued method QuatE performs
competitively compared to the existing state-of-the-art models
across all metrics and deservedly outperforms the representative
complex-valued basic model ComplEx, which is because that
quaternion rotation over the rotation in the complex plane has
advantages in modeling complex relations. Besides, the N3 regu-
larization and reciprocal learning in QuatE or the type constraints
in QuatE also play an important role in QuatE’s success. Another
eye-catching method TuckER takes account of the binary tensor
representation of KGs, which outperforms almost all linear TF
models along with their relevant extension versions on all metrics

in WN18. TuckER consistently obtains better results than those

13
lightweight models ComplEx and SimplE that are famous for
simplicity and fewer parameters equipment, which is because the
TuckER allows knowledge sharing between relations through the
core tensor so that it supports multi-task learning. In comparison,
the same multi-task learning benefited ‘ComplEx-N3’ [50] forces
parameter sharing between relations by ranking regularization
of the embedding matrices to encourage a low-rank factoriza-
tion, which uses the highly non-standard setting de = dr =
2000 to generate a large number of parameters compared with
TuckER, resulting slightly lower grades than TuckER. Addition-
ally, both QuatE and TuckER also achieve remarkable results on
FB15K, especially QuatE on Hist@1, outperforms state-of-the-art
models while the second-best results scatter amongst TuckER
and ‘ComplEx-NNE+AER’. Unlike the constraints-used methods
that target applying prior beliefs to shrink the solution space,
QuatE achieves high grades relying on effectively capturing the
symmetry, antisymmetry, and inversion relation patterns, which
take a large portion in both WN18 and FB15K. On FB15K, TuckER
obtains lackluster performance across MRR and Hits@10 metrics
but excesses on the toughest Hits@1 metric.
(4) Considering hyper-parameters setting: It is notable that
n FB15K, the Ensemble DistMult also performs high results
cross both MRR and Hits@10, this is because it further improves
istMult only with proper hyper-parameters settings. This work
elps us to solve the doubt: whether an algorithm was achieved
ue to a better model/algorithm or just by a more extensive
yper-parameter search. On the other hand, the good results of
istMult reported in Ensemble DistMult also because of using a
arge negative sampling size (i.e., 1000, 2000).

. Further Performance Verification:
We have analyzed the effects of many factors on performance,

specially the effectiveness of constraints or regularization tech-
iques. To further evaluate the efficacy, we select the experimen-
al results evaluated on WN18RR and FB15K-237 for illustration.
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Fig. 9. MRR, Hits@10 of TF methods on WN18RR and FB15K-237. ‘‘*’’, ‘‘**’’, ‘‘#’’
and ‘‘⋇’’ respectively indicate results from [37,50–52]. ‘‘S’’, ‘‘R’’ are Standard
earning and Reciprocal learning, respectively.

e naturally plot experimental data on WN18RR and FB15K-237
atasets as Fig. 9, from which we can easily discover that both
ComplEx-N3’ and QuatE perform excellently in all metrics, the
bservation demonstrates the two models own great generality
nd scalability. Besides, the success of QuatE also enlightens us to
xplore the potential cooperation mode about useful techniques,
uch as N3 regularization, reciprocal learning, non-negativity con-
traints (NNE), and approximate entailment constraints (AER).

3.1.1.6. Discussion about TF models. Based on the above detailed
introduction and a series of comparison and analysis on ex-
perimental results of these mentioned Tensor Factorization (TF)
models, we further make some conclusive discussions:
1. Regularization and Constraints. Generally speaking, either
imposing proper regularization or constraints on linear tensor
factorization models is beneficial for KGC.
2. High-dimensional Spaces Modeling. Using rotation or other
operations to model entities and relationships in
high-dimensional spaces (such as QuatE and TuckER) with higher
degrees of freedom may be a good attempt and a nice choice for
further exploration on KGC.
3. Multi-task Learning. TuckER not only achieves better results
than those of other linear models but also better than the results
of many complex algorithms belonging to other categories, such
as deep neural network models and reinforcement learning used
architectures, e.g. ConvE [33] and MINERVA [63]. Still, since the
good achievements on TuckER along with ‘ComplEx-N3’, we can
deduce that although they are different in specific method details,
they all enjoy the great benefit of multi-task learning.
14
We also conclude from TuckER that the simple linear models
have valuable expressive power and are still worth to be served
as a baseline before moving onto more elaborate models. Overall,
we can see that the linear TF methods still have potential to be
further improved by appropriate constraints, regularization, and
parameter settings.
4. Potential Threatens. However, when exploring new improved
methods, we should pay attention to the potential threatens. For
example, N3 normalization will require larger embedded dimen-
sions, and the number of Tucker parameters will increase linearly
with the number of entities or relations in KGs, so that the
scalability and economy of the algorithm should to be considered.

3.1.2. Neural network models
We will give a detailed introduction about Neural Network

models on KGC study. A summary table for exhibiting the general
features of introduced neural network KGC methods can be found
in Table 6.

In recent years, distributed representations that map discrete
language units into continuous vector space have gained signifi-
cant popularity along with the development of neural networks
[64,73–75]. However, human-like reasoning remains as an ex-
tremely challenging problem partially because it requires the
effective encoding of world knowledge using powerful models
[64]. At the same time, it has been found that neural networks
can intelligently capture the semantic features of entities and re-
lations and reasonably model the semantic relationships between
discrete entities, which can help learn more accurate embeddings
of KGs. Meanwhile, more and more complex and effective deep
neural network structures have been developed so far, leading to
a large amount of studies that apply these novel neural network
frameworks to KGC field which obtained successful KGC results.
We call this category of KGC approaches as Neural Network-
based KGC Models in our summary, it also can be referred as the
non-linear models in other literatures because the nonlinear func-
tion in neural network structures, e.g., softmax function, sigmoid
activation function, etc.

3.1.2.1. Traditional neural network-based KGC models. Neural Ten-
sor Networks (NTN) [14] The primitive NTN averages word
vectors in entity name to generate the entity vector, so that
entities with similar names can share the text information. NTN
can explicitly reason relations between two entity vectors in KGs.
In NTN, the standard linear neural network layer is replaced by a
bilinear tensor layer, which is used to directly associate two entity
vectors in multiple dimensions and calculate a score to represent
the possibility of two entities vh, vt having a certain relation r:

g(h, r, t) = uT f (vT
hW
[1:k]
r vt + Vr [vh, vt ]

T
+ br )

where f = tanh() is a standard nonlinearity activation function,
and W [1:k]r ∈ Rd×d×k, Vr ∈ Rk×2d, br ∈ Rk are parameter tensors,
the bilinear tensor product vT

hW
[1:k]
r vt results in a vector ve ∈ Rk.

Multi Layer Perceptron (MLP) [9] is a simplified version of NTN,
it serves a multi-source Web-scale probabilistic knowledge base:
Knowledge Vault built by [9], which is much bigger than other
existing automatically constructed KGs. To extract reliable facts
from the Web, MLP replaces the NTN’s interaction function with
a standard multi-layer perceptron.

Neural Association Model (NAM) [64] possesses multi-layer non-
linear activations in its deep neural nets, the objective of this
spacial framework is detecting association conditional proba-
bilities among any two possible facts. NAM can be applied to
several probabilistic reasoning tasks such as triple classification,
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Table 6
Summarization and comparison of recent popular Neural Network models for KGC.
Model Technique Score Function Loss functiona Notation Datasets

Traditional neural network models:

NTN [14] Bilinear tensor layer g(h, r, t) = uT f (p1 + p2 + br ),
p1 = vT

hW
[1:k]
r vt , p2 = Vr [vh, vt ]

T
max Lmarg W [1:k]r ∈ Rd×d×k ,

Vr ∈ Rk×2d

f = tanh()

WordNet,
Freebase

MLP [9] Improves NTN;
Standard Multi-layer Perceptron

s(h, r, t) = wT f (p1 + p2 + p3),
p1 = M1vh, p2 = M2vr , p3 = M3vt

– vh, vr , vt ∈ Rd,

Mi ∈ Rd×d,

w ∈ Rd,

f = tanh()

KV

NAM [64] Multi-layer nonlinear activations;
probabilistic reasoning

s(h, r, t) = g(vT
t u
{L})

u{l} = f (W {l}u{l−1} + b{l})
u{0} = [vh, vr ]

Lll vh, vt , vr ∈ Rd,

g = sigmoid(),
f = ReLU()

WN11,
FB13

SENN [65] Embedding shared fully
connected neural network;
adaptively weighted
loss mechanism

s(h, t) = vrAT
R , s(r, t) = vhAT

E , s(h, r) = vtAT
E ,

vr = f (f (...f ([h; t]Wr,1 + br,1)...))Wr,n + br,n
vh = f (f (...f ([r; t]Wh,1 + bh,1)...))Wh,n + bh,n
vt = f (f (...f ([h; r]Wt,1 + bt,1)...))Wt,n + bt,n

Joint adaptively
weighted loss

vh, vt , vr ∈ Rd,

AE ∈ R|E|×d,
AR ∈ R|R|×d
f = ReLU()

WN18,
FB15K

ParamE [66] MLP; CNN; gate structure;
embed relations as NN parameters

s(h, r, t) = ((fnn(vh; vr ))W + b)vt
vr = Paramfnn

LBCE vh, vt , vr ∈ Rd,

W ∈ Rd×n, b ∈ Rd,

g = sigmoid(),
f = ReLU()

FB15k-237,
WN18RR

CNN-based KGC models:

ConvE [33] Multi-layer 2D CNN;
1-N scoring programs

s(h, r, t) = f (vec(f (concat(v̂h, v̂r ) ∗Ω))W ) · vt
b LBCE vh, vt ∈ Rd ,

v̂h, v̂r ∈ Rdw×dh ;
vr ∈ Rd′ ,

d = dwdh;
f = ReLU();
Ω : filter sets

WN18,
FB15k,
YAGO3-10,
Countries,
FB15k-237

InteractE
[67]

Feature Permutation;
Checkered Reshaping;
Circular Convolution

s(h, r, t) = g(vec(f (φ(Pk) ◦ w))W )vt
c

Pi = [(v1
h , v

1
r ); ...; (v

i
h, v

i
r )]

LBCE vh, vt , vr ∈ Rd ,
d = dwdh;
f = ReLU(),
g = sigmoid();
w: a filter

FB15K-237,
WN18RR,
YAGO3-10

ConvKB [68] 1D CNN;
Transitional characteristic;
L2 regularization

s(h, r, t) = concat(g([vh, vr , vt ] ∗Ω)) ·W b Lnll vh, vt , vr ∈ Rd

g = ReLU(),
Ω : filter sets;

WN18RR,
FB15k-237

CapsE [69] ConvKB;
capsules networks

s(h, r, t) = ∥cap(g([vh, vr , vt ] ∗Ω))∥b Lnll vh, vr , vt ∈ Rd
;

g = ReLU();
Ω : filter sets;
cap() : Capsule-
Network

WN18RR,
FB15k-237

GCN-based KGC Models:

R-GCN [70] Basis decomposition;
block-diagonal-decomposition;
end-to-end framework:
encoder: R-GCN,
decoder: DistMult

s(h, r, t) = vT
hWrvt LBCE vh, vt ∈ Rd

;

Wr ∈ Rd×d
WN18RR,
FB15k,
FB15k-237

SACN [71] End-to-end framework:
encoder: WGCN,
decoder: Conv-TransE

s(h, r, t) = f (vec(M(vh, vr ))W )vt – f = ReLU();
W ∈ RCd×d

;

M(vh, vr ) ∈ RC×d
;

C: kernels number

FB15k-237,
WN18RR,
FB15k-237
-Attr

COMPGCN
[72]

Entity-relation-
composition operators;
end-to-end framework:
encoder: COMPGCN,
decoder: ConvE, DistMult, etc.

sConvE , sDistMult , etc. – – FB15k-237,
WN18RR

(continued on next page)
recognizing textual entailment, especially responds well for com-
monsense reasoning.

Shared Embedding based Neural Network (SENN) [65] explicitly
differentiates the prediction tasks of head-entities, relations, and
tail-entities by use of three respective substructures with fully-
connected neural networks in an embedding sharing manner.
Then the prediction-specific scores gained from substructures are
employed to estimate the possibility of predictions. An adaptively
weighted loss mechanism enables SENN to be more efficient in
15
dealing with diverse prediction tasks and various mapping styles
during the training process.

ParamE [66] is an expressive and translational KGC model which
regards neural network parameters as relation embeddings, while
the head entity embeddings and tail entity embeddings are re-
garded as the input and output of this neural network respec-
tively. To confirm whether ParamE is a general framework for dif-
ferent NN architectures, this paper designs three different NN ar-
chitectures to implement ParamE: multi-layer perceptrons (MLP),
convolution layers, and gate structure layers, called ParamE-MLP,
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Table 6 (continued).
Model Technique Score Function Loss functiona Notation Datasets

GAN-based KGC Models:

KBGAN [28] Discriminator+generator;
negative sampling;
reinforcement learning

stransd Lmarg – FB15k-237,
WN18,
WN18RR

IGAN [31] Discriminator+generator;
negative sampling;
reinforcement learning;
non-zero loss

strans or ssemd Lmarg – FB15K,
FB13,
WN11,
WN18

KSGAN [29] Discriminator + generator +
selector;
negative sampling;
reinforcement learning;
non-zero loss

ssemd Lmarg – FB15k-237,
WN18,
WN18RR

aLll (Lnll), Lmarg and LBCE are (negative) log likely-hood loss, margin-based ranking loss and binary cross entropy loss respectively.
b ‘∗’ means a convolution operator.
c ‘◦’ means depth-wise circular convolution.
d ‘strans ’ and ‘ssem ’ are respective the score function of translation models and semantic matching models.
Fig. 10. The summarized frameworks of several CNN-based KGC models.
Source: Figures are extracted from [33,67–69].
aramE-CNN, ParamE-Gate. Significantly, ParamE embeds the en-
ity and relation representations in feature space and parameter
pace respectively, this makes entities and relations be mapped
nto two different spaces as expected.

.1.2.2. Convolutional Neural Network (CNN)-based KGC models.
e summarize some CNN-based KGC methods and draw a re-

ated figure (Fig. 10) for exhibiting the whole architecture of
hem, from which we can clearly know the learning procedure
f these models.

onvE [33] describes a multi-layer 2D convolutional network
model for LP task, which is the first attempt that uses 2D convo-
lutions over graph embeddings to explore more valuable feature
interactions. ConvE defines its score function by a convolution
over 2D shaped embeddings as:

s(h, r, t) = f (vec(f ([v̄h; v̄r ] ∗ ω))W )vt

where the relation parameter vr ∈ Rk, v̄h and v̄r represent the 2D
reshaping of vh and vt respectively, which conform to: both the
v̄h, v̄r ∈ Rkw×kh when vh, vr ∈ Rk, where k = kwkh in which the
kh, kw denotes the width and height of the reshaped 2D matrix.
The vec() means the vectorization operation, while f () indicates
16
the basic nonlinear transformation function, rectified linear units,
for faster training [76]. ConvE owns much fewer parameters but
is significantly efficient when modeling high-scale KGs with high
degree node numbers. This work also points out the test set leak-
age issue of WN18 and FB15k datasets, performing a comparative
experiment on their robust variants: WN18RR and FB15K-237.

InteractE [67] further advances ConvE by increasing the captured
interactions to heighten LP’s performance. InteractE chooses a
novel input style in a multiple permutation manner and re-
places simple feature reshaping of ConvE with the checked re-
shaping. Additionally, its special circular convolution structure is
performed in a depth-wise manner.

ConvKB [68] is proposed after ConvE—the main difference be-
tween ConvKB and ConvE is that ConvKB uses 1D convolution
expecting to extract global relations over the same dimensional
entries of an input triple matrix, which indicated that ConvKB
concerns at the transitional characteristics of triples. According to
the evaluation on two benchmark datasets: WN18RR and FB15k-
237, ConvKB performs better grades compared with ConvE and
some other past models, which may be due to the efficient CNN
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tructure as well as the design for extracting the global rela-
ion information so that ConvKB will not ignore the transitional
haracteristics of triples in KGs.

apsE After ConvKB, Nguyen et al. [69] next present CapsE to
odel triples by employing the capsule network [77], a network
hose original intention is capturing entities in images. It is
he first attempt at applying a capsule network for KGC. The
eneral framework of CapsE is shown in Fig. 10(d), from which
e can see after feeding to a convolution layer with multiple

ilters sets Ω as ConvKB dose, the 3-column triple matrix then is
transformed into different feature maps, and these feature maps
are later reconstructed by two capsule layers. A routing algorithm
extended from Sabour et al. [77] guides the routing process be-
tween these two capsule layers. To that end, a continuous vector
was produced whose length can be used to compute the score
function of the triple:

s(h, r, t) = ∥capsnet(g([vh, vr , vt ] ∗Ω))∥

here capsnet and ∗ mean the capsule network operator and
onvolution operation respectively. Experimental results confirm
hat the CapsE model performs better than ConvKB [68] on
N18RR and FB15k-237.

.1.2.3. Graph Convolution Network (GCN)-based KGC
odels. Graph Convolution Network (GCN) [78] was introduced
s a generalization of Convolutional Neural Networks (CNNs),1
hich are a popular neural network architecture defined on
graph structure [70,80,82]. Recently, lots of researchers have
mployed GCNs to predict missing facts in KGs.

-GCN [70] is presented as an extension of GCNs that oper-
te on local graph neighborhoods to accomplish KGC tasks. R-
CN uses relation-specific transformations different from regular
CNs as the encoder side. For the LP task, the DisMult model
as chosen to be the decoder to perform a computation of
n edge’s score. To avoid over-fitting on sparse relations and
assive growth of model parameters, this work utilizes block-
iagonal-decomposition methods to regularize the weights of
-GCN layers. R-GCN can act as a competitive, end-to-end train-
ble graph-based encoder (just like SACN [71] shows), i.e., in
P task, the R-GCN model with DistMult factorization as the
ecoding component outperformed direct optimization of the
actorization model and achieved competitive results on standard
P benchmarks.

Structure-Aware Convolutional Network (SACN) [71] is an end-
o-end model, where the encoder uses a stack of multiple W-GCN
Weighted GCN) layers to learn information from both graph
tructure and graph nodes’ attributes, the W-GCN framework
ddresses the over-parameterization shortcoming of GCNs by
ssigning a learnable relational specific scalar weight to each
elation and multiplies an incoming ‘‘message’’ by this weight
uring GCN aggregation. The decoder Conv-TransE is modified
ased on ConvE but abolishes the reshape process of ConvE, and
imultaneously keeps the translational property among triples. In
ummary, the SACN framework efficiently combines the advan-
ages of ConvE and GCN, thus obtain a better performance than
he original ConvE model when experimenting on the benchmark
atasets FB15k-237, WN18RR.

COMPGCN [72] Although R-GCN and W-GCN show performance
ains on KGC task, they are limited to embedding only the entities

1 Whereas CNNs require regular structure data, such as images or sequences,
CNs allow for irregular graph-structured data [79]. GCNs can learn to extract
eatures from the given node (entity) representations and then combine these
eatures together to construct highly expressive entity vectors, which can further
e used in a wide variety of graph-related tasks, such as graph classification [80]
nd generation [81].
 t
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of the graph. On this basis, COMPGCN systematically leverages
entity-relation composition operations from KGE techniques to
jointly embed entities and relations in a graph. Firstly, COMPGCN
alleviates the over-parameterization problem by performing KGE
composition (φ(u, r)) of a neighboring node u with respect to
ts relation r , to substitute the original neighbor parameter vu
n the GCNs, therefore COMPGCN is relation-aware. Additionally,
o ensure that COMPGCN scales with the increasing number of
elations, COMPGCN shares relation embeddings across layers
nd uses basis decomposition based on the basis formulations
roposed in R-GCN. Different from R-GCN which defines a sep-
rate set of basis matrices for each GCN layer, COMPGCN defines
asis vectors and only for the first GCN layer, while the later
ayers share the relations through the relation embedding trans-
ormations performed by a learnable transformation matrix. This
akes COMPGCN more parameter efficient than R-GCN.
Recently more and more novel effective GCN methods are pro-

osed to conduct the graph analytical tasks. To efficiently exploit
he structural properties of relational graphs, some recent works
ry to extend multi-layer GCNs to specific tasks for obtaining
roper graph representation. For example, Bi-CLKT [83] and JKT
84], which are both knowledge tracing methods [85], apply two-
ayer GCN structure to encode node-level and global-level repre-
entations for relational subgraphs exercise-to-exercise (E2E) and
oncept-to-concept (C2C), respectively. The utilization of two-
ayer GCN can effectively learn the original structural information
rom multidimensional relationship subgraphs. Besides, ie-HGCN
86] try to learn interpretable and efficient task-specific object
epresentations by using multiple layers of heterogeneous graph
onvolution on the Heterogeneous Information Network (HIN)
87]. Based on these works, a possible direction of future research
s to explore the multi-layer GCN to efficiently capture different
evels of structural information of KGs for the KGC task.

.1.2.4. Generative adversarial network (GAN)-based KGC models.
enerative adversarial network (GAN) [88] is one of the most
romising methods for unsupervised learning on complex dis-
ribution in recent years, whose intention is originally proposed
or generating samples in a continuous space such as images.
AN usually consists of at least two modules: a generative module
nd a discriminative module, the former accepts a noise input
nd outputs an image while the latter is a classifier that clas-
ifies images as ‘‘true’’ (from the ground truth set) or ‘‘fake’’
generated by the generator), these two parts train and learn
ogether in a confrontational way. However, it is not possible to
se the original version of GANs for generating discrete samples
ike natural language sentences or knowledge graph triples since
radients from propagation back to the generator are prevented
y the discrete sampling step [28] until SEQGAN [89] firstly
ives successful solutions to this problem by using reinforcement
earning — it trains the generator using policy gradient and other
ricks. Likewise, there have been arisen lots of KGC works that
ncorporated the GAN framework in knowledge representation
earning. Table 7 shows the general information about the GAN-
ased negative sampling methods. Intuitively, we place Fig. 11 to
eveal the frame structure of GAN-based models.

BGAN [28] aims to employ adversarial learning to generate high-
uality negative training samples and replace formerly used uni-
orm sampling to improve Knowledge Graph Embedding (KG em-
edding). As Fig. 11(a) shows, KBGAN takes KG embedding mod-
ls that are probability-based and have a log-loss function as the
enerator to supply better quality negative examples, while the
iscriminator uses distance-based, margin-loss KG embedding
odels to generate the final KG embeddings. More specifically,

t expects the generator to generate negative triples (h′, R, t ′)
′ ′
hat obey the probability distribution of pG(h , r, t |h, r, t), and
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Table 7
Characteristic of several GAN-based negative sampling technologies for KGC.
Models KBGAN [21] IGAN [31] KSGAN [29]

Modules Generator, discriminator Generator, discriminator Generator, discriminator, knowledge selector

Generator Semantic matching models
with softmax probabilistic models

Neural network Translational distance models
with softmax probabilistic models

Discriminator Translational distance models KGE models Semantic matching models

Generator reward
function

RG =
∑

(h,r,t)∈T
E(h′,r,t ′)∼pG [R] J(θ ) = Ee∼p(e|·;θ )[R] RG =

∑
(h,r,t)∈T

∑
(h′,r,t ′)∈Ts′

E(h′,r,t ′)∼pG [R]

Discriminator reward
function

R = −fD(h′, r, t ′)− b(h, r, t) R = tanh(fr (h, t)− fr (h′, t ′)+ γ ) R = fD(h′, r, t ′)

Probability distribution
of sampling

pG(h′, r, t ′|h, r, t) =
exp sG(h′,r,t ′)∑
exp sG(h∗,r,t∗)

p(e|(h, r, t), z; θ ) = z· (e|t, r; θ )+
(1− z)· (e|h, r−1; θ )

pG(h′, r, t ′|h, r, t) =
exp fG(h′,r,t ′)∑
exp fG(h∗,r,t∗)

Selector – – fsel(h′, r, t ′) = max
(h′,r,t ′)∈Ts′

(fD(h′, r, t ′))
(
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Fig. 11. Several GAN-based KGC methods about negative sampling.
Source: Figures are adapted from [28,29,31]

assumes that the score function of the discriminator is sD(h, r, t),
then the objective of the discriminator is to minimize the margin
loss function as follows:

LD =
∑

(h,r,t)∈T

[sD(h, r, t)− sD(h′, r, t ′)+ γ ]+,

(h′, r, t ′) ∼ pG(h′, r, t ′|h, r, t)

while the objective function of the generator is defined as a
negative distance expectation:

RG =
∑

E[−sD(h′, r, t ′)], (h′, r, t ′) ∼ pG(h′, r, t ′|h, r, t)

(h,r,t)∈T

18
Note that those negative samples are created by the generator
and its probability distribution pG is modeled with:

pG(h′, r, t ′|h, r, t) =
exp sG(h′, r, t ′)∑
exp sG(h∗, r, t∗)

,

h∗, r, t∗) ∈ Neg(h, r, t)

here the sG(h′, r, t ′) means the generator’s score function and
he candidate negative triples set are:

eg(h, r, t) ⊂ {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t ′)|t ′ ∈ E}

o enable backpropagation of errors in the generator, KBGAN re-
ies on policy gradient, a variance-reduction REINFORCE method
ith a one-step reinforcement learning setting, to seamlessly

ntegrate the generator module and discriminator module. On the
ne hand, KBGAN enhances the KG embedding considering adver-
arial learning, on the other hand, this framework is independent
f specific embedding models so that it can be applied to a wide
ange of KG embedding models and without the need for external
onstraints.

GAN-based framework (IGAN) [31] is also an answer to negative
ampling in the KGC procedure, which can obtain quality negative
amples to provide non-zero loss situation for discriminator, thus
t makes full use of discriminator to operate with a margin-
ased ranking loss. Different from [28], IGAN obeys a probability
istribution of the entity set E as:

(e|(h, r, t), z; θ ) = z · p(e|t, r; θ )+ (1− z) · p(e|h, r−1; θ )

here the binary flag z ∈ {1, 0} reflects whether to replace head
entity or tail entity. By the way, the GAN-based model is also
flexible with good adaptive capacity to be extended to various
KG embedding models. The general process of IGAN is shown in
Fig. 11(b).

KSGAN [29] further advances KBGAN by adopting a selective
adversarial network to generate better negative examples for
training as shown in Fig. 11(c). The proposed new knowledge
selective adversarial network adds a new knowledge selector
module to the previous adversarial network structure to en-
hance the performance of discriminator and generator in KBGAN,
purposely picks out corrupted triples are of high quality from
generator who has the high discriminator score:

ssel(h′, r, t ′) = max
(h′,r,t ′)∈Ts′

(sD(h′, r, t ′))

where the picked corrupted triples compose a selection set Ts′ ,
thus the selector selects negative triples with correct semantic
information or close distance which can help the discriminator
to avoid zero loss during the training process.
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Table 8
Published results of Neural Network-based KGC methods. Best results are in bold.
Model WN18RR FB15K-237

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

ConvE [33]b 4464 0.456 0.419 0.470 0.531 245 0.312 0.225 0.341 0.497
ConvKB [68]a 3433 0.249 – – 0.524 309 0.243 – – 0.421
CapsE [69]a 718 0.415 – – 0.559 403 0.150 – – 0.356
InteractE [67] 5202 0.463 0.430 – 0.528 172 0.354 0.263 – 0.535
R-GCN [70]b 6700 0.123 0.080 0.137 0.207 600 0.164 0.100 0.181 0.300
SACN [71] – 0.470 0.430 0.480 0.540 – 0.350 0.260 0.390 0.540
Conv-TransE [71] – 0.460 0.430 0.470 0.520 – 0.330 0.240 0.370 0.510
SACN with FB15k-237-Attr [71] – – – – – – 0.360 0.270 0.400 0.550
COMPGCN [72] 3533 0.479 0.443 0.494 0.546 197 0.355 0.264 0.390 0.535
ParamE-MLP [66] – 0.407 0.384 0.429 0.445 – 0.314 0.240 0.339 0.459
ParamE-CNN [66] – 0.461 0.434 0.472 0.513 – 0.393 0.304 0.426 0.576
ParamE-Gate [66] – 0.489 0.462 0.506 0.538 – 0.399 0.310 0.438 0.573
KBGAN [28] – 0.215 – – 0.469 – 0.277 – – 0.458
KSGAN [29] – 0.220 – – 0.479 – 0.280 – – 0.465

aResulting numbers are re-evaluated by [90].
bResulting numbers are reported by [91], and others are taken from the original papers.
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3.1.2.5. Performance analysis about neural network-based KGC mod-
els. We report the published results of Neural Network-based
KGC approaches in Table 8 and make a simple comparison be-
tween them. From Table 8 we have the following findings:
1. Among the first four CNN-based KGC models, CapsE performs
well on the WN18RR because (1) in CapsE, the length and orien-
tation of each capsule in the first layer can help to model the im-
portant entries in the corresponding dimension, so that CapsE is
good at handling much sparser datasets, like WN18RR. (2) CapsE
uses pre-trained Glove [92] word embeddings for initialization
and uses additional information.
2. R-GCN, SACN and its variants, and COMPGCN are all the ex-
tensions of GCNs, both SACN and COMPGCN make use of the
weighted GCN to aggregate the neighbor information by the
learnable weights, therefore they all perform relatively consistent
excellent results on all datasets. Besides, ‘‘SACN with FB15k-
237-Attr’’ uses additional attribute information in the FB15k-237
dataset, which further results in higher results on the FB15k-237.
3. We observe that the ‘‘ParamE-Gate’’ basically outperforms all
the other neural network models, obviously reflects in the MRR,
Hits@1, and Hits@3 metrics on both datasets. Note that ConvE and
ParamE-CNN have similar network architectures, but ParamE-
CNN achieves a substantial improvement over ConvE. ParamE-
CNN takes parameters in itself as relation embeddings, which
can capture the intrinsic property and is more reasonable [66].
The performance comparison among ‘‘ParamE-MLP’’, ‘‘ParamE-
CNN’’ and ‘‘ParamE-Gate’’ shows that MLP has a weaker modeling
ability than convolution layers and the gate structure. More-
over, although convolution layers are good at extracting fea-
tures, ‘‘ParamE-CNN’’ performs worse than ‘‘ParamE-Gate’’ be-
cause the gate structure can optionally let some useful informa-
tion through. In addition, although the differences between the
FB15k-237 dataset and the WN18RR dataset let some models get
un-balanced performance for the two datasets, ParamE-Gate can
work well in both datasets.

3.1.2.6. Discussion on Neural Network Models. Also be known as
on linear models, the neural network KGC models relying on
eural network structure (along with the non-linear Activation
unction, such as sigmoid function, tanh function, Rectified Linear
nit (ReLU) function etc., this situation can be seen from Table 6)
o learn deep potential features.

Many literatures on KGE use neural networks to represent
Gs in low-dimensional continuous space [11,14,15,64]. It can
ffectively extract hidden latent features needed for knowledge
easoning with strong accuracy, high reasoning scalability, and
fficiency. However, neural network KGC models rely on a large
19
number of training data, which is a kind of data-driven works, there-
ore they usually do not perform well when dealing with sparse
G data because of its great dependence on data. Moreover, these
inds of models have some other shortcomings, such as low
nterpretation, too many parameters, and poor performance in
andling sparse KGs.
With the diversity research of the KGC method, more addi-

ional information is used in the completion work. It should be
oted that there are several models we previously discussed mak-
ng use of some additional information besides structural infor-
ation. For example, the typical neural network KGC model SACN

71] applies a weighted graph convolutional network (WGCN)
s its encoder, which utilizes node attributes and relation types
nformation.

The widely known CNN-based KGC models have effective per-
ormance that benefit from the strong expressiveness of neural
etworks. Typically, the ConvE and ConvKB tend to be applied
s the decoder model in lots of KGC methods (such as [72,91])
o conduct KGC. So also, there are other various neural network
amilies that have been widely applied working with different
dditional information for conducting KGC. Take the recurrent
eural network (RNN) as an example, because of its superior
bility to learn sequence features, RNN often is used in the re-
ational path-based KGC methods and also be exploited to deal
ith long text information (e.g., entity description text) for KGC.
imilarly, CNN can be regarded as a feature extractor for textual
eature modeling in KGC procedure substituting RNN structure
e.g., [93–95]). Zia et al. [96] is also an example that involves
AN structure combined with path information, which will be
ntroduced in detail in the subsequent additional information
ased KGC methods.

.2. Translation models

As a family of methods concentrating on distributed represen-
ation learning for KGs, translation models are both straightfor-
ward and have satisfied performance on KGC, they are promising
to encode entities as low dimensional embeddings and relations
between entities as translation vectors. This kind of model usually
defines a relation-dependent translation scoring function to mea-
sure the probability of a triple through the distance metric. In
the ordinary sense, the distance score reflects the correctness of
a triple (h, r, t), and more generally, it collocates with a margin-
based ranking loss for learning the translation relation between
entities. We also list a brief table about the basic characteristics
of introduced translation models in Table 9.
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Table 9
Summarization and comparison about Translation models for KGC.
Model Highlights Score Function Notion Difination Loss Objectivea Datasetsb

TransE Extensions:

TransE
[11]

Precursory
translation method

s(h, r, t) = ∥vh + vr − vt∥ vh, vr , vr ∈ Rd Lmarg LP: WN, FB15K,
FB1M

TransH
[15]

Performs
translation in
relation-specific
hyperplane

s(h, r, t) = ∥vh⊥ + vr − vt⊥∥,
vh⊥ = vh − wT

r vhwr ,
vt⊥ = vt − wT

r vtwr

vh, vr , vr ∈ Rd;
wr ∈ Rd

Lmarg LP: WN18, FB15k;
TC: WN11, FB13,
FB15K

TransR
[12]

Converts entity
space to relation
space
relational space
projection

s(h, r, t) = ∥Mrvh + vr −Mrvt∥ vh, vt ∈ Rd, vr ∈

Rk;
Mr ∈ Rk×d

Lmarg LP: WN18, FB15k;
TC: WN11, FB13,
FB15K

TransD
[97]

Different relational
mapping
matrix to head
and tail entity;
vector
multiplication

s(h, r, t) = ∥Mrhvh + vr −Mrtvt∥

Mrh = vrpv
T
hp + Ik×d ,

Mrh = vrpv
T
hp + Ik×d

vh, vt , vhp , vtp ∈

Rd
;

vr , vrp ∈ Rk;
Mrh,Mrt ∈ Rk×d

Lmarg LP: WN18, FB15k;
TC: WN11, FB13,
FB15k

lppTransD
[98]

Role-specific
projection

s(h, r, t) = ∥M ′rhvh + vr −M ′rtvt∥

M ′rh = vrphv
T
hp + Ik×d ,

M ′rt = vrpt v
T
tp + Ik×d

vh, vt , vhp , vtp ∈

Rd
;

vr , vrph , vrpt ∈ Rk;
Mrh,Mrt ∈ Rk×d

Lmarg LP: WN18, FB15K;
TC: WN11, FB13,
FB15K

TransF
[99]

Light weight and
robust;
explicitly model
basis subspaces
of projection
matrices

s(h, r, t) = ∥Mrhvh + vr −Mrtvt∥,

Mrh =
f∑

i=1
α
(i)
r U (i)

+ I ,

Mrt =
f∑

i=1
β

(i)
r V (i)

+ I

vh, vr ∈ Rd, vr ∈

Rk;
U (i), V (i)

∈ Rk×d

Mrh,Mrh ∈ Rk×d

Lmarg LP: FB15k, WN18;
TC: FB15k-237,
WN18RR

STransE
[100]

SE+TransE s(h, r, t) = ∥Wr,1vh + vr −Wr,2vt∥ vh, vr , vr ∈ Rd ,
Wr,1,Wr,2 ∈ Rd×d

Lmarg LP: WN18, FB15k

Trans-FT
[101]

Flexible translation
modeling

s(h, r, t) =
(vhr + vr )T vtr + vT

hr (vtr − vr ),
vhr = Mrvh, vtr = Mrvt

vh, vt , vhr , vtr ∈

Rd
;

vr , vrp ∈ Rk,

Mr ∈ Rk×d

Lmarg LP: WN18,FB15k;
TC: WN11, FB13,
FB15K

Translation Models Using Attention Mechanism:

TransM
[102]

Relational
mapping;
property-specific
weight

s(h, r, t) = wr∥vh + vr − vt∥

wr =
1

log(hr ptr+tr phr )

vh, vr , vt ∈ Rd,

wr ∈ R
hrptr : heads per
tail,
trphr : tails per
head

Lmarg LP: WN18, FB15K

ITransF
[103]

Sparse attention
mechanism;
relation concepts
sharing

s(h, r, t) = ∥vha tt + vr − vta tt∥

vha tt = αH
r · D · vh

vta tt = αT
r · D · vt

αX
r = SparseSoftmax(vX

r , IXr ),
X = H, T

vh, vr , vt ∈ Rd;
αX
r ∈ [0, 1]

m,

IXr ∈ {0, 1}
m,

vX
r ∈ Rm, X =

H, T ;
D ∈ Rm×d×d

Lmarg WN18 and FB15k

TransAt
[104]

Relation-related
entities categories;
relation-related
attention

s(h, r, t) = Pr (h)+ vr − Pr (t)
Pr (h)c = Pr (σ (rh)vh)
Pr (t)c = Pr (σ (rt )vt )
Pr (x) = ar ∗ vx, x = h, t

vh, vr , vt ∈ Rd;
ar ∈ {0, 1}d

Lmarg LP: WN18, FB15k;
TC: WN11, FB13

TransGate
[105]

Gate structure;
shared
discriminate
mechanism

s(h, r, t) = ∥vhr + vr − vtr ∥

xr = x⊙ σ (z),
z(x) = Wx ⊙ x+Wrx ⊙ r + bx
x = h, t

vh, vr , vt ∈ Rd Lmarg LP: WN18RR,
FB15K,
FB15K-237;
TC: WN11, FB13

(continued on next page)
v
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3.2.1. TransE extensions
We introduce several prominent translation KGC models in

TransE [11] family, which are frequently summarized and cited
in lots of literature. We draw a comprehensive figure exhibiting
some representative translation models (shown as Fig. 12).

TransE [11] as a pioneer translation KGC model, can balance
both effectiveness and efficiency compared to most traditional
methods. TransE projects entities and relations together into a
continuous low-dimensional vector space, where the tail-entity t
in triple (h, r, t) can be viewed as the translation operator results
20
among the head entity h and relation r , that are:

h + vr ≈ vt

and it defines its score function as:

s(h, r, t) = ∥vh + vr − vt∥l1/2

owever, the over-simplified translation assumption TransE
olds might constraint the performance when modeling com-
licated relations, which leads to a weak character that TransE
an only model pure 1 − 1 relations in KGs. To effectively learn
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[

Table 9 (continued).
Model Highlights Score Function Notion Difination Loss Objectivea Datasetsb

Modification to Loss Objection of Translation-based KGC:

TransRS
[106]

Upper limit score
function
for positive
triplets;
limit-based
scoring loss

s(h, r, t) = ∥vh + vr − vt∥

fr (h, t) ≤ γ ′
vh, vr , vt ∈ Rd Lmarg

+Llimit

LP: WN18, FB15k;
TC: WN11, FB13,
FB15K

TransESM
[107]

Trans-RS+TransE’s
score function
Soft Margin loss

s(h, r, t) = ∥vh + vr − vt∥

fr (h, t) ≤ γ1,

fr (h′, t ′) ≥ γ2 − ξ r
h,t ,

ξ r
h,t ≥ 0

vh, vr , vt ∈ Rd;
γ2 ≥ γ1 ≥ 0;
(h′, r ′, t ′) ∈ T ′ ,
(h, r, t) ∈ T

soft Lmarg A scholarly KG

Transition Models in Novel Vector Space:

TransA
[108]

Adaptive metric
approach;
elliptical surfaces
modeling

s(h, r, t) =
(|vh + vr − vt |)TWr (|vh + vr − vt |)
|x| .
= (|x1|, |x2|, . . . , |xn|),

xi = vhi + vri − vti

vh, vr , vt ∈ Rd Lmarg LP: WN18, FB15K;
TC: WN11, FB13

TorusE
[109]

TransE+Torus s(h, r, t) =
min(x,y)∈([h]+[r])×[t] ∥x− y∥

[h], [r], [t] ∈ T n

T is a torus space
Lmarg LP: WN18, FB15K

RotatE
[110]

Entire complex
space C;
self-adversarial
negative sampling

s(h, r, t) = ∥vh ◦ vr − vt∥ vh, vr , vt ∈ Cd
;

vri = C, |vri | = 1
Lns LP: FB15k, WN18,

FB15k-237,
WN18RR

aPut simply, the Lns and Lmarg are negative sampling loss and margin-based ranking loss respectively, also, LC
marg means a Confidence-aware margin-based ranking loss

111], and Llimit refers to the Limit-based Scoring Loss in [106], while the LHRS is the HRS-aware loss function in [112].
bWhen we describe the datasets, we apply the shorthand for: ‘LP’ means Link Prediction task, while ‘TC’ means Triple Classification task.
*** The vrc , v′r and vrs are respective the relation cluster embedding, relation-specific embedding and sub-relation embedding in [112].
cPr () is a projection function.
Fig. 12. TransE and its extension models. These pictures are referred to [12,15,97–99,102,110].
21
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omplex relation types and model various KG structures, a series
f enhanced translation-based KGC models continuously improve
he TransE.

ransH [15] projects the entities onto the relation-specific hyper-
plane wr (the normal vector) by h⊥ = vh −wT

r vhwr or t⊥ = vt −
T
r vtwr and then performs translation actions on this hyperplane,

so that the score function is defined as follows:

s(h, r, t) = ∥h⊥ + vr − t⊥∥22

which can model the 1− n, n− 1 even n− n relations availably.

ransR [12] considers that there are semantic differences be-
ween entities and relations so that they should be in different
emantic spaces. Moreover, different relations should constitute
ifferent semantic spaces. It converts the entity space to corre-
ponding relation space through a relational projection matrix
r ∈ Rd×k, the translation performed in relation space is:

hMr + vr ≈ vtMr

n order to better model internal complicated correlations within
iverse relation type, this work also extends TransR by incorpo-
ating the idea of piecewise linear regression to form Cluster-
ased TransR (CTransR), they introduce cluster-specific relation
ector rc for each entity pairs cluster and matrix Mr . However,
lthough TransR performs well in handling complicated relation
atterns, it involves too many additional parameters to result in
oor robustness and scalability issues for large KGs learning.

ransD [97] further advances TransR by assigning different rela-
ional mapping matrix Mrh,Mrt ∈ Rm×n to head and tail entity
respectively:

Mrh = rphT
p + Im×n

Mrt = rptTp + Im×n

h⊥ = Mrhh, t⊥ = Mrt t

he subscript p marks the projection vectors. Then it scoring a
riple (h, r, t) by defining the following function:

(h, r, t) = −∥h⊥ + r − t⊥∥22

hus each objects in KGs is equipped with two vectors. Addition-
lly, TransD replaces matrix multiplication with vector multipli-
ation which significantly increases the speed of operation.

ppTransD [98] is an extension of TransD, which accounts for
ifferent roles of head and tail entities. They indicated that logical
roperties of relations like transitivity and symmetry cannot be
epresented by using the same projection matrix for both head
nd tail entities [99]. To preserve these logical properties, the lpp-
eries ideas consider a role-specific projection that maps an entity
o a distinct vector according to its role in a triple, whether is a
ead entity or a tail entity. The concrete mapping matrices are
esigned as:
′

rh = rphhT
p + Im×n

′

rt = rpt tTp + Im×n

ransF [99] is similar to lppTransD, which also applies the same
dea to compute the projection matrices for head and tail entities
eparately. The difference between lppTransD and TransF is that
ransF mitigates the burden of relation projection by explicitly
odeling the basis subspaces of projection matrices with two
22
separate sets of basis matrices U (i), V (i), and the two factorized
projection matrices are calculated as:

Mr,h =

s∑
i=1

α(i)
r U (i)

+ I

Mr,t =

s∑
i=1

β (i)
r V (i)

+ I

Inspired by TransR, TransF is robust and lightweight enough to
deal with the large-scale KGs through easily learning multiple
relations by explicitly modeling the underlying subspace of the
relation’s specific projection matrix.

STransE [100] properly combines insights from SE [113] and
TransE [11], draws on the experience of relation-specific matrices
in SE for relation-dependent identification of both head entity
and tail entity, also follows the basic translation principle in the
TransE model.

Trans-FT [101] develops a general principle called Flexible Trans-
lation (FT), which enables it to model complex and diverse objects
in KGs unlike those previous translation models only concentrate
on strict restriction of translation among entities/relations (such
as TransE). Experiment adapts FT to existing translation models,
TransR-FT gets the best performance compared to other two
baselines (TransE-FT and TransH-FT).

3.2.2. Translation models with attention mechanism

TransM [102] is an appropriate solution to the inflexible issue
in TransE. They focus more on the diverse contribution (i.e. var-
ious relational mapping properties) of each training triple to the
final optimization target, therefore TransM decides to develop a
weighted mechanism, with which each training triple can be as-
signed a pre-calculated distinct weight according to its relational
mapping property. In other words, we can regard this weighted
operation as an attention mechanism that takes every training
example as a impact attention to tackle well with the various
mapping properties of triplets.

ITransF [103] To make full use of the shared conceptions of
relations and apply it to perform knowledge transfer effectively,
ITransF outfits with a sparse attention mechanism to discover
sharing regularities for learning the interpretable sparse attention
vectors, which fully capture the hidden associations between
relations and sharing concepts.

TransAt [104] effectively learns the translation-based embedding
using a reasonable attention mechanism, it exploits a piecewise
evaluation function which divides the KGC problem into a two-
stage process: checking whether the categories of head and tail
entities with respect to a given relation make sense firstly, and
then considering for those possible compositions, whether the
relation holds under the relation-related dimensions (attributes).
During this two-stage process, TransAt uses K-means to cluster
generating categories for generality. TransAt sets the projection
function by computing the variances between head (tail) entities
associated with relation r in the training set for each dimension,
additionally, it designs a threshold to determine whether a di-
mension should be retained. In consideration of the ORC structure
problems [114], TransAt utilizes an asymmetric operation on both
head entity and tail entity, therefore the same entities will have
different representations of head position and tail position.

TransGate [105] pays close attention to inherent relevance be-
tween relations. To learn more expressive features and reduce
parameters simultaneously, TransGate follows the thought of pa-
rameter sharing using gate structure and then integrates the
shared discriminate mechanism into its architecture to ensure
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hat the space complexity is the same as indiscriminate models.
he shared gates above-mentioned also be reconstructed with
eight vectors to avoid matrix–vector multiplication operations,

mpelling the model to be more effective and scalable.

.2.3. Modification to loss objection of translation-based KGC
Some translation models try to improve KGC by modifying the

bjective functions [106,107]. In order to facilitate the comparison
mong these improved loss programs, we can directly see Table 9,
rom which we can easily pick out them by their distinctive loss
bjectives.

ransRS [106] explores a limit-based scoring loss LS to provide
n upper limit score of a positive triple and then adds this limit-
ased scoring loss item into the original loss function as a new
oss function for optimizations. By this mean, the modified loss
bjective including two terms, a limit-based scoring loss as well
s the original margin-based ranking loss LR, that is:

RS = LR + λLS, (λ > 0)

hen applied the loss to the traditional translation baselines
uch as TransE and TransH (i.e., TransE-RS and TransH-RS), it
chieves remarkable performance improvements compared with
nitial models.

ransESM [107] not only changes the score function and loss
unction of Trans-RS into TransE’s score function with Soft Mar-
ins (Margin Ranking Loss)where soft margins allow false-negative
amples to slightly slide into the margin, mitigating the adverse
ffects of false-negative samples, but also indicates that most
xisting methods are tested on datasets such as Freebase and
ordNet, which may prevent the development of KGC technol-
gy. Therefore, they verify the TransESM and compares TransE
ith other models on the specific field datasets (faculty KG,
cademic KG), then found that TransE is better than ComplEx [43],
ransH [15] and TransR [12] on these specific field datasets.

.2.4. Transition models in novel vector space
Most of the translation distance models tend to leverage

pherical equipotential hyper-surfaces with different plausibility.
nfortunately, the over-simplified loss metric they use limits
heir ability about modeling complex relational data in KGs. As
hown in Fig. 13, on the equipotential hyper-surfaces, more near
o the center, more plausible the triple is, thus it is difficult to
orrectly identify the matched answer entities from unmatched
nes. As the common scene in KGs, complex relations (including
−to−n, n−to−1, and n−to−n relations) always require complex
mbedding topologies techniques. Although complex embedding
s an urgent challenge, the existing translation methods are not
atisfied for this task because of the inflexibility of spherical
quipotential hyper-surfaces.

ransA [108] More than modeling on a traditional spherical sur-
ace, TransA applies an adaptive and flexible metric on an el-
iptical surface for KG embedding. TransA not only represents
he complex embedding topologies induced by complex relations
ell, but also can suppress the noise from unrelated dimensions
s the TransA itself could be treated as weighting transformed
eature dimensions in Adaptive Metric Approach.

orusE [109] transforms the real vector space into a torus (a
ompact Abelian Lie group painted as Fig. 14), and keeps the same
rinciple as TransE simultaneously. TorusE is proposed to over-
ome the TransE’s regularization flaw that regularization conflicts
ith the translated-embedding principle and reduces the accu-
acy in LP task, meanwhile. A Lie group is a group that is also
finite-dimensional smooth manifold, in which the group oper-

tions of multiplication and inversion are smooth maps, while

23
Fig. 13. Visualization of TransE embedding vectors for Freebase with PCA
dimension reduction. The navy crosses are the matched tail entities for an
actor’s award nominee, while the red circles are the unmatched ones. TransE
applies Euclidean metric and spherical equipotential surfaces and making seven
mistakes as (a) shows, while TransA takes advantage of adaptive Mahalanobis
metric and elliptical equipotential surfaces, avoiding four mistakes in (b) [108].

Fig. 14. Visualization of embeddings on 2-dimensional torus obtained by TorusE.
Embeddings of the triples (A, r, A′) and (B, r, B′) are illustrated. Note that
A′] − [A] and [B′] − [B] are similar on the torus [109].

he Abelian Lie group is a special case of Lie group when the
peration of multiplication is commutative, and it satisfies all
he conditions that an embedding space should require according
o TransE’s embedding strategy above all. TorusE defines three
ypes of scoring functions fL1 , fL2 and feL2 exploiting the distance
unctions. TorusE has good performance in the LP task, in addition
o that, it has some other excellent characters, for instance, it not
nly has good computing performance but also possesses high
calability.

otatE [110] Inspired by Euler’s identity, RotatE is defined on
n entire complex space, which has much more representation
apacity than the above Lie group-based ToursE model, whereas
he latter sets its embeddings to be fixed, which can be regarded
s a special case of RotatE. RotatE can uniformly model and infer
hree relation patterns: symmetry/antisymmetry, inversion, and
omposition, and defines each relation as a rotation on the entire
omplex space. Moreover, RotatE develops a novel self-adversarial
egative sampling technique to train the model effectively.

.2.5. Performance analysis about translation models
We make a simple comparison on those translation models for

GC and report the results of them in Table 10, from which we
ave the following findings:
. From the experimental results of the TransE and its extension
odels TransH, TransR, TransD, IppTransD, TransF, STransE, and
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Table 10
Published link prediction results of translation models. Best results are in bold.
Model WN18 FB15K WN18RR FB15K-237

MR MRR Hits@10 MR MRR Hits@10 MR MRR Hits@10 MR MRR Hits@10

TransE [11] 251 – 0.892 125 – 0.471 2300a 0.243a 0.532a 323a 0.279a 0.441a

TransH [15] 303 – 0.867 87 – 0.644 – – – – – –
TransR [12] 225 – 0.920 77 – 0.687 – – – – – –
TransD [97] 212 – 0.922 91 – 0.773 – – – – – –
lppTransD [98] 270 – 0.943 78 – 0.787 – – – – – –
TransF [99] 198 0.856 0.953 62 0.564 0.823 3246 0.505 0.498 210 0.286 0.472
STransE [100] 206 0.657 0.934 69 0.543 0.797 – – – – – –
Trans-FT [101] 342 – 0.953 49 – 0.735 – – – – – –
TransM [102] 281 – 0.854 94 – 0.551 – – – – – –
ITransF [103] 223 – 0.952 77 – 0.814 – – – – – –
TransAt [104] 157 – 0.950 82 – 0.782 – – – – – –
TransRS [106] 357 – 0.945 77 – 0.750 – – – – – –
TransA [108] 392 – 0.943 74 – 0.804 – – – – – –
TorusE [109] – 0.947 0.954 – 0.733 0.832 – – – – – –
RotatE [110] 309 0.949 0.959 40 0.797 0.884 3340 0.476 0.571 177 0.388 0.533
TransGate [105] – – – 33 0.832 0.914 3420 0.409 0.510 177 0.404 0.581

aResulting numbers are reported by [91] and others are taken from the original papers.
Trans-FT, we can conclude that: (1) Based on the translation
idea of TransE, for a triple (h, r, t), it is necessary to further
consider the semantic differences between entities and relations.
(2) TransF achieves a clear and substantial improvement over
others in this series. The reason is that TransF factorizes the
relation space as a combination of multiple sub-spaces for repre-
senting different types of relations in KGs. Besides, TransF is more
robust and efficient than congeneric methods by modeling the
underlying subspace of the relation’s specific projection matrix
for explicitly learning various relations.
2. The attention-based methods TransM, ITransF, and TransAt
almost consistently outperform TransE. Specifically, ITransF per-
forms better on most of the metrics of WN18 and FB15k, while
TransM has a poor result on the sparser WN18 dataset. The
reason is that ITransF employs a sparse attention mechanism
to encourage conceptions of relations sharing across different
relations, which primarily benefit facts associated with rare re-
lations. TransAt focuses on the hierarchical structure among the
attributes in an entity, so it utilizes a two-stage discriminative
method to achieve an attention mechanism. It suggests that the
proper attention mechanism can help to fit the human cognition
of a hierarchical routine effectively.
3. Both TorusE and RotatE get good performance on the WN18
and FB15k. RotatE is good at modeling and inferring three types of
relation patterns: the symmetry pattern, the composition pattern,
and the inversion pattern, by defining each relation as a rotation
in complex vector spaces. By comparison, TorusE focuses on the
problem of regularization in TransE. Although TorusE can be
regarded as a special case of RotatE since it defines KG embed-
dings as translations on a compact Lie group, the modulus of
embeddings in TorusE are set fixed, while in RotatE is defined
on the entire complex space, which is very critical for modeling
and inferring the composition patterns. Therefore, RotatE has
much more representation capacity than TorusE, which may help
explain why RotatE gains better performance than TorusE on the
WN18 and FB15k.
4. TransGate achieves excellent performance on four datasets,
especially in the metrics of FB15k and FB15k-237. These results
show the appropriateness of sharing discriminate parameters and
the great ability of gate structure. Actually, TransGates is a better
trade-off between the complexity and the expressivity by follow-
ing the parameter sharing strategy. With the help of the shared
discriminate mechanism based on the gate structure, TransGate
can optimize embeddings and reduce parameters simultaneously.
However, TransGate has a poorer performance on the WN18RR,
24
since that WN18RR removes reverse relations and destroys the
inherent structure of WordNet, which results in low relevance
between relations and further reduces the effect of parameter
sharing [105].

3.2.6. Discussion on translation models
In summary, the translation models based on internal struc-

ture information are simple but surprisingly effective when solv-
ing the KGC problems. Additionally, the translation models only
need few parameters. At present, translation models usually are
served as the basis for extended models that exploit a wider variety
of additional information sources, which benefits from the easy-to-
use translation transformation hypothesis. Ordinarily, collaborate
transitional characteristics with additional information to con-
duct KGC is an ongoing trend. This bunch of methods take account
of other useful information instead of only utilizing the inner
structure information, based on the translation distance classic
baselines or follow the basic translation assumption thought. For
instance, OTE [115] advances RotatE in two ways: (1) leverag-
ing orthogonal transforms [116] to extend the RotatE from 2D
complex domain to high dimension space for improving mod-
eling ability, and (2) making use of the context information of
nodes. PTransE (path-based TransE) [12] and PTransD [117] are
both the path-augmented translation based models, while TransN
[31] considers the dependencies between triples and incorporates
neighbor information dynamically. On the other hand, people
begin to explore how to implement the basic translation transfor-
mation of entities and relations in a more effective and reasonable
modeling space to easily model complex types of entities and
relations and various structural information. Under this case, the
improvement and optimization of the loss function is also a
promising research direction.

4. Additional information-based KGC technologies

The research on additional information-based KGC has re-
ceived increasing attention in recent years. The techniques as sur-
veyed in Section 3 perform KGC mainly relying on the structure
information of KGs (i.e., the simple triple structure information),
of course, several methods mentioned in Section 3 also simulta-
neously utilize the additional information for KGC. For example,
KBAT [91] considers the multi-hop neighborhood information
of a given entity to capture entity and relation features, and
DrWT [45] leverages the additional Wikipedia page document of
entities outside KGs. In this section, we focus on the additional
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nformation-based KGC techniques, and make a comprehensive
nd fine-grained summarization and comparison.
We focused specifically on the incorporation of two types of

additional information, including internal side information inside
KGs and external extra information outside KGs:

• We introduce the usage of internal side information inside
KGs in Section 4.1, which consists of five subclasses: node
attributes information (in Section 4.1.1), entity-related in-
formation (in Section 4.1.2), relation-related information (in
Section 4.1.3), neighborhood information (in Section 4.1.4)
and path information (in Section 4.1.5).
• The investigations on incorporating external information

outside KGs are in Section 4.2, which involves two aspects
of contents: rule-based KGC in Section 4.2.1, and third-party
data sources-based KGC in Section 4.2.2.

4.1. Internal side information inside KGs

The inherent rich information (i.e., internal information) in-
side KGs often is used during KG learning, these non-negligible
information plays an important role in capturing useful features
of knowledge embeddings for KGC and knowledge-aware appli-
cations. In general, the common internal side information inside
KGs includes node attributes information, entity-related informa-
ion, relation-related information, neighborhood information, and
elational path information.

4.1.1. Node attributes information
Nodes in KGs usually carry rich attribute information, this

information often explains and reflects the characteristics of en-
tities. For example, the gender, age and appearance of a person are
respectively corresponding to the textual attribute, non-discrete
digital attribute, and image attribute — they are the mainstream
attribute information, which are usually exploited by cooperating
with structure information of KGs to jointly learn KG embeddings.
Although attribute information of entities is important to under-
stand the entity and may help to alleviate the inherent sparsity
and incompleteness problem that are prevalent in KGs [41], there
is still less literature concern about attribute information when
performing KGC task. We summarize KGC methods using node at-
tribute, pay close attention to the usage of the numeric attribute,
text attribute, and image attribute. The general characteristics of
these methods are compared and listed in Table 11.

4.1.1.1. Numeric atrribute information. Numeric attribute infor-
mation is a kind of available internal information for KG learning.
Many popular KGs such as Freebase, YAGO, or DBPedia main-
tain a list of non-discrete attributes for each entity. Intuitively,
these attributes such as height, price, or population count are
able to richly characterize entities in KGs. Unfortunately, many
state-of-the-art KGC models ignore this information due to the
challenging nature of dealing with non-discrete data in inherently
binary-natured KGs.

KBLRN Garcia et al. [118] firstly integrate latent, relational and
numerical features of KGs for KGC with the support of new
proposed end-to-end model KBLRN.

MTKGNN [119] is a multi-task learning approach constructed
by a deep learning architecture, which not only leverages non-
discrete attribute information in KGC but also aims to predict that
numerical attributes.

TransEA [120] consists of two component modules, a structure
embedding model and an attribute embedding model. TransEA
extends TransE [11] with numeric attributes embedding by
adding a numerical attribute prediction loss to the original re-
lational loss of TransE.
25
Fig. 15. Some examples of entity images. This image is referred from [122].

4.1.1.2. Text attribute information. As an important supplement
to structured information in KGs, internal semantic information,
e.g., text attribute information such as literal names of nodes or
edges, is adapted in many KGC studies. Earlier NTN [14] for KGC
leverages entity names by averaging the embeddings of words
involved in them, hoping to achieve semantic sharing among
those learned vectors. Inspired by this idea, many relative KGC
works have sprouted up to explore the usage of text attributes.

JointAS [15] and JointTS [121] propose novel KGE methods which
jointly embed entities and words in entity names into a same
continuous vector space.

4.1.1.3. Image atrribute information. Since image attributes asso-
ciated with entities could provide significant visual information
for KG learning, entity images also have been used to enhance KG
embedding in some works. Fig. 15 demonstrates some examples
of entity images. In KGs, each entity may have multiple images
that intuitively describe the appearances and behaviors of this
entity in a visual manner.

The representative IKRL [122] designs a specialized image
ncoder to generate the image-based representation for each
mage instance and jointly learn the KG representations with
ranslation-based methods. To consider all image instances of an
ntity and further aggregate their image-based representation for
ach entity, they use an attention-based method to construct the
ggregated entity embeddings. There also exists some literature
hat employs multiple kinds of attribute information of nodes
nvolves image information, such as the similar translation-based
ethod Visual and Linguistic Representation Model (VALR)

123] combines linguistic representations and visual representa-
ions of entities to learn entity embeddings.

.1.1.4. Multi-model atrribute information. Some literatures at-
empt to learn KG embedding utilizing multi-model data includ-
ng various factors: text, images, numerical values, categorical
alues, and etc.

ALR [123] considers multi-modal information for learning en-
ity embeddings. Based on the work of [122], apart from the
ntity images, VALR integrates linguistic representation of enti-
ies, it builds the score function upon the foundations of TransE
nd designs it as the sum of sub-energy functions that leverage
oth multi-modal (visual and linguistic) and structural informa-
ion, which may properly learn new multi-modal representations.
ALR builds an easily extensible neural network architecture to
rain the model.

ulti-modal knowledge base embeddings (MKBE) [124] fo-
uses on the multimodel relational data for link prediction task,
ntroduced a novel link prediction model named multi-modal
nowledge base embeddings (MKBE). MKBE consists of an en-
oder and a decoder, the encoder employs multiple different
eural structures according to the different multimodel evidence
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Table 11
Characteristics of KGC methods using nodes’ attributes information.
Model Highlights Nodes information Jointly learning expression Datasets

KGC using numeric atrribute information

KBLRN [118] End-to-end jointly training model;
multi-task learning;
feature types-combining approach

Numerical attributes L = −
∑

(h,r,t)∈T
logp((h, r, t)|θ1, . . . , θn)a FB15k-num,

FB15k-237-num

MTKGNN
[119]

End-to-end multi-task NN Numeric attributes Lattr = Lhead + Ltail
Lhead = MSE(gh(ai), (ai)∗)
Ltail = MSE(gt (aj), (aj)∗)

YG24K, FB28K

TransEA [120] TransE + numerical attributes Numeric attributes L = (1− α) · LTransE + α · LA
LTransE : TransE loss; LA: attribute loss

YG58K, FB15K

KGC using textual atrribute information

JointAs [15] Jointly neural network model Node’s name, anchors L = LK + LT + LA
LK : KGC loss;
LT : Text model loss;
LA: Alignment loss

Freebase

JointTs [121] Replaces anchors in JointAs with text
description

Node’s name L = LK + LT + LAT
LAT : text description-aware Alignment loss

Freebase

KGC using image atrribute information

IKRL [122] Neural image encoder;
translation-based decoder;
attention mechanism

Image attributes s(h, r, t) = sSS + sSI + sIS + sII
sXY = ∥hX + r − tY ∥,
S(I): structure(image)-based representations

WN9-IMG

KGC using multi-model atrribute information

VALR [123] Linguistic embeddings;
neural network architecture;
multi-model additional energy function

Text attributes, image
attributes

s(h, r, t) = sS + sM1 + sM2 + sSM + sMS
sS = ∥hS + rS − tS∥,
sM1 = ∥hM + rS − tM∥,
sM2 = ∥(hM + hS )+ rS − (tM + tS )∥,
sSM = ∥hS + rS − tM∥,
sMS = ∥hM + rS − tS∥
S/M: structure/multi-modal representations

FB-IMG, WN9-IMG

MKBE [124] Feature type specific encoders/decoders;
DistMult/ConvE;
multi-modal KGs modeling;
VGG pretrained network on ImageNet

Text attributes, images
attributes, numeric
attributes

L =
∑
(h,r)

∑
t
lh,rt log(ph,rt )+ (1− lh,rt )log(1− ph,rt )

ph,rt = σ s(h, r, t),
lh,rt : a binary label

YAGO-10

MMKG [125] Relational reasoning across different entities
and images

Numeric attributes,
images attributes

L = −
∑

(h,r,t)∈T
logp((h, r, t)|θ1, . . . , θn)a DB15K, YAGO15K,

FB15K

LiteralE [126] End-to-end universal extension module Numeric attributes, text
attributes

sX (h, r, t)→ sX (g(h, lh), r, g(t, lt ))
g(): a gated function; X: specific KGE models

FB15k, FB15k-237,
YAGO-10

aθi: the parameters of individual model.
types to embed multimodel data that link prediction task used,
while different neural decoders distinguished by missing multi-
model relational data types use the learned entity embeddings
to achieve multimodel attributes recovery. Experiments demon-
strate the effectiveness of MKBE based on both the Distmult and
the ConvE scoring functions on two new datasets generated by
extending the exiting datasets, YAGO-10 and MovieLens-100k.
This paper proves a variety of relational data types can provide
abundant evidence for link prediction task, and made a successful
attempt to use the multimodel information in a unified model.

Multi-Modal Knowledge Graphs (MMKG) [125] is a
visual-relational resource collection of three KGs for KGC, which
is constructed relying on FB15K and is enriched with numeric
literals and image information. MMKG extends KBLRN [118] by
adding image information to this learning framework.

LiteralE [126] also attaches importance to rich literal attributes
of nodes, especially non-discrete values, and learns entity em-
beddings by incorporating attribute information via a portable
parameterized function. Although LiteralE plays emphasis on nu-
merical attributes, it points out that textual or image feature can
fit the incorporation principle as well for jointly learning literal-
enriched embedding. Additionally, LiteralE explores the effect of
utilizing multiple attribute features among relational data, and
constructs a new large-scale dataset for multi-modal KGC based
on Freebase.
26
4.1.1.5. Discussion on KGC methods using node’s attribute infor-
mation. Datasets: From Table 12, we dabble in several datasets
which are rich in attribute data. Liu et al. [125] introduce a
collection of Dbpedia15K, YAGO15K, and FB15K that contain both
numerical features and image links for all entities in KGs. The
WN9-IMG dataset in [122] contains a subset of WordNet synsets,
which are linked according to a pre-defined set of linguistic rela-
tions, e.g. hypernym. Based on Freebase, Mousselly-Sergieh et al.
[123] develop a novel large-scale dataset, FB-IMG, for multimodal
KGC. The FB-IMG dataset can better resemble the characteristics
of real KG because it has a much larger number of relations,
entities, and triples compared to WN9-IMG (cf. Table 12). Besides,
Garcia-Duran et al. [118] create two special datasets referred to
as FB15k-num and FB15k-237-num by adding numerical features
on the original KGC benchmark FB15K.

Jointly learning: In this end, we discuss the general situation
of jointly learning in these KGC works using attribute data. We
can easily find that the attribute of nodes is used less singly. On
the contrary, they tend to be combined and interacted with each
other as mentioned by multi-modal data. The above-mentioned
IKRL [122] is a classic multimodal data used method that incor-
porates both visual and structural information. Since the node’s
attribute features are a kind of additional diversified information,
such KGC works tend to jointly learn original structure models
and additional attribute models. As a consequential result, they
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Table 12
Statistics of several nodes’ attributes datasets.
Dataset Entity Relation #Rel KG #Numeral #Images

Dbpedia15K 14777 279 99028 46121 12841
YAGO15K 15283 32 122886 48405 11194

Dataset Entity Relation #Train #Valid #Test

WN9-IMG 6555 9 11741 1337 1319
FB-IMG 11757 1231 285850 29580 34863
FB15k-num 14951 1345 483142 5156 6012
FB15k-237-num 14541 237 272115 1058 1215

are likely to design a combined scoring system or optimize a joint
loss objective. We uniformity summarize their loss functions in
Table 11, from which we can easily conclude that they mostly
develop their loss objective or energy function in a composition
form, usually extend the original definition of triple energy (dis-
tance energy or similarity energy and so on) to consider the new
multimodal representations.

4.1.2. Entity-related information
Entity-related information includes entity types and seman-

ic hierarchical taxonomic information of entities. We uniformly
summary this part of works in Table 13.

In KGs, entity types are the side information that commonly
exists and dictates whether some entities are legitimate argu-
ments of a given predicate [127]. For instance, suppose the inter-
est relation is bornin, which denotes the birth location of a person,
naturally we expect the asked candidate entity pairs are person-
location type to own this relation. What is more, entity type
information is readily available and gives assistance in avoiding
unnecessary computation led by incompatible entity-relation.

4.1.2.1. Entity types information. TRESCAL [127] is a conventional
ensor decomposition approach, it regards relation extraction (RE)
s a KGC task, indicating that entity type information relates to
G can provide additional valuable relational domain knowledge
or KGC. The novel paradigm focuses on the relevance between RE
nd KGC, which enables the learning process to spend less time
han other traditional approaches (i.e, TransE and RESCAL).

CRL [128] considers entity types as hard constraints in la-
ent variable models for KGs. With type information, the type-
onstraint model selects negative samples according to entity and
elation types. However, the type information is not explicitly
ncoded into KG representations, and their method does not
onsider the hierarchical structure of entity types. Moreover, hard
onstraints may have issues with noises and incompleteness in
ype information, which is pretty common in real-world KGs.

ransT [129] combines structure information with type infor-
ation and takes into account the ambiguity of entities, it dy-
amically generates multiple semantic vectors according to the
ontext of the entity. Moreover, TransT constructs relation types
elying on entity types, also add similarity between relative enti-
ies and relations as the prior knowledge to guide KG embedding
lgorithm.

eature-Rich Networks (FRNs) [130] also leverages entity type
nformation and additional textual evidence for KGC on the
B15k-237 dataset. They learn embeddings for manifold types,
long with entities and relations from noisy resources. Their
ethod to incorporate with type information has a (small) con-

ribution towards improving performance in predicting unseen
acts.

ntology-Based Deep Learning Approach (OBDL) [131] recently
dds ontological information (where ontological information
27
refers to those type hierarchy features of a given entity, they
are shared among similar entities) into KG embedding in a deep
learning framework, which enables it to predict unseen facts in
the training process (referred as fresh entities).

4.1.2.2. Entity hierarchy taxonomic information. The entity hier-
archy taxonomic information is a hierarchy of entity categories.
Categories in different levels reflect the similarity in different
granularities. Each vertex is assigned a path (from the root to
a leaf) in the hierarchy [129]. The neighborhood structure of a
vertex is usually closely related to an underlying hierarchical
taxonomy: the vertices are associated with successively broader
categories that can be organized hierarchically [134]. The hi-
erarchical taxonomic of entity allows the information to flow
between vertices via their common categories so that it provides
an effective mechanism for alleviating data scarcity.

Entity Hierarchy Embedding (EHE) [132] learns distribution rep-
resentation for entity hierarchy by designing a distance matrix
for each entity node. The aggregated metrics encode entity hier-
archical information to obtain hierarchy embeddings, which can
significantly capture abundant semantic for KGC.

Semantically Smooth Embedding (SSE) [133] takes advantage
of additional semantic information, e.g., entity semantic cate-
gories, and restrains the geometric structure of the embedding
space to be consistent with observed facts. They semantically
smooth under a smoothness assumption that leverages two var-
ious learning algorithms Laplacian Eigenmaps [137] and Locally
Linear Embedding [138]. On the one hand, the proposed smooth-
ness assumption is portable and well-adapted in a wide variety
of KG embedding models. On the other hand, SSE regularization
terms can be constructed by other useful additional features in
other possible embedding tasks.

NetHiex [134] is a network embedding algorithm that incorpo-
rates hierarchical taxonomy into network embeddings thus mod-
eling hierarchical taxonomy aware entity embeddings. NetHiex
uses a nonparametric probabilistic framework to search the most
plausible hierarchical taxonomy according to the nested Chinese
restaurant process, and then recover the network structure from
network embeddings according to the Bernoulli distribution. This
framework is implemented by an efficient EM algorithm with
linear time complexity of each iteration, which makes NetHiex a
scalable model. Besides, NetHiex learns an entity representation
consists of multiple components that are associated with the
entity’s categories of diverse granularity, which alleviates data
scarcity with effect.

Guided Tensor Factorization Model (GTF) [135] pays attention
to more challenging completion of generics KGs. It applies a
knowledge guided TF method considering the taxonomy hierar-
chy of entities and the corresponding relation schema, append-
ing guided quantification constraints and schema consistency on
triple facts.

SimplE+ [136] also concentrates on background taxonomic infor-
mation about knowledge facts. [136] points out that the existing
fully expressive TF models are less expressive in utilizing taxo-
nomic features, which is very instructive to guide LP. Considering
the taxonomic information in forms of subclass and sub-property,
SimplE+ advances SimplE [44] by adding non-negativity con-
straints to further inject subsumption content into the original
LP method, which is a simple but effective attempt for KGC.

4.1.3. Relation-related information
The majority of facts in KGs possess comprehensive semantic

relations, which often include transitivity and symmetry prop-
erties, as well as the type hierarchical characteristic. Take the
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Table 13
Summarization of introduced KGC methods using Entity-related information.
Model Technology Entity information Dataset

KGC using entity types information:

TRESCAL [127] a. base on RESCAL;
b. low computational complexity;
c. entity-type constraints

Entity type information; textual data NELL

TCRL [128] a. entity-type constraint model;
b. under closed-world assumption

Entity type information Dbpedia-Music,
FB-150k,YAGOc-195k

TransT [129] a. dynamical multiple semantic vectors;
b. entities-relations similarity as prior knowledge

Structured information; entity type information FB15k, WN18

FRNs [130] a. jointly modeling KGs and aligned text;
b. a composition and scoring function parameterized by
a MLP

Entity type information; additional textual
evidence

FB15k-237

OBDL [131] a. deep learning framework (NTN);
b. a new initialization method for KGE;
c. unseen entity prediction

Entity type hierarchy feature; ontological
information

WordNet, Freebase

KGC using entity hierarchy taxonomic information:

EHE [132] a. distance matrix;
b. entity similarity measuring

Entity hierarchy information Wikipedia snapshot

SSE [133] Portable smoothness assumption:
a. Laplacian Eigenmaps
b. Locally Linear Embedding.

Entity semantic categories NELL_L, NELL_S, NELL_N
186

NetHiex [134] a. a nonparametric probabilistic framework
b. nested Chinese restaurant process
c. EM algorithm

Hierarchical taxonomy information BlogCatalog, PPI, Cora,
Citeseer

GTF [135] a. knowledge guided tensor factorization method;
b. guided quantification constraints;
c. imposing schema consistency

Entity taxonomy hierarchy; corresponding
relation schema

Animals, Science

SimplE+ [136] SimplE with non-negativity constraints Subclass and subproperty taxonomic
information of entity

WN19, FB15K, Sport,
Location
Table 14
Characteristics of introduced KGC methods using relation-related information.
Model Technologies Relation-related information Datasetsa

TranSparse [139] Complex relation-related transformation matrix Heterogeneous and imbalance characteristics
of relations

LP: FB15k, WN18,
FB15k-237, WN18RR

AEM [140] Relation weight Asymmetrical and imbalance characteristics of
relations

LP: WN18, FB15K;
TC: WN11, FB13, FB15K

Trans-HRS [112] TransE/TransH/DistMult + HRS structure Three-layer HRS structure information of
relations

LP: FB15K, WN18

On2Vec [141] a. Component-specific Model encoder
b. Hierarchy Model

Hierarchical relations RP: DB3.6K,CN30K,
YG15K,YG60K

JOINTAe [142] a. autoencoder
b. considers relation inverse characteristic
c. based on RESAC
d. relations composition in [143]

Compositional information of relations LP: WN18, FB15k,
WN18RR, FB15k-237

Riemannian-
TransE
[144]

a. multi-relational graph embedding
b. Non-Euclidean Space modeling
c. based on TransE
d. non-Euclidean manifold

Multi-relational (hypernym and synonym)
information of relations

TP: WN11, FB13

TRE [145] Relation inference based on the triangle pattern of
knowledge base

Entity-independent transitive relation patterns LP: FB15K, WN18,
RP: FB15K, WN18, DBP

a ‘LP’, ‘RP’ and ‘TC’ respectively refer to Link Prediction task, Relation Prediction task and Triple Classification task.
transitivity relation pattern as an example in Fig. 16, three entities
a, b, c are connected through relations r1, r2, r3. If these three
relations, no matter connected with which entity, often appear
together, then we can treat that as a transitivity relation pattern,
this pattern can be applied to an incomplete triangle to predict
the missing relation between entities d and f . Here we set out the
applications of relation-related information among KGC methods.

Table 14 gives a systematical summary for the KGC studies
using relation-related features.

4.1.3.1. Methods. TranSparse [139] Since relations in KGs are het-
erogeneous, and imbalance, TranSparse is proposed to address

this issue by introducing complex relation-related transformation

28
Fig. 16. An example of transitivity relation pattern excerpting from [145].
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atrix [99]. TranSparse believes that the transformation matrix
hould reflect the heterogeneity and unbalance of entity pair,
t changes the transformation matrix into two adaptive sparse
ransfer matrices corresponding to the head entities and tail
ntities.

symmetrical Embedding Model (AEM) [140] pays attention
o the asymmetrical and imbalanced characteristics of relations
and conducts supplement research for KGC. AEM weights each
entity vector by corresponding relation vectors according to the
role of this entity in a triple. Significantly, AEM weights each
dimension of the entity vectors, whose impact is similar to TransA
[108], can accurately represent the latent properties of entities
and relations.

Trans-HRS [112] learns knowledge representations by exploit-
ing the three-layer HRS relation structure information as an ex-
tension of existing KG embedding models TransE, TransH, and
DistMult.

On2Vec [141] is a translation-based model for dealing with spe-
cialized semantic relation facts in ontology graphs, technically
models comprehensive relations in terms of various relation
properties, such as transitivity, symmetry, and hierarchical.
On2Vec consists of two sub-structures, one of them is a
Component-Specific Model which is charges for preserving relation
properties, the another named the Hierarchy Model aims to handle
hierarchy relations specifically. On2Vec is an effective ontology
relation prediction model which can nicely operate ontology
population by exploiting those properties or sub-properties of
semantic relations properly.

JOINTAe [142] explores a dimension reduction technique jointly
training with an auto-encoder, to better learn low dimension
interpretable relations, especially for compositional constraints.
As for the compositional constraints on relations, JOINTAe adapts
mentioned approach in [143]. Moreover, JOINTAe considers in-
verse relations in the training procedure and amends the score
function based on RESACL.

Riemannian TransE Recently, Multi-Relation Embedding is a pop-
lar hot-spot to KGC. At this basis, Riemannian TransE [144]
xploits a non-Euclidean manifold in a Non-Euclidean Space to
perate multi-relational graph embedding. It allots particular dis-
imilarity criteria to each relation according to the distance in
on-Euclidean space, replaces parallel vector fields in TransE with
ector fields with an attractive point to get better embedding
esults, and inherits TransE’s characteristic of low complexity
arameter at the same time.

RE [145] is invented for completing sparse KGs, which effec-
ively leverages entity-independent transitive relation patterns
o find the patterns for infrequent entities. Though TRE briefly
earns representations of relations instead of entity representa-
ion learning as previous KGC methods, it gets high effectiveness
n predicting missing facts with low computational expensive but
igh interpretability.

.1.3.2. Discussion on relation-related information for KGC. Why
re the relation characteristics evidence becoming popular in the
GC field? Firstly, the relation patterns are independent of enti-
ies, so that it can predict missing relations of uncommon entities,
hich is helpful to alleviate the sparsity problem by improving
he completion of infrequent entities through frequent relation
atterns [145], the conventional embedding method is hard to
chieve it. Secondly, compared with the embedding methods, the
omputational cost of identifying relation patterns is lower [146],
ecause it does not need to learn the embedded representation of
ndividual entities. Last but not least, relation patterns are highly
nterpretable.
29
Fig. 17. A neighborhood subgraph example of a KG [147].

Fig. 18. A general process using neighbor information for KGC [149]. The
subgraphs G in the dashed boxes is the neighborhood graph of triple (h, r, t), and
triples in G are represented by a solid edge, and triples (e.g., candidate triples)
not in G are represented by a dashed edge. Note that any ‘‘head prediction’’
problem (?, r, t) can be converted to the ‘‘tail prediction’’ problem (t, r−, ?).

4.1.4. Neighborhood information
The neighbors of entity are new kinds of additional informa-

tion containing both semantic and topological features, which
could be exploited for KGC. For instance, consider a KG fragment
example given in Fig. 17 [147]. If we know that BenAffleck has
won an Oscaraward and BenAffleck lives in LosAngeles, we pre-
fer to predict that BenAffleck is an actor or a filmmaker , rather
than a teacher or a doctor . Further, if we additionally know that
en Affleck’s gender is male then there is a higher probability
or him to be a filmmaker . Mostly, the neighbors are utilized
o form a relation-specific mixture representation as an entity
ector to assist in entity learning, the general thought is shown
n Fig. 18. Although the well-known Graph Convolution Networks
GCNs) [70,82] and Graph Attention Networks (GATNs) [148] also
earn neighborhood-based representations of nodes, they suf-
ered from expensive computation and did not learn sub-optimal
uery-dependent compositions of the neighborhood. We make a
resentation for entity neighbor information aware KGC methods
xcept for GCNs or GATNs. Table 15 exhibits general KGC methods
sing neighbor information.

.1.4.1. Aggregating neighbors with attention mechanism. A2N
150] Opposed to the early method NMM [147] (where NMM
incorporates TransE with neighbors information to crystallize into
a TransE-MRR version but only learns a fixed mixture over neigh-
bors), A2N embeds query-dependent entities with corresponding
neighbors into the same space via bi-linear attention on the graph
neighborhood of an entity, to generate neighborhood informed
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Table 15
Characteristics of introduced KGC methods using neighbor information.
Model Technology Additional information Datasets

Aggregating neighbors with attention mechanism:

A2N [150] DistMult + attention scoring Neighbor structure information FB15K-237, WN18RR

LENA [149] Windowed Attentions;
Cross-Window Pooling

Neighbor structure information FB15K, FB15K-237, WN18, WN18RR

LAN [151] Logic Attention Network;
end-to-end model:
Encoder: LAN, Decoder: TransE

Relation-level information;
neighbor-level information

Subject-10 and Object-10 in FB15K

G2SKGEatt [152] Graph2Seq network;
attention mechanism;
end-to-end model:
Encoder: Graph2Seq, Decoder: ConvE

Neighbor structure information FB15K, FB15K-237, WN18, WN18RR

KBAT [91] Generalized GAT;
end-to-end model:
Encoder: KBAT, Decoder: ConvKB

Entity’s multi-hop neighborhood FB15K-237, WN18RR, NELL-995, Kinship

RGHAT [153] GNN;
hierarchical attention mechanism;
end-to-end model:
Encoder: RGHAT, Decoder: ConvE

Entity’s multi-hop neighborhood FB15K, WN18, FB15K-237, WN18RR

Other technologies for KGC using neighbor information:

GMatching [154] Permutation-invariant network;
LSTM;
end-to-end model:
Encoder: neighbor encoder,
Decoder: matching processor

Neighbor structure information NELL-One, Wiki-One

GMUC [155] Gaussian metric learning;
few-shot UKGC;
end-to-end model:
Encoder: Gaussian neighbor encoder,
Decoder: LSTM-based matching networks

Neighbor structure information NL27K-N0, NL27K-N1, NL27K-N2 and
NL27K-N3

NKGE [31] Dynamic Memory Network;
gating mechanism;
end-to-end model:
Encoder: DMN, Decoder: TransE/ConvE

Structure representation;
neighbor representation

FB15K, FB15K-237, WN18, WN18RR

CACL [93] Contextual information collection;
context-aware convolutional

Multi-hop neighborhoods structure information FB13, FB15K, FB15K-237, WN18RR

OTE [115] RotatE;
orthogonal transforms

Graph contexts representations FB15K-237, WN18RR

CNNIM [156] Concepts of Nearest Neighbors;
Dempster–Shafer theory

Neighbors information FB15k-237, JF17k, Mondial

CAFE [157] Neighborhood-aware feature set;
feature grouping technique

Neighborhood-aware features FB13-A-10, WN11-AR-10, WN18-AR-10,
NELL-AR-10
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representation. For the attention scoring, A2N uses the DistMult
function to project the neighbors in the same space as the target
entities.

Inspired by the thought of aggregating neighbors with atten-
ion mechanism in [150], there has generated a lot of closely
elevant studies:

ermed locality-expanded neural embedding with attention
LENA) [149] is introduced to filter out irrelevant messages among
eighborhoods with the support of an attentional setting. This
ork indicates that the KG embedding relying on even sufficient
tructure information is deficient since the graph data tend to
e heterogeneous. Therefore, LENA emphasizes that information
nvolved in the graph neighborhood of an entity plays a great
ole in KG embedding in especially with complex heterogeneous
raphs.

ogic Attention Network (LAN) [151] is a novel KG-specific
eighborhood aggregator that equips attention mechanism to
ggregate neighbors in a weighted combination manner. This
ork designs two mechanisms for modeling relation-level and
eighbor-level information respective from coarse to fine: Logic
ule Mechanism and Neural Network Mechanism, in the end, a
ouble-view attention is employed to incorporate these two
eighting mechanisms together in measuring the importance of
30
neighbors. LAN meets all three significant properties: Permutation
Invariant, Redundancy Aware and Query Relation Aware.

2SKGEatt [152] develops a information fusion mechanism
raph2Seq to learn embeddings that fuses sub-graph structure
nformation of entities in KG. To make fusion more meaningful,
2SKGEatt formulates an attention mechanism for fusion. The 1-
scoring strategy proposed by ConvE [33] is used to speed up

he training and evaluation process.

BAT [91] is also an attention-based KGE model which captures
oth entity and relation features in the multi-hop neighborhood
f given entity. KBAT uses ConvKB [68] as its decoder module
nd specifically caters to the relation prediction (RP) task. RGHAT
153] designs a novel hierarchical attention mechanism to com-
ute different weights for different neighboring relations and
ntities. Consider that the importance of different relations differ
reatly in indicating an entity and to highlight the importance
f different neighboring entities under the same relation, the
ierarchical attention mechanism including two-level attention
echanisms: a relation-level attention and an entity-level at-

ention. The relation-level attention firstly indicate an entity by
omputing the weights for different neighboring relations of it,
hen the entity-level attention computes the attention scores for
ifferent neighboring entities under each relation. Finally, each
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ntity aggregates information and gets updated from its neigh-
orhood based on the hierarchical attentions. RGHAT can utilize
he neighborhood information of an entity more effectively with
he use of hierarchical attention mechanism.

.1.4.2. Other technologies for KGC using neighborhood information.
ome other works concern different technologies to make use of
he neighborhood information.

Matching [154] takes those one-shot relations which usually
contain valuable information and make up a large proportion of
KGs into consideration, and introduces an intelligent solution to
the problem of KG sparsity caused by long-tail relations. GMatch-
ing learns knowledge from one-shot relations to solve the sparsity
issue and further avoid retraining the embedding models when
new relations are added into existing KGs. This model consists of
two components: a neighbor encoder and a matching processor,
which are responsible for encoding the local graph structure to
represent entities and calculating the similarity of two entity
pairs respectively.

GMUC [155] is a Gaussian metric learning-based method that
ims to complete few-shot uncertain knowledge graphs (UKGs,
uch as NELL and Probase, which model the uncertainty as confi-
ence scores related to facts). As the first work to study the few-
hot uncertain knowledge graph completion (UKGC) problem,
MUC uses a Gaussian neighbor encoder to learn the Gaussian-
ased representation of relations and entities. Then a Gaussian
atching function conducted by the LSTM-based matching net-
orks is applied to calculate the similarity metric. The matching
imilarity can be further used to predict missing facts and their
onfidence scores. GMUC can effectively capture uncertain se-
antic information by employing the Gaussian-based encoder
nd the metric matching function.

KGE [31] uses a End-to-End Memory Networks (MemN2N) based
ynamic Memory Network (DMN) encoder [158] to extract infor-
ation from entity neighbors, and a gating mechanism is utilized

o integrate the structure representations and neighbor represen-
ations. Based on TransE [11] and ConvE [33] respectively, NKGE
esigns two kinds of architectures to combine structure represen-
ation and neighbor representation. Experimental results show
hat the TransE-based model outperforms many existing trans-
ation methods, and the ConvE-based model gets state-of-the-art
etrics on most experimental datasets.

ontext-aware convolutional learning (CACL) [93] is a study
f exploring the connection modes between entities using their
eighbor contexts information, which facilitates the learning of
ntity and relation embeddings via convoluting deep learning
echniques directly using the connection modes contained in each
ulti-hop neighborhood.

rthogonal transform embedding (OTE) [115] advances RotatE
110] in two ways: (1) leveraging orthogonal transforms [116]
o extend RotatE from 2D complex domain to high dimension
pace in order to raise modeling ability, and (2) OTE takes account
f the neighbor contexts information, effectively learns entity
mbeddings by fusing relative graph contexts representations.
xperiments contrast that with RotatE, R-GCN and A2N revealing
reat availability of OTE.

oncepts of Nearest Neighbors-based Inference Model (CN-
IM) [156] performs LP recognizing similar entities among com-
on graph patterns by the use of Concepts of Nearest Neighbors

159], from where Dempster–Shafer theory [160] is adapted to
raw inferences. CNNIM only spends time in the inference step
ecause it abolishes training time-wasting to keep a form of
31
instance-based learning. The application of graph pattern instead
of numerical distances makes the proposed method interpretable.

CAFE [157] completes KGs using the sets of neighborhood-aware
features to evaluate whether a candidate triple could be added
into KGs. The proposed set of features helps to transform triples in
the KG into feature vectors which are further labeled and grouped
for training neural prediction models for each relation. These
models help to discern between correct triples that should be
added to the KG, and incorrect ones that should be disregarded.
Note that since CAFE exploits the highly connected nature of KGs
rather than requiring pre-processing of the KG, it is especially
suitable for ever-growing KGs and dense KGs.

4.1.4.3. Discussion on KGC models using neighborhood information.
From the above introduction and comparison about neighbor-
used KGC literature, we further make a basic discussion and
analysis as follows:
(1) To better obtain the neighborhood graph information, we
need to select an appropriate fusion strategy to collect useful
surrounding neighbor contexts.
(2) we find that most models tend to use the encoder-to-decoder
(end-to-end) architecture when learning neighbor information for
KGC, in other words, the neighbor learning part is portable which
could be applied to various KGE models such as translation mod-
els (e.g., TransE [11], TransH [15], TransR [12]) and Bilinear mod-
els [42,161]. We give a presentation about these end-to-end
structures in Table 15, and show them in Fig. 19 to illustrate this
intuition.
(3) The embedding parameters for every entity-relation pair may
be prohibitively large when the learned neighbor fusion is fixed,
which led to the adaptable mixture methods based on the differ-
ent query are more and more popular over recent years.

4.1.5. Relational path information
In KGs, there are substantial multiple-step relation paths be-

tween entities indicating their semantic relations, these relation
paths reflect complicated inference patterns among relations in
KGs [12], it helps to promote the rise of the path-based relation
inference, one of the most important approaches to KGC task
[168]. We generally list these path-based KGC works in Table 16.

multi-hop KGC (mh-KGC): We refer to the definition in [163],
the mh-KGC aims at performing KGC based on existing relation
paths. For example in Fig. 20, for the relation path Microsoft →
IsBasedIn → Seattle → IsLocatedIn → Washington →

IsLocatedIn → United States (as the blue lines shows), the task
is to predict whether (or what) there exists direct relations that
connects h and t; i.e., (Microsoft, CountryOfHQ ,United States) in
this case. This kind of reasoning lets us infer new or missing
facts from KGs. Sometimes there can exist multiple long paths
between two entities, thus in this scene, the target relation may
be inferrable from not only one path.

4.1.5.1. Multi-hop KGC using atomic-path features. Path Ranking
Algorithm (PRA) [164] is the first work that emerges as a promis-
ing method for learning inference paths in large KGs, it uses
random walks to generate relation paths between given entity
pairs by depth-first search processes. The obtained paths then
are further encoded as relational features and combined with a
logistic regression model to learn a binary log-linear classifier to
decide whether the given query relation exists between the entity
pairs.

However, millions of distinct paths in a single classifier are
generated by the PRA method, it may supervene with feature
explosion problem because each path is treated as an atomic
feature, which makes the atomic-path idea difficult to be adopted

by KGs with increasing relation types [166]. Additionally, since
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a
P

Fig. 19. Several end-to-end KGC models using neighborhood information.
Source: These figures are extracted from [31,152,154,162].
Fig. 20. An illustration of knowledge reasoning over paths [163].

PRA must compute random walk probabilities associated with
each path type and entity pair, resulting in proportional compu-
tation amount increase with the path number and path length.
The feature explosion issue is shown in Fig. 21.

Therefore, new versions of PRA [165,177,178] try to develop
series of more efficient and more expressive models related to
RA. Both the first two use pre-trained vector representations
32
Fig. 21. A sketch map to path feature explosion [166].

of relations to alleviate the feature explosion problem [166]: In
the work of [177], many paths are folded by clustering the paths
according to the embedding degree of the relation between paths,
then it uses cluster ID to replace the original relation type. The
work [178] maps unseen paths to nearby paths seen at training
time, where the nearness is measured using the embeddings.
The work [165] defines a simpler feature matrix generation al-
gorithm called subgraph feature extraction (SFE), it conducts a
more exhaustive search, a breadth-first search instead of random
walks, to characterize the local graph. Without the random walk
probabilities computation, SFE can extract much more expressive
features, including features that are not representable as paths in
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Table 16
Characteristics of introduced KGC methods using relational path information.
Model Technology Additional information Path selection strategy Datasets

Mh-KGC using atomic-path features:

PRA [164] Random walks Atomic path feature A single path NELL

SFE [165] Breadth-first search Atomic path feature A single path NELL

Non-atomic multi-hop reasoning:

PATH-RNN
[166]

RNN + PRA, zero-shot reasoning Non-atomic and compositional path feature,
arbitrary-length path

Max pooling Freebase +
ClueWeb

Trans-COMP
[143]

Compositional training, path
compositional regularizer

Non-atomic path feature A single path WordNet, Freebase

Path-augmented translation models:

PTransE [12] PCRAa
+ TransE + path scoring Non-atomic path feature PCRA FB15K

RTransE [39] TransE + regularization
composition

Non-atomic path feature Focused on ‘‘unambiguous’’ paths:
ℓ1: 1-to-1 or 1-to-many relations,
ℓ2: 1-to-1 or many-to-1 relations

FB15K, FAMILY

PTransD [117] Path-augmented TransD Path PCRA FB15K

Modeling paths using neural networks:

Single-Model
[167]

Path-RNN; Shared Parameter
Architecture

Path, intermediate nodes, entity-types Scoring pooling: Top-K, Average and
LogSumExp

Freebase +
ClueWeb

APCM [168] RNN + Attention Path, entity type Attentive Path Combination FC17

IRNs [169] Shared memory + controller Path, structured relation information Controller determines the length of paths WN18, FB15K

ROHP [163] Three ROPs architectures: GRUs Path Arbitrary-length path Freebase +
ClueWeb

PRCTA [170] RNN; constrained type attention;
relation-specific type constraints

Path, entity and relation types Path-level attention Freebase +
ClueWeb

mh-RGAN [96] RNN reasoning models + GAN Non-atomic path feature Generator G of GAN WordNet, FreeBase

Combine path information with type information:

All-Paths [171] Dynamic programming, considers
intermediate nodes

Path, relation types Dynamic programming NCI-PID and
WordNet.

RPE [172] Relation-specific type constraints;
path-specific type constraints

Path, relation type Reliable relation paths-selection strategy LP: FB15K; TC:
FB15K, FB13,
WN11

APM [173] Abstract graph + path Abstract paths, strongly typed relations Paths in abstract graph Freebase, NELL

Leveraging order information in paths:

OPTransE [174] TransE + Ordered Relation Paths Path, relation orders Path fusion: two layer pooling strategy WN18 and FB15K

PRANN [175] CNN + BiLSTM Path + entities/relations orders, entity
types

Path-level Attention NELL995,
FB15k-237,
Countries, Kinship

a ‘PCRA’: path-constraint resource allocation algorithm [176].
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the graph at all — but the core mechanism of these three works
continues to be a classifier based on atomic-path features. Be-
sides, neither one can perform zero-shot learning because there
must be a classifier for each predicted relation type in their
approaches.

4.1.5.2. Non-atomic multi-hop reasoning. Some works explore to
tilize path information as non-atomic features during a KGC
rocedure.

ATH-RNN [166] can not only jointly reason on the path, but
also deduce into the vector embedded space to reason on the
elements of paths in a non-atomic and combinatorial manner.
Using recursive neural networks (RNNs) [179] to recursively ap-
ply a composite function to describe the semantics of latent
relations over arbitrary length paths (in Fig. 22(a)), PATH-RNN
finally produces a homologous path-vector after browsing a path.
PATH-RNN can infer from the paths not seen in the training
during the testing process, and can also deduce the relations that
do not exist in the KGs.

TransE-COMP [143] suggests a new compositional training ob-
ective that dramatically improves the path modeling ability of
33
various traditional KGC models to answer path queries. This tech-
nique is applicable to a broad class of combinable models that
include the bilinear model [13] and TransE [11], i.e, the score
function:

s(s/r, t) = M(Tr (xs), xt )

epresents a combinatorial form where the traversal operator
r (xs) means a path query (xs, r, ?) following Tr : Rd

→ Rd, and
perator M illustrates the incorporable model’s score operation
ollows M : Rd

× Rd
→ R, for example, when cooperates with

ransE, the traversal operator becomes to Tr (xs) = xs + wr and
he score function then turns into:

(s/r, t) = M(Tr (xs), xs) = −∥Tr (xs)− xs∥22

o that it can handle a path query q = s/r1/r2/.../rk by:

(q, t) = −∥xs + wr1 + · · · + wrk − xt∥22

he compositional training is regarded as providing a new form
f structural regularization for existing models since it substan-
ially reduces cascading errors presented in the base vector space
odel.
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Fig. 22. Several RNN-structure KGC models using path information.
Source: These figures are from [96,163,166–168,170,175].
.1.5.3. Path-augmented translation models. The path-augmented
ranslation methods, which introduce multi-step path informa-
ion into classical translation models, are developed.

TransE [12] uses path information in its energy function as:

(h, r, t) = E(h, r, t)+ E(h, P, t)
34
which the latter item E(h, P, t) models the inference correla-
tions between relations with multi-step relation path triples. In
PTranasE, relation paths p ∈ P(h, t) are represented via se-
mantic composition of relation embeddings, by perform Addition,
Multiplication or RNN operation:

Addition : p = r + · · · + r
1 l
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ultiplication : p = r1 · ... · rl

RNN : c1 = r1, . . . , p = cn

Simply put, PTransE doubles the number of edges in the KG by
creating reverse relations for each existing relation. Then PTransE
uses a path-constraint resource allocation algorithm (PCRA) [176] to
select reliable input paths within a given length constraint.

RTransE [39] learns compositions of relations as sequences of
translations in TransE by simply reasoning among paths, in this
process, RTransE only considers a restricted set of paths of length
two. This paper augments the training set with relevant exam-
ples of the above-mentioned compositions, and training so that
sequences of translations lead to the desired result.

PTransD [117] is a path-augmented TransD, it thinks relation
paths as translation between entities for KGC. Similar to TransD,
PTransD considers entities and relations into different semantics
spaces. PTransD uses two vectors to represent each entity and
relations, where one of them represents the meaning of a(n) en-
tity (relation), and another one is used to construct the dynamic
mapping matrix.

4.1.5.4. Modeling paths using neural networks. We can see that
eural network is handy in modeling path, especially the RNN
pplication lines:

ingle-Model [167] Based on the PATH-RNN [166], Single-Model
discusses path-based complex reasoning methods extended by
RNN and jointly reasoning with within-path relations, entities,
and entity types in the paths.

Attentive Path Combination Model (APCM) [168] first generates
ath representations using an RNN architecture, then it assigns
iscriminative weights to each path representations to form the
epresentation of entity pair, finally, a dot-product operation
etween the entity pair representation and the query relation
epresentation is designed to compute the score of a candidate
uery relation, so that it allows entity pair to get representation
ith respect to query relations in a dynamic manner.

mplicitly ReasonNets (IRNs) [169] designs a network archi-
ecture, which performs multi-hop reasoning in vector space
ased on shared memory. The key highlight is the employment
f shared memory that intelligently saves relevant large-scale
tructured relations information in an implicit manner, thus it can
void explicit human-designed inference. IRNs reasons according
o a controller to stipulate the inference step during the whole
nference procedure simultaneously gets proper interaction with
hared memory. This work performs an excellent function on KGC
bout complex relations.

ecurrent one-hop predictor Model (ROHP) [163] explores
hree ROHP architectures with the capability of modeling KG
aths of arbitrary lengths by using recurrent neural networks
GRUs [180]) to predict entities in the path step by step for
ulti-hop KG reasoning.

ath-based Reasoning with Constrained Type Attention
PRCTA) equipped with a constrained type attention mechanism
or multi-hop path reasoning [170]. On the one hand, PRCTA
ncodes type words of both entities and relations to extract
bundant semantic information by which partly improves the
parsity issue, on the other hand, for reducing the impact of
oisy entity types, constrained type attention is designed to
oftly select contributing entity types among all the types of a
ertain entity in various scenarios, meanwhile, relation-specific
ype constraints are made full use for enhancing entity encoding.
 (

35
Fig. 23. Example of the meaning change when the order of relations is altered.

Final path encoding leverages path-level attention to combine
useful paths and produces path representations.

We collect some representative structures of methods that
model path information for KGC using RNNs in Fig. 22. There
are other path-based KGC models using other neural network
frameworks:

Multi-hop Relation GAN (mh-RGAN) [96] considers multi-hop
(mh) reasoning over KGs with a generative adversarial network
(GAN) instead of training RNN reasoning models. The mh-RGAN
consists of two antagonistic components: a generator G with
respect to composing a mh-RP, and a discriminator D tasked with
istinguishing real paths from the fake paths.

.1.5.5. Combining path information with type information. Some
ethods consider type information of entities and relations when
odeling path representations, such as [167,168], and [170].

elational Path Embedding model (RPE) Lin et al. [172] extend
he relation specific type constraint to the new path specific type
onstraint, both two type constraints can be seamlessly incor-
orated into RPE to improve the prediction quality. In addition,
PE takes full advantage of the semantics of the relation path to
xplicitly model KGs. Using the composite path projection, RPE
an embed each entity into the proposed path space to better
andle the relations with multiple mapping characteristics.

bstract Path Model (APM) [173] focuses on the generation of
bstract graph depending on the strongly typed relations and
hen develops a traversal algorithm for mining abstract paths
n the produced intensional graph. Those abstract paths tend
o contain more potential patterns to execute KG tasks such as
P. The proposed abstract graph drastically reduces the original
raph size, making it becomes more tractable to process various
raphs.

.1.5.6. Leveraging order information in paths. The order of re-
ations and entities in paths is also important for reasoning.
s Fig. 23 shows, the meaning will change when the order of
elations is altered [174].

PTransE [174] attaches importance to the order information
f relations in relation paths via projecting each relation’s head
ntity and tail entity into different vector spaces respectively.
o capture the complex and nonlinear features hidden in the
aths, OPTransE designs a multi-flow of min-pooling layers. It
as experimentally validated that OPTransE performs well in LP
ask, directly mirroring the vital role of relation order information
n relation paths for KGC.

ath-based Reasoning with Attention-aware Neural Network
PRANN) [175] also uses the ordering of the local features to learn
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Fig. 24. An illustration that relations between an entity pair can be inferred by
considering information available in multiple paths collectively [168].

about the entities and the relation orderings of each path. PRANN
explores a novel path encoding framework including a bidirec-
tional long short-term memory (BiLSTM) followed by a CNN and
fusion paths works by a path-level attention mechanism. The
structure of PRANN can result in an efficient path representation
which leads to excellent LP results. Considering multi-step rea-
soning on paths, this paper further designs a memory module for
storing the time-distributed encoded path, which can repeatedly
extract path features to enhance the prediction performance. The
author indicates that it is necessary to develop external memory
storage for storing overall paths between every entity pairs to
meet the increased needs of entity pairs in current KGs.

4.1.5.7. Path selection strategy. As we mentioned above, the rea-
oning path set of an entity pair usually contains more than one
ath, so that when we conduct KGC, we should ponder over how
e make use of those multiple paths, should we choose one path
r consider all the paths? And if we choose only one path, what

selection strategies do we need to follow? Thus it is a noteworthy
issue that how to formulate an appropriate method of finding the
most informative path under the mh-KGC task. For an example in
Fig. 24, none of the four paths directly contains evidence that the
nationality of Steve Jobs is U.S., but when we jointly consider these
paths together, we will get much more information to support the
fact (Steve Jobs, nationality,U .S.).

Trans-COMP [143] models only a single path between an entity
pair, moreover, PATH-RNN [166] uses Max operator to select
the path with the largest predictability at each training/testing
iteration [168]. The previous KGC methods [12,143] using relation
paths neither take account of intermediate nodes nor model
all the relation paths since the computational expense is too
expensive to enumerate all possible paths, especially in graphs
containing text [171]. Whereby, All-Paths [171] improves upon
them by additionally modeling the intermediate entities in the
path and modeling multiple paths. For a given path type referred
to in the PRUNED-PATHS approach, All-Paths uses dynamic pro-
gramming to exactly build the sums of all path representations
over node sequences.

However, in their method they have to store scores for inter-
mediate path length for all entity pairs, making it prohibitive to
be used in large-scale KGs. Single-Model [167] is presented to im-
prove the performance of Path-RNN [166]. Rather than the ‘‘max’’
pooling, Single-Model leverages various score pooling strategy:
Top-K, Average and LogSumExp, and among which the LogSumExp
pooling performs best. LogSumExp pooling is deemed to play the
same role as attention mechanism and can integrate every path
in trainable proportion.

Unfortunately, none of these methods can simulate scenarios
in which relations can be inferred only by considering multi-
ple information paths [168]. On the other hand, each of these
 F

36
Table 17
Statistics of path-based KGC datasets FC (Freebase + ClueWeb) and FC17.
Datasets FC FC17

Entities 18M 3.31M
Freebase triples 40M 35M
ClueWeb triples 12M 104M
Relations 25,994 23612
Relation types tested 46 46
Avg. paths/relation 2.3M 3.19M
Avg. training positive/query relation – 6621
Avg. training negative/query relation – 6622
Avg. training facts/relation 6638 –
Avg. positive test instances/relation 3492 3516
Avg. negative test instances/relation 43,160 43777

path combination operations works at a score-level, and has its
deficiency:

(1) Max: Only one path is used for reasoning, while all other
information paths are ignored.

(2) Average: As is often the case that the path sets connecting
an entity pair are very large, and only a few paths may be helpful
for reasoning. Therefore, the model is often affected by noise.

(3) Top-K : Different entity pairs may have different optimal
values. Moreover, not all Top-k paths contribute equally to

easoning.
(4) LogSumExp: This is a smooth approximation of the ‘‘Max’’

perator, which can be seen as ‘soft’ attention, but cannot effec-
ively integrate evidence from multiple paths.

The unsatisfactory path combination situation promotes a se-
ies of effective approaches that begin to spring up. For an en-
ity pair and the set of relation paths between them, Attentive
ath Combination Model (APCM) [168] assigns discriminative
eights to each path to further combine these weighted path rep-
esentations into an entity pair level representation, Path-based
easoning with Constrained Type Attention (PRCTA) [170] uses
constrained type attention mechanism for multi-hop path rea-
oning, which mainly considers to alleviate the negative influence
f graph sparsity and entity type noise when conducting the
easoning procedure.

.1.5.8. Performance analysis about path-based KGC. Datasets: We
ntroduce a famous dataset, Freebase + ClueWeb (called FC for
onvenience) [166], for path reasoning over KGs. FC is a large-
cale dataset of over 52 million triples, it involves preprocessing
or multi-hop KGC (mh-KGC). The dataset is built from the com-
ination of Freebase [5] and Google’s entity linking in ClueWeb
181], which contains entities and relations from Freebase and
s enriched with ClueWeb text. FC is widely applied by several
ath-based KGC methods [163,166,167,170], rather than Gard-
er’s 1000 distinct paths per relation type, it have over 2 mil-
ion [166]. FC can be downloaded from http://iesl.cs.umass.edu/
ownloads/inferencerules/release.tar.gz. FC17 is a more recently
eleased version to FC, in which the number of paths between
n entity pair ranges drastically from 1 to 900 or more, so the
obust of methods in comparison can be better evaluated with
his dataset. Compared with the older version, FC17 has far more
lueWeb triples. Statistics of both FC and FC17 is listed in Ta-
le 17.

erformance Comparison: We report the existing published ex-
erimental performance of several path-based KGC models ac-
ording to different evaluation datasets in Table 18, Tables 19
nd 20. By the way, we also give some analysis about presented
esults.
1) On FC and FC17 datasets: Table 18 shows experimental
esults of path-based KGC methods on FC and FC17 datasets. On
C, it can be observed that: overall, PRCTA outperforms all the

http://iesl.cs.umass.edu/downloads/inferencerules/release.tar.gz
http://iesl.cs.umass.edu/downloads/inferencerules/release.tar.gz
http://iesl.cs.umass.edu/downloads/inferencerules/release.tar.gz
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Table 18
Experimental results of path-based KGC methods on FC and FC17 datasets. MAP
on FC and FC17 are reported by [170] and [168], respectively. Best results are
in bold.
Model FC FC17

MAP (%) MAP (%)

PRA [164] 64.43 55.48
Path-RNN [166] 68.43 52.37
Single-Model [167] 70.11 58.28
Single-Model + Type [167] 73.26 63.88
Att-Model [168] 71.21 59.89
Att-Model + Type [168] 73.42 65.03
PRCTA [170] 76.44 –

other methods in the table, which indicates the effectiveness of
leveraging textual types and entity type discrimination for mh-
KGC as PRCTA does on the task of multi-hop reasoning. Besides,
as mentioned in [170], textual types and all attention mechanisms
contribute to the ablation test, except that, conducting entity type
discrimination with constrained type attention also provides a
greater performance boosting. Notably, in terms of noise reduc-
tion, the result shows that the attention mechanisms adopted in
PRCTA can significantly reduce noise. Specifically, the word-level
attention alleviates the representation sparseness by reducing
noise in the whole type context, while constrained type attention
further reduces noisy entity types and thus alleviates inefficiency
on entities with a large number of types [170]. On FC17, there
lacks of relevant data of PRCTA.

Over FC17 dataset, the model ‘‘Att-Model + Type’’ [168] achieve
he best performance. Not only the ‘AttModel’, using relations
n the path, outperforms other methods that also use relation
nly, but also the proposed method ’Att-Model+Types’, further
onsidering the entities in the path by adding their types into
NN modeling, still achieves considerable improvements than its
ain opponent ’Single-Model+Types’. All the comparison results
bove-mentioned indicate the importance of proper attention
echanisms.

2) On NELL995, FB15K-237, Kinship and Countries datasets:
urther, we report the data comparison on NELL995 and FB15k-
37 in Table 19 and observe that PRANN [175] can more accu-
ately predict missing links on the large datasets compared with
ther methods. Note that when it compared with the existing
on-path models to verify the competitiveness of the approach
n the KGC task, PRANN have achieved comparable results to the
tate-of-the-art methods across all evaluation metrics, in especial
he MRR and Hits@k scores of MINERVA, a path-based KGC model
hich is similar to that of PRANN. It is notable that on the KG such
s FB15k-237 with a large number of diverse relations, PRANN
erforms better compared to other models in the experiment.
n the contrary, MINERVA [63] was giving slightly better results
n the dataset with a fewer number of relations, such as the
ountries dataset. From Table 19 we can observe the experimen-
al results on the small datasets, Kinship, and Countries. PRANN
lso achieves excellent results on the Kinship dataset because this
ataset was created to evaluate the reasoning ability of logic rule
earning systems with more predictable paths compared to other
atasets. However, on the Countries dataset, PRANN shows lower
esults compared to MINERVA, relevant explanation is because
he number of training triples in the Countries dataset is too small
o efficiently train our model.
3) On WN18 and FB15K datasets: Table 20 presents the ex-
erimental results on WN18 and FB15K, numbers in bold mean
he best results among all methods. The evaluation results of
aselines are from their original work, and ‘‘–’’ in the table means
here is no reported result in prior work. According to the ta-

le, IRN significantly outperforms other baselines, regardless of

37
whether other approaches use additional information or not.
Specifically, on FB15k, the Hit@10 of IRN surpasses all previous
results by 5.7%. From Table 20 we could observe that: (a) Both
PTransE and RPE perform better than their basic model TransE
and TransR, which indicates that additional information from
relation paths between entity pairs is helpful for link prediction.
Also, OPTransE outperforms baselines which do not take relation
paths into consideration in most cases. These results demonstrate
the effectiveness of taking advantage of the path features inside
of KGs in OPTransE. (b) Except for the Hits@10 scores of IRN,
OPTransE almost performs best on all metrics compared to previ-
ous path-based models like RTransE, PTransE, PaSKoGE, and RPE,
which implies that the order of relations in paths is of great im-
portance for knowledge reasoning, and learning representations
of ordered relation paths can significantly improve the accuracy
of link prediction [174]. Moreover, the proposed pooling strategy
which aims to extract nonlinear features from different relation
paths also contributes to the improvements of performance.

4.1.5.9. Discussion on relational path information in KGC. 1. Lim-
itation of path information: In multi-hop KGC (mh-KGC), the
path extracted from KGs mainly stores the structural information
of facts, which is inherently incomplete. This incompleteness
can affect the process in different ways, e.g. it leads to rep-
resentations for nodes with few connections that are not very
informative, it can miss relevant patterns/paths (or derive mis-
leading patterns/paths) [173]. The limited information will lead to
the representation sparseness of entities and relations, resulting
in low discrimination for intermediate nodes, which constitutes a
potential obstacle to the improvement of mh-KGC performance.
Therefore, it is necessary to consider other information to assist
reasoning, such as the semantic information of nodes in the path
(e.g., textual type attributes, entity or relation order information,
et al.). Intuitively, incorporating knowledge from textual sources
by initializing the entity embeddings with a distributional rep-
resentation of entities [182] could improve path-based relation
reasoning results further.

2. Neglection on entity/relation types in mh-KGC: Although
previous works have introduced entities and relations types into
relational path reasoning tasks, they only consider single type en-
tities while actually, entities have more than one type, especially
in different contexts, the same entities often have different types
and semantics. Additionally, they do not distinguish entity types
in different triples which may pose noisy entity types to limit the
final performance.

3. More efficient attention mechanism: More flexible and ef-
fective attention mechanism over mh-KGC tasks need to be ex-
plored. For example, previous methods often applied a similar
approach using the dot product to measure the match between
weighted path vectors and a target relation, although calculat-
ing the dot product attention is faster and space-efficient, in
some cases, more intelligent handling technologies such as addi-
tional scaling factors are needed to compute the correct attention
weights. For example, in [175], an additive attention function
using a feed-forward network that scales well to smaller values
are applied to act attention mechanism, it exhibits better perfor-
mance compared to the dot product and efficiently scales to large
values [183]. What is more, it is fully differentiable and trained
with standard back-propagation.

4. More efficient path encoder and more proper training ob-
jective: Path reasoning in KG is still in continuous development,
especially with the emergence of various coding structures, such
as Bert, XLNet, etc. We can try to use more effective encoders to
encode path features. In addition, when combined with the tradi-

tional methods, we can learn from previous experience (e.g., [166]
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Table 19
Experimental results of path-based KGC methods on NELL995, FB15k-237, Kinship and Countries datasets. The public performance data in this table comes from
[175]. Best results are in bold.
Model NELL995 FB15k-237 Kinship Countries

MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

PRA [164] 0.696 0.637 0.747 0.412 0.322 0.331 0.799 0.699 0.896 0.739 0.577 0.9
Single-Model [167] 0.859 0.788 0.914 0.575 0.512 0.567 0.804 0.814 0.885 0.941 0.918 0.956
MINERVA [63] 0.879 0.813 0.931 0.615 0.49 0.659 0.824 0.71 0.937 0.96 0.925 0.995
PRANN [175] 0.898 0.838 0.951 0.66 0.544 0.708 0.952 0.918 0.984 0.947 0.916 0.986
c
w
R
a

q

w

G
t

Table 20
Link prediction results of path-based KGC methods on WN18 and FB15k datasets.
All the data in the table comes from [174]. Best results are in bold.
Model WN18 FB15k

Hits@10 MR Hits@10 MR

RTransE [39] – – 0.762 50
PTransE (ADD, 2-step) [174] 0.927 221 0.834 54
PTransE (MUL, 2-step) [174] 0.909 230 0.777 67
PTransE (ADD, 3-step) [12] 0.942 219 0.846 58
PTransD (ADD,2-step) [117] – – 0.925 21
RPE (ACOM) [172] – – 0.855 41
RPE (MCOM) [172] – – 0.817 43
IRN [169] 0.953 249 0.927 38
OPTransE [174] 0.957 199 0.899 33

Fig. 25. Example of rules for KGC. The picture refers to [184].

has shown that the non-linear composition function outperforms
linear functions (as used by them) for relation prediction tasks)
to select and expand the appropriate linear or non-linear model.

4.2. External extra information outside KGs

In this section we comb KGC studies which exploit external
information and mainly include two aspects: rule-based KGC
in Section 4.2.1 and third-party data source-auxiliary KGC in
Section 4.2.2.

4.2.1. Rule-based KGC
Logical rules in KGs are non-negligible in that they can provide

us expert and declarative information for KGC, they have been
demonstrated to play a pivotal role in inference [185–187], and
hence are of critical importance to KGC. In this section we give a
systemic introduction of KGC tasks working with various rules,
we also list a summary table for rule-based KGC methods as
shown in Table 21.

4.2.1.1. Introduction of logical rules. An example of KGC with log-
ical rules is shown in Fig. 25. From a novel perspective [192], KGs
can be regards as a collection of conceptual knowledge, which can
be represented as a set of rules like BornIn(x, y)∧Country(y, z)→
Nationality(x, z), meaning that if person x was born in city y and y
is just right in country z, then x is a citizen of z. Rules are explicit
knowledge (compared to a neural network), thus reasonable use
of logic rules is of great significance to handle problems in KGs.
Rule-based KGC allows knowledge transfer for a specific domain

by exploiting rules about the relevant domain of expertise, which t

38
Fig. 26. An example of the robustness of rule reasoning shown in [191].

makes rule-based reasoning achieve high accuracy. Moreover,
logical rules are interpretable enough to provide insight into the
results of reasoning, and in many cases, this excellent character
will lead to the robustness of the KGC transfer task. For example,
conducting rule reasoning over an increasing KG can avoid parts
of retraining work due to the addition of new nodes, which is
more adaptable than models modeled for certain entities within
a specific KG. Consider the scenario in Fig. 26, when we add
some new facts about more companies or locations to this KG,
the rules with respect to ‘HasOfficeInCountry’ will still be usefully
accurate without retraining. The same might not be workable for
methods that learn embeddings for specific KG entities, as is done
in TransE. In other words, logical rule-based learning can be applied
to those ‘‘zero-shot ’’ entities that cannot be seen during training.

The rules are manually or automatically constructed as various
logic formulas, each formula learns a weight by sampling or
counting grounding from existing KGs. These weighted formulas
are viewed as the long-range interactions across several relations
[185]. Manual rules are not suitable for large-scale KGs, on the
other hand, it is hard to cover all rules in the specific domain
KG by hand. Recently, rule mining has become a hot research
topic, since it can automatically induce logical rules from ground
facts, i.e., captures co-occurrences of frequent patterns in KGs to
determine logical rules [207,209] in a machine-readable format.

4.2.1.2. Definition about logical rules based KGC. Formulaically, the
KGC over rules we consider here consists of a query, an entity tail
that the query is about, and an entity head that is the answer to
the query [191]. The goal is to retrieve a ranked list of entities
based on the query such that the desired answer (i.e., head) is
ranked as high as possible.

Formulation of Logical Rules: In terms of first-order logic [210,
211], given a logical rule, it is first instantiated with concrete
entities in the vocabulary E, resulting in a set of ground rules.
Suppose X is a countable set of variables, C is a countable set of
onstants. A rule is of the form head← body as follows formula,
here head query(Y , X) is an atom over R ∪ X ∪ C and body
n(Y , Zn) ∧ ... ∧ R1(Z1, X) is a conjunction of positive or negative
toms over R ∪ X ∪ C .

uery(Y , X)← Rn(Y , Zn) ∧ ... ∧ R1(Z1, X)

here R1, . . . , Rn are relations in the KGs.

round Atom & Rule’s Grounding: A triple (ei, rk, ej) can be
aken as a ground atom which applies a relation rk to a pair of en-

ities ei and ej. When replacing all variables in a rule with concrete
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Table 21
Characteristics of introduced KGC methods using rules.
Model Technology Information Rules Dataset

Markov Logic Network (MLNs) series:

LRNNs [188] Standard feed-forward NN,
weighted first-order rules

First-order rules Function-free first-order logic 78 RL benchmarks

MLN-based KGC
[189]

Markov Logic Network,
mathematical axiom proof

Rules – –

ExpressGNN [190] GNNs+MLN,
solving zero-shot problem,
EM algorithm,
mean-field approximation inference

Logic rules,
entity information

First order logical rules in MLN FB15K-237

End-to-end differentiable framework:

NuralLP [191] TensorLog,
neural controller system (LSTM),
attention mechanism

First-order logical
rules

Weighted chain-like logical rules WN18,
FB15K,
FB15KSelected

RLvLR [192] Improves NuralLP,
RESCAL,
target oriented sampling

First-order logical
rules

CP rule: closed path rules FB75K,
WikiData

NTPs [193] RNN,
backward chaining algorithm,
RBF kernel,
ComplEx

First-order logical
rules

Function-free first-order logic rules,
parameterized rules,
unify rule,
OR rule,
AND rule

Countries,
Kinship,
Nations,
UMLS

NTP2.0 [194] NTPS,
max pooling strategy,
Hierarchical Navigable Small World (HNSW, a
ANNS structure)

First-order logical
rules

Function-free first-order logic rules;
parameterized rules;
unify rule;
OR rule;
AND rule

Countries,
Nations,
Kinship,
UMLS

DRUM [184] Open World Assumption,
confidence score,
BIRNN

First-order logical
rules

– Family,
UMLS,
Kinship

Combining rule and embedding approach:

a. A shallow interaction:

r-KGE [185] ILP,
RESCAL/TRESCAL/TransE,
four rules

Logical rules,
physical rules

Rule 1 (noisy observation);
Rule 2 (argument type expectation);
Rule 3 (at-most-one restraint);
Rule 4 (simple implication).

Location,
Sport

INS [195] MLNs,
INS-ES,
TransE

Paths,
rules

path rules FB15K

ProRR-MF [196] ProPPR,
matrix factorization,
BPR loss

First-order logical
rules

First-order logical rules FB15K,
WordNet

b. Explore further combination style:

KALE [197] Translation hypothesis,
t-norm fuzzy logic

Logic rules Horn logical rules WN18,
FB122

Trans-rule [198] TransE/TransH/TransR,
first-order logic space transformer,
encode the rules in vector space,
confidence score with a threshold

First-order logical
rules

Inference rules;
transitivity rules;
antisymmetry rules

WN18,
FB166, FB15K

c. Iteration interactions:

RUGE [199] Iterative model,
soft label prediction,
embedding rectification,
confidence score

Soft rules,
logic rules

Soft rules;
Horn logical rules

FB15K,
YAGO37

ItRI [200] KG embedding model,
iteratively learning,
pruning strategy,
hybrid rule confidence measures

Feedback information
of KG embedding
model text corpus,
non-monotonic rules

Non-monotonic rules with negated
atoms;
non-monotonic rules with
partially-grounded atoms

FB15K,
Wiki44K

IterE [201] Iterative model,
embedding representation,
axiom induction,
axiom injection,
confidence score,
linear mapping hypothesis

OWL2 Language,
axioms information

7 types of object property expression;
ontology axioms;
Horn logical rules

WN18-s,
WN18RR-s,
FB15k-s,
FB15k-237-sa

(continued on next page)
39
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Table 21 (continued).
Model Technology Information Rules Dataset

pLogicNet [202] MLN,
EM algorithm,
amortized mean-field inference,
KG embedding model
(TransE/ComplEx)

First order logical
rules

First order logical rules in MLN:
Composition Rules,
Inverse Rules,
Symmetric Rules,
Subrelation Rules

FB15k,
FB15k-237,
WN18,
WN18RR

Text + Logic rules:

FEP-AdTE [203] Knowledge verification system,
TEP-based abductive text evidence,
remote supervision

Logical information,
text information

First-order logic rules FGCNb KGs

Rules + Paths + Embedding approaches:

AnyBURL [204] Aleph’s bottom-up rule learning Fuzzy rules,
uncertain rules,
path

Straight ground path rule:
AC1 rules,
AC2 rules,
C rules

FB15(k),
FB15-237,
WN18,
WN18RR,
YAGO03-10

ELPKG [205] KGE model,
breadth first search for paths,
probabilistic logical framework PSL

Path information,
logic rules

Probabilistic soft logic rules YAGO,
NELL,
YAGO-50,
YAGO-rest

RPJE [206] KGE model,
confidence score,
compositional representation learning

Logical rules,
path

Horn rules for two modules:
R1: relation pairs association,
R2: paths composition

FB15K,
FB15K-237,
WN18, NELL-995

Filtering candidate triples:

AMIE+ [207] Open-world assumption,
pruning operations

First-order logical
rules

Single chain of variable rules
for Confidence approximation;
PCA;
typed rules

YAGO2 core,
YAGO2s,
DBpedia 2.0,
DBpedia 3.8,
Wikidata

CHAI [26] Complex rules normalizer Rules Complex rules base on relation
domain and distance;
4 types filtering candidates criteria

FB13,
WN18,
NELL,
EPSRC

About evaluation:

RuleN [208] An unify evaluation framework,
evaluated with AMIE model

Logical rules Path rules Pn;
C rules

WN18,
FB15k,
FB15k-237

a ‘-s’ means the ‘-sparse’ series datasets.
bThe ‘FGCN’ means Four Great Chinese Novels in China.
entities in KG, we get a grounding of the rule. A logical rule is
encoded, for example, in the form of ∀x, y : (x, rs, y)→ (x, rt , y),
eflecting that any two entities linked by relation rs should also be
inked by relation rt [197]. For example, a universally quantified
ule ∀x, y : (x, CapitalOf , y) → (x, LocatedIn, y) might be instan-
tiated with the concrete entities of Paris and France, forming the
ground rule (Paris, CapitalOf , France)→ (Paris, LocatedIn, France).
A grounding with all triples existing in the KG is a support of this
rule, and the ground rule can then be interpreted as a complex
formula, constructed by combining ground atoms with logical
connectives (e.g. ∧ and→).

Logical Rules for KGC: To reason over KGs, for each query it is
usually interested in learning weighted chain-like rules of a form
similar to stochastic logic programs [212]:

α query(Y , X)← Rn(Y , Zn) ∧ ... ∧ R1(Z1, X)

where α ∈ [0, 1] means the confidence associated with this rule.
In a generic sense, the inference procedure will define the score
of each y implies query (y, x) as the sum of the confidence of the
rules for the given entity x, and we will return a ranked list of
entities where higher the score implies higher the ranking [191].

4.2.1.3. Rule mining. Inferring the missing facts among existing
entities and relations in the growing KG by rule-based inference
approaches has become a hot research topic, and how to learn
the rules used for KGC also catches people’s eye. There is a lot of
literature that takes many interests in rule learning technology.
40
(1). Inductive logic programming (ILP) for rule mining:

Inductive logic programming (ILP) [213] (i.e. XAIL) is a type
of classical statistical relational learning (SRL) [214], it proposes
new logical rules and is commonly used to mine logical rules
from KGs. Although ILP is a mature field, mining logical rules
from KGs is difficult because of the open-world assumption KGs
abide by, which means that absent information cannot be taken
as counterexamples.

(2). Markov Logic Networks (MLNs) and its extensions:
Often the underlying logic is a probabilistic logic, such as

Markov Logic Networks (MLNs) [215] or ProPPR [216]. The
advantage of using probabilistic logic is that by equipping logical
rules with probability, one can better statistically model complex
and noisy data [191].

MLNs combines hard logic rules and probabilistic graphical
models. The logic rules incorporate prior knowledge and allow
MLNs to generalize in tasks with a small amount of labeled
data, while the graphical model formalism provides a principled
framework for dealing with uncertainty in data. However, infer-
ence in MLN is computationally intensive, typically exponential
in the number of entities, limiting the real-world application of
MLN. Also, logic rules can only cover a small part of the possible
combinations of KG relations, hence limiting the application of
models that are purely based on logic rules.

Lifted Relational Neural Networks (LRNNs) [188] is a lifted
model that exploits weighted first-order rules and a set of rela-
tional facts work together for defining a standard feed-forward
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eural network, where the weight of rules can be learned by
tochastic gradient descent and it constructs a separate ground
eural network for each example.

Theoretical study of MLN-based KGC (MLN-based KGC) [189]
xplores the possibility that using MLN for KGC under the maxi-
um likelihood estimation, it discusses the applicability of learn-

ng the weights of MLN from KGs in the case of missing data
heoretically. In this work, it is proved by mathematical axiom
roof that the original method, which takes the weight of MLNs
earning on a given and incomplete KG as meaningful and correct
i.e. using the so-called closed world assumption), and predicts
he learned MLN on the same open KGs to infer the missing facts
s feasible. Based on the assumption that the missing triples are
ndependent and have the same probability, this paper points out
hat the necessary condition for the original reasoning method is
hat the learning distribution represented by MLN should be as
lose as possible to the data generating distribution. In particular,
aximizing the log-likelihood of training data should lead to
aximizing the expected log-likelihood of the MLN model.

xpressGNN [190] explores the combination of MLNs and popular
GNNs in KGC field, and applies GNNs into MLN variational reason-
ing. It uses GNNs to explicitly capture the structural knowledge
encoded in the KG to supplement the knowledge in the logic
formula for predicting tasks. The compact GNNs allocates simi-
lar embedding to similar entities in the KG, while the express-
ible adjustable embedding provides additional model capacity to
encode specific entity information outside the graph structure.
ExpressGNN overcomes the scalability challenge of MLNs through
efficient stochastic training algorithm, compact posterior param-
eterization and GNNs. A large number of experiments show that
ExpressGNN can effectively carry out probabilistic logic reason-
ing, and make full use of the prior knowledge encoded within
logic rules while meet data-driven requirement. It achieves a
good balance between the representation ability and the simplic-
ity of the model. In addition, it not only can solve the zero-shot
problem, but also is a general enough which can balance the
compactness and expressiveness of the model by adjusting the
dimensions of GNNs and embedding.

(3). End-to-end differentiable rule-based KGC methods:
Based on these proposed basic rule-mining theories, a large

amount of end-to-end differentiable rule-based KGC methods are
developed according to these types of rules.

Neural Logic Programming (NeuralLP) [191] is an end-to-end
differentiable framework which combines first-order rules in-
ference and sparse matrix multiplication, thus it allow us learn
parameters and structure of logical rules simultaneously. Addi-
tionally, this work establishes a neural controller system using
attention mechanism to properly allot confidences to the logical
rules in the semantic level, rather than merely ‘‘softly’’ generate
approximate rules as mentioned in previous works [217–220],
and the main function of the neural controller system is con-
trolling the composition procedure of primitive differentiable
operations of TensorLog [221] in the memory of LSTM to learn
variable rule lengths.

RLvLR [192] aims at tackling the main challenges in the scalability
of rule mining. Learning rules from KGs with the RESCAL embed-
ding technique, RLvLR guides rules mining by exploring in pred-
icates and arguments embedding space. A new target-oriented
sampling method makes huge contributions to the scalability of
RLvLR in inferring over large KGs, and the assessment work for
candidate rules is handled by a suit of matrix operations referred
to [207,209]. RLvLR shows a good performance both in the rules’s
quality and the system scalability compared with NeuralLP.

NTPs [193] is similar to NeuralLP, it focuses on the fusion of
neural networks and rule inferring as well, but models neural
 i

41
networks following a backward chaining algorithm referred in
Prolog, performing inference by recursively modeling transitiv-
ity relations between facts represented with vectors or tensors
using RNN. NTPs makes full use of the similarity of similar sub-
symbolic representations in vector space to prove queries and
induce function-free first-order logical rules, the learned rules are
used to perform KGC even further. Although NTPs demonstrates
better results than ComplEx in a majority of evaluation datasets,
it has less scalability compared to NeuralLP as the limitation of
computation complexity which considers all the proof paths for
each given query.

NTP 2.0 [194] whereby scales up NTPS to deal with real-world
datasets cannot be handled before. After constructing the compu-
tation graph as same as NTPs, NTPs 2.0 employs a pooling strategy
to only concentrate on the most promising proof paths, reduc-
ing the solutions searching procedure into an Approximate Near-
est Neighbor Search (ANNS) problem using Hierarchical Navigable
Small World (HNSW) [222,223].

DRUM [184], an extensible and differentiable first-order logic rule
mining algorithm, further improves NeuralLP by learning the rule
structure and the confidence score corresponding to the rule, and
establishes a connection between each rule and the confidence
score learned by tensor approximation, uses BIRNN to share use-
ful information when learning rules. Although it makes up for
the shortcomings of the previous inductive LP methods that have
poor interpretability and cannot infer unknown entities, DRUM
is still developed on the basis of the Open World Assumption
of KGs and is limited to positive examples in training. In the
following research, it is necessary to further explore improved
DRUM methods suitable for negative sampling, or try to explore
the same combination of representation learning and differential
rule mining as methods [63,224].

4.2.1.4. Combining rule-based KGC models with KGE models. The
ule-based KGC models provide interpretable reasoning and allows
omain-specific knowledge transfer by using the rules about re-
ated professional fields. Compared to the representation model,
he rule-based models do not need a lot of high-quality data but
an achieve high accuracy and strong interpretability. However,
hey often face efficiency problems in large-scale search space;
hile the embedding-based KGC models, i.e., the KGE models,
ave higher scalability and efficiency but they have a flaw in
ealing with sparse data due to their great dependence on data.
e summarize the advantages and disadvantages of rule-based
GC and embedding-based KGC methods in a simplified table
Table 22). Therefore, there is no doubt that combining rule-based
easoning with KGE models to conduct KGC will be noteworthy.
lease see Fig. 27 for a rough understanding of the researches of
ombining rule information with KGE models.
(1). A shallow interaction:
There are already some simple integrating works in the earlier

ttempts:

-KGE [185] is one of these methods, it tries to utilize ILP to in-
egrate the embedding model (three embedding models: RESCAL,
RESCAL, TransE) and four rules (including logical rules and phys-
cal rules): rules are expressed as constraints of the maximization
roblem, by which the size of embedding space is greatly re-
uced. r-KGE employs relaxation variables to model the noise
xplicitly, and a simple noise reduction method is used to reduce
he noise of KGs. But there are some disadvantages in this work:
t cannot solve n − to − n relations and the reasoning process is
oo time-consuming, especially for large KGs, which makes the
lgorithm has poor scalability.

NS [195] is a data-driven inference method which naturally

ncorporates the logic rules and TransE together through MLNs
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Statistics of pros and cons of rule-based KGC methods and embedding-based KGC methods.
Category Advantage Disadvantage

Rule-based KGC 1. Consider explicit logical semantics
2. Strong explainability and accuracy
3. Data dependency
4. Can be applied to both transductive and inductive problems
5. High robustness avoiding re-training

1. Poor Scalability
2. Noise sensitive
3. High computational complexity

Embedding-based KGC 1. High scalability
2. High efficiency
3. Not affected by huge candidate sets

1. Data-driven
2. Poor explainability
3. Hard to model the interaction of different relations
4. Cannot handle inductive scenarios
Fig. 27. Several typical KGC models which combine logical rules and embedding models, the development from (a) to (d) shows the process of deepening interaction
etween rules and embedding models.
ource: These pictures are extracted from [52,185,197,199]
o conduct KGC, where TransE calculates the similarity score
etween the candidate and the correct tag, so as to take the
op-N instances selection to form a smaller new candidate set,
hich not only filters out the useless noise candidates, but also

mproves the efficiency of the reasoning algorithm. The calculated
imilarity score is used as a priori knowledge to promote further
easoning. For these selected candidate cases, INS and its im-
roved version INS-ES [195] algorithm adopted in MLN network

is proposed to consider the probability of transition between
network sampling states during reasoning, therefore, the whole
reasoning process turns into supervised. It is worth noting that
INS greatly improves the Hits@1 score in FB15K dataset.

A Matrix Factorization Based Algorithm utilizing ProPPR
(ProRR-MF) [196] tries to construct continuous low dimensional
embedding representation for first-order logics from scratch, and
is interested in learning the potential and distributed represen-
tation of horn clause. It uses scalable probabilistic logic structure
(ProPPR in [216]) learning to construct expressive and learnable
logic formulas from the large noisy real-world KGs, and applies
a matrix factorization method to learn formula embedding. This
42
work is the first formal research on low dimensional embedding
learning of first-order logic rules. However, it is still in a dilemma
in predicting new knowledge since it has not combines entity,
relation and rule embedding to cooperate symbolic reasoning
with statistical reasoning.

Nevertheless, although these several KGC methods jointly
model with logical rules and embeddings, the rules involved in
them are used merely as the post-processing of the embedding
methods, which leads to less advance in the generation of better
embedding representation [197].

(2). Explore further combination style:
Different from previous approaches, the latter literatures ex-

pect to explore more meaningful combination ways, rather than
just jointly working on the surface level.

KALE [197] is a very simple KGC model which combines the
embedding model with the logical rules, but pays attention to
the deep interaction between rules and embedding methods. The
main idea of KALE is to represent triples and rules in a unified
framework, in which triples are represented by atomic formulas
and modeled by translation hypothesis; rules are represented by
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omplex formulas and modeled by t-norm fuzzy logic. Embedding
an minimize the overall loss of atomic formulas and complex
ormulas. In particular, it enhances the prediction ability of new
acts that cannot be inferred directly from pure logic inference,
nd it has strong generality for rules.

rans-rule [198] is also a translation-based KG embedding and
logic rules associative mode, what distinguishes this model from
previous similar works is that, it concerns about rules having
confidence above a threshold, including inference rules, transitivity
rules and antisymmetry rules, these rules and their confidences
are automatically mined from triples in KG, then they are placed
together with triples into a unify first-order logic space which al-
low rules encoded in it. Additionally, to avoid algebraic operations
inconsistency problem, it maps all triples into first-order logics,
and also defines kinds of interaction operations for rules to keep
the form of rules encoding to 1-to-1 mapping relation.

(3) Iteration interactions
With the emergence of new completion demands, a new way

of jointly learn rules and embeddings for KGC in a iteration
manner comes into being.

RUGE [199] is a novel paradigm of KG embedding model which
combines the embedding model with logic rules and exploits
guidance from soft rules in an iterative way. RUGE enables the
embedding model to learn both labeled and unlabeled triples in
exiting KG, the soft rules with different confidence levels can be
acquired automatically from the KG at the same time. Vary from
the previous studies, this work first applies a iterative manner
to deeply capture the interactive nature between embedding
learning and logical inference. The iterative procedure can auto-
matically extracted beneficial soft rules without extensive manual
effort that are needed in the conventional attempts which always
use hard rules in a one-time injection manner. Each iteration
contains two stage: soft label prediction and embedding rectifi-
cation, the two partial responsible for approximately reasoning,
predicting and updating the KG with the newly predicted triples
for further better embeddings in the next iteration respectively.
Though the whole iteration procedure, this flexible approach can
fully divert the rich knowledge contained in logic rules to the
learned embeddings. Moreover, RUGE demonstrates the useful-
ness of automatically extracted soft rules according a series of
experiments.

Iterative Rules Inducing (ItRI) [200] iteratively extends induced
rules guided by feedback information of the KG embedding model
calculated in advance (including probabilistic representations of
missing facts) as well as external information sources, such as text
corpus, thus the devised approach not only learns high quality
rules, but also avoids scalability problems. Moreover, this machin-
ery is more expressive through supporting non-monotonic rules
of negated atoms and partially grounded atoms.

IterE [201] recursively combines the embedding model and rules
to learn the embedding representation as well as logic rules.
IterE mainly consists of three parts: embedding representation,
axiom induction, axiom injection, and the training is carried out
by interactive iteration among these three parts so that rules
and embedding can promote each other to the greatest extent,
forming the final reasoning framework. Specifically, on the one
hand, the embedding model learns from the existing triples in
KGs as well as the triples inferred from the rules. On the other
hand, the confidence score of axioms derived from the pruning
strategy should be calculated on the learned relational embed-
dings according to the linear mapping hypothesis, and then new
triples can be inferred by the axioms. Finally, the new triples
are linked into KGs for following entity embedding learning.
The recursive operation designed by IterE not only alleviates
43
the sparsity of KGs but also pays attention to the influence of
semantics on rules. IterE proposes a new form of combining rule
and embedding representation, which provides a new idea for
KGC research combining different types of methods.

pLogicNet proposed by [202] is the product of cooperation be-
tween KG embedded model and MLN logic rules. Similar to IterE,
the operation process of pLogicNet is also carried out under the
deep interaction between embedding and rules. The difference is
that in pLogicNet, a first-order Markov logic network is used to
define the joint distribution of all possible triples, then applies the
variant algorithm of EM algorithm to optimize pLogicNet. In the E
step of the variant EM algorithm, the probability of unobserved
triples is deduced by using amortized mean-field inference, and
the variation distribution is parameterized as the parameter of
the KG embedding model; in M-step, the weights of the logic
rules are updated by defining the pseudo-likelihood on both the
observed triples and the triples inferred from the embedding
model. PLogicNet can effectively use the stochastic gradient de-
scent algorithm to train. The training process iteratively performs
E-step and M-step until convergence, and the convergence speed
of the algorithm is very satisfactory.

4.2.1.5. Cooperating rules with other information. (1) Cooperating
with abductive text evidence

TEP-based Abductive Text Evidence for KGC (FEP-AdTE) [203]
combines logical information and text information to form a new
knowledge verification system, adding new fact triples to KGs.
The main idea of this paper is to define the explanation of triples
— the form of (triples, windows) abductive text evidence based
on TEP, in which the sentence window w explains the degree of
the existence of the triple τ , and uses the remote supervision
ethod in relation extraction to estimate the abductive text
vidence. FEP-AdTE considers only the subset-minimal abductive
xplanation (called Mina explanation) to make the explanation
s concise as possible and applies the hypothesis constraint to
imit the number of Mina explanations to be calculated to make
he interpretation work possible. It is worth mentioning that this
aper has developed KGs corresponding to the text corpus of
our Chinese classics to evaluate the new knowledge verification
echanism of this paper. However, the triple interpretation in

his paper does not contain valuable entity-type attributes. In
uture work, we can consider adding pragmatic interpretation
f entity types to further enhance the verification effect of new
nowledge and make contributions to KGC.
(2) Cooperating with path evidence

nyBURL [204] can learn logic rules from large KGs in a bottom-
p manner at any time. AnyBURL is further designed as an ef-
ective KG rule miner, the concept of example is based on the
nterpretation of path in KGs, which indicates that KGs can be
ormed into a group of paths with edge marks. In addition, Any-
URL learns fuzzy, uncertain rules. Because the candidate ranking
an be explained by the rules that generate the ranking, AnyBURL
as good explanatory power. In addition to the other advantages
f rule-based KGC, the additional advantages of AnyBURL are its
ast running speed and less use of resources. In addition, AnyBURL
roves that rule learning can be effectively applied to larger KBs,
hich overturns the previous bias against the rule-based KGC
ethod.

LPKG [205] combines path information, embedding representa-
ion and soft probability logic rules together. In a word, the KG
mbedding model is used to train the representation of inter-
ntity relation, and breadth-first search is used to find the path
etween entity nodes. The representation of entity/relation based
n path information is combined with the representation based
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Table 23
Candidate filtering works in rule reasoning.
Model Candidate filtering strategies

AMIE, AMIE+ [207] Maximum rule length,
Perfect rules,
Simplifying projection queries,
confidence threshold minConf

INS [195] Instance selection using TransE

NTP 2.0 [194] Approximate Nearest Neighbor Search

RLvLR [192] MinSC and MinHC

IterE [201] Traversing and random selection

DRUM [184],
RUGE [199],
Trans-rule [198],
RPJE [206],
ItRI [200]

Confidence measure for pruning rules

CHAI [26] Filtering candidates criteria in KGs:
existsKG((h, r, t))↔ ∃e ∈ E|(h, r, e) ∈ T ,
domKG,rel((h, r, t))↔ ∃e ∈ E|(t, rel, e) ∈ T ,
ranKG,rel((h, r, t))↔ ∃e ∈ E|(e, rel, t) ∈ T ,
distanceKG,i((h, r, t))↔ dist(KG, h, t) ⩽ i

on the embedding vector to generate relational representation
between entities. On this basis, the probability soft logic is applied
to deduce and predict the relation probability between entities
to perform KGC, which solves the problems of knowledge in-
consistency and knowledge conflict. Finally, the method is used
to complete the relation between KG entities. ELPKG not only
ensures the efficiency of it but also shows the high accuracy of
LP. Because it makes full use of the existing facts of KG, it does
not need external auxiliary knowledge.

RPJE [206] also combines path and semantic level associate rela-
ions by Horn rules. Firstly, it mines and encodes logical rules of
orn sub-sentence forms with different lengths from the knowl-
dge graph, and then uses the rules with length 2 to accurately
ombine paths, and explicitly makes length 1 rules to create a
emantic association between relations and constrain relations
ector representation. In addition, the confidence degree of each
ule is also considered in the optimization process to ensure that
he rule should be effective in representation learning. RPJE com-
ines logic rules and paths to embed KG, which fully benefits the
nterpretability and accuracy of logic rules-based KGC methods,
he generalization of KG embedding, and the semantic structure
nformation provided by paths. The combination strategy of this
aper is simple so that it is worth trying to adopt more complex
ombination methods, such as using the LSTM with an attention
echanism suitable for long-path modeling. In addition, learn

rom the interaction between embedding and rules in IterE and
LogicNet to explore how to use a well-designed closed-loop
ystem to push embedded information back from RPJE to rule
earning also deserves people’s attention.

.2.1.6. Candidate filtering in rule reasoning. Some rules are pro-
osed for filtering candidate triples (called filtering rules) in the
ontext of the KGC process by combining a number of criteria in
uch a way that it optimizes a given fitness function, the produced
ules can be applied to the initial set of candidates and generate
reduced set that contains only the more promising candidate

riples rather than using the full set possible missing candidate
riples (and thus provide no filtering) or applying very basic rules
o filter out unlikely candidates most current approaches do,
hich may have a negative effect on the completion performance
s very few candidate triples are filtered out [26]. A summary
able about candidate filtering are listed as Table 23.

MIE+ [207] presents a series of pruning strategies including for-
ulatingMaximum rule length, Perfect rules and Simplifying projec-

ion queries. Besides, they prune rules with a confidence threshold
44
minConf and conduct confidence approximations that allow the
system to explore the search space much more efficiently.

Inferring via Grounding Network Sampling (INS) [195] employs
an embedding-based model (TransE) to conduct the instance
selection and form much smaller candidate sets for subsequent
fact inference, whose aim is not only narrowing the candidate sets
but also filtering out part of the noise instances.

NTP 2.0 [194] shows that searching answer facts over KGs that
best explain a query can be reduced to a k-nearest neighbor
problem, for which efficient exact and approximate solutions
exist [79].

RLvLR [192] sets the MinSC and MinHC which represent the
minimum values of standard confidence and head coverage for
learned rules, respectively, to further filter the candidate rules.

IterE [201] utilizes a pruning strategy combining traversing and
random selection to generate a pool of possible axioms and then
assigns a score to each axiom in the pool based on a calculation
between relation embeddings according to rule conclusions from
linear map assumption.

The work in [184,198–200,206] tend to devise the confidence
measures that capture rule quality better for pruning out not
promising rules, thus improve the ranking of rules.

CHAI [26] At the same time, CHAI focuses on the filtering method
of candidate triples in the KGC process. It points out that the
previous KGC method considers all candidate triples or filters
candidate sets roughly, which is not reasonable. To solve these
problems, CHAI considers more complex rules based on relation
domain and distance to normalize the candidate set and effec-
tively selects the most promising candidate triples to form the
smallest candidate set, so as to improve the performance of KGC.
Although this method provides a good idea for filtering candidate
triples, it is not suitable for large relational KGs and sparse KGs,
which can be further improved in the future. In the experiment,
it is compared with [25], whose candidate set filtering proposal
is replacing the target entity with the entities within the range
of all relations of the existing triples, so as to generate candidate
triples.

4.2.1.7. Evaluation and datasets of rule-based KGC methods. About
Evaluation: Mining rules have traditionally relied on predefined
statistical measures such as support and confidence to assess
the quality of rules [192]. These are fixed heuristic measures.
For example, to assess the quality of mined rules, the common
measures that are used to rule learning mostly evaluate can-
didates rules according to their Standard Confidence (SC) and
Head Coverage (HC). If entity pair (e, e′) satisfies the body of
r (denoted as body(r)(e, e′)), and (e, e′) satisfies the head of
r (denoted as Rt (e, e′)), for the entities e1, . . . , en−1 and the
facts R1(e, e1), R2(e1, e2), . . . , Rn(en−1, e′) in KG, when there exists
Rt (e, e′) in the KG, the computation of SC and HC are as follows:

SC(r) =
supp(r)

#(e, e′) : body(r)(e, e′)

HC(r) =
supp(r)

#(e, e′) : Rt (e, e′)
where supp(r) is the support degree of rule r:

supp(r) = #(e, e′) : body(r)(e, e′) ∧ Rt (e, e′)

Whereas these measures maybe are not optimal for various use
cases in which one might want to use the rules. For instance,
using SC is not necessarily optimal for statistical relational learn-
ing. Therefore, the work in [207] develops PCA confidence to allow
the counterexamples generation in a less restrictive way than SC.
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Table 24
An KGC example using rules referred to [208]. In this instance, four
relevant rules for the completion task (h, r, ?) resulting in the ranking
g(0.81), d(0.81), e(0.23), f (0.23), c(0.15)). A rule can generate one candidate
fourth row), several candidates (first and third row), or no candidate (second
ow).
Rule Type Confidence Result

r(x, y) ≤ s(y, x) P1 0.81 {d,g}
r(x, y) ≤ r(y, x) P1 0.7 φ

r(x, y) ≤ t(x, z) ∧ u(z, y) P2 0.23 {e,f,g}
r(x, c) ≤ ∃yr(x, y) C 0.15 {c}

Besides, the work in [184] uses two theorems to learn rule struc-
tures and appropriate scores simultaneously. However, this is a
challenge because the method needs to find an optimal structure
in a large discrete space and simultaneously learn proper score
values in a continuous space. Due to the process of evaluating
candidate rules in a rule mining system is generally challenging
and time-consuming, [192] reduces its computation to a series
of matrix operations. This efficient rule evaluating mechanism
allows the rule mining system to handle massive benchmarks
efficiently. Meilicke et al. [208] presents a unified fine-grained
evaluation framework that commonly assesses rule-based infer-
ring models over the datasets generally used for embedding-
based models, making the effort to observe the valuable rules and
interesting experiences for KGC. Consider the rule’s confidence
as well, since when we use relevant rules for the complete task
(h, r, ?), a rule can generate a variable number of candidate, and
the possible ways of aggregating the results generated by the
rules are various. The work in [208] defines the final score of
an entity as the maximum confidence scores of all rules that
generated this entity. Furthermore, if a candidate has been gen-
erated by more than one rule, they use the amount of these
rules as a secondary sorting attribute among candidates with the
same (maximum) score. For instance in the Table 24, if there
are four relevant rules for completing (h, r, ?) and resulting in
he final ranking (g(0.81), d(0.81), e(0.23), f (0.23), c(0.15)). To
upport the evaluation system, this paper designs a simplified
ule-based model called RuleN for assessing experiments and
valuated together with the AMIE model. With the inspiring
esults of experiments showing that models integrating multiple
ifferent types of KGC approach deserve to be attracted attention
n KGC task, this paper further classifies test cases of datasets for
ine-grained evaluation according to the interpretation generated
y the rule-based method, then gets a series of observations
bout the partitioning of test cases in datasets.

atasets: Table 25 list the basic statistics information about com-
on used datasets for rule-based KGC research. Here we intro-
uce several datasets in detail.

ELL: NELL datasets (http://rtw.ml.cmu.edu/rtw/resources) and
ts subsets are likely to be used as experimental data, including
ELL-995 [206], Location and Sport [185].

B122: composed of 122 Freebase relations [197] regarding the
opics of ‘‘people’’, ‘‘location’’, and ‘‘sports’’, extracted from FB15K.
B122’s test set are further split into two parts test-I and test-II,
here the former contains triples that cannot be directly inferred
y pure logical inference, and the latter the remaining test triples.

ountries: a dataset introduced by [225] for testing reasoning
apabilities of neural link prediction models [193]. Triples in
ountries are (countries(c), regions(r), subregions(sr)) and they are
ivided into train, dev and test datasets which contain 204, 20
nd 20 countries data.

Gs about Four great classical masterpieces of Chinese liter-

ture (FGCN): new KGs and the corresponding logical theories

45
Table 25
Statistics about other datasets for KGC using rules.
Dataset Entity Relation Fact

#Train #Valid #Test

NELL-995 [206] 75,492 200 123,370 15,000 15,838
DRC [203] 388 45 333 – 34530
JW [203] 104 21 106 – 27670
OM [203] 156 38 178 – 34010
RTK [203] 123 30 132 – 29817
FB122 [197] 9738 122 91,638 9595 5057+6186
FB166 [198] 9658 166 100,289 10,457 12,327
YAGO [205] 192628 51 192900
NELL [205] 2 156462 50 2465372
YAGO-50 [205] 192628 50 100774
YAGO-rest [205] 192628 41 92126
Sport [185] 447 5 710
Location [185] 195 5 231
Countries [225] 244+23 5 1158

are constructed from existing text corpora in a domain about
character relationships in the four great classical masterpieces of
Chinese literature, namely Dream of the Red Chamber (DRC), Jour-
ney to the West (JW), Outlaws of the Marsh (OM), and Romance of
the Three Kingdoms (RTK) [203]. Triples in those KGs are collected
on character relationships from e-books for these masterpieces,
yielding four KGs each of which corresponds to one masterpiece.

4.2.1.8. Analysis of rule-based KGC methods. In summary, we ana-
lyze some tips about experiment rule-based KGC methods on the
common benchmark. Referring to the generated results in [208],
which allow for a more comprehensive comparison between var-
ious rule-based methods and embedding-based approaches for
KGC, employing a global measure to rank the different methods.
On this basis, we gained several interesting insights:
1. Both AMIE and RuleN perform competitively to embedding-
based approaches for the most common benchmarks. This holds
for the large majority of models reported about in [226]. Only a
few of these embedding models perform slightly better.
2. Since the rule-based approaches can deliver an explanation for
the resulted ranking, the characteristic can be helpful to conduct
fine-grained evaluations and understand the regularities within
and the hardness of a dataset [204].
3. The traditional embedding-based KGC methods may have mat-
ters in solving specific types of completion tasks whereas it can
be solved easily with rule-based approaches, this tip becomes
even more important when the situations looking solely at the
top candidate of the filtered ranking.
4. One reason for the good results of rule-based systems is the
fact that most standard datasets are dominated by rules such as
symmetry and (inverse) equivalence (except for those especially
constructed datasets, e.g., FB15k-237).
5. It is quite possible to leverage both families of approaches
by learning an ensemble [185,195–199,202] to achieve better
results than any of its members. The overall ensemble models
tend to contain a closed-loop operation, which indicates that the
embedding expression and rules are mutual achievements with
each other. In the future, it is necessary to explore more effective
interaction ways for integrating these two categories approaches.
6. Recently, novel effective but complex KG encoding models
emerge in endlessly, which also provides alternative techniques
for KGC to combine knowledge embedding and rules in the future.

4.2.2. Third-party data sources-based KGC
Some related techniques learn entity/relation embeddings

from triples in a KG jointly with third-party data sources, in
particular with the additional textual corpus (e.g., Wikipedia
articles) for getting help from related rich semantic information.

http://rtw.ml.cmu.edu/rtw/resources
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Table 26
Statistics of popular KGC models using third-party data sources.
Models Technology Information (Data Source) Datasets

Joint alignment model:

JointAS [15] TransE, skip-gram,
words co-occurrence,
entity-words co-occurrence

Structural information,
entities names,
Wikipedia anchors

Freebase subset;
English Wikipedia

JointTS [121] TransE, skip-gram,
JointAS

Structural information,
entities names
Wikipedia text descriptions,
textual corpus

FB15K,
Freebase subset;
Wikipedia articles

DKRL [94] TransE, CBOW, CNN,
max/mean-pooling

Structural information,
multi-hop path,
entity descriptions

FB15K,
FB20K

SSP [227] TransE, topic extraction,
Semantic hyperplane Projection

Structural information,
entity descriptions

FB15K;
Wikipedia corpuses

Prob-TransE (or
TransD)
JointE (or JointD)
[228]

TransE/TransD, CNN,
semantics-based attention mechanism

Structural information,
entity descriptions,
anchor text, textual corpus

FB15K;
NYT-FB15K

JOINER [229] TransE,
regularization,
JointAS

Structural information,
textual corpus,
Wikipedia anchors

Freebase subset;
English Wikipedia

ATE [230] TransE, BiLSTM, Skip-Gram,
mutual attention mechanism

Relation mentions and entity descriptions,
textual corpus

Freebase, WordNet;
English Wikipedia (Wiki)

aJOINT [162] TransE,
collaborative attention mechanism

KG structural information,
textual corpus

WN11, WN18, FB13, FB15k;
Wikipedia articles

KGC with Pre-trained Language Models (PLMs):

JointAS [15], DESP
[121], DKRL [94]

word2vec Structural information, textual information FB15K, FB20K

LRAE [231] TransE, PCA, word2vec Structural information,
entity descriptions

FB15k,
WordNet

RLKB [232] Probabilistic model,
single-layer NN

Structural information,
entity descriptions

FB500K, EN15K

Jointly-Model
[233]

TransE, CBOW/LSTM, Attention,
Gate Strategy

Structural information,
entity descriptions

FB15K,
WN18

KGloVe-literals
[234]

Entity recognition,
KGloVe

Textual information in properties,
textual corpus

Cities, the AAUP, the Forbes,
the Metacritic Movies,
the Metacritic Albums;
DBpedia abstracts

Context Graph
Model [235]

Context graph, CBOW, Skip-Gram Analogy structure,
semantic regularities

DBpedia

KG-BERT [236] BERT, sequence classification Entity descriptions,
entity/relation names,
sequence order in triples, textual corpus

WN11, FB13, FB15K,
WN18RR, FB15k-237, UMLS;
Wikipedia corpuses

KEPLER [237] RoBERTa [238], masked language modeling
(MLM)

KG structural information,
entity descriptions,
textual corpus

FB15K, WN18, FB15K-237,
WN18RR; Wikidata5M

BLP [239] BERT, holistic evaluation framework, inductive
LP, TransE,
DistMult, ComplEx, and SimplE

KG structural information,
entity descriptions,
textual corpus

FB15K-237, WN18RR;
Wikidata5M

StAR [240] RoBERTa/BERT,
multi-layer perceptron (MLP),
Siamese-style textual encoder

KG structural information,
entity descriptions,
textual corpus

WN18RR, FB15k-237,
ULMS, NELL-One; Wikipedia
paragraph
Next, we will systematically introduce KGC studies that use third-
party data source, we also list them in Table 26 for a direct
presentation.

4.2.2.1. Research inspiration. This direction is inspired by these
hree key items: Firstly, pre-training language models (PLMs)
uch as Word2Vec [75], ELMo [241], GPT [242], and BERT [243],
ave caused the upsurge in the field of natural language process-
ng (NLP) which can effectively capture the semantic information
n text. They originated in a surprising found that word repre-
entations that are learned from a large training corpus display
emantic regularities in the form of linear vector translations
75], for example, king − man + woman ≈ queen. Such a struc-
ture is appealing because it provides an interpretation of the
46
distributional vector space through lexical-semantic analogical
inferences. Secondly, under the Open-world Assumption, a missing
fact often contains entities out of the KG, e.g., one or more entities
are phrases appearing in web text but not included in the KG
yet [15]. While only relying on the inner structure information
is hard to model this scene, the third-party textual datasets can
provide satisfied assistance for dealing with these out-of-KG facts.
Thirdly, similar to the last point, auxiliary textual information
such as entity descriptions can help to learn sparsity entities,
which act as the supplementary information of these entities
lacking sufficient messages in the KG to support learning.

The most striking textual information is entity description,
very few KGs contain a readily available short description or
definition for each of the entities or phrases, such as WordNet
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nd Freebase, and usually it needs the additional lexical resources
o provide textual training. For instance, in a medical dataset with
any technical words, the Wikipedia pages, dictionary defini-

ions, or medical descriptions via a site such as ‘medilexicon.com’
ould be leveraged as lexical resources [236].

.2.2.2. Joint alignment model. JointAS [15] jointly embeds entities
and words into the same continuous vector space. Entity names
and Wikipedia anchors are utilized to align the embeddings of en-
tities and words in the same space. Numerous scale experiments
on Freebase and a Wikipedia/NY Times corpus show that jointly
embedding brings promising improvement in the accuracy of
predicting facts, compared to separately embedding KGs and text.
Particularly, JointAS enables the prediction of facts containing
entities out of the KG, which cannot be handled by previous
embedding methods. The model is composed of three compo-
nents: the knowledge model LK , text model LT , and alignment
odel LA which make the use of entity names LAN and Wikipedia
nchors LAA, thus the overall objective is to maximize this jointly
ikelihood loss function:

= LK + LT + LA

here LA could be LAA or LAN or LAN + LAA, and the score function
(w, v) = b− 1

2 (∥w− v∥2) of a target word w appearing close to
context word v (within a context window of a certain length)

for text model while the score function s(h, r, t) = b − 1
2 (∥vh +

r − vt∥
2) for KG model, in which the b is a bias constant.

Although this alignment model goes beyond previous KGE
ethods and can perform prediction on any candidate facts
etween entities/words/phrases, it has drawbacks: using entity
ames severely pollutes the embeddings of words; using
ikipedia anchors completely relies on the special data source

nd hence the approach cannot be applied to other customer data.

ointTS [121] takes these above-mentioned issues into consid-
ration, without dependency on anchors, it improves alignment
odel LA based on text descriptions of entities by considering both

conditional probability of predicting a word w given entity e
nd predicting a entity e when there is a word w. This model
earns the embedding vector of an entity not only to fit the struc-
ured constraints in KGs but also to be equal to the embedding
ector computed from the text description, hence it can deal
ith words/phrases beyond entities in KGs. Furthermore, the new
lignment model only relies on the description of entities, so that
t can obtain rich information from the text description, thus well
andles the issue of KG sparsity.

KRL [94] is the first work to build entity vectors directly ap-
lying entity description information. The model combines triple
nformation with entity description information to learn vectors
or each entity. The model efficiently learns the semantic em-
edding of entities and relations relying on the CBOW and CNN
echanism and encodes the original structure information of

riples with the use of TransE. Experiments on both KGC and
ntity classification tasks verify the validity of the DKPL model in
xpressing new entities and dealing with zero-shooting cases. But
t should not be underestimated that DKRL tune-up needs more
yper-parameters along with extra storage space for inner layers’
arameters.

emantic Space Projection (SSP) [227] is a method for KGE with
ext descriptions modifying TransH. SSP jointly learns from the
ymbolic triples and textual descriptions, which builds interac-
ion between these two information sources, at the same time
extual descriptions are employed to discover semantic relevance
nd offer precise semantic embedding. This paper firmly con-

inced that triple embedding is always the main procedure and
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textual descriptions must interact with triples for better embed-
ding. SSP can model the strong correlations between symbolic
triples and textual descriptions by performing the embedding
process in a semantic subspace.

Prob-TransE and Prob-TransD [228] jointly learns the repre-
sentation of the entities, relations, and words within a unified
parameter sharing semantic space. The KG embedding process
incorporates TransE and TransD (called Prob-TransE and Prob-
TransD) as representative in the framework to handle representa-
tion learning of KGs, while the stage of representation learning of
textual relations applies CNN to embed textual relations. A recip-
rocal attention mechanism consists of knowledge based attention
and the semantics attention (SATT) are proposed to enhance the
KGC. The attention mechanism can be simply described as fol-
lows: during the KG embedding process, semantic information
extracted from text models can be used to help explicit relations
to fit more reasonable entity pairs, similarly, additional logi-
cal knowledge information can be utilized to enhance sentence
embedding and reduce the disadvantageous influences of noisy
generated in the process of distant supervision. The experiments
use anchor text annotated in articles to align the entities in KG and
entities mentions in the vocabulary of the text corpus, and build
the alignment between relations in KGs and text corpus with the
idea of distant supervision. A series of comparative experiments
prove that the joint models (JointE+SATT and JointD+SATT) have
effective performances through trained without strictly aligned
text corpus. In addition to that, this framework is adaptable and
flexible which is open to existing models, for example, the partial
of TransE and TransD can be replaced by the other KG embedding
methods similar to them such as TransH and TransR.

JOINER [229] jointly learns text and KG embeddings via regu-
larization. Preserving word–word co-occurrence in a text corpus
and transition relations between entities in a KG, JOINER also can
use regularization to flexibly control the amount of information
shared between the two data sources in the embedding learning
process with significantly less computational overhead.

ATE [230] carries out KGE using both specific relation mention
and entity description encoded with a BiLSTM module. A mutual
attention mechanism between relation mentions and entity de-
scriptions is designed to learn more accurate text representation,
to further improve the representation of KG. In the end, the final
entity and relation vectors are obtained by combining the learned
text representation and the previous traditional translation-based
representation. This paper also considers the fuzziness of entity
and relation in the triple, filters out noisy text information to
enrich KG embedding accurately.

aJOINT [162] proposes a new cooperative attention mechanism,
based on this mechanism, a text-enhanced KGE model was pro-
posed. Specifically, aJOINT enhances KG embeddings through the
text semantic signal: the multi-directional signals between KGE
and text representation learning were fully integrated to learn
more accurate text representations, so as to further improve the
structure representation.

4.2.2.3. KGC with pre-trained language models. Recently,
re-trained language models (PLMs) such as ELMo [241],
ord2Vec [75], GPT [242], BERT [243], and XLNet [244] have

hown great success in NLP field, they can learn contextualized
ord embedding with large amount of free text data and achieve
xcellent performance in many language understanding tasks
236].

According to the probable usage of PLMs in KGC tasks, the
elated approaches can be roughly divided into two categories
236]: feature-based and fine tuning approaches. Traditional
eature-based word embedding methods like Word2Vec and
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love [92] aim to learn context-independent word vectors. ELMo
eneralized traditional word embedding to context-aware word
mbedding, where word polysemy can be properly handled.
ostly, these word embeddings learned from them are often
sed as initialization vectors during the KGC process. Different
rom the former method, fine-tuning approaches such as GPT
nd BERT use the pre-trained model structure and parameters as
he starting point of specific tasks (KGC task we care about). The
re-trained model learns rich semantic patterns from free text.

exical Resources Auxiliary Embedding Model (LRAE) [231] ex-
lores methods to provide vector initialization for TransE by using
he semantic information of entity description text. LRAE exploits
ntity descriptions that are available in WordNet and Freebase
atasets. The first sentence of a given entity description is first
elected and then decomposed into a series of word vectors
the first sentence is often most relevant to the described en-
ity, which avoids noise interference and large-scale computation
rom lengthy description text), next all those vectors are averaged
o form embeddings that represent the overall description seman-
ics of the entity, where word vectors are computed by Word2vec
75] and GloVe [92]. These processed descriptive text vectors
re used as the initialization vectors of the translation model
nd are input to TransE for training. LRAE provides initialization
ectors for all entities, even including those not present in the
ata, thus it alleviates the entity sparse issue. Also, LRAE is very
ersatile and can be applied directly to other models whose input
s represented by solid vectors.

LKB [232] modifies DKRL by developed a single-layer proba-
ilistic model that requires fewer parameters, which measures
he probability of each triple and the corresponding entity de-
cription, obtains contextual embeddings of entities, relations,
nd words in the description at the same time by maximizing a
ogarithmic likelihood loss.

ointly-Model [233] proposes a novel deep architecture to uti-
ize both structural and textual information of entities, which
ontains three neural models to encode the valuable information
rom the text description of entity: Bag-of-Words encoder, LSTM
ncoder and Attentive LSTM encoder, among which an attentive
odel can select related information as needed, because some
f the words in an entity’s description may be useful for the
iven relation, but may be useless for other relations. The Jointly-
odel chooses a gating mechanism to integrate representations
f structure and text into a unified architecture.

ncluding Text Literals in KGloVe (KGloVe-literals) [234] com-
ines the text information in entity attributes into KG embed-
ings, which is a preliminary exploration experiment based on
GloVe: it firstly performs KGloVe step to create a graphical co-
ccurrence matrix by conducting a personalized PageRank (PPR)
n the (weighted) graph; at the same time, it extracts information
rom the DBpedia summary by performing Named Entity Recog-
ition (NER) step, in which the words representing the entity are
eplaced by the entity itself, and the words surrounding it (and
ossibly other entities) are contained in the context of the entity;
hen the text co-occurrence matrix is generated in collaboration
ith the list of entities and predicates generated in the KGloVe
tep. Finally, a merge operation is performed to combine the
wo co-occurrence matrices to fuse the text information into the
atent feature model. Although the gain of this work is very small,
t can provide new ideas for the joint learning of attribute text
nformation and KG embedding.

ontext Graph Model [235] finds hidden triples by using the
bserved triples in incomplete graphs. This paper is based on
he neural language embedding of context graph and applies

he similar structure extracted from the relation similarity to t
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infer new unobserved triples from existing triples. Excerpts from
large input graphs are regarded as the simplified and meaningful
context of a group of entities in a given domain. Next, based on
the context graph, CBOW [75] and Skip-Gram [245] models are
used to model KG embedding and perform KGC. In this method,
the semantic rules between words are preserved to adapt to
entities and relationships. Satisfactory results have been obtained
in some specific field.

The well-known BERT [243] is a prominent PLM by pre-
training the bidirectional Transformer encoder [246] through
masked language modeling and next sentence prediction. It can
capture rich linguistic knowledge in pre-trained model weights.
As this basis, a number of KGC models try to exploit BERT or its
variants for learning knowledge embedding and predicting facts:

KG-BERT [236] treats entity and relation descriptions of triples
as textual sequences inputting to BERT framework, and natu-
rally regards KGC problems as corresponding sequence classi-
fication problems. KG-BERT computes the scoring function of
serialized triples with a simple classification layer. During the
BERT fine-tuning procedure, they can obtain high-quality triple
representations, which contain rich semantic information.

KEPLER [237] encodes textual entity descriptions with RoBERTa
[238] as their embedding, and then jointly optimizes the KG
embeddings and language modeling objectives. As a PLM, KEPLER
can not only integrate factual knowledge into language repre-
sentation with the supervision from KG, but also produce effec-
tive text-enhanced KG embeddings without additional inference
overhead compared to other conventional PLMs.

BLP [239] proposes a holistic evaluation framework for entity
representations learned via the inductive LP. Consider entities not
seen during training, BLP learns inductive entity representations
based on BERT, and performs LP in combination with four dif-
ferent relational models: TransE, DistMult, ComplEx, and SimplE.
BLP also provides evidence that the learned entity representations
transfer well to other tasks (such as entity classification and
information retrieval) without fine-tuning, which demonstrates
that the entity embeddings act as compressed representations
of the most salient features of an entity. This is additionally
important because having generalized vector representations of
KGs is useful for using them within other tasks.

Structure-augmented text representation (StAR) [240]
augments the textual encoding paradigm with KGE techniques to
learn KG embeddings for KGC. Following translation-based KGE
methods, StAR partitions each triple into two asymmetric parts.
These parts are then encoded into contextualized representa-
tions by a Siamese-style textual encoder. To avoid combinatorial
explosion of textual encoding approaches, e.g., KG-BERT, StAR
employs a scoring module involves both deterministic classifier
and spatial measurement for representation and structure learn-
ing respectively, which also enhances structured knowledge by
exploring the spatial characteristics. Moreover, StAR presents a
self-adaptive ensemble scheme to further boost the performance
by incorporating triple scores from existing KGE models.

4.2.2.4. Discussion on KGC using third-party data source. Based
n the above introduction of KGC using the third-party data
ource (almost all are textual corpus), we give our corresponding
nalysis as follows:

. In a narrow sense, this part of KGC studies emphasize the uti-
ize of additional data source outside KGs, but you may be aware
hat these literals tend to apply PLMs in their works, which takes
s to think about the application of ‘third party data’ in a broader
ense: these PLMs either possess plenty of parameters which have

rained on large scale language corpus, or provide ready-made
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Table 27
Statistics of a part of TKGC technologies.
Model Loss functiona Whether consider time periods Datasets

Temporal order dependence models:

TransE-TAE [252] Lmarg no YAGO2

Diachronic embedding models:

DE-Simple [253] Sampled Lmll No ICEWS14, ICEWS15-05, GDELT15/16
ATiSE [254] Self-adversarial Lns Yes ICEWS14, ICEWS05-15, Wikidata12k, YAGO11k

Temporal Information embedding models

TTransE [255] Lmarg No Wikidata
HyTE [256] Sampled Lmll Yes Wikidata12k, YAGO11k
ConT [257] LBRL No ICEWS14,GDELT
TA-DisMult [258] Sampled Lmll No YAGO-15k, ICEWS14, ICEWS05-15, Wikidata
TNT-ComplEx [259] Instantaneous Lmll Yes ICEWS14, ICEWS15-05, YAGO-15k, Wikidata40k

Dynamic evolution models:

Know-Evolve [260] Conditional intensity function No GDELT, ICEWS14
RE-NET [261] Total classification LCE No ICEWS18, GDELT18
GHN [262] Total classification LCE No ICEWS18, GDELT15/16
TeMP [263] Sampled Lmll No ICEWS14, ICEWS05-15, GDELT

aAs usual, LCE , Lmarg and Lns refers to cross entropy loss, margin-based ranking loss and negative sampling loss respectively. Besides, the Lmll means the multiclass
og-loss, and LBRL refers to the binary regularized logistic loss.
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semantically-rich word embeddings, thus when we say a KGC
work uses a PLM, we would think about it gets assistance from
the additional language information (from other large language
corpora, on which the PLM has been fully trained). In other words,
we should not judge a KGC model whether use third-party data
source merely according to their used datasets, it is especially
important to focus on the details of the model most of the time.

2. As we have discussed in 4.2.2.1, PLMs have an important role
in capturing rich semantic information which is helpful to KGC.
Along with a growing number of assorted PLMs are proposed, in
particular, the models jointly learn language representation from
both KGs and large language corpus, some PLM models intro-
duce structure data of KGs into the pre-training process through
specific KGC tasks to obtain more reasonable language model
parameters (such as ERNIE [247], CoLAKE [248–251]). In the fu-
ture, to explore an efficient joint learning framework derive entity
representations from KGs and language corpus may be needed,
and the key point is how to design the interaction between these
two data source, an iterative learning manner, just as the Rule-
KG embedding series worked, maybe a possible future direction.
What is needed is a method to derive entity representations that
work well for both common and rare entities.

5. Other KGC technologies

In this part we focus on several other KGC techniques oriented
t the special domain, including Temporal Knowledge Graph
ompletion (TKGC) in Section 5.1 that concerns time elements in
Gs; CommonSense Knowledge Graph Completion
CSKGC) which is a relatively new field about commonsense KGs
tudying (see Section 5.2), and Hyper-relational Knowledge Graph
ompletion (HKGC) that pays attention to n-ary relation form
nstead of usual 2-nary triples in KGs (see Section 5.3).

.1. Temporal Knowledge Graph Completion (TKGC)

At present, many facts in KGs are affected by temporal infor-
ation, owing to the fact in the real world are not always static
ut highly ephemeral such as (Obama, Presidentof ,USA) is true
nly during a certain time segment. Intuitively, temporal aspects
f facts should play an important role when we perform KGC
252]. In this section, we briefly introduce some famous TKGC
 e

49
models. Naturally, a summary table is made to sum up all the
TKGC methods introduced in our overview (Table 27).

Temporal Knowledge Graphs (TKGs) and TKGC: For such KGs
with temporal information, we generally call them TKGs. Natu-
rally, the completion of such KGs is called TKGC, and the original
triples are redefined as quadruples (h, r, t, T ) where T is the time
(which can be a timestamp or a time span as [Tstart , Tend]) [252].

ith studying time-aware KGC problems, it helps to achieve
ore accurate completion results, i.e., in LP task, we can dis-

inguish which triple is real in a given time condition, such as
Barack Obama, President of ,USA, 2010) and (Bill Clinton,
resident of ,USA, 2010). In addition, some literature also pro-
oses time prediction task that predicting the most likely time for
he given entity and relation by learning the time embeddings vT .

According to the usage manner of temporal information, we
oughly categorize recent TKGC methods into four groups: tem-
oral order dependence model, diachronic embedding model,
emporal information embedding model and dynamic evolu-
ion model.

.1.1. Temporal order dependence models
The mentioned temporal order information indicates that un-

er the time condition, some relations may follow a certain order
imeline, such as BornIn→ WorkAt → DiedIn.

ransE-TAE [252] firstly incorporates two kinds of temporal in-
ormation for KG completion: (a) temporal order information and
b) temporal consistency information. To capture the temporal
rder of relations, they tend to design a temporal evolving matrix
T , with which a prior relation can evolve into subsequent rela-

ion (as Fig. 28 shows). Specifically, given two facts having same
ead entity (ei, r1, ej, T1) and (ei, r2, ek, T2), it assumes that prior
elation r1 projected by MT should be near subsequent relation r2,
.e., r1MT ≈ r2. In this way, TransE-TAE allows to separate prior
elation and subsequent relation automatically during training.
ote that the temporal order information finally is treated as
regularization term injected into original loss function, being
ptimized together with KG structural information.

.1.2. Diachronic embedding models
This kind of models often design a mapping function from

ime scalar to entity or relation embedding, input both time and
ntity/relation into a specific diachronic function framework to
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Fig. 28. Simple illustration of Temporal Evolving Matrix T in the time-aware
mbedding (TAE) space [252].

et time-aware entity/relation embedding, which can be directly
ombined with the existing KGE models.

E-SimplE [253] extends the previous static model SimplE with
he diachronic entity embedding function (DEEMB, which pro-
ides the characteristics of the entity at any time point), whose
nput is entity and time stamp while output is entity’s hid-
en representation at that time-step. This embedding method is
alled diachronic embedding (DE). Any static KGE methods can be
xtended to the relevant TKGE (Temporal KGE) models by using
EEMB as follows:

T
v [n] =

{
av[n]σ (wv[n]T + bv[n]), if 1 ≤ n ≤ γ d
av[n], if γ d ≤ n ≤ 0

where zTv [n] represents the nth element of the d-dimensional
entity vector, which is calculated in two parts: the first part cap-
tures the temporal characteristics of the entity, and the function
adopts sin() to learn a set of parameters a, w, b for each entity;
the second part captures the static characteristics of the entity,
i.e., to keep the original entity embedding unchanged. In other
words, DE-SimplE can learn how to open and close entity time-
series features at different time points with the use of sin(), so
as to accurately predict their time at any time. At the same time,
by combining SimplE [44] (static KGE model) with DE, DE-SimplE
achieves fully expressive (an important standard measuring the
quality of KGE model proposed in SimplE).

ATiSE [254] introduces additive time series decomposition to
function on this basis. ATiSE thinks that the evolution of entity
and relation representation is random because the entity char-
acteristics at a certain time are not completely determined by
the past information, thus they map the entity and relation into
a multi-dimensional Gaussian distribution, the mean vector of
each entity at a certain time step represents the current ex-
pectation, and the covariance represents the uncertainty of time
(the constant diagonal matrix is used to improve efficiency). For
the problem that DE-SimplE only considers time points, ATiSE
extends to the time span, which means a triple whose time-step
within the begin time point and end time point is regarded as a
positive triple. The diachronic embedding function of entities in
the current time step T is as follows:

ei,T = ei + αe,iwe,iT + βe,isin(2πw′e,iT )+ (0,
∑

e, i)

The entity embedding calculated by the above formula will be
regarded as the mean value vector ēs,T in multi-dimensional
Gaussian distribution Ps,T ∼ N (ēs,T ,

∑
s) of the certain entity.

Similar to DE-SimplE, ATiSE also can extend any traditional static
KGC model developed to the TKGC model, but it cannot give full
play to the ability of time expression.

5.1.3. Temporal information embedding models
Temporal information embedding models introduce temporal

information into a specific traditional KGC baseline, like trans-
lation model or tensor decomposition model, for learning time-
aware embeddings and training time-aware scoring function.
50
Concerning the earlier work TransE-TAE [252] (which learns
non-explicit time-aware embeddings as it did not directly intro-
duce temporal information into embedding learning), TTransE
[255] and HyTE [256] integrate time embedding into the distance-
based score function with the idea of TransE and TransH, the
former explores three methods of introducing time factor into
basic TransE, among them the vector-based TTransE performs
excellent results which directly models time embedding as same
as entity or relation embeddings, i.e., for a quadruples (h, r, t, T ),
score = −∥vh+vr+vT−vt∥, while the latter HyTE applies a time-
aware KG embedding method based on time hyperplane, after
projected onto certain time hyperplane at timestamp T , PT (ei) in
time T , each entity or relation is represented as the follows form:

PT (vx) = vx − (w⊤T vx)wT

where wT means the corresponding normal vector of current time
hyperplane, then defines a score function of quadruples (h, r, t, T )
as:

fT (h, r, t) = ∥PT (vh)+ PT (vr )− PT (vt )∥

which follows the transitional characteristics.

ConT [257] is an extension of Tucker [37] defining a core tensor w

for each time stamp. TADisMult [258] combines tokenized time
and relation into predicate sequence which input into RNN to
learn temporal relation representation while TNTComplEx [259]
adopts unfolding of 4-way tensor modes.

5.1.4. Dynamic evolution models
Dynamic evolution models dynamically learn entity embed-

dings along with time steps. This kind of methods like Know-
Evolve [260] calls the phenomenon that entities and relations
change dynamically over time as knowledge evolution, and it
models nonlinear evolution representation of entities under this
scene. Know-Evolve is used in the reasoning of TKGs, which
designs a novel RNN structure for dynamic evolution represen-
tation learning of entity and sets a specific loss function based on
relational score function, like RESCAL [13]. Besides, recent works
use neighborhood aggregation information to predict probability
of event occurrence including RE-NET [261], GHN [262] and TeMP
[263] by Graph Convolution Network (GCN) [82].

5.1.5. Performance comparison of TKGC models

Datasets: There are part of datasets specialized in TKGC task and
several TKGC datasets are shown in Table 28. We make a brief
introduction about them as follows:

ICEWS The Integrated Conflict Early Warning System (ICEWS)
[264] is a natural episodic dataset recording dyadic events be-
tween different countries, which was first created and used in
[265], where a semantic tensor is generated by extracting consec-
utive events that last until the last timestamp. After that, Icews14,
icews05-15 and icews18 are subsets of ICEWS, corresponding to
the facts of 2014, 2005–2015 and 2018 respectively. These three
datasets are filtered by only selecting the most frequent entities
in the graph, and all the time labels inside them are time points.

GDELT The Global Database of Events, Language and Tone (GDELT)
[264] monitors the world’s news media in broadcast, print, and
web formats from all over the world, daily since January 1, 1979.
As a large episodic dataset, the data format inside it is similar
to ICEWS, i.e., (es, ep, eo, et ) quadruples, these events also usually
be aggregated into an episodic tensor. GDELT15-16, GDELT18 are
subsets of GDELT.

YAGO15K is created firstly using FB15K [11] by aligning entities
from FB15K to YAGO [266] with SAMEAS relations contained in a
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Table 28
Statistic of several Temporal Knowledge Graph datasets.
Dataset Entity Relation Fact Timestamps

#Train #Valid #Test

Time Slot-based dataset

Wikidata [258] 11134 95 121442 14374 14283 1726 (1 year)
Wikidata12K [256] 12554 24 32.5k 4k 4k 232 (1 year)
YAGO11K [256] 10623 10 16.4k 2k 2k 189 (1 year)
YAGO15K [258] 15403 34 110441 13815 13800 198 (1 year)

Fact-based dataset

ICEWS 14 [253] 7128 230 72826 8941 8963 365 (1 day)
ICEWS 18 [253] 23033 256 373018 45995 49545 304 (1 day)
ICEWS 05-15 [253] 10488 251 386962 46275 46092 4017 (1 day)
GDELT(15-16) [253] 500 20 2735685 341961 341961 366 (1 day)
GDELT(18) [261] 7691 240 1,734,399 238,765 305,241 2751 (15 min)
Table 29
Evaluation results of TKGC on ICEWS14, ICEWS05-15 and GDELT datasets. Best results are in bold.

ICEWS14 ICEWS05-15 GDELT

MRR Hits@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE [11] 0.280 0.094 – 0.637 0.294 0.090 – 0.663 0.113 0.0 0.158 0.312
DisMult [42] 0.439 0.323 – 0.672 0.456 0.337 – 0.691 0.196 0.117 0.208 0.348
SimplE [44] 0.458 0.341 0.516 0.687 0.478 0.359 0.539 0.708 0.206 0.124 0.220 0.366
ComplEx [43] 0.456 0.343 0.516 0.680 0.483 0.366 0.543 0.710 0.226 0.142 0.242 0.390

TTransE [255] 0.255 0.074 – 0.601 0.271 0.084 – 0.616 0.115 0.0 0.160 0.318
HyTE [256] 0.297 0.108 0.416 0.655 0.316 0.116 0.445 0.681 0.118 0.0 0.165 0.326
TA-DistMult [258] 0.477 0.363 – 0.686 0.474 0.346 – 0.728 0.206 0.124 0.219 0.365
ConT [257] 0.185 0.117 0.205 0.315 0.163 0.105 0.189 0.272 0.144 0.080 0.156 0.265
DE-TransE [253] 0.326 0.124 0.467 0.686 0.314 0.108 0.453 0.685 0.126 0.0 0.181 0.350
DE-DistMult [253] 0.501 0.392 0.569 0.708 0.484 0.366 0.546 0.718 0.213 0.130 0.228 0.376
DE-SimplE [253] 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403
ATiSE [254] 0.545 0.423 0.632 0.757 0.533 0.394 0.623 0.803 – – – –
TeMP-GRU [263] 0.601 0.478 0.681 0.828 0.691 0.566 0.782 0.917 0.275 0.191 0.297 0.437
TeMP-SA [263] 0.607 0.484 0.684 0.840 0.680 0.553 0.769 0.913 0.232 0.152 0.245 0.377
TNTComplEx [259] 0.620 0.520 0.660 0.760 0.670 0.590 0.710 0.810 – – – –
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YAGO dump, and kept all facts involving those entities. Then, this
collection of facts are augmented with time information from the
yagoDateFacts dump. Contrary to the ICEWS data sets, YAGO15K
does contain temporal modifiers, namely, ‘occursSince’ and ‘oc-
cursUntil’ [258]. What is more, all facts in YAGO15K maintain
time information in the same level of granularity as one can find
in the original dumps these datasets come from, this is different
from [255].

YAGO11k [256] is a rich subgraph from YAGO3 [267], includ-
ing top 10 most frequent temporally rich relations of YAGO3.
By recursively removing edges containing entities with only a
single mention in the subgraph, YAGO11k can handle sparsity
effectively and ensure healthy connectivity within the graph.

Wikidata Similar to YAGO11k, Wikidata contains time interval
information. As a subset of Wikidata, Wikidata12k is extracted
from a preprocessed dataset of Wikidata proposed by [255], its
created procedure follows the process as described in YAGO11k,
by distilling out the subgraph with time mentions for both start
and end, it ensures that no entity has only a single edge connected
to it [256], but it is almost double in size to YAGO11k.

Performance Results Comparison: We report some published ex-
perimental results about TKGC methods in Table 29, from which
we find that TeMP-SA and TeMP-GRU achieve satisfying results
on all three datasets across all evaluated metrics. Compared to
the most recent work TNTComplex [259] — which achieves the
best performance on the ICEWS datasets before TeMP, are 8.0%
and 10.7% higher on the Hits@10 evaluation. Additionally, TeMP
also achieves a 3.7% improvement on GDELT compared with DE,
the prior state-of-the-art on that dataset, while the results of the
AtiSEE and TNTComplEx methods on the GDELT dataset are not
available.
51
5.1.6. Analysis of TKGC models
Inspired by the excellent performance of translation model

and tensor factorization model in traditional KGC, temporal
knowledge graph completion (TKGC) mainly introduces temporal
embedding into the entity or relation embedding based on the
above two kinds of KGC ideas. Recently, with the wide application
of GCN in heterogeneous graphs, more and more TKGC methods
adopt the idea of ‘‘subgraph of a TKG’’ [261] we call it temporal
ubgraph, which aggregate the neighborhood information at each
ime, and finally collaborate with the sequence model RNN to
omplete the time migration between subgraphs. Future methods
ay continue to explore the construction of temporal subgraphs
nd show solicitude for the relevance between time subgraphs.
n addition, more attention may be paid to the static information
hat existed in TKG, so as to promote the integration of TKGC and
raditional KGC methods.

.2. CommonSense Knowledge Graph Completion (CSKGC)

ommonSense knowledge is also referred as background knowl-
dge [268], it is a potentially important asset towards building
ersatile real-world AI applications, such as visual understand-
ng for describing images (e.g., [269–271]), recommendation sys-
ems or question answering (e.g., [272–274]). Whereby a novel
ind of KGs involve CommonSense knowledge is emerged, Com-
onSense knowledge graphs (CSKGs), we naturally are inter-

ested in the complement of CSKGs, here give a presentation of
series CommonSense Knowledge Graph Completion (CSKGC)
techniques. The corresponding summary table involves described
CSKGC methods shown in Table 30.

CommonSense knowledge graphs (CSKGs) almost provide a
confidence score along with every relation fact, for representing
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Table 30
Statistics of recent popular CommonSense KGC technologies.
Model Technology Information Datasets

Language Auxiliary CSKGC Models with Pre-trained Language Models:

NAM [64] Neural Association Model,
neural networks:
DNN and relation-modulated neural nets (RMNN),
probabilistic reasoning,
PLMs: skip-gram

Large unstructured texts CN14

DNN-Bilinear
[275]

DNN,
Bilinear architecture,
averaging the word embeddings (DNN AVG, Bilinear AVG),
max pooling of LSTM (DNN LSTM, Bilinear LSTM),
PLMs: skip-gram

Text phrases ConceptNet 100K

CSKGC-G [268] DNN AVG in [275],
attention pooling of DNN LSTM,
bilinear function,
defining CSKG generation task

Text phrases ConceptNet
100K,
JaKB

COMET [276] Automatic CSKG generation,
adaptable framework,
GPT,
multiple transformer blocks of multi-headed attention

CSKG structure and relations ConceptNet,
ATOMIC

MCC [277] End-to-end framework,
encoder: GCNs + fine-tuned BERT,
decoder: ConvTransE,
A progressive masking strategy

Graph structure of local
neighborhood,
semantic context of nodes in KGs

ConceptNet,
ATOMIC

CSKGC with Logical Rules:

UKGEs [278] Uncertain KGE,
probabilistic soft logic

Structural and uncertainty
information
of relation facts

ConceptNet,
CN15k,
NL27k,
PPI5k

DICE [279] ILP (Integer linear programming),
weighted soft constraints,
the theory of reduction costs of a relaxed LP,
joint reasoning over CommonSense,
knowledge statements sets

CommonSense knowledge
statements (four dimensions),
taxonomic hierarchy related concepts

ConceptNet,
Tuple-KB,
Qasimodo
Table 31
ConceptNet tuples with left term ‘‘soak in hotspring’’; final column is confidence
score [275].
Relation Right term conf.

MOTIVATEDBYGOAL Relax 3.3
USEDFOR Relaxation 2.6
MOTIVATEDBYGOAL Your muscle be sore 2.3
HASPREREQUISITE Go to spa 2
CAUSES Get pruny skin 1.6
HASPREREQUISITE Change into swim suit 1.6

the likelihood of the relation fact to be true. Some famous uncer-
tain KGs include ProBase [280], ConceptNet [281] and NELL [282],
among which the ConceptNet [281] is a multilingual uncertain KG
for CommonSense knowledge that is collected via crowdsourcing
[278], and the confidence scores in ConceptNet mainly come from
the co-occurrence frequency of the labels in crowdsourced task
results. The curated commonsense resource ConceptNet contains
tuples consisting of a left term, a relation, and a right term,
this form about some examples just like Table 31 shows. The
relations come from a fixed set. While terms in Freebase tuples
are entities, ConceptNet terms can be arbitrary commonsense
phrases. Normally, for the examples in Table 31, a NLP application
may wish to query this kind of commonsense phase collections
for information about ‘‘soaking in a hotspring’’, but may use
distinct words from those contained in the existing tuples.

Data format: Facts in CSKGs is often represented in RDF-style
triples (h, r, t), where h and t are arbitrary words or phrases,
and r ∈ R is a relation between h and t [268]. Taking triple
(go to restaurant, subevent, orderfood) for an instance, it means
a commonsense: ‘‘order food’’ happens as a sub-event of ‘‘go to
restaurant’’.
52
5.2.1. Commonsense Knowledge Graph Completion
As the existing CommonSense knowledge in CSKGs is far from

sufficient and thorough, it is natural to introduce the Common-
sense Knowledge Graph Completion (CSKGC) task. While there
has been a substantial amount of work on KGC for conventional
KGs such as Freebase [277], relatively little work exists for KGC
for CSKGs such as ATOMIC [283] and ConceptNet [284].

The work in [285] enters into meaningful discussions with the
rationality and possibility of KGC models for mining Common-
Sense knowledge (CSKM), through a series of complex analysis
about multiple KGC baseline models: the Factorized model, the
Prototypical model, and the DNN model, and designs the com-
pared model as the Bilinear model of [275]. They propose a
novelty metric to re-evaluate these KGC models aforementioned
and analyze splitting candidate triples for the mining task. In a
word, the abundant analysis with respect to the potential corre-
lation between existing KGC models and CSKGC task and several
first steps towards a more principled evaluation methodology will
provide helpful experiences for further exploration about CSKM.
More specifically, based on the distinct goals, many researchers
identify unique challenges in CSKGC and further investigate effec-
tive methods to address these challenges. Here, we will introduce
the currently CSKGC methods according to their used technolo-
gies in two main categories: Language Auxiliary CSKGC Models
with Pre-trained Language Models and CSKGC with Logical
Rules as shown in Table 30.

5.2.2. Language auxiliary CSKGC models with pre-trained language
models

Neural association model (NAM) [64] applies a deep learning
framework to model the association between any two events
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n a domain by computing a conditional probability of them.
he work conducts two case studies to investigate two NAM
tructures, namely deep neural networks (DNN) and relation-
odulated neural nets (RMNN). In the experiment, this work
valuates CSKGC task across ConceptNet CSKG, the results highly
ppreciated that both DNNs and RMNNs perform equally well
nd they can significantly outperform the conventional methods
vailable for these reasoning tasks. Moreover, to further prove the
ffectiveness of the proposed models when reasoning new Com-
onSense knowledge, the work tries to apply NAMs to solve chal-

enging Winograd Schema (WS) problems and the subsequent
xperiments performances prove that NAMs have the potential
or commonsense reasoning.

NN-Bilinear Model [275] attempts to use bilinear model and
NN for CSKGC study. Specifically, they designs two strategies
f both two structures to model commonsense phrases: directly
veraging the word embeddings (called DNN AVG, Bilinear AVG)

or using max pooling of LSTM (called DNN LSTM, Bilinear LSTM).
Formally, they define the score function of a triplet (h, r, t) about
both bilinear and DNN models respectively as follows:

scorebilinear (h, r, t) = uT
hMrut

ux = a(W (B)vx + b(B)), i = h, t

and:

scoreDNN (h, r, t) = W (D2)(a(W (D1)vin + b(D1)))+ b(D2)

vin = concat(vht , vr ) ∈ Rde+dr

where vh, vt ∈ Rde is the vector representing h and t , and vr is the
relation embedding. Mr ∈ Rdr×dr means the parameter matrix for
relation r , and vht ∈ Rde is a phrase representation of concate-
nating h and t . The function a() is a nonlinear activation function
and the W (B),W (Dx); b(B), b(Dx) (x = h, t) are weight matrix and
bias matrix of bilinear model and DNN model, respectively.

Completion and Generation Model (CSKGC-G) [268] further im-
proves [275] by replacing the max pooling to attention pooling
in DNN LSTM structure and adding a bilinear function, the phrase
embedding of (h, r, t) is formulated into:

hiddenj
x = BiLSTM(vj

x, h
i
j−1), (x = h, t)

vx =

J∑
j=1

exp(ej)∑J
K=1 exp(ek)

hiddenj
x, (x = h, t)

ek = wT tanh(Whiddenk
x), (x = h, t)

vht = Bilinear(vh, vt )

vin = concat(vht , vr )

Except for the commonly used variable, the J means the word
length of phrase h (or t), w is a linear transformation vector for
calculating the attention vector. Besides, vj

x and hiddenj
x are the jth

word embedding and hidden state of the LSTM for phrase x, (x =
h, t). Another highlight in [268] is that it develops a commonsense
knowledge generation model which shares information with the
CSKGC part, its framework is shown in Fig. 29. This devised
model jointly learns the completion and generation tasks, which
improves the completion task because triples generated by the
generation model can be used as additional training data for the
completion model. In this way, this work allows to increase the
node size of CSKGs and increase the connectivity of CSKGs.
53
Fig. 29. Architecture of CSKGC-G Model. The completion part estimates the
score of (h = ‘play game’; r = ‘HasPrerequisite (HP)’; t = ‘know rule’), and
the generation module generates t from (h; r) and h from (t; r ′). r ′: HP denotes
the reverse direction of ‘HasPrerequisite’ [268].

COMET [276] is an automatic generation model for CSKGs. This
adaptation framework constructs CSKG by using a seed set of
existing knowledge tuples, where contain rich information of KG
structure and relations, and operates a large-scale transformer
language model (GPT in [242]) with multiple transformer blocks
of multi-headed attention among these prepared seed sets to
produce CommonSense knowledge tuples.

Machine Commonsense Completion (MCC) [277] performs
CSKGC by utilizing structure and semantic context of nodes in
KGs. CSKGs have significantly sparser and magnitude larger graph
structures compared with conventional KGs, therefore it throws a
major challenge for general KGC approaches that assume densely
connected graphs over a relatively smaller set of nodes. In this
work, a joint model is presented with a Graph Convolutional
Networks (GCNs) [78] and a fine-tuned BERT [243] model as
the encoder side to learn information from the graph structure.
ConvTransE [71] is chosen as the decoder side to get a tuple’s
strong score. As for the encoder process, the GCN model first
integrates the representation of a node according to its local
neighborhood via the synthetic semantic similarity links, and
fine-tune BERT is used to then transfer learning from text to KGs.
A progressive masking strategy further ensures that the model
appropriately utilizes information from both sources.

5.2.3. CSKGC with logical rules

uncertain KGEs (UKGEs) [278] explores the uncertain KGE ap-
proaches, including CSKGC research. Preserving both structural
and uncertainty information of triples in the embedding space,
UKGEs learns embeddings according to the confidence scores
of uncertain relation facts and further applies probabilistic soft
logic to infer confidence scores for unseen relation facts during
training.

Diverse CommonSense Knowledge (DICE) [279] is a
multi-faceted method with weighted soft constraints to couple
the inference over concepts (that are related in a taxonomic hier-
archy) for deriving refined and expressive CommonSense knowl-
edge. To capture the refined semantics of noisy CommonSense
knowledge statements, they consider four dimensions of concept
properties: plausibility, typicality, remarkability and saliency, and
model the coupling of these dimensions by a soft constraint
system, which expresses inter-dependencies between the four
CommonSense knowledge dimensions with three kinds of logical
constraints: Concept-dimension dependencies, Parent–child depen-
dencies and Sibling dependencies, enabling effective and scalable
joint reasoning over noisy candidate statements. Note that the
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Table 32
Statistic of CommonSense Knowledge Graph datasets.
Dataset Entity Relation Fact

#Train #Val1 #Val2 #Test

ATOMIC 256,570 9 610,536 – – –
CN14 159,135 14 200,198 5000 – 10,000
JaKB 18,119 7 192,714 13,778 – 13,778
CN-100K 78,088 34 100,000 1200 1200 2400
CN15k 15,000 36 241,158
NL27 27,221 404 175,412
PPI5k 4999 7 271,666

over-mentioned reasoning is then cast into an integer linear
programming (ILP), and they also leverage the theory of reduction
costs of a relaxed LP to compute informative rankings. After
experiments on large CommonSense knowledge collections, Con-
ceptNet, TupleKB, and Quasimodo, as long as human judgments,
it finally results in a publicly available CSKG containing more than
1.6M statements about 74k concepts.

5.2.4. Performance analysis of CSKGC models

Datasets: We list some CSKG datasets in Table 32 to show their
basic data statistics.

ConceptNet As we have introduced before, ConceptNet [284] is a
large-scale and multi-lingual CSKG. The evaluation set, which is
created from a subset of the whole ConceptNet, consists of data
only in English and contains many short phrases including single
words [268]. CN14, CN-100K and CN15k are all the subsets of
ConceptNet.

ConceptNet-100K (CN-100K) [275] contains general common-
ense facts about the world. The original version contains the
pen Mind Common Sense (OMCS) entries from ConceptNet,
hose nodes contain 2.85 words on average. Its dataset splits
re shown as Table 32. Following this original splits from the
ataset, [277] combines the two provided development sets to
reate a larger development set, thus the development and test
ets consisted of 1200 tuples each.

N14 Liu et al. [64] uses the original ConceptNet [286] to con-
truct CN14. When building CN14, they first select all facts in
onceptNet related to 14 typical commonsense relations and then
andomly divide the extracted facts into three sets, Train, Dev,
nd Test. In the end, to create a test set for classification, they
andomly switch entities (in the whole vocabulary) from correct
riples and get a total of 2×#Test triples (half are positive samples
and half are negative examples).

CN15k is a subgraph of ConceptNet, it matches the number of
nodes with FB15k [11], and contains 15,000 entities and 241,158
uncertain relation facts in English [278].

ATOMIC contains social CommonSense knowledge about day-to-
day events [268]. This dataset specifies the effects, requirements,
intentions, and attributes of the participants in the event. The
average phrase length of nodes (4.40 words) is slightly higher
than that of CN-100k, and there may be multiple targets in the
source entity and source relation. Tuples in this graph may also
contain none targets when the relation type does not need to be
annotated. The original dataset segmentation is created to make
the seed entity sets between training and evaluation segmenta-
tion mutually exclusive. Due to the CSKGC work requires entities
54
Table 33
Summary about CSKGC models.
Model Completion Generation

NAMs [64]
√

DNN-Bilinear [275]
√ √

CKGC-G [268]
√ √

COMET [276]
√ √

MCC [277]
√

UKG embedding [278]
√

Dice [279]
√

to be viewed at least once, [268] creates a new random 80-10-
10 partition for the dataset with development set and test set
consisting of 87k tuples.

NL27k is extracted from NELL [282], an uncertain KG obtained
from web-page reading.

PPI5k [287] labels the interactions between proteins with the
probabilities of occurrence. PPI5k is a subset of STRING, it is a
denser graph with fewer entities but more relation facts than
NL27 and CN15K.

Ja-KB The open-domain Ja-KB (Japanese CommonSense knowl-
edge) is created using crowdsourcing like in Open Mind Common
Sense (OMCS) [288] to evaluate the robustness of CSKGC models
in terms of the language and long phrases [268]. By limiting
the relation types often containing nouns and verbs, Ja-KB owns
fewer relation labels than that of ConceptNet. The relation set
of Ja-KB including Causes, MotivatedBy, Subevent, HasPrerequisite,
ObstructedBy, Antonym, and Synonym, and its average length of
phrases is longer than in ConceptNet. Since data annotated by
crowd workers is usually noisy, the Ja-KB created procedure
performed a two-step data collection process to eliminate noisy
data, a data creating step, and an evaluation step.

TupleKB is extracted from web sources with focus on the science
domain, with comparably short and canonicalized triples [279].

Qasimodo is a web-extracted general-world CommonSense
knowledge collection with focus on saliency [279].

Analysis about CSKGC models: Here we throw out a plain analysis
on CSKGC models. The generation models can produce appre-
ciated new explicit knowledge from original diverse and noisy
commonsense phrase collections, in general, they are affected by
language corpus or pre-trained language models to generalize
commonsense language representations, whose target is to add
novel nodes and edges to the seed CSKGs. Generative models such
as COMET can generate novel knowledge that approaches human
performance. This research pointed out a plausible alternative to
extractive methods that using generative commonsense models
for automatic CSKGC. By comparison, the CSKGC models tend to
search potential valid edges in existing CSKGs. An intuitive table
is shown in Table 33, which roughly sums up completion and
generation models. However, the main finding in [277] about
the generative model to completion task is that such generative
model cannot easily be re-purposed to rank tuples for KGC, the
experimental results as evidence shown in Table 34, this may
because of the problems associated with using log-likelihood as
an estimate for the truth of a tuple. Nevertheless, generative
models such as COMET have several merits. These models possess
faster training speed, require lower storage memory, and are
transductive naturally. Furthermore, the work in [277] indicates
that reasoning models that rely on KGs could favor discriminative
approach towards CSKG induction since that would make the
graph denser without adding new nodes.

Saito et al. [268] exhibits a shared model that may help pro-
mote the CSKGC effect by jointly learning with a generation mod-
ule, in this case, the generation module can generate augmented
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Table 34
CommonSense KGC (CSKGC) evaluation on CN-100K and ATOMIC with subgraph sampling [277]. The baselines are presented in the top of the table, the middle part
shows the KGC results of COMET and the bottom half are the model implementations in [277].
Model CN-100K ATOMIC

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DISTMULT 8.97 4.51 9.76 17.44 12.39 9.24 15.18 18.3
COMPLEX 11.4 7.42 12.45 19.01 14.24 13.27 14.13 15.96
CONVE 20.88 13.97 22.91 34.02 10.07 8.24 10.29 13.37
CONVTRANSE 18.68 7.87 23.87 38.95 12.94 12.92 12.95 12.98

COMET-NORMALIZED 6.07 0.08 2.92 21.17 3.36 0 2.15 15.75
COMET-TOTAL 6.21 0 0 24 4.91 0 2.4 21.6

BERT + CONVTRANSE 49.56 38.12 55.5 71.54 12.33 10.21 12.78 16.2
GCN + CONVTRANSE 29.8 21.25 33.04 47.5 13.12 10.7 13.74 17.68
SIM + GCN + CONVTRANSE 30.03 21.33 33.46 46.75 13.88 11.5 14.44 18.38
GCN + BERT + CONVTRANSE 50.38 38.79 56.46 72.96 10.8 9.04 11.21 14.1
SIM + GCN + BERT + CONVTRANSE 51.11 39.42 59.58 73.59 10.33 8.41 10.79 13.86
Fig. 30. Subgraph from ConceptNet illustrating semantic diversity of nodes,
which is represented by non standardized free-form text. Dashed blue lines
represent potential edges to be added to the graph [277].

reasonable knowledge to further improve CSKGC. In other words,
the loss function of generation module as a good constraint for
the CSKGC model.

5.2.5. Challenges of CSKGC
As a kind of novel KGs, CSKGs have a series of inherently

challenging features:

1. Resource Scarcity in CSKGs: Although researchers have de-
veloped lots of techniques for acquiring CSKGs from raw text
with patterns [289], it has been pointed out that some sorts
of knowledge are rarely expressed explicitly in textual corpora
[290]. Therefore, researchers have developed curated CSKG re-
sources by manual annotation [281]. Although manually created
knowledge has high precision, these resources mostly suffer from
coverage shortage [268].

2. Sparsity of CSKGs: The key challenge in completing CSKGs is
the sparsity of the graphs [277]. Different from traditional KGs,
CSKGs are composed of nodes represented by non standardized
free-form text, as shown in Fig. 30. For example, nodes ‘‘prevent
dental caries’’ and ‘‘dental caries’’ are conceptually related, but
not equivalent, so they are represented as different nodes. This
conceptual diversity and graphic expressiveness are essential for
expressing commonsense, which whereas means that the number
of nodes is several orders of magnitude larger, and the graphics
are much sparse than traditional KGs. For example, encyclopedias
55
like FB15K-237 [32] owns 100x the density of KB than ConceptNet
and ATOMIC.

3. Difficulty to model Uncertain KG using KGE models: It is
a difficult problem to use ordinary KG embedding to obtain
uncertain information such as CommonSense knowledge facts
[278]. This is a very important task for several reasons. Firstly,
compared with the deterministic KG embedding, the uncertain
KG embedding needs to encode additional confidence informa-
tion to keep the uncertainty characteristic. Secondly, the existing
KG embedding models cannot capture the subtle uncertainty of
invisible relational facts, because they assume that all invisible
relational facts are false beliefs and minimize the credibility mea-
sures of relational facts. For uncertain KG embedding learning,
one of the main challenges is to correctly estimate the uncertainty
of invisible relational facts.

4. Irrationality of Structural Information in CSKGs: Another
limitation of existing CommonSense knowledge datasets is that
they organize statements in a fat, one-dimensional way, and the
only rank according to the confidence score [279]. It not only
lacks information about whether an attribute is applicable to all
or some instances of a concept but also is short of awareness
of which attributes are typical and which are prominent from
a human point of view. Take an example in [279], the idea
that hyenas drink milk (when they were young, all mammals
drink milk) is true, but not typical. It is typical for hyenas to
eat meat, but it is not obvious that humans will spontaneously
name it as a major feature of hyenas. In contrast, the carcass
eaten by hyenas is remarkable because it distinguishes hyenas
from other African carnivores (such as lions or leopards), which
many people would list as a prominent asset. Previous work
on CommonSense knowledge has omitted these reference and
expression dimensions.

5.3. Hyper-Relational Knowledge Graph Completion (HKGC)

Despite existing embedding techniques have obtained promis-
ing successes across most commonly KGs, they are all developed
based on the assumption of a binary relation that knowledge
data instances each involving two entities (such as ‘‘Beijing is the
capital of China’’), such binary relational triples are in the form of
(head entity, relation, tail entity). However, a large portion of the
knowledge data is from non-binary relations (such as ‘‘Benedict
Cumberbatch played Alan Turing in the movie The Imitation
Game’’) [291], although these n-ary relational facts usually are
decomposed into multiple triples via introducing virtual entities,
such as the Compound Value Type (CVT) entities in Freebase.
For example, in Freebase [5], more than 1/3 of the entities that
participate are non-binary relations. Noting that some studies [8]

has indicated that the triple-based representation of a KG often
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Table 35
Statistics of recent popular hyper-relational KGC technologies.
Model Hyper-relational fact representation

(for n-ary fact(h, r, t) with (ki, vi))
Information Technology Task

m-TransH [291] {(rh, rt , k1, . . . , kn),
(h, t, v1, . . . , vn)}

n-ary key–value pairs A direct modeling framework
for embedding multifold relations,
fact representation recovering,
TransH

Predict entities

RAE [112] {(rh, rt , k1, . . . , kn),
(h, t, v1, . . . , vn)}

n-ary key–value pairs m-TransH,
relatedness between entities,
instance reconstruction

Predict entities

NaLP [292] {rh : h, rt : t, ki : vi},
i = 1, . . . , n

n-ary key–value pairs CNN,
key–value pairs relatedness

Predict entities
predict relations

HINGE [8] (h, r, t),
{rh : h, rt : t, ki : vi}, i = 1, . . . , n

Triple data,
n-ary key–value pairs

CNN,
triple relatedness, key–value pairs relatedness

Predict entities
predict relations
Fig. 31. An example of a hyper-relational fact and its corresponding n-ary
representation [8].

oversimplifies the complex nature of the data stored in the KG, in
particular for hyper-relational data, so that it calls for a necessary
investigation of embedding techniques for KGs containing n-ary
elational data (HKGs), we call it Hyper-Relational Knowledge
Graph Completion (HKGC). Table 35 is a overview of several HKGC
echnologies introduced in this paper.

.3.1. Definition of facts in hyper-relational KG
Formally, a commonly used representation scheme for HKG’s

act transforms a hyper-relational fact into an n-ary representa-
ion [112,291,292], i.e., a set of key–value (relation-entity) pairs
h : h, rt : t, k1 : v1, . . . , kn, vn for the n-ary hyper-relational fact
(h, r, t). A simple n-ary fact example and its n-ary representation
are shown in Fig. 31. Specifically, by this formula definition, a
relation (binary or n-ary relation) is defined by the mappings
from a roles sequence corresponding to this type of relation, to
their values, and each specific mapping is an instance of this
relation [291]. Each hyper-relational fact (h, r, t) with (ki, vi), i =
1, . . . , n is firstly associated with a meta-relation represented as
an ordered list of keys (relations), such as R := (rh, rt , k1, . . . , kn),
the fact is then represented as a list of ordered values associated
with the over-mentioned meta-relation as: {R, (h, t, v1, . . . , vn)}.
However, this form of hyper-relational fact pattern (as a set
of key–value pairs without triplets) treats each key–value pair
in the fact equally, which is not compatible with the schema
used by modern KGs [8]. To avoid the wastage of essential in-
formation in triples, Rosso et al. [8] decides to preserve the
original triple schema of n-ary relational data, i.e., it contains
a base triple (h, r, t) and a set of associated key–value pairs
(ki, vi), i = 1, . . . , n, while a commonly triple fact only contains
a triple (h, r, t). In other words, this definition emphasizes the
non-negligible characteristic of basic triplet structure even in
hyper-relational fact sets.

5.3.2. Specific HKGC models
Base on the over-mentioned hyper-relational fact representa-

tion, we further discuss the HKGC models meticulously.

m-TransH [291] is an earlier work that focuses on HKGs concern-
ing the n-ary relations (so-called multi-fold relations), it models
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the interaction between entities involved in each fact for pre-
dicting missing links in KGs. At the basis of hyper-relational fact
definition, according to the translation idea of TransH, m-TransH
defines its score function of an instance by the weighted sum of
the projection results from its values to its relation hyperplane,
in which the weights are the real numbers projected from its
roles. However, the primary m-TransH does not take care of the
relatedness of the components inside the same n-ary relational
fact [292], so that this method does not make full use of the
possible inner relative semantic information in the predefined
fact structure. On the other hand, since m-TransH learns merely
from sets of entities in meta-relations (taking no account of the
exact relations in each meta-relation), it can be applied to conduct
the link prediction (LP) task for predicting missing entities only.

RAE [112] further improves m-TransH by complimentary model-
ing the relatedness of values, which means the likelihood that two
values co-participate in a common instance. The work [112] adds
this relatedness loss with a weighted hyper-parameter to the
embedding loss of m-TransH and learns the relatedness metric
from RAE. When we return to the two issues m-TransH suf-
fered, we find that RAE attempts to solve the first ‘‘relatedness
modeling’’ problem by taking the additional modeling of the
relatedness of values into account. Although RAE surely achieves
favorable performance which outperforms m-TransH, it does not
consider the roles explicitly when evaluating the above likelihood
[292], whereas roles are also a fundamental aspect for complex
relation modeling and taking them into consideration may make
a difference because, under different sequences of roles (corre-
sponding to different relations), the relatedness of two values
tends to be greatly different. Taking an example from [292], Marie
Curie and Henri Becquerel will be taken more related under the
role sequence (person, award, point in time, together with), than
under the role sequence (person, spouse, start time, end time,
place of marriage) due to they won Nobel Prize in Physics in 1903
together.

For the second problem, RAE learns from the pairwise relat-
edness between entities in each n-ary relational data to perform
instance reconstruction, i.e., predicting one or multiple missing
entities [8]. Similar to m-TransH, RAE can only be used to perform
LP.

NaLP [292] whereby designs a relatedness evaluation module to
explicitly model the relatedness of the role-value (i.i.e, key–value
or relation-entity) pairs involved in the same n-ary relational
fact via a neural network pipeline, which supports the prediction
of either a missing key (relation) or a missing value (entity).
Until now, the above-mentioned two concerned problems are
all solved by [292]. In summary, m-TransH, RAE, and NaLP pay
attention to the set of key–value pairs of an n-ary fact, resulting
in suboptimal models.

HINGE [8] aims to directly learn from hyper-relational facts by
not only distilling primary structure information from triple data
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Table 36
Statistic of popular hyper-relational datasets.
Dataset Entity Relation #Train #Valid #Test

Binary N-ary Overall Binary N-ary Overall Binary N-ary Overall

JF17K 28,645 322 44,210 32,169 76,379 – – – 10,417 14,151 24,568
WikiPeople1 47,765 707 270,179 35,546 305,725 33,845 4378 38,223 33,890 4391 38,281
WikiPeople2 34839 375 280520 7389 287918 – – – 36597 971 37586
but also extracting further useful information from correspond-
ing key–value pairs simultaneously. HINGE also applies a neural
network framework equipped with convolutional structures, just
likes the network of [292].

5.3.3. Negative sampling about hyper-relational data
A commonly adopted negative sampling process on HKGs is

andomly corrupting one key or value in a true fact. For example,
or an n-ary relational fact representation {rh : h, rt : t, ki : vi}, i =
, . . . , n, when corrupting the key rh by a randomly sampled
′

h(r, r
′), the negative fact becomes {r ′h : h, rt : t, ki : vi}, i =

, . . . , n. However, this negative sampling process is not fully
daptable to its n-ary representation of hyper-relational facts, it
s unrealistic in especial for keys rh and rt , as r ′h is not compatible
ith rt while only one relation r (or r ′) can be assumed between
and t in a hyper-relational fact [8]. Therefore, an improved
egative sampling method is proposed to fix this issue in [8].
pecifically, when corrupting the key rh by a randomly sampled
′

h(r, r
′), the novel negative sampling approach also corrupts rt by

′
t , resulting in a negative fact {r ′h : h, r

′
t : t, ki : vi}, i = 1, . . . , n.

ubsequently for this negative fact, only a single relation r ′ links
and t . Similarly, when corrupting rt , we also corrupt rh in the
ame way. This new process is more realistic than the original
ne.

.3.4. Performance analysis of HKGC models

atasets: As we have discussed, the hyper-relational data is one
atural fact style in KGs. For uniformly modeling and learning, a
G usually is represented as a set of binary relational triples by
ecomposing n-ary relational facts into multiple triples relying on
dding virtual entities, such as in Freebase, a so-called particular
‘star-to-clique’’ (S2C) conversion procedure to transform non-
inary relational data into binary triplets on filtered Freebase data
291]. Since such procedures have been verified to be irreversible
291], so that it causes a loss of structural information in the
ulti-fold relations, in other words, this kind of transformed tra-
itional triple datasets are no longer adaptable to n-ary relational
act learning. Therefore the special datasets for HKGs embedding
nd completion are built as follows:

F17K [291] extracts from Freebase. After removing the entities
nvolved in very few triples and the triples involving String,
numeration Type, and Numbers, JF17K recovers a fact repre-
entation from the remained triples. During fact recovering, it
irstly removes facts from meta-relations which have only one
ingle role. Then JF17K randomly selects 10000 facts from each
eta-relation containing more than 10000 facts. According to

wo instance representation strategies, JF17K further constructs
wo instance representations Tid(F ) and T (F ) where F means the
resulting fact representation from previous steps. Next, the final
dataset is built by further applying filtering on Tid(F ) and T (F )
into G, Gid, randomly splitting along with original instance repre-
sentation operation s2c(G). These resulting datasets are uniformly
called JF17K, we give their statistics in Table 36.

WikiPeople [292] extracts WikiPeople from Wikidata and fo-
cuses on entities of type human without any specific filtering
to improve the presence of hyper-relational facts. The original
WikiPeople dataset version in [292] also contains literals (used as
57
tails) in some facts, Rosso et al. [8] further filters out these non-
entity literals and the corresponding facts. Table 36 involves the
main statistics of these two versions of WikiPeople datasets. Each
of these datasets contains both triple facts and hyper-relational
facts.

Performance Comparison of HKGC Models: To get an understand-
ing of the HKGC performance of existing models, we refer to
the newest public KGC results for learning from hyper-relational
facts in [8] (shown in Table 37). We observe that HINGE [8]
consistently outperforms all other models when learning hyper-
relational facts, even performs better than the best-performing
baseline NaLP-Fix [292], which shows a 13.2% improvement on
the link prediction (LP) task, and a 15.1% improvement on the
relation prediction (RP) task on WikiPeople (84.1% and 23.8% on
JF17K, respectively). Also, from Table 37 we can see NaLP shows
better performance than m-TransH and RAE, since it learns the
relatedness between relation-entity pairs while m-TransH and
RAE learn from entities only.

Moreover, Rosso et al. [8] noted that m-TransH and RAE result
in very low performance on WikiPeople, which may be probably
due to the weak presence of hyper-relational facts in WikiPeo-
ple while m-TransH and RAE are coincidentally designed for
hyper-relational facts. Besides, it is obvious that NaLP-Fix (with a
fixed negative sampling process) consistently shows better per-
formance compared to NaLP, with a slight improvement of 2.8% in
head/tail prediction, and a tremendous improvement of 69.9% in
RP on WikiPeople (10.4% and 15.8% on JFK17K, respectively), this
result verifies the effectiveness of fixed negative sampling process
proposed in [8], in particular for RP.

In addition, the baseline methods learning from
hyper-relational facts (i.e., m-TransH, RAE, NaLP and NaLP-Fix)
surprisingly yield worse performance in many cases than the
best-performing baseline which learns from triples only [8]. They
further explain that the ignorance of the triple structure results
in this subpar performance, because the triple structure in KGs
preserves essential information for KGC.

6. Discussion and outlook

6.1. Discussion about KGC studies

According to a series of systematic studies about recently KGC
works, we discuss several major lights as follows:

1. About Traditional KGC Models: With the KGC technology
going to be mature, the traditional translation model, decom-
position model and neural network model in this field tend to
become more and more commonly used as baseline KGC tools to
integrate other technologies for promising efficient and effective
KGC research.

2. About Optimization Problem: It is absolutely necessary to
pay attention to the optimization method. A proper optimization
method can make it faster or more accurately to get solution. The
modeling of optimization objective also determines whether the
KGC problem has a global or local optimal solution, or in some
cases, it can improve the situation that is easy to fall into the local
optimal solution (suboptimal solution), which is not conducive to
the KGC task.
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Table 37
The performance of several HKGC methods on WikiPeople and JF17K [8].
Method WikiPeople JF17K

Head/Tail prediction Relation prediction Head/Tail prediction Relation prediction

MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

m-TransH 0.0633 0.3006 0.0633 N/A 0.206 0.4627 0.206 N/A
RAE 0.0586 0.3064 0.0586 N/A 0.2153 0.4668 0.2153 N/A
NaLP 0.4084 0.5461 0.3311 0.4818 0.8516 0.3198 0.2209 0.331 0.165 0.6391 0.8215 0.5472
NaLP-Fix 0.4202 0.5564 0.3429 0.82 0.9757 0.7197 0.2446 0.3585 0.1852 0.7469 0.8921 0.6665
HINGE 0.4763 0.5846 0.4154 0.95 0.9977 0.9159 0.4489 0.6236 0.3611 0.9367 0.9894 0.9014
3. About Regularization and Constraints: During a specific
odel learning, proper regularization and constraints, as well
s the skills of super-parameter tuning can make the trained
odel achieves unexpected results. Although this is an empirical
ork step even maybe with potential threatens (for example,
3 normalization [50] will require larger embedded dimensions,
ome optimization techniques (e.g., Tucker [55]) may require a
arge number of parameters, and thus the resulting scalability or
conomical issues need to be considered), we should attach im-
ortant to the model tuning works. Relevant attention has been
aised in previous works [50], officially doubting the question that
hether the parameters are not adjusted well or the problem
f the model itself should be responsible for a bad performance
eeds to be studied and experimented continuously, emphasiz-
ng that model tune-up works are as important as optimization
odel itself.
4. About Joint Learning Related to KGC: We conclude that

he joint KGC models that jointly learn distinct components tend
o develop their energy function in a composition form. The
oint KGC methods usually extend the original definition of triple
nergy (distance energy, similarity energy, etc.) to consider the
ew multimodality representations.
5. About Information Fusion Strategies: We also conclude

several common experiences here. One of them is that when
it comes to the internal combination of the same kind of in-
formation (such as collecting useful surrounding graph context
as effective as possible for learning the proper neighbor aware
representation, the combination between different paths of an
entity pair, etc.), attention mechanism along with various neural
network structure is an appropriate fusion strategy at the most
cases. Moreover, draw lessons from NLP field, RNN structure is
suitable for dealing with sequence problems. For example, when
considering the path modeling, the general applied neural net-
work structure is RNN [96,166–168], and [163], as well as in the
situation that utilizing textual information (especially the long
text sequence) for KGC.

6. Embedding-based Reasoning and Rule-based Reasoning:
As we have introduced and analyzed in our work, both rule-based
reasoning and embedding-based reasoning have their separate
advantages and disadvantages. Under this case, researchers tend
to make the cooperation between these two kinds of KGC models
expecting to exert both of their superiorities sufficiently.

6.2. Outlook on KGC

We give the following outlooks depending on our observation
and overview in this paper:

1. A Deep-level Interaction is Beneficial for KGC. In the
aspect of adding additional information for KGC, especially those
extra information outside KGs, such as the rules and external text
resources we mentioned, a peeping research trend is exploring a
deep-level interactive learning between external knowledge and
internal knowledge. That is, designing a model jointly with a
combination of parameter sharing and information circulation,
even employing an iterative learning manner to achieve the goal
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of enriching the knowledge of the internal KG with external
information, which in turn feeds back the training information
to the encoding side module based on both external informa-
tion and internal KG’s data while continuously replenishing the
‘‘knowledge’’ of the KG.

2. Rule-based KGC is Promising. As are introduced in our pa-
per, rule-based approaches perform very well and are a compet-
itive alternative to popular embedding models. For that reason,
they have promise to be included as a baseline for the evaluation
of KGC methods and it has been recommended that conducting
the evaluation on a more fine-grained level is necessary and
instructive for further study about KGC field in the future.

3. Try the New PLMs is Feasible. Obviously, the endless new
pre-training language models (PLMs) make it unlimited possi-
bilities to combine effective language models with various text
information for obtaining high-quality embeddings and capturing
abundant semantic information to complete KGs.

4. There is a Plenty of Scopes for Specific-Fields-KGC. The
emergence of new KGs in various specific fields stimulate the
completion research on the specific field KGs. Although the exist-
ing KGC works concerning the KGs for specific fields and demands
is yet relatively rare (for example, there are only a few or a
dozen of literature studying the completion of CommonSense KGs
and Hyper-Relational KGs), KGC for specific field KGs is exactly
meaningful with great practical application value, which will be
further developed in the future.

5. Capture Interaction between Distinct KGs will be Help-
ful to KGC. A series of tasks have emerged with the need of
interaction between various KGs, such as entity alignment, entity
disambiguation, attribute alignment and so on. When it comes
to the multi-source knowledge fusion, the research of heteroge-
neous graph embedding (HGE) and multilingual Knowledge Graph
Embedding (MKGE) has gradually attracted much attention, which
are not covered in our current review. KGC under multi-KGs
interaction could evolve as a sub-direction for the future develop-
ment of KGC, which may create some inspiring ideas by studying
the unified embedding and completion of different types and
structures of knowledge. By the way, the KGC work with respect
to multilingual KGs is insufficient, it is worth launching this
research direction to replenish the multilingual KGs demanded
in real applications.

6. Select More Proper Modeling Space. A novel opinion indi-
cates that modeling space of KG embedding does not have to be
limited in European space as most literatures do (TransE and its
extensions), on the contrary, as KGs possess an intrinsic charac-
teristic of presenting power-law (or scale-free) degree distribu-
tions as many other networks [293,294], there have been shown
that scale-free networks naturally emerge in the hyperbolic space
[295] . Recently, the hyperbolic geometry was exploited in vari-
ous works [296–298] as a means to provide high-quality embed-
dings for hierarchical structures instead of in ordinary European
space. The work in [295] illustrated that hyperbolic space has
the potential to perform significant role in the task of KGC since
it offers a natural way to take the KG’s topological information
into account. This situation inspires researchers to explore more
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ffective and reasonable embedding vector space for KGC to
mplement the basic translation transformation or tensor decom-
osition of entities and relations, the expected model space could
e able to easily model complex types of entities and relations,
long with various structural information.
7. Explore the Usage of RL in KGC. Reinforcement learning

RL) has seen a variety of applications in NLP including machine
ranslation [299], summarization [300], and semantic parsing
301]. Compared to other applications, RL formulations in NLP and
Gs tend to have a large action space (e.g., in machine translation
nd KGC, the space of possible actions is the entire vocabulary of
language and the whole neighbors of an entity, respectively)

302]. On this basis, more recent work formulates multi-hop
easoning as a sequential decision problem, and exploits rein-
orcement learning (RL) to perform effective path search [63,141,
03,304]. Under normal circumstances, a RL agent is designed to
ind reasoning paths in the KG, which can control the properties
f the found paths rather than using random walks as previous
ath finding models did. These effective paths not only can be
sed as an alternative to Path Ranking Algorithm (PRA) in many
ath-based reasoning methods, but also mainly be treated as
easoning formulas [303]. In particular, some recently studies
pply human-defined reward functions, a foreseeable future is
o investigate the possibility of incorporating other strategies
such as adversarial learning [27]) to give better rewards than
uman-defined reward functions. On the other hand, a discrimi-
ative model can be trained to give rewards instead of designing
ewards according to path characteristics. Additionally, in the
uture, RL framework can be developed to jointly reason with KG
riples and text mentions, which can help to address the prob-
ematic scenario when the KG does not have enough reasoning
aths.
8. Multi-task learning about KGC. Multi-task learning (MTL)

305] is attracting growing attention which inspires that the com-
ined learning of multiple related tasks can outperform learning
ach task in isolation. With the idea of MTL, KGC can learn
nd train with other KG-based tasks (or properly designed an-
illary tasks) by the MTL framework, which could gain both
epresentability and generalization by sharing the common in-
ormation between the tasks in the learning process, to achieve
verall performance.

. Conclusion

With this overview, we tried to fill a research gap about a
ystematic and comprehensive introduction of Knowledge Graph
ompletion (KGC) works and shed new light on the insights
ained in previous years. We make up a novel full-view catego-
ization, comparison, and analyzation of research on KGC studies.
pecifically, in the high-level, we review KGs in three major as-
ects: KGC merely with internal structural information, KGC with
dditional information, and other special KGC studies. For the
irst category, KGC is reviewed under Tensor/matrix factorization
odels, Translation models, and Neural Network models. For the

econd category, we further propose fine-grained taxonomies into
wo views about the usage of inside information of KGs (including
ode attributes, entity-related information, relation-related infor-
ation, neighbor information, and relational path information) or
utside information of KGs (including rule-based KGC and third-
arty data sources-based KGC). The third part pays attention to
ther special KGC, such as CommonSense KGC, Temporal KGC,
nd Hyper-relational KGC. In particular, our survey provides a de-
ailed and in-depth comparison and analysis of each KGC category
n the fine-grained level and finally gives a global discussion and
rospect for the future research directions of KGC. This paper may
elp researchers grasp the main ideas and results of KGC, and
o highlight an ongoing research on them. In the future, we will
esign a relatively uniform evaluation framework and conduct
ore detailed experimental evaluations.
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