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ABSTRACT The Knowledge graph, a multi-relational graph that represents rich factual information among
entities of diverse classifications, has gradually become one of the critical tools for knowledge management.
However, the existing knowledge graph still has some problems which form hot research topics in recent
years. Numerous methods have been proposed based on various representation techniques. Graph Neural
Network, a framework that uses deep learning to process graph-structured data directly, has significantly
advanced the state-of-the-art in the past few years. This study firstly is aimed at providing a broad, complete
as well as comprehensive overview ofGNN-based technologies for solving four different KG tasks, including
link prediction, knowledge graph alignment, knowledge graph reasoning, and node classification. Further,
we also investigated the related artificial intelligence applications of knowledge graphs based on advanced
GNN methods, such as recommender systems, question answering, and drug-drug interaction. This review
will provide new insights for further study of KG and GNN.

INDEX TERMS Deep learning, distributed embedding, graph neural network, knowledge graph,
representation learning.

I. INTRODUCTION
Recently, the fast development of Internet Technology and
Web applications has contributed to an explosion of a variety
of data on the Internet, which can generate a large amount of
valuable knowledge. Therefore, how to organize, represent,
and analyze this knowledge has attracted much attention [1].
As a result, the knowledge graph (KG) was created to
organize this information semantically and visually appeal-
ing [2]. At present, many knowledge graphs have emerged,
among which the representative ones are KnowItAll [3],
YAGO [4], DBpedia [5], Freebase [6], NELL [7], Probase [8],
etc. These knowledge graphs extract, organize, and manage
knowledge from enormous data resources to provide users
with intelligent services.
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However, there are still many technical difficulties during
the knowledge graph development. For example, KGs are
always incomplete since they have self-defects, which is
usually formulated as the link-prediction issue [9]. For the
research of the prime technologies such as link predic-
tion [9], knowledge graph alignment [10], knowledge graph
reasoning [11], Knowledge Representation Learning (KRL)
is the critical foundation, also known as Knowledge Graph
Embedding (KGE) [12]. KRL is the process of completing
distributed representation of entities and relationships in
knowledge graphs. Mapping entities and relationships to low-
dimensional vector spaces indirectly captures their seman-
tics [13]. For example, single knowledge graph embedding
can be used for link prediction evaluation. Due to the
heterogeneity problem between different knowledge graphs,
multiple knowledge graphs embedding can be used for entity
alignment [14]. Compared with traditional one-hot encoding,
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KRL can significantly improve computational efficiency.
At the same time, it can ease the issue of data sparseness and
achieve the goal of combining heterogeneous information.

Graph Neural Network (GNN) appears as a framework
that has used deep learning to learn graph-structured data
directly in recent years. The essence of GNN is to gather
information from the neighborhood to the target node
according to the message passing rules so that entities
with similar neighborhoods are close to each other in the
embedding space, and it excels in capturing the global or
local structural information of the graph [15]. On the other
hand, because GNN has a nonlinear solid fitting ability
to graph-structure data, it has higher accuracy and better
robustness on problems in different fields [16]. A great
deal of variants of the GNN algorithm and framework
have been proposed in the past few years. Furthermore,
these GNN-based KGE models can combine domain data
in the knowledge graphs with business scenarios and help
domain business upgrade. Typical downstream applications
include recommender systems [17], intelligent question
answering [18], and drug-drug interactions [19].

Previous survey papers solely focus on general knowledge
graphs problems or graph neural networks technology. This
study performs a systematic and broad survey of knowledge
graph learning in accordance with graph neural network
methods. The framework of this article is shown in Fig. 1,
and the contributions of this study are presented as follows:

FIGURE 1. The framework of the contents of this study.

–This is the first comprehensive survey paper of graph
neural network models for knowledge graph problems to the
best of our knowledge. This work covers GNN techniques

that solve KG-related tasks. In addition, it offers discussions
and comparisons of the introduced methods.

–We explored almost all the state-of-the-art graph learning
methods based on graph neural networks for four typical tasks
in the knowledge graph. We presented their critical technolo-
gies and characteristics from a variety of perspectives.

–Considering the vast application foreground of knowl-
edge graphs, we have further conducted a thorough investi-
gation of downstream tasks, covering recommender systems,
question answering, drug-drug interaction, etc.

The following are the main points of the remainder of
this study: The definitions of knowledge graphs and graph
neural networks are briefly introduced in Section II. Then,
Section III shows the approaches proposed for learning
knowledge graph representations using GNN technology.
The implementation of such information in downstream
activities, such as question-answer systems, is next explored
in Section IV. Finally, the conclusion of this investigation is
shown in Section V.

II. PRELIMINARY KNOWLEDGE
This section first introduces the basic concepts of knowledge
graphs and graph neural networks.

A. THE CONCEPT OF KNOWLEDGE GRAPH
A knowledge graph refers to a semantic network graph which
is consisted of diverse entities, concepts, and relationships in
the real world. It is used to formally describe various things
and their associations in the real world [20].

Knowledge graphs are generally represented in triples
G={E,R,F}. Among them, E represents the entity set
{e1, e2, · · · ,eE }, and the entity e is the most basic element
in the knowledge graph, referring to the items that exist
objectively and can be distinguished from each other. R
represents the relation set {r1, r2, · · · ,rR}, and the relation r
is an edge in the knowledge graph, representing a specific
connection between different entities. F represents the fact
set {f1,f2, · · · ,fF }, and each f is defined as a triple (h, r, t)
∈ f , in which h denotes the head entity, r stands for the
relationship, and t indicates the tail entity.

B. THE CONCEPT OF GRAPH NEURAL NETWORK
The graph neural network adopts a particular method for
describing the nodes. Based on continuous node state
updates, it can obtain a state including both neighbor
node information and graph topology characteristics [21].
Therefore, the goal is to learn an embedded state hv ∈ Rsfor
each node that encodes its neighbor information, and this state
hv is used to generate the required output ov,as expressed in

H = F (H ,X) , (1)

O = G (H ,XN ) . (2)

where H represents the state of all nodes; O represents
the result after outputting all nodes; X represents the edge
feature; XN represents the feature of all nodes; F(·), G(·)
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respectively represent the global transformation function and
the global output function.

It can be seen that when the state of all nodes is updated
from t to t + 1, it can be expressed as

H t+1
= F

(
H t ,X

)
. (3)

III. THE KNOWLEDGE GRAPH LEARNING BASED ON
GRAPH NEURAL NETWORK
Since knowledge graphs can represent structured relation-
ships between entities, they have become an important
research area in cognition and artificial intelligence. The
graph neural network employs the deep neural network
to integrate the topology information and attribute feature
information in the graph data, and then provides a more
refined feature representation of nodes and can be easily
combined with downstream tasks through an end-to-end
manner. It cleverly meets the requirements of a knowledge
graph for learning the attribute features and structural features
of entities and relationships. This section mainly introduces
the knowledge graph learning method using graph neural
networks for four typical tasks.

A. LINK PREDICTION
Link prediction seeks to forecast missing information (links
or relations) between the elements in knowledge graphs.
The overview of recent GNN-based link prediction models
on the knowledge graph is presented in Table 1. In fact,
KGs can be represented as multi-relational directed graphs
with nodes and edges representing entities and relations,
respectively [22]. Therefore, most researchers are motivated
to stress the essential effects of various connection patterns
between entities, which result in the sufficient capture of the
relationships. The models that belong to the Relation-Aware
GNN category are shown in Fig. 2.

FIGURE 2. The relation-aware GNN models.

To deal with multiple relationships in a GCN base, one
of the earliest methods was R-GCN [32], also known as a
Relational Graph Convolutional Network. R-GCN and GCN
are distinguished by the fact that in R-GCN, edges can
represent a variety of different relationships. All edges in
GCN can share weights. R-GCN, on the other hand, employs
distinct weights for different edge types, and only edges of the

TABLE 1. Representative models for link prediction.

same relation type r are associated with the same projection
weight. A model like the R-GCN produces exponential
parameter expansion, however, especially when dealing
with data that is extremely multi-relational. The original
study advocates the use of basis decomposition to reduce
the amount of model parameters and prevent overfitting.
All relationships in the decoder are scored by using the
DistMult factorization model, and each relationship is linked
to the diagonal matrix. The heterogeneous relation attention
network (HRAN) [36] framework also follows a hierarchical
structure containing both entity-level and relation-level
aggregation for KG embedding. But different from R-GCN,

VOLUME 10, 2022 75731



Z. Ye et al.: Comprehensive Survey of Graph Neural Networks for Knowledge Graphs

HRAN proposed a novel relation-based attention mechanism
with the purpose of obtaining the significance of different
relation paths.

Unfortunately, the previous R-GCN model faces three
shortcomings, i.e., low representational power, stacking
flatly, and poor robustness to noise. A novel multi-level
graph neural network (M-GNN) [34] was proposed to
deal with the aforementioned challenges. Unlike R-GCN,
which utilize mean pooling as their aggregator, the M-GNN
introduced multi-layer perception (MLPs) when conducting
neighborhood aggregation to improve the representational
power of GNN layers. The updating process in M-GNN is as
follows: h(k)v = MLP(k)((1+ε(k))·hk−1r0,v+

∑
µεN r

v
hk−1r,u ), where

N r
v indicates the set of neighbor indices of the node i under

relation rεR, hk−1r,u denotes the message passing from each
neighbor node u under relation r at the k − 1th layer, and hkr0,v
denotes the self-connection message. On this basis, the graph
coarsening scheme was developed as a strategy to output a
series of graphs with different granularities. Then, multiple
GNNs on these graphs were stacked to model multi-level
structures of the original graph.

Another disadvantage of the R-GCNmodel is that it has no
vectorized relation embedding involved, which can thus limit
the model’s expansibility. Inspired by the graph attention
network, a new graph neural network called Relation Aware
Graph Attention network (RAGAT) [33] was proposed. The
core idea behind RAGHAT is introducing relation specific
network parameters θr to study information from neighboring
entities under different relations adaptively. The newmessage
function is defined as

Cr
(u,r,v) = φr (eu, er , ev, θr ) . (4)

where φr is combining operator, eu and ev denotes entity
embedding, er is relation embedding.

Three of the link prediction models discussed above
are based on relation-level attention. Inspired that not all
neighboring entities in a specific relation are equally crucial
in indicating the central entity, a novel neighborhood-ware
model named Relational Graph neural network with Hierar-
chical ATtention (RGHAT) [23] was proposed. In addition
to computing the weights for different relations, which is
the first-level attention, RGHAT is further equipped with
entity-level attention. RGHAT highlights the importance of
different neighboring entities under the same relation and
hierarchically aggregates information in this second level.

Mixed-Curvature Multi-Relational Graph Neural Net-
works (M2GNNs) [31] were created by Wang et al. to solve
the issue that embedding in single-curvature space overlooks
the innate heterogeneity structures inherent in rich-structured
KGs. To be more exact, a tractable Riemannian product
manifold that combines Euclidean, spherical, and hyperbolic
spaces can be used to generate the mixed curvature space.
Graph Neural Updater is presented to aggregate and update
the embedding features of entities and relations to increase
the quality of the embedding.

FIGURE 3. The zero-shot learning models.

One of the important issues for link prediction refers
to the poor scalability of KGs since numerous real-world
KGs are ever-evolving, with new nodes or relations being
supplemented over time (also called zero-shot scenar-
ios) [38]. The models that concern Zero-Shot Learning
is displayed in Fig. 3. Making predictions on such new
entities without expensive re-training is of great necessity
for production-ready machine learning models. Markov
Logic Networks (MLNs) have emerged as practical tools
to deal with the zero-shot learning problem because they
don’t require many labeled examples for a target task.
However, inference in MLN is computationally intensive.
In ExpressGNN [25], the advantages of MLNs in logic
reasoning and GNN in graph representation learning are both
leveraged. It was finally implemented in a constructed zero-
shot learning dataset based on FB15K-237 and achievedmore
capability of performing concerning low amounts of observed
data.

Another dominant line to predict the relation in the unseen
KGs is to view it as a logical induction problem. One
seeks to derive probabilistic logical rules underlying a given
KG. GraIL [29] is one of the representative GNN-based
frameworks for inductive knowledge graph reasoning. In this
approach, the relation between two nodes is predicted from
the enclosing sub-graph structure extracted around those
two nodes. No node attribute is assumed when labeling the
nodes to test the model’s ability to generalize solely from
the structure. The final step in the current framework aims
to adopt a multi-relational GNN for scoring the likelihood
of a triplet (u, rt , v), in which we indicate nodes u and v
as target nodes and rt as the target relation. Besides, the
drawback of GraIL is that it relies on heuristics and scoring
function so that the inductive capabilities of the GNN are
not fully exploited. In contrast to GraIL, INDIGO [28]
encodes KGs using a one-to-one correspondence between
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triples in the KG and elements of the feature vectors in
the innermost and outermost layers of the GNN. Hence,
the predicted triples can be read out directly from the last
layer of the GNN without the requirement for additional
components.

The previously described models can only handle the
Out-of-knowledge-graph (OOKG) entity problem.Moreover,
they cannot handle the issue of unobserved relations, which is
a new zero-shot scenario put forward currently. Convolutional
Transition and Attention-Based Aggregation Graph Neural
Network [24] was regarded as a novel method that can be
used to generate embedding vectors of OOKG relations.
This approach novelly sets a convolutional transition function
with the purpose of transferring information for OOKG
entities and relations in parallel. When computing the
embedding of relations, for example, the propagation model
for relations in the neighborhood is used. For the purpose
of determining the weight value of each information vector,
the author also proposed an attention-based aggregation
network.

According to the literature review, there are other
perspectives on the link prediction problem for knowl-
edge graphs. The SEAL [30] framework develops a new
γ -decaying heuristic theory and translates link prediction
into a subgraph classification problem in a comprehensive
manner. Initially, the SEAL can extract its h-hop enclosing
subgraph A for each target link and constructs its node
information matrix X , including structural node labels, latent
embeddings, and explicit attributes of nodes. Subsequently,
SEAL may send (A,X ) into a GNN to categorize the
existence of the link. By taking unique local structures
like cycles and stars into account, a novel graph attention
network named LSA-GAT [26] derives a sophisticated
representation covering both the semantic and structural
information. Lightweight Framework for Context-Aware
Knowledge Graph Embedding (LightCAKE) [37] focuses
on graph context. The novel aspect of this technique is
the construction of a context star network to model the
entity/relation context. Following that, each entity/relation
node in the newly-framed context star graph combines
information from its surrounding context nodes using a
scoring algorithm to determine weights. The association
rules enhanced knowledge graph attention network (AR-
KGAT) [35] aggregates neighborhood information with both
association-rules-based and graph-based attention weights.
Since a knowledge graph is a directed labeled graph in which
the labels have well-defined meanings, the Gravity-Inspired
Model [27] is proposed as a new gravity-inspired decoder
scheme for the link prediction in directed graphs. Inspired
by Newton’s theory of universal gravity, this framework
learns node embedding from directed graphs, using graph
AE and VAE frameworks. Besides, Newton’s equations in
the resulting embedding are applied, the acceleration ai→j =

Gmj/r2 of a node i towards a node j is applied because of
gravity in the embedding to represent the likelihood that i
associated with j in the directed graph.

TABLE 2. Representative models for knowledge graph alignment.

B. KNOWLEDGE GRAPH ALIGNMENT
In the field of knowledge fusion, Entity Alignment, also
known as Entity Matching or Entity Resolution, is a critical
and foundational technology. Knowledge graphs that depict
the same real-world entity can be identified by aligning
their entities [39]. In this study, we consider two groups of
knowledge graphs, static KGs and dynamic KGs. Table 2
illustrates the representative publications of GNN-based
knowledge graph alignment.

We first introduce different embedding models for static
KGs. Since the seed alignments are usually insufficient
for high-quality entity embedding, most efforts failed to
consider structure heterogeneity between different KGs.
Alignment-oriented knowledge graph (KG) embeddings can
be learned usingMuGNN [45], aMulti-channel GraphNeural
Networkmodel that robustly encodes twoKGs usingmultiple
channels. Each channel encodes KGs using various relation
weighting strategies for self-attention toward KG completion
and cross-KG attention for trimming exclusive entities
independently, both of which are thoroughly integrated using
pooling approaches. It can also consistently conclude and
transfer rule knowledge for the completion of two KGs.
MuGNN may be able to resolve the structural differences
between two KGs and better utilize seed alignment data.
While MuGNN finds the structure incompleteness of KGs
and aims at the rule-based KG completion, the counter-
part entities have non-isomorphic neighborhood structures
unavoidably. As a result, a newKG alignment network, called
AliNet [42], was proposed to mitigate the different neigh-
borhood structures end-to-end. AliNet introduces distant
neighbors to enlarge the overlap between their neighborhood
structures using an attention mechanism and restricts the
equivalent entity pairs’ two entities to have the same hidden
state in each GAT layer. A relation loss is finally used
to refine entity representations. The entity-pair embedding
approach (EPEA) [43] for KG alignment introduced the
pairwise connectivity graph (PCG) of KGs, whose nodes are
entity-pairs and edges are in line with relation-pairs. This
approach tries to encode attribute features from entity-pairs
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using a CNN and then enhance the features propagation
among the neighbors of entity-pairs through GNNwith edge-
aware attention.

Many attention mechanism-based models for KG repre-
sentation learning have recently obtained advanced perfor-
mance in entity alignment tasks. For example, decentralized
attention networks (DANs) [46] compute the attention
score by purely relying on the target entity’s neighbors
and ignoring the requirement of its embedding throughout.
Such characteristic enables DAN to induce embeddings
on unseen entities. Since there are different entity types
and relation types in a knowledge graph. Considering the
nature of entity and relation types, it makes sense to have
a different alignment strategy for the different entity types.
Therefore, a multi-type entity alignment algorithm named
CG-MuAlign [40] was created to collectively align entities
of different types and make predictions on unseen entities
using attention mechanisms and neighborhood information.
Furthermore, it used relation-aware neighborhood sampling
to enhance the computational efficiency of the approach in
large-scale data collection.

Many other applicable circumstances can be regarded as
problems of graph alignment. For example,Map Fusion (MF)
aims to identify nodes from both road networks that match
each other [48]. Still, the current GNN approaches show
poor performance for the MF task since the information from
non-overlapping areas negatively affects the learned node
representations. The Graph Alignment Network (GrAN) [41]
aggregates information from neighbors by emphasizing
nodes that have a good match in the counterpart graph,
leading to an inductive bias that neighboring nodes that
are likely in the overlapping area are more useful for the
target node representation. Cross-lingual entity alignment
associates semantically similar entities in knowledge graphs
with different languages. However, current approaches fail to
model the meta semantics or complex relations such as n-
to-n and multi-graphs. A new method, Meta Relation Aware
Entity Alignment (MRAEA) [44], operates on cross-lingual
KGs through leveraging meta relation-aware embedding and
relation-aware self-attention. In addition, this work further
adopted an effective iterative training strategy on the basis
of the asymmetric nature of alignments.

The prior discussion is based on static KGs, i.e., the
knowledge is represented at a specific point in time [49].
However, because of initial incompleteness, almost every KG
has some evolution in practice. Moreover, this evolution is
smooth with small changes rather than drastic modifications
of large subgraphs in most cases. Therefore, to efficiently
tackle the issue of updating entity embeddings for the evolv-
ing graph topology, a family of algorithms (DINGAL) [47]
using graph convolutional networks is proposed. The key
idea is to distance the coupling between the parameter matrix
in GCN and the underlying graph topology. This work is
believed to be the first to study the dynamic knowledge graph
alignment problem, and more reaches will likely be made on
dynamic knowledge graphs in the future.

TABLE 3. Representative models for knowledge graph reasoning.

C. KNOWLEDGE GRAPH REASONING
The knowledge reasoning for knowledge graphs studied in
this paper refers to using specific methods to infer new
conclusions or identify wrong information based on existing
data. For example, a fact like triple (X ,BirthPlace,Y ) is
given inDPpedia, themissing triple (X ,Nationality,Y ) can be
obtained through reasoning [50]. To some extent, knowledge
reasoning is similar to link prediction, while the relationships
acquired by knowledge reasoning mostly need a multi-hop
reasoning process in the knowledge graph. Table 3 illustrates
the representative publications of GNN-based knowledge
graph reasoning.

Graph neural networks learn the feature representa-
tion automatically and provide structured explanations
suitable for knowledge reasoning. The target relational
attention-oriented reasoning (TRAR) [54] model proposes
a novel embedding-based approach to aggregate the infor-
mation by designing node-level and relational subgraph-
level attention mechanisms. In addition, the multiple target
relational attention-oriented layers concentrate more on
the relations that match the target relation, whereas each
subgraph uses a hierarchical attention mechanism for obtain-
ing node-level information. The Dynamic Pruned Message
Passing Networks (DPMPN) [52] also model the reasoning
process for large-scale knowledge graphs by constructing
local subgraphs dynamically. This approach developed a
two-GNN framework to learn the reasoning by explaining
through some understandable form. The cascaded attention
mechanism makes explanation efficient by selecting relevant
nodes to construct subgraphs regardless of how large the
underlying graph is. Even though the above-mentioned
embedding methods have successfully acquired promising
findings in specific KG reasoning tasks, they fall short for
modeling multi-hop relational paths in more complicated
reasoning tasks. The Deep-IDA∗ [51] framework empowers
embedding-based methods by combining path-based algo-
rithms. It is the first to integrate the traditional path searching
algorithms and deep neural networks for KG reasoning.

Furthermore, the knowledge graphs reasoning ability can
be widely applied in many downstream tasks, and the
illustration is shown in Fig. 4. Developing a reasoningmethod
is one of the specific directions of knowledge graph in the
military field. It is a critical technology that can stimulate
the intellectual development of military combat command.
A knowledge reasoning method was proposed for military
decisions by mixing rule learning, rule injection, and graph
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FIGURE 4. The models on knowledge graph reasoning.

TABLE 4. Representative models for node classification.

neural network learning together, named context-surrounding
graph neural networks with numbers (CS-GNN-N) [53].
With the advancement of technology in recent years, legal
artificial intelligence has flourished. The Text-guided Graph
Reasoning (T-GraphR) [55] refers to a novel approach for the
Legal provision prediction (LPP) task that seeks to predict the
associated legal provisions of affairs. This approach briefly
consists of twomain components: text representation learning
and legal graph reasoning. We believe that more knowledge
reasoning methods will be explored and attempted on more
domain KGs in the future.

D. NODE CLASSIFICATION
Node classification, in which an attribute of each node
in a graph is predicted, is another of the most popular
and commonly adopted tasks on graph data—for example,
assigning a categorical class to each node (binary or
multiclass classification) or forecasting a continuous number
(regression). Table 4 illustrates the representative publica-
tions of GNN-based knowledge graph node classification.

To solve the problem of the limited receptive field
caused by the lack of the ‘‘graph pooling’’ mechanism,
a novel deep Hierarchical Graph Convolutional Network
(H-GCN) [58] is presented for semi-supervised node classifi-
cation. Coarsening layers and symmetric refining layersmake
up the H-GCN model. This approach can achieve a more
significant receptive field and good information propagation
by clustering structurally related nodes into hyper-nodes.

Still, labeled data is not always available, and the training
sample scarcity problem has aroused extensive research inter-
est. The Heterogeneous Deep Graph Infomax (HDGI) [57]
attempted to learn high-level representations containing
graph-level structural information without any supervised
label by maximizing local-global mutual information. HDGI
also combines the meta-path technique to represent the
composite relations with distinct semantics in heterogeneous
graph studies.

In real-world circumstances, we are frequently confronted
with continually developing graphs, so the question can be
formulated as to how the graph neural network handles
such a dynamism. A new method called evolving graph
convolutional network (EvolveGCN) [56] was developed to
capture the dynamism of graphs, based on the recent success
of graph convolutional network (GCN) for static networks.
Instead, the RNN governs the GCNmodel at each step in this
method. As a result, it effectively executes model adaptation,
which focuses on the model rather than the node embeddings,
leading to the non-restriction of the node appearance. It’s
worth noting that the GCN parameters aren’t trained in this
manner. Only the RNN parameters are trained because they
are computed from the recurrent network.

IV. THE KNOWLEDGE GRAPH APPLICATION BASED ON
GRAPH NEURAL NETWORK
At present, the higher-quality knowledge graph obtained
after the graph neural network representation learning can
be used for multiple applicable downstream tasks combined
with specific scenarios. Recommender Systems, Question
Answering, andDrug-drug Interaction are explained in detail.

FIGURE 5. Illustration of user-item interactions and the knowledge graph.

A. RECOMMENDER SYSTEM
Recommender Systems (RS), as one of the most famous
and significant uses of Artificial Intelligence (AI), have been
widely adopted to assist consumers in making appropriate
choices among the enormous amount of products and
services available. However, when the data has cold-start
problems, depending merely on user-item interactions spoils
recommendation performance. As a result, existing research
suggests using knowledge graphs (KGs) as side information
to investigate implicit or high-order connectivity relations
between users or items to improve their representations
and thus improve recommendation effectiveness, as shown
in Fig. 5. The GNN technique addresses two critical
downstream tasks: explicit feedback and implicit feedback.
For example, Ranking prediction models employ explicit
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feedback to deliver a customized ranked list of recommended
products to the user. On the other hand, Click-through rate
(CTR) prediction leverages implicit feedback to forecast the
likelihood of people clicking adverts or objects. As a result,
the knowledge-aware recommendation task can be expressed
as

ŷuv = F(u, v| , Y , K ). (5)

where ŷuv refers to the prediction of user’s interest in item v,
F indicates the learned prediction function with weights ,
Y is a user-item bipartite graph, and K is the knowledge

graph.
Generally, the workflow of a GNN-based Knowledge

Aware Deep Recommender System initially studies to yield
an embedding by graph embedding module for every graph
node, containing the user and item nodes, encoding the
information distilled from the input knowledge. Finally,
the model parameters can be updated by dealing with the
objective function [68]. There are two ways for applying
graph feature learning to recommender systems: One-by-one
Learning (OL) and Joint Learning (JL). In terms of one-by-
one learning, the knowledge graph characteristics are initially
adopted for obtaining entity vectors and relationship vectors.
Subsequently, these low-dimensional vectors are presented
into the recommender system in order to study the target
user vectors and item vectors. Additionally, joint learning
can combine the knowledge graph feature learning with the
objective role of the recommender system, which is an end-
to-end method. Table 5 illustrates the representative publi-
cations of the GNN-based knowledge-aware recommender
system.

FIGURE 6. The models focusing on capturing high-order context
information.

In practice, one group of approaches automatically cap-
tures both structure and semantic information of KGs, such
as the most related high-order neighbors. The overall view of
the models concerned is displayed in Fig. 6. Contextualized
Graph Attention Network (CGAT) [59] was proposed by
Yang et al. to take advantage of KG entities’ local and
non-local graph context information. A user-specific graph
attention technique is used to aggregate the relation-ware
neighborhood information of an item in order to consider
local context information (one-hop). Based on a biased
random walk, essential entities for the target entity are
extracted from the entire KG to incorporate the non-local
context in KG. Using a GRU module, this embedding can be
explicitly aggregated.

TABLE 5. Representative models of GNN-based knowledge-aware
recommender system.

However, the exponential increase of a node’s receptive
field places a severe constraint on high-order aggregation.
Differentiable Sampling on Knowledge Graph for Recom-
mendation with Relational GNN (DSKReG) [60] proposed
learning the relevance distribution of related items from
knowledge graphs and sampling relevant items in accordance
with this distribution. With this model’s addition of a
differentiable sampling method, the selection of appropriate
objects can be optimized as the model is being trained.

TheKnowledgeGraph-based Intent Network, or KGIN [63],
is primarily concerned with analyzing the user intents that
lie beneath user-item interactions. It does this by utilizing
item KG to improve the performance of recommendations
and the interpretability of those recommendations. This
approach represents each intent as an attentive combination
of KG relations and introduces a new relational path-aware
aggregation scheme to aggregate long-range connectivity
relation sequences and refine multi-hop path representations.

The heterogeneous knowledge graph is a new hot pot
because real-world applications, such as social networks
display beneficial and essential information on node con-
nections. Some existing models proposed attempt to handle
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relations in heterogeneous graphs with different semantics.
The Knowledge-aware Graph Neural Networks with Label
Smoothness regularization (KGNN-LS) [67] calculates user-
specific item embeddings by initially employing a trainable
function to identify meaningful knowledge graph relation-
ships for a given user. For example, a given user is more
concerned with the ‘‘director’’ relationship between movies
and people than the ‘‘lead actor’’ relationship. Furthermore,
the proposed label smoothness constraint and leave-one-
out loss offer strong regularization for studying the edge
weights in KGs. The Dual Knowledge Multimodal Network
(DKMN) [61] is an extension work of KGNN-LS. This work
aims to work on knowledge graphs and other multimodal
data, e.g., textual reviews and pictures.

Unlike previous studies, which have primarily focused on
exploring novel neural networks, some researchers consider
reducing the massive computational cost while maintaining
the pattern of extracting features. The GraphSW [66]
technique is based on a stage-wise training framework
that only examines a subset of KG entities at each stage.
In the succeeding steps, the network receives the learned
embedding from the previous stages, and the model can
gradually learn the information from the KG. It has been
discovered that the existing non-sampling strategy computes
the gradient over the entire data set, resulting in high
computational costs. A novel Jointly Non-Sampling learning
model for Knowledge graph enhanced Recommendation
(JNSKR) [62] first designed a new efficient non-sampling
loss for knowledge graph embedding learning, significantly
reducing complexity. The surrounding entities of an item
are then aggregated with attention mechanisms to help learn
accurate user preferences over items.

Also, there are some other methods for studying
GNN-based recommender systems. The Feature interaction
Graph Neural Networks (Fi-GNN) [65] identified a limitation
in modeling sophisticated interactions using simple unstruc-
tured combinations. Hence, it intends to consider the structure
of multi-field features. The Fi-GNN adopted a graph structure
representing multi-field features called a feature graph. Each
node in the graph intuitively is consistent with a feature
field, and diverse fields can make the interaction through
edges. As a result, modeling sophisticated interactions
between feature fields can be decreased to modeling node
interactions on the feature graph. The novel Split-And-
ReCombine strategy (SARC) [64] separates the user-item-
entity interactions into three two-way interactions: the
‘‘user-item’’, ‘‘user-entity’’, and ‘‘item-entity’’ interactions.
Besides, the two-way interactions can be represented as a
graph, thus be modeled using Graph Neural Networks (GNN)
and knowledge graph embeddings. In the second stage,
SARC uses the representation of users and items learned in
the first step to make a suggestion.

B. KNOWLEDGE BASE QUESTION ANSWERING
Knowledge base question answering (KBQA) aims to
respond to a question using information from a knowledge

TABLE 6. Representative models for knowledge base question answering.

TABLE 7. Representative models for drug-drug interactions.

base (KB). In recent years, academics have focused chiefly
on GNN-based solutions for addressing the difficulties of
answering complicated questions, as shown in Table 6 for
relevant models.

Subgraph reasoning is a common method for obtaining the
answer. QA-GNN [70] is an end-to-end question answering
model in which the QA context as an additional node
connects the topic entities to form the subgraph of KG.
It is then proposed to use pre-trained language models to
score KG nodes’ relevance to the QA context based on their
importance. Finally, the joint graph representation is updated
through graph-based message passing. Deciphering Entity
Links from Free Text (DELFT) [71] produces a dense and
high-coverage semantic subgraph by linking question entity
nodes to candidate entity nodes using text sentences from
Wikipedia. This innovative graph neural network performs
better on entity-rich questions due to the extensive coverage
of its free-text evidence.

Open-domain question answering is a difficult task in
KBQA, which aims to answer a question in natural language
in accordance with large-scale unstructured documents. The
Relational GNN for Open-domain Question Answering [69]
is an OpenQA architecture. This proposed model can update
embeddings from a knowledge graph and a collection
of linked texts together to learn contextual knowledge
graph embeddings. Contextualized relations are utilized in
knowledge graphs to enrich them. The bi-directional attention
mechanism and hierarchical representation learning are also
used for open-domain question answering tasks in this
approach as well.

C. DRUG-DRUG INTERACTIONS
Over the years, graph neural network has been an emerging
tool for Drug-drug interaction (DDI) prediction but has not
been widely applied, and the concerned models are shown
in Table 7. The graph energy neural network (GENN) [72]
is the first proposed model explicitly for drug link type
correlations. Motivated by the intuition that an ‘‘energy’’
can be derived over the graph, a new energy function
defined by the graph neural networks is formulated and
used to incorporate the dependency structures. However, this
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TABLE 8. KGs-based GNN models in other fields.

approach only considers the correlations between drugs, and
a neglected deficiency is that the relations between drugs and
other entities such as targes and genes are not considered.

To address this limitation, a novel end-to-end frame-
work, the Knowledge graph neural network (KGNN) [73],
is introduced to explore the topological information of each
entity in the knowledge graph, which is beneficial for DDI
prediction. In addition, KGNN aggregates rich neighborhood
informationwith a bias to learn both high-order structures and
semantic relations of the KG.

D. RESEARCH IN OTHER AREAS
The GNN-based knowledge graphs also have applications in
many other fields. Table 8 lists the recently proposed models,
including scenarios of Fake News Detection (FND), Fault
Localization (FL), Image-TextMatching (ITM), Personalized
Review Generation (PRG), Situational Awareness (SA),
Knowledge Tracing (KT), and Power System Network
Topology Identification (PSNTI).

The DEAP-FAKED [76] encoded news content using
an NLP-based approach and then identified, extracted, and
mapped the named entities to a KG. Finally, the entities
in the KG were encoded using a GNN-based technique.
This approach can achieve better results by utilizing only
the news articles’ titles and handling the bias. The Optical
Network Fault Localization [77] designed an alarm KG to
assist network administrators to explore and visualize the
relationship between alarms. Then, a GGNN-based method
was put forward to reason the association between alarms
and detect the root alarm. It is experimentally verified that

the knowledge graphs help to construct an easy-to-understand
alarm knowledge system, which leads to good accuracy.
There are three methods used in Few-Shot KG-To-Text
Generation Model [80]: representation alignment to help
bridge the semantic gap between KG codings and PLMs,
relation-biased KG linearization to derive input representa-
tions, as well as multi-task learning to learn how KG and text
correspond to each other. All of these assists in producing
effective semantic representations for both few-shot and
fully supervised settings. According to the News Knowledge
Driven Graph Neural Network (NKD-GNN) [81], the KG
was built using named entities extracted from the TopNews
dataset, and the relationships between those entities were
explored across the KG. Therefore, by examining all
relationships and implicitly assuming relationships between
named entities in the news knowledge graph, this model
is able to choose the best candidate for each placeholder
in the news image template caption. The KG-Enhanced
Review Generation Model [79] adopted the Caps-GNN to
learn graph capsules to encode underlying characteristics
from the HKG. The generation process contains aspect
sequence generation and sentence generation. This model
performs better than all the baselines due to the significant
difference that KG information was included in the multi-
stage generation process. The SA GNN [74] discussed four
ideas of making predictions with collective AI and proposed
a GNN framework that jointly learns object representations
frommultiple agents. Since each AI has a unique, incomplete
view of the knowledge graph with noise, multiple AI
agents are required to produce a forecast collectively.

75738 VOLUME 10, 2022



Z. Ye et al.: Comprehensive Survey of Graph Neural Networks for Knowledge Graphs

The Graph-Based Knowledge Tracing [78] reformulated
the knowledge tracing task as a time-series node-level
classification issue in the GNN. This approach exhibited
better interpretable predictions because it directly models the
knowledge state for each concept and further models the
edge weights using K separate neural networks for K edge
types. The graph neural network can serve as a technological
tool among entities in the knowledge graph, which works
for missing information. Therefore, both can be merged to
be adopted in topological recognition. The Power System
Network Topology Identification [75] contained an additional
process for inferring conflicting information. Meanwhile,
the knowledge inference on contradictory information was
conducted on the basis of GNN.

V. CONCLUSION
Knowledge graph, a form of data representation that uses
graph structure to model the connections between things, has
attracted much attention and faces many challenges. This
paper depicted the importance and necessity of knowledge
graph embedding and how KGE is used to solve KG
problems. We present a thorough review of existing GNN-
based approaches thatmainly focus on four types of KG tasks,
i.e., link prediction, knowledge graph alignment, knowledge
graph reasoning, and node classification. We went over
the specifics of the model as well as the benefits and
contributions of such strategies. After that, this work focuses
on how the KG method based on GNN can be applied to
practical application areas such as recommender systems,
question answering, and drug-drug interaction. This is the
first complete graph neural network technology survey for
knowledge graphs. We believe that the investigation of KGs
on using GNN will receive increasing attention in the near
future.
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