
Journal of Machine Learning Research 22 (2021) 1-6 Submitted 5/19; Revised 12/20; Published 2/21

Pykg2vec: A Python Library for Knowledge Graph
Embedding

Shih-Yuan Yu∗ shihyuay@uci.edu
Sujit Rokka Chhetri∗ schhetri@uci.edu
Department of Electrical Engineering and Computer Science, University of California-Irvine

Arquimedes Canedo arquimedes.canedo@siemens.com
Siemens Corporate Technology, Princeton

Palash Goyal palashgo@usc.edu
Department of Computer Science, University of Southern California

Mohammad Abdullah Al Faruque alfaruqu@uci.edu

Department of Electrical Engineering and Computer Science, University of California-Irvine

Editor: Andreas Mueller

Abstract

Pykg2vec is a Python library for learning the representations of the entities and relations in
knowledge graphs. Pykg2vec’s flexible and modular software architecture currently imple-
ments 25 state-of-the-art knowledge graph embedding algorithms, and is designed to easily
incorporate new algorithms. The goal of pykg2vec is to provide a practical and educational
platform to accelerate research in knowledge graph representation learning. Pykg2vec is
built on top of PyTorch and Python’s multiprocessing framework and provides modules for
batch generation, Bayesian hyperparameter optimization, evaluation of KGE tasks, em-
bedding, and result visualization. Pykg2vec is released under the MIT License and is also
available in the Python Package Index (PyPI). The source code of pykg2vec is available at
https://github.com/Sujit-O/pykg2vec†.

Keywords: Knowledge Graph Embedding, Representation Learning

1. Introduction

In recent years, Knowledge Graph Embedding (KGE) has become an active research area
and many authors have provided reference software implementations. However, most of
these are standalone implementations and therefore it is difficult and time-consuming to:
(i) find the source code; (ii) adapt the source code to new datasets; (iii) correctly param-
eterize the models; and (iv) compare against other methods. Recently, libraries such as
PyKEEN (Ali et al., 2018), OpenKE (Han et al., 2018) and AmpliGraph (Costabello et al.,
2019) provide unifying frameworks for a set of KGE methods, allowing researchers to test
KGE methods on multiple benchmarks and their datasets. However, these libraries impose
preset hyperparameters that may only work for specific benchmarks, algorithms, or even
pipeline implementations. For new datasets, where the corresponding golden hyperparam-

∗Shih-Yuan Yu and Sujit Rokka Chhetri contributed equally to this article.
†The master branch is the PyTorch version and the tf2-master branch is the legacy TensorFlow 2.0 version.

c©2021 Shih-Yuan Yu, Sujit Rokka Chhetri, Arquimedes Canedo, Palash Goyal, Mohammad Abdullah Al Faruque.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/19-433.html.

https://github.com/Sujit-O/pykg2vec
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/19-433.html


Yu and Chhetri and Canedo and Goyal and Al Faruque

eters may not have been found, it still requires manual trial-and-error runs and inspections
to adapt these KGE methods to new applications.

To overcome the limitations identified above, we propose pykg2vec, a Python library
with 25 state-of-the-art KGE methods (Nickel et al., 2011; Bordes et al., 2014, 2013; Socher
et al., 2013; Fan et al., 2014; Wang et al., 2014; Yang et al., 2014; ?; Lin et al., 2015; Ji
et al., 2015; Nickel et al., 2016; Xiao et al., 2016; Trouillon et al., 2016; Dettmers et al.,
2018; Shi and Weninger, 2017; Sun et al., 2019). Table 1 compares the features of pykg2vec
against similar frameworks. The goals of pykg2vec are as follows. (a) Provide access to the
latest and state-of-the-art KGE implementations. Compared to other libraries, we provide
the most KGE methods. (b) Automate the discovery of golden hyperparameters. pykg2vec
is the only KGE library providing built-in automation for golden hyperameter discovery
using Bayesian optimization. (c) Deliver a modular and flexible software architecture and
KGE pipeline that is both educational and of practical use for researchers. We provide a set
of utilities to inspect the training and resulting embeddings, and to export the results for
inspection using other tools. pykg2vec is released under the MIT License and also available
in Python Package Index (PyPI)†.

Pykg2vec(v0.0.51) OpenKE(latest) AmpliGraph(v1.0.3) PyKEEN(v0.0.25)

# of Available methods 25 9 4 10
# of Benchmark Datasets 8 6 5 7

Built-in Hyperparameter discovery 7 7 7

Table 1: Feature comparison between pykg2vec, OpenKE, AmpliGraph and PyKEEN

2. Knowledge Graph Embedding Methods

A knowledge graph contains a set of entities E and relations R between entities. The set of
facts D+ in the knowledge graph are represented in the form of triples (h, r, t), where h, t ∈ E
are referred to as the head (or subject) and the tail (or object) entities, and r ∈ R is referred
to as the relationship (or predicate). The problem of KGE is in finding a function that
learns the embeddings of triples using low-dimensional vectors while preserving structural
information, f : D+ → Rd. One general principle is to enforce the learning of entities
and relationships to be compatible with the information in D+. The representation choices
include, for example, deterministic point (Bordes et al., 2013) or complex number (Trouillon
et al., 2016). Under the Open World Assumption (OWA), a set of unseen negative triplets,
D−, are sampled from positive triples D+ by either corrupting the head or tail entities.
Then, a scoring function, fr(h, t) is defined to reward the positive triples and penalize the
negative triples. To aggregate the scores, various loss functions can be utilized such as a
pair-wise margin based (Bordes et al., 2013), point-wise logistic (Trouillon et al., 2016),
or binary cross-entropy multiclass loss (Dettmers et al., 2018). Finally, an optimization
algorithm is used to minimize or maximize the loss. KGE methods are often evaluated
in terms of their capability of predicting the missing entities in negative triples (?, r, t) or
(h, r, ?), or predicting whether an unseen fact is true or not. The evaluation metrics include
the rank of the answer in the predicted list (mean rank), the ratio of answers ranked top-k
in the list (hit-k ratio), and the mean of rank’s reciprocal (mean reciprocal rank).

†The authors appreciate the contribution from Xi Bai (Senior Software Engineer, Design & Engineering,
BBC).

2



Pykg2vec: A Python Library for Knowledge Graph Embedding

3. Software Architecture

Pykg2vec is built with Python and PyTorch that allows the computations to be assigned on
GPUs (legacy TensorFlow version is also ready in a separate branch). Figure 1 shows the
software architecture of pykg2vec and each building block will be described as follows.

KG Controller

head1, relation1, tail1
head2, relation1, tail2
head3, relation2, tail3

...

Result 
Inspector

Evaluator

Bayesian 
Optimizer

Trainer

Batch 
Generator

TransE TransH TransR RESCAL

SME

TransD TransM KB2E ProjE

RotatESLM ConvE Complex

DistMult NTNTuckER

 pykg2vec/core

'batch_size': 512
 'epochs': 5

'hidden_size': 64
 'learning_rate': 1

'margin': 0.4
...

'batch_size': 512
 'epochs': 5

'hidden_size': 64
 'learning_rate': 1

'margin': 0.4
...

pykg2vec/test

Integration 
Tests

pykg2vec/test

Integration 
Tests

pykg2vec/test

Integration 
Tests

Results Visualizers

Loss/Mean Rank/Hit Ratio Plot

Embedding Visualizers

Embedding Plot

Train/Valid/Test

Dataset: e.g. FB15K

Search Space of 
hyperparameterspykg2vec/utils {(h, r, t)} | {(h’, r, t’)}

{h, r, t}

Loss

Raw triples

Processed 
Triples

Tuned 
hyperparameters

Results

Acc/lossembeddings

Golden Setting

Interactive 
ConsoleCP

ConvKB

Analogy

SimplE

Ent/Rel 
Embeddings 

Scoring 
functions 

Evaluating 
functions

Model Instance

Ent/Rel 
Embeddings 

Scoring 
functions 

Evaluating 
functions

Model Instance

ConfigConfigConfig

pykg2vec/config

Pretrained 
KGE modelsConfigConfig

pykg2vec/config

Pretrained 
KGE models

MuRP InteractE HypER QuatEOctonionE

Figure 1: pykg2vec software architecture

The KG Controller module handles low-level parsing tasks such as finding the total
unique set of entities and relations; creating ordinal encoding maps; performing train-test
split; and caching the data on disk to optimize tasks that involve repetitive model testing.
Batch Generator consists of multiple concurrent processes that adapt mini-batches of
data to various KGE methods and perform data-processing for sampling negative samples.
The batch generator runs independently to bring speedup for feeding the data to the train-
ing module running on the GPU. Core Models consists of KGE algorithms implemented
as Python modules. Each module consists of a modular description of the inputs, outputs,
loss function, embedding operations, and hyperparameter configuration. Configuration
provides the necessary configuration to parse the datasets and also consists of the baseline
hyperparameters for each KGE algorithm as presented in its original research paper. In
addition, it provides the default search space for discovering golden hyperparameters. Ul-
timately, pykg2vec also provides access to pre-trained KGE models for users’ convenience.

The Trainer module is responsible for taking an instance of the KGE model, the re-
spective hyperparameter configuration, and input from the Batch Generator to train the
algorithms. The Evaluator module performs link prediction and provides the respective
metrics such as mean ranks or filtered mean ranks. Additionally, pykg2vec integrates the
Bayesian Optimizer module that allows users to specify various kinds of search space
for Bayesian hyperparameter optimization (Bergstra et al., 2011). This module uses the
information from the past trials of evaluating KGE metrics on the validation set to update
the next set of hyperparameters to explore, thus being more efficient than brute-force based
grid-search approaches in finding a golden hyperparameter set. The Result Inspector
module plots training loss and commonly used metrics in KGE tasks. To facilitate model
analysis, pykg2vec provides utilities to visualize the embeddings of entities and relations

3



Yu and Chhetri and Canedo and Goyal and Al Faruque

using t-SNE based dimensionality reduction. Besides, pykg2vec exports the learned em-
beddings in standardized formats so users can also choose other tools such as Embedding
Projector (Smilkov et al., 2016) in their analysis.

4. Usage Examples

The usage examples for pykg2vec are still evolving for better user experience, herein we only
demonstrate two examples‡. Firstly, to train a KGE method, users can trigger the following
commands. For each command, users can switch between various algorithms or adapt the
settings to train on other benchmarks or even their own datasets.

$ pykg2vec−t r a i n ( . exe ) −h #p r i n t the manual f o r input arguments
$ pykg2vec−t r a i n ( . exe ) −mn [transe |transh | . . ] #t r a i n on TransE or o t h e r s
$ pykg2vec−t r a i n ( . exe ) −mn transe −ds [ wn18 | wn18 rr ]#use wn18 or wn18 rr
$ pykg2vec−t r a i n ( . exe ) −mn transe −exp True #app ly paper ’ s s e t t i n g s

Secondly, users can run the following command for discovering golden hyperparameters.

$ pykg2vec−tune ( . exe ) −mn transe −ds wn18 rr # Tune hyperparameters
Found Golden Se t t i ng : # a f t e r at max 100 t r i a l s .
{ ’ L 1 f l a g ’ : True , ’ b a t c h s i z e ’ : 2279 , ’ h i d d e n s i z e ’ : 80 ,

’ l e a r n i n g r a t e ’ : 0 .05314 , ’ margin ’ : 8 . 58 , ’ opt ’ : ’adam ’ }

The results of running the mentioned scripts are shown in Table 2 and Table 3. Table 2
demonstrates the performance of KGE methods, while Table 3 shows the effect of utilizing
the setting found by Bayesian Optimizer and the comparison with other KGE libraries.

(filtered) TransE TransH ComplEx DistMult KG2E KL TransD

Mean Rank 69.52 77.60 111.75 123.76 64.76 57.73

Mean Reciprocal Rank 0.36 0.32 0.45 0.34 0.31 0.33

Hit-10 Ratio 0.61 0.62 0.73 0.57 0.61 0.60

Table 2: The results of KGE methods on FB15k using the settings in the original papers.

(filtered) pykg2vec (arbitrary/found setting) OpenKE Ampligraph

Mean Rank 6467/2079 - 2692

Mean Reciprocal Rank 0.13/0.19 - 0.22

Hit-10 Ratio 0.37/0.46 0.512 0.54

Table 3: The effect of applying the found hyperparameter setting on TransE for WN18 RR.

5. Discussion & Conclusion

Pykg2vec is a Python library with extensive documentation that includes the implementa-
tions of a variety of state-of-the-art Knowledge Graph Embedding methods and modular
building blocks of the embedding pipeline. In response to the growing machine learning
reproducibility crisis, pykg2vec aims to help researchers and developers to quickly test al-
gorithms against their custom knowledge based or utilize the modular blocks to adapt this
library for their custom algorithms.

‡More programming examples and performance metrics are in https://pykg2vec.readthedocs.io/.

4

https://pykg2vec.readthedocs.io/


Pykg2vec: A Python Library for Knowledge Graph Embedding

References

Mehdi Ali, Charles Tapley Hoyt, Daniel Domingo-Fernandez, Jens Lehmann, and Hajira
Jabeen. Biokeen: A library for learning and evaluating biological knowledge graph em-
beddings. bioRxiv, page 475202, 2018.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. Advances in neural information processing systems, 24:2546–
2554, 2011.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Neural Infor-
mation Processing Systems (NIPS), pages 1–9, 2013.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic matching
energy function for learning with multi-relational data. Machine Learning, 94(2):233–259,
2014.

Luca Costabello, Sumit Pai, Chan Le Van, Rory McGrath, and Nicholas McCarthy. Ampli-
graph: a library for representation learning on knowledge graphs, mar 2019.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional
2d knowledge graph embeddings. In Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

Miao Fan, Qiang Zhou, Emily Chang, and Fang Zheng. Transition-based knowledge graph
embedding with relational mapping properties. In Proceedings of the 28th Pacific Asia
conference on language, information and computing, pages 328–337, 2014.

Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi Li.
Openke: An open toolkit for knowledge embedding. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pages
139–144, 2018.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph embedding
via dynamic mapping matrix. 2015.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and
relation embeddings for knowledge graph completion. 2015.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. 2011.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of
knowledge graphs. 2016.

Baoxu Shi and Tim Weninger. Proje: Embedding projection for knowledge graph comple-
tion. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

5



Yu and Chhetri and Canedo and Goyal and Al Faruque

Daniel Smilkov, Nikhil Thorat, Charles Nicholson, Emily Reif, Fernanda B Viégas, and
Martin Wattenberg. Embedding projector: Interactive visualization and interpretation
of embeddings. arXiv preprint arXiv:1611.05469, 2016.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with
neural tensor networks for knowledge base completion. 2013.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. pages 2071–2080, 2016.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding
by translating on hyperplanes. 2014.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. Transg: A generative model for knowledge
graph embedding. pages 2316–2325, 2016.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. 2014.

6


	Introduction
	Knowledge Graph Embedding Methods
	Software Architecture
	Usage Examples
	Discussion & Conclusion

