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Abstract
Large-scale multi-relational embedding refers to
the task of learning the latent representations for
entities and relations in large knowledge graphs.
An effective and scalable solution for this prob-
lem is crucial for the true success of knowledge-
based inference in a broad range of applica-
tions. This paper proposes a novel framework
for optimizing the latent representations with re-
spect to the analogical properties of the embed-
ded entities and relations. By formulating the
learning objective in a differentiable fashion, our
model enjoys both theoretical power and com-
putational scalability, and significantly outper-
formed a large number of representative baseline
methods on benchmark datasets. Furthermore,
the model offers an elegant unification of several
well-known methods in multi-relational embed-
ding, which can be proven to be special instanti-
ations of our framework.

1. Introduction
Multi-relational embedding, or knowledge graph embed-
ding, is the task of finding the latent representations of
entities and relations for better inference over knowledge
graphs. This problem has become increasingly important
in recent machine learning due to the broad range of im-
portant applications of large-scale knowledge bases, such
as Freebase (Bollacker et al., 2008), DBpedia (Auer et al.,
2007) and Google’s Knowledge Graph (Singhal, 2012), in-
cluding question-answering (Ferrucci et al., 2010), infor-
mation retrieval (Dalton et al., 2014) and natural language
processing (Gabrilovich & Markovitch, 2009).

A knowledge base (KB) typically stores factual informa-
tion as subject-relation-object triplets. The collection of
such triplets forms a directed graph whose nodes are enti-
ties and whose edges are the relations among entities. Real-
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Figure 1. Commutative diagram for the analogy between the So-
lar System (red) and the Rutherford-Bohr Model (blue) (atom
system). By viewing the atom system as a “miniature” of the
solar system (via the scale down relation), one is able to com-
plete missing facts (triplets) about the latter by mirroring the facts
about the former. The analogy is built upon three basic analog-
ical structures (parallelograms): “sun is to planets as nucleus
is to electrons”, “sun is to mass as nucleus is to charge” and
“planets are to mass as eletrons are to charge”.

world knowledge graph is both extremely large and highly
incomplete by nature (Min et al., 2013). How can we use
the observed triplets in an incomplete graph to induce the
unobserved triples in the graph presents a tough challenge
for machine learning research.

Various statistical relational learning methods (Getoor,
2007; Nickel et al., 2015) have been proposed for this task,
among which vector-space embedding models are most
particular due to their advantageous performance and scal-
ability (Bordes et al., 2013). The key idea in those ap-
proaches is to find dimensionality reduced representations
for both the entities and the relations, and hence force the
models to generalize during the course of compression.
Representative models of this kind include tensor factoriza-
tion (Singhal, 2012; Nickel et al., 2011), neural tensor net-
works (Socher et al., 2013; Chen et al., 2013), translation-
based models (Bordes et al., 2013; Wang et al., 2014; Lin
et al., 2015b), bilinear models and its variants (Yang et al.,
2014; Trouillon et al., 2016), pathwise methods (Guu et al.,
2015), embeddings based on holographic representations
(Nickel et al., 2016), and product graphs that utilizes addi-
tional site information for the predictions of unseen edges
in a semi-supervised manner (Liu & Yang, 2015; 2016).
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Learning the embeddings of entities and relations can be
viewed as a knowledge induction process, as those induced
latent representations can be used to make inference about
new triplets that have not been seen before.

Despite the substantial efforts and great successes so far in
the research on multi-relational embedding, one important
aspect is missing, i.e., to study the solutions of the problem
from the analogical inference point of view, by which we
mean to rigorously define the desirable analogical proper-
ties for multi-relational embedding of entities and relations,
and to provide algorithmic solution for optimizing the em-
beddings w.r.t. the analogical properties. We argue that
analogical inference is particularly desirable for knowledge
base completion, since for instance if system A (a subset
of entities and relations) is analogous to system B (another
subset of entities and relations), then the unobserved triples
inB could be inferred by mirroring their counterparts inA.
Figure 1 uses a toy example to illustrate the intuition, where
system A corresponds to the solar system with three con-
cepts (entities), and systemB corresponds the atom system
with another three concepts. An analogy exists between the
two systems because B is a “miniature” of A. As a result,
knowing how the entities are related to each other in sys-
tem A allows us to make inference about how the entities
are related to each other in system B by analogy.

Although analogical reasoning was an active research
topic in classic AI (artificial intelligence), early computa-
tional models mainly focused on non-differentiable rule-
based reasoning (Gentner, 1983; Falkenhainer et al., 1989;
Turney, 2008), which can hardly scale to very large KBs
such as Freebase or Google’s Knowledge Graph. How to
leverage the intuition of analogical reasoning via statistical
inference for automated embedding of very large knowl-
edge graphs has not been studied so far, to our knowledge.

It is worth mentioning that analogical structures have been
observed in the output of several word/entity embedding
models (Mikolov et al., 2013; Pennington et al., 2014).
However, those observations stopped there as merely em-
pirical observations. Can we mathematically formulate the
desirable analogical structures and leverage them in our ob-
jective functions to improve multi-relational embedding?
In this case, can we develop new algorithms for tractable in-
ference for the embedding of very large knowledge graphs?
These questions present a fundamental challenge which has
not been addressed by existing work, and answering these
questions are the main contributions we aim in this pa-
per. We name this open challenge as the analogical infer-
ence problem, for the distinction from rule-based analogi-
cal reasoning in classic AI.

Our specific novel contributions are the following:

1. A new framework that, for the first time, explicitly

models analogical structures in multi-relational em-
bedding, and that improves the state-of-the-art perfor-
mance on benchmark datasets;

2. The algorithmic solution for conducting analogical in-
ference in a differentiable manner, whose implemen-
tation is as scalable as the fastest known relational em-
bedding algorithms;

3. The theoretical insights on how our framework pro-
vides a unified view of several representative methods
as its special (and restricted) cases, and why the gen-
eralization of such cases lead to the advantageous per-
formance of our method as empirically observed.

The rest of this paper is organized as follows: §2 introduces
related background where multi-relational embedding is
formulated as linear maps. §3 describes our new optimiza-
tion framework where the desirable analogical structures
are rigorously defined by the the commutative property of
linear maps. §4 offers an efficient algorithm for scalable in-
ference by exploiting the special structures of commutative
linear maps, §5 shows how our framework subsumes sev-
eral representative approaches in a principled way, and §6
reports our experimental results, followed by the conclud-
ing remarks in §7.

2. Related Background
2.1. Notations

Let E and R be the space of all entities and their relations.
A knowledge base K is a collection of triplets (s, r, o) ∈ K
where s ∈ E , o ∈ E , r ∈ R stand for the subject, object
and their relation, respectively. Denote by v ∈ R|E|×m a
look-up table where ve ∈ Rm is the vector embedding for
entity e, and denote by tensor W ∈ R|R|×m×m another
look-up table where Wr ∈ Rm×m is the matrix embedding
for relation r. Both v and W are to be learned from K.

2.2. Relations as Linear Maps

We formulate each relation r as a linear map that, for any
given (s, r, o) ∈ K, transforms the subject s from its origi-
nal position in the vector space to somewhere near the ob-
ject o. In other words, we expect the latent representations
for any valid (s, r, o) to satisfy

v>s Wr ≈ v>o (1)

The degree of satisfaction in the approximated form of (1)
can be quantified using the inner product of v>s Wr and vo.
That is, we define a bilinear score function as:

φ(s, r, o) = 〈v>s Wr, vo〉 = v>s Wrvo (2)

Our goal is to learn v and W such that φ(s, r, o) gives high
scores to valid triples, and low scores to the invalid ones.
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In contrast to some previous models (Bordes et al., 2013)
where relations are modeled as additive translating opera-
tors, namely vs + wr ≈ vo, the multiplicative formulation
in (1) offers a natural analogy to the first-order logic where
each relation is treated as a predicate operator over input ar-
guments (subject and object in our case). Clearly, the linear
transformation defined by a matrix, a.k.a. a linear map, is
a richer operator than the additive transformation defined
by a vector. Multiplicative models are also found to sub-
stantially outperform additive models empirically (Nickel
et al., 2011; Yang et al., 2014).

2.3. Normal Transformations

Instead of allowing arbitrary linear maps to be used for
representing relations, a particular family of matrices has
been studied for “well-behaved” linear maps. This family
is named as the normal matrices.
Definition 2.1 (Normal Matrix). A real matrixA is normal
if and only if A>A = AA>.

Normal matrices have nice theoretical properties which are
often desirable form relational modeling, e.g., they are uni-
tarily diagonalizable and hence can be conveniently ana-
lyzed by the spectral theorem (Dunford et al., 1971). Rep-
resentative members of the normal family include:

• Symmetric Matrices for which WrW
>
r = W>r Wr =

W 2
r . These includes all diagonal matrices and posi-

tive semi-definite matrices, and the symmetry implies
φ(s, r, o) = φ(o, r, s). They are suitable for modeling
symmetric relations such as is identical.

• Skew-/Anti-symmetric Matrices for which WrW
>
r =

W>r Wr = −W 2
r , which implies φ(s, r, o) =

−φ(o, r, s). These matrices are suitable for modeling
asymmetric relations such as is parent of .

• Rotation Matrices for which WrW
>
r = W>r Wr =

Im, which suggests that the relation r is invertible as
W−1r always exists. Rotation matrices are suitable for
modeling 1-to-1 relationships (bijections).

• Circulant Matrices (Gray et al., 2006), which have
been implicitly used in recent work on holographic
representations (Nickel et al., 2016). These matrices
are usually related to the learning of latent representa-
tions in the Fourier domain (see §5 for more details).

In the remaining parts of this paper, we denote all the real
normal matrices in Rm×m as Nm(R).

3. Proposed Analogical Inference Framework
Analogical reasoning is known to play a central role in hu-
man induction about knowledge (Gentner, 1983; Minsky,

1988; Holyoak et al., 1996; Hofstadter, 2001). Here we
provide a mathematical formulation of the analogical struc-
tures of interest in multi-relational embedding in a latent
semantic space, to support algorithmic inference about the
embeddings of entities and relations in a knowledge graph.

3.1. Analogical Structures

Consider the famous example in the word embedding lit-
erature (Mikolov et al., 2013; Pennington et al., 2014), for
the following entities and relations among them:

“man is to king as woman is to queen”

In an abstract notion we denote the entities by a (as man)
, b (as king), c (as woman) and d (as queen), and the rela-
tions by r (as crown) and r′ (asmale 7→ female), respec-
tively. These give us the subject-relation-object triplets as
follows:

a
r→ b, c

r→ d, a
r′→ c, b

r′→ d (3)

For multi-relational embeddings, r and r′ are members of
R and are modeled as linear maps in our case.

The relational maps in (3) can be visualized using a com-
mutative diagram (Adámek et al., 2004; Brown & Porter,
2006) from the Category Theory, as shown in Figure 2,
where each node denotes an entity and each edge denotes a
linear map that transforms one entity to the other. We also
refer to such a diagram as a “parallelogram” to highlight its
particular algebraic structure1.

a b

dc

r

r′

r

r′

Figure 2. Parallelogram diagram for the analogy of “a is to b as c
is to d”, where each edge denotes a linear map.

The parallelogram in Figure 2 represents a very basic ana-
logical structure which could be informative for the infer-
ence about unknown facts (triplets). To get a sense about
why analogies would help in the inference about unob-
served facts, we notice that for entities a, b, c, d which form
an analogical structure in our example, the parallelogram
structure is fully determined by symmetry. This means that

if we know a
r→ b and a r′→ c, then we can induce the

remaining triplets of c r→ d and b r′→ d. In other words, un-
derstanding the relation betweenman and king helps us to
fill up the unknown relation between woman and queen.

1Notice that this is different from parallelograms in the geo-
metric sense because each edge here is a linear map instead of the
difference between two nodes in the vector space.
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Analogical structures are not limited to parallelograms, of
course, though parallelograms often serve as the building
blocks for more complex analogical structures. As an ex-
ample, in Figure 1 of §1 we show a compound analogical
structure in the form of a triangular prism, for mirroring the
correspondent entities/relations between the atom system
and the solar system. Formally define the desirable analog-
ical structures in a computationally tractable objective for
optimization is the key for solving our problem, which we
will introduce next.

3.2. Commutative Constraint for Linear Maps

Although it is tempting to explore all potentially interesting
parallelograms in the modeling of analogical structure, it is
computationally intractable to examine the entire powerset
of entities as the candidate space of analogical structures.
A more reasonable strategy is to identify some desirable
properties of the analogical structures we want to model,
and use those properties as constraints for reducing the can-
didate space.

An desirable property of the linear maps we want is that all
the directed paths with the same starting node and end node
form the compositional equivalence. Denoting by “◦” the
composition operator between two relations, the parallelo-
gram in Figure 2 contains two equivalent compositions as:

r ◦ r′ = r′ ◦ r (4)

which means that a is connected to d via either path. We
call this the commutativity property of the linear maps,
which is a necessary condition for forming commutative
parallelograms and therefore the corresponding analogical
structures. Yet another example is given by Figure 1, where
sun can traverse to charge along multiple alternative paths
of length three, implying the commutativity of relations
surrounded by, made of , scale down.

The composition of two relations (linear maps) is naturally
implemented via matrix multiplication (Yang et al., 2014;
Guu et al., 2015), hence equation (4) indicates

Wr◦r′ =WrWr′ =Wr′Wr (5)

One may further require the commutative constraint (5) to
be satisfied for any pair of relations inR because they may
be simultaneously present in the same commutative paral-
lelogram for certain subsets of entities. In this case, we say
the relations inR form a commuting family.

It is worth mentioning thatNm(R) is not closed under ma-
trix multiplication. As the result, the composition rule in
eq. (5) may not always yield a legal new relation—Wr◦r′

may no longer be a normal matrix. However, any commut-
ing family inNm(R) is indeed closed under multiplication.
This explains the necessity of having a commuting family
of relations from an alternative perspective.

3.3. The Optimization Objective

The generic goal for multi-relational embedding is to find
entity and relation representations such that positive triples
labeled as y = +1 receive higher score than the negative
triples labeled as y = −1. This can be formulated as

min
v,W

Es,r,o,y∼D ` (φv,W (s, r, o), y) (6)

where φv,W (s, r, o) = v>s Wrvo is our score function based
on the embeddings, ` is our loss function, and D is the data
distribution constructed based on the training set K.

To impose analogical structures among the representations,
we in addition require the linear maps associated with rela-
tions to form a commuting family of normal matrices. This
gives us the objective function for ANALOGY:

min
v,W

Es,r,o,y∼D ` (φv,W (s, r, o), y) (7)

s.t. WrW
>
r =W>r Wr ∀r ∈ R (8)

WrWr′ =Wr′Wr ∀r, r′ ∈ R (9)

where constraints (8) and (9) are corresponding to the nor-
mality and commutativity requirements, respectively. Such
a constrained optimization may appear to be computation-
ally expensive at the first glance. In §4, however, we will
recast it as a simple lightweight problem for which each
SGD update can be carried out efficiently in O(m) time.

4. Efficient Inference Algorithm
The constrained optimization (7) is computationally chal-
lenging due to the large number of model parameters in ten-
sor W , the matrix normality constraints, and the quadratic
number of pairwise commutative constraints in (9).

Interestingly, by exploiting the special properties of com-
muting normal matrices, we will show in Corollary 4.2.1
that ANALOGY can be alternatively solved via an another
formulation of substantially lower complexity. Our find-
ings are based on the following lemma and theorem:

Lemma 4.1. (Wilkinson & Wilkinson, 1965) For any real
normal matrix A, there exists a real orthogonal matrix Q
and a block-diagonal matrix B such that A = QBQ>,
where each diagonal block of B is either (1) A real scalar,

or (2) A 2-dimensional real matrix in the form of
[
x −y
y x

]
,

where both x, y are real scalars.

The lemma suggests any real normal matrix can be block-
diagonalized into an almost-diagonal canonical form.

Theorem 4.2 (Proof given in the supplementary material).
If a set of real normal matrices A1, A2, ... form a commut-
ing family, namely AiAj = AjAi ∀i, j, then they can be
block-diagonalized by the same real orthogonal basis Q.
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The theorem above implies that the set of dense relational
matrices {Wr}r∈R, if mutually commutative, can always
be simultaneously block-diagonalized into another set of
sparse almost-diagonal matrices {Br}r∈R.

Corollary 4.2.1 (Alternative formulation for ANALOGY).
For any given solution (v∗,W ∗) of optimization (7), there
always exists an alternative set of embeddings (u∗, B∗)
such that φv∗,W∗(s, r, o) ≡ φu∗,B∗(s, r, o), ∀(s, r, o), and
(u∗, B∗) is given by the solution of:

min
u,B

Es,r,o,y∼D ` (φu,B(s, r, o), y) (10)

Br ∈ Bnm ∀r ∈ R (11)

where Bnm denotes all m×m almost-diagonal matrices in
Lemma 4.1 with n < m real scalars on the diagonal.

proof sketch. With the commutative constraints, there must
exist some orthogonal matrix Q, such that Wr = QBrQ

>,
Br ∈ Bnm, ∀r ∈ R. We can plug-in these expressions into
optimization (7) and let u = vQ, obtaining

φv,W (s, r, o) =v>s Wrvo = v>s QBrQ
>vo (12)

=u>s Bruo = φu,B(s, r, o) (13)

In addition, it is not hard to verify that constraints (8) and
(9) are automatically satisfied by exploiting the facts thatQ
is orthogonal and Bnm is a commutative normal family.

Constraints (11) in the alternative optimization problem
can be handled by simply binding together the coefficients
within each of those 2× 2 blocks in Br. Note that each Br

consists of only m free parameters, allowing the gradient
w.r.t. any given triple to be efficiently evaluated in O(m).

5. Unified View of Representative Methods
In the following we provide a unified view of several em-
bedding models (Yang et al., 2014; Trouillon et al., 2016;
Nickel et al., 2016), by showing that they are restricted ver-
sions under our framework, hence are implicitly imposing
analogical properties. This explains their strong empirical
performance as compared to other baselines (§6).

5.1. DistMult

DistMult (Yang et al., 2014) embeds both entities and rela-
tions as vectors, and defines the score function as

φ(s, r, o) = 〈vs, vr, vo〉 (14)
where vs, vr, vo ∈ Rm,∀s, r, o (15)

where 〈·, ·, ·〉 denotes the generalized inner product.

Proposition 5.1. DistMult embeddings can be fully recov-
ered by ANALOGY embeddings when n = m.

Proof. This is trivial to verify as the score function (15) can
be rewritten as φ(s, r, o) = v>s Brvo whereBr is a diagonal
matrix given by Br = diag(vr).

Entity analogies are encouraged in DistMult as the diagonal
matrices diag(vr)’s are both normal and mutually commu-
tative. However, DistMult is restricted to model symmetric
relations only, since φ(s, r, o) ≡ φ(o, r, s).

5.2. Complex Embeddings (ComplEx)

ComplEx (Trouillon et al., 2016) extends the embeddings
to the complex domain C, which defines

φ(s, r, o) = < (〈vs, vr, vo〉) (16)
where vs, vr, vo ∈ Cm,∀s, r, o (17)

where x denotes the complex conjugate of x.
Proposition 5.2. ComplEx embeddings of embedding size
m can be fully recovered by ANALOGY embeddings of em-
bedding size 2m when n = 0.

Proof. Let <(x) and =(x) be the real and imaginary parts
of any complex vector x. We recast φ in (16) as

φ(r, s, o) = +
〈
<(vr),<(vs),<(vo)

〉
(18)

+
〈
<(vr),=(vs),=(vo)

〉
(19)

+
〈
=(vr),<(vs),=(vo)

〉
(20)

−
〈
=(vr),=(vs),<(vo)

〉
= v′s

>
Brv

′
o (21)

The last equality is obtained via a change of variables: For
any complex entity embedding v ∈ Cm, we define a new
real embedding v′ ∈ R2m such that{

(v′)2k = <(v)k
(v′)2k−1 = =(v)k

∀k = 1, 2, . . .m (22)

The corresponding Br is a block-diagonal matrix in B02m
with its k-th block given by

[
<(vr)k −=(vr)k
=(vr)k <(vr)k

]
.

5.3. Holographic Embeddings (HolE)

HolE (Nickel et al., 2016) defines the score function as

φ(s, r, o) = 〈vr, vs ∗ vo〉 (23)
where vs, vr, vo ∈ Rm,∀s, r, o (24)

where the association of s and o is implemented via circular
correlation denoted by ∗. This formulation is motivated by
the holographic reduced representation (Plate, 2003).

To relate HolE with ANALOGY, we rewrite (24) in a bilin-
ear form with a circulant matrix C(vr) in the middle

φ(r, s, o) = v>s C(vr)vo (25)
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where entries of a circulant matrix are defined as

C(x) =


x1 xm · · · x3 x2
x2 x1 xm x3
... x2 x1

. . .
...

xm−1
. . . . . . xm

xm xm−1 · · · x2 x1

 (26)

It is not hard to verify that circulant matrices are normal
and commute (Gray et al., 2006), hence entity analogies
are encouraged in HolE, for which optimization (7) reduces
to an unconstrained problem as equalities (8) and (9) are
automatically satisfied when all Wr’s are circulant.

The next proposition further reveals that HolE is equivalent
to ComplEx with minor relaxation.

Proposition 5.3. HolE embeddings can be equivalently ob-
tained using the following score function

φ(s, r, o) = < (〈vs, vr, vo〉) (27)
where vs, vr, vo ∈ F(Rm),∀s, r, o (28)

where F(Rm) denotes the image of Rm in Cm through the
Discrete Fourier Transform (DFT). In particular, the above
reduces to ComplEx by relaxing F(Rm) to Cm.

Proof. Let F be the DFT operator defined by F(x) = Fx
where F ∈ Cm×m is called the Fourier basis of DFT. A
well-known property for circulant matrices is that anyC(x)
can always be diagonalized by F , and its eigenvalues are
given by Fx (Gray et al., 2006).

Hence the score function can be further recast as

φ(r, s, o) = v>s F
−1 diag(Fvr)Fvo (29)

=
1

m
(Fvs)

>
diag(Fvr)(Fvo) (30)

=
1

m
〈F(vs),F(vr),F(vo)〉 (31)

= <
[
1

m
〈F(vs),F(vr),F(vo)〉

]
(32)

Let v′s = F(vs), v
′
o = F(vo) and v′r = 1

mF(vr), we obtain
exactly the same score function as used in ComplEx

φ(s, r, o) = <
(
〈v′s, v′r, v′o〉

)
(33)

(33) is equivalent to (16) apart from an additional constraint
that v′s, v

′
r, v
′
o are the image of R in the Fourier domain.

6. Experiments
6.1. Datasets

We evaluate ANALOGY and the baselines over two bench-
mark datasets for multi-relational embedding released by

previous work (Bordes et al., 2013), namely a subset of
Freebase (FB15K) for generic facts and WordNet (WN18)
for lexical relationships between words.

The dataset statistics are summarized in Table 1.

Dataset |E| |R| #train #valid #test

FB15K 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

Table 1. Dataset statistics for FB15K and WN18.

6.2. Baselines

We compare the performance of ANALOGY against a vari-
ety types of multi-relational embedding models developed
in recent years. Those models can be categorized as:

• Translation-based models where relations are mod-
eled as translation operators in the embedding space,
including TransE (Bordes et al., 2013) and its vari-
ants TransH (Wang et al., 2014), TransR (Lin et al.,
2015b), TransD (Ji et al., 2015), STransE (Nguyen
et al., 2016) and RTransE (Garcia-Duran et al., 2015).

• Multi-relational latent factor models including LFM
(Jenatton et al., 2012) and RESCAL (Nickel et al.,
2011) based collective matrix factorization.

• Models involving neural network components such
as neural tensor networks (Socher et al., 2013) and
PTransE-RNN (Lin et al., 2015b), where RNN stands
for recurrent neural networks.

• Pathwise models including three different variants of
PTransE (Lin et al., 2015a) which extend TransE by
explicitly taking into account indirect connections (re-
lational paths) between entities.

• Models subsumed under our proposed framework
(§5), including DistMult (Yang et al., 2014) based
simple multiplicative interactions, ComplEx (Trouil-
lon et al., 2016) using complex coefficients and HolE
(Nickel et al., 2016) based on holographic representa-
tions. Those models are implicitly leveraging analog-
ical structures per our previous analysis.

• Models enhanced by external side information. We
use Node+LinkFeat (NLF) (Toutanova & Chen, 2015)
as a representative example, which leverages textual
mentions derived from the ClueWeb corpus.

6.3. Evaluation Metrics

Following the literature of multi-relational embedding, we
use the conventional metrics of Hits@k and Mean Recip-
rocal Rank (MRR) which evaluate each system-produced
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ranked list for each test instance and average the scores over
all ranked lists for the entire test set of instances.

The two metrics would be flawed for the negative instances
created in the test phase as a ranked list may contain some
positive instances in the training and validation sets (Bor-
des et al., 2013). A recommended remedy, which we fol-
lowed, is to remove all training- and validation-set triples
from all ranked lists during testing. We use “filt.” and “raw”
to indicate the evaluation metrics with or without filtering,
respectively.

In the first set of our experiments, we used on Hits@k with
k=10, which has been reported for most methods in the
literature. We also provide additional results of ANAL-
OGY and a subset of representative baseline methods using
MRR, Hits@1 and Hits@3, to enable the comparison with
the methods whose published results are in those metrics.

6.4. Implementation Details

6.4.1. LOSS FUNCTION

We use the logistic loss for ANALOGY throughout all ex-
periments, namely `(φ(s, r, o), y) = − log σ(yφ(s, r, o)),
where σ is the sigmoid activation function. We empirically
found this simple loss function to perform reasonably well
as compared to more sophisticated ranking loss functions.

6.4.2. ASYNCHRONOUS ADAGRAD

Our C++ implementation2 runs over a CPU, as ANAL-
OGY only requires lightweight linear algebra routines. We
use asynchronous stochastic gradient descent (SGD) for
optimization, where the gradients with respect to differ-
ent mini-batches are simultaneously evaluated in multiple
threads, and the gradient updates for the shared model pa-
rameters are carried out without synchronization. Asyn-
chronous SGD is highly efficient, and causes little per-
formance drop when parameters associated with different
mini-batches are mutually disjoint with a high probability
(Recht et al., 2011). We adapt the learning rate based on
historical gradients using AdaGrad (Duchi et al., 2011).

6.4.3. CREATION OF NEGATIVE SAMPLES

Since only valid triples (positive instances) are explicitly
given in the training set, invalid triples (negative instances)
need to be artificially created. Specifically, for every posi-
tive example (s, r, o), we generate three negative instances
(s′, r, o), (s, r′, o), (s, r, o′) by corrupting s, r, o with ran-
dom entities/relations s′ ∈ E , r′ ∈ R, o′ ∈ E . The union
of all positive and negative instances defines our data dis-
tribution D for SGD updates.

2Code available at https://github.com/quark0/ANALOGY.

Table 2. Hits@10 (filt.) of all models on WN18 and FB15K cate-
gories into three groups: (i) 19 baselines without modeling analo-
gies; (ii) 3 baselines and our proposed ANALOGY which implic-
itly or explicitly enforce analogical properties over the induced
embeddings (see §5); (iii) One baseline relying on large external
data resources in addition to the provided training set.

Models WN18 FB15K

Unstructured (Bordes et al., 2013) 38.2 6.3
RESCAL (Nickel et al., 2011) 52.8 44.1
NTN (Socher et al., 2013) 66.1 41.4
SME (Bordes et al., 2012) 74.1 41.3
SE (Bordes et al., 2011) 80.5 39.8
LFM (Jenatton et al., 2012) 81.6 33.1
TransH (Wang et al., 2014) 86.7 64.4
TransE (Bordes et al., 2013) 89.2 47.1
TransR (Lin et al., 2015b) 92.0 68.7
TKRL (Xie et al., 2016) – 73.4
RTransE (Garcia-Duran et al., 2015) – 76.2
TransD (Ji et al., 2015) 92.2 77.3
CTransR (Lin et al., 2015b) 92.3 70.2
KG2E (He et al., 2015) 93.2 74.0
STransE (Nguyen et al., 2016) 93.4 79.7
DistMult (Yang et al., 2014) 93.6 82.4
TransSparse (Ji et al., 2016) 93.9 78.3
PTransE-MUL (Lin et al., 2015a) – 77.7
PTransE-RNN (Lin et al., 2015a) – 82.2
PTransE-ADD (Lin et al., 2015a) – 84.6
NLF (with external corpus)
(Toutanova & Chen, 2015) 94.3 87.0

ComplEx (Trouillon et al., 2016) 94.7 84.0
HolE (Nickel et al., 2016) 94.9 73.9

Our ANALOGY 94.7 85.4

6.4.4. MODEL SELECTION

We conducted a grid search to find the hyperparameters
of ANALOGY which maximize the filtered MRR on the
validation set, by enumerating all combinations of the em-
bedding size m ∈ {100, 150, 200}, `2 weight decay factor
λ ∈ {10−1, 10−2, 10−3} of model coefficients v and W ,
and the ratio of negative over positive samples α ∈ {3, 6}.
The resulting hyperparameters for the WN18 dataset are
m = 200, λ = 10−2, α = 3, and those for the FB15K
dataset are m = 200, λ = 10−3, α = 6. The number of
scalars on the diagonal of each Br is always set to be m

2 .
We set the initial learning rate to be 0.1 for both datasets
and adjust it using AdaGrad during optimization. All mod-
els are trained for 500 epochs.

6.5. Results

Table 2 compares the Hits@10 score of ANALOGY with
that of 23 competing methods using the published scores

https://github.com/quark0/ANALOGY
lyf
高亮

lyf
高亮
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Table 3. MRR and Hits@{1,3} of a subset of representative models on WN18 and FB15K. The performance scores of TransE and
REACAL are cf. the results published in (Trouillon et al., 2016) and (Nickel et al., 2016), respectively.

WN18 FB15

Models
MRR
(filt.)

MRR
(raw)

Hits@1
(filt.)

Hits@3
(filt.)

MRR
(filt.)

MRR
(raw)

Hits@1
(filt.)

Hits@3
(filt.)

RESCAL (Nickel et al., 2011) 89.0 60.3 84.2 90.4 35.4 18.9 23.5 40.9
TransE (Bordes et al., 2013) 45.4 33.5 8.9 82.3 38.0 22.1 23.1 47.2
DistMult (Yang et al., 2014) 82.2 53.2 72.8 91.4 65.4 24.2 54.6 73.3
HolE (Nickel et al., 2016) 93.8 61.6 93.0 94.5 52.4 23.2 40.2 61.3
ComplEx (Trouillon et al., 2016) 94.1 58.7 93.6 94.5 69.2 24.2 59.9 75.9

Our ANALOGY 94.2 65.7 93.9 94.4 72.5 25.3 64.6 78.5

for these methods in the literature on the WN18 and FB15K
datasets. For the methods not having both scores, the miss-
ing slots are indicated by “–”. The best score on each
dataset is marked in the bold face; if the differences among
the top second or third scores are not statistically significant
from the top one, then these scores are also bold faced. We
used one-sample proportion test (Yang & Liu, 1999) at the
5% p-value level for testing the statistical significances3.

Table 3 compares the methods (including ours) whose re-
sults in additional metrics are available. The usage of the
bold faces is the same as those in Table 2.

In both tables, ANALOGY performs either the best or the
2nd best which is in the equivalent class with the best score
in each case according statistical significance test. Specifi-
cally, on the harder FB15K dataset in Table 2, which has a
very large number of relations, our model outperforms all
baseline methods. These results provide a good evidence
for the effective modeling of analogical structures in our
approach. We are pleased to see in Table 3 that ANALOGY
outperforms DistMult, ComplEx and HolE in all the met-
rics, as the latter three can be viewed as more constrained
versions of our method (as discussed in (§5)). Furthermore,
our assertion on HolE for being a special case of ComplEx
(§5) is justified in the same table by the fact that the perfor-
mance of HolE is dominated by ComplEx.

In Figure 3 we show the empirical scalability of ANAL-
OGY, which not only completes one epoch in a few sec-
onds on both datasets, but also scales linearly in the size of
the embedding problem. As compared to single-threaded
AdaGrad, our asynchronous AdaGrad over 16 CPU threads
offers 11.4x and 8.3x speedup on FB15K and WN18, re-
spectively, on a single commercial desktop.

3Notice that proportion tests only apply to performance scores
as proportions, including Hits@k, but are not applicable to non-
proportional scores such as MRR. Hence we only conducted the
proportion tests on the Hits@k scores.
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Figure 3. CPU run time per epoch (secs) of ANALOGY. The fig-
ure on the left shows the run time over increasing embedding sizes
with 16 CPU threads; Figure on the right shows the run time over
increasing number of CPU threads with embedding size 200.

7. Conclusion
We presented a novel framework for explicitly modeling
analogical structures in multi-relational embedding, along
with a differentiable objective function and a linear-time in-
ference algorithm for large-scale embedding of knowledge
graphs. The proposed approach obtains the state-of-the-art
results on two popular benchmark datasets, outperforming
a large number of strong baselines in most cases.

Although we only focused on the multi-relational inference
for knowledge-base embedding, we believe that analogi-
cal structures exist in many other machine learning prob-
lems beyond the scope of this paper. We hope this work
shed light on a broad range of important problems where
scalable inference for analogical analysis would make an
impact, such as machine translation and image captioning
(both problems require modeling cross-domain analogies).
We leave these interesting topics as our future work.
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