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Abstract

We consider the problem of embedding entities and relationships of multi-
relational data in low-dimensional vector spaces. Our objective is to propose a
canonical model which is easy to train, contains a reduced number of parameters
and can scale up to very large databases. Hence;we propose’ TransE; amethod
which models relationships by interpreting them as translations operating on the
low-dimensional embeddings of the entities! Despite its simplicity, this assump-
tion proves to be powerful since extensive experiments show that TransE signif-
icantly outperforms state-of-the-art methods in link prediction on two knowledge
bases. Besides, it can be successfully trained on a large scale data set with 1M
entities, 25k relationships and more than 17M training samples.

1 Introduction

Multi-relational data refers to directed graphs whose nodes correspond to entities and edges of the
form (head, label, tail) (denoted (h, ¢, 1)), each of which indicates that there exists a relationship of
name label between the entities head and tail. Models of multi-relational data play a pivotal role in
many areas. Examples are social network analysis, where entities are members and edges (relation-
ships) are friendship/social relationship links, recommender systems where entities are users and
products and relationships are buying, rating, reviewing or searching for a product, or knowledge
bases (KBs) such as Freebaseﬂ Google Knowledge Grap}ﬂ or GeneOntologyﬂ where each entity
of the KB represents an abstract concept or concrete entity of the world and relationships are pred-
icates that represent facts involving two of them. Our work focuses on modeling multi-relational
data from KBs (Wordnet [9] and Freebase [[1] in this paper), with the goal of providing an efficient
tool to complete them by automatically adding new facts, without requiring extra knowledge.

Modeling multi-relational data In general, the modeling process boils down to extracting local or
global connectivity patterns between entities, and prediction is performed by using these patterns to
generalize the observed relationship between a specific entity and all others. The notion of locality
for a single relationship may be purely structural, such as the friend of my friend is my friend in
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social networks, but can also depend on the entities, such as those who liked Star Wars IV also
liked Star Wars V, but they may or may not like Titanic. In contrast to single-relational data where
ad-hoc but simple modeling assumptions can be made after some descriptive analysis of the data,
the difficulty of relational data is that the notion of locality may involve relationships and entities
of different types at the same time, so that modeling multi-relational data requires more generic
approaches that can choose the appropriate patterns considering all heterogeneous relationships at
the same time.

Following the success of user/item clustering or matrix factorization techniques in collaborative
filtering to represent non-trivial similarities between the connectivity patterns of entities in single-
relational data, most existing methods for multi-relational data have been designed within the frame-
work of relational learning from latent attributes, as pointed out by [6]; that is, by learning and
operating on latent representations (or embeddings) of the constituents (entities and relationships).
Starting from natural extensions of these approaches to the multi-relational domain such as non-
parametric Bayesian extensions of the stochastic blockmodel [7,110} [17] and models based on tensor
factorization [5] or collective matrix factorization [13}[11}[12], many of the most recent approaches
have focused on increasing the expressivity and the universality of the model in either Bayesian
clustering frameworks [15] or energy-based frameworks for learning embeddings of entities in low-
dimensional spaces [3|[15} 2} [14]]. The greater expressivity of these models comes at the expense of
substantial increases in model complexity which results in modeling assumptions that are hard to in-
terpret, and in higher computational costs. Besides, such approaches are potentially subject to either
overfitting since proper regularization of such high-capacity models is hard to design, or underfit-
ting due to the non-convex optimization problems with many local minima that need to be solved to
train them. As a matter of fact, it was shown in [2]] that a simpler model (linear instead of bilinear)
achieves almost as good performance as the most expressive models on several multi-relational data
sets with a relatively large number of different relationships. This'suggests that even in complex
and heterogeneous multi-relational domains simple yet appropriate modeling assumptions can lead
to better trade-offs between accuracy and scalability.

Relationships as translations in the embedding space In this paper, we introduce TranskE, an
energy-based model for learning low-dimensional embeddings of entities. In' TransE; relationships
are represented as franslations in the embedding space: if (h, ¢, t) holds, then the embedding of the
tail entity ¢ should be close to the embedding of the head entity A plus some vector that depends
on the relationship . Our approach relies on a reduced set of parameters as it learns only one
low-dimensional vector for each entity and each relationship.

The main motivation behind our translation-based parameterization is that hierarchical relationships
are extremely common in KBs and translations are the natural transformations for representing them.
Indeed, considering the natural representation of trees (i.e. embeddings of the nodes in dimension
2), the siblings are close to each other and nodes at a given height are organized on the z-axis,
the parent-child relationship corresponds to a translation on the y-axis. Since a null translation
vector corresponds to an equivalence relationship between entities, the model can then represent
the sibling relationship as well. Hence, we chose to use our parameter budget per relationship
(one low-dimensional vector) to represent what we considered to be the key relationships in KBs.
Another, secondary, motivation comes from the recent work of [8]], in which the authors learn word
embeddings from free text, and some /-fo-I relationships between entities of different types, such
“capital of” between countries and cities, are (coincidentally rather than willingly) represented by
the model as translations in the embedding space. This suggests that there may exist embedding
spaces in which /-to-1 relationships between entities of different types may, as well, be represented
by translations. The intention of our model is to enforce such a structure of the embedding space.

Our experiments in Section [4] demonstrate that this new model, despite its simplicity and its ar-
chitecture primarily designed for modeling hierarchies, ends up being powerful on most kinds of
relationships, and can significantly outperform state-of-the-art methods in link prediction on real-
world KBs. Besides, its light parameterization allows it to be successfully trained on a large scale
split of Freebase containing 1M entities, 25k relationships and more than 17M training samples.

In the remainder of the paper, we describe our model in Section [2]and discuss its connections with
related methods in Section[3] We detail an extensive experimental study on Wordnet and Freebase
in Section {4} comparing TransE with many methods from the literature. We finally conclude by
sketching some future work directions in Section 3]



Algorithm 1 Learning TransE

input Training set S = {(h, ¢,t)}, entities and rel. sets F and L, margin -y, embeddings dim. .

1: initialize £ < uniform(—\%, \%) foreach ¢ € L

2: £+ £/ |£| foreach ¢ € L
: e uniform(—\%7 \%) for each entity e € £

3
4: loop

5: e+ e/ | e]| foreachentitye € E

6:  Shaten <—sample(S, b) // sample a minibatch of size b
7 Thaten < (0 // initialize the set of pairs of triplets

8:  for (h,{,t) € Spatcn do

9: (W, 0,t) <—sample(.5'£ It t)) // sample a corrupted triplet
10: Tbatch — Tbatch U {((h7€a t)a (hl’£7 t,))}
11:  end for
12:  Update embeddings w.r.t. Z Viy+dh+2£t)—dh' +2£1t)] N

((ht.0).(h7 £.47)) €Tharen
13: end loop

2 Translation-based model

Given a training set S of triplets (h, ¢, t) composed of two entities h, t € F (the set of entities) and a
relationship ¢ € L (the set of relationships), our model learns vector embeddings of the entities and
the relationships. The embeddings take values in R* (k is a model hyperparameter) and are denoted
with the same letters, in boldface characters.

To learn such embeddings, we minimize a margin-based ranking criterion over the training set:

L= > > [y+dh+et)—dh +6,t)], )

(h,Lt)ES (W LH)ES], ,

where [z]; denotes the positive part of x, v > 0 is a margin hyperparameter, and
Sthen =10 60)R € B}y U{(h, (1)t € E}. )

The loss
function (I) favors lower values of the energy for training triplets than for corrupted triplets, and is
thus a natural implementation of the intended criterion.

. This constraint is important
for our model, as it is for previous embedding-based methods [3| 6 2]], because it prevents the
training process to trivially minimize £ by artificially increasing entity embeddings norms.

The detailed optimization procedure is described in Algorithm[I} All embeddings for entities and
relationships are first initialized following the random procedure proposed in [4]. At each main
iteration of the algorithm, the embedding vectors of the entities are first normalized. Then, a small
set of triplets is sampled from the training set, and will serve as the training triplets of the minibatch.
For each such triplet, we then sample a single corrupted triplet. The parameters are then updated by
taking a gradient step with constant learning rate. The algorithm is stopped based on its performance
on a validation set.

3 Related work

Section [I]described a large body of work on embedding KBs. We detail here the links between our
model and those of [3] (Structured Embeddings or SE) and [14]].



Table 1: Numbers of parameters and their values Table 2: Statistics of the data sets used
for FB15k (in millions). n. and n, are the nb. of en- in this paper and extracted from the two
tities and relationships; &k the embeddings dimension.  knowledge bases, Wordnet and Freebase.

METHOD NB. OF PARAMETERS ON FB15K DATA SET WN FB15K FBIM
Unstructured [2] O(nck) 0.75 ENTITIES 40,943 14,951 1x10°
RESCAL [11] O(nek + n.k?) 87.80 RELATIONSHIPS 18 1,345 23,382
SE 3] O(nek + 2n,k?) 7.47 TRAIN. EX. 141,442 483,142 17.5x10°
SME(LINEAR) [2] O(nek + nok + 4k?) 0.82 VALID EX. 5,000 50,000 50,000
SME(BILINEAR) [Z] | O(nck +n.k + 2k°) 1.06 TEST EX. 5,000 59,071 177,404
LFM [6] O(nek + nok + 10k%) 0.84

TransE O(nek + nok) 0.81

SE [3] embeds entities into R¥, and relationships into two matrices L; € R*** and L, € RF*¥
such that d(L1h, Lot) is large for corrupted triplets (h, ¢,t) (and small otherwise). The basic idea
is that when two entities belong to the same triplet, their embeddings should be close to each other
in some subspace that depends on the relationship. Using two different projection matrices for the
head and for the tail is intended to account for the possible asymmetry of relationship £. When the
dissimilarity function takes the form of d(x,y) = g(x — y) for some g : R¥ — R (e.g. gisa
norm), then SE with an embedding of size k + 1 is strictly more expressive than our model with an
embedding of size k, since linear operators in dimension k + 1 can reproduce affine transformations
in a subspace of dimension k (by constraining the &£+ 1th dimension of all embeddings to be equal to
1). SE, with L as the identity matrix and L, taken so as to reproduce a translation is then equivalent
to TransE. Despite the lower expressiveness of our model, we still reach better performance than
SE in our experiments. We believe this is because (1) our model is a more direct way to represent
the true properties of the relationship, and (2) optimization is difficult in embedding models. Forf
SE, greater expressiveness seems to be more synonymous to underfitting than to better performance.
Training errors (in Section 4.3)) tend to confirm this point.

Another related approach is the Neural Tensor Model [14]]. A special case of this model corresponds
to learning scores s(h, ¢,t) (lower scores for corrupted triplets) of the form:

s(h,0,t) = h"Lt + € h + ¢3¢ 3)
where L € R¥*k I, € R* and L, € R¥, all of them depending on /.

If we consider TransE with the squared euclidean distance as dissimilarity function, we have:
d(h+£8) =|R|3 + | €]5 + [It]5 —2(h"t + £ (t — h)).

Considering our norm constraints (|| h ||3=| ¢ ||3= 1) and the ranking criterion (TJ), in which || £||3
does not play any role in comparing corrupted triplets, our model thus involves scoring the triplets
with h”t + €7 (t — h), and hence corresponds to the model of [14] (Equation (B)) where L is the
identity matrix, and £ = £; = —£5. We could not run experiments with this model (since it has been
published simultaneously as ours), but once again TransE has much fewer parameters: this could
simplify the training and prevent underfitting, and may compensate for a lower expressiveness.

Nevertheless, the simple formulation of TransE, which can be seen as encoding a series of 2-way
interactions (e.g. by developing the Ly version), involves drawbacks. For modeling data where
3-way dependencies between h, ¢ and ¢ are crucial, our model can fail. For instance, on the small-
scale Kinships data set [7], TransE does not achieve performance in cross-validation (measured
with the area under the precision-recall curve) competitive with the state-of-the-art [[11} 6], because
such ternary interactions are crucial in this case (see discussion in [2]]). Still}"our experiments of
Section ] demonstrate that, for handling generic large-scale KBs like Freebase, one should first
model properly the most frequent connectivity patterns, as TransE does.

4 Experiments

Our approach, TransE, is evaluated on data extracted from Wordnet and Freebase (their statistics are
given in Table 2, against several recent methods from the literature which were shown to achieve
the best current performance on various benchmarks and to scale to relatively large data sets.



4.1 Data sets

Wordnet This KB is designed to produce an intuitively usable dictionary and thesaurus, and sup-
port automatic text analysis. Its entities (termed synsets) correspond to word senses, and relation-
ships define lexical relations between them. We considered the data version used in [2], which we
denote WN in the following. Examples of triplets are (_score_NN_1, _hypernym, _evaluation NN_I)
or (_score_NN_2, _has_part, _musical_notation _NN_I )é

Freebase Freebase is a huge and growing KB of general facts; there are currently around 1.2
billion triplets and more than 80 million entities. We created two data sets with Freebase. First, to
make a small data set to experiment on we selected the subset of entities that are also present in
the Wikilinks databaseE] and that also have at least 100 mentions in Freebase (for both entities and
relationships). We also removed relationships like ’!/people/person/nationality’ which just reverses
the head and tail compared to the relationship ’/people/person/nationality’. This resulted in 592,213
triplets with 14,951 entities and 1,345 relationships which were randomly split as shown in Table[2]
This data set is denoted FBI5k in the rest of this section. We also wanted to have large-scale data
in order to test TransE at scale. Hence, we created another data set from Freebase, by selecting the
most frequently occurring 1 million entities. This led to a split with around 25k relationships and
more than 17 millions training triplets, which we refer to as FBIM.

4.2 Experimental setup

Evaluation protocol For evaluation, we use the same ranking procedure as in [3]]. [For'éach test
triplet, the head is removed and replaced by each of the entities of the dictionary in turn. Dissimi-
larities (or energies) of those corrupted triplets are first computed by the models and then sorted by
ascending order; the rank of the correct entity is finally stored. This whole procedure is repeated
while'removing the tail'instead of the'head! We report the mean of those predicted ranks and the
hits@ 10, i.e. the proportion of correct entities ranked in the top 10.

These metrics are indicative but can be flawed when some corrupted triplets end up being valid
ones, from the training set for instance. In this case, those may be ranked above the test triplet, but
this should not be counted as an error because both triplets are true. To avoid such a misleading
behavior, we propose to remove from the list of corrupted triplets all the triplets that appear either in
the training, validation or test set (except the test triplet of interest). This ensures that all corrupted
triplets do not belong to the data set. In the following, we report mean ranks and hits@ 10 according
to both settings: the original (possibly flawed) one is termed raw, while we refer to the newer as
filtered (or filt.). We only provide raw results for experiments on FB1M.

Baselines The first method is Unstructured, a version of TransE which considers the data as
mono-relational and sets all translations to 0 (it was already used as baseline in [2]). We also
compare with RESCAL, the collective matrix factorization model presented in [11} [12]], and the
energy-based models SE [3]), SME(linear)/SME (bilinear) [2] and LFM [6]. RESCAL is trained via
an alternating least-square method, whereas the others are trained by stochastic gradient descent,
like TransE. Table 1| compares the theoretical number of parameters of the baselines to our model,
and gives the order of magnitude on FB15k. While SME(linear), SME(bilinear), LFM and TransE
have about the same number of parameters as Unstructured for low dimensional embeddings, the
other algorithms SE and RESCAL, which learn at least one k x k matrix for each relationship
rapidly need to learn many parameters. RESCAL needs about 87 times more parameters on FB15k
because it requires a much larger embedding space than other models to achieve good performance.
We did not experiment on FB1M with RESCAL, SME(bilinear) and LFM for scalability reasons in
terms of numbers of parameters or training duration.

We trained all baseline methods using the code provided by the authors. For RESCAL, we had to set
the regularization parameter to O for scalability reasons, as it is indicated in [[L1], and chose the latent
dimension k& among {50, 250, 500, 1000, 2000} that led to the lowest mean predicted ranks on the
validation sets (using the raw setting). For Unstructured, SE, SME(linear) and SME(bilinear), we

“WN is composed of senses, its entities are denoted by the concatenation of a word, its part-of-speech tag
and a digit indicating which sense it refers to i.e. _score_ZNN_I encodes the first meaning of the noun “score”.
Scode.google.com/p/wiki-1links
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Table 3: Link prediction results. Test performance of the different methods.

DATASET WN FB15K FBIM

METRIC MEAN RANK | HITS@10 (%) || MEAN RANK | HITS@10 (%) || MEAN RANK | HITS@10 (%)
Eval. setting Raw Filt. | Raw Filt. Raw  Filt. | Raw Filt. Raw Raw
Unstructured [2] 315 304 | 353 38.2 || 1,074 979 4.5 6.3 15,139 2.9
RESCAL [11] 1,180 1,163 | 37.2 52.8 828 683 | 284 44.1 - -

SE 3] 1,011 985 | 68.5 80.5 273 162 | 28.8 39.8 22,044 17.5
SME(LINEAR) [2] 545 533 | 65.1 74.1 274 154 | 30.7 40.8 - -
SME(BILINEAR) [2] 526 509 | 54.7 61.3 284 158 | 31.3 41.3

LFM [6] 469 456 | 71.4 81.6 283 164 | 26.0 33.1 - -
TranskE 263 251 | 754 89.2 243 125 | 349 47.1 14,615 34.0

selected the learning rate among {0.001,0.01,0.1}, ¥ among {20, 50}, and selected the best model
by early stopping using the mean rank on the validation sets (with a total of at most 1,000 epochs
over the training data). For LFM, we also used the mean validation ranks to select the model and to
choose the latent dimension among {25, 50, 75}, the number of factors among {50, 100, 200, 500}
and the learning rate among {0.01,0.1,0.5}.

Implementation For experiments with TransE, we selected the learning rate A for the stochastic
gradient descent among {0.001, 0.01, 0.1}, the margin ~ among {1, 2, 10} and the latent dimension
k among {20, 50} on the validation set of each data set. The dissimilarity measure d was set either
to the L or Lo distance according to validation performance as well. Optimal configurations were:
k=20, A\ =0.01,v =2,and d = L, on Wordnet; k = 50, A = 0.01,v = 1,and d = L on
FB15k; £ = 50, A = 0.01, v = 1, and d = Lo on FB1M. For all data sets, training time was limited
to at most 1, 000 epochs over the training set. The best models were selected by early stopping using
the mean predicted ranks on the validation sets (raw setting). An open-source implementation of
TransE is available from the project Webpageﬂ

4.3 Link prediction

Overall results Tables [3] displays the results on all data sets for all compared methods. As ex-
pected, the filtered setting provides lower mean ranks and higher hits@ 10, which we believe are
a clearer evaluation of the performance of the methods in link prediction. However, generally the
trends between raw and filtered are the same.

Our method, TransE, outperforms all counterparts on all metrics, usually with a wide margin, and
reaches some promising absolute performance scores such as 89% of hits@10 on WN (over more
than 40k entities) and 34% on FB1M (over 1M entities). All differences between TransE and the
best runner-up methods are important.

We believe that the good performance of TransE is due to an appropriate design of the model
according to the data, but also to its relative simplicity. This means that it can be optimized efficiently
with stochastic gradient. We showed in Section [3| that SE is more expressive than our proposal.
However, its complexity may make it quite hard to learn, resulting in worse performance. On FB15k,
SE achieves a mean rank of 165 and hits@ 10 of 35.5% on a subset of 50k triplets of the training set,
whereas TransE reaches 127 and 42.7%, indicating that TransE is indeed less subject to underfitting
and that this could explain its better performances. SME(bilinear) and LFM suffer from the same
training issue: we never managed to train them well enough so that they could exploit their full
capabilities. The poor results of LFM might also be explained by our evaluation setting, based
on ranking entities, whereas LFM was originally proposed to predict relationships. RESCAL can
achieve quite good hits@ 10 on FB15k but yields poor mean ranks, especially on WN, even when
we used large latent dimensions (2, 000 on Wordnet).

The impact of the translation term is huge. When one compares performance of TransE and Un-
structured (i.e. TransE without translation), mean ranks of Unstructured appear to be rather good
(best runner-up on WN), but hits@ 10 are very poor. Unstructured simply clusters all entities co-
occurring together, independent of the relationships involved, and hence can only make guesses
of which entities are related. On FB1M, the mean ranks of TransE and Unstructured are almost
similar, but TransE places 10 times more predictions in the top 10.

8 Available at http: //goo.gl/0PpKQe,
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Table 4: Detailed results by category of relationship. We compare Hits@10 (in %) on FB15k in
the filtered evaluation setting for our model, TransE and baselines. (M. stands for MANY).

TASK PREDICTING head PREDICTING fail

REL. CATEGORY I-To-1 1-TO-M. M.-TO-1 M.-TO-M. | 1-TO-1 1-TO-M. M.-TO-1 M.-TO-M.
Unstructured [2] 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
SE [3] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
SME(LINEAR) [2] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 433
SME(BILINEAR) [2] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8
TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

Table 5: Example predictions on the FB15k test set using TransE. Bold indicates the test triplet’s
true tail and italics other true tails present in the training set.

INPUT (HEAD AND LABEL) PREDICTED TAILS

J. K. Rowling influenced by G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,
Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, lan Fleming

Anthony LaPaglia performed in Lantana, Summer of Sam, Happy Feet, The House of Mirth,

Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake

Camden County adjoins Burlington County, Atlantic County, Gloucester County, Union County,
Essex County, New Jersey, Passaic County, Ocean County, Bucks County

The 40-Year-Old Virgin nominated for MTV Movie Award for Best Comedic Performance,

BFCA Critics’ Choice Award for Best Comedy,
MTV Movie Award for Best On-Screen Duo,
MTV Movie Award for Best Breakthrough Performance,
MTYV Movie Award for Best Movie, MTV Movie Award for Best Kiss,
D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,
Screen Actors Guild Award for Best Actor - Motion Picture

Costa Rica football team has position Forward, Defender, Midfielder, Goalkeepers,
Pitchers, Infielder, Outfielder, Center, Defenseman
Lil Wayne born in New Orleans, Atlanta, Austin, St. Louis,
Toronto, New York City, Wellington, Dallas, Puerto Rico
WALL-E has the genre Animations, Computer Animation, Comedy film,

Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama

Detailed results Table 4| classifies the results (in hits@ 10) on FB15k depending on several cate-
gories of the relationships and on the argument to predict for several of the methods. We categorized
the relationships according to the cardinalities of their head and tail arguments into four classes:
1-To-1, 1-TO-MANY, MANY-TO-1, MANY-TO-MANY. A given relationship is 1-TO-1 if a head
can appear with at most one tail, 1-TO-MANY if a head can appear with many fails, MANY-TO-1 if
many heads can appear with the same fail, or MANY-TO-MANY if multiple heads can appear with
multiple 7ails: We classified the relationships into these four classes by computing, for each relation-
ship ¢, the averaged number of heads h (respect. tails t) appearing in the FB15k data set, given a pair
(£,t) (respect. a pair (h,£)). If this average number was below 1.5 then the argument was labeled
as 1 and MANY otherwise. For example, a relationship having an average of 1.2 head per tail and
of 3.2 tails per head was classified as /-to-Many. We obtained that FB15k has 26.2% of 1-T0-1
relationships, 22.7% of 1-TO-MANY, 28.3% of MANY-TO-1, and 22.8% of MANY-TO-MANY.

These detailed results in Table ] allow for a precise evaluation and understanding of the behavior of
the methods. First, it appears that, as one would expect, it is easier to predict entities on the “side
1” of triplets (i.e., predicting head in 1-TO-MANY and fail in MANY-TO-1), that is when multiple
entities point to it. These are the well-posed cases. SME(bilinear) proves to be very accurate
in such cases because they are those with the most training examples. Unstructured performs
well on 1-TO-1 relationships: this shows that arguments of such relationships must share common
hidden types that Unstructured is able to somewhat uncover by clustering entities linked together
in the embedding space. But this strategy fails for any other category of relationship. Adding
the translation term (i.e. upgrading Unstructured into TransE) brings the ability to move in the
embeddings space, from one entity cluster to another by following relationships. This is particularly
spectacular for the well-posed cases.

Illustration Table [5] gives examples of link prediction results of TransE on the FB15k test set
(predicting fail). This illustrates the capabilities of our model. Given a head and a label, the top
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Figure 1: Learning new relationships with few examples. Comparative experiments on FB15k
data evaluated in mean rank (left) and hits@10 (right). More details in the text.

predicted tails (and the true one) are depicted. The examples come from the FB15k test set. Even if
the good answer is not always top-ranked, the predictions reflect common-sense.

4.4 Learning to predict new relationships with few examples

Using FB15k, we wanted to test how well methods could generalize to new facts by checking how
fast they were learning new relationships. To that end, we randomly selected 40 relationships and
split the data into two sets: a set (named FB15k-40rel) containing all triplets with these 40 rela-
tionships and another set (FB15k-rest) containing the rest. We made sure that both sets contained
all entities. FBI15k-rest has then been split into a training set of 353,788 triplets and a validation
set of 53,266, and FB15k-40rel into a training set of 40,000 triplets (1,000 for each relationship)
and a test set of 45,159. Using these data sets, we conducted the following experiment: (1) models
were trained and selected using FBI5k-rest training and validation sets, (2) they were subsequently
trained on the training set FB15k-40rel but only to learn the parameters related to the fresh 40 rela-
tionships, (3) they were evaluated in link prediction on the test set of FB15k-40rel (containing only
relationships unseen during phase (1)). We repeated this procedure while using 0, 10, 100 and 1000
examples of each relationship in phase (2).

Results for Unstructured, SE, SME(linear), SME(bilinear) and TransE are presented in Figure
The performance of Unstructured is the best when no example of the unknown relationship is
provided, because it does not use this information to predict. But, of course, this performance does
not improve while providing labeled examples. TransE is the fastest method to learn: with only
10 examples of a new relationship, the hits@ 10 is already 18% and it improves monotonically with
the number of provided samples. We believe the simplicity of the TransE model makes it able to
generalize well, without having to modify any of the already trained embeddings.

5 Conclusion and future work

We proposed a new approach to learn embeddings of KBs, focusing on the minimal parametrization
of the model to primarily represent hierarchical relationships. We showed that it works very well
compared to competing methods on two different knowledge bases, and is also a highly scalable
model, whereby we applied it to a very large-scale chunk of Freebase data. Although it remains
unclear to us if all relationship types can be modeled adequately by our approach, by breaking down
the evaluation into categories (/-fo-1, I-to-Many, ...) it appears to be performing well compared to
other approaches across all settings.

Future work could analyze this model further, and also concentrates on exploiting it in more tasks,
in particular, applications such as learning word representations inspired by [8]. Combining KBs
with text as in [2]] is another important direction where our approach could prove useful. Hence, we
recently fruitfully inserted TransE into a framework for relation extraction from text [16].
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