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Abstract
In statistical relational learning, the link predic-
tion problem is key to automatically understand
the structure of large knowledge bases. As in pre-
vious studies, we propose to solve this problem
through latent factorization. However, here we
make use of complex valued embeddings. The
composition of complex embeddings can handle
a large variety of binary relations, among them
symmetric and antisymmetric relations. Com-
pared to state-of-the-art models such as Neural
Tensor Network and Holographic Embeddings,
our approach based on complex embeddings is
arguably simpler, as it only uses the Hermitian
dot product, the complex counterpart of the stan-
dard dot product between real vectors. Our ap-
proach is scalable to large datasets as it remains
linear in both space and time, while consistently
outperforming alternative approaches on stan-
dard link prediction benchmarks.1

1. Introduction
Web-scale knowledge bases (KBs) provide a structured
representation of world knowledge, with projects such as
DBPedia (Auer et al., 2007), Freebase (Bollacker et al.,
2008) or the Google Knowledge Vault (Dong et al., 2014).
They enable a wide range of applications such as recom-
mender systems, question answering or automated personal
agents. The incompleteness of these KBs has stimulated

1Code is available at: https://github.com/
ttrouill/complex
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research into predicting missing entries, a task known as
link prediction that is one of the main problems in Statisti-
cal Relational Learning (SRL, Getoor & Taskar, 2007).

KBs express data as a directed graph with labeled edges
(relations) between nodes (entities). Natural redundan-
cies among the recorded relations often make it possi-
ble to fill in the missing entries of a KB. As an exam-
ple, the relation CountryOfBirth is not recorded for
all entities, but it can easily be inferred if the relation
CityOfBirth is known. The goal of link prediction
is the automatic discovery of such regularities. How-
ever, many relations are non-deterministic: the combina-
tion of the two facts IsBornIn(John,Athens) and
IsLocatedIn(Athens,Greece) does not always
imply the fact HasNationality(John,Greece).
Hence, it is required to handle other facts involving these
relations or entities in a probabilistic fashion.

To do so, an increasingly popular method is to state the
link prediction task as a 3D binary tensor completion prob-
lem, where each slice is the adjacency matrix of one re-
lation type in the knowledge graph. Completion based on
low-rank factorization or embeddings has been popularized
with the Netflix challenge (Koren et al., 2009). A partially
observed matrix or tensor is decomposed into a product
of embedding matrices with much smaller rank, resulting
in fixed-dimensional vector representations for each entity
and relation in the database. For a given fact r(s,o) in which
subject s is linked to object o through relation r, the score
can then be recovered as a multi-linear product between the
embedding vectors of s, r and o (Nickel et al., 2016a).

Binary relations in KBs exhibit various types of pat-
terns: hierarchies and compositions like FatherOf,
OlderThan or IsPartOf—with partial/total,
strict/non-strict orders—and equivalence relations
like IsSimilarTo. As described in Bordes et al.
(2013a), a relational model should (a) be able to learn
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all combinations of these properties, namely reflexiv-
ity/irreflexivity, symmetry/antisymmetry and transitivity,
and (b) be linear in both time and memory in order to scale
to the size of present day KBs, and keep up with their
growth.

Dot products of embeddings scale well and can naturally
handle both symmetry and (ir-)reflexivity of relations; us-
ing an appropriate loss function even enables transitiv-
ity (Bouchard et al., 2015). However, dealing with anti-
symmetric relations has so far almost always implied an
explosion of the number of parameters (Nickel et al., 2011;
Socher et al., 2013) (see Table 1), making models prone
to overfitting. Finding the best ratio between expressive-
ness and parameter space size is the keystone of embedding
models.

In this work we argue that the standard dot product between
embeddings can be a very effective composition function,
provided that one uses the right representation. Instead
of using embeddings containing real numbers we discuss
and demonstrate the capabilities of complex embeddings.
When using complex vectors, i.e. vectors with entries in C,
the dot product is often called the Hermitian (or sesquilin-
ear) dot product, as it involves the conjugate-transpose of
one of the two vectors. As a consequence, the dot product
is not symmetric any more, and facts about antisymmetric
relations can receive different scores depending on the or-
dering of the entities involved. Thus complex vectors can
effectively capture antisymmetric relations while retaining
the efficiency benefits of the dot product, that is linearity in
both space and time complexity.

The remainder of the paper is organized as follows. We
first justify the intuition of using complex embeddings in
the square matrix case in which there is only a single rela-
tion between entities. The formulation is then extended to
a stacked set of square matrices in a third-order tensor to
represent multiple relations. We then describe experiments
on large scale public benchmark KBs in which we empiri-
cally show that this representation leads not only to simpler
and faster algorithms, but also gives a systematic accuracy
improvement over current state-of-the-art alternatives.

To give a clear comparison with respect to existing ap-
proaches using only real numbers, we also present an
equivalent reformulation of our model that involves only
real embeddings. This should help practitioners when im-
plementing our method, without requiring the use of com-
plex numbers in their software implementation.

2. Relations as Real Part of Low-Rank
Normal Matrices

In this section we discuss the use of complex embed-
dings for low-rank matrix factorization and illustrate this

by considering a simplified link prediction task with merely
a single relation type.

Understanding the factorization in complex space leads to a
better theoretical understanding of the class of matrices that
can actually be approximated by dot products of embed-
dings. These are the so-called normal matrices for which
the left and right embeddings share the same unitary basis.

2.1. Modelling Relations

Let E be a set of entities with |E| = n. A relation between
two entities is represented as a binary value Yso ∈ {−1, 1},
where s ∈ E is the subject of the relation and o ∈ E its
object. Its probability is given by the logistic inverse link
function:

P (Yso = 1) = σ(Xso) (1)

where X ∈ Rn×n is a latent matrix of scores, and Y the
partially observed sign matrix.

Our goal is to find a generic structure for X that leads to a
flexible approximation of common relations in real world
KBs. Standard matrix factorization approximates X by a
matrix product UV T , where U and V are two functionally
independent n ×K matrices, K being the rank of the ma-
trix. Within this formulation it is assumed that entities ap-
pearing as subjects are different from entities appearing as
objects. This means that the same entity will have two dif-
ferent embedding vectors, depending on whether it appears
as the subject or the object of a relation. This extensively
studied type of model is closely related to the singular value
decomposition (SVD) and fits well to the case where the
matrix X is rectangular. However, in many link prediction
problems, the same entity can appear as both subject and
object. It then seems natural to learn joint embeddings of
the entities, which entails sharing the embeddings of the
left and right factors, as proposed by several authors to
solve the link prediction problem (Nickel et al., 2011; Bor-
des et al., 2013b; Yang et al., 2015).

In order to use the same embedding for subjects and ob-
jects, researchers have generalised the notion of dot prod-
ucts to scoring functions, also known as composition func-
tions, that combine embeddings in specific ways. We
briefly recall several examples of scoring functions in Ta-
ble 1, as well as the extension proposed in this paper.

Using the same embeddings for right and left factors boils
down to Eigenvalue decomposition:

X = EWE−1 . (2)

It is often used to approximate real symmetric matrices
such as covariance matrices, kernel functions and distance
or similarity matrices. In these cases all eigenvalues and
eigenvectors live in the real space and E is orthogonal:
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Model Scoring Function Relation parameters Otime Ospace

RESCAL (Nickel et al., 2011) eTs Wreo Wr ∈ RK2 O(K2) O(K2)
TransE (Bordes et al., 2013b) ||(es + wr)− eo||p wr ∈ RK O(K) O(K)

NTN (Socher et al., 2013) uTr f(esW
[1..D]
r eo + Vr

[
es
eo

]
+ br) Wr ∈ RK2D, br ∈ RK

Vr ∈ R2KD, ur ∈ RK
O(K2D) O(K2D)

DistMult (Yang et al., 2015) < wr, es, eo > wr ∈ RK O(K) O(K)

HolE (Nickel et al., 2016b) wT
r (F−1[F [es]�F [eo]])) wr ∈ RK O(K logK) O(K)

ComplEx Re(< wr, es, ēo >) wr ∈ CK O(K) O(K)

Table 1. Scoring functions of state-of-the-art latent factor models for a given fact r(s, o), along with their relation parameters, time
and space (memory) complexity. The embeddings es and eo of subject s and object o are in RK for each model, except for our model
(ComplEx) where es, eo ∈ CK . D is an additional latent dimension of the NTN model. F and F−1 denote respectively the Fourier
transform and its inverse, and � is the element-wise product between two vectors.

ET = E−1. We are in this work however explicitly inter-
ested in problems where matrices — and thus the relations
they represent — can also be antisymmetric. In that case
eigenvalue decomposition is not possible in the real space;
there only exists a decomposition in the complex space
where embeddings x ∈ CK are composed of a real vec-
tor component Re(x) and an imaginary vector component
Im(x). With complex numbers, the dot product, also called
the Hermitian product, or sesquilinear form, is defined as:

〈u, v〉 := ūT v (3)

where u and v are complex-valued vectors, i.e. u =
Re(u) + iIm(u) with Re(u) ∈ RK and Im(u) ∈ RK cor-
responding to the real and imaginary parts of the vector
u ∈ CK , and i denoting the square root of−1. We see here
that one crucial operation is to take the conjugate of the first
vector: ū = Re(u) − iIm(u). A simple way to justify the
Hermitian product for composing complex vectors is that it
provides a valid topological norm in the induced vectorial
space. For example, x̄Tx = 0 implies x = 0 while this
is not the case for the bilinear form xTx as there are many
complex vectors for which xTx = 0.

Even with complex eigenvectors E ∈ Cn×n, the inversion
of E in the eigendecomposition of Equation (2) leads to
computational issues. Fortunately, mathematicians defined
an appropriate class of matrices that prevents us from in-
verting the eigenvector matrix: we consider the space of
normal matrices, i.e. the complex n× n matrices X , such
that XX̄T = X̄TX . The spectral theorem for normal ma-
trices states that a matrix X is normal if and only if it is
unitarily diagonalizable:

X = EWĒT (4)

where W ∈ Cn×n is the diagonal matrix of eigenvalues
(with decreasing modulus) and E ∈ Cn×n is a unitary ma-
trix of eigenvectors, with Ē representing its complex con-
jugate.

The set of purely real normal matrices includes all sym-
metric and antisymmetric sign matrices (useful to model

hierarchical relations such as IsOlder), as well as all
orthogonal matrices (including permutation matrices), and
many other matrices that are useful to represent binary rela-
tions, such as assignment matrices which represent bipar-
tite graphs. However, far from all matrices expressed as
EWĒT are purely real, and equation 1 requires the scores
X to be purely real. So we simply keep only the real part
of the decomposition:

X = Re(EWĒT ) . (5)

In fact, performing this projection on the real subspace al-
lows the exact decomposition of any real square matrix X
and not only normal ones, as shown by Trouillon et al.
(2016).

Compared to the singular value decomposition, the eigen-
value decomposition has two key differences:

• The eigenvalues are not necessarily positive or real;

• The factorization (5) is useful as the rows of E can be
used as vectorial representations of the entities corre-
sponding to rows and columns of the relation matrix
X. Indeed, for a given entity, its subject embedding
vector is the complex conjugate of its object embed-
ding vector.

2.2. Low-Rank Decomposition

In a link prediction problem, the relation matrix is unknown
and the goal is to recover it entirely from noisy observa-
tions. To enable the model to be learnable, i.e. to gener-
alize to unobserved links, some regularity assumptions are
needed. Since we deal with binary relations, we assume
that they have low sign-rank. The sign-rank of a sign ma-
trix is the smallest rank of a real matrix that has the same
sign-pattern as Y :

rank±(Y ) = min
A∈Rm×n

{rank(A)|sign(A) = Y } . (6)
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This is theoretically justified by the fact that the sign-
rank is a natural complexity measure of sign matrices
(Linial et al., 2007) and is linked to learnability (Alon et al.,
2015), and empirically confirmed by the wide success of
factorization models (Nickel et al., 2016a).

If the observation matrix Y is low-sign-rank, then our
model can decompose it with a rank at most the double of
the sign-rank of Y . That is, for any Y ∈ {−1, 1}n×n, there
always exists a matrix X = Re(EWĒT ) with the same
sign pattern sign(X) = Y , where the rank of EWĒT is at
most twice the sign-rank of Y (Trouillon et al., 2016).

Although twice sounds bad, this is actually a good upper
bound. Indeed, the sign-rank is often much lower than the
rank of Y . For example, the rank of the n × n identity
matrix I is n, but rank±(I) = 3 (Alon et al., 2015). By
permutation of the columns 2j and 2j + 1, the I matrix
corresponds to the relation marriedTo, a relation known
to be hard to factorize (Nickel et al., 2014). Yet our model
can express it in rank 6, for any n.

By imposing a low-rank K � n on EWĒT , only the first
K values of diag(W ) are non-zero. So we can directly have
E ∈ Cn×K and W ∈ CK×K . Individual relation scores
Xso between entities s and o can be predicted through the
following product of their embeddings es, eo ∈ CK :

Xso = Re(eTs Wēo) . (7)

We summarize the above discussion in three points:

1. Our factorization encompasses all possible binary re-
lations.

2. By construction, it accurately describes both symmet-
ric and antisymmetric relations.

3. Learnable relations can be efficiently approximated by
a simple low-rank factorization, using complex num-
bers to represent the latent factors.

3. Application to Binary Multi-Relational
Data

The previous section focused on modeling a single type of
relation; we now extend this model to multiple types of
relations. We do so by allocating an embedding wr to each
relation r, and by sharing the entity embeddings across all
relations.

Let R and E be the set of relations and entities present in
the KB. We want to recover the matrices of scores Xr for
all the relations r ∈ R. Given two entities s and o ∈ E , the
log-odd of the probability that the fact r(s,o) is true is:

P (Yrso = 1) = σ(φ(r, s, o; Θ)) (8)

where φ is a scoring function that is typically based on a
factorization of the observed relations and Θ denotes the
parameters of the corresponding model. While X as a
whole is unknown, we assume that we observe a set of
true and false facts {Yrso}r(s,o)∈Ω ∈ {−1, 1}|Ω|, corre-
sponding to the partially observed adjacency matrices of
different relations, where Ω ⊂ R⊗ E ⊗ E is the set of ob-
served triples. The goal is to find the probabilities of entries
Yr′s′o′ being true or false for a set of targeted unobserved
triples r′(s′, o′) /∈ Ω.

Depending on the scoring function φ(s, r, o; Θ) used to
predict the entries of the tensor X, we obtain different mod-
els. Examples of scoring functions are given in Table 1.
Our model scoring function is:

φ(r, s, o; Θ) = Re(< wr, es, ēo >) (9)

= Re(

K∑
k=1

wrkeskēok) (10)

= 〈Re(wr),Re(es),Re(eo)〉
+ 〈Re(wr), Im(es), Im(eo)〉
+ 〈Im(wr),Re(es), Im(eo)〉
− 〈Im(wr), Im(es),Re(eo)〉 (11)

where wr ∈ CK is a complex vector . These equations
provide two interesting views of the model:

• Changing the representation: Equation (10) would
correspond to DistMult with real embeddings, but
handles asymmetry thanks to the complex conjugate
of one of the embeddings2.

• Changing the scoring function: Equation (11) only in-
volves real vectors corresponding to the real and imag-
inary parts of the embeddings and relations.

One can easily check that this function is antisymmetric
when wr is purely imaginary (i.e. its real part is zero), and
symmetric when wr is real. Interestingly, by separating the
real and imaginary part of the relation embedding wr, we
obtain a decomposition of the relation matrix Xr as the
sum of a symmetric matrix Re(E diag(Re(wr))ĒT ) and
a antisymmetric matrix Im(E diag(−Im(wr))ĒT ). Re-
lation embeddings naturally act as weights on each la-
tent dimension: Re(wr) over the symmetric, real part of
〈eo, es〉, and Im(w) over the antisymmetric, imaginary part
of 〈eo, es〉. Indeed, one has 〈eo, es〉 = 〈es, eo〉, meaning
that Re(〈eo, es〉) is symmetric, while Im(〈eo, es〉) is an-
tisymmetric. This enables us to accurately describe both

2Note that in Equation (10) we used the standard componen-
twise multi-linear dot product < a, b, c >:=

∑
k akbkck. This

is not the Hermitian extension as it is not properly defined in the
linear algebra literature.
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symmetric and antisymmetric relations between pairs of
entities, while still using joint representations of entities,
whether they appear as subject or object of relations.

Geometrically, each relation embedding wr is an
anisotropic scaling of the basis defined by the entity embed-
dings E, followed by a projection onto the real subspace.

4. Experiments
In order to evaluate our proposal, we conducted experi-
ments on both synthetic and real datasets. The synthetic
dataset is based on relations that are either symmetric or
antisymmetric, whereas the real datasets comprise differ-
ent types of relations found in different, standard KBs. We
refer to our model as ComplEx, for Complex Embeddings.

4.1. Synthetic Task

To assess the ability of our proposal to accurately model
symmetry and antisymmetry, we randomly generated a KB
of two relations and 30 entities. One relation is entirely
symmetric, while the other is completely antisymmetric.
This dataset corresponds to a 2 × 30 × 30 tensor. Figure
2 shows a part of this randomly generated tensor, with a
symmetric slice and an antisymmetric slice, decomposed
into training, validation and test sets. The diagonal is un-
observed as it is not relevant in this experiment.

The train set contains 1392 observed triples, whereas the
validation and test sets contain 174 triples each. Figure
1 shows the best cross-validated Average Precision (area
under Precision-Recall curve) for different factorization
models of ranks ranging up to 50. Models were trained
using Stochastic Gradient Descent with mini-batches and
AdaGrad for tuning the learning rate (Duchi et al., 2011),
by minimizing the negative log-likelihood of the logistic
model with L2 regularization on the parameters Θ of the
considered model:

min
Θ

∑
r(s,o)∈Ω

log(1+exp(−Yrsoφ(s, r, o; Θ)))+λ||Θ||22 .

(12)
In our model, Θ corresponds to the embeddings
es, wr, eo ∈ CK . We describe the full algorithm in Ap-
pendix A.

λ is validated in {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003,
0.00001, 0.0}. As expected, DistMult (Yang et al., 2015)
is not able to model antisymmetry and only predicts the
symmetric relations correctly. Although TransE (Bor-
des et al., 2013b) is not a symmetric model, it performs
poorly in practice, particularly on the antisymmetric rela-
tion. RESCAL (Nickel et al., 2011), with its large number
of parameters, quickly overfits as the rank grows. Canon-
ical Polyadic (CP) decomposition (Hitchcock, 1927) fails

Figure 2. Parts of the training, validation and test sets of the gener-
ated experiment with one symmetric and one antisymmetric rela-
tion. Red pixels are positive triples, blue are negatives, and green
missing ones. Top: Plots of the symmetric slice (relation) for the
10 first entities. Bottom: Plots of the antisymmetric slice for the
10 first entities.

on both relations as it has to push symmetric and antisym-
metric patterns through the entity embeddings. Surpris-
ingly, only our model succeeds on such simple data.

4.2. Datasets: FB15K and WN18

Dataset |E| |R| #triples in Train/Valid/Test
WN18 40,943 18 141,442 / 5,000 / 5,000
FB15K 14,951 1,345 483,142 / 50,000 / 59,071

Table 3. Number of entities, relations, and observed triples in each
split for the FB15K and WN18 datasets.

We next evaluate the performance of our model on the
FB15K and WN18 datasets. FB15K is a subset of Free-
base, a curated KB of general facts, whereas WN18 is a
subset of Wordnet, a database featuring lexical relations be-
tween words. We use original training, validation and test
set splits as provided by Bordes et al. (2013b). Table 3
summarizes the metadata of the two datasets.

Both datasets contain only positive triples. As in Bor-
des et al. (2013b), we generated negatives using the local
closed world assumption. That is, for a triple, we randomly
change either the subject or the object at random, to form a
negative example. This negative sampling is performed at
runtime for each batch of training positive examples.

For evaluation, we measure the quality of the ranking of
each test triple among all possible subject and object sub-
stitutions : r(s′, o) and r(s, o′), ∀s′,∀o′ ∈ E . Mean Recip-
rocal Rank (MRR) and Hits at m are the standard evalua-
tion measures for these datasets and come in two flavours:
raw and filtered (Bordes et al., 2013b). The filtered metrics
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Figure 1. Average Precision (AP) for each factorization rank ranging from 1 to 50 for different state of the art models on the combined
symmetry and antisymmetry experiment. Top-left: AP for the symmetric relation only. Top-right: AP for the antisymmetric relation
only. Bottom: Overall AP.

are computed after removing all the other positive observed
triples that appear in either training, validation or test set
from the ranking, whereas the raw metrics do not remove
these.

Since ranking measures are used, previous studies gener-
ally preferred a pairwise ranking loss for the task (Bordes
et al., 2013b; Nickel et al., 2016b). We chose to use the neg-
ative log-likelihood of the logistic model, as it is a continu-
ous surrogate of the sign-rank, and has been shown to learn
compact representations for several important relations, es-
pecially for transitive relations (Bouchard et al., 2015). In
preliminary work, we tried both losses, and indeed the log-
likelihood yielded better results than the ranking loss (ex-
cept with TransE), especially on FB15K.

We report both filtered and raw MRR, and filtered Hits at 1,
3 and 10 in Table 2 for the evaluated models. Furthermore,
we chose TransE, DistMult and HolE as baselines since
they are the best performing models on those datasets to
the best of our knowledge (Nickel et al., 2016b; Yang et al.,
2015). We also compare with the CP model to emphasize
empirically the importance of learning unique embeddings
for entities. For experimental fairness, we reimplemented
these methods within the same framework as the ComplEx
model, using theano (Bergstra et al., 2010). However, due

to time constraints and the complexity of an efficient imple-
mentation of HolE, we record the original results for HolE
as reported in Nickel et al. (2016b).

4.3. Results

WN18 describes lexical and semantic hierarchies between
concepts and contains many antisymmetric relations such
as hypernymy, hyponymy, or being ”part of”. Indeed, the
DistMult and TransE models are outperformed here by
ComplEx and HolE, which are on par with respective fil-
tered MRR scores of 0.941 and 0.938. Table 4 shows the
filtered test set MRR for the models considered and each
relation of WN18, confirming the advantage of our model
on antisymmetric relations while losing nothing on the oth-
ers. 2D projections of the relation embeddings provided in
Appendix B visually corroborate the results.

On FB15K, the gap is much more pronounced and the
ComplEx model largely outperforms HolE, with a filtered
MRR of 0.692 and 59.9% of Hits at 1, compared to 0.524
and 40.2% for HolE. We attribute this to the simplicity of
our model and the different loss function. This is supported
by the relatively small gap in MRR compared to DistMult
(0.654); our model can in fact be interpreted as a complex
number version of DistMult. On both datasets, TransE
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WN18 FB15K
MRR Hits at MRR Hits at

Model Filter Raw 1 3 10 Filter Raw 1 3 10
CP 0.075 0.058 0.049 0.080 0.125 0.326 0.152 0.219 0.376 0.532
TransE 0.454 0.335 0.089 0.823 0.934 0.380 0.221 0.231 0.472 0.641
DistMult 0.822 0.532 0.728 0.914 0.936 0.654 0.242 0.546 0.733 0.824
HolE* 0.938 0.616 0.93 0.945 0.949 0.524 0.232 0.402 0.613 0.739
ComplEx 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840

Table 2. Filtered and Raw Mean Reciprocal Rank (MRR) for the models tested on the FB15K and WN18 datasets. Hits@m metrics are
filtered. *Results reported from (Nickel et al., 2016b) for HolE model.

Relation name ComplEx DistMult TransE
hypernym 0.953 0.791 0.446
hyponym 0.946 0.710 0.361
member meronym 0.921 0.704 0.418
member holonym 0.946 0.740 0.465
instance hypernym 0.965 0.943 0.961
instance hyponym 0.945 0.940 0.745
has part 0.933 0.753 0.426
part of 0.940 0.867 0.455
member of domain topic 0.924 0.914 0.861
synset domain topic of 0.930 0.919 0.917
member of domain usage 0.917 0.917 0.875
synset domain usage of 1.000 1.000 1.000
member of domain region 0.865 0.635 0.865
synset domain region of 0.919 0.888 0.986
derivationally related form 0.946 0.940 0.384
similar to 1.000 1.000 0.244
verb group 0.936 0.897 0.323
also see 0.603 0.607 0.279

Table 4. Filtered Mean Reciprocal Rank (MRR) for the models
tested on each relation of the Wordnet dataset (WN18).

and CP are largely left behind. This illustrates the power
of the simple dot product in the first case, and the impor-
tance of learning unique entity embeddings in the second.
CP performs poorly on WN18 due to the small number of
relations, which magnifies this subject/object difference.

Reported results are given for the best set of
hyper-parameters evaluated on the validation set
for each model, after grid search on the fol-
lowing values: K ∈ {10, 20, 50, 100, 150, 200},
λ ∈ {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0},
α0 ∈ {1.0, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01}, η ∈ {1, 2, 5, 10}
with λ the L2 regularization parameter, α0 the initial
learning rate (then tuned at runtime with AdaGrad), and
η the number of negatives generated per positive training
triple. We also tried varying the batch size but this had no
impact and we settled with 100 batches per epoch. Best
ranks were generally 150 or 200, in both cases scores were
always very close for all models. The number of negative
samples per positive sample also had a large influence on

the filtered MRR on FB15K (up to +0.08 improvement
from 1 to 10 negatives), but not much on WN18. On
both datasets regularization was important (up to +0.05 on
filtered MRR between λ = 0 and optimal one). We found
the initial learning rate to be very important on FB15K,
while not so much on WN18. We think this may also
explain the large gap of improvement our model provides
on this dataset compared to previously published results
– as DistMult results are also better than those previously
reported (Yang et al., 2015) – along with the use of the
log-likelihood objective. It seems that in general AdaGrad
is relatively insensitive to the initial learning rate, perhaps
causing some overconfidence in its ability to tune the step
size online and consequently leading to less efforts when
selecting the initial step size.

Training was stopped using early stopping on the valida-
tion set filtered MRR, computed every 50 epochs with a
maximum of 1000 epochs.

4.4. Influence of Negative Samples

We further investigated the influence of the number of neg-
atives generated per positive training sample. In the pre-
vious experiment, due to computational limitations, the
number of negatives per training sample, η, was validated
among the possible numbers {1, 2, 5, 10}. We want to ex-
plore here whether increasing these numbers could lead to
better results. To do so, we focused on FB15K, with the
best validated λ,K, α0, obtained from the previous experi-
ment. We then let η vary in {1, 2, 5, 10, 20, 50, 100, 200}.

Figure 3 shows the influence of the number of generated
negatives per positive training triple on the performance of
our model on FB15K. Generating more negatives clearly
improves the results, with a filtered MRR of 0.737 with 100
negative triples (and 64.8% of Hits@1), before decreas-
ing again with 200 negatives. The model also converges
with fewer epochs, which compensates partially for the ad-
ditional training time per epoch, up to 50 negatives. It then
grows linearly as the number of negatives increases, mak-
ing 50 a good trade-off between accuracy and training time.
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Figure 3. Influence of the number of negative triples generated per
positive training example on the filtered test MRR and on train-
ing time to convergence on FB15K for the ComplEx model with
K = 200, λ = 0.01 and α0 = 0.5. Times are given relative to
the training time with one negative triple generated per positive
training sample (= 1 on time scale).

5. Related Work
In the early age of spectral theory in linear algebra, com-
plex numbers were not used for matrix factorization and
mathematicians mostly focused on bi-linear forms (Bel-
trami, 1873). The eigen-decomposition in the complex do-
main as taught today in linear algebra courses came 40
years later (Autonne, 1915). Similarly, most of the exist-
ing approaches for tensor factorization were based on de-
compositions in the real domain, such as the Canonical
Polyadic (CP) decomposition (Hitchcock, 1927). These
methods are very effective in many applications that use
different modes of the tensor for different types of entities.
But in the link prediction problem, antisymmetry of rela-
tions was quickly seen as a problem and asymmetric ex-
tensions of tensors were studied, mostly by either consider-
ing independent embeddings (Sutskever, 2009) or consider-
ing relations as matrices instead of vectors in the RESCAL
model (Nickel et al., 2011). Direct extensions were based
on uni-,bi- and trigram latent factors for triple data, as well
as a low-rank relation matrix (Jenatton et al., 2012).

Pairwise interaction models were also considered to im-
prove prediction performances. For example, the Universal
Schema approach (Riedel et al., 2013) factorizes a 2D un-
folding of the tensor (a matrix of entity pairs vs. relations)
while Welbl et al. (2016) extend this also to other pairs.

In the Neural Tensor Network (NTN) model, Socher et al.
(2013) combine linear transformations and multiple bilin-
ear forms of subject and object embeddings to jointly feed
them into a nonlinear neural layer. Its non-linearity and
multiple ways of including interactions between embed-
dings gives it an advantage in expressiveness over models

with simpler scoring function like DistMult or RESCAL.
As a downside, its very large number of parameters can
make the NTN model harder to train and overfit more eas-
ily.

The original multi-linear DistMult model is symmetric in
subject and object for every relation (Yang et al., 2015) and
achieves good performance, presumably due to its simplic-
ity. The TransE model from Bordes et al. (2013b) also em-
beds entities and relations in the same space and imposes a
geometrical structural bias into the model: the subject en-
tity vector should be close to the object entity vector once
translated by the relation vector.

A recent novel way to handle antisymmetry is via the
Holographic Embeddings (HolE) model by (Nickel et al.,
2016b). In HolE the circular correlation is used for combin-
ing entity embeddings, measuring the covariance between
embeddings at different dimension shifts. This generally
suggests that other composition functions than the classi-
cal tensor product can be helpful as they allow for a richer
interaction of embeddings. However, the asymmetry in the
composition function in HolE stems from the asymmetry
of circular correlation, an O(nlog(n)) operation, whereas
ours is inherited from the complex inner product, in O(n).

6. Conclusion
We described a simple approach to matrix and tensor fac-
torization for link prediction data that uses vectors with
complex values and retains the mathematical definition of
the dot product. The class of normal matrices is a natural
fit for binary relations, and using the real part allows for ef-
ficient approximation of any learnable relation. Results on
standard benchmarks show that no more modifications are
needed to improve over the state-of-the-art.

There are several directions in which this work can be ex-
tended. An obvious one is to merge our approach with
known extensions to tensor factorization in order to fur-
ther improve predictive performance. For example, the use
of pairwise embeddings together with complex numbers
might lead to improved results in many situations that in-
volve non-compositionality. Another direction would be
to develop a more intelligent negative sampling procedure,
to generate more informative negatives with respect to the
positive sample from which they have been sampled. It
would reduce the number of negatives required to reach
good performance, thus accelerating training time.

Also, if we were to use complex embeddings every time a
model includes a dot product, e.g. in deep neural networks,
would it lead to a similar systematic improvement?
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A. SGD algorithm
We describe the algorithm to learn the ComplEx model
with Stochastic Gradient Descent using only real-valued
vectors.

Let us rewrite equation 11, by denoting the real part
of embeddings with primes and the imaginary part with
double primes: e′i = Re(ei), e′′i = Im(ei), w′r =
Re(wr), w′′r = Im(wr). The set of parameters is Θ =
{e′i, e′′i , w′r, w′′r ;∀i ∈ E ,∀r ∈ R}, and the scoring function
involves only real vectors:

φ(r, s, o; Θ) = 〈w′r, e′s, e′o〉+ 〈w′r, e′′s , e′′o〉
+ 〈w′′r , e′s, e′′o〉 − 〈w′′r , e′′s , e′o〉

where each entity and each relation has two real embed-
dings.

Gradients are now easy to write:

∇e′sφ(r, s, o; Θ) = (w′r � e′o) + (w′′r � e′′o)

∇e′′s φ(r, s, o; Θ) = (w′r � e′′o)− (w′′r � e′o)

∇e′o
φ(r, s, o; Θ) = (w′r � e′s)− (w′′r � e′′s )

∇e′′o
φ(r, s, o; Θ) = (w′r � e′′s ) + (w′′r � e′s)

∇w′r
φ(r, s, o; Θ) = (e′s � e′o) + (e′′s � e′′o)

∇w′′r
φ(r, s, o; Θ) = (e′s � e′′o)− (e′′s � e′o)

where � is the element-wise (Hadamard) product.

As stated in equation 8 we use the sigmoid link function,
and minimize the L2-regularized negative log-likelihood:

γ(Ω; Θ) =
∑

r(s,o)∈Ω

log(1 + exp(−Yrsoφ(s, r, o; Θ)))

+λ||Θ||22 .

To handle regularization, note that the squared L2-norm of
a complex vector v = v′ + iv′′ is the sum of the squared
modulus of each entry:

||v||22 =
∑
j

√
v′2j + v′′2j

2

=
∑
j

v′2j +
∑
j

v′′2j

= ||v′||22 + ||v′′||22

which is actually the sum of the L2-norms of the vectors of
the real and imaginary parts.

Algorithm 1 SGD for the ComplEx model
input Training set Ω, Validation set Ωv , learning rate α,

embedding dim. k, regularization factor λ, negative ratio
η, batch size b, max iter m, early stopping s.
e′i ← randn(k), e′′i ← randn(k) for each i ∈ E
w′i ← randn(k), w′′i ← randn(k) for each i ∈ R
for i = 1, · · · ,m do

for j = 1..|Ω|/b do
Ωb ← sample(Ω, b, η)
Update embeddings w.r.t.:∑

r(s,o)∈Ωb
∇γ({r(s, o)}; Θ)

Update learning rate α using Adagrad
end for
if i mod s = 0 then

break if filteredMRR or AP on Ωv decreased
end if

end for

We can finally write the gradient of γ with respect to a real
embedding v for one triple r(s, o):

∇vγ({r(s, o)}; Θ) = −Yrsoφ(s, r, o; Θ)σ(∇vφ(r, s, o; Θ))

+2λv

where σ(x) = 1
1+e−x is the sigmoid function.

Algorithm 1 describes SGD for this formulation of the scor-
ing function. When Ω contains only positive triples, we
generate η negatives per positive train triple, by corrupt-
ing either the subject or the object of the positive triple, as
described in Bordes et al. (2013b).

B. WN18 embeddings visualization
We used principal component analysis (PCA) to visual-
ize embeddings of the relations of the wordnet dataset
(WN18). We plotted the four first components of the best
DistMult and ComplEx model’s embeddings in Figure 4.
For the ComplEx model, we simply concatenated the real
and imaginary parts of each embedding.

Most of WN18 relations describe hierarchies, and
are thus antisymmetric. Each of these hierarchic
relations has its inverse relation in the dataset.
For example: hypernym / hyponym, part of
/ has part, synset domain topic of /
member of domain topic. Since DistMult is unable
to model antisymmetry, it will correctly represent the na-
ture of each pair of opposite relations, but not the direction
of the relations. Loosely speaking, in the hypernym /
hyponym pair the nature is sharing semantics, and the
direction is that one entity generalizes the semantics of
the other. This makes DistMult reprensenting the opposite
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Figure 4. Plots of the first and second (Top), third and fourth (Bottom) components of the WN18 relations embeddings using PCA. Left:
DistMult embeddings. Right: ComplEx embeddings. Opposite relations are clustered together by DistMult while correctly separated by
ComplEx.

relations with very close embeddings, as Figure 4 shows.
It is especially striking for the third and fourth principal
component (bottom-left). Conversely, ComplEx manages
to oppose spatially the opposite relations.


