OpenKE: An Open Toolkit for Knowledge Embedding
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Abstract

We release an open toolkit for knowledge em-
bedding (OpenKE), which provides a unified
framework and various fundamental models
to embed knowledge graphs into a continu-
ous low-dimensional space.

The toolkit, documentation, and
pre-trained embeddings are all released on
http://openke.thunlp.org/.

1 Introduction

People construct various large-scale knowledge
graphs (KGs) to organize structured knowledge
about the world, such as WordNet (Miller, 1995),
Freebase (Bollacker et al., 2008) and Wikidata
(Vrandeci¢ and Krotzsch, 2014). Most ' KGs are
typically organized in the form of triples (h, 7,
t), with h and ¢ indicating head and fail entities,
and r indicating the relation between h and ¢, e.g.,
(Mark Twain, PlaceOfBirth, Florida). Abun-
dant structured information in KGs is widely used
to enhance various knowledge-driven NLP appli-
cations (e.g., information retrieval, question an-
swering and dialogue system) with the ongoing ef-
fective construction of KGs.

Limited by the scale and sparsity of KGs, we
have to represent KGs with corresponding dis-
tributed representations| Therefore, a variety of

indicates equal contribution
' Corresponding author: Z.Liu(liuzy @tsinghua.edu.cn)

knowledge embedding (KE) approaches have been
proposed to embed both entities and relations in
KGs into a continuous low-dimensional space,
such as linear models (Bordes et al., 2011, 2012,
2014), latent factor models (Sutskever et al., 2009;
Jenatton et al., 2012; Yang et al., 2015; Liu et al.,
2017), neural models (Socher et al., 2013; Dong
et al., 2014), matrix factorization models (Nickel
et al., 2011, 2012, 2016; Trouillon et al., 2016),
and translation models (Bordes et al., 2013; Wang
etal., 2014; Lin et al., 2015; Ji et al., 2015).
These models have achieved great performance
on benchmark datasets. However, there exist two
main issues which may lead to difficulty in full
utilization and further development. OfijfiiE)6iHe

Sy SIEACHOISOMENeRIENE For cxample.
the interfaces of these model implementations are
inconsistent with each other. DificiGiieHiand)
these model implementations mainly focus on

which makes it difficult to apply them for real-
[WorldNEpplications! Hence, it becomes urgent to

develop an efficient and effective open toolkit for
KE, which will definitely benefit both the commu-
nities in academia and industry. For this purpose;
we develop an open KE toolkit named “OpenKE*.
The toolkit provides a flexible framework and uni-
fied interfaces for developing KE models. While
taking in some training and computing optimiza-
tion methods, OpenKE makes KE models efficient
and capable of embedding large-scale KGs. The
features of OpenKE are threefold:

(1) At the data and memory level, the unified
framework of OpenKE manages data and mem-
ory for KE models: Model developments based on
OpenKE no longer require complicated data pro-
cessing and memory allocation.

(2) At the algorithm level, OpenKE unifies the
mathematical forms of various specific models to
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Model | Scoring Function

| Parameters | Loss Function

RESCAL (Nickel etal.,2011) | h" Mt

‘ M, € R*** h e RF t € RF ‘ margin-based loss

TransE (Bordes et al., 2013) | =lh+r—tl,/L,

| reR*, heRF teRF | margin-based loss

TransH (Wang et al., 2014)

| =l[(h—w hw,) +r— (t—w tw.)|L1/z2 | we € R, r € R*, h € R* t € R

| margin-based loss

TransR (Lin et al., 2015) ‘ —[M;h +r — M, t|lL, /L,

‘ M, € RFr>ke r e RF* h e RFe t € RFe ‘ margin-based loss

TransD (Ji et al., 2015)

R R

r, € R h, € R* t, € RF T ¢ RFrxhe,
r € R"" h e R t € RFe

‘ margin-based loss

DistMult (Yang et al., 2015) | <hrt> | r e R*, h e RF,t e RF | logistic loss
HolE (Nickel et al., 2016) ‘ 7 (Fl F®o f(t))) ‘ r e R h e RF t € RF ‘ logistic loss
ComplEx (Trouillon et al., 2016) | R(< h,r,t >) | recC*heckteck | logistic loss

Table 1: The brief introduction of some typical KE

models. For most models, I is the dimension of both

entities and relations. For some other models, . is the dimension of entities and . is the dimension of

(3) At the computation level, OpenKE can sep-
KEsodels for parallel training: Based on the

underlying management of data and memory, we
also adopt TensorFlow (Abadi et al., 2016) and Py-
Torch (Paszke et al., 2017) to build a convenient
platform to run models on GPUs.

Besides the toolkit, we also provide the pred

, which can be used directly for other
relevant works without repeatedly spending much
time for embedding KGs.

plemented with OpenKE. Other related resources

and details can be found on http://openke.
thunlp.org/.
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entities h,t € £ and the relationr € R,

beddings leared by KEmOdels! These embed-

dings greatly facilitate understanding and mining
knowledge in KGs.

relations.  denotes the Fourier ransform. © denotes the element-wise product. < a. b, > denotes the

[FEgER In most cases, there are only true triples
in KGs and non-existing triples can be either false

Based on the above-mentioned scoring func-

tions, some KE models formalize Ajiflaiginsbased

IG88 as the training objective to learn embeddings
of the entities and relations:

L=%% [r+st)-sw],.

teT t'eT’

)

T =EXRXE-T. )

NEHSICIASSIRCANORIESKY The cmbeddings of the
entities and relations can be learned by minimizing

o

L= Z log(1 + exp(—S(t))) + Z log(1 + exp(S(t"))).

teT teT!
3
The main difference among various KE models

is scoring functions. Hieiice; we biiefly introduce

in Table 1. These models are state-of-the-art and
widely introduced in many works. We systemati-
cally incorporate all of them into our OpenKE.

140


http://openke.thunlp.org/
http://openke.thunlp.org/

3 Design Goals

Before introducing the concrete toolkit implemen-
tations, we report the design goals and features of
OpenKE, including system encapsulation, opera-
tional efficiency, and model extensibility.

3.1 Encapsulation

fice: For KE, its task is fixed, and its experimen-
tal settings and model parameters are also sim-
ilar. However, previous model implementations
are scattered and lack of necessary interface en-
capsulation.

In view of this issue, we build a uni-
fied underlying platform in OpenKE and EfiGapH

&"

is shown in Figure 1, the system encapsulation
makes it easy to train and test KE models. Thus,
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test modules based on the interfaces of underly-
ing platform.

on benchmark datasets. In order to train existing

large-scale KGs, we also implement lightweight
versions for quick deployment and multi-
threading acceleration of KE models, in which

3.3 Extensibility
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Code OpenKE

‘ Underlying Management ‘
import config, Models, os Y
os.environ['CUDA_VISIBLE_DEVICES']="0" T } T }
con = config.Config() } Datasets | } Memory |
con.set_in_path('./FB15K/') 1 e L S — !
con.set_work_threads(8) B
con.set_train_times(1000) Model Settings
con.set_alpha(@.001) - i ]
con.set_margin(1.0) | Model } | Tmmu.lg }
con.set_dimension(100) | Parameters | | Strategics |
con.set_opt_method('SGD") l
con.init() Traning and Evaluation
con.set_model(models.TransE) il S, P —— )

i i
f:.r.m.run() ! Training 1 ! Evaluation 1

i i

Moo L

Figure 1: An example for training a KE model
(TransE) via OpenKE.

import numpy as np
import tensorflow as tf
rom Model import *
class TransE(Model):
def _calc(self, h, t, r):
return abs(h + r - t)
def embedding_def(self):
config = self.get_config()
self .ent_embeddings - tf.get_variable("ent_ ings',
[config.entTotal, config.hidden_size])
self.rel_embeddings - tf.get_variable('rel_embeddings’, ——— !
[config.relTotal, config.hidden_size])

I

‘ DistMult

DistMult

‘ TransE

def loss_def(self):
config = self.get_config()
pos_h, pos_t, pos_r = self.get_positive_instance(in_batch =
neg_h, neg_t, neg_r = self.get_negative_instance(in batch =
p_h = tf.nn.embedding_lookup(self.ent_embeddings, pos_h)
p_t = tf.nn.embedding_lookup(self.ent_embeddings, pos_t)
p_r = tf.nn.embedding_lookup(self.rel_embeddings, pos_r)
n_h = tf.nn.embedding_lookup(self.ent_embeddings, neg_h)
n_t = tf.nn.embedding_lookup(self.ent_embeddings,
n_r = tf.nn.embedding_lookup(self.rel_embeddings,
_p_score = self._calc(p_h, p_t, p_r)
“n_score = self._calc(n_h, n_t, n_r)
p_score = tf.reduce_sum(tf.reduce_mean(_p_score, 1, keep_dims = False),

, keep_dims = True)
tf.reduce_sun(tf.reduce_mean(_n_score, 1, keep_dims = False),

1, keep_dims = True)
self.loss = tf.reduce_sun(tf.maximun(p_score - n_score + config.margin, ))

True)
True)

neg_t)
neg_r)

n_score =

Figure 2: An example for implementing a KE
model (TransE) via OpenKE.

terfaces! For the training modules, we provide
enough interfaces for possible training methods.

These framework designs can greatly
meet the needs of current and future models, and
customized interfaces to meet individual require-
ments are also available in OpenKE. As shown in

4 Implementations

In this section, we mainly present the implemen-
tations of acceleration modules and special sam-
pling algorithm in OpenKE. OpenKE has been
available to the public on GitHub ! and is open-

"http://github.com/thunlp/OpenKE
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Algorithm 1 Parallel Learning

Require: Entity and relation sets £ and R, training triples
T =A{(h, 7 1)}
1: Initialize all model embeddings and parameters.
2: for i + 1to epoches do
In each thread:
for j < 1 to batches/threads do
Sample a positive triple (h, 7, )
Sample a corrupted triple (h',r’,t)
Compute the loss function £
Update the gradient VL
end for
10: end for
11: Return all embeddings and parameters

R A A R

4.1 GPU Learning

GPUs are widely used in machine learning tasks to

convenient model constructions, especially the
stable environments for GPU learning. The auto-

Flow and PyTorch so that the development and de-
ployment of KE models can be faster and further
convenient.

4.2 Parallel Learning

Abundant computing resources (e.g Servers with
multiple GPUs) do not exist all the time.
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’https://github.com/thunlp/Fast-TransX
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(h,r,t)) — (b, 1, /' [rand(0, [E| - 3)])
Figure 3: An example for the offset-based negative

sampling algorithm.

thtéad: In parallel learning, there are two strate-
gies implemented to update gradients. DfcIoTiig

We also
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the corrupted triples have great influence on final
performance.

.

As shown in

This algorithm can directly gen-
erate negative triples without any checking. Since
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Ent

14,951
40,943

Valid

50,000
5,000

Test

59,071
5,000

Train

483,142
141,442

Dataset | Rel

FBISK | 1,345
WNI8 18

Table 2: Statistics of FB15K and WN18.

Datasets FB15K

Models TF PT MT
TransE 75.6(4+28.5) 75.4(+28.3) 74.3(+27.2)
TransH 72.8(+14.3)  72.7(+14.2)  74.8(+16.3)
TransR 74.9(+6.2) 75.7(+17.0) 75.6(+6.9)
TransD 74.3(+0.1) 74.2(+0.0) 75.2(+1.0)
RESCAL | 49.1(+5.0) 57.2(+13.1) -
DistMult | 73.4(+15.7) 75.4(+17.4)

HolE 70.4(—3.5) -

ComplEx | 72.3(—=11.7)  80.5(—3.5)

Table 3: Experimental results of link prediction on
FB15K (%).

head entity when given a triple (7, 7, ¢). In order to
evaluate OpenKE, we implement various KE mod-
els with OpenKE, and compare their performance
with previous works on link prediction task.

Some datasets are usually used as benchmarks
for link prediction, such as FB15K and WN18.
FB15K is the relatively dense subgraph of Free-
base; WN18 is the subset of WordNet. These pub-
lic datasets are available online 3. Following pre-
vious works, We adopt them in our experiments.
The statistics of FB15K and WNI18 are listed in
Table 2, including the number of entities, rela-
tions, and facts.

As mentioned above, OpenKE supports mod-
els with efficient learning on both CPU and GPU.
For CPU, the benchmarks are run on an Intel(R)
Core(TM) i17-6700K @ 3.70GHz, with 4 cores
and 8 threads. For GPU, the models in both
TensorFlow and PyTorch versions are trained by
GeForce GTX 1070 (Pascal), with CUDA v.8.0
(driver 384.111) and cuDNN v.6.5. [To compare
with the previous works, we simply follow the pa-
rameter settings used before and traverse all train-
ing triples for 1000 rounds. Other detailed pa-
rameters and training strategies are shown in our
source code. We show these results in Table 3 and

Table 4. In these tables, the difference between
our implementations and the paper reported results
ARENISEANANEIDATEAESes] To demonstrate the

efficiency of OpenKE, we select TransE as a rep-
resentative and implement it with both OpenKE
and KB2E 4, and then compare their training time.
KB2E is a widely-used toolkit for KE models on
GitHub. These results can be found in Table 5.

Shttps://everest.hds.utc.fr/doku.php?
id=en:transe
*nttps://github.com/thunlp/KB2E
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Datasets WNI8

Models TF PT MT
TransE 90.5(+1.3) 90.0(+0.8) 83.3(—5.9)
TransH 94.6(+7.9) 94.4(+7.7) 92.5(+5.8)
TransR 93.8(+1.8) 94.4(+2.4) 94.6(42.9)
TransD 94.2(+1.7) 94.3(+1.8) 91.9(-0.3)
RESCAL | 80.2(+27.4) 80.2(+27.4)

DistMult | 93.6(—0.6) 93.6(—0.6)

HolE 94.4(—0.5) -

ComplEx | 94.0(—0.7) 94.0(—0.7)

Table 4: Experimental results of link prediction on
WNI18 (%).

Models

TransE (KB2E, CPU)

TransE (OpenKE, CPU, 1-Thread)
TransE (OpenKE, CPU, 2-Thread )
TransE (OpenKE, CPU, 4-Thread)
TransE (OpenKE, CPU, 8-Thread)
TransE (OpenKE, GPU, TensorFlow)
TransE (OpenKE, GPU, PyTorch)

| Time (s)
7124
386
206
118
76
178
266

Table 5: Training time of different implementa-
tions of TransE on FB15K.

From the results in Table 3, Table 4 and Table
5, we observe that: (1) Models implemented with
OpenKE have the comparable accuracies com-
pared to the values reported in the original pa-
pers! These results are compatible with our ex-
pectations. For some models, their accuracies are
slightly higher due to"OpenKE: These results in-
dicate our toolkit is effecive. (2) OpenKE signifi-
cantly accelerates the training process of the mod-
els trained both on CPU and GPU. As compared to
the model implemented with KB2E, all models in
OpenKE achieve more than 10x speedup. These
results show that our toolkit is efficient.

The evaluation results indicate that our toolkit
significantly handles the time-consuming problem
and can support existing models to learn large-
scale KGs. In fact, TransE based on OpenKE only
spends about 18 hours training the whole Wiki-
data for 10000 rounds and gets stable embeddings.
There are more than 40 entities and 1000/ facts
in Wikidata, We also evaluate the embeddings
learned on the whole Wikidata on the link pre-
diction task. Because the whole'Wikidata is quite
huge, we emphasize link prediction of Wikidata
more on ranking a set of candidate entities rather
than requiring one best answer, Hence, we re-
port the proportion of correct entities in top-N
ranked entities (Hits@10, Hits@20, Hits @50 and
Hits@100) in Table 6. To our best knowledge, this
is the first time that adopting KE models to embed
AneXistingargesscalelRG] The results shown in

Table 6 indicate that OpenKE enables models to
effectively and efficiently embed large-scale KGs.


https://everest.hds.utc.fr/doku.php?id=en:transe
https://everest.hds.utc.fr/doku.php?id=en:transe
https://github.com/thunlp/KB2E

Metric | Hits@10 Hits@20 Hits@50 Hits@100
Head 29.6 36.2 46.7 56.3
Tail 66.8 75.2 84.9 90.6

Table 6: Experimental results of link prediction on
the whole Wikidata.

6 Conclusion

We propose an efficient open toolkit OpenKE for
knowledge embedding: OpenKE builds a unified
underlying platform to organize data and memory.
It also applies GPU learning and parallel learning
to'speed up training. We also unify mathematical
forms for specific models and encapsulate them to
maintain enough modularity and extensibility. EX2
perimental results demonstrate that the models im-
plemented by OpenKE are efficient and effective.
In the future, we will incorporate more knowledge
embedding models and maintain the stable embed-
dings of some large-scale knowledge graphs.
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