
Quickstart
Installation
You can install the latest version of setuptools using pip:

pip install --upgrade setuptools

Most of the times, however, you don’t have to…

Instead, when creating new Python packages, it is recommended to use a command line tool
called build. This tool will automatically download setuptools and any other build-time
dependencies that your project might have. You just need to specify them in a pyproject.toml file
at the root of your package, as indicated in the following section.

You can also install build using pip:

pip install --upgrade build

This will allow you to run the command: python -m build .

Please note that some operating systems might be equipped with the python3 and pip3 commands instead of
python and pip (but they should be equivalent). If you don’t have pip or pip3 available in your system, please
check out pip installation docs.

Every python package must provide a pyproject.toml and specify the backend (build system) it
wants to use. The distribution can then be generated with whatever tool that provides a build
sdist -like functionality.

Basic Use
When creating a Python package, you must provide a pyproject.toml file containing a build-
system section similar to the example below:

[build-system]
requires = ["setuptools"]
build-backend = "setuptools.build_meta"

This section declares what are your build system dependencies, and which library will be used to
actually do the packaging.

Important

https://pypi.org/project/pip
https://pypi.org/project/build
https://build.pypa.io/en/latest/installation.html
https://pypi.org/project/pip
https://pip.pypa.io/en/latest/installation/
lyf
矩形

lyf
矩形

lyf
矩形

Historically this documentation has unnecessarily listed wheel in the requires list, and many projects still do that.
This is not recommended. The backend automatically adds wheel dependency when it is required, and listing it
explicitly causes it to be unnecessarily required for source distribution builds. You should only include wheel in
requires if you need to explicitly access it during build time (e.g. if your project needs a setup.py script that imports
wheel).

In addition to specifying a build system, you also will need to add some package information
such as metadata, contents, dependencies, etc. This can be done in the same pyproject.toml file,
or in a separated one: setup.cfg or setup.py [1].

The following example demonstrates a minimum configuration (which assumes the project
depends on requests and importlib-metadata to be able to run):

Finally, you will need to organize your Python code to make it ready for distributing into
something that looks like the following (optional files marked with #):

mypackage
├── pyproject.toml # and/or setup.cfg/setup.py (depending on the configuration method)
| # README.rst or README.md (a nice description of your package)
| # LICENCE (properly chosen license information, e.g. MIT, BSD-3, GPL-3, MPL-2, etc...)
└── mypackage
 ├── __init__.py
 └── ... (other Python files)

With build installed in your system, you can then run:

python -m build

You now have your distribution ready (e.g. a tar.gz file and a .whl file in the dist directory),
which you can upload to PyPI!

Note

from setuptools import setup

setup(
 name='mypackage',
 version='0.0.1',
 install_requires=[
 'requests',
 'importlib-metadata; python_version == "3.8"',
],
)

See Keywords for more information.

pyproject.toml setup.cfg setup.py [1]

https://pypi.org/project/requests
https://pypi.org/project/importlib-metadata
https://twine.readthedocs.io/en/stable/index.html
https://pypi.org/
https://setuptools.pypa.io/en/latest/references/keywords.html
lyf
矩形

lyf
矩形

Of course, before you release your project to PyPI, you’ll want to add a bit more information to
help people find or learn about your project. And maybe your project will have grown by then to
include a few dependencies, and perhaps some data files and scripts. In the next few sections, we
will walk through the additional but essential information you need to specify to properly
package your project.

Setuptools offers first class support for setup.py files as a configuration mechanism.

It is important to remember, however, that running this file as a script (e.g. python setup.py sdist) is strongly
discouraged, and that the majority of the command line interfaces are (or will be) deprecated (e.g. python setup.py
install , python setup.py bdist_wininst , …).

We also recommend users to expose as much as possible configuration in a more declarative way via the
pyproject.toml or setup.cfg, and keep the setup.py minimal with only the dynamic parts (or even omit it completely
if applicable).

See Why you shouldn’t invoke setup.py directly for more background.

Overview
Package discovery
For projects that follow a simple directory structure, setuptools should be able to automatically
detect all packages and namespaces. However, complex projects might include additional folders
and supporting files that not necessarily should be distributed (or that can confuse setuptools
auto discovery algorithm).

Therefore, setuptools provides a convenient way to customize which packages should be
distributed and in which directory they should be found, as shown in the example below:

When you pass the above information, alongside other necessary information, setuptools walks
through the directory specified in where (defaults to .) and filters the packages it can find

Info: Using setup.py

from setuptools import setup, find_packages # or find_namespace_packages

setup(
 # ...
 packages=find_packages(
 # All keyword arguments below are optional:
 where='src', # '.' by default
 include=['mypackage*'], # ['*'] by default
 exclude=['mypackage.tests'], # empty by default
),
 # ...
)

pyproject.toml setup.cfg setup.py [1]

https://pypi.org/
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://setuptools.pypa.io/en/latest/userguide/declarative_config.html
https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html
https://docs.python.org/3.11/glossary.html#term-package
https://docs.python.org/3.11/glossary.html#term-namespace
lyf
矩形

following the include patterns (defaults to *), then it removes those that match the exclude
patterns (defaults to empty) and returns a list of Python packages.

For more details and advanced use, go to Package Discovery and Namespace Packages.

Starting with version 61.0.0, setuptools’ automatic discovery capabilities have been improved to detect popular
project layouts (such as the flat-layout and src-layout) without requiring any special configuration. Check out our
reference docs for more information.

Entry points and automatic script creation
Setuptools supports automatic creation of scripts upon installation, that run code within your
package if you specify them as entry points. An example of how this feature can be used in pip :
it allows you to run commands like pip install instead of having to type python -m pip install .

The following configuration examples show how to accomplish this:

When this project is installed, a cli-name executable will be created. cli-name will invoke the
function some_func in the mypkg/mymodule.py file when called by the user. Note that you can also
use the entry-points mechanism to advertise components between installed packages and
implement plugin systems. For detailed usage, go to Entry Points.

Dependency management
Packages built with setuptools can specify dependencies to be automatically installed when the
package itself is installed. The example below shows how to configure this kind of dependencies:

Each dependency is represented by a string that can optionally contain version requirements (e.g.
one of the operators <, >, <=, >=, == or !=, followed by a version identifier), and/or conditional

Tip

setup(
 # ...
 entry_points={
 'console_scripts': [
 'cli-name = mypkg.mymodule:some_func',
]
 }
)

setup(
 # ...
 install_requires=["docutils", "requests <= 0.4"],
 # ...
)

pyproject.toml setup.cfg setup.py [1]

pyproject.toml setup.cfg setup.py [1]

https://setuptools.pypa.io/en/latest/userguide/package_discovery.html#package-discovery
https://setuptools.pypa.io/en/latest/userguide/package_discovery.html#flat-layout
https://setuptools.pypa.io/en/latest/userguide/package_discovery.html#src-layout
https://setuptools.pypa.io/en/latest/userguide/package_discovery.html#package-discovery
https://packaging.python.org/en/latest/specifications/entry-points/
https://setuptools.pypa.io/en/latest/userguide/entry_point.html
lyf
矩形

lyf
矩形

lyf
矩形

environment markers, e.g. sys_platform == "win32" (see Version specifiers for more information).

When your project is installed, all of the dependencies not already installed will be located (via
PyPI), downloaded, built (if necessary), and installed. This, of course, is a simplified scenario. You
can also specify groups of extra dependencies that are not strictly required by your package to
work, but that will provide additional functionalities. For more advanced use, see Dependencies
Management in Setuptools.

Including Data Files
Setuptools offers three ways to specify data files to be included in your packages. For the
simplest use, you can simply use the include_package_data keyword:

This tells setuptools to install any data files it finds in your packages. The data files must be
specified via the MANIFEST.in file or automatically added by a Revision Control System plugin.
For more details, see Data Files Support.

Development mode
setuptools allows you to install a package without copying any files to your interpreter directory
(e.g. the site-packages directory). This allows you to modify your source code and have the
changes take effect without you having to rebuild and reinstall. Here’s how to do it:

pip install --editable .

See Development Mode (a.k.a. “Editable Installs”) for more information.

Prior to pip v21.1, a setup.py script was required to be compatible with development mode. With late versions of
pip, projects without setup.py may be installed in this mode.

If you have a version of pip older than v21.1 or is using a different packaging-related tool that does not support
PEP 660, you might need to keep a setup.py file in file in your repository if you want to use editable installs.

A simple script will suffice, for example:

from setuptools import setup

setup()

You can still keep all the configuration in pyproject.toml and/or setup.cfg

setup(
 # ...
 include_package_data=True,
 # ...
)

Tip

pyproject.toml setup.cfg setup.py [1]

https://packaging.python.org/en/latest/specifications/version-specifiers/
https://setuptools.pypa.io/en/latest/userguide/dependency_management.html
https://setuptools.pypa.io/en/latest/userguide/dependency_management.html
https://setuptools.pypa.io/en/latest/userguide/miscellaneous.html#using-manifest-in
https://setuptools.pypa.io/en/latest/userguide/extension.html#adding-support-for-revision-control-systems
https://setuptools.pypa.io/en/latest/userguide/datafiles.html
https://setuptools.pypa.io/en/latest/userguide/development_mode.html
https://pip.pypa.io/en/latest/news/#v21-1
https://peps.python.org/pep-0660/
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://setuptools.pypa.io/en/latest/userguide/declarative_config.html
lyf
矩形

lyf
矩形

lyf
矩形

lyf
矩形

[1] (1,2,3,4,5,6)

Uploading your package to PyPI
After generating the distribution files, the next step would be to upload your distribution so
others can use it. This functionality is provided by twine and is documented in the Python
packaging tutorial.

Transitioning from setup.py to setup.cfg
To avoid executing arbitrary scripts and boilerplate code, we are transitioning into a full-fledged
setup.cfg to declare your package information instead of running setup() . This inevitably brings
challenges due to a different syntax. Here we provide a quick guide to understanding how
setup.cfg is parsed by setuptools to ease the pain of transition.

Resources on Python packaging
Packaging in Python can be hard and is constantly evolving. Python Packaging User Guide has
tutorials and up-to-date references that can help you when it is time to distribute your work.

Notes

New projects are advised to avoid setup.py configurations (beyond the minimal stub) when
custom scripting during the build is not necessary. Examples are kept in this document to help people
interested in maintaining or contributing to existing packages that use setup.py . Note that you can still
keep most of configuration declarative in setup.cfg or pyproject.toml and use setup.py only for the parts
not supported in those files (e.g. C extensions). See note.

Copyright © Python Packaging Authority
Made with Sphinx and @pradyunsg's Furo

https://pypi.org/project/twine
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://setuptools.pypa.io/en/latest/userguide/declarative_config.html
https://packaging.python.org/
https://setuptools.pypa.io/en/latest/userguide/declarative_config.html
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://readthedocs.org/projects/setuptools
https://github.com/pypa/setuptools
https://www.sphinx-doc.org/
https://pradyunsg.me/
https://github.com/pradyunsg/furo

