A / Extending the Models

Extending the Models

You should first read the tutorial on bringing your own interaction module. This tutorial is
about how to wrap a custom interaction module with a model module for general reuse and
application.

Implementing a model by subclassing
pykeen.models.ERModel

The following code block demonstrates how an interaction model can be used to define a full
KGEM using the pykeen.models.ERModel base class.

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel

from pyk

class Di
def

class Di
def

) ->

function

dimensio

““loss™T

function

/”________-————

from pykeen.models import ERModel

een.nn import Embedding, Interaction

stMultInteraction(Interaction):
forward(self, h, r, t):
return (h * r * t).sum(dim=-1)

stMult(ERModel):
init (
self,

When defining your class, any hyper-parameters that can be configured should be

made as arguments to the __1init__ () function. When running the pipeline(), these

are passed via the "~ “model_kwargs "

embedding_dim: int = 50,

ALL remaining arguments are simply passed through to the parent constructor. If you

want access to them, you can name them explicitly. See the pykeen.models.ERModel

documentation for a full Llist

**kwargs,

None:

since this 1is a python class, you can feel free to get creative here. One example of

pre-processing is to derive the shape for the relation representation based on the

embedding dimension.

super().__init_ (
Pass an 1instance of your interaction function. This is also a place where you can
pass hyper-parameters, such as the L_p norm, from the KGEM to the interaction

interaction=DistMultInteraction,
interaction_kwargs=dict(...),
Define the entity representations using a dict. By default, each
embedding is a vector. You can use the "~ “shape’ " kwarg to specify higher
nal

tensor shapes.
entity_representations=Embedding,
entity_representations_kwargs=dict(

embedding_dim=embedding_dim,
)
Define the relation representations the same as the entities
relation_representations=Embedding,
relation_representations_kwargs=dict(

embedding_dim=embedding_dim,
)

ALL other arguments are passed through, such as the " “triples_factory ",

2

" “preferred_device ", and others. These are all handled by the pipeline()

**kwargs,

The actual implementation of DistMult can be found in pykeen.models.Distmult . Note that it

additiona

lly contains configuration for the initializers, constrainers, and regularizers for each

of the embeddings as well as class-level defaults for hyper-parameters and hyper-parameter

optimization. Modifying these is covered in other tutorials.

https://pykeen.readthedocs.io/en/stable/api/pykeen.models.DistMult.html#pykeen.models.DistMult

Specifying Defaults

If you have a preferred loss function for your model, you can add the 1oss _default class
variable where the value is the loss class.

from typing import ClassVar

from pykeen.models import ERModel
from pykeen.losses import Loss, NSSALoss

class DistMult(ERModel):
loss_default: ClassVar[Type[Loss]] = NSSALoss

l —

Now, when using the pipeline, the pykeen.1losses.NssALoss . l0ss is used by default if none is
given. The same kind of modifications can be made to set a default regularizer with

regularizer_default .

Specifying Hyper-parameter Optimization Default Ranges

All subclasses of pykeen.models.Model can specify the default ranges or values used during
hyper-parameter optimization (HPO). PyKEEN implements a simple dictionary-based
configuration that is interpreted by pykeen.hpo.hpo.suggest_kwargs() in the HPO pipeline.

HPO default ranges can be applied to all keyword arguments appearing in the __init_ ()
function of your model by setting a class-level variable called hpo_default .

For example, the embedding dim can be specified as being on a range between 100 and 150

with the following:

\

class DistMult(ERModel):
hpo_default = {
‘embedding_dim': dict(type=int, low=100, high=150)

}

L

-

A step size can be imposed with g :

class DistMult(ERModel):
hpo_default = {
"embedding dim': dict(type=int, low=100, high=150 g=5)
}

https://pykeen.readthedocs.io/en/stable/api/pykeen.losses.NSSALoss.html#pykeen.losses.NSSALoss
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.Model.html#pykeen.models.Model

An alternative scale can be imposed with scale . Right now, the default is linear, and scale
can optionally be set to power_two for integers as in:

class DistMult(ERModel):
hpo_default = {
will uniformly give 16, 32, 64, 128 (left inclusive, right exclusive)
"hidden_dim': dict(type=int, low=4, high=8, scale='power_two")

=

© Warning

Alternative scales can not currently be used in combination with step size (q).

There are other possibilities for specifying the type as float , categorical ,0ras bool .

With float , you can't use the g option nor set the scale to power_two , but the scale can be

setto 1log (see optuna.distributions.LogUniformDistribution).

e—

hpo_default = {
will uniformly give floats on the range of [1.0, 2.0) (exclusive)
'alpha': dict(type='float', low=1.0, high=2.0),

will uniformly give 1.0, 2.0, or 4.0 (exclusive)
'beta': dict(type='float', low=1.0, high=8.0, scale='log'),

With categorical , you can form a dictionary like the following using type='categorical’ and
giving a choices entry that contains a sequence of either integers, floats, or strings.

—

hpo_default = {
‘similarity': dict(type='categorical', choices=[...])

=

With bool , you can simply use dict(type=bool) OrF dict(type='bool’) .

O Note

The HPO rules are subject to change as they are tightly coupled to optuna , which since
version 2.0.0 has introduced several new possibilities.

Implementing a model by instantiating

https://optuna.readthedocs.io/en/latest/reference/generated/optuna.distributions.LogUniformDistribution.html#optuna.distributions.LogUniformDistribution
https://optuna.readthedocs.io/en/latest/reference/optuna.html#module-optuna

pykeen.models.ERModel

Instead of creating a new class, you can also directly use the pykeen.models.ERModel , €.8.

from pykeen.models import ERModel
from pykeen.losses import BCEWithLogitsLoss

model = ERModel(
triples_factory=...,
loss="BCEWithLogits",
interaction="transformer",
entity_representations_kwargs=dict(embedding_dim=64),
relation_representations_kwargs=dict(embedding_dim=64),

Using a Custom Model with the Pipeline

We can use this new model with all available losses, evaluators, training pipelines, inverse
triple modeling, via the pykeen.pipeline.pipeline() , since in addition to the names of models
(given as strings), it can also take model classes in the mode1 argument.

\ from pykeen.pipeline import pipeline

pipeline(
model=DistMult,
dataset="Nations',
loss="NSSA',

https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline

