
 / Bring Your Own Interaction

Bring Your Own Interaction

This is a tutorial about how to implement your own interaction modules (also known as
scoring functions) as subclasses of pykeen.nn.modules.Interaction for use in PyKEEN.

Implementing your first Interaction Module

Imagine you’ve taken a time machine back to 2013 and you have just invented TransE,
defined as:

where is the -dimensional representation for entity , is the -dimensional
representation for relation , and is the norm.

To implement TransE in PyKEEN, you need to subclass the pykeen.nn.modules.Interaction . This
class it itself a subclass of torch.nn.Module , which means that you need to provide an
implementation of torch.nn.Module.forward() . However, the arguments are predefined as h ,
r , and t , which correspond to the representations of the head, relation, and tail,

respectively.

from pykeen.nn.modules import Interaction

class TransEInteraction(Interaction):
 def forward(self, h, r, t):
 return -(h + r - t).norm(p=2, dim=-1)

Note the dim=-1 because this operation is actually defined over an entire batch of head,
relation, and tail representations.

 See also

A reference implementation is provided in pykeen.nn.modules.TransEInteraction

As a researcher who just invented TransE, you might wonder what would happen if you
replaced the addition + with multiplication * . You might then end up with a new
interaction like this (which just happens to be DistMult, which was published just a year after
TransE):

f(h, r, t) = −∥eh + rr − et∥2

ei d i rj d

j ∥. . . ∥2 L2

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.forward
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.TransEInteraction.html#pykeen.nn.modules.TransEInteraction

where is the -dimensional representation for entity , is the -dimensional
representation for relation .

from pykeen.nn.modules import Interaction

class DistMultInteraction(Interaction):
 def forward(self, h, r, t):
 return (h * r * t).sum(dim=-1)

 See also

A reference implementation is provided in pykeen.nn.modules.DistMultInteraction

Interactions with Hyper-Parameters

While we previously defined TransE with the norm, it could be calculated with a different
value for :

This could be incorporated into the interaction definition by using the __init__() , storing the
value for in the instance, then accessing it in forward() .

from pykeen.nn.modules import Interaction

class TransEInteraction(Interaction):
 def __init__(self, p: int):
 super().__init__()
 self.p = p

 def forward(self, h, r, t):
 return -(h + r - t).norm(p=self.p, dim=-1)

In general, you can put whatever you want in __init__() to support the calculation of scores.

Interactions with Trainable Parameters

In ER-MLP, the multi-layer perceptron consists of an input layer with neurons, a hidden
layer with neurons and output layer with one neuron. The input is represented by the
concatenation embeddings of the heads, relations and tail embeddings. It is defined as:

with hidden dimension , , , and biases and .

f(h, r, t) = e
T
hdiag(rr)et

ei d i rj d

j

L2

p

f(h, r, t) = −∥eh + rr − et∥p

p

3 × d

d

f(h, r, t) = W2ReLU(W1cat(h, r, t) + b1) + b2

y W1 ∈ R
3d×y W2 ∈ R

y b1 ∈ R
y b2 ∈ R

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.DistMultInteraction.html#pykeen.nn.modules.DistMultInteraction

, , , and are global parameters, meaning that they are trainable, but are neither
attached to the entities nor relations. Unlike the in TransE, these global trainable
parameters are not considered hyper-parameters. However, like hyper-parameters, they can
also be defined in the __init__ function of your pykeen.nn.modules.Interaction class. They are
trained jointly with the entity and relation embeddings during training.

import torch.nn
from pykeen.nn.modules import Interaction
from pykeen.utils import broadcast_cat

class ERMLPInteraction(Interaction):
 def __init__(self, embedding_dim: int, hidden_dim: int):
 super().__init__()
 # The weights of this MLP will be learned.
 self.mlp = torch.nn.Sequential(
 torch.nn.Linear(in_features=3 * embedding_dim, out_features=hidden_dim, bias=True),
 torch.nn.ReLU(),
 torch.nn.Linear(in_features=hidden_dim, out_features=1, bias=True),
)

 def forward(self, h, r, t):
 x = broadcast_cat([h, r, t], dim=-1)
 return self.mlp(x)

Note that pykeen.utils.broadcast_cat() was used instead of the standard torch.cat() because
of the standardization of shapes of head, relation, and tail vectors.

 See also

A reference implementation is provided in pykeen.nn.modules.ERMLPInteraction

Interactions with Different Shaped Vectors

The Structured Embedding uses a 2-tensor for representing each relation, with an interaction
defined as:

where is the -dimensional representation for entity , is the -dimensional
representation for relation for head entities, is the -dimensional representation
for relation for tail entities, and is the norm.

For the purposes of this tutorial, we will propose a simplification to Strucuterd Embedding
(also similar to TransR) where the same relation 2-tensor is used to project both the head and
tail entities as in:

W1 W1 b1 b2

p

f(h, r, t) = −∥M
head
r eh − M

tail
r et∥p

ei d i M
head
j d × d

j M
tail
j d × d

j ∥. . . ∥2 Lp

f(h, r, t) = −∥Mreh − Mret∥2

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction
https://pytorch.org/docs/stable/generated/torch.cat.html#torch.cat
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.ERMLPInteraction.html#pykeen.nn.modules.ERMLPInteraction

where is the -dimensional representation for entity , is the -dimensional
representation for relation , and is the norm.

from pykeen.nn.modules import Interaction

class SimplifiedStructuredEmbeddingInteraction(Interaction):
 relation_shape = ('dd',)

 def forward(self, h, r, t):
 h_proj = r @ h.unsqueeze(dim=-1)
 t_proj = r @ t.unsqueeze(dim=-1)
 return -(h_proj - t_proj).squeeze(dim=-1).norm(p=2, dim=-1)

Note the definition of the relation_shape . By default, the entity_shape and relation_shape

are both equal to ('d',) , which uses eigen-notation to show that they both are 1-tensors
with the same shape. In this simplified version of Structured Embedding, we need to denote
that the shape of the relation is , so it’s written as dd .

 See also

Reference implementations are provided in
pykeen.nn.modules.StructuredEmbeddingInteraction and in pykeen.nn.modules.TransRInteraction .

Interactions with Multiple Representations

Sometimes, like in the canonical version of Structured Embedding, you need more than one
representation for entities and/or relations. To specify this, you just need to extend the tuple
for relation_shape with more entries, each corresponding to the sequence of representations.

from pykeen.nn.modules import Interaction

class StructuredEmbeddingInteraction(Interaction):
 relation_shape = (
 'dd', # Corresponds to \mathbf{M}^{head}_j
 'dd', # Corresponds to \mathbf{M}^{tail}_j
)

 def forward(self, h, r, t):
 # Since the relation_shape is more than length 1, the r value is given as a sequence
 # of the representations defined there. You can use tuple unpacking to get them out
 r_h, r_t = r
 h_proj = r_h @ h.unsqueeze(dim=-1)
 t_proj = r_t @ t.unsqueeze(dim=-1)
 return -(h_proj - t_proj).squeeze(dim=-1).norm(p=2, dim=-1)

ei d i Mj d × d

j ∥. . . ∥2 L2

d × d

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.TransRInteraction.html#pykeen.nn.modules.TransRInteraction

Interactions with Different Dimension Vectors

TransD is an example of an interaction module that not only uses two different
representations for each entity and two representations for each relation, but they are of
different dimensions.

It can be implemented by choosing a different letter for use in the entity_shape and/or
relation_shape dictionary. Ultimately, the letters used are arbitrary, but you need to

remember what they are when using the pykeen.models.make_model() ,
pykeen.models.make_model_cls() , or pykeen.pipeline.interaction_pipeline() functions to

instantiate a model, make a model class, or run the pipeline using your custom interaction
module (respectively).

from pykeen.nn.modules import Interaction
from pykeen.utils import project_entity

class TransDInteraction(Interaction):
 entity_shape = ("d", "d")
 relation_shape = ("e", "e")

 def forward(self, h, r, t):
 h, h_proj = h
 r, r_proj = r
 t, t_proj = t
 h_bot = project_entity(
 e=h,
 e_p=h_p,
 r_p=r_p,
)
 t_bot = project_entity(
 e=t,
 e_p=t_p,
 r_p=r_p,
)
 return -(h_bot + r - t_bot).norm(p=2, dim=-1)

 Note

The pykeen.utils.project_entity() function was used in this implementation to reduce the
complexity. So far, it’s the case that all of the models using multiple different
representation dimensions are quite complicated and don’t fall into the paradigm of
presenting simple examples.

 See also

A reference implementation is provided in pykeen.nn.modules.TransDInteraction

https://pykeen.readthedocs.io/en/stable/api/pykeen.models.make_model.html#pykeen.models.make_model
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.make_model_cls.html#pykeen.models.make_model_cls
https://pykeen.readthedocs.io/en/stable/reference/utils.html#pykeen.utils.project_entity
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.TransDInteraction.html#pykeen.nn.modules.TransDInteraction

Differences between pykeen.nn.modules.Interaction and
pykeen.models.Model

The high-level pipeline() function allows you to pass pre-defined subclasses of
pykeen.models.Model such as pykeen.models.TransE or pykeen.models.DistMult . These classes are

high-level wrappers around the interaction functions pykeen.nn.modules.TransEInteraction and
nn.modules.DistMultInteraction that are more suited for running benchmarking experiments or

practical applications of knowledge graph embeddings that include lots of information about
default hyper-parameters, recommended hyper-parameter optimization strategies, and more
complex applications of regularization schemas.

As a researcher, the pykeen.nn.modules.Interaction is a way to quickly translate ideas into new
models that can be used without all of the overhead of defining a pykeen.models.Model . These
components are also completely reusable throughout PyKEEN (e.g., in self-rolled training
loops) and can be used as standalone components outside of PyKEEN.

If you are happy with your interaction module and would like to go the next step to making it
generally reusable, check the “Extending the Models” tutorial.

Ad hoc Models from Interactions

A pykeen.models.ERModel can be constructed from pykeen.nn.modules.Interaction .

The new style-class, pykeen.models.ERModel abstracts the interaction away from the
representations such that different interactions can be used interchangably. A new model can
be constructed directly from the interaction module, given a dimensions mapping. In each
pykeen.nn.modules.Interaction , there is a field called entity_shape and relation_shape that

allows for using eigen-notation for defining the different dimensions of the model. Most
models share the d dimensionality for both the entity and relation vectors. Some (but not all)
exceptions are:

pykeen.nn.modules.RESCALInteraction , which uses a square matrix for relations written as dd

pykeen.nn.modules.TransDInteraction , which uses d for entity shape and e for a different
relation shape.

With this in mind, you’ll have to investigate the dimensions of the vectors through the
PyKEEN documentation. If you’re implementing your own, you have control over this and will
know which dimensions to specify (though the d for both entities and relations is standard).
As a shorthand for {'d': value} , you can directly pass value for the dimension and it will be
automatically interpreted as the {'d': value} .

Make a model class from lookup of an interaction module class:

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.Model.html#pykeen.models.Model
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.Model.html#pykeen.models.Model
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.TransE.html#pykeen.models.TransE
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.DistMult.html#pykeen.models.DistMult
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.TransEInteraction.html#pykeen.nn.modules.TransEInteraction
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.Model.html#pykeen.models.Model
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.RESCALInteraction.html#pykeen.nn.modules.RESCALInteraction
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.TransDInteraction.html#pykeen.nn.modules.TransDInteraction

>>> from pykeen.nn.modules import TransEInteraction
>>> from pykeen.models import make_model_cls
>>> embedding_dim = 3
>>> model_cls = make_model_cls(
... dimensions={"d": embedding_dim},
... interaction='TransE',
... interaction_kwargs={'p': 2},
...)

If there’s only one dimension in the entity_shapes and relation_shapes , it can be directly
given as an integer as a shortcut.

>>> # Implicitly can also be written as:
>>> model_cls_alt = make_model_cls(
... dimensions=embedding_dim,
... interaciton='TransE',
... interaction_kwargs={'p': 2},
...)

Make a model class from an interaction module class:

>>> from pykeen.nn.modules import TransEInteraction
>>> from pykeen.models import make_model_cls
>>> embedding_dim = 3
>>> model_cls = make_model_cls({"d": embedding_dim}, TransEInteraction, {'p': 2})

Make a model class from an instantiated interaction module:

>>> from pykeen.nn.modules import TransEInteraction
>>> from pykeen.models import make_model_cls
>>> embedding_dim = 3
>>> model_cls = make_model_cls({"d": embedding_dim}, TransEInteraction(p=2))

All of these model classes can be passed directly into the model argument of
pykeen.pipeline.pipeline() .

Interaction Pipeline

The pykeen.pipeline.pipeline() also allows passing of an interaction such that the following
code block can be compressed:

https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline

from pykeen.pipeline import pipeline
from pykeen.nn.modules import TransEInteraction

model = make_model_cls(
 interaction=TransEInteraction,
 interaction_kwargs={'p': 2},
 dimensions={'d': 100},
)
results = pipeline(
 dataset='Nations',
 model=model,
 ...
)

into:

from pykeen.pipeline import pipeline
from pykeen.nn.modules import TransEInteraction

results = pipeline(
 dataset='Nations',
 interaction=TransEInteraction,
 interaction_kwargs={'p': 2},
 dimensions={'d': 100},
 ...
)

This can be used with any subclass of the pykeen.nn.modules.Interaction , not only ones that
are implemented in the PyKEEN package.

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction

