
 / Bring Your Own Data

Bring Your Own Data

As an alterna�ve to using a pre-packaged dataset, the training and tes�ng can be set
explicitly by file path or with instances of pykeen.triples.TriplesFactory . Throughout this
tutorial, the paths to the training, tes�ng, and valida�on sets for built-in
pykeen.datasets.Nations will be used as examples.

Pre-stratified Dataset

You’ve got a training and tes�ng file as 3-column TSV files, all ready to go. You’re sure that
there aren’t any en��es or rela�ons appearing in the tes�ng set that don’t appear in the
training set. Load them in the pipeline like this:

>>> from pykeen.triples import TriplesFactory
>>> from pykeen.pipeline import pipeline
>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH, NATIONS_TEST_PATH
>>> result = pipeline(
... training=NATIONS_TRAIN_PATH,
... testing=NATIONS_TEST_PATH,
... model='TransE',
... epochs=5, # short epochs for testing - you should go higher
...)
>>> result.save_to_directory('doctests/test_pre_stratified_transe')

PyKEEN will take care of making sure that the en��es are mapped from their labels to
appropriate integer (technically, 0-dimensional torch.LongTensor) indexes and that the
different sets of triples share the same mapping.

This is equally applicable for the pykeen.hpo.hpo_pipeline() , which has a similar interface to
the pykeen.pipeline.pipeline() as in:

>>> from pykeen.hpo import hpo_pipeline
>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH, NATIONS_TEST_PATH,
NATIONS_VALIDATE_PATH
>>> result = hpo_pipeline(
... n_trials=3, # you probably want more than this
... training=NATIONS_TRAIN_PATH,
... testing=NATIONS_TEST_PATH,
... validation=NATIONS_VALIDATE_PATH,
... model='TransE',
... epochs=5, # short epochs for testing - you should go higher
...)
>>> result.save_to_directory('doctests/test_hpo_pre_stratified_transe')

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/reference/triples.html#pykeen.triples.TriplesFactory
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.Nations.html#pykeen.datasets.Nations
https://pykeen.readthedocs.io/en/stable/reference/hpo.html#pykeen.hpo.hpo_pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline

The remainder of the examples will be for pykeen.pipeline.pipeline() , but all work exactly the
same for pykeen.hpo.hpo_pipeline() .

If you want to add dataset-wide arguments, you can use the dataset_kwargs argument to the
pykeen.pipeline.pipeline to enable op�ons like create_inverse_triples=True .

>>> from pykeen.pipeline import pipeline
>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH, NATIONS_TEST_PATH
>>> result = pipeline(
... training=NATIONS_TRAIN_PATH,
... testing=NATIONS_TEST_PATH,
... dataset_kwargs={'create_inverse_triples': True},
... model='TransE',
... epochs=5, # short epochs for testing - you should go higher
...)
>>> result.save_to_directory('doctests/test_pre_stratified_transe')

If you want finer control over how the triples are created, for example, if they are not all
coming from TSV files, you can use the pykeen.triples.TriplesFactory interface.

>>> from pykeen.triples import TriplesFactory
>>> from pykeen.pipeline import pipeline
>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH, NATIONS_TEST_PATH
>>> training = TriplesFactory.from_path(NATIONS_TRAIN_PATH)
>>> testing = TriplesFactory.from_path(
... NATIONS_TEST_PATH,
... entity_to_id=training.entity_to_id,
... relation_to_id=training.relation_to_id,
...)
>>> result = pipeline(
... training=training,
... testing=testing,
... model='TransE',
... epochs=5, # short epochs for testing - you should go higher
...)
>>> result.save_to_directory('doctests/test_pre_stratified_transe')

Warning

The instan�a�on of the tes�ng factory, we used the entity_to_id and relation_to_id

keyword arguments. This is because PyKEEN automa�cally assigns numeric iden�fiers to
all en��es and rela�ons for each triples factory. However, we want the iden�fiers to be
exactly the same for the tes�ng set as the training set, so we just reuse it. If we didn’t
have the same iden�fiers, then the tes�ng set would get mixed up with the wrong
iden�fiers in the training set during evalua�on, and we’d get nonsense results.

The dataset_kwargs argument is ignored when passing your own
pykeen.triples.TriplesFactory , so be sure to include the create_inverse_triples=True in the

instan�a�on of those classes if that’s your desired behavior as in:

https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/reference/hpo.html#pykeen.hpo.hpo_pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/reference/triples.html#pykeen.triples.TriplesFactory
https://pykeen.readthedocs.io/en/stable/reference/triples.html#pykeen.triples.TriplesFactory

>>> from pykeen.triples import TriplesFactory
>>> from pykeen.pipeline import pipeline
>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH, NATIONS_TEST_PATH
>>> training = TriplesFactory.from_path(
... NATIONS_TRAIN_PATH,
... create_inverse_triples=True,
...)
>>> testing = TriplesFactory.from_path(
... NATIONS_TEST_PATH,
... entity_to_id=training.entity_to_id,
... relation_to_id=training.relation_to_id,
... create_inverse_triples=True,
...)
>>> result = pipeline(
... training=training,
... testing=testing,
... model='TransE',
... epochs=5, # short epochs for testing - you should go higher
...)
>>> result.save_to_directory('doctests/test_pre_stratified_transe')

Triples factories can also be instan�ated using the triples keyword argument instead of the
path argument if you already have triples loaded in a numpy.ndarray .

Unstratified Dataset

It’s more realis�c your real-world dataset is not already stra�fied into training and tes�ng
sets. PyKEEN has you covered with pykeen.triples.TriplesFactory.split() , which will allow
you to create a stra�fied dataset.

>>> from pykeen.triples import TriplesFactory
>>> from pykeen.pipeline import pipeline
>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH
>>> tf = TriplesFactory.from_path(NATIONS_TRAIN_PATH)
>>> training, testing = tf.split()
>>> result = pipeline(
... training=training,
... testing=testing,
... model='TransE',
... epochs=5, # short epochs for testing - you should go higher
...)
>>> result.save_to_directory('doctests/test_unstratified_transe')

By default, this is an 80/20 split. If you want to use early stopping, you’ll also need a
valida�on set, so you should specify the splits:

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

>>> from pykeen.triples import TriplesFactory
>>> from pykeen.pipeline import pipeline
>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH
>>> tf = TriplesFactory.from_path(NATIONS_TRAIN_PATH)
>>> training, testing, validation = tf.split([.8, .1, .1])
>>> result = pipeline(
... training=training,
... testing=testing,
... validation=validation,
... model='TransE',
... stopper='early',
... epochs=5, # short epochs for testing - you should go
... # higher, especially with early stopper enabled
...)
>>> result.save_to_directory('doctests/test_unstratified_stopped_transe')

Bring Your Own Data with Checkpoints

For a tutorial on how to use your own data together with checkpoints, see Checkpoints
When Bringing Your Own Data and Loading Models Manually.

https://pykeen.readthedocs.io/en/stable/tutorial/checkpoints.html#byod-and-checkpoints-training
https://pykeen.readthedocs.io/en/stable/tutorial/checkpoints.html#byod-and-checkpoints-training
https://pykeen.readthedocs.io/en/stable/tutorial/checkpoints.html#byod-and-checkpoints-manually

