
 / Using Resolvers

Using Resolvers

As PyKEEN is a heavily modular and extensible library, we make use of the class_resolver

library to allow simple configuration of components. In this part of the tutorial, we explain
how to use these configuration options, and how to figure out what values you can pass here.

We use the initialization method of the base model class pykeen.models.base.Model() and its
handling of loss functions as an example. Its signature is given as

def __init__(
 self,
 *,
 ...,
 loss: HintOrType[Loss] = None,
 loss_kwargs: OptionalKwargs = None,
 ...,
) -> None:

Notice the two related parameters loss: HintOrType[Loss] = None and loss_kwargs:
OptionalKwargs = None. The loss_kwargs thus takes a values of type OptionalKwargs as input,
which is an abbreviation of Union[None, Mapping[str, Any]]. Hence, we can either pass a
mapping of string keys to some values, or Ǹone. In the latter case of passing None, this is
interpreted as an empty dictionary.

The loss parameter takes inputs of type HintOrType[Loss]. HintOrType[Loss] is a abbreviation of
Union[None, str, Type[Loss], Loss]. Thus, we can either pass

1. an instance of the pykeen.losses.Loss , e.g., pykeen.losses.MarginRankingLoss(margin=2.0) . If
an instance of pykeen.losses.Loss is passed, it is used without modification. In this case,
loss_kwargs will be ignored.

2. a subclass of pykeen.losses.Loss , e.g., pykeen.losses.MarginRankingLoss In this case, the class
is instantiated with the given loss_kwargs as (keyword-based) parameters. For instance,

loss = MarginRankingLoss
loss_kwargs = None # equivalent to {}

translates to MarginRankingLoss(). We can also choose different instantiation parameters
by

https://pykeen.readthedocs.io/en/stable/index.html
https://class-resolver.readthedocs.io/en/latest/usage.html#module-class_resolver
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.Model.html#pykeen.models.Model
https://pykeen.readthedocs.io/en/stable/api/pykeen.losses.MarginRankingLoss.html#pykeen.losses.MarginRankingLoss

loss = MarginRankingLoss
loss_kwargs = dict(margin=2) # or {"margin": 2}

which translates to MarginRankingLoss(margin=2)
3. a string. This string is used to search for a matching class using the class-resolver’s lookup

function. The lookup function performs some string normalization and compares the
resulting key to the normalized names of classes it is associated with. The found class is
then used to instantiate the object as if we passed this class instead of the string. For
instance, we can obtain instances MarginRankingLoss by passing “MarginRankingLoss”,
“marginrankingloss”, “marginranking”, “margin-ranking”, or “MRL”.

4. None. In this case, we use the default class set in the class-resolver, which happens to be
MarginRankingLoss for the loss_resolver. If no default is set, an exception will be raised.

Determining Allowed Inputs

To keep PyKEEN easily extensible and maintainable, we often use None for the choice, e.g.,
loss, and the keyword-based parameters. This can sometimes make it hard to read what
default values are used, what valid choices are available, and what parameters are allowed
with these different choices. In the following, we describe a few ways how to find this
information.

First, you should take a look at the type annotation. HintOrType[X] = None tells you that you
can pass any subclass of X. Moreover, you can always pass the string of the class name
instead, which often is easier to setup for you result tracking, command line arguments, or
hyperparameter search. All resolvers for classes used in PyKEEN are instantiated using the
ClassResolver.from_subclasses factory function, which automatically registers all subclasses for
a given base class as valid choices. Moreover, it will allow you to pass class names without the
base class’ name as suffix, e.g., loss_resolver accepts MarginRanking instead of
MarginRankingLoss, since the base class’ name Loss is removed as suffix during the
normalization. To utilize this feature, we try to follow an appropriate naming scheme for all
configurable parts, e.g., pykeen.nn.representation.Representation , or
pykeen.nn.modules.Interaction .

The allowed parameters for …_kwargs: OptionalKwargs are a bit harder to determine, since
they vary with your choice of the component! For instance, MarginRankingLoss has a margin
parameter, while pykeen.losses.BCEWithLogitsLoss does not provide such. Hence, you should
investigate the documentation of the individual classes to inform yourself about available
parameters and allowed values.

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Representation.html#pykeen.nn.representation.Representation
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.modules.Interaction.html#pykeen.nn.modules.Interaction
https://pykeen.readthedocs.io/en/stable/api/pykeen.losses.BCEWithLogitsLoss.html#pykeen.losses.BCEWithLogitsLoss

