
 / Induc�ve Link Predic�on

Inductive Link Prediction

For years, a standard training setup in PyKEEN and other KGE libraries was implying that a
training graph includes all en��es on which we will run inference (valida�on, test, or custom
predic�ons). That is, the missing links to be predicted connect already seen en��es within the
train graph. Such a link predic�on setup is called transduc�ve setup.

What if at inference �me we have new, unseen en��es, and want to predict links between
unseen en��es? Such setups are unified under the induc�ve framework. Illustra�ng the
difference on the Figure above, the main difference of the induc�ve setup is that at inference
�me we have a new graph (called induc�ve inference graph), and link predic�on is executed
against that new inference graph of unseen en��es.

In fact, there exist several varia�ons of the induc�ve setup according to the taxonomy by
[ali2021] :

An inference graph is totally disconnected from the training graph (disjoint), aka fully-
induc�ve setup. Link predic�on pa�ern between en��es is therefore unseen-to-unseen.
An inference graph extends the training graph connec�ng new nodes to the seen graph
aka semi-induc�ve setup. Link predic�on pa�erns can be unseen-to-unseen when we
predict links among newly added nodes or unseen-to-seen / seen-to-unseen when we
predict links between known nodes and newly arrived.

PyKEEN supports induc�ve link predic�on providing interfaces to organize the datasets, build
representa�ons of unseen en��es, and apply any exis�ng interac�on func�on on top of
them. Most importantly, the set of rela�ons must be seen at training �me. That is, rela�ons
seen at inference �me must be a subset of training ones because we will learn
representa�ons of those rela�ons to transfer to unseen graphs.

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/references.html#ali2021


Organizing the Dataset

The basic class to build induc�ve datasets is pykeen.datasets.inductive.InductiveDataset . It is
supposed to contain more than 3 triple factories, i.e., in the fully-induc�ve setup it is expected
to have at least 4 triple factories (transduc�ve_training, induc�ve_inference,
induc�ve_valida�on, induc�ve_test). transduc�ve_training is the graph with en��es index (0..N)
on which we will train a model, induc�ve_inference is the new graph appearing at inference
�me with new en��es (indexing (0..K)). Note that the number of en��es in the
transduc�ve_training and induc�ve_inference is different. induc�ve_valida�on and induc�ve_test
share the en��es with induc�ve_inference but not with transduc�ve_training. This way, we
inform a model that we are predic�ng links against the induc�ve inference graph, not against
the training graph.

PyKEEN supports 12 fully-induc�ve datasets introduced by [teru2020] where training and
induc�ve inference graphs are disjoint. Each of 3 KG families, Induc�veFB15k237,
Induc�veWN18RR, and Induc�veNELL, have 4 versions varying by the size of training and
inference graphs as well as the total number of en��es and rela�ons. It is ensured that the
rela�ons sets of all inference graphs are subsets of their training graphs.

Featurizing Unseen Entities

Training en�ty embeddings on the training graph is meaningless as those embeddings cannot
be used at inference �me. Instead, we need some universal featurizing mechanism which
would build representa�ons of both seen and unseen en��es. In PyKEEN, there exist at least
2 such mechanisms depending on the availability of node descrip�ons.

NodePiece

In the most basic case, unseen en��es arrive without any features nor descrip�ons. We cater
for this case using pykeen.nn.representation.NodePieceRepresentation  - since the set of rela�ons
at training and inference �me is the same, NodePiece Representa�on will tokenize each en�ty
through a subset of incident rela�on types. Out of computa�onal reasons, NodePiece
representa�ons of induc�ve_inference en��es (to be seen at inference �me) can be pre-
computed as well.

At the moment, PyKEEN provides two induc�ve NodePiece implementa�ons: *
pykeen.models.inductive.InductiveNodePiece  - basic version; *
pykeen.models.inductive.InductiveNodePieceGNN  - in addi�on to tokeniza�on and learnable hash

encoder, this version also performs message passing over the induc�ve_inference graph a�er
building node representa�ons from the vocabulary. By default, message passing is performed
with a 2-layer CompGCN

https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.inductive.InductiveDataset.html#pykeen.datasets.inductive.InductiveDataset
https://pykeen.readthedocs.io/en/stable/references.html#teru2020


Both induc�ve versions of NodePiece train an encoder on top of the vocabulary of rela�onal
tokens that can be easily re-used at inference �me. This way, we can obtain representa�ons of
unseen en��es. Induc�veNodePiece and Induc�veNodePieceGNN can be paired with any
interac�on func�on from PyKEEN where the dimension of rela�on vectors is the same as
dimension of final node vectors. Alterna�ve interac�ons can be integrated with custom
ini�aliza�on of the rela�on representa�on module.

Let’s create a basic Induc�veNodePiece using one of the Induc�veFB15k237 datasets:

from pykeen.datasets.inductive.ilp_teru import InductiveFB15k237
from pykeen.models.inductive import InductiveNodePiece
from pykeen.losses import NSSALoss

dataset = InductiveFB15k237(version="v1", create_inverse_triples=True)

model = InductiveNodePiece(
    triples_factory=dataset.transductive_training,  # training factory, used to tokenize 
training nodes
    inference_factory=dataset.inductive_inference,  # inference factory, used to tokenize 
inference nodes
    num_tokens=12,  # length of a node hash - how many unique relations per node will be used
    aggregation="mlp",  # aggregation function, defaults to an MLP, can be any PyTorch function
    loss=NSSALoss(margin=15),  # dummy loss
    random_seed=42,
)

Crea�ng a message-passing version of NodePiece is pre�y much the same:

from pykeen.datasets.inductive.ilp_teru import InductiveFB15k237
from pykeen.models.inductive import InductiveNodePieceGNN
from pykeen.losses import NSSALoss

dataset = InductiveFB15k237(version="v1", create_inverse_triples=True)

model = InductiveNodePieceGNN(
    triples_factory=dataset.transductive_training,  # training factory, will be also used for a 
GNN
    inference_factory=dataset.inductive_inference,  # inference factory, will be used for a GNN
    num_tokens=12,  # length of a node hash - how many unique relations per node will be used
    aggregation="mlp",  # aggregation function, defaults to an MLP, can be any PyTorch function
    loss=NSSALoss(margin=15),  # dummy loss
    random_seed=42,
    gnn_encoder=None,  # defaults to a 2-layer CompGCN with DistMult composition function
)

Note this version has the gnn_encoder  argument - keeping it None  would invoke a default 2-
layer CompGCN. You can pass here any rela�onal GNN that returns updated matrices of
en��es and rela�ons as the scoring func�on will use them for ranking triples. See
pykeen.models.inductive.InductiveNodePieceGNN  for more details.



Label-based Transformer Representation

If en�ty descrip�ons are available, the universal featurizing mechanism can be a language
model accessible via pykeen.nn.representation.LabelBasedTransformerRepresentation . At both
training and inference �me, fixed-size en�ty vectors are obtained a�er passing their textual
descrip�ons through a pre-trained language model.

This is work in progress and not yet available.

Training & Evaluation

Generally, training and evalua�on of induc�ve models uses similar interfaces: sLCWA and
LCWA training loops, and RankBasedEvaluator. The important addi�on of induc�ve interfaces
is the mode argument. When set to mode=”training”, an induc�ve model has to invoke
representa�ons of the training graph, when set to mode=valida�on or mode=tes�ng, the
model has to invoke representa�ons of inference graphs. In the case of fully-induc�ve
(disjoint) datasets from [teru2020] the inference graph at valida�on and test is the same.

By default, you can use standard PyKEEN training loops pykeen.training.SLCWATrainingLoop  and
pykeen.training.LCWATrainingLoop  with the new mode parameter. Similarly, you can use a

standard evaluator pykeen.evaluation.rank_based_evaluator.RankBasedEvaluator  with the mode
parameter to evaluate valida�on / test triples over the whole inference graph.

Moreover, original work of [teru2020] used a restricted evalua�on protocol ranking each
valida�on / test triple only against 50 random nega�ves. PyKEEN implements this protocol
with pykeen.evaluation.rank_based_evaluator.SampledRankBasedEvaluator

Let’s create a training loop and valida�on / test evaluators:

https://pykeen.readthedocs.io/en/stable/references.html#teru2020
https://pykeen.readthedocs.io/en/stable/api/pykeen.training.SLCWATrainingLoop.html#pykeen.training.SLCWATrainingLoop
https://pykeen.readthedocs.io/en/stable/api/pykeen.training.LCWATrainingLoop.html#pykeen.training.LCWATrainingLoop
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.RankBasedEvaluator.html#pykeen.evaluation.RankBasedEvaluator
https://pykeen.readthedocs.io/en/stable/references.html#teru2020
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.SampledRankBasedEvaluator.html#pykeen.evaluation.SampledRankBasedEvaluator


from pykeen.datasets.inductive.ilp_teru import InductiveFB15k237
from pykeen.training import SLCWATrainingLoop
from pykeen.evaluation.rank_based_evaluator import SampledRankBasedEvaluator
from pykeen.losses import NSSALoss

dataset = InductiveFB15k237(version="v1", create_inverse_triples=True)

model = ...  # model init here, one of InductiveNodePiece
optimizer = ...  # some optimizer

training_loop = SLCWATrainingLoop(
    triples_factory=dataset.transductive_training,  # training triples
    model=model,
    optimizer=optimizer,
    mode="training",   # necessary to specify for the inductive mode - training has its own set 
of nodes
)

valid_evaluator = SampledRankBasedEvaluator(
    mode="validation",   # necessary to specify for the inductive mode - this will use 
inference nodes
    evaluation_factory=dataset.inductive_validation,  # validation triples to predict
    additional_filter_triples=dataset.inductive_inference.mapped_triples,   # filter out true 
inference triples
)

test_evaluator = SampledRankBasedEvaluator(
    mode="testing",   # necessary to specify for the inductive mode - this will use inference 
nodes
    evaluation_factory=dataset.inductive_testing,  # test triples to predict
    additional_filter_triples=dataset.inductive_inference.mapped_triples,   # filter out true 
inference triples
)

Full Inductive LP Example

A minimally working example for training an Induc�veNodePieceGNN on the
Induc�veFB15k237 (v1) in the sLCWA mode with 32 nega�ve samples per posi�ve, with
NSSALoss, and SampledEvaluator would look like this:



from pykeen.datasets.inductive.ilp_teru import InductiveFB15k237
from pykeen.models.inductive import InductiveNodePieceGNN
from pykeen.training import SLCWATrainingLoop
from pykeen.evaluation.rank_based_evaluator import SampledRankBasedEvaluator
from pykeen.stoppers import EarlyStopper

from torch.optim import Adam

dataset = InductiveFB15k237(version="v1", create_inverse_triples=True)

model = InductiveNodePieceGNN(
    triples_factory=dataset.transductive_training,  # training factory, will be also used for a 
GNN
    inference_factory=dataset.inductive_inference,  # inference factory, will be used for a GNN
    num_tokens=12,  # length of a node hash - how many unique relations per node will be used
    aggregation="mlp",  # aggregation function, defaults to an MLP, can be any PyTorch function
    loss=NSSALoss(margin=15),  # dummy loss
    random_seed=42,
    gnn_encoder=None,  # defaults to a 2-layer CompGCN with DistMult composition function
)

optimizer = Adam(params=model.parameters(), lr=0.0005)

training_loop = SLCWATrainingLoop(
    triples_factory=dataset.transductive_training,  # training triples
    model=model,
    optimizer=optimizer,
    negative_sampler_kwargs=dict(num_negs_per_pos=32)
    mode="training",   # necessary to specify for the inductive mode - training has its own set 
of nodes
)

# Validation and Test evaluators use a restricted protocol ranking against 50 random negatives
valid_evaluator = SampledRankBasedEvaluator(
    mode="validation",   # necessary to specify for the inductive mode - this will use 
inference nodes
    evaluation_factory=dataset.inductive_validation,  # validation triples to predict
    additional_filter_triples=dataset.inductive_inference.mapped_triples,   # filter out true 
inference triples
)

# According to the original code
# 
https://github.com/kkteru/grail/blob/2a3dffa719518e7e6250e355a2fb37cd932de91e/test_ranking.py#L52
L529
# test filtering uses only the inductive_inference split and does not include 
inductive_validation triples
# If you use the full RankBasedEvaluator, both inductive_inference and inductive_validation 
triples
# must be added to the additional_filter_triples
test_evaluator = SampledRankBasedEvaluator(
    mode="testing",   # necessary to specify for the inductive mode - this will use inference 
nodes
    evaluation_factory=dataset.inductive_testing,  # test triples to predict
    additional_filter_triples=dataset.inductive_inference.mapped_triples,   # filter out true 
inference triples
)

early_stopper = EarlyStopper(
    model=model,
    training_triples_factory=dataset.inductive_inference,
    evaluation_triples_factory=dataset.inductive_validation,
    frequency=1,



    patience=100000,  # for test reasons, turn it off
    result_tracker=None,
    evaluation_batch_size=256,
    evaluator=valid_evaluator,
)

# Training starts here
training_loop.train(
    triples_factory=dataset.transductive_training,
    stopper=early_stopper,
    num_epochs=100,
)

# Test evaluation
result = test_evaluator.evaluate(
    model=model,
    mapped_triples=dataset.inductive_testing.mapped_triples,
    additional_filter_triples=dataset.inductive_inference.mapped_triples,
    batch_size=256,
)

# print final results
print(result.to_flat_dict())


