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Inductive Link Prediction

For years, a standard training setup in PyKEEN and other KGE libraries was implying that a
training graph includes all entities on which we will run inference (validation, test, or custom
predictions). That is, the missing links to be predicted connect already seen entities within the
train graph. Such a link prediction setup is called transductive setup.

What if at inference time we have new, unseen entities, and want to predict links between
unseen entities? Such setups are unified under the inductive framework. Illustrating the
difference on the Figure above, the main difference of the inductive setup is that at inference
time we have a new graph (called inductive inference graph), and link prediction is executed
against that new inference graph of unseen entities.

In fact, there exist several variations of the inductive setup according to the taxonomy by
[ali2021] :

An inference graph is totally disconnected from the training graph (disjoint), aka fully-
inductive setup. Link prediction pattern between entities is therefore unseen-to-unseen.
An inference graph extends the training graph connecting new nodes to the seen graph
aka semi-inductive setup. Link prediction patterns can be unseen-to-unseen when we
predict links among newly added nodes or unseen-to-seen / seen-to-unseen when we
predict links between known nodes and newly arrived.

PyKEEN supports inductive link prediction providing interfaces to organize the datasets, build
representations of unseen entities, and apply any existing interaction function on top of
them. Most importantly, the set of relations must be seen at training time. That is, relations
seen at inference time must be a subset of training ones because we will learn
representations of those relations to transfer to unseen graphs.

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/references.html#ali2021


Organizing the Dataset

The basic class to build inductive datasets is pykeen.datasets.inductive.InductiveDataset . It is
supposed to contain more than 3 triple factories, i.e., in the fully-inductive setup it is expected
to have at least 4 triple factories (transductive_training, inductive_inference,
inductive_validation, inductive_test). transductive_training is the graph with entities index (0..N)
on which we will train a model, inductive_inference is the new graph appearing at inference
time with new entities (indexing (0..K)). Note that the number of entities in the
transductive_training and inductive_inference is different. inductive_validation and inductive_test
share the entities with inductive_inference but not with transductive_training. This way, we
inform a model that we are predicting links against the inductive inference graph, not against
the training graph.

PyKEEN supports 12 fully-inductive datasets introduced by [teru2020] where training and
inductive inference graphs are disjoint. Each of 3 KG families, InductiveFB15k237,
InductiveWN18RR, and InductiveNELL, have 4 versions varying by the size of training and
inference graphs as well as the total number of entities and relations. It is ensured that the
relations sets of all inference graphs are subsets of their training graphs.

Featurizing Unseen Entities

Training entity embeddings on the training graph is meaningless as those embeddings cannot
be used at inference time. Instead, we need some universal featurizing mechanism which
would build representations of both seen and unseen entities. In PyKEEN, there exist at least
2 such mechanisms depending on the availability of node descriptions.

NodePiece

In the most basic case, unseen entities arrive without any features nor descriptions. We cater
for this case using pykeen.nn.representation.NodePieceRepresentation  - since the set of relations
at training and inference time is the same, NodePiece Representation will tokenize each entity
through a subset of incident relation types. Out of computational reasons, NodePiece
representations of inductive_inference entities (to be seen at inference time) can be pre-
computed as well.

At the moment, PyKEEN provides two inductive NodePiece implementations: *
pykeen.models.inductive.InductiveNodePiece  - basic version; *
pykeen.models.inductive.InductiveNodePieceGNN  - in addition to tokenization and learnable hash

encoder, this version also performs message passing over the inductive_inference graph after
building node representations from the vocabulary. By default, message passing is performed
with a 2-layer CompGCN

https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.inductive.InductiveDataset.html#pykeen.datasets.inductive.InductiveDataset
https://pykeen.readthedocs.io/en/stable/references.html#teru2020


Both inductive versions of NodePiece train an encoder on top of the vocabulary of relational
tokens that can be easily re-used at inference time. This way, we can obtain representations of
unseen entities. InductiveNodePiece and InductiveNodePieceGNN can be paired with any
interaction function from PyKEEN where the dimension of relation vectors is the same as
dimension of final node vectors. Alternative interactions can be integrated with custom
initialization of the relation representation module.

Let’s create a basic InductiveNodePiece using one of the InductiveFB15k237 datasets:

from pykeen.datasets.inductive.ilp_teru import InductiveFB15k237
from pykeen.models.inductive import InductiveNodePiece
from pykeen.losses import NSSALoss

dataset = InductiveFB15k237(version="v1", create_inverse_triples=True)

model = InductiveNodePiece(
    triples_factory=dataset.transductive_training,  # training factory, used to tokenize 
training nodes
    inference_factory=dataset.inductive_inference,  # inference factory, used to tokenize 
inference nodes
    num_tokens=12,  # length of a node hash - how many unique relations per node will be used
    aggregation="mlp",  # aggregation function, defaults to an MLP, can be any PyTorch function
    loss=NSSALoss(margin=15),  # dummy loss
    random_seed=42,
)

Creating a message-passing version of NodePiece is pretty much the same:

from pykeen.datasets.inductive.ilp_teru import InductiveFB15k237
from pykeen.models.inductive import InductiveNodePieceGNN
from pykeen.losses import NSSALoss

dataset = InductiveFB15k237(version="v1", create_inverse_triples=True)

model = InductiveNodePieceGNN(
    triples_factory=dataset.transductive_training,  # training factory, will be also used for a 
GNN
    inference_factory=dataset.inductive_inference,  # inference factory, will be used for a GNN
    num_tokens=12,  # length of a node hash - how many unique relations per node will be used
    aggregation="mlp",  # aggregation function, defaults to an MLP, can be any PyTorch function
    loss=NSSALoss(margin=15),  # dummy loss
    random_seed=42,
    gnn_encoder=None,  # defaults to a 2-layer CompGCN with DistMult composition function
)

Note this version has the gnn_encoder  argument - keeping it None  would invoke a default 2-
layer CompGCN. You can pass here any relational GNN that returns updated matrices of
entities and relations as the scoring function will use them for ranking triples. See
pykeen.models.inductive.InductiveNodePieceGNN  for more details.



Label-based Transformer Representation

If entity descriptions are available, the universal featurizing mechanism can be a language
model accessible via pykeen.nn.representation.LabelBasedTransformerRepresentation . At both
training and inference time, fixed-size entity vectors are obtained after passing their textual
descriptions through a pre-trained language model.

This is work in progress and not yet available.

Training & Evaluation

Generally, training and evaluation of inductive models uses similar interfaces: sLCWA and
LCWA training loops, and RankBasedEvaluator. The important addition of inductive interfaces
is the mode argument. When set to mode=”training”, an inductive model has to invoke
representations of the training graph, when set to mode=validation or mode=testing, the
model has to invoke representations of inference graphs. In the case of fully-inductive
(disjoint) datasets from [teru2020] the inference graph at validation and test is the same.

By default, you can use standard PyKEEN training loops pykeen.training.SLCWATrainingLoop  and
pykeen.training.LCWATrainingLoop  with the new mode parameter. Similarly, you can use a

standard evaluator pykeen.evaluation.rank_based_evaluator.RankBasedEvaluator  with the mode
parameter to evaluate validation / test triples over the whole inference graph.

Moreover, original work of [teru2020] used a restricted evaluation protocol ranking each
validation / test triple only against 50 random negatives. PyKEEN implements this protocol
with pykeen.evaluation.rank_based_evaluator.SampledRankBasedEvaluator

Let’s create a training loop and validation / test evaluators:

https://pykeen.readthedocs.io/en/stable/references.html#teru2020
https://pykeen.readthedocs.io/en/stable/api/pykeen.training.SLCWATrainingLoop.html#pykeen.training.SLCWATrainingLoop
https://pykeen.readthedocs.io/en/stable/api/pykeen.training.LCWATrainingLoop.html#pykeen.training.LCWATrainingLoop
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.RankBasedEvaluator.html#pykeen.evaluation.RankBasedEvaluator
https://pykeen.readthedocs.io/en/stable/references.html#teru2020
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.SampledRankBasedEvaluator.html#pykeen.evaluation.SampledRankBasedEvaluator


from pykeen.datasets.inductive.ilp_teru import InductiveFB15k237
from pykeen.training import SLCWATrainingLoop
from pykeen.evaluation.rank_based_evaluator import SampledRankBasedEvaluator
from pykeen.losses import NSSALoss

dataset = InductiveFB15k237(version="v1", create_inverse_triples=True)

model = ...  # model init here, one of InductiveNodePiece
optimizer = ...  # some optimizer

training_loop = SLCWATrainingLoop(
    triples_factory=dataset.transductive_training,  # training triples
    model=model,
    optimizer=optimizer,
    mode="training",   # necessary to specify for the inductive mode - training has its own set 
of nodes
)

valid_evaluator = SampledRankBasedEvaluator(
    mode="validation",   # necessary to specify for the inductive mode - this will use 
inference nodes
    evaluation_factory=dataset.inductive_validation,  # validation triples to predict
    additional_filter_triples=dataset.inductive_inference.mapped_triples,   # filter out true 
inference triples
)

test_evaluator = SampledRankBasedEvaluator(
    mode="testing",   # necessary to specify for the inductive mode - this will use inference 
nodes
    evaluation_factory=dataset.inductive_testing,  # test triples to predict
    additional_filter_triples=dataset.inductive_inference.mapped_triples,   # filter out true 
inference triples
)

Full Inductive LP Example

A minimally working example for training an InductiveNodePieceGNN on the
InductiveFB15k237 (v1) in the sLCWA mode with 32 negative samples per positive, with
NSSALoss, and SampledEvaluator would look like this:



from pykeen.datasets.inductive.ilp_teru import InductiveFB15k237
from pykeen.models.inductive import InductiveNodePieceGNN
from pykeen.training import SLCWATrainingLoop
from pykeen.evaluation.rank_based_evaluator import SampledRankBasedEvaluator
from pykeen.stoppers import EarlyStopper

from torch.optim import Adam

dataset = InductiveFB15k237(version="v1", create_inverse_triples=True)

model = InductiveNodePieceGNN(
    triples_factory=dataset.transductive_training,  # training factory, will be also used for a 
GNN
    inference_factory=dataset.inductive_inference,  # inference factory, will be used for a GNN
    num_tokens=12,  # length of a node hash - how many unique relations per node will be used
    aggregation="mlp",  # aggregation function, defaults to an MLP, can be any PyTorch function
    loss=NSSALoss(margin=15),  # dummy loss
    random_seed=42,
    gnn_encoder=None,  # defaults to a 2-layer CompGCN with DistMult composition function
)

optimizer = Adam(params=model.parameters(), lr=0.0005)

training_loop = SLCWATrainingLoop(
    triples_factory=dataset.transductive_training,  # training triples
    model=model,
    optimizer=optimizer,
    negative_sampler_kwargs=dict(num_negs_per_pos=32)
    mode="training",   # necessary to specify for the inductive mode - training has its own set 
of nodes
)

# Validation and Test evaluators use a restricted protocol ranking against 50 random negatives
valid_evaluator = SampledRankBasedEvaluator(
    mode="validation",   # necessary to specify for the inductive mode - this will use 
inference nodes
    evaluation_factory=dataset.inductive_validation,  # validation triples to predict
    additional_filter_triples=dataset.inductive_inference.mapped_triples,   # filter out true 
inference triples
)

# According to the original code
# 
https://github.com/kkteru/grail/blob/2a3dffa719518e7e6250e355a2fb37cd932de91e/test_ranking.py#L52
L529
# test filtering uses only the inductive_inference split and does not include 
inductive_validation triples
# If you use the full RankBasedEvaluator, both inductive_inference and inductive_validation 
triples
# must be added to the additional_filter_triples
test_evaluator = SampledRankBasedEvaluator(
    mode="testing",   # necessary to specify for the inductive mode - this will use inference 
nodes
    evaluation_factory=dataset.inductive_testing,  # test triples to predict
    additional_filter_triples=dataset.inductive_inference.mapped_triples,   # filter out true 
inference triples
)

early_stopper = EarlyStopper(
    model=model,
    training_triples_factory=dataset.inductive_inference,
    evaluation_triples_factory=dataset.inductive_validation,
    frequency=1,



    patience=100000,  # for test reasons, turn it off
    result_tracker=None,
    evaluation_batch_size=256,
    evaluator=valid_evaluator,
)

# Training starts here
training_loop.train(
    triples_factory=dataset.transductive_training,
    stopper=early_stopper,
    num_epochs=100,
)

# Test evaluation
result = test_evaluator.evaluate(
    model=model,
    mapped_triples=dataset.inductive_testing.mapped_triples,
    additional_filter_triples=dataset.inductive_inference.mapped_triples,
    batch_size=256,
)

# print final results
print(result.to_flat_dict())


