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Getting Started with NodePiece

This page gives more practical examples on using and configuring NodePiece.

Basic Usage

We’ll use pykeen.datasets.FB15k237  for illustrating purposes throughout the following
examples.

from pykeen.models import NodePiece
from pykeen.datasets import FB15k237

# inverses are necessary for the current version of NodePiece
dataset = FB15k237(create_inverse_triples=True)

In the simplest usage of pykeen.models.NodePiece , we’ll only use relations for tokenization. We
can do this by with the following arguments:

1. Set the tokenizers="RelationTokenizer"  to pykeen.nn.node_piece.RelationTokenizer . We can
simply refer to the class name and it gets automatically resolved to the correct subclass of
pykeen.nn.node_piece.Tokenizer  by the class_resolver .

2. Set the num_tokens=12  to sample 12 unique relations per node. If, for some entities, there
are less than 12 unique relations, the difference will be padded with the auxiliary padding
token.

Here’s how the code looks:

model = NodePiece(
    triples_factory=dataset.training,
    tokenizers="RelationTokenizer",
    num_tokens=12,
    embedding_dim=64,
)

Next, we’ll use a combination of tokenizers ( pykeen.nn.node_piece.AnchorTokenizer  and
pykeen.nn.node_piece.RelationTokenizer ) to replicate the full NodePiece tokenization with 

anchors and  relational context. It’s as easy as sending a list of tokenizers to tokenizers  and
sending a list of arguments to num_tokens :
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https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.FB15k237.html#pykeen.datasets.FB15k237
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https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.RelationTokenizer.html#pykeen.nn.node_piece.RelationTokenizer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.Tokenizer.html#pykeen.nn.node_piece.Tokenizer
https://class-resolver.readthedocs.io/en/latest/usage.html#module-class_resolver
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.AnchorTokenizer.html#pykeen.nn.node_piece.AnchorTokenizer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.RelationTokenizer.html#pykeen.nn.node_piece.RelationTokenizer


model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["AnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],
    embedding_dim=64,
)

Class resolver will automatically instantiate pykeen.nn.node_piece.AnchorTokenizer  with 20
anchors per node and pykeen.nn.node_piece.RelationTokenizer  with 12 relations per node, so
the order of specifying tokenizers  and num_tokens  matters here.

Anchor Selection and Searching

The pykeen.nn.node_piece.AnchorTokenizer  has two fields:

1. selection  controls how we sample anchors from the graph (32 anchors by default)
2. searcher  controls how we tokenize nodes using selected anchors

( pykeen.nn.node_piece.CSGraphAnchorSearcher  by default)

By default, our models above use 32 anchors selected as top-degree nodes with
pykeen.nn.node_piece.DegreeAnchorSelection  (those are default values for the anchor selection

resolver) and nodes are tokenized using pykeen.nn.node_piece.CSGraphAnchorSearcher  - it uses
scipy.sparse  to explicitly compute shortest paths from all nodes in the graph to all anchors in

the deterministic manner. We can afford that for relatively small graphs of FB15k237 size.

For larger graphs, we recommend using the breadth-first search (BFS) procedure in
pykeen.nn.node_piece.ScipySparseAnchorSearcher  - it applies BFS by iteratively expanding node

neighborhood until it finds a desired number of anchors - this dramatically saves compute
time on graphs of size like pykeen.datasets.OGBWikiKG2 .

32 unique anchors might be a bit too small for FB15k237 with 15k nodes - so let’s create a
pykeen.models.NodePiece  model with 100 anchors selected with the top degree strategy by

sending the tokenizers_kwargs  list:

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.AnchorTokenizer.html#pykeen.nn.node_piece.AnchorTokenizer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.RelationTokenizer.html#pykeen.nn.node_piece.RelationTokenizer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.AnchorTokenizer.html#pykeen.nn.node_piece.AnchorTokenizer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.CSGraphAnchorSearcher.html#pykeen.nn.node_piece.CSGraphAnchorSearcher
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.DegreeAnchorSelection.html#pykeen.nn.node_piece.DegreeAnchorSelection
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.CSGraphAnchorSearcher.html#pykeen.nn.node_piece.CSGraphAnchorSearcher
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.ScipySparseAnchorSearcher.html#pykeen.nn.node_piece.ScipySparseAnchorSearcher
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.OGBWikiKG2.html#pykeen.datasets.OGBWikiKG2
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.NodePiece.html#pykeen.models.NodePiece


model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["AnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],
    tokenizers_kwargs=[
        dict(
            selection="Degree",
            selection_kwargs=dict(
                num_anchors=100,
            ),
            searcher="CSGraph",
        ),
        dict(),  # empty dict for the RelationTokenizer - it doesn't need any kwargs
    ],
    embedding_dim=64,
)

tokenizers_kwargs  expects the same number dictionaries as the number of tokenizers you
used, so we have 2 dicts here - one for AnchorTokenizer  and another one for
RelationTokenizer  (but this one doesn’t need any kwargs so we just put an empty dict there).

Let’s create a model with 500 top-pagerank anchors selected with the BFS strategy - we’ll
just modify the selection  and searcher  args:

model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["AnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],
    tokenizers_kwargs=[
        dict(
            selection="PageRank",
            selection_kwargs=dict(
                num_anchors=500,
            ),
            searcher="ScipySparse",
        ),
        dict(),  # empty dict for the RelationTokenizer - it doesn't need any kwargs
    ],
    embedding_dim=64,
)

Looks nice, but fasten your seatbelts 🚀 - we can use several anchor selection strategies
sequentially to select more diverse anchors! Mindblowing 😍

Let’s create a model with 500 anchors where 50% of them will be top degree nodes and
another 50% will be top PageRank nodes - for that we have a
pykeen.nn.node_piece.MixtureAnchorSelection  class!

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.MixtureAnchorSelection.html#pykeen.nn.node_piece.MixtureAnchorSelection


model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["AnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],
    tokenizers_kwargs=[
        dict(
            selection="MixtureAnchorSelection",
            selection_kwargs=dict(
                selections=["degree", "pagerank"],
                ratios=[0.5, 0.5],
                num_anchors=500,
            ),
            searcher="ScipySparse",
        ),
        dict(),  # empty dict for the RelationTokenizer - it doesn't need any kwargs
    ],
    embedding_dim=64,
)

Now the selection_kwargs  controls which strategies we’ll be using and how many anchors
each of them will sample - in our case selections=['degree', 'pagerank'] . Using the ratios

argument we control the ratio of those sampled anchors in the total pool - in our case ratios=

[0.5, 0.5]  which means that both degree  and pagerank  strategies each will sample 50% from
the total number of anchors. Since the total number is 500, there will be 250 top-degree
anchors and 250 top-pagerank anchors. ratios  must sum up to 1.0

Important: sampled anchors are unique - that is, if a node appears to be in top-K degree and
top-K pagerank, it will be used only once, the sampler will just skip it in the subsequent
strategies.

At the moment, we have 3 anchor selection strategies: degree, pagerank, and random. The
latter just samples random nodes as anchors.

Let’s create a tokenization setup reported in the original NodePiece paper for FB15k237 with
40% top degree anchors, 40% top pagerank, and 20% random anchors:



model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["AnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],
    tokenizers_kwargs=[
        dict(
            selection="MixtureAnchorSelection",
            selection_kwargs=dict(
                selections=["degree", "pagerank", "random"],
                ratios=[0.4, 0.4, 0.2],
                num_anchors=500,
            ),
            searcher="ScipySparse",
        ),
        dict(),  # empty dict for the RelationTokenizer - it doesn't need any kwargs
    ],
    embedding_dim=64,
)

Note on Anchor Distances: As of now, the anchor distances are considered implicitly, i.e.,
when performing actual tokenization via shortest paths or BFS we do sort anchors by
proximity and keep top-K nearest. The anchor distance embedding as a positional feature to
be added to anchor embedding is not yet implemented.

How many total anchors num_anchors and anchors &
relations num_tokens do I need for my graph?

This is a good question with deep theoretical implications and NP-hard problems like k-
Dominating Sets and Vertex Cover Sets . We don’t have a closed-form solution for each
possible dataset, but we found some empirical heuristics:

keeping num_anchors  as 1-10% of total nodes in the graph is a good start
graph density is a major factor: the denser the graph, the fewer num_anchors  you’d need.
For dense FB15k237 100 total anchors (over 15k total nodes) seems to be good enough,
while for sparser WN18RR we needed at least 500 anchors (over 40k total nodes). For
dense OGB WikiKG2 of 2.5M nodes a vocab of 20K anchors (< 1%) already leads to SOTA
results
the same applies to anchors per node: you’d need more tokens for sparser graphs and
fewer for denser
the size of the relational context depends on the density and number of unique relations
in the graph, eg, in FB15k237 we have 237 * 2 = 474 unique relations and only 11 * 2 =
22 in WN18RR. If we select a too large context, most tokens will be PADDING_TOKEN  and we
don’t want that.
reported relational context sizes (relations per node) in the NodePiece paper are 66th
percentiles of the number of unique incident relations per node, eg 12 for FB15k237 and
5 for WN18RR

In some tasks, you might not need anchors at all and could use RelationTokenizer only! Check
the paper for more results.

https://en.wikipedia.org/wiki/Dominating_set
https://en.wikipedia.org/wiki/Dominating_set
https://en.wikipedia.org/wiki/Vertex_cover
https://github.com/migalkin/NodePiece/blob/9adc57efe302919d017d74fc648f853308cf75fd/lp_rp/pykeen105/nodepiece_rotate.py#L173
https://github.com/migalkin/NodePiece/blob/9adc57efe302919d017d74fc648f853308cf75fd/lp_rp/pykeen105/nodepiece_rotate.py#L173
https://openreview.net/forum?id=xMJWUKJnFSw


In inductive link prediction tasks we don’t use anchors as inference graphs are
disconnected from training ones;
in relation prediction we found that just a relational context is better than anchors +
relations;
in node classification (currently, this pipeline is not available in PyKEEN) on dense
relation-rich graphs like Wikidata, we found that just a relational context is better than
anchors + relations.

Using NodePiece with pykeen.pipeline.pipeline()

Let’s pack the last NodePiece model into the pipeline:

import torch.nn

from pykeen.models import NodePiece
from pykeen.pipeline import pipeline

result = pipeline(
    dataset="fb15k237",
    dataset_kwargs=dict(
        create_inverse_triples=True,
    ),
    model=NodePiece,
    model_kwargs=dict(
        tokenizers=["AnchorTokenizer", "RelationTokenizer"],
        num_tokens=[20, 12],
        tokenizers_kwargs=[
            dict(
                selection="MixtureAnchorSelection",
                selection_kwargs=dict(
                    selections=["degree", "pagerank", "random"],
                    ratios=[0.4, 0.4, 0.2],
                    num_anchors=500,
                ),
                searcher="ScipySparse",
            ),
            dict(),  # empty dict for the RelationTokenizer - it doesn't need any kwargs
        ],
        embedding_dim=64,
        interaction="rotate",
    ),
)

Pre-Computed Vocabularies

We have a pykeen.nn.node_piece.PrecomputedPoolTokenizer  that can be instantiated with a
precomputed vocabulary either from a local file or using a downloadable link.

For a local file, specify path :

https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.PrecomputedPoolTokenizer.html#pykeen.nn.node_piece.PrecomputedPoolTokenizer


precomputed_tokenizer = tokenizer_resolver.make(
    "precomputedpool", path=Path("path/to/vocab.pkl")
)

model = NodePiece(
    triples_factory=dataset.training,
    num_tokens=[20, 12],
    tokenizers=[precomputed_tokenizer, "RelationTokenizer"],
)

For a remote file, specify the url :

precomputed_tokenizer = tokenizer_resolver.make(
    "precomputedpool", url="http://link/to/vocab.pkl"
)

Generally, pykeen.nn.node_piece.PrecomputedPoolTokenizer  can use any
pykeen.nn.node_piece.PrecomputedTokenizerLoader  as a custom processor of vocabulary formats.

Right now there is one such loader, pykeen.nn.node_piece.GalkinPrecomputedTokenizerLoader  that
expects a dictionary of the following format:

node_id: {
    "ancs": [a list of used UNMAPPED anchor nodes sorted from nearest to farthest],
    "dists": [a list of anchor distances for each anchor in ancs, ascending]
}

As of now, we don’t use anchor distances, but we expect the anchors in ancs  to be already
sorted from nearest to farthest, so the example of a precomputed vocab can be:

1: {'ancs': [3, 10, 5, 9, 220, ...]}  # anchor 3 is the nearest for node 1
2: {'ancs': [22, 37, 14, 10, ...]}  # anchors 22 is the nearest for node 2

Unmapped anchors means that anchor IDs are the same node IDs from the total set of
entities 0... N-1 . In the pickle processing we’ll convert them to a contiguous range 0 ...

num_anchors-1 . Any negative indices in the lists will be treated as padding tokens (we used -99
in the precomputed vocabularies).

The original NodePiece repo has an example of building such a vocabulary format for OGB
WikiKG 2.

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.PrecomputedPoolTokenizer.html#pykeen.nn.node_piece.PrecomputedPoolTokenizer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.PrecomputedTokenizerLoader.html#pykeen.nn.node_piece.PrecomputedTokenizerLoader
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.GalkinPrecomputedTokenizerLoader.html#pykeen.nn.node_piece.GalkinPrecomputedTokenizerLoader
https://github.com/migalkin/NodePiece/blob/9adc57efe302919d017d74fc648f853308cf75fd/ogb/ogb_tokenizer.py#L180


Configuring the Interaction Function

you can use literally any interaction function available in PyKEEN as a scoring function! By
default, NodePiece uses DistMult, but it’s easy to change as in any pykeen.models.ERModel , let’s
use the RotatE interaction:

model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["AnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],
    interaction="rotate",
    embedding_dim=64,
)

Well, for RotatE we might want to initialize relations as phases ( init_phases ) and use an
additional relation constrainer to keep |r| = 1  ( complex_normalize ), and use xavier_uniform_

for anchor embedding initialization - let’s add that, too:

model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["AnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],
    embedding_dim=64,
    interaction="rotate",
    relation_initializer="init_phases",
    relation_constrainer="complex_normalize",
    entity_initializer="xavier_uniform_",
)

Configuring the Aggregation Function

This section is about the aggregation  keyword argument. This is an encoder function that
actually builds entity representations from token embeddings. It is supposed to be a function
that maps a set of tokens (anchors, relations, or both) to a single vector:

Right now, by default we use a simple 2-layer MLP ( pykeen.nn.perceptron.ConcatMLP ) that
concatenates all tokens to one long vector and projects it down to model’s embedding
dimension:

f([a1, a2, . . . . , ak, r1, r2, . . . , rm]) ∈ R
(k+m)×d → R

d

https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel
https://pykeen.readthedocs.io/en/stable/reference/nn/perceptron.html#pykeen.nn.perceptron.ConcatMLP


hidden_dim = int(ratio * embedding_dim)
super().__init__(
    nn.Linear(num_tokens * embedding_dim, hidden_dim),
    nn.Dropout(dropout),
    nn.ReLU(),
    nn.Linear(hidden_dim, embedding_dim),
)

Aggregation can be parameterized with any neural network ( torch.nn.Module ) that would
return a single vector from a set of inputs. Let’s be fancy 😎 and create a DeepSet encoder:

class DeepSet(torch.nn.Module):
    def __init__(self, hidden_dim=64):
        super().__init__()
        self.encoder = torch.nn.Sequential(
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
        )
        self.decoder = torch.nn.Sequential(
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
        )

    def forward(self, x, dim=-2):
        x = self.encoder(x).mean(dim)
        x = self.decoder(x)
        return x

model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["AnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],
    embedding_dim=64,
    interaction="rotate",
    relation_initializer="init_phases",
    relation_constrainer="complex_normalize",
    entity_initializer="xavier_uniform_",
    aggregation=DeepSet(hidden_dim=64),
)

We can even put a Transformer with pooling here. The only thing to keep in mind is the
complexity of the encoder - we found pykeen.nn.perceptron.ConcatMLP  to be a good balance
between speed and final performance, although at the cost of being not permutation
invariant to the input set of tokens.

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://arxiv.org/abs/1703.06114
https://pykeen.readthedocs.io/en/stable/reference/nn/perceptron.html#pykeen.nn.perceptron.ConcatMLP


The aggregation function resembles that of GNNs. Non-parametric avg/min/max did not
work that well in the current tokenization setup, so some non-linearity is definitely useful -
hence the choice for MLP / DeepSets / Transformer as an aggregation function.

Let’s wrap our cool NodePiece model with 40/40/20 degree/pagerank/random tokenization
with the BFS searcher and DeepSet aggregation into a pipeline:

result = pipeline(
    dataset="fb15k237",
    dataset_kwargs=dict(
        create_inverse_triples=True,
    ),
    model=NodePiece,
    model_kwargs=dict(
        tokenizers=["AnchorTokenizer", "RelationTokenizer"],
        num_tokens=[20, 12],
        tokenizers_kwargs=[
            dict(
                selection="MixtureAnchorSelection",
                selection_kwargs=dict(
                    selections=["degree", "pagerank", "random"],
                    ratios=[0.4, 0.4, 0.2],
                    num_anchors=500,
                ),
                searcher="ScipySparse",
            ),
            dict(),  # empty dict for the RelationTokenizer - it doesn't need any kwargs
        ],
        embedding_dim=64,
        interaction="rotate",
        relation_initializer="init_phases",
        relation_constrainer="complex_normalize",
        entity_initializer="xavier_uniform_",
        aggregation=DeepSet(hidden_dim=64),
    ),
)

NodePiece + GNN

It is also possible to add a message passing GNN on top of obtained NodePiece
representations to further enrich node states - we found it shows even better results in
inductive LP tasks. We have that implemented with pykeen.models.InductiveNodePieceGNN  that
uses a 2-layer CompGCN encoder - please check the Inductive Link Prediction tutorial.

Tokenizing Large Graphs with METIS

Mining anchors and running tokenization on whole graphs larger than 1M nodes might be
computationally expensive. Due to the inherent locality of NodePiece, i.e., tokenization via
nearest anchors and incident relations, we recommend using graph partitioning to reduce
time and memory costs of tokenization. With graph partitioning, anchor search and
tokenization can be performed independently within each partition with a final merging of all
results into a single vocabulary.

https://pykeen.readthedocs.io/en/stable/api/pykeen.models.InductiveNodePieceGNN.html#pykeen.models.InductiveNodePieceGNN
https://arxiv.org/abs/1911.03082


We designed the partitioning tokenization strategy using METIS, a min-cut graph partitioning
algorithm with an efficient implementation available in torch-sparse. Along with METIS, we
leverage torch-sparse to offer a new, faster BFS procedure that can run on a GPU.

The main tokenizer class is pykeen.nn.node_piece.MetisAnchorTokenizer . You can place it instead
of the vanilla AnchorTokenizer . With the Metis-based tokenizer, we first partition the input
training graph into k separate partitions and then run anchor selection and anchor search
sequentially and independently for each partition.

You can use any existing anchor selection and anchor search strategy described above
although for larger graphs we recommend using a new pykeen.nn.node_piece.SparseBFSSearcher

as anchor searcher – it implements faster sparse matrix multiplication kernels and can be run
on a GPU. The only difference from the vanilla tokenizer is that now the num_anchors

argument defines how many anchors will be mined for each partition.

The new tokenizer has two special arguments:

num_partitions  - number of partitions the graph will be divided into. You can expect
METIS to produce partitions of about the same size, e.g., num_partitions=10  for a graph of
1M nodes would produce 10 partitions with about 100K nodes in each. The total number
of mined anchors will be num_partitions * num_anchors

device  - the device to run METIS on. It can be different from the device on which an
AnchorSearcher  will run. We found device="cpu"  works faster on larger graphs and does

not require limited GPU memory, although you can keep the device to be resolved
automatically or put device="cuda"  to try running it on a GPU.

It is still advisable to run large graph tokenization using pykeen.nn.node_piece.SparseBFSSearcher

on a GPU thanks to more efficient sparse CUDA kernels. If a GPU is available, it will be used
automatically by default.

Let’s use the new tokenizer for the Wikidata5M graph of 5M nodes and 20M edges.

https://en.wikipedia.org/wiki/METIS
https://github.com/rusty1s/pytorch_sparse
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.MetisAnchorTokenizer.html#pykeen.nn.node_piece.MetisAnchorTokenizer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.SparseBFSSearcher.html#pykeen.nn.node_piece.SparseBFSSearcher
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.node_piece.SparseBFSSearcher.html#pykeen.nn.node_piece.SparseBFSSearcher


from pykeen.datasets import Wikidata5M

dataset = Wikidata5M(create_inverse_triples=True)

model = NodePiece(
    triples_factory=dataset.training,
    tokenizers=["MetisAnchorTokenizer", "RelationTokenizer"],
    num_tokens=[20, 12],  # 20 anchors per node in for the Metis strategy
    embedding_dim=64,
    interaction="rotate",
    tokenizers_kwargs=[
        dict(
            num_partitions=20,  # each partition will be of about 5M / 20 = 250K nodes
            device="cpu",  # METIS on cpu tends to be faster
            selection="MixtureAnchorSelection",  # we can use any anchor selection strategy 
here
            selection_kwargs=dict(
                selections=['degree', 'random'],
                ratios=[0.5, 0.5],
                num_anchors=1000,  # overall, we will have 20 * 1000 = 20000 anchors
            ),
            searcher="SparseBFSSearcher",  # a new efficient anchor searcher
            searcher_kwargs=dict(
                max_iter=5  # each node will be tokenized with anchors in the 5-hop 
neighborhood
            )
        ),
        dict()
    ],
    aggregation="mlp"
)

# we can save the vocabulary of tokenized nodes
from pathlib import Path
model.entity_representations[0].base[0].save_assignment(Path("./anchors_assignment.pt"))

On a machine with 32 GB RAM and 32 GB GPU, processing of Wikidata5M takes about 10
minutes:

~ 3 min for partitioning into 20 clusters on a cpu;
~ 7 min overall for anchor selection and search in each partition

How many partitions do I need for my graph?

It largely depends on the hardware and memory at hand, but as a rule of thumb we would
recommend having partitions of size < 500K nodes each


