
 / Representa�ons

Representations

In PyKEEN, a pykeen.nn.representation.Representation  is used to map integer indices to
numeric representa�ons. A simple example is the pykeen.nn.representation.Embedding  class,
where the mapping is a simple lookup. However, more advanced representa�on modules are
available, too.

Message Passing

Message passing representa�on modules enrich the representa�ons of en��es by
aggrega�ng the informa�on from their graph neighborhood. Example implementa�ons from
PyKEEN include pykeen.nn.representation.RGCNRepresentation  which uses RGCN layers for
enrichment, or pykeen.nn.representation.SingleCompGCNRepresentation , which enrich via
CompGCN layers.

Another way to u�lize message passing is via the modules provided in pykeen.nn.pyg , which
allow to use the message passing layers from PyTorch Geometric to enrich base
representa�ons via message passing.

Decomposition

Since knowledge graphs may contain a large number of en��es, having independent trainable
embeddings for each of them may result in an excessive amount of trainable parameters.
Therefore, methods have been developed, which do not learn independent representa�ons,
but rather have a set of base representa�ons, and create individual representa�ons by
combining them.

Low-Rank Factorization

A simple method to reduce the number of parameters is to use a low-rank decomposi�on of
the embedding matrix, as implemented in
pykeen.nn.representation.LowRankEmbeddingRepresentation . Here, each representa�on is a linear

combina�on of shared base representa�ons. Typically, the number of bases is chosen smaller
than the dimension of each base representa�on.

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Representation.html#pykeen.nn.representation.Representation
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Embedding.html#pykeen.nn.representation.Embedding
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.SingleCompGCNRepresentation.html#pykeen.nn.representation.SingleCompGCNRepresentation
https://pykeen.readthedocs.io/en/stable/reference/nn/pyg_message_passing.html#module-pykeen.nn.pyg


NodePiece

Another example is NodePiece, which takes inspira�on from tokeniza�on we encounter in,
e.g.. NLP, and represents each en�ty as a set of tokens. The implementa�on in PyKEEN,
pykeen.nn.representation.NodePieceRepresentation , implements a simple yet effec�ve variant

thereof, which uses a set of randomly chosen incident rela�ons (including inverse rela�ons) as
tokens.

 See also

h�ps://towardsdatascience.com/nodepiece-tokenizing-knowledge-graphs-6dd2b91847aa

Text-based

Text-based representa�ons use the en��es’ (or rela�ons’) labels to derive representa�ons. To
this end, pykeen.nn.representation.TextRepresentation  uses a (pre-trained) transformer model
from the transformers  library to encode the labels. Since the transformer models have been
trained on huge corpora of text, their text encodings o�en contain seman�c informa�on, i.e.,
labels with similar seman�c meaning get similar representa�ons. While we can also benefit
from these strong features by just ini�alizing an pykeen.nn.representation.Embedding  with the
vectors, e.g., using pykeen.nn.init.LabelBasedInitializer , the
pykeen.nn.representation.TextRepresentation  include the transformer model as part of the KGE

model, and thus allow fine-tuning the language model for the KGE task. This is beneficial, e.g.,
since it allows a simple form of obtaining an induc�ve model, which can make predic�ons for
en��es not seen during training.

https://towardsdatascience.com/nodepiece-tokenizing-knowledge-graphs-6dd2b91847aa
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.TextRepresentation.html#pykeen.nn.representation.TextRepresentation
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Embedding.html#pykeen.nn.representation.Embedding
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.init.LabelBasedInitializer.html#pykeen.nn.init.LabelBasedInitializer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.TextRepresentation.html#pykeen.nn.representation.TextRepresentation


from pykeen.pipeline import pipeline
from pykeen.datasets import get_dataset
from pykeen.nn import TextRepresentation
from pykeen.models import ERModel

dataset = get_dataset(dataset="nations")
entity_representations = TextRepresentation.from_dataset(
    triples_factory=dataset,
    encoder="transformer",
)
result = pipeline(
    dataset=dataset,
    model=ERModel,
    model_kwargs=dict(
        interaction="ermlpe",
        interaction_kwargs=dict(
            embedding_dim=entity_representations.shape[0],
        ),
        entity_representations=entity_representations,
        relation_representations_kwargs=dict(
            shape=entity_representations.shape,
        ),
    ),
    training_kwargs=dict(
        num_epochs=1,
    ),
)
model = result.model

We can use the label-encoder part to generate representa�ons for unknown en��es with
labels. For instance, “uk” is an en�ty in na�ons, but we can also put in “united kingdom”, and
get a roughly equivalent vector representa�ons

entity_representation = model.entity_representations[0]
label_encoder = entity_representation.encoder
uk, united_kingdom = label_encoder(labels=["uk", "united kingdom"])

Thus, if we would put the resul�ng representa�ons into the interac�on func�on, we would
get similar scores



# true triple from train: ['brazil', 'exports3', 'uk']
relation_representation = model.relation_representations[0]
h_repr = entity_representation.get_in_more_canonical_shape(
    dim="h",
    indices=torch.as_tensor(dataset.entity_to_id["brazil"]).view(1),
)
r_repr = relation_representation.get_in_more_canonical_shape(
    dim="r",
    indices=torch.as_tensor(dataset.relation_to_id["exports3"]).view(1),
)
scores = model.interaction(
    h=h_repr,
    r=r_repr,
    t=torch.stack([uk, united_kingdom]),
)
print(scores)

As a downside, this will usually substan�ally increase the computa�onal cost of compu�ng
triple scores.

Biomedical Entities

If your dataset is labeled with compact uniform resource iden�fiers (e.g., CURIEs) for
biomedical en��es like chemicals, proteins, diseases, and pathways, then the
pykeen.nn.representation.BiomedicalCURIERepresentation  representa�on can make use of pyobo

to look up names (via CURIE) via the pyobo.get_name()  func�on, then encode them using the
text encoder.

All biomedical knowledge graphs in PyKEEN (at the �me of adding this representa�on),
unfortunately do not use CURIEs for referencing biomedical en��es. In the future, we hope
this will change.

To learn more about CURIEs, please take a look at the Bioregistry and this blog post on
CURIEs.

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.BiomedicalCURIERepresentation.html#pykeen.nn.representation.BiomedicalCURIERepresentation
https://pyobo.readthedocs.io/en/stable/index.html#module-pyobo
https://pyobo.readthedocs.io/en/stable/api/pyobo.get_name.html#pyobo.get_name
https://bioregistry.io/
https://cthoyt.com/2021/09/14/curies.html
https://cthoyt.com/2021/09/14/curies.html

