
 / Representations

Representations

In PyKEEN, a pykeen.nn.representation.Representation  is used to map integer indices to
numeric representations. A simple example is the pykeen.nn.representation.Embedding  class,
where the mapping is a simple lookup. However, more advanced representation modules are
available, too.

Message Passing

Message passing representation modules enrich the representations of entities by
aggregating the information from their graph neighborhood. Example implementations from
PyKEEN include pykeen.nn.representation.RGCNRepresentation  which uses RGCN layers for
enrichment, or pykeen.nn.representation.SingleCompGCNRepresentation , which enrich via
CompGCN layers.

Another way to utilize message passing is via the modules provided in pykeen.nn.pyg , which
allow to use the message passing layers from PyTorch Geometric to enrich base
representations via message passing.

Decomposition

Since knowledge graphs may contain a large number of entities, having independent trainable
embeddings for each of them may result in an excessive amount of trainable parameters.
Therefore, methods have been developed, which do not learn independent representations,
but rather have a set of base representations, and create individual representations by
combining them.

Low-Rank Factorization

A simple method to reduce the number of parameters is to use a low-rank decomposition of
the embedding matrix, as implemented in
pykeen.nn.representation.LowRankEmbeddingRepresentation . Here, each representation is a linear

combination of shared base representations. Typically, the number of bases is chosen smaller
than the dimension of each base representation.

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Representation.html#pykeen.nn.representation.Representation
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Embedding.html#pykeen.nn.representation.Embedding
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.SingleCompGCNRepresentation.html#pykeen.nn.representation.SingleCompGCNRepresentation
https://pykeen.readthedocs.io/en/stable/reference/nn/pyg_message_passing.html#module-pykeen.nn.pyg


NodePiece

Another example is NodePiece, which takes inspiration from tokenization we encounter in,
e.g.. NLP, and represents each entity as a set of tokens. The implementation in PyKEEN,
pykeen.nn.representation.NodePieceRepresentation , implements a simple yet effective variant

thereof, which uses a set of randomly chosen incident relations (including inverse relations) as
tokens.

 See also

https://towardsdatascience.com/nodepiece-tokenizing-knowledge-graphs-6dd2b91847aa

Text-based

Text-based representations use the entities’ (or relations’) labels to derive representations. To
this end, pykeen.nn.representation.TextRepresentation  uses a (pre-trained) transformer model
from the transformers  library to encode the labels. Since the transformer models have been
trained on huge corpora of text, their text encodings often contain semantic information, i.e.,
labels with similar semantic meaning get similar representations. While we can also benefit
from these strong features by just initializing an pykeen.nn.representation.Embedding  with the
vectors, e.g., using pykeen.nn.init.LabelBasedInitializer , the
pykeen.nn.representation.TextRepresentation  include the transformer model as part of the KGE

model, and thus allow fine-tuning the language model for the KGE task. This is beneficial, e.g.,
since it allows a simple form of obtaining an inductive model, which can make predictions for
entities not seen during training.

https://towardsdatascience.com/nodepiece-tokenizing-knowledge-graphs-6dd2b91847aa
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.TextRepresentation.html#pykeen.nn.representation.TextRepresentation
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Embedding.html#pykeen.nn.representation.Embedding
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.init.LabelBasedInitializer.html#pykeen.nn.init.LabelBasedInitializer
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.TextRepresentation.html#pykeen.nn.representation.TextRepresentation


from pykeen.pipeline import pipeline
from pykeen.datasets import get_dataset
from pykeen.nn import TextRepresentation
from pykeen.models import ERModel

dataset = get_dataset(dataset="nations")
entity_representations = TextRepresentation.from_dataset(
    triples_factory=dataset,
    encoder="transformer",
)
result = pipeline(
    dataset=dataset,
    model=ERModel,
    model_kwargs=dict(
        interaction="ermlpe",
        interaction_kwargs=dict(
            embedding_dim=entity_representations.shape[0],
        ),
        entity_representations=entity_representations,
        relation_representations_kwargs=dict(
            shape=entity_representations.shape,
        ),
    ),
    training_kwargs=dict(
        num_epochs=1,
    ),
)
model = result.model

We can use the label-encoder part to generate representations for unknown entities with
labels. For instance, “uk” is an entity in nations, but we can also put in “united kingdom”, and
get a roughly equivalent vector representations

entity_representation = model.entity_representations[0]
label_encoder = entity_representation.encoder
uk, united_kingdom = label_encoder(labels=["uk", "united kingdom"])

Thus, if we would put the resulting representations into the interaction function, we would
get similar scores



# true triple from train: ['brazil', 'exports3', 'uk']
relation_representation = model.relation_representations[0]
h_repr = entity_representation.get_in_more_canonical_shape(
    dim="h",
    indices=torch.as_tensor(dataset.entity_to_id["brazil"]).view(1),
)
r_repr = relation_representation.get_in_more_canonical_shape(
    dim="r",
    indices=torch.as_tensor(dataset.relation_to_id["exports3"]).view(1),
)
scores = model.interaction(
    h=h_repr,
    r=r_repr,
    t=torch.stack([uk, united_kingdom]),
)
print(scores)

As a downside, this will usually substantially increase the computational cost of computing
triple scores.

Biomedical Entities

If your dataset is labeled with compact uniform resource identifiers (e.g., CURIEs) for
biomedical entities like chemicals, proteins, diseases, and pathways, then the
pykeen.nn.representation.BiomedicalCURIERepresentation  representation can make use of pyobo

to look up names (via CURIE) via the pyobo.get_name()  function, then encode them using the
text encoder.

All biomedical knowledge graphs in PyKEEN (at the time of adding this representation),
unfortunately do not use CURIEs for referencing biomedical entities. In the future, we hope
this will change.

To learn more about CURIEs, please take a look at the Bioregistry and this blog post on
CURIEs.

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.BiomedicalCURIERepresentation.html#pykeen.nn.representation.BiomedicalCURIERepresentation
https://pyobo.readthedocs.io/en/stable/index.html#module-pyobo
https://pyobo.readthedocs.io/en/stable/api/pyobo.get_name.html#pyobo.get_name
https://bioregistry.io/
https://cthoyt.com/2021/09/14/curies.html
https://cthoyt.com/2021/09/14/curies.html

