
 / Performance Tricks

Performance Tricks

PyKEEN uses a combination of techniques to promote efficient calculations during
training/evaluation and tries to maximize the utilization of the available hardware (currently
focused on single GPU usage).

Entity and Relation IDs

Entities and relations in triples are usually stored as strings. Because KGEMs aim at learning
vector representations for these entities and relations such that the chosen interaction
function learns a useful scoring on top of them, we need a mapping from the string
representations to vectors. Moreover, for computational efficiency, we would like to store all
entity/relation embeddings in matrices. Thus, the mapping process comprises two parts:
Mapping strings to IDs, and using the IDs to access the embeddings (=row indices).

In PyKEEN, the mapping process takes place in pykeen.triples.TriplesFactory . The triples
factory maintains the sets of unique entity and relation labels and ensures that they are
mapped to unique integer IDs on for entities and

. The mappings are respectively accessible via the attributes
:data: pykeen.triples.TriplesFactory.entity_label_to_id and
:data: pykeen.triples.TriplesFactory.relation_label_to_id .

To improve the performance, the mapping process takes place only once, and the ID-based
triples are stored in a tensor :data: pykeen.triples.TriplesFactory.mapped_triples .

Tuple Broadcasting

Interaction functions are usually only given for the standard case of scoring a single triple
. This function is in PyKEEN implemented in the pykeen.models.base.Model.score_hrt()

method of each model, e.g. pykeen.models.DistMult.score_hrt() for pykeen.models.DistMult .
When training under the local closed world assumption (LCWA), evaluating a model, and
performing the link prediction task, the goal is to score all entities/relations for a given tuple,
i.e. , or . In these cases a single tuple is used many times for different
entities/relations.

For example, we want to rank all entities for a single tuple with pykeen.models.DistMult

for the pykeen.datasets.FB15k237 . This dataset contains 14,505 entities, which means that
there are 14,505 combinations, whereas and are constant. Looking at the
interaction function of pykeen.models.DistMult , we can observe that the part causes half

[0, num_unique_entities)

[0, num_unique_relations)

(h, r, t)

(h, r) (r, t) (h, t)

(h, r)

(h, r, t) h r

h ⊙ r

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/reference/triples.html#pykeen.triples.TriplesFactory
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.DistMult.html#pykeen.models.DistMult
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.DistMult.html#pykeen.models.DistMult
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.FB15k237.html#pykeen.datasets.FB15k237
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.DistMult.html#pykeen.models.DistMult

of the mathematical operations to calculate . Therefore, calculating the part
only once and reusing it spares us half of the mathematical operations for the other 14,504
remaining entities, making the calculations roughly twice as fast in total. The speed-up might
be significantly higher in cases where the broadcasted part has a high relative complexity
compared to the overall interaction function, e.g. pykeen.models.ConvE .

To make this technique possible, PyKEEN models have to provide an explicit broadcasting
function via following methods in the model class:

pykeen.models.base.Model.score_h() - Scoring all possible head entities for a given
tuple
pykeen.models.base.Model.score_r() - Scoring all possible relations for a given

tuple
pykeen.models.base.Model.score_t() - Scoring all possible tail entities for a given

tuple

The PyKEEN architecture natively supports these methods and makes use of this technique
wherever possible without any additional modifications. Providing these methods is
completely optional and not required when implementing new models.

Filtering with Index-based Masking

In this example, it is given a knowledge graph and disjoint unions of in
training triples , testing triples , and validation triples . The same operations
are performed on and , but only will be given as example in this section.

Two calculations are performed for each test triple during standard
evaluation of a knowledge graph embedding model with interaction function

 for the link prediction task:

1. is combined with all possible tail entities to make triples

2. is combined with all possible head entities to make triples

Finally, the ranking of is calculated against all and
triples with respect to the interaction function .

In the filtered setting, is not allowed to contain tail entities and is
not allowed to contain head entities leading to triples found in the train
dataset. Therefore, their definitions could be amended like:

h ⊙ r ⊙ t h ⊙ r

(r, t)

(h, t)

(h, r)

K ⊆ E × R × E K

Ktrain Ktest Kval

Ktest Kval Ktest

(h, r, t) ∈ Ktest

f : E × R × E → R

(h, r) t′ ∈ E

Th,r = {(h, r, t′) ∣ t′ ∈ E}

(r, t) h′ ∈ E

Hr,t = {(h′, r, t) ∣ h′ ∈ E}

(h, r, t) (h, r, t′) ∈ Th,r (h′, r, t) ∈ Hr,t

f

Th,r (h, r, t′) ∈ Ktrain Hr,t

(h′, r, t) ∈ Ktrain

T filtered
h,r = {(h, r, t′) ∣ t′ ∈ E} ∖ Ktrain

H filtered
r,t = {(h′, r, t) ∣ h′ ∈ E} ∖ Ktrain

https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ConvE.html#pykeen.models.ConvE

While this easily defined theoretically, it poses several practical challenges. For example, it
leads to the computational challenge that all new possible triples and

 must be enumerated and then checked for existence in . Considering
a dataset like pykeen.datasets.FB15k237 that has almost 15,000 entities, each test triple

 leads to possible new triples, which have to be checked
against the train dataset and then removed.

To obtain very fast filtering, PyKEEN combines the technique presented above in Entity and
Relation IDs and Tuple Broadcasting together with the following mechanism, which in our
case has led to a 600,000 fold increase in speed for the filtered evaluation compared to the
mechanisms used in previous versions.

As a starting point, PyKEEN will always compute scores for all triples in and , even in
the filtered setting. Because the number of positive triples on average is very low, few results
have to be removed. Additionally, due to the technique presented in Tuple Broadcasting,
scoring extra entities has a marginally low cost. Therefore, we start with the score vectors
from pykeen.models.base.Model.score_t() for all triples and from
pykeen.models.base.Model.score_h() for all triples .

Following, the sparse filters and are created, which state which of the
entities would lead to triples found in the train dataset. To achieve this we will rely on the
technique presented in Entity and Relation IDs, i.e. all entity/relation IDs correspond to their
exact position in the respective embedding tensor. As an example we take the tuple
from the test triple and are interested in all tail entities that should be
removed from in order to obtain . This is achieved by performing the following

steps:

1. Take and compare it to the relations of all triples in the train dataset, leading to a
boolean vector of the size of number of triples contained in the train dataset, being true
where any triple had the relation

2. Take and compare it to the head entities of all triples in the train dataset, leading to a
boolean vector of the size of number of triples contained in the train dataset, being true
where any triple had the head entity

3. Combine both boolean vectors, leading to a boolean vector of the size of number of
triples contained in the train dataset, being true where any triple had both the head entity

 and the relation
4. Convert the boolean vector to a non-zero index vector, stating at which indices the train

dataset contains triples that contain both the head entity h and the relation , having the
size of the number of non-zero elements

5. The index vector is now applied on the tail entity column of the train dataset, returning all
tail entity IDs that combined with and lead to triples contained in the train dataset

6. Finally, the tail entity ID index vector is applied on the initially mentioned vector
returned by pykeen.models.base.Model.score_t() for all possible triples and all
affected scores are set to float('nan') following the IEEE-754 specification, which makes

(h, r, t′) ∈ Th,r

(h′, r, t) ∈ Hr,t Ktrain

(h, r, t) ∈ Ktest 2 ∗ |E| = 30, 000

Hr,t Th,r

(h, r, t′) ∈ Hr,t

(h′, r, t) ∈ Th,r

ft ∈ B|E| fh ∈ B|E|

(h, r)

(h, r, t) ∈ Ktest t′

Th,r T filtered
h,r

r

r

h

h

h r

r

t′ h r

t′

(h, r, t′)

https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.FB15k237.html#pykeen.datasets.FB15k237

these scores non-comparable, effectively leading to the score vector for all possible novel
triples .

 is obtained from in a similar fashion.

Sub-batching & Slicing

With growing model and dataset sizes the KGEM at hand is likely to exceed the memory
provided by GPUs. Especially during training it might be desired to train using a certain batch
size. When this batch size is too big for the hardware at hand, PyKEEN allows to set a sub-
batch size in the range of . When the sub-batch size is set, PyKEEN
automatically accumulates the gradients after each sub-batch and clears the computational
graph during training. This allows to train KGEMs on GPU that otherwise would be too big for
the hardware at hand, while the obtained results are identical to training without sub-
batching.

 Note

In order to guarantee equivalent results, not all models support sub-batching, since certain
components, e.g. batch normalization, require the entire batch to be calculated in one
pass to avoid altering statistics.

 Note

Sub-batching is sometimes also called Gradient Accumulation, e.g., by huggingface’s
transformer library, since we accumulate the gradients over multiple sub-batches before
updating the parameters.

For some large configurations, even after applying the sub-batching trick, out-of-memory
errors may still occur. In this case, PyKEEN implements another technique, called slicing. Note
that we often compute more than one score for each batch element: in sLCWA, we have

 scores, and in LCWA, we have scores for each
batch element. In slicing, we do not compute all of these scores at once, but rather in smaller
“batches”. For old-style models, i.e., those subclassing from
pykeen.models.base._OldAbstractModel , this has to be implemented individually for each of them.

New-style models, i.e., those deriving from pykeen.models.nbase.ERModel have a generic
implementation enabling slicing for all interactions.

 Note

Slicing computes the scores in smaller batches, but still needs to compute the gradient
over all scores, since some loss functions require access to them.

(h, r, t′) ∈ T filtered
h,r

H filtered
r,t Hr,t

[1, batch_size]

1 + num_negative_samples num_entities

https://huggingface.co/docs/transformers/master/en/main_classes/deepspeed#gradient-accumulation
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel

Automated Memory Optimization

Allowing high computational throughput while ensuring that the available hardware memory
is not exceeded during training and evaluation requires the knowledge of the maximum
possible training and evaluation batch size for the current model configuration. However,
determining the training and evaluation batch sizes is a tedious process, and not feasible
when a large set of heterogeneous experiments are run. Therefore, PyKEEN has an automatic
memory optimization step that computes the maximum possible training and evaluation
batch sizes for the current model configuration and available hardware before the actual
calculation starts. If the user-provided batch size is too large for the used hardware, the
automatic memory optimization determines the maximum sub-batch size for training and
accumulates the gradients with the above described process Sub-batching & Slicing. The
batch sizes are determined using binary search taking into consideration the CUDA
architecture which ensures that the chosen batch size is the most CUDA efficient one.

Evaluation Fallback

Usually the evaluation is performed on the GPU for faster speeds. In addition, users might
choose a batch size upfront in their evaluation configuration to fully utilize the GPU to
achieve the fastest evaluation speeds possible. However, during larger setups testing
different model configurations and dataset partitions such as e.g. HPO the hardware
requirements might change drastically, which might cause that the evaluation no longer can
be run with the pre-set batch size or not on the GPU at all for larger datasets and memory
intense models. Since PyKEEN will abide by the user configurations, the evaluation will crash
in these cases even though the training finished successfully and thus loose the progress
achieved and/or leave trials unfinished. Given that the batch size and the device have no
impact on the evaluation results, PyKEEN offers a way to overcome this problem through the
evaluation fallback option of the pipeline. This will cause the evaluation to fall back to using a
smaller batch size in cases where the evaluation failed using the GPU with a set batch size
and in the last instance to evaluate on the CPU, if even the smallest possible batch size is too
big for the GPU. Note: This can lead to significantly longer evaluation times in cases where
the evaluation falls back to using the CPU.

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9926-tensor-core-performance-the-ultimate-guide.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9926-tensor-core-performance-the-ultimate-guide.pdf

