
 / Performance Tricks

Performance Tricks

PyKEEN uses a combina�on of techniques to promote efficient calcula�ons during
training/evalua�on and tries to maximize the u�liza�on of the available hardware (currently
focused on single GPU usage).

Entity and Relation IDs

En��es and rela�ons in triples are usually stored as strings. Because KGEMs aim at learning
vector representa�ons for these en��es and rela�ons such that the chosen interac�on
func�on learns a useful scoring on top of them, we need a mapping from the string
representa�ons to vectors. Moreover, for computa�onal efficiency, we would like to store all
en�ty/rela�on embeddings in matrices. Thus, the mapping process comprises two parts:
Mapping strings to IDs, and using the IDs to access the embeddings (=row indices).

In PyKEEN, the mapping process takes place in pykeen.triples.TriplesFactory . The triples
factory maintains the sets of unique en�ty and rela�on labels and ensures that they are
mapped to unique integer IDs on for en��es and

. The mappings are respec�vely accessible via the a�ributes
:data: pykeen.triples.TriplesFactory.entity_label_to_id and
:data: pykeen.triples.TriplesFactory.relation_label_to_id .

To improve the performance, the mapping process takes place only once, and the ID-based
triples are stored in a tensor :data: pykeen.triples.TriplesFactory.mapped_triples .

Tuple Broadcasting

Interac�on func�ons are usually only given for the standard case of scoring a single triple
. This func�on is in PyKEEN implemented in the pykeen.models.base.Model.score_hrt()

method of each model, e.g. pykeen.models.DistMult.score_hrt() for pykeen.models.DistMult .
When training under the local closed world assump�on (LCWA), evalua�ng a model, and
performing the link predic�on task, the goal is to score all en��es/rela�ons for a given tuple,
i.e. , or . In these cases a single tuple is used many �mes for different
en��es/rela�ons.

For example, we want to rank all en��es for a single tuple with pykeen.models.DistMult

for the pykeen.datasets.FB15k237 . This dataset contains 14,505 en��es, which means that
there are 14,505 combina�ons, whereas and are constant. Looking at the
interac�on func�on of pykeen.models.DistMult , we can observe that the part causes half

[0, num_unique_entities)

[0, num_unique_relations)

(h, r, t)

(h, r) (r, t) (h, t)

(h, r)

(h, r, t) h r

h ⊙ r

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/reference/triples.html#pykeen.triples.TriplesFactory
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.DistMult.html#pykeen.models.DistMult
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.DistMult.html#pykeen.models.DistMult
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.FB15k237.html#pykeen.datasets.FB15k237
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.DistMult.html#pykeen.models.DistMult

of the mathema�cal opera�ons to calculate . Therefore, calcula�ng the part
only once and reusing it spares us half of the mathema�cal opera�ons for the other 14,504
remaining en��es, making the calcula�ons roughly twice as fast in total. The speed-up might
be significantly higher in cases where the broadcasted part has a high rela�ve complexity
compared to the overall interac�on func�on, e.g. pykeen.models.ConvE .

To make this technique possible, PyKEEN models have to provide an explicit broadcas�ng
func�on via following methods in the model class:

pykeen.models.base.Model.score_h() - Scoring all possible head en��es for a given
tuple
pykeen.models.base.Model.score_r() - Scoring all possible rela�ons for a given

tuple
pykeen.models.base.Model.score_t() - Scoring all possible tail en��es for a given

tuple

The PyKEEN architecture na�vely supports these methods and makes use of this technique
wherever possible without any addi�onal modifica�ons. Providing these methods is
completely op�onal and not required when implemen�ng new models.

Filtering with Index-based Masking

In this example, it is given a knowledge graph and disjoint unions of in
training triples , tes�ng triples , and valida�on triples . The same opera�ons
are performed on and , but only will be given as example in this sec�on.

Two calcula�ons are performed for each test triple during standard
evalua�on of a knowledge graph embedding model with interac�on func�on

 for the link predic�on task:

1. is combined with all possible tail en��es to make triples

2. is combined with all possible head en��es to make triples

Finally, the ranking of is calculated against all and
triples with respect to the interac�on func�on .

In the filtered se�ng, is not allowed to contain tail en��es and is
not allowed to contain head en��es leading to triples found in the train
dataset. Therefore, their defini�ons could be amended like:

h ⊙ r ⊙ t h ⊙ r

(r, t)

(h, t)

(h, r)

K ⊆ E × R × E K

Ktrain Ktest Kval

Ktest Kval Ktest

(h, r, t) ∈ Ktest

f : E × R × E → R

(h, r) t′ ∈ E

Th,r = {(h, r, t′) ∣ t′ ∈ E}

(r, t) h′ ∈ E

Hr,t = {(h′, r, t) ∣ h′ ∈ E}

(h, r, t) (h, r, t′) ∈ Th,r (h′, r, t) ∈ Hr,t

f

Th,r (h, r, t′) ∈ Ktrain Hr,t

(h′, r, t) ∈ Ktrain

T filtered
h,r = {(h, r, t′) ∣ t′ ∈ E} ∖ Ktrain

H filtered
r,t = {(h′, r, t) ∣ h′ ∈ E} ∖ Ktrain

https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ConvE.html#pykeen.models.ConvE

While this easily defined theore�cally, it poses several prac�cal challenges. For example, it
leads to the computa�onal challenge that all new possible triples and

 must be enumerated and then checked for existence in . Considering
a dataset like pykeen.datasets.FB15k237 that has almost 15,000 en��es, each test triple

 leads to possible new triples, which have to be checked
against the train dataset and then removed.

To obtain very fast filtering, PyKEEN combines the technique presented above in En�ty and
Rela�on IDs and Tuple Broadcas�ng together with the following mechanism, which in our
case has led to a 600,000 fold increase in speed for the filtered evalua�on compared to the
mechanisms used in previous versions.

As a star�ng point, PyKEEN will always compute scores for all triples in and , even in
the filtered se�ng. Because the number of posi�ve triples on average is very low, few results
have to be removed. Addi�onally, due to the technique presented in Tuple Broadcas�ng,
scoring extra en��es has a marginally low cost. Therefore, we start with the score vectors
from pykeen.models.base.Model.score_t() for all triples and from
pykeen.models.base.Model.score_h() for all triples .

Following, the sparse filters and are created, which state which of the
en��es would lead to triples found in the train dataset. To achieve this we will rely on the
technique presented in En�ty and Rela�on IDs, i.e. all en�ty/rela�on IDs correspond to their
exact posi�on in the respec�ve embedding tensor. As an example we take the tuple
from the test triple and are interested in all tail en��es that should be
removed from in order to obtain . This is achieved by performing the following

steps:

1. Take and compare it to the rela�ons of all triples in the train dataset, leading to a
boolean vector of the size of number of triples contained in the train dataset, being true
where any triple had the rela�on

2. Take and compare it to the head en��es of all triples in the train dataset, leading to a
boolean vector of the size of number of triples contained in the train dataset, being true
where any triple had the head en�ty

3. Combine both boolean vectors, leading to a boolean vector of the size of number of
triples contained in the train dataset, being true where any triple had both the head en�ty

 and the rela�on
4. Convert the boolean vector to a non-zero index vector, sta�ng at which indices the train

dataset contains triples that contain both the head en�ty h and the rela�on , having the
size of the number of non-zero elements

5. The index vector is now applied on the tail en�ty column of the train dataset, returning all
tail en�ty IDs that combined with and lead to triples contained in the train dataset

6. Finally, the tail en�ty ID index vector is applied on the ini�ally men�oned vector
returned by pykeen.models.base.Model.score_t() for all possible triples and all
affected scores are set to float('nan') following the IEEE-754 specifica�on, which makes

(h, r, t′) ∈ Th,r

(h′, r, t) ∈ Hr,t Ktrain

(h, r, t) ∈ Ktest 2 ∗ |E| = 30, 000

Hr,t Th,r

(h, r, t′) ∈ Hr,t

(h′, r, t) ∈ Th,r

ft ∈ B|E| fh ∈ B|E|

(h, r)

(h, r, t) ∈ Ktest t′

Th,r T filtered
h,r

r

r

h

h

h r

r

t′ h r

t′

(h, r, t′)

https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.FB15k237.html#pykeen.datasets.FB15k237

these scores non-comparable, effec�vely leading to the score vector for all possible novel
triples .

 is obtained from in a similar fashion.

Sub-batching & Slicing

With growing model and dataset sizes the KGEM at hand is likely to exceed the memory
provided by GPUs. Especially during training it might be desired to train using a certain batch
size. When this batch size is too big for the hardware at hand, PyKEEN allows to set a sub-
batch size in the range of . When the sub-batch size is set, PyKEEN
automa�cally accumulates the gradients a�er each sub-batch and clears the computa�onal
graph during training. This allows to train KGEMs on GPU that otherwise would be too big for
the hardware at hand, while the obtained results are iden�cal to training without sub-
batching.

 Note

In order to guarantee equivalent results, not all models support sub-batching, since certain
components, e.g. batch normaliza�on, require the en�re batch to be calculated in one
pass to avoid altering sta�s�cs.

 Note

Sub-batching is some�mes also called Gradient Accumula�on, e.g., by huggingface’s
transformer library, since we accumulate the gradients over mul�ple sub-batches before
upda�ng the parameters.

For some large configura�ons, even a�er applying the sub-batching trick, out-of-memory
errors may s�ll occur. In this case, PyKEEN implements another technique, called slicing. Note
that we o�en compute more than one score for each batch element: in sLCWA, we have

 scores, and in LCWA, we have scores for each
batch element. In slicing, we do not compute all of these scores at once, but rather in smaller
“batches”. For old-style models, i.e., those subclassing from
pykeen.models.base._OldAbstractModel , this has to be implemented individually for each of them.

New-style models, i.e., those deriving from pykeen.models.nbase.ERModel have a generic
implementa�on enabling slicing for all interac�ons.

 Note

Slicing computes the scores in smaller batches, but s�ll needs to compute the gradient
over all scores, since some loss func�ons require access to them.

(h, r, t′) ∈ T filtered
h,r

H filtered
r,t Hr,t

[1, batch_size]

1 + num_negative_samples num_entities

https://huggingface.co/docs/transformers/master/en/main_classes/deepspeed#gradient-accumulation
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ERModel.html#pykeen.models.ERModel

Automated Memory Optimization

Allowing high computa�onal throughput while ensuring that the available hardware memory
is not exceeded during training and evalua�on requires the knowledge of the maximum
possible training and evalua�on batch size for the current model configura�on. However,
determining the training and evalua�on batch sizes is a tedious process, and not feasible
when a large set of heterogeneous experiments are run. Therefore, PyKEEN has an automa�c
memory op�miza�on step that computes the maximum possible training and evalua�on
batch sizes for the current model configura�on and available hardware before the actual
calcula�on starts. If the user-provided batch size is too large for the used hardware, the
automa�c memory op�miza�on determines the maximum sub-batch size for training and
accumulates the gradients with the above described process Sub-batching & Slicing. The
batch sizes are determined using binary search taking into considera�on the CUDA
architecture which ensures that the chosen batch size is the most CUDA efficient one.

Evaluation Fallback

Usually the evalua�on is performed on the GPU for faster speeds. In addi�on, users might
choose a batch size upfront in their evalua�on configura�on to fully u�lize the GPU to
achieve the fastest evalua�on speeds possible. However, during larger setups tes�ng
different model configura�ons and dataset par��ons such as e.g. HPO the hardware
requirements might change dras�cally, which might cause that the evalua�on no longer can
be run with the pre-set batch size or not on the GPU at all for larger datasets and memory
intense models. Since PyKEEN will abide by the user configura�ons, the evalua�on will crash
in these cases even though the training finished successfully and thus loose the progress
achieved and/or leave trials unfinished. Given that the batch size and the device have no
impact on the evalua�on results, PyKEEN offers a way to overcome this problem through the
evalua�on fallback op�on of the pipeline. This will cause the evalua�on to fall back to using a
smaller batch size in cases where the evalua�on failed using the GPU with a set batch size
and in the last instance to evaluate on the CPU, if even the smallest possible batch size is too
big for the GPU. Note: This can lead to significantly longer evalua�on �mes in cases where
the evalua�on falls back to using the CPU.

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9926-tensor-core-performance-the-ultimate-guide.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9926-tensor-core-performance-the-ultimate-guide.pdf

