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Running an Ablation Study

You want to find out which loss func�on and training approach is best-suited for your
interac�on model (model architecture)? Then performing an abla�on study is the way to go!

In general, an abla�on study is a set of experiments in which components of a machine
learning system are removed/replaced in order to measure the impact of these components
on the performance of the system. In the context of knowledge graph embedding models,
typical abla�on studies involve inves�ga�ng different loss func�ons, training approaches,
nega�ve samplers, and the explicit modeling of inverse rela�ons. For a specific model
composi�on based on these components, the best set of hyper-parameter values, e.g.,
embedding dimension, learning rate, batch size, loss func�on-specific hyper-parameters such
as the margin value in the margin ranking loss need to be determined. This is accomplished by
a process called hyper-parameter op�miza�on. Different approaches have been proposed, of
which random search and grid search are very popular.

In PyKEEN, we can define execute an abla�on study within our own program or from the
command line interface using a configura�on file ( file_name.json ).

First, we show how to run an abla�on study within your program. For this purpose, we
provide the func�on pykeen.ablation.ablation_pipeline()  that requires the datasets , models ,
losses , optimizers , training_loops , and directory  arguments to define the datasets,

models, loss func�ons, op�mizers (e.g., Adam), training approaches for our abla�on study, and
the output directory in which the experimental ar�facts should be saved. In the following, we
define an abla�on study for pykeen.models.ComplEx  over the pykeen.datasets.Nations  dataset in
order to assess the effect of different loss func�ons (in our example, the binary cross entropy
loss and the margin ranking loss) and the effect of explicitly modeling inverse rela�ons.

Now, let’s start with defining the minimal requirements, i.e., the dataset(s), interac�on
model(s), the loss func�on(s), training approach(es), and the op�mizer(s) in order to run the
abla�on study.

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/reference/ablation.html#pykeen.ablation.ablation_pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ComplEx.html#pykeen.models.ComplEx
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.Nations.html#pykeen.datasets.Nations


>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex01_minimal"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     # The following are not part of minimal configuration, but are necessary
...     # for demonstration/doctests. You should make these numbers bigger when
...     # you're using PyKEEN's ablation framework
...     epochs=1,
...     n_trials=1,
... )

We can provide arbitrary addi�onal informa�on about our study with the metadata  keyword.
Some keys, such as title  are special and used by PyKEEN and optuna .

>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex02_metadata"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     # Add metadata with:
...     metadata=dict(
...         title="Ablation Study Over Nations for ComplEx.",
...     ),
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     n_trials=1,
... )

As men�oned above, we also want to measure the effect of explicitly modeling inverse
rela�ons on the model’s performance. Therefore, we extend the abla�on study by including
the create_inverse_triples  argument:

https://optuna.readthedocs.io/en/latest/reference/optuna.html#module-optuna


>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex03_inverse"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     # Add inverse triples with
...     create_inverse_triples=[True, False],
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     n_trials=1,
... )

 Note

Unlike models , datasets , losses , training_loops , and optimizers , create_inverse_triples

has a default value, which is False .

If there is only one value for either the models , datasets , losses , training_loops ,
optimizers , or create_inverse_triples  argument, it can be given as a single value instead of

the list.

>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex04_terse_kwargs"
>>> ablation_pipeline(
...     directory=directory,
...     models="ComplEx",
...     datasets="Nations",
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops="LCWA",
...     optimizers="Adam",
...     create_inverse_triples=[True, False],
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     n_trials=1,
... )

 Note

It doesn’t make sense to run an abla�on study if all of these values are fixed.

For each of the components of a knowledge graph embedding model (KGEM) that requires
hyper-parameters, i.e., interac�on model, loss func�on, and the training approach, we provide
default hyper-parameter op�miza�on (HPO) ranges within PyKEEN. Therefore, the defini�on
of our abla�on study would be complete at this stage. Because hyper-parameter ranges are



dataset-dependent, users can/should define their own HPO ranges. We will show later how
to accomplish this. To finalize the abla�on study, we recommend defining early stopping for
your abla�on study, which is done as follows:

>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex05_stopper"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     stopper = "early",
...     stopper_kwargs = {
...         "frequency": 5,
...         "patience": 20,
...         "relative_delta": 0.002,
...         "metric": "hits@10",
...     },
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     n_trials=1,
... )

We define the early stopper using the argument stopper , and through stopper_kwargs , we
provide instan�a�on arguments to the early stopper. We define that the early stopper should
evaluate every 5 epochs with a pa�ence of 20 epochs on the valida�on set. In order to
con�nue training, we expect the model to obtain an improvement > 0.2% in Hits@10.

A�er defining the abla�on study, we need to define the HPO se�ngs for each experiment
within our abla�on study. Remember that for each abla�on-experiment we perform an HPO
in order to determine the best hyper-parameters for the currently inves�gated model. In
PyKEEN, we use Optuna as HPO framework. Again, we provide default values for the Optuna
related arguments. However, they define a very limited HPO search which is meant for
tes�ng purposes. Therefore, we define the arguments required by Optuna by ourselves:

mailto:Hits%4010
mailto:Hits%4010
mailto:Hits%4010
https://github.com/optuna/optunahttps://github.com/optuna/optuna


>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex06_optuna_kwargs"
>>> ablation_pipeline(
...     directory=directory,
...     models="ComplEx",
...     datasets="Nations",
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops="LCWA",
...     optimizers="Adam",
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     # Optuna-related arguments
...     n_trials=2,
...     timeout=300,
...     metric="hits@10",
...     direction="maximize",
...     sampler="random",
...     pruner= "nop",
... )

We set the number of HPO itera�ons for each experiment to 2 using the argument n_trials ,
set a timeout  of 300 seconds (the HPO will be terminated a�er n_trials  or timeout  seconds
depending on what occurs first), the metric  to op�mize, define whether the metric should be
maximized or minimized using the argument direction , define random search as HPO
algorithm using the argument sampler , and finally define that we do not use a pruner for
pruning unpromising trials (note that we use early stopping instead).

To measure the variance in performance, we can addi�onally define how o�en we want to re-
train and re-evaluate the best model of each abla�on-experiment using the argument
best_replicates :



>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex5"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     create_inverse_triples=[True, False],
...     stopper="early",
...     stopper_kwargs={
...         "frequency": 5,
...         "patience": 20,
...         "relative_delta": 0.002,
...         "metric": "hits@10",
...     },
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     # Optuna-related arguments
...     n_trials=2,
...     timeout=300,
...     metric="hits@10",
...     direction="maximize",
...     sampler="random",
...     pruner= "nop",
...     best_replicates=5,
... )

Eager to check out the results? Then navigate to your output directory
path/to/output/directory . Within your output directory, you will find subdirectories, e.g.,
0000_nations_complex  which contains all experimental ar�facts of one specific abla�on

experiment of the defined abla�on study. The most relevant subdirectory is best_pipeline

which comprises the ar�facts of the best performing experiment, including its defini�on in
pipeline_config.json , the obtained results, and the trained model(s) in the sub-directory
replicates . The number of replicates in replicates  corresponds to the number provided

through the argument -r . Addi�onally, you are provided with further informa�on about the
abla�on study in the root directory: study.json  describes the abla�on experiment,
hpo_config.json  describes the HPO se�ng of the abla�on experiment, trials.tsv  provides

an overview of each HPO experiment.

Define Your Own HPO Ranges

As men�oned above, we provide default hyper-parameters/hyper-parameter ranges for each
hyper-parameter. However, these default values/ranges do not ensure good performance.
Therefore, it is �me that you define your own ranges, and we show you how to do it! For the
defini�on of hyper-parameter values/ranges, two dic�onaries are essen�al, kwargs  that is
used to assign the hyper-parameters fixed values, and kwargs_ranges  to define ranges of
values from which to sample from.



Let’s start with assigning HPO ranges to hyper-parameters belonging to the interac�on
model. This can be achieved by using the dic�onary model_to_model_kwargs_ranges :

...

# Define HPO ranges
>>> model_to_model_kwargs_ranges = {
...    "ComplEx": {
...        "embedding_dim": {
...            "type": "int",
...            "low": 4,
...            "high": 6,
...            "scale": "power_two"
...        }
...    }
... }

...

We defined an HPO range for the embedding dimension. Because the scale  is power_two ,
the lower bound ( low ) equals to 4, the upper bound high  to 6, the embedding dimension is
sampled from the set .

Next, we fix the number of training epochs to 50 using the argument
model_to_training_loop_to_training_kwargs  and define a range for the batch size using
model_to_training_loop_to_training_kwargs_ranges . We use these two dic�onaries because the

defined hyper-parameters are hyper-parameters of the training func�on (that is a func�on of
the training_loop ):

{24, 25, 26}



...

>>> model_to_model_kwargs_ranges = {
...    "ComplEx": {
...        "embedding_dim": {
...            "type": "int",
...            "low": 4,
...            "high": 6,
...            "scale": "power_two"
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs = {
...    "ComplEx": {
...        "lcwa": {
...            "num_epochs": 50
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs_ranges= {
...    "ComplEx": {
...        "lcwa": {
...            "label_smoothing": {
...                "type": "float",
...                "low": 0.001,
...               "high": 1.0,
...                "scale": "log"
...            },
...            "batch_size": {
...                "type": "int",
...                "low": 7,
...                "high": 9,
...                "scale": "power_two"
...            }
...        }
...    }
... }

...

Finally, we define a range for the learning rate which is a hyper-parameter of the op�mizer:



...

>>> model_to_model_kwargs_ranges = {
...    "ComplEx": {
...        "embedding_dim": {
...            "type": "int",
...            "low": 4,
...            "high": 6,
...            "scale": "power_two"
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs = {
...    "ComplEx": {
...        "lcwa": {
...            "num_epochs": 50
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs_ranges= {
...    "ComplEx": {
...        "lcwa": {
...            "label_smoothing": {
...                "type": "float",
...                "low": 0.001,
...               "high": 1.0,
...                "scale": "log"
...            },
...            "batch_size": {
...                "type": "int",
...                "low": 7,
...                "high": 9,
...                "scale": "power_two"
...            }
...        }
...     }
... }

>>> model_to_optimizer_to_optimizer_kwargs_ranges= {
...    "ComplEx": {
...        "adam": {
...            "lr": {
...                "type": "float",
...                "low": 0.001,
...                "high": 0.1,
...                "scale": "log"
...            }
...        }
...    }
... }

...

We decided to use Adam as an op�mizer, and defined a log  scale  for the learning rate, i.e.,
the learning rate is sampled from the interval .[0.001, 0.1)



Now that we defined our own hyper-parameter values/ranges, let’s have a look at the overall
configura�on:



>>> from pykeen.ablation import ablation_pipeline
>>> metadata = dict(title="Ablation Study Over Nations for ComplEx.")
>>> models = ["ComplEx"]
>>> datasets = ["Nations"]
>>> losses = ["BCEAfterSigmoidLoss"]
>>> training_loops = ["lcwa"]
>>> optimizers = ["adam"]
>>> create_inverse_triples= [True, False]
>>> stopper = "early"
>>> stopper_kwargs = {
...    "frequency": 5,
...    "patience": 20,
...    "relative_delta": 0.002,
...    "metric": "hits@10",
... }

# Define HPO ranges
>>> model_to_model_kwargs_ranges = {
...    "ComplEx": {
...        "embedding_dim": {
...            "type": "int",
...            "low": 4,
...            "high": 6,
...            "scale": "power_two"
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs = {
...    "ComplEx": {
...        "lcwa": {
...            "num_epochs": 50
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs_ranges= {
...    "ComplEx": {
...        "lcwa": {
...            "label_smoothing": {
...                "type": "float",
...                "low": 0.001,
...               "high": 1.0,
...                "scale": "log"
...            },
...            "batch_size": {
...                "type": "int",
...                "low": 7,
...                "high": 9,
...                "scale": "power_two"
...            }
...        }
...    }
... }

>>> model_to_optimizer_to_optimizer_kwargs_ranges= {
...    "ComplEx": {
...        "adam": {
...            "lr": {
...                "type": "float",
...                "low": 0.001,
...                "high": 0.1,



...                "scale": "log"

...            }

...        }

...    }

... }

# Run ablation experiment
>>> ablation_pipeline(
...    models=models,
...    datasets=datasets,
...    losses=losses,
...    training_loops=training_loops,
...    optimizers=optimizers,
...    model_to_model_kwargs_ranges=model_to_model_kwargs_ranges,
...    model_to_training_loop_to_training_kwargs=model_to_training_loop_to_training_kwargs,
...    
model_to_optimizer_to_optimizer_kwargs_ranges=model_to_optimizer_to_optimizer_kwargs_ranges,
...    directory="doctests/ablation/ex6",
...    best_replicates=5,
...    n_trials=2,
...    timeout=300,
...    metric="hits@10",
...    direction="maximize",
...    sampler="random",
...    pruner="nop",
... )

We are expected to provide the arguments datasets , models , losses , optimizers , and
training_loops  to pykeen.ablation.ablation_pipeline() . For all other components and hype-

parameters, PyKEEN provides default values/ranges. However, for achieving op�mal
performance, we should carefully define the hyper-parameter values/ranges ourselves, as
explained above. Note that there are many more ranges to configure such hyper-parameters
for the loss func�ons or the nega�ve samplers. Check out the examples provided in
tests/resources/hpo_complex_na�ons.json` how to define the ranges for other components.

Run an Ablation Study With Your Own Data

We showed how to run an abla�on study with a PyKEEN integrated dataset. Now you are
asking yourself, whether you can run abla�ons studies with your own data? Yes, you can! It
requires a minimal change compared to the previous configura�on:

>>> datasets = [
...    {
...        "training": "/path/to/your/train.txt",
...        "validation": "/path/to/your/validation.txt",
...        "testing": "/path/to/your/test.txt"
...    }
... ]

In the dataset field, you don’t provide a list of dataset names but dic�onaries containing the
paths to your train-valida�on-test splits.

https://pykeen.readthedocs.io/en/stable/reference/ablation.html#pykeen.ablation.ablation_pipeline


Run an Ablation Study From The Command Line
Interface

If you want to start an abla�on study from the command line interface, we provide the
func�on pykeen.experiments.cli.ablation() , which expects as an argument the path to a JSON
configura�on file. The configura�on file consists of a dic�onary with the sub-dic�onaries
ablation  and optuna  in which the abla�on study and the Optuna related configura�on are

defined. Besides, similar to the programma�c interface, the metadata  dic�onary can be
provided. The configura�on file corresponding to the abla�on study that we previously
defined within our program would look as follows:



{
    "metadata": {
        "title": "Ablation Study Over Nations for ComplEx."
    },
    "ablation": {
        "datasets": ["nations"],
        "models":   ["ComplEx"],
        "losses": ["BCEAfterSigmoidLoss", "CrossEntropyLoss"]
        "training_loops": ["lcwa"],
        "optimizers": ["adam"],
        "create_inverse_triples": [true,false],
        "stopper": "early"
        "stopper_kwargs": {
            "frequency": 5,
            "patience": 20,
            "relative_delta": 0.002,
            "metric": "hits@10"
        },
        "model_to_model_kwargs_ranges":{
            "ComplEx": {
                "embedding_dim": {
                    "type": "int",
                    "low": 4,
                    "high": 6,
                    "scale": "power_two"
                }
            }
        },
        "model_to_training_loop_to_training_kwargs": {
            "ComplEx": {
                "lcwa": {
                    "num_epochs": 50
                }
            }
        },
        "model_to_training_loop_to_training_kwargs_ranges": {
            "ComplEx": {
                "lcwa": {
                    "label_smoothing": {
                        "type": "float",
                        "low": 0.001,
                        "high": 1.0,
                        "scale": "log"
                    },
                    "batch_size": {
                        "type": "int",
                        "low": 7,
                        "high": 9,
                        "scale": "power_two"
                    }
                }
            }
        },
        "model_to_optimizer_to_optimizer_kwargs_ranges": {
            "ComplEx": {
                "adam": {
                    "lr": {
                        "type": "float",
                        "low": 0.001,
                        "high": 0.1,
                        "scale": "log"
                    }
                }



            }
        }
    "optuna": {
        "n_trials": 2,
        "timeout": 300,
        "metric": "hits@10",
        "direction": "maximize",
        "sampler": "random",
        "pruner": "nop"
        }
    }
}

The abla�on study can be started as follows:

$ pykeen experiments ablation path/to/complex_nation.json -d path/to/output/directory

To re-train and re-evaluate the best model of each abla�on-experiment n  �mes in order to
measure the variance in performance the op�on -r / --best-replicates  should be used:

$ pykeen experiments ablation path/to/complex_nation.json -d path/to/output/directory -r 5

In this tutorial, we showed how to define and start an abla�on study within your program,
how to execute it from the command line interface. Furthermore, we showed how you can
define your abla�on study using your own data.


