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Running an Ablation Study

You want to find out which loss function and training approach is best-suited for your
interaction model (model architecture)? Then performing an ablation study is the way to go!

In general, an ablation study is a set of experiments in which components of a machine
learning system are removed/replaced in order to measure the impact of these components
on the performance of the system. In the context of knowledge graph embedding models,
typical ablation studies involve investigating different loss functions, training approaches,
negative samplers, and the explicit modeling of inverse relations. For a specific model
composition based on these components, the best set of hyper-parameter values, e.g.,
embedding dimension, learning rate, batch size, loss function-specific hyper-parameters such
as the margin value in the margin ranking loss need to be determined. This is accomplished by
a process called hyper-parameter optimization. Different approaches have been proposed, of
which random search and grid search are very popular.

In PyKEEN, we can define execute an ablation study within our own program or from the
command line interface using a configuration file ( file_name.json ).

First, we show how to run an ablation study within your program. For this purpose, we
provide the function pykeen.ablation.ablation_pipeline()  that requires the datasets , models ,
losses , optimizers , training_loops , and directory  arguments to define the datasets,

models, loss functions, optimizers (e.g., Adam), training approaches for our ablation study, and
the output directory in which the experimental artifacts should be saved. In the following, we
define an ablation study for pykeen.models.ComplEx  over the pykeen.datasets.Nations  dataset in
order to assess the effect of different loss functions (in our example, the binary cross entropy
loss and the margin ranking loss) and the effect of explicitly modeling inverse relations.

Now, let’s start with defining the minimal requirements, i.e., the dataset(s), interaction
model(s), the loss function(s), training approach(es), and the optimizer(s) in order to run the
ablation study.

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/reference/ablation.html#pykeen.ablation.ablation_pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ComplEx.html#pykeen.models.ComplEx
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.Nations.html#pykeen.datasets.Nations


>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex01_minimal"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     # The following are not part of minimal configuration, but are necessary
...     # for demonstration/doctests. You should make these numbers bigger when
...     # you're using PyKEEN's ablation framework
...     epochs=1,
...     n_trials=1,
... )

We can provide arbitrary additional information about our study with the metadata  keyword.
Some keys, such as title  are special and used by PyKEEN and optuna .

>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex02_metadata"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     # Add metadata with:
...     metadata=dict(
...         title="Ablation Study Over Nations for ComplEx.",
...     ),
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     n_trials=1,
... )

As mentioned above, we also want to measure the effect of explicitly modeling inverse
relations on the model’s performance. Therefore, we extend the ablation study by including
the create_inverse_triples  argument:

https://optuna.readthedocs.io/en/latest/reference/optuna.html#module-optuna


>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex03_inverse"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     # Add inverse triples with
...     create_inverse_triples=[True, False],
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     n_trials=1,
... )

 Note

Unlike models , datasets , losses , training_loops , and optimizers , create_inverse_triples

has a default value, which is False .

If there is only one value for either the models , datasets , losses , training_loops ,
optimizers , or create_inverse_triples  argument, it can be given as a single value instead of

the list.

>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex04_terse_kwargs"
>>> ablation_pipeline(
...     directory=directory,
...     models="ComplEx",
...     datasets="Nations",
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops="LCWA",
...     optimizers="Adam",
...     create_inverse_triples=[True, False],
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     n_trials=1,
... )

 Note

It doesn’t make sense to run an ablation study if all of these values are fixed.

For each of the components of a knowledge graph embedding model (KGEM) that requires
hyper-parameters, i.e., interaction model, loss function, and the training approach, we provide
default hyper-parameter optimization (HPO) ranges within PyKEEN. Therefore, the definition
of our ablation study would be complete at this stage. Because hyper-parameter ranges are



dataset-dependent, users can/should define their own HPO ranges. We will show later how
to accomplish this. To finalize the ablation study, we recommend defining early stopping for
your ablation study, which is done as follows:

>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex05_stopper"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     stopper = "early",
...     stopper_kwargs = {
...         "frequency": 5,
...         "patience": 20,
...         "relative_delta": 0.002,
...         "metric": "hits@10",
...     },
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     n_trials=1,
... )

We define the early stopper using the argument stopper , and through stopper_kwargs , we
provide instantiation arguments to the early stopper. We define that the early stopper should
evaluate every 5 epochs with a patience of 20 epochs on the validation set. In order to
continue training, we expect the model to obtain an improvement > 0.2% in Hits@10.

After defining the ablation study, we need to define the HPO settings for each experiment
within our ablation study. Remember that for each ablation-experiment we perform an HPO
in order to determine the best hyper-parameters for the currently investigated model. In
PyKEEN, we use Optuna as HPO framework. Again, we provide default values for the Optuna
related arguments. However, they define a very limited HPO search which is meant for
testing purposes. Therefore, we define the arguments required by Optuna by ourselves:

mailto:Hits%4010
mailto:Hits%4010
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>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex06_optuna_kwargs"
>>> ablation_pipeline(
...     directory=directory,
...     models="ComplEx",
...     datasets="Nations",
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops="LCWA",
...     optimizers="Adam",
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     # Optuna-related arguments
...     n_trials=2,
...     timeout=300,
...     metric="hits@10",
...     direction="maximize",
...     sampler="random",
...     pruner= "nop",
... )

We set the number of HPO iterations for each experiment to 2 using the argument n_trials ,
set a timeout  of 300 seconds (the HPO will be terminated after n_trials  or timeout  seconds
depending on what occurs first), the metric  to optimize, define whether the metric should be
maximized or minimized using the argument direction , define random search as HPO
algorithm using the argument sampler , and finally define that we do not use a pruner for
pruning unpromising trials (note that we use early stopping instead).

To measure the variance in performance, we can additionally define how often we want to re-
train and re-evaluate the best model of each ablation-experiment using the argument
best_replicates :



>>> from pykeen.ablation import ablation_pipeline
>>> directory = "doctests/ablation/ex5"
>>> ablation_pipeline(
...     directory=directory,
...     models=["ComplEx"],
...     datasets=["Nations"],
...     losses=["BCEAfterSigmoidLoss", "MarginRankingLoss"],
...     training_loops=["LCWA"],
...     optimizers=["Adam"],
...     create_inverse_triples=[True, False],
...     stopper="early",
...     stopper_kwargs={
...         "frequency": 5,
...         "patience": 20,
...         "relative_delta": 0.002,
...         "metric": "hits@10",
...     },
...     # Fast testing configuration, make bigger in prod
...     epochs=1,
...     # Optuna-related arguments
...     n_trials=2,
...     timeout=300,
...     metric="hits@10",
...     direction="maximize",
...     sampler="random",
...     pruner= "nop",
...     best_replicates=5,
... )

Eager to check out the results? Then navigate to your output directory
path/to/output/directory . Within your output directory, you will find subdirectories, e.g.,
0000_nations_complex  which contains all experimental artifacts of one specific ablation

experiment of the defined ablation study. The most relevant subdirectory is best_pipeline

which comprises the artifacts of the best performing experiment, including its definition in
pipeline_config.json , the obtained results, and the trained model(s) in the sub-directory
replicates . The number of replicates in replicates  corresponds to the number provided

through the argument -r . Additionally, you are provided with further information about the
ablation study in the root directory: study.json  describes the ablation experiment,
hpo_config.json  describes the HPO setting of the ablation experiment, trials.tsv  provides

an overview of each HPO experiment.

Define Your Own HPO Ranges

As mentioned above, we provide default hyper-parameters/hyper-parameter ranges for each
hyper-parameter. However, these default values/ranges do not ensure good performance.
Therefore, it is time that you define your own ranges, and we show you how to do it! For the
definition of hyper-parameter values/ranges, two dictionaries are essential, kwargs  that is
used to assign the hyper-parameters fixed values, and kwargs_ranges  to define ranges of
values from which to sample from.



Let’s start with assigning HPO ranges to hyper-parameters belonging to the interaction
model. This can be achieved by using the dictionary model_to_model_kwargs_ranges :

...

# Define HPO ranges
>>> model_to_model_kwargs_ranges = {
...    "ComplEx": {
...        "embedding_dim": {
...            "type": "int",
...            "low": 4,
...            "high": 6,
...            "scale": "power_two"
...        }
...    }
... }

...

We defined an HPO range for the embedding dimension. Because the scale  is power_two ,
the lower bound ( low ) equals to 4, the upper bound high  to 6, the embedding dimension is
sampled from the set .

Next, we fix the number of training epochs to 50 using the argument
model_to_training_loop_to_training_kwargs  and define a range for the batch size using
model_to_training_loop_to_training_kwargs_ranges . We use these two dictionaries because the

defined hyper-parameters are hyper-parameters of the training function (that is a function of
the training_loop ):

{24, 25, 26}



...

>>> model_to_model_kwargs_ranges = {
...    "ComplEx": {
...        "embedding_dim": {
...            "type": "int",
...            "low": 4,
...            "high": 6,
...            "scale": "power_two"
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs = {
...    "ComplEx": {
...        "lcwa": {
...            "num_epochs": 50
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs_ranges= {
...    "ComplEx": {
...        "lcwa": {
...            "label_smoothing": {
...                "type": "float",
...                "low": 0.001,
...               "high": 1.0,
...                "scale": "log"
...            },
...            "batch_size": {
...                "type": "int",
...                "low": 7,
...                "high": 9,
...                "scale": "power_two"
...            }
...        }
...    }
... }

...

Finally, we define a range for the learning rate which is a hyper-parameter of the optimizer:



...

>>> model_to_model_kwargs_ranges = {
...    "ComplEx": {
...        "embedding_dim": {
...            "type": "int",
...            "low": 4,
...            "high": 6,
...            "scale": "power_two"
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs = {
...    "ComplEx": {
...        "lcwa": {
...            "num_epochs": 50
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs_ranges= {
...    "ComplEx": {
...        "lcwa": {
...            "label_smoothing": {
...                "type": "float",
...                "low": 0.001,
...               "high": 1.0,
...                "scale": "log"
...            },
...            "batch_size": {
...                "type": "int",
...                "low": 7,
...                "high": 9,
...                "scale": "power_two"
...            }
...        }
...     }
... }

>>> model_to_optimizer_to_optimizer_kwargs_ranges= {
...    "ComplEx": {
...        "adam": {
...            "lr": {
...                "type": "float",
...                "low": 0.001,
...                "high": 0.1,
...                "scale": "log"
...            }
...        }
...    }
... }

...

We decided to use Adam as an optimizer, and defined a log  scale  for the learning rate, i.e.,
the learning rate is sampled from the interval .[0.001, 0.1)



Now that we defined our own hyper-parameter values/ranges, let’s have a look at the overall
configuration:



>>> from pykeen.ablation import ablation_pipeline
>>> metadata = dict(title="Ablation Study Over Nations for ComplEx.")
>>> models = ["ComplEx"]
>>> datasets = ["Nations"]
>>> losses = ["BCEAfterSigmoidLoss"]
>>> training_loops = ["lcwa"]
>>> optimizers = ["adam"]
>>> create_inverse_triples= [True, False]
>>> stopper = "early"
>>> stopper_kwargs = {
...    "frequency": 5,
...    "patience": 20,
...    "relative_delta": 0.002,
...    "metric": "hits@10",
... }

# Define HPO ranges
>>> model_to_model_kwargs_ranges = {
...    "ComplEx": {
...        "embedding_dim": {
...            "type": "int",
...            "low": 4,
...            "high": 6,
...            "scale": "power_two"
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs = {
...    "ComplEx": {
...        "lcwa": {
...            "num_epochs": 50
...        }
...    }
... }

>>> model_to_training_loop_to_training_kwargs_ranges= {
...    "ComplEx": {
...        "lcwa": {
...            "label_smoothing": {
...                "type": "float",
...                "low": 0.001,
...               "high": 1.0,
...                "scale": "log"
...            },
...            "batch_size": {
...                "type": "int",
...                "low": 7,
...                "high": 9,
...                "scale": "power_two"
...            }
...        }
...    }
... }

>>> model_to_optimizer_to_optimizer_kwargs_ranges= {
...    "ComplEx": {
...        "adam": {
...            "lr": {
...                "type": "float",
...                "low": 0.001,
...                "high": 0.1,



...                "scale": "log"

...            }

...        }

...    }

... }

# Run ablation experiment
>>> ablation_pipeline(
...    models=models,
...    datasets=datasets,
...    losses=losses,
...    training_loops=training_loops,
...    optimizers=optimizers,
...    model_to_model_kwargs_ranges=model_to_model_kwargs_ranges,
...    model_to_training_loop_to_training_kwargs=model_to_training_loop_to_training_kwargs,
...    
model_to_optimizer_to_optimizer_kwargs_ranges=model_to_optimizer_to_optimizer_kwargs_ranges,
...    directory="doctests/ablation/ex6",
...    best_replicates=5,
...    n_trials=2,
...    timeout=300,
...    metric="hits@10",
...    direction="maximize",
...    sampler="random",
...    pruner="nop",
... )

We are expected to provide the arguments datasets , models , losses , optimizers , and
training_loops  to pykeen.ablation.ablation_pipeline() . For all other components and hype-

parameters, PyKEEN provides default values/ranges. However, for achieving optimal
performance, we should carefully define the hyper-parameter values/ranges ourselves, as
explained above. Note that there are many more ranges to configure such hyper-parameters
for the loss functions or the negative samplers. Check out the examples provided in
tests/resources/hpo_complex_nations.json` how to define the ranges for other components.

Run an Ablation Study With Your Own Data

We showed how to run an ablation study with a PyKEEN integrated dataset. Now you are
asking yourself, whether you can run ablations studies with your own data? Yes, you can! It
requires a minimal change compared to the previous configuration:

>>> datasets = [
...    {
...        "training": "/path/to/your/train.txt",
...        "validation": "/path/to/your/validation.txt",
...        "testing": "/path/to/your/test.txt"
...    }
... ]

In the dataset field, you don’t provide a list of dataset names but dictionaries containing the
paths to your train-validation-test splits.

https://pykeen.readthedocs.io/en/stable/reference/ablation.html#pykeen.ablation.ablation_pipeline


Run an Ablation Study From The Command Line
Interface

If you want to start an ablation study from the command line interface, we provide the
function pykeen.experiments.cli.ablation() , which expects as an argument the path to a JSON
configuration file. The configuration file consists of a dictionary with the sub-dictionaries
ablation  and optuna  in which the ablation study and the Optuna related configuration are

defined. Besides, similar to the programmatic interface, the metadata  dictionary can be
provided. The configuration file corresponding to the ablation study that we previously
defined within our program would look as follows:



{
    "metadata": {
        "title": "Ablation Study Over Nations for ComplEx."
    },
    "ablation": {
        "datasets": ["nations"],
        "models":   ["ComplEx"],
        "losses": ["BCEAfterSigmoidLoss", "CrossEntropyLoss"]
        "training_loops": ["lcwa"],
        "optimizers": ["adam"],
        "create_inverse_triples": [true,false],
        "stopper": "early"
        "stopper_kwargs": {
            "frequency": 5,
            "patience": 20,
            "relative_delta": 0.002,
            "metric": "hits@10"
        },
        "model_to_model_kwargs_ranges":{
            "ComplEx": {
                "embedding_dim": {
                    "type": "int",
                    "low": 4,
                    "high": 6,
                    "scale": "power_two"
                }
            }
        },
        "model_to_training_loop_to_training_kwargs": {
            "ComplEx": {
                "lcwa": {
                    "num_epochs": 50
                }
            }
        },
        "model_to_training_loop_to_training_kwargs_ranges": {
            "ComplEx": {
                "lcwa": {
                    "label_smoothing": {
                        "type": "float",
                        "low": 0.001,
                        "high": 1.0,
                        "scale": "log"
                    },
                    "batch_size": {
                        "type": "int",
                        "low": 7,
                        "high": 9,
                        "scale": "power_two"
                    }
                }
            }
        },
        "model_to_optimizer_to_optimizer_kwargs_ranges": {
            "ComplEx": {
                "adam": {
                    "lr": {
                        "type": "float",
                        "low": 0.001,
                        "high": 0.1,
                        "scale": "log"
                    }
                }



            }
        }
    "optuna": {
        "n_trials": 2,
        "timeout": 300,
        "metric": "hits@10",
        "direction": "maximize",
        "sampler": "random",
        "pruner": "nop"
        }
    }
}

The ablation study can be started as follows:

$ pykeen experiments ablation path/to/complex_nation.json -d path/to/output/directory

To re-train and re-evaluate the best model of each ablation-experiment n  times in order to
measure the variance in performance the option -r / --best-replicates  should be used:

$ pykeen experiments ablation path/to/complex_nation.json -d path/to/output/directory -r 5

In this tutorial, we showed how to define and start an ablation study within your program,
how to execute it from the command line interface. Furthermore, we showed how you can
define your ablation study using your own data.


