
 / Understanding the Evaluation

Understanding the Evaluation

This part of the tutorial is aimed to help you understand the evaluation of knowledge graph
embeddings. In particular it explains rank-based evaluation metrics reported in
pykeen.evaluation.RankBasedMetricResults .

Knowledge graph embedding are usually evaluated on the task of link prediction. To this end,
an evaluation set of triples is provided, and for each triple

 in this set, two tasks are solved:

Right-Side In the right-side prediction task, a pair of head entity and relation are given and
aim to predict the tail, i.e. . To this end, the knowledge graph embedding model is
used to score each of the possible choices for . Higher scores indicate
higher plausibility.
Left-Side Analogously, in the left-side prediction task, a pair of relation and tail entity are
provided and aim to predict the head, i.e. . Again, each possible choice for

 is scored according to the knowledge graph embedding model.

 Note

Practically, many embedding models allow fast computation of all scores for all
, than just passing the triples through the model’s score function. As an example,

consider DistMult with the score function . Here, all
entities can be scored as candidate heads for a given tail and relation by first computing
the element-wise product of tail and relation, and then performing a matrix multiplication
with the matrix of all entity embeddings. # TODO: Link to section explaining this concept.

In the rank-based evaluation protocol, the scores are used to sort the list of possible choices
by decreasing score, and determine the rank of the true choice, i.e. the index in the sorted list.
Smaller ranks indicate better performance. Based on these individual ranks, which are
obtained for each evaluation triple and each side of the prediction (left/right), there exist
several aggregation measures to quantify the performance of a model in a single number.

 Note

There are theoretical implications based on whether the indexing is 0-based or 1-based
(natural). PyKEEN uses 1-based indexing to conform with related work.

As an example, consider we trained a KGEM on the countries dataset, e.g., using

Teval ⊂ E ×R× E

(h, r, t) ∈ Teval

(h, r, ?)

(h, r, e) e ∈ E

(?, r, t) (e, r, t)

e ∈ E

(e, r, t)

e ∈ E

score(h, r, t) =∑d

i=1 hi ⋅ ri ⋅ ti

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.RankBasedMetricResults.html#pykeen.evaluation.RankBasedMetricResults
https://en.wikipedia.org/wiki/Zero-based_numbering

from pykeen.datasets import get_dataset
from pykeen.pipeline import pipeline
dataset = get_dataset(dataset="countries")
result = pipeline(dataset=dataset, model="mure")

During evaluation time, we now evaluate head and tail prediction, i.e., whether we can
correct the correct head/tail entity from the remainder of a triple. The first triple in the test
split of this dataset is [‘belgium’, ‘locatedin’, ‘europe’]. Thus, for tail prediction, we aim to answer
[‘belgium’, ‘locatedin’, ?]. We can see the results using the prediction workflow:

from pykeen.models.predict import get_tail_prediction_df

df = get_tail_prediction_df(
 model=result.model,
 head_label="belgium",
 relation_label="locatedin",
 triples_factory=result.training,
 add_novelties=False,
)

which returns a dataframe of all tail candidate entities sorted according to the predicted
score. The index in this sorted list is essentially the rank of the correct answer.

Rank-Based Metrics

Given the set of individual rank scores for each head/tail entity from evaluation triples, there
are various aggregation metrics which summarize different aspects of the set of ranks into a
single-figure number. For more details, please refer to their documentation.

Ranking Types

While the aforementioned definition of the rank as “the index in the sorted list” is intuitive, it
does not specify what happens when there are multiple choices with exactly the same score.
Therefore, in previous work, different variants have been implemented, which yield different
results in the presence of equal scores.

The optimistic rank assumes that the true choice is on the first position of all those with
equal score.
The pessimistic rank assumes that the true choice is on the last position of all those with
equal score.
The realistic rank is the mean of the optimistic and the pessimistic rank, and moreover the
expected value over all permutations respecting the sort order.
The non-deterministic rank delegates the decision to the sort algorithm. Thus, the result
depends on the internal tie breaking mechanism of the sort algorithm’s implementation.

https://pykeen.readthedocs.io/en/stable/reference/metrics.html

PyKEEN supports the first three: optimistic, pessimistic and realistic. When only using a
single score, the realistic score should be reported. The pessimistic and optimistic rank, or
more specific the deviation between both, can be used to detect whether a model predicts
exactly equal scores for many choices. There are a few causes such as:

finite-precision arithmetic in conjunction with explicitly using sigmoid activation
clamping of scores, e.g. by using a ReLU activation or similar.

Ranking Sidedness

Besides the different rank definitions, PyKEEN also report scores for the individual side
predictions.

Side Explanation

head The rank-based metric evaluated only for the head / left-side prediction.

tail The rank-based metric evaluated only for the tail / right-side prediction.

both The rank-based metric evaluated on both predictions.

By default, “both” is often used in publications. The side-specific scores can however often
give access to interesting insights, such as the difference in difficulty of predicting a head/tail
given the rest, or the model’s incapability to solve of one the tasks.

Ranking Aggregation Scope

Real graphs often are scale-free, i.e., there are a few nodes / entities which have a high
degree, often called hub, while the majority of nodes has only a few neighbors. This also
impacts the evaluation triples: since the hub nodes occur in a large number of triples, they are
also more likely to be part of evaluation triples. Thus, performing well on triples containing
hub entities contributes strongly to the overall performance.

As an example, we can inspect the pykeen.datasets.WD50KT dataset, where a single (relation,
tail)-combination, (“instance of”, “human”), is present in 699 evaluation triples.

from pykeen.datasets import get_dataset
ds = get_dataset(dataset="wd50kt")
unique_relation_tail, counts = dataset.testing.mapped_triples[:, 1:].unique(return_counts=True,
dim=0)
c = 699
c = counts.max()
r, t = unique_relation_tail[counts.argmax()]
https://www.wikidata.org/wiki/Q5 -> "human"
t = dataset.testing.entity_id_to_label[t.item()]
https://www.wikidata.org/wiki/Property:P31 -> "instance of"
r = dataset.testing.relation_id_to_label[r.item()]

https://en.wikipedia.org/wiki/Scale-free_network
https://en.wikipedia.org/wiki/Hub_(network_science)
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.WD50KT.html#pykeen.datasets.WD50KT
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q5

There are arguments that we want these entities to have a strong effect on evaluation: since
they occur often, they are seemingly important, and thus evaluation should reflect that.
However, sometimes we also do not want to have this effect, but rather measure the
performance evenly across nodes. A similar phenomenon also exists in multi-class
classification with imbalanced classes, where frequent classes can dominate performance
measures. In similar vein to the macro -score (cf. sklearn.metrics.f1_score()) known from
this area, PyKEEN implements a pykeen.evaluation.MacroRankBasedEvaluator , which ensure that
triples are weighted such that each unique ranking task, e.g., a (head, relation)-pair for tail
prediction, contributes evenly.

Technically, we solve the task by implemented variants of existing rank-based metrics which
support weighting individual ranks differently. Moreover, the evaluator computes weights
inversely proportional to the “query” part of the ranking task, i.e., e.g., (head, relation) for tail
prediction.

Filtering

The rank-based evaluation allows using the “filtered setting”, proposed by [bordes2013],
which is enabled by default. When evaluating the tail prediction for a triple , i.e.
scoring all triples , there may be additional known triples for . If the
model predicts a higher score for , the rank will increase, and hence the measured
model performance will decrease. However, giving a high score (and thus a low rank)
is desirable since it is a true triple as well. Thus, the filtered evaluation setting ignores for a
given triple the scores of all other known true triples .

Below, we present the philosophy from [bordes2013] and how it is implemented in PyKEEN:

HPO Scenario

During training/optimization with pykeen.hpo.hpo_pipeline() , the set of known positive triples
comprises the training and validation sets. After optimization is finished and the final
evaluation is done, the set of known positive triples comprises the training, validation, and
testing set. PyKEEN explicitly does not use test triples for filtering during HPO to avoid any
test leakage.

Early Stopper Scenario

When early stopping is used during training, it periodically uses the validation set for
calculating the loss and evaluation metrics. During this evaluation, the set of known positive
triples comprises the training and validation sets. When final evaluation is done with the
testing set, the set of known positive triples comprises the training, validation, and testing
set. PyKEEN explicitly does not use test triples for filtering when early stopping is being used
to avoid any test leakage.

F1

(h, r, t)

(h, r, e) (h, r, t′) t ≠ t
′

(h, r, t′)

(h, r, t′)

(h, r, t) (h, r, t′)

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.MacroRankBasedEvaluator.html#pykeen.evaluation.MacroRankBasedEvaluator
https://pykeen.readthedocs.io/en/stable/references.html#bordes2013
https://pykeen.readthedocs.io/en/stable/references.html#bordes2013
https://pykeen.readthedocs.io/en/stable/reference/hpo.html#pykeen.hpo.hpo_pipeline

Pipeline Scenario

During vanilla training with the pykeen.pipeline.pipeline() that has no optimization, no early
stopping, nor any post-hoc choices using the validation set, the set of known positive triples
comprises the training and testing sets. This scenario is very atypical, and regardless, should
be augmented with the validation triples to make more comparable to other published results
that do not consider this scenario.

Custom Training Loops

In case the validation triples should not be filtered when evaluating the test dataset, the
argument filter_validation_when_testing=False can be passed to either the
pykeen.hpo.hpo_pipeline() or pykeen.pipeline.pipeline() .

If you’re rolling your own pipeline, you should keep the following in mind: the
pykeen.evaluation.Evaluator when in the filtered setting with filtered=True will always use the

evaluation set (regardless of whether it is the testing set or validation set) for filtering. Any
other triples that should be filtered should be passed to additional_filter_triples in
pykeen.evaluation.Evaluator.evaluate() . Typically, this minimally includes the training triples.

With the [bordes2013] technique where the testing set is used for evaluation, the
additional_filter_triples should include both the training triples and validation triples as in

the following example:

https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/reference/hpo.html#pykeen.hpo.hpo_pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.Evaluator.html#pykeen.evaluation.Evaluator
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.Evaluator.html#pykeen.evaluation.Evaluator.evaluate
https://pykeen.readthedocs.io/en/stable/references.html#bordes2013

from pykeen.datasets import FB15k237
from pykeen.evaluation import RankBasedEvaluator
from pykeen.models import TransE

Get FB15k-237 dataset
dataset = FB15k237()

Define model
model = TransE(
 triples_factory=dataset.training,
)

Train your model (code is omitted for brevity)
...

Define evaluator
evaluator = RankBasedEvaluator(
 filtered=True, # Note: this is True by default; we're just being explicit
)

Evaluate your model with not only testing triples,
but also filter on validation triples
results = evaluator.evaluate(
 model=model,
 mapped_triples=dataset.testing.mapped_triples,
 additional_filter_triples=[
 dataset.training.mapped_triples,
 dataset.validation.mapped_triples,
],
)

Entity and Relation Restriction

Sometimes, we are only interested in a certain set of entities and/or relations, and
 respectively, but have additional information available in form of triples with other

entities/relations. As example, we would like to predict whether an actor stars in a movie.
Thus, we are only interested in the relation stars_in between entities which are
actors/movies. However, we may have additional information available, e.g. who directed the
movie, or the movie’s language, which may help in the prediction task. Thus, we would like to
train the model on the full dataset including all available relations and entities, but restrict the
evaluation to the task we are aiming at.

In order to restrict the evaluation, we proceed as follows:

1. We filter the evaluation triples to contain only those triples which are of interest, i.e.

2. During tail prediction/evaluation for a triple , we restrict the candidate tail entity
 to . Similarly for head prediction/evaluation, we restrict the candidate head

entity to

EI ⊂ E

RI ⊂ R

Teval

T ′
eval

= {(h, r, t) ∈ Teval ∣ h, t ∈ EI , r ∈ RI}

(h, r, t)

t
′

t
′ ∈ Eeval

h
′

h
′ ∈ Eeval

Example

The pykeen.datasets.Hetionet is a biomedical knowledge graph containing drugs, genes,
diseases, other biological entities, and their interrelations. It was described by Himmelstein et
al. in Systematic integration of biomedical knowledge prioritizes drugs for repurposing to
support drug repositioning, which translates to the link prediction task between drug and
disease nodes.

The edges in the graph are listed here, but we will focus on only the compound treat disease
(CtD) and compound palliates disease (CpD) relations during evaluation. This can be done
with the following:

from pykeen.pipeline import pipeline

evaluation_relation_whitelist = {'CtD', 'CpD'}
pipeline_result = pipeline(
 dataset='Hetionet',
 model='RotatE',
 evaluation_relation_whitelist=evaluation_relation_whitelist,
)

By restricting evaluation to the edges of interest, models more appropriate for drug
repositioning can be identified during hyper-parameter optimization instead of models that
are good at predicting all types of relations. The HPO pipeline accepts the same arguments:

from pykeen.hpo import hpo_pipeline

evaluation_relation_whitelist = {'CtD', 'CpD'}
hpo_pipeline_result = hpo_pipeline(
 n_trials=30,
 dataset='Hetionet',
 model='RotatE',
 evaluation_relation_whitelist=evaluation_relation_whitelist,
)

https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.Hetionet.html#pykeen.datasets.Hetionet
https://doi.org/10.7554/eLife.26726
https://github.com/hetio/hetionet/blob/master/describe/edges/metaedges.tsv

