
 / Understanding the Evalua�on

Understanding the Evaluation

This part of the tutorial is aimed to help you understand the evalua�on of knowledge graph
embeddings. In par�cular it explains rank-based evalua�on metrics reported in
pykeen.evaluation.RankBasedMetricResults .

Knowledge graph embedding are usually evaluated on the task of link predic�on. To this end,
an evalua�on set of triples is provided, and for each triple

 in this set, two tasks are solved:

Right-Side In the right-side predic�on task, a pair of head en�ty and rela�on are given and
aim to predict the tail, i.e. . To this end, the knowledge graph embedding model is
used to score each of the possible choices for . Higher scores indicate
higher plausibility.
Le�-Side Analogously, in the le�-side predic�on task, a pair of rela�on and tail en�ty are
provided and aim to predict the head, i.e. . Again, each possible choice for

 is scored according to the knowledge graph embedding model.

 Note

Prac�cally, many embedding models allow fast computa�on of all scores for all
, than just passing the triples through the model’s score func�on. As an example,

consider DistMult with the score func�on . Here, all
en��es can be scored as candidate heads for a given tail and rela�on by first compu�ng
the element-wise product of tail and rela�on, and then performing a matrix mul�plica�on
with the matrix of all en�ty embeddings. # TODO: Link to sec�on explaining this concept.

In the rank-based evalua�on protocol, the scores are used to sort the list of possible choices
by decreasing score, and determine the rank of the true choice, i.e. the index in the sorted list.
Smaller ranks indicate be�er performance. Based on these individual ranks, which are
obtained for each evalua�on triple and each side of the predic�on (le�/right), there exist
several aggrega�on measures to quan�fy the performance of a model in a single number.

 Note

There are theore�cal implica�ons based on whether the indexing is 0-based or 1-based
(natural). PyKEEN uses 1-based indexing to conform with related work.

As an example, consider we trained a KGEM on the countries dataset, e.g., using

Teval ⊂ E ×R× E

(h, r, t) ∈ Teval

(h, r, ?)

(h, r, e) e ∈ E

(?, r, t) (e, r, t)

e ∈ E

(e, r, t)

e ∈ E

score(h, r, t) =∑d

i=1 hi ⋅ ri ⋅ ti

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.RankBasedMetricResults.html#pykeen.evaluation.RankBasedMetricResults
https://en.wikipedia.org/wiki/Zero-based_numbering

from pykeen.datasets import get_dataset
from pykeen.pipeline import pipeline
dataset = get_dataset(dataset="countries")
result = pipeline(dataset=dataset, model="mure")

During evalua�on �me, we now evaluate head and tail predic�on, i.e., whether we can
correct the correct head/tail en�ty from the remainder of a triple. The first triple in the test
split of this dataset is [‘belgium’, ‘locatedin’, ‘europe’]. Thus, for tail predic�on, we aim to answer
[‘belgium’, ‘locatedin’, ?]. We can see the results using the predic�on workflow:

from pykeen.models.predict import get_tail_prediction_df

df = get_tail_prediction_df(
 model=result.model,
 head_label="belgium",
 relation_label="locatedin",
 triples_factory=result.training,
 add_novelties=False,
)

which returns a dataframe of all tail candidate en��es sorted according to the predicted
score. The index in this sorted list is essen�ally the rank of the correct answer.

Rank-Based Metrics

Given the set of individual rank scores for each head/tail en�ty from evalua�on triples, there
are various aggrega�on metrics which summarize different aspects of the set of ranks into a
single-figure number. For more details, please refer to their documenta�on.

Ranking Types

While the aforemen�oned defini�on of the rank as “the index in the sorted list” is intui�ve, it
does not specify what happens when there are mul�ple choices with exactly the same score.
Therefore, in previous work, different variants have been implemented, which yield different
results in the presence of equal scores.

The op�mis�c rank assumes that the true choice is on the first posi�on of all those with
equal score.
The pessimis�c rank assumes that the true choice is on the last posi�on of all those with
equal score.
The realis�c rank is the mean of the op�mis�c and the pessimis�c rank, and moreover the
expected value over all permuta�ons respec�ng the sort order.
The non-determinis�c rank delegates the decision to the sort algorithm. Thus, the result
depends on the internal �e breaking mechanism of the sort algorithm’s implementa�on.

https://pykeen.readthedocs.io/en/stable/reference/metrics.html

PyKEEN supports the first three: op�mis�c, pessimis�c and realis�c. When only using a
single score, the realis�c score should be reported. The pessimis�c and op�mis�c rank, or
more specific the devia�on between both, can be used to detect whether a model predicts
exactly equal scores for many choices. There are a few causes such as:

finite-precision arithme�c in conjunc�on with explicitly using sigmoid ac�va�on
clamping of scores, e.g. by using a ReLU ac�va�on or similar.

Ranking Sidedness

Besides the different rank defini�ons, PyKEEN also report scores for the individual side
predic�ons.

Side Explana�on

head The rank-based metric evaluated only for the head / le�-side predic�on.

tail The rank-based metric evaluated only for the tail / right-side predic�on.

both The rank-based metric evaluated on both predic�ons.

By default, “both” is o�en used in publica�ons. The side-specific scores can however o�en
give access to interes�ng insights, such as the difference in difficulty of predic�ng a head/tail
given the rest, or the model’s incapability to solve of one the tasks.

Ranking Aggregation Scope

Real graphs o�en are scale-free, i.e., there are a few nodes / en��es which have a high
degree, o�en called hub, while the majority of nodes has only a few neighbors. This also
impacts the evalua�on triples: since the hub nodes occur in a large number of triples, they are
also more likely to be part of evalua�on triples. Thus, performing well on triples containing
hub en��es contributes strongly to the overall performance.

As an example, we can inspect the pykeen.datasets.WD50KT dataset, where a single (rela�on,
tail)-combina�on, (“instance of”, “human”), is present in 699 evalua�on triples.

from pykeen.datasets import get_dataset
ds = get_dataset(dataset="wd50kt")
unique_relation_tail, counts = dataset.testing.mapped_triples[:, 1:].unique(return_counts=True,
dim=0)
c = 699
c = counts.max()
r, t = unique_relation_tail[counts.argmax()]
https://www.wikidata.org/wiki/Q5 -> "human"
t = dataset.testing.entity_id_to_label[t.item()]
https://www.wikidata.org/wiki/Property:P31 -> "instance of"
r = dataset.testing.relation_id_to_label[r.item()]

https://en.wikipedia.org/wiki/Scale-free_network
https://en.wikipedia.org/wiki/Hub_(network_science)
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.WD50KT.html#pykeen.datasets.WD50KT
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q5

There are arguments that we want these en��es to have a strong effect on evalua�on: since
they occur o�en, they are seemingly important, and thus evalua�on should reflect that.
However, some�mes we also do not want to have this effect, but rather measure the
performance evenly across nodes. A similar phenomenon also exists in mul�-class
classifica�on with imbalanced classes, where frequent classes can dominate performance
measures. In similar vein to the macro -score (cf. sklearn.metrics.f1_score()) known from
this area, PyKEEN implements a pykeen.evaluation.MacroRankBasedEvaluator , which ensure that
triples are weighted such that each unique ranking task, e.g., a (head, rela�on)-pair for tail
predic�on, contributes evenly.

Technically, we solve the task by implemented variants of exis�ng rank-based metrics which
support weigh�ng individual ranks differently. Moreover, the evaluator computes weights
inversely propor�onal to the “query” part of the ranking task, i.e., e.g., (head, rela�on) for tail
predic�on.

Filtering

The rank-based evalua�on allows using the “filtered se�ng”, proposed by [bordes2013],
which is enabled by default. When evalua�ng the tail predic�on for a triple , i.e.
scoring all triples , there may be addi�onal known triples for . If the
model predicts a higher score for , the rank will increase, and hence the measured
model performance will decrease. However, giving a high score (and thus a low rank)
is desirable since it is a true triple as well. Thus, the filtered evalua�on se�ng ignores for a
given triple the scores of all other known true triples .

Below, we present the philosophy from [bordes2013] and how it is implemented in PyKEEN:

HPO Scenario

During training/op�miza�on with pykeen.hpo.hpo_pipeline() , the set of known posi�ve triples
comprises the training and valida�on sets. A�er op�miza�on is finished and the final
evalua�on is done, the set of known posi�ve triples comprises the training, valida�on, and
tes�ng set. PyKEEN explicitly does not use test triples for filtering during HPO to avoid any
test leakage.

Early Stopper Scenario

When early stopping is used during training, it periodically uses the valida�on set for
calcula�ng the loss and evalua�on metrics. During this evalua�on, the set of known posi�ve
triples comprises the training and valida�on sets. When final evalua�on is done with the
tes�ng set, the set of known posi�ve triples comprises the training, valida�on, and tes�ng
set. PyKEEN explicitly does not use test triples for filtering when early stopping is being used
to avoid any test leakage.

F1

(h, r, t)

(h, r, e) (h, r, t′) t ≠ t
′

(h, r, t′)

(h, r, t′)

(h, r, t) (h, r, t′)

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.MacroRankBasedEvaluator.html#pykeen.evaluation.MacroRankBasedEvaluator
https://pykeen.readthedocs.io/en/stable/references.html#bordes2013
https://pykeen.readthedocs.io/en/stable/references.html#bordes2013
https://pykeen.readthedocs.io/en/stable/reference/hpo.html#pykeen.hpo.hpo_pipeline

Pipeline Scenario

During vanilla training with the pykeen.pipeline.pipeline() that has no op�miza�on, no early
stopping, nor any post-hoc choices using the valida�on set, the set of known posi�ve triples
comprises the training and tes�ng sets. This scenario is very atypical, and regardless, should
be augmented with the valida�on triples to make more comparable to other published results
that do not consider this scenario.

Custom Training Loops

In case the valida�on triples should not be filtered when evalua�ng the test dataset, the
argument filter_validation_when_testing=False can be passed to either the
pykeen.hpo.hpo_pipeline() or pykeen.pipeline.pipeline() .

If you’re rolling your own pipeline, you should keep the following in mind: the
pykeen.evaluation.Evaluator when in the filtered se�ng with filtered=True will always use the

evalua�on set (regardless of whether it is the tes�ng set or valida�on set) for filtering. Any
other triples that should be filtered should be passed to additional_filter_triples in
pykeen.evaluation.Evaluator.evaluate() . Typically, this minimally includes the training triples.

With the [bordes2013] technique where the tes�ng set is used for evalua�on, the
additional_filter_triples should include both the training triples and valida�on triples as in

the following example:

https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/reference/hpo.html#pykeen.hpo.hpo_pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.Evaluator.html#pykeen.evaluation.Evaluator
https://pykeen.readthedocs.io/en/stable/api/pykeen.evaluation.Evaluator.html#pykeen.evaluation.Evaluator.evaluate
https://pykeen.readthedocs.io/en/stable/references.html#bordes2013

from pykeen.datasets import FB15k237
from pykeen.evaluation import RankBasedEvaluator
from pykeen.models import TransE

Get FB15k-237 dataset
dataset = FB15k237()

Define model
model = TransE(
 triples_factory=dataset.training,
)

Train your model (code is omitted for brevity)
...

Define evaluator
evaluator = RankBasedEvaluator(
 filtered=True, # Note: this is True by default; we're just being explicit
)

Evaluate your model with not only testing triples,
but also filter on validation triples
results = evaluator.evaluate(
 model=model,
 mapped_triples=dataset.testing.mapped_triples,
 additional_filter_triples=[
 dataset.training.mapped_triples,
 dataset.validation.mapped_triples,
],
)

Entity and Relation Restriction

Some�mes, we are only interested in a certain set of en��es and/or rela�ons, and
 respec�vely, but have addi�onal informa�on available in form of triples with other

en��es/rela�ons. As example, we would like to predict whether an actor stars in a movie.
Thus, we are only interested in the rela�on stars_in between en��es which are
actors/movies. However, we may have addi�onal informa�on available, e.g. who directed the
movie, or the movie’s language, which may help in the predic�on task. Thus, we would like to
train the model on the full dataset including all available rela�ons and en��es, but restrict the
evalua�on to the task we are aiming at.

In order to restrict the evalua�on, we proceed as follows:

1. We filter the evalua�on triples to contain only those triples which are of interest, i.e.

2. During tail predic�on/evalua�on for a triple , we restrict the candidate tail en�ty
 to . Similarly for head predic�on/evalua�on, we restrict the candidate head

en�ty to

EI ⊂ E

RI ⊂ R

Teval

T ′
eval

= {(h, r, t) ∈ Teval ∣ h, t ∈ EI , r ∈ RI}

(h, r, t)

t
′

t
′ ∈ Eeval

h
′

h
′ ∈ Eeval

Example

The pykeen.datasets.Hetionet is a biomedical knowledge graph containing drugs, genes,
diseases, other biological en��es, and their interrela�ons. It was described by Himmelstein et
al. in Systema�c integra�on of biomedical knowledge priori�zes drugs for repurposing to
support drug reposi�oning, which translates to the link predic�on task between drug and
disease nodes.

The edges in the graph are listed here, but we will focus on only the compound treat disease
(CtD) and compound palliates disease (CpD) rela�ons during evalua�on. This can be done
with the following:

from pykeen.pipeline import pipeline

evaluation_relation_whitelist = {'CtD', 'CpD'}
pipeline_result = pipeline(
 dataset='Hetionet',
 model='RotatE',
 evaluation_relation_whitelist=evaluation_relation_whitelist,
)

By restric�ng evalua�on to the edges of interest, models more appropriate for drug
reposi�oning can be iden�fied during hyper-parameter op�miza�on instead of models that
are good at predic�ng all types of rela�ons. The HPO pipeline accepts the same arguments:

from pykeen.hpo import hpo_pipeline

evaluation_relation_whitelist = {'CtD', 'CpD'}
hpo_pipeline_result = hpo_pipeline(
 n_trials=30,
 dataset='Hetionet',
 model='RotatE',
 evaluation_relation_whitelist=evaluation_relation_whitelist,
)

https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.Hetionet.html#pykeen.datasets.Hetionet
https://doi.org/10.7554/eLife.26726
https://github.com/hetio/hetionet/blob/master/describe/edges/metaedges.tsv

