
 / A Toy Example with Transla�onal Distance Models

A Toy Example with Translational Distance
Models

The following tutorial is based on a ques�on originally posed by Heiko Paulheim on the
PyKEEN Issue Tracker #97.

Given the following toy example comprising three en��es in a triangle, a transla�onal
distance model like pykeen.models.TransE should be able to exactly learn the geometric
structure.

Head Rela�on Tail

Brussels locatedIn Belgium

Belgium partOf EU

EU hasCapital Brussels

from pykeen.pipeline import pipeline
tf = ...
results = pipeline(
 training=tf,
 testing=...,
 model = 'TransE',
 model_kwargs=dict(embedding_dim=2),
 random_seed=1,
 device='cpu',
)
results.plot()

https://pykeen.readthedocs.io/en/stable/index.html
https://github.com/pykeen/pykeen/issues/97
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.TransE.html#pykeen.models.TransE

First, check if the model is converging using results.plot_losses . Qualita�vely, this means
that the loss is smoothly decreasing and eventually evening out. If the model does not
decrease, you might need to tune some parameters with the optimizer_kwargs and
training_kwargs to the pipeline() func�on.

For example, you can decrease the op�mizer’s learning rate to make the loss curve less
bumpy. Second, you can increase the number of epochs during training.

results = pipeline(
 training=tf,
 testing=...,
 model = 'TransE',
 model_kwargs=dict(embedding_dim=2),
 optimizer_kwargs=dict(lr=1.0e-1),
 training_kwargs=dict(num_epochs=128, use_tqdm_batch=False),
 evaluation_kwargs=dict(use_tqdm=False),
 random_seed=1,
 device='cpu',
)
results.plot()

Please no�ce that there is some stochas�city in the training, since we sample nega�ve
examples for posi�ve ones. Thus, the loss may fluctuate naturally. To be�er see the trend, you
can smooth the loss by averaging over a window of epochs.

We use a margin-based loss with TransE by default. Thus, it suffices if the model predicts
scores such that the scores of posi�ve triples and nega�ve triples are at least one margin
apart. Once the model has reached this state, if will not improve further upon these
examples, as the embeddings are “good enough”. Hence, an op�mal solu�on with margin-
based loss might not look like the exact geometric solu�on. If you want to change that you
can switch to a loss func�on which does not use a margin, e.g. the so�plus loss. You can do
this by passing loss="softplus" to the pipeline.

toy_results = pipeline(
 training=tf,
 testing=...,
 model='TransE',
 loss='softplus',
 model_kwargs=dict(embedding_dim=2),
 optimizer_kwargs=dict(lr=1.0e-1),
 training_kwargs=dict(num_epochs=128, use_tqdm_batch=False),
 evaluation_kwargs=dict(use_tqdm=False),
 random_seed=1,
 device='cpu',
)
results.plot()

There was a lot of interes�ng follow-up discussion at !99 during which this code was
implemented for re-use. One of the interes�ng points is that the rela�on plot is only
applicable for transla�onal distance models like TransE. Further, when models whose
embeddings are higher than 2, a dimensionality reduc�on method must be used. For this, one
of many of the tools from scikit-learn can be chosen. However, to make sure that the en��es
and rela�ons are projected on the same axis, the dimensionality reduc�on model is first
trained on the en�ty embeddings, then applied on both the en�ty embeddings and rela�on
embeddings. Further, non-linear models like KPCA should not be used when plo�ng
rela�ons, since these _should_ correspond to linear transforma�ons in embedding space.

https://github.com/pykeen/pykeen/pull/99

