
 / A Toy Example with Translational Distance Models

A Toy Example with Translational Distance
Models

The following tutorial is based on a question originally posed by Heiko Paulheim on the
PyKEEN Issue Tracker #97.

Given the following toy example comprising three entities in a triangle, a translational
distance model like pykeen.models.TransE should be able to exactly learn the geometric
structure.

Head Relation Tail

Brussels locatedIn Belgium

Belgium partOf EU

EU hasCapital Brussels

from pykeen.pipeline import pipeline
tf = ...
results = pipeline(
 training=tf,
 testing=...,
 model = 'TransE',
 model_kwargs=dict(embedding_dim=2),
 random_seed=1,
 device='cpu',
)
results.plot()

https://pykeen.readthedocs.io/en/stable/index.html
https://github.com/pykeen/pykeen/issues/97
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.TransE.html#pykeen.models.TransE

First, check if the model is converging using results.plot_losses . Qualitatively, this means
that the loss is smoothly decreasing and eventually evening out. If the model does not
decrease, you might need to tune some parameters with the optimizer_kwargs and
training_kwargs to the pipeline() function.

For example, you can decrease the optimizer’s learning rate to make the loss curve less
bumpy. Second, you can increase the number of epochs during training.

results = pipeline(
 training=tf,
 testing=...,
 model = 'TransE',
 model_kwargs=dict(embedding_dim=2),
 optimizer_kwargs=dict(lr=1.0e-1),
 training_kwargs=dict(num_epochs=128, use_tqdm_batch=False),
 evaluation_kwargs=dict(use_tqdm=False),
 random_seed=1,
 device='cpu',
)
results.plot()

Please notice that there is some stochasticity in the training, since we sample negative
examples for positive ones. Thus, the loss may fluctuate naturally. To better see the trend, you
can smooth the loss by averaging over a window of epochs.

We use a margin-based loss with TransE by default. Thus, it suffices if the model predicts
scores such that the scores of positive triples and negative triples are at least one margin
apart. Once the model has reached this state, if will not improve further upon these
examples, as the embeddings are “good enough”. Hence, an optimal solution with margin-
based loss might not look like the exact geometric solution. If you want to change that you
can switch to a loss function which does not use a margin, e.g. the softplus loss. You can do
this by passing loss="softplus" to the pipeline.

toy_results = pipeline(
 training=tf,
 testing=...,
 model='TransE',
 loss='softplus',
 model_kwargs=dict(embedding_dim=2),
 optimizer_kwargs=dict(lr=1.0e-1),
 training_kwargs=dict(num_epochs=128, use_tqdm_batch=False),
 evaluation_kwargs=dict(use_tqdm=False),
 random_seed=1,
 device='cpu',
)
results.plot()

There was a lot of interesting follow-up discussion at !99 during which this code was
implemented for re-use. One of the interesting points is that the relation plot is only
applicable for translational distance models like TransE. Further, when models whose
embeddings are higher than 2, a dimensionality reduction method must be used. For this, one
of many of the tools from scikit-learn can be chosen. However, to make sure that the entities
and relations are projected on the same axis, the dimensionality reduction model is first
trained on the entity embeddings, then applied on both the entity embeddings and relation
embeddings. Further, non-linear models like KPCA should not be used when plotting
relations, since these _should_ correspond to linear transformations in embedding space.

https://github.com/pykeen/pykeen/pull/99

