
 / Saving Checkpoints during Training

Saving Checkpoints during Training

Training may take days to weeks in extreme cases when using models with many parameters
or big datasets. This introduces a large array of possible errors, e.g. session �meouts, server
restarts etc., which would lead to a complete loss of all progress made so far. To avoid this
PyKEEN supports built-in check-points that allow a straight-forward saving of the current
training loop state and resump�on of a saved state from saved checkpoints shown in Regular
Checkpoints, as well as checkpoints on failure that are only saved when the training loop fails
shown in Checkpoints on Failure. For understanding in more detail how the checkpoints work
and how they can be used programma�cally, please look at Checkpoints beyond the Pipeline
and Technicali�es. For fixing possible errors and safety fallbacks please also look at Word of
Cau�on and Possible Errors.

Regular Checkpoints

The tutorial First Steps showed how the pykeen.pipeline.pipeline()  func�on can be used to
set up an en�re KGEM for training and evalua�on in just two lines of code. A slightly
extended example is shown below:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
...     dataset='Nations',
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=1000,
...     ),
... )

To enable checkpoints, all you have to do is add a checkpoint_name  argument to the
training_kwargs . This argument should have the name you would like the checkpoint files

saved on your computer to be called.

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
...     dataset='Nations',
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=1000,
...         checkpoint_name='my_checkpoint.pt',
...     ),
... )

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/tutorial/first_steps.html#first-steps
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline


Furthermore, you can set the checkpoint frequency, i.e. how o�en checkpoints should be
saved given in minutes, by se�ng the argument checkpoint_frequency  with an integer. The
default frequency is 30 minutes and se�ng it to 0  will cause the training loop to save a
checkpoint a�er each epoch. Let’s look at an example.

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
...     dataset='Nations',
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=1000,
...         checkpoint_name='my_checkpoint.pt',
...         checkpoint_frequency=5,
...     ),
... )

Here we have defined a pipeline that will save training loop checkpoints in the checkpoint file
called my_checkpoint.pt  every �me an epoch finishes and at least 5 minutes have passed since
saving previously. Assuming that e.g. this pipeline crashes a�er 200 epochs, you can simply
execute the same code and the pipeline will load the last state from the checkpoint file and
con�nue training as if nothing happened. The results will be exactly same as if you ran the
pipeline for 1000 epoch without interrup�on.

Another nice feature is that using checkpoints the training loop will save the state whenever
the training loop finishes or the early stopper stops it. Assuming that you successfully trained
the KGEM above for 1000 epochs, but now decide that you would like to test the model with
2000 epochs, all you have to do is to change the number of epochs and execute the code like:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
...     dataset='Nations',
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=2000,  # more epochs than before
...         checkpoint_name='my_checkpoint.pt',
...         checkpoint_frequency=5,
...     ),
... )

The above code will load the saved state a�er finishing 1000 epochs and con�nue to train to
2000 epochs, giving the exact same results as if you would have run it for 2000 epochs in the
first place.

By default, your checkpoints will be saved in the PYKEEN_HOME  directory that is defined in
pykeen.constants , which is a subdirectory in your home directory, e.g.
~/.data/pykeen/checkpoints  (configured via pystow ). Op�onally, you can set the path to where

https://pykeen.readthedocs.io/en/stable/reference/constants.html#module-pykeen.constants


you want the checkpoints to be saved by se�ng the checkpoint_directory  argument with a
string or a pathlib.Path  object containing your desired root path, as shown in this example:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
...     dataset='Nations',
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=2000,
...         checkpoint_name='my_checkpoint.pt',
...         checkpoint_directory='doctests/checkpoint_dir',
...     ),
... )

Checkpoints on Failure

In cases where you only would like to save checkpoints whenever the training loop might fail,
you can use the argument checkpoint_on_failure=True , like:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
...     dataset='Nations',
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=2000,
...         checkpoint_on_failure=True,
...     ),
... )

This op�on differs from regular checkpoints, since regular checkpoints are only saved a�er a
successful epoch. When saving checkpoints due to failure of the training loop there is no
guarantee that all random states can be recovered correctly, which might cause problems
with regards to the reproducibility of that specific training loop. Therefore, these checkpoints
are saved with a dis�nct checkpoint name, which will be
PyKEEN_just_saved_my_day_{datetime}.pt  in the given checkpoint_directory , even when you also

opted to use regular checkpoints as defined above, e.g. with this code:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
...     dataset='Nations',
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=2000,
...         checkpoint_name='my_checkpoint.pt',
...         checkpoint_on_failure=True,
...     ),
... )

https://docs.python.org/3/library/pathlib.html#pathlib.Path


Note: Use this argument with cau�on, since every failed training loop will create a dis�nct
checkpoint file.

Checkpoints When Bringing Your Own Data

When con�nuing the training or in general using the model a�er resuming training, it is
cri�cal that the en�ty label to iden�fier ( entity_to_id ) and rela�on label to iden�fier
( relation_to_id ) mappings are the same as the ones that were used when saving the
checkpoint. If they are not, then any downstream usage will be nonsense.

If you’re using a dataset provided by PyKEEN, you’re automa�cally covered. However, when
using your own datasets (see Bring Your Own Data), you are responsible for making sure this
is the case. Below are two typical examples of combining bringing your own data with
checkpoints.

Resuming Training

The following example shows using custom triples factories for the training, valida�on, and
tes�ng datasets derived from files containing labeled triples. Note how the entity_to_id  and
relation_to_id  arguments are used when crea�ng the validation  and testing  triples

factories in order to ensure that those datasets are created with the same mappings as the
training dataset. Because the checkpoint_name  is set to 'my_checkpoint.pt' , PyKEEN saves the
checkpoint in ~/.data/pykeen/checkpoints/my_checkpoint.pt .

>>> from pykeen.pipeline import pipeline
>>> from pykeen.triples import TriplesFactory
>>> from pykeen.datasets.nations import NATIONS_TEST_PATH, NATIONS_TRAIN_PATH, 
NATIONS_VALIDATE_PATH
>>> training = TriplesFactory.from_path(
...     path=NATIONS_TRAIN_PATH,
... )
>>> validation = TriplesFactory.from_path(
...     path=NATIONS_VALIDATE_PATH,
...     entity_to_id=train.entity_to_id,
...     relation_to_id=train.relation_to_id,
... )
>>> testing = TriplesFactory.from_path(
...     path=NATIONS_TEST_PATH,
...     entity_to_id=train.entity_to_id,
...     relation_to_id=train.relation_to_id,
... )
>>> pipeline_result = pipeline(
...     training=training,
...     validation=validation,
...     testing=testing,
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=2000,
...         checkpoint_name='my_checkpoint.pt',
...     ),
... )

https://pykeen.readthedocs.io/en/stable/byo/data.html#bring-your-own-data


When you are sure that your datasets shown above are the same, you can simply rerun that
code and PyKEEN will automa�cally resume the training where it has le�. However, if you
only have changed the dataset or you sample it, you need to make sure that the mappings are
correct when resuming training from the checkpoint. This can be done by loading the
mappings from the checkpoint in the following way.

>>> import torch
>>> from pykeen.constants import PYKEEN_CHECKPOINTS
>>> checkpoint = torch.load(PYKEEN_CHECKPOINTS.joinpath('my_checkpoint.pt')

You have now loaded the checkpoint that contains the mappings, which now can be used to
create mappings that match the model saved in the checkpoint in the following way

>>> from pykeen.triples import TriplesFactory
>>> from pykeen.datasets.nations import NATIONS_TEST_PATH, NATIONS_TRAIN_PATH, 
NATIONS_VALIDATE_PATH
>>> training = TriplesFactory.from_path(
...     path=NATIONS_TRAIN_PATH,
...     entity_to_id=checkpoint['entity_to_id_dict'],
...     relation_to_id=checkpoint['relation_to_id_dict'],
... )
>>> validation = TriplesFactory.from_path(
...     path=NATIONS_VALIDATE_PATH,
...     entity_to_id=checkpoint['entity_to_id_dict'],
...     relation_to_id=checkpoint['relation_to_id_dict'],
... )
>>> testing = TriplesFactory.from_path(
...     path=NATIONS_TEST_PATH,
...     entity_to_id=checkpoint['entity_to_id_dict'],
...     relation_to_id=checkpoint['relation_to_id_dict'],
... )

Now you can simply resume the pipeline with the same code as above:

>>> pipeline_result = pipeline(
...     training=training,
...     validation=validation,
...     testing=testing,
...     model='TransE',
...     optimizer='Adam',
...     training_kwargs=dict(
...         num_epochs=2000,
...         checkpoint_name='my_checkpoint.pt',
...     ),
... )

In case you feel that this is too much work we s�ll got you covered, since PyKEEN will check
in the background whether the provided triples factory mappings match those provided in
the checkpoints and will warn you if that is not the case.



Loading Models Manually

Instead of just resuming training with checkpoints as shown above, you can also manually
load models from checkpoints for inves�ga�on or performing predic�on tasks. This can be
done in the following way:

>>> import torch
>>> from pykeen.constants import PYKEEN_CHECKPOINTS
>>> from pykeen.pipeline import pipeline
>>> from pykeen.triples import TriplesFactory
>>> checkpoint = torch.load(PYKEEN_CHECKPOINTS.joinpath('my_checkpoint.pt'))

You have now loaded the checkpoint that contains both the model as well as the
entity_to_id  and relation_to_id  mapping from the example above. To load these into

PyKEEN you just have to do the following:

>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH
>>> train = TriplesFactory.from_path(
...     path=NATIONS_TRAIN_PATH,
...     entity_to_id=checkpoint['entity_to_id_dict'],
...     relation_to_id=checkpoint['relation_to_id_dict'],
... )

… now load the model and pass the train triples factory to the model

>>> from pykeen.models import TransE
>>> my_model = TransE(triples_factory=train)
>>> my_model.load_state_dict(checkpoint['model_state_dict'])

Now you have loaded the model and ensured that the mapping in the triples factory is
aligned with the model weights. Enjoy!

 Todo

Tutorial on recovery from hpo_pipeline.

Word of Caution and Possible Errors

When using checkpoints and trying out several configura�ons, which in return result in
mul�ple different checkpoints, the inherent risk of overwri�ng checkpoints arises. This would
naturally happen when you change the configura�on of the KGEM, but don’t change the
checkpoint_name  argument. To prevent this from happening, PyKEEN makes a hash-sum

comparison of the configura�ons of the checkpoint and the one of the current configura�on
at hand. When these don’t match, PyKEEN won’t accept the checkpoint and raise an error.



In case you want to overwrite the previous checkpoint file with a new configura�on, you have
to delete it explicitly. The reason for this behavior is three-fold:

1. This allows a very easy and user friendly way of resuming an interrupted training loop by
simply re-running the exact same code.

2. By explicitly requiring to name the checkpoint files the user controls the naming of the
files and thus makes it easier to keep an overview.

3. Crea�ng new checkpoint files implicitly for each run will lead most users to inadvertently
spam their file systems with unused checkpoints that with ease can add up to hundred of
GBs when running many experiments.

Checkpoints beyond the Pipeline and Technicalities

Currently, PyKEEN only supports checkpoints for training loops, implemented in the class
pykeen.training.TrainingLoop . When using the pykeen.pipeline.pipeline()  func�on as defined

above, the pipeline actually uses the training loop func�onality. Accordingly, those
checkpoints save the states of the training loop and not the pipeline itself. Therefore, the
checkpoints won’t contain evalua�on results that reside in the pipeline. However, PyKEEN
makes sure the final results of the pipeline using training loop checkpoints are exactly the
same compared to running uninterrupted without checkpoints, also for the evalua�on results!

To show how to use the checkpoint func�onality without the pipeline, we define a KGEM
first:

>>> from pykeen.models import TransE
>>> from pykeen.training import SLCWATrainingLoop
>>> from pykeen.triples import TriplesFactory
>>> from torch.optim import Adam
>>> triples_factory = Nations().training
>>> model = TransE(
...     triples_factory=triples_factory,
...     random_seed=123,
... )
>>> optimizer = Adam(params=model.get_grad_params())
>>> training_loop = SLCWATrainingLoop(model=model, optimizer=optimizer)

At this point we have a model, dataset and op�mizer all setup in a training loop and are ready
to train the model with the training_loop ’s method pykeen.training.TrainingLoop.train() . To
enable checkpoints all you have to do is se�ng the func�on argument checkpoint_name  to the
name you would like it to have. Furthermore, you can set the checkpoint frequency, i.e. how
o�en checkpoints should be saved given in minutes, by se�ng the argument
checkpoint_frequency  with an integer. The default frequency is 30 minutes and se�ng it to 0

will cause the training loop to save a checkpoint a�er each epoch. Op�onally, you can set the
path to where you want the checkpoints to be saved by se�ng the checkpoint_directory

argument with a string or a pathlib.Path  object containing your desired root path. If you

https://pykeen.readthedocs.io/en/stable/api/pykeen.training.TrainingLoop.html#pykeen.training.TrainingLoop
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.training.TrainingLoop.html#pykeen.training.TrainingLoop.train
https://docs.python.org/3/library/pathlib.html#pathlib.Path


didn’t set the checkpoint_directory  argument, your checkpoints will be saved in the
PYKEEN_HOME  directory that is defined in pykeen.constants , which is a subdirectory in your

home directory, e.g. ~/.data/pykeen/checkpoints .

Here is an example:

>>> losses = training_loop.train(
...     num_epochs=1000,
...     checkpoint_name='my_checkpoint.pt',
...     checkpoint_frequency=5,
... )

With this code we have started the training loop with the above defined KGEM. The training
loop will save a checkpoint in the my_checkpoint.pt  file, which will be saved in the
~/.data/pykeen/checkpoints/  directory, since we haven’t set the argument
checkpoint_directory . The checkpoint file will be saved a�er 5 minutes since star�ng the

training loop or the last �me a checkpoint was saved and the epoch finishes, i.e. when one
epoch takes 10 minutes the checkpoint will be saved a�er 10 minutes. In addi�on,
checkpoints are always saved when the early stopper stops the training loop or the last epoch
was finished.

Let’s assume you were an�cipa�ve, saved checkpoints and your training loop crashed a�er
200 epochs. Now you would like to resume from the last checkpoint. All you have to do is to
rerun the exact same code as above and PyKEEN will smoothly start from the given
checkpoint. Since PyKEEN stores all random states as well as the states of the model,
op�mizer and early stopper, the results will be exactly the same compared to running the
training loop uninterruptedly. Of course, PyKEEN will also con�nue saving new checkpoints
even when resuming from a previous checkpoint.

On top of resuming interrupted training loops you can also resume training loops that
finished successfully. E.g. the above training loop finished successfully a�er 1000 epochs, but
you would like to train the same model from that state for 2000 epochs. All you have have to
do is to change the argument num_epochs  in the above code to:

>>> losses = training_loop.train(
...     num_epochs=2000,
...     checkpoint_name='my_checkpoint.pt',
...     checkpoint_frequency=5,
... )

and now the training loop will resume from the state at 1000 epochs and con�nue to train
un�l 2000 epochs.

https://pykeen.readthedocs.io/en/stable/reference/constants.html#module-pykeen.constants


As shown in Checkpoints on Failure, you can also save checkpoints only in cases where the
training loop fails. To do this you just have to set the argument checkpoint_on_failure=True,
like:

>>> losses = training_loop.train(
...     num_epochs=2000,
...     checkpoint_directory='/my/secret/dir',
...     checkpoint_on_failure=True,
... )

This code will save a checkpoint in case the training loop fails. Note how we also chose a new
checkpoint directory by se�ng the checkpoint_directory argument to /my/secret/dir .


