/ Saving Checkpoints during Training

Saving Checkpoints during Training

Training may take days to weeks in extreme cases when using models with many parameters
or big datasets. This introduces a large array of possible errors, e.g. session timeouts, server
restarts etc., which would lead to a complete loss of all progress made so far. To avoid this
PyKEEN supports built-in check-points that allow a straight-forward saving of the current
training loop state and resumption of a saved state from saved checkpoints shown in Regular
Checkpoints, as well as checkpoints on failure that are only saved when the training loop fails
shown in Checkpoints on Failure. For understanding in more detail how the checkpoints work
and how they can be used programmatically, please look at Checkpoints beyond the Pipeline
and Technicalities. For fixing possible errors and safety fallbacks please also look at Word of
Caution and Possible Errors.

Regular Checkpoints

The tutorial First Steps showed how the pykeen.pipeline.pipeline() function can be used to
set up an entire KGEM for training and evaluation in just two lines of code. A slightly
extended example is shown below:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
dataset="'Nations',
model="TransE",
optimizer="'Adam',
training_kwargs=dict(
num_epochs=1000,
)

To enable checkpoints, all you have to do is add a checkpoint_name argument to the
training_kwargs . This argument should have the name you would like the checkpoint files
saved on your computer to be called.

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
dataset="Nations',
model="Transk",
optimizer="'Adam’,
training_kwargs=dict(
num_epochs=1000,
checkpoint_name="my_checkpoint.pt’,

> - T

——

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/tutorial/first_steps.html#first-steps
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline

Furthermore, you can set the checkpoint frequency, i.e. how often checkpoints should be
saved given in minutes, by setting the argument checkpoint frequency with an integer. The
default frequency is 30 minutes and setting it to e will cause the training loop to save a

e ——
checkpoint after each epoch. Let’s look at an example.

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
dataset="Nations',
model="TranskE",
optimizer="Adam',
training_kwargs=dict(
num_epochs=1000,
checkpoint_name="my_checkpoint.pt"',
checkpoint_frequency=5,

)s

Here we have defined a pipeline that will save training loop checkpoints in the checkpoint file
called my checkpoint.pt every time an epoch finishes and at least 5 minutes have passed since
saving previously. Assuming that e.g. this pipeline crashes after 200 epochs, you can simply
execute the same code and the pipeline will load the last state from the checkpoint file and
continue training as if nothing happened. The results will be exactly same as if you ran the
m epoch without interruption.

Another nice feature is that using checkpoints the training loop will save the state whenever
the training loop finishes or the early stopper stops it. Assuming that you successfully trained
the KGEM above for 1000 epochs, but now decide that you would like to test the model with
2000 epochs, all you have to do is to change the number of epochs and execute the code like:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
dataset="Nations',
model="'TransE",
optimizer="Adam',
training_kwargs=dict(
num_epochs=2000, # more epochs than before
checkpoint_name="my_checkpoint.pt’,
checkpoint_frequency=5,

)>

—

The above code will load the saved state after finishing 1000 epochs and continue to train to
2000 epochs, giving the exact same results as if you would have run it for 2000 epochs in the

first place. e I D U U

By default, your checkpoints will be saved in the pvkeen_Home directory that is defined in
pykeen.constants , wWhich is a subdirectory in your home directory, e.g.
~/.data/pykeen/checkpoints (configured via pystow). Optionally, you can set the path to where

https://pykeen.readthedocs.io/en/stable/reference/constants.html#module-pykeen.constants

you want the checkpoints to be saved by setting the checkpoint directory argument with a
string or a pathlib.Path oObject containing your desired root path, as shown in this example:

>>> from pykeen.pipeline import pipeline *—W
>>> pipeline_result = pipeline(
dataset="Nations',
model="TranskE",
optimizer="'Adam',
training_kwargs=dict(
v num_epochs=2000,
checkpoint_name="my_checkpoint.pt"’,
checkpoint_directory="doctests/checkpoint_dir",

)J —

Checkpoints on Failure

In cases where you only would like to save checkpoints whenever the training loop might fail,
you can use the argument checkpoint_on_failure=True , like:

e
>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(

. dataset="Nations"',
model="'TransE",
optimizer="Adam',
training_kwargs=dict(

num_epochs=2000,
checkpoint_on_failure=True,

)>

This option differs from regular checkpoints, since regular checkpoints are only saved after a
successful epoch. When saving checkpoints due to failure of the training loop there is no

guarantee that all random states can be recovered correctly, which might cause problems
_/\
with regards to the reproducibility of that specific training loop. Therefore, these checkpoints

are saved with a distinct checkpoint name, which will be
PyKEEN_just_saved_my_day_{datetime}.pt in the given checkpoint_directory , €VEN when you also
opted to use regular checkpoints as defined above, e.g. with this code:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
dataset="'Nations',
model="TranskE",
optimizer="'Adam',
training_kwargs=dict(
num_epochs=2000,
checkpoint_name="my_checkpoint.pt’,
ce checkpoint_on_failure=True,

)s

https://docs.python.org/3/library/pathlib.html#pathlib.Path

Note: Use this argument with caution, since every failed training loop will create a distinct
checkpoint file.

Checkpoints When Bringing Your Own Data

When continuing the training or in general using the model after resuming training, it is
critical that the entity label to identifier (entity to_id) and relation label to identifier

(relation_to_id) mappings are the same as the ones that were used when saving the
checkpoint. If they are not, then any downstream usage will be nonsense.

If you're using a dataset provided by PyKEEN, you’re automatically covered. However, when
using your own datasets (see Bring Your Own Data), you are responsible for making sure this
is the case. Below are two typical examples of combining bringing your own data with
checkpoints.

Resuming Training

The following example shows using custom triples factories for the training, validation, and
testing datasets derived from files containing labeled triples. Note how the entity to id and
relation_to_id arguments are used when creating the validation and testing triples
factories in order to ensure that those datasets are created with the same mappings as the
training dataset. Because the checkpoint_name is setto 'my checkpoint.pt' , PYKEEN saves the

checkpoint in ~/.data/pykeen/checkpoints/my_checkpoint.pt .

>>> from pykeen.pipeline import pipeline
>>> from pykeen.triples import TriplesFactory
>>> from pykeen.datasets.nations import NATIONS_TEST_PATH, NATIONS_TRAIN_PATH,
NATIONS_VALIDATE_PATH
>>> training = TriplesFactory.from_path(
path=NATIONS_TRAIN_PATH,

<)
>>> validation = TriplesFactory.from_path(
path=NATIONS_VALIDATE_PATH,
entity_to_id=train.entity_to_id,
relation_to_id=train.relation_to_id,

-)
>>> testing = TriplesFactory.from_path(
path=NATIONS TEST_PATH,
entity to_id=train.entity_to_id,

. relation_to_id=train.relation_to_id,
<)
>>> pipeline_result = pipeline(
training=training,
validation=validation,
testing=testing,
model="'TransE",
optimizer="Adam',
training_kwargs=dict(
num_epochs=2000,
checkpoint_name="my_checkpoint.pt’,

)>

https://pykeen.readthedocs.io/en/stable/byo/data.html#bring-your-own-data

When you are sure that your datasets shown above are the same, you can simply rerun that
code and PyKEEN will automatically resume the training where it has left. However, if you
only have changed the dataset or you sample it, you need to make sure that the mappings are
correct when resuming training from the checkpoint. This can be done by loading the

mappings from the checkpoint in the following way.

==

| —

>>> import torch
>>> from pykeen.constants import PYKEEN_CHECKPOINTS
>>> checkpoint = torch.load(PYKEEN_CHECKPOINTS.joinpath('my_checkpoint.pt")

You have now loaded the checkpoint that contains the mappings, which now can be used to
create mappings that match the model saved in the checkpoint in the following way

>>> from pykeen.triples import TriplesFactory
>>> from pykeen.datasets.nations import NATIONS_TEST_PATH, NATIONS_TRAIN_PATH,
NATIONS_VALIDATE_PATH
>>> training = TriplesFactory.from_path(
path=NATIONS_TRAIN_PATH,
entity_to_id=checkpoint['entity_to_id_dict'],
. relation_to_id=checkpoint['relation_to_id dict'],
-)
>>> validation = TriplesFactory.from_path(
path=NATIONS VALIDATE_PATH,
entity to_id=checkpoint['entity to_id dict'],
relation_to_id=checkpoint['relation to_id dict'],

<)
>>> testing = TriplesFactory.from_path(
path=NATIONS_TEST_PATH,
entity_to_id=checkpoint['entity_to_id_dict'],
relation_to_id=checkpoint['relation_to_id dict'],

Now you can simply resume the pipeline with the same code as above:

o —m———
>>> pipeline_result = pipeline(

training=training,

validation=validation,

testing=testing,

model="'TransE",

optimizer="Adam',

training_kwargs=dict(
num_epochs=2000,
checkpoint_name="my_checkpoint.pt’,

)>

In case you feel that this is too much work we still got you covered, since PyKEEN will check
in the background whether the provided triples factory mappings match those provided in
the checkpoints and will warn you if that is not the case.

Loading Models Manually

Instead of just resuming training with checkpoints as shown above, you can also manually
load models from checkpoints for investigation or performing prediction tasks. This can be
done in the following way:

>>> import torch

>>> from pykeen.constants import PYKEEN_CHECKPOINTS

>>> from pykeen.pipeline import pipeline

>>> from pykeen.triples import TriplesFactory

>>> checkpoint = torch.load(PYKEEN_CHECKPOINTS.joinpath('my_checkpoint.pt"'))

e

You have now loaded the checkpoint that contains both the model as well as the
entity to_id and relation to_id mapping from the example above. To load these into
PyKEEN you just have to do the following:

>>> from pykeen.datasets.nations import NATIONS_TRAIN_PATH
>>> train = TriplesFactory.from_path(
path=NATIONS_ TRAIN_PATH,
entity_to_id=checkpoint['entity_to_id dict'],

relation_to_id=checkpoint['relation_to_id dict'],

... now load the model and pass the train triples factory to the model

>>> from pykeen.models import Transk
>>> my_model = TransE(triples_factory=train)
>>> my_model.load_state_dict(checkpoint['model state_dict'])

e

—_—

Now you have loaded the model and ensured that the mapping in the triples factory is
aligned with the model weights. Enjoy!

O Todo

Tutorial on recovery from hpo_pipeline.

Word of Caution and Possible Errors

When using checkpoints and trying out several configurations, which in return result in
multiple different checkpoints, the inherent risk of overwriting checkpoints arises. This would
naturally happen when you change the configuration of the KGEM, but don’t change the

checkpoint_name argument. To prevent this from happening, PyKEEN makes a hash-sum
comparison of the configurations of the checkpoint and the one of the current configuration
at hand. When these don’t match, PyKEEN won'’t accept the checkpoint and raise an error.

In case you want to overwrite the previous checkpoint file with a new configuration, you have
to delete it explicitly. The reason for this behavior is three-fold:

1. This allows a very easy and user friendly way of resuming an interrupted training loop by
simply re-running the exact same code.

2. By explicitly requiring to name the checkpoint files the user controls the naming of the
files and thus makes it easier to keep an overview.

3. Creating new checkpoint files implicitly for each run will lead most users to inadvertently
spam their file systems with unused checkpoints that with ease can add up to hundred of
GBs when running many experiments.

Checkpoints beyond the Pipeline and Technicalities

Currently, PyKEEN only supports checkpoints for training loops, implemented in the class
pykeen.training.TrainingLoop . When using the pykeen.pipeline.pipeline() function as defined
above, the pipeline actually uses the training loop functionality. Accordingly, those
checkpoints save the states of the training loop and not the pipeline itself. Therefore, the
checkpoints won't contain evaluation results that reside in the pipeline. However, PyKEEN
makes sure the final results of the pipeline using training loop checkpoints are exactly the
same compared to running uninterrupted without checkpoints, also for the evaluation results!

To show how to use the checkpoint functionality without the pipeline, we define a KGEM
first:

>>> from pykeen.models import Transk
>>> from pykeen.training import SLCWATraininglLoop
>>> from pykeen.triples import TriplesFactory
>>> from torch.optim import Adam
>>> triples_factory = Nations().training
>>> model = TranskE(
triples_factory=triples_factory,
v random_seed=123,
<)

>>> optimizer = Adam(params=model.get_grad_params())

>>> training_loop = SLCWATraininglLoop(model=model, optimizer=optimizer)

At this point we have a model, dataset and optimizer all setup in a training loop and are ready
to train the model with the training loop 's method pykeen.training.TrainingLoop.train() . TO
enable checkpoints all you have to do is setting the function argument checkpoint_name to the
name you would like it to have. Furthermore, you can set the checkpoint frequency, i.e. how
often checkpoints should be saved given in minutes, by setting the argument
checkpoint_frequency With an integer. The default frequency is 30 minutes and setting it to o
will cause the training loop to save a checkpoint after each epoch. Optionally, you can set the
path to where you want the checkpoints to be saved by setting the checkpoint_directory
argument with a string or a pathlib.Path object containing your desired root path. If you

https://pykeen.readthedocs.io/en/stable/api/pykeen.training.TrainingLoop.html#pykeen.training.TrainingLoop
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.training.TrainingLoop.html#pykeen.training.TrainingLoop.train
https://docs.python.org/3/library/pathlib.html#pathlib.Path

didn't set the checkpoint_directory argument, your checkpoints will be saved in the
pykeen_HoMe directory that is defined in pykeen.constants , which is a subdirectory in your

home directory, e.g. ~/.data/pykeen/checkpoints .

Here is an example:

>>> losses = training_loop.train(
num_epochs=1000,
checkpoint_name="my_checkpoint.pt’,
checkpoint_frequency=5,

With this code we have started the training loop with the above defined KGEM. The training
loop will save a checkpoint in the my_checkpoint.pt file, which will be saved in the

~/ .data/pykeen/checkpoints/ directory, since we haven't set the argument

checkpoint_directory . The checkpoint file will be saved after 5 minutes since starting the
training loop or the last time a checkpoint was saved and the epoch finishes, i.e. when one
epoch takes 10 minutes the checkpoint will be saved after 10 minutes. In addition,

—

checkpoints are always saved when the early stopper stops the training loop or the last epoch

VES finished.

Let’s assume you were anticipative, saved checkpoints and your training loop crashed after
200 epochs. Now you would like to resume from the last checkpoint. All you have to do is to
rerun the exact same code as above and PyKEEN will smoothly start from the given

checkpoint. Since PyKEEN stores all random states as well as the states of the model,
optimizer and early stopper, the results will be exactly the same compared to running the
traininglloopuninterruptedly. Of course, PYKEEN will also continue saving new checkpoints

even when resuming from a previous checkpoint.

On top of resuming interrupted training loops you can also resume training loops that
finished successfully. E.g. the above training loop finished successfully after 1000 epochs, but
you would like to train the same model from that state for 2000 epochs. All you have have to
do is to change the argument num_epochs in the above code to:

>>> losses = training_loop.train(
num_epochs=2000,
checkpoint_name="my_checkpoint.pt’,
checkpoint_frequency=5,

\
and now the training loop will resume from the state at 1000 epochs and continue to train
until 2000 epochs.

https://pykeen.readthedocs.io/en/stable/reference/constants.html#module-pykeen.constants

As shown in Checkpoints on Failure, you can also save checkpoints only in cases where the
training loop fails. To do this you just have to set the argument checkpoint_on_failure=True,
like:

e

>>> losses = training_loop.train(
num_epochs=2000,
checkpoint_directory="'/my/secret/dir",
checkpoint_on_failure=True,

-)

—\ J
This code will save a checkpoint in case the training loop fails. Note how we also chose a new

checkpoint directory by setting the checkpoint_directory argument to /my/secret/dir .

