
 / First Steps

First Steps

The easiest way to train and evaluate a model is with the pykeen.pipeline.pipeline() function.

It provides a high-level entry point into the extensible functionality of this package. Full
reference documentation for the pipeline and related functions can be found at
pykeen.pipeline .

Training a Model

The following example shows how to train and evaluate the pykeen.models.TransE model on
the pykeen.datasets.Nations dataset. Throughout the documentation, you’ll notice that each
asset has a corresponding class in PyKEEN. You can follow the links to learn more about each
and see the reference on how to use them specifically. Don’t worry, in this part of the tutorial,
the pykeen.pipeline.pipeline() function will take care of everything for you.

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
...)
>>> pipeline_result.save_to_directory('nations_transe')

The results are returned in a pykeen.pipeline.PipelineResult instance, which has attributes for
the trained model, the training loop, and the evaluation.

In this example, the model was given as a string. A list of available models can be found in
pykeen.models . Alternatively, the class corresponding to the implementation of the model

could be used as in:

>>> from pykeen.pipeline import pipeline
>>> from pykeen.models import TransE
>>> pipeline_result = pipeline(
... dataset='Nations',
... model=TransE,
...)
>>> pipeline_result.save_to_directory('nations_transe')

In this example, the dataset was given as a string. A list of available datasets can be found in
pykeen.datasets . Alternatively, a subclass of pykeen.datasets.Dataset could be used as in:

https://pykeen.readthedocs.io/en/stable/index.html
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/reference/pipeline.html#module-pykeen.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.TransE.html#pykeen.models.TransE
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.Nations.html#pykeen.datasets.Nations
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.PipelineResult.html#pykeen.pipeline.PipelineResult
https://pykeen.readthedocs.io/en/stable/reference/models.html#module-pykeen.models
https://pykeen.readthedocs.io/en/stable/reference/datasets.html#module-pykeen.datasets
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.Dataset.html#pykeen.datasets.Dataset

>>> from pykeen.pipeline import pipeline
>>> from pykeen.models import TransE
>>> from pykeen.datasets import Nations
>>> pipeline_result = pipeline(
... dataset=Nations,
... model=TransE,
...)
>>> pipeline_result.save_to_directory('nations_transe')

In each of the previous three examples, the training approach, optimizer, and evaluation
scheme were omitted. By default, the model is trained under the stochastic local closed world
assumption (sLCWA; pykeen.training.SLCWATrainingLoop). This can be explicitly given as a
string:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... training_loop='sLCWA',
...)
>>> pipeline_result.save_to_directory('nations_transe')

Alternatively, the model can be trained under the local closed world assumption (LCWA;
pykeen.training.LCWATrainingLoop) by giving 'LCWA' . No additional configuration is necessary,

but it’s worth reading up on the differences between these training approaches. A list of
available training assumptions can be found in pykeen.training .

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... training_loop='LCWA',
...)
>>> pipeline_result.save_to_directory('nations_transe')

One of these differences is that the sLCWA relies on negative sampling. The type of negative
sampling can be given as in:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... training_loop='sLCWA',
... negative_sampler='basic',
...)
>>> pipeline_result.save_to_directory('nations_transe')

https://pykeen.readthedocs.io/en/stable/api/pykeen.training.SLCWATrainingLoop.html#pykeen.training.SLCWATrainingLoop
https://pykeen.readthedocs.io/en/stable/api/pykeen.training.LCWATrainingLoop.html#pykeen.training.LCWATrainingLoop
https://pykeen.readthedocs.io/en/stable/reference/training.html#module-pykeen.training

In this example, the negative sampler was given as a string. A list of available negative
samplers can be found in pykeen.sampling . Alternatively, the class corresponding to the
implementation of the negative sampler could be used as in:

>>> from pykeen.pipeline import pipeline
>>> from pykeen.sampling import BasicNegativeSampler
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... training_loop='sLCWA',
... negative_sampler=BasicNegativeSampler,
...)
>>> pipeline_result.save_to_directory('nations_transe')

Warning

The negative_sampler keyword argument should not be used if the LCWA is being used. In
general, all other options are available under either training approach.

The type of evaluation perfomed can be specified with the evaluator keyword. By default,
rank-based evaluation is used. It can be given explictly as in:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... evaluator='RankBasedEvaluator',
...)
>>> pipeline_result.save_to_directory('nations_transe')

In this example, the evaluator string. A list of available evaluators can be found in
pykeen.evaluation . Alternatively, the class corresponding to the implementation of the

evaluator could be used as in:

>>> from pykeen.pipeline import pipeline
>>> from pykeen.evaluation import RankBasedEvaluator
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... evaluator=RankBasedEvaluator,
...)
>>> pipeline_result.save_to_directory('nations_transe')

PyKEEN implements early stopping, which can be turned on with the stopper keyword
argument as in:

https://pykeen.readthedocs.io/en/stable/reference/negative_sampling.html#module-pykeen.sampling
https://pykeen.readthedocs.io/en/stable/reference/evaluation.html#module-pykeen.evaluation

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... stopper='early',
...)
>>> pipeline_result.save_to_directory('nations_transe')

In PyKEEN you can also use the learning rate schedulers provided by PyTorch, which can be
turned on with the lr_scheduler keyword argument together with the lr_scheduler_kwargs

keyword argument to specify arguments for the learning rate scheduler as in:

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... lr_scheduler='ExponentialLR',
... lr_scheduler_kwargs=dict(
... gamma=0.99,
...),
...)
>>> pipeline_result.save_to_directory('nations_transe')

Deeper Configuration

Arguments for the model can be given as a dictionary using model_kwargs .

>>> from pykeen.pipeline import pipeline
>>> pipeline_result = pipeline(
... dataset='Nations',
... model='TransE',
... model_kwargs=dict(
... scoring_fct_norm=2,
...),
...)
>>> pipeline_result.save_to_directory('nations_transe')

The entries in model_kwargs correspond to the arguments given to
pykeen.models.TransE.__init__() . For a complete listing of models, see pykeen.models , where

there are links to the reference for each model that explain what kwargs are possible. Each
model’s default hyper-parameters were chosen based on the best reported values from the
paper originally publishing the model unless otherwise noted on the model’s reference page.

Because the pipeline takes care of looking up classes and instantiating them, there are several
other parameters to pykeen.pipeline.pipeline() that can be used to specify the parameters
during their respective instantiations.

Arguments can be given to the dataset with dataset_kwargs . These are passed on to the
pykeen.datasets.Nations

https://pykeen.readthedocs.io/en/stable/reference/models.html#module-pykeen.models
https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.pipeline.html#pykeen.pipeline.pipeline
https://pykeen.readthedocs.io/en/stable/api/pykeen.datasets.Nations.html#pykeen.datasets.Nations

Loading a pre-trained Model

Many of the previous examples ended with saving the results using the
pykeen.pipeline.PipelineResult.save_to_directory() . One of the artifacts written to the given

directory is the trained_model.pkl file. Because all PyKEEN models inherit from
torch.nn.Module , we use the PyTorch mechanisms for saving and loading them. This means

that you can use torch.load() to load a model like:

import torch

my_pykeen_model = torch.load('trained_model.pkl')

More information on PyTorch’s model persistence can be found at:
https://pytorch.org/tutorials/beginner/saving_loading_models.html.

Mapping Entity and Relation Identifiers to their Names

While PyKEEN internally maps entities and relations to contiguous identifiers, it’s still useful
to be able to interact with datasets, triples factories, and models using the labels of the
entities and relations.

We can map a triples factory’s entities to identifiers using TriplesFactory.entities_to_ids()

like in the following example:

from pykeen.datasets import Nations

triples_factory = Nations().training

Get tensor of entity identifiers
entity_ids = torch.as_tensor(triples_factory.entities_to_ids(["china", "egypt"]))

Similarly, we can map a triples factory’s relations to identifiers using
TriplesFactory.relations_to_ids like in the following example:

relation_ids = torch.as_tensor(triples_factory.relations_to_ids(["independence", "embassy"]))

Warning

It’s important to notice that we should use a triples factory with the same mapping that
was used to train the model - otherwise we might end up with incorrect IDs.

https://pykeen.readthedocs.io/en/stable/api/pykeen.pipeline.PipelineResult.html#pykeen.pipeline.PipelineResult.save_to_directory
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.load.html#torch.load
https://pytorch.org/tutorials/beginner/saving_loading_models.html

Using Learned Embeddings

The embeddings learned for entities and relations are not only useful for link prediction (see
Prediction), but also for other downstream machine learning tasks like clustering, regression,
and classification.

Knowledge graph embedding models can potentially have multiple entity representations and
multiple relation representations, so they are respectively stored as sequences in the
entity_representations and relation_representations attributes of each model. While the exact

contents of these sequences are model-dependent, the first element of each is usually the
“primary” representation for either the entities or relations.

Typically, the values in these sequences are instances of the
pykeen.nn.representation.Embedding . This implements a similar, but more powerful, interface to

the built-in torch.nn.Embedding class. However, the values in these sequences can more
generally be instances of any subclasses of pykeen.nn.representation.Representation . This allows
for more powerful encoders those in GNNs such as pykeen.models.RGCN to be implemented
and used.

The entity representations and relation representations can be accessed like this:

from typing import List

import pykeen.nn
from pykeen.pipeline import pipeline

result = pipeline(model='TransE', dataset='UMLS')
model = result.model

entity_representation_modules: List['pykeen.nn.Representation'] = model.entity_representations
relation_representation_modules: List['pykeen.nn.Representation'] =
model.relation_representations

Most models, like pykeen.models.TransE , only have one representation for entities and one for
relations. This means that the entity_representations and relation_representations lists both
have a length of 1. All of the entity embeddings can be accessed like:

entity_embeddings: pykeen.nn.Embedding = entity_representation_modules[0]
relation_embeddings: pykeen.nn.Embedding = relation_representation_modules[0]

Since all representations are subclasses of torch.nn.Module , you need to call them like
functions to invoke the forward() and get the values.

https://pykeen.readthedocs.io/en/stable/reference/predict.html#making-predictions
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Embedding.html#pykeen.nn.representation.Embedding
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html#torch.nn.Embedding
https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Representation.html#pykeen.nn.representation.Representation
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.RGCN.html#pykeen.models.RGCN
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.TransE.html#pykeen.models.TransE
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

entity_embedding_tensor: torch.FloatTensor = entity_embeddings()
relation_embedding_tensor: torch.FloatTensor = relation_embeddings()

The forward() function of all pykeen.nn.representation.Representation takes an indices

parameter. By default, it is None and returns all values. More explicitly, this looks like:

entity_embedding_tensor: torch.FloatTensor = entity_embeddings(indices=None)
relation_embedding_tensor: torch.FloatTensor = relation_embeddings(indices=None)

If you’d like to only look up certain embeddings, you can use the indices parameter and pass
a torch.LongTensor with their corresponding indices.

You might want to detach them from the GPU and convert to a numpy.ndarray with

entity_embedding_tensor = model.entity_representations[0](indices=None).detach().numpy()

Warning

Some old-style models (e.g., ones inheriting from
pykeen.models.EntityRelationEmbeddingModel) don’t fully implement the
entity_representations and relation_representations interface. This means that they might

have additional embeddings stored in attributes that aren’t exposed through these
sequences. For example, pykeen.models.TransD has a secondary entity embedding in
pykeen.models.TransD.entity_projections . Eventually, all models will be upgraded to new-

style models and this won’t be a problem.

Beyond the Pipeline

While the pipeline provides a high-level interface, each aspect of the training process is
encapsulated in classes that can be more finely tuned or subclassed. Below is an example of
code that might have been executed with one of the previous examples.

https://pykeen.readthedocs.io/en/stable/api/pykeen.nn.representation.Representation.html#pykeen.nn.representation.Representation
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pykeen.readthedocs.io/en/stable/api/pykeen.models.TransD.html#pykeen.models.TransD

>>> # Get a training dataset
>>> from pykeen.datasets import Nations
>>> dataset = Nations()
>>> training_triples_factory = dataset.training

>>> # Pick a model
>>> from pykeen.models import TransE
>>> model = TransE(triples_factory=training_triples_factory)

>>> # Pick an optimizer from Torch
>>> from torch.optim import Adam
>>> optimizer = Adam(params=model.get_grad_params())

>>> # Pick a training approach (sLCWA or LCWA)
>>> from pykeen.training import SLCWATrainingLoop
>>> training_loop = SLCWATrainingLoop(
... model=model,
... triples_factory=training_triples_factory,
... optimizer=optimizer,
...)

>>> # Train like Cristiano Ronaldo
>>> _ = training_loop.train(
... triples_factory=training_triples_factory,
... num_epochs=5,
... batch_size=256,
...)

>>> # Pick an evaluator
>>> from pykeen.evaluation import RankBasedEvaluator
>>> evaluator = RankBasedEvaluator()

>>> # Get triples to test
>>> mapped_triples = dataset.testing.mapped_triples

>>> # Evaluate
>>> results = evaluator.evaluate(
... model=model,
... mapped_triples=mapped_triples,
... batch_size=1024,
... additional_filter_triples=[
... dataset.training.mapped_triples,
... dataset.validation.mapped_triples,
...],
...)
>>> # print(results)

Preview: Evaluation Loops

PyKEEN is currently in the transition to use torch’s data-loaders for evaluation, too. While not
being active for the high-level pipeline, you can already use it explicitly:

>>> # get a dataset
>>> from pykeen.datasets import Nations
>>> dataset = Nations()

>>> # Pick a model
>>> from pykeen.models import TransE
>>> model = TransE(triples_factory=dataset.training)

>>> # Pick a training approach (sLCWA or LCWA)
>>> from pykeen.training import SLCWATrainingLoop
>>> training_loop = SLCWATrainingLoop(
... model=model,
... triples_factory=dataset.training,
...)

>>> # Train like Cristiano Ronaldo
>>> _ = training_loop.train(
... triples_factory=training_triples_factory,
... num_epochs=5,
... batch_size=256,
... # NEW: validation evaluation callback
... callbacks="evaluation-loop",
... callback_kwargs=dict(
... prefix="validation",
... factory=dataset.validation,
...),
...)

>>> # Pick an evaluation loop (NEW)
>>> from pykeen.evaluation import LCWAEvaluationLoop
>>> evaluation_loop = LCWAEvaluationLoop(
... model=model,
... triples_factory=dataset.testing,
...)

>>> # Evaluate
>>> results = evaluation_loop.evaluate()
>>> # print(results)

Training Callbacks

PyKEEN allows interaction with the training loop through callbacks. One particular use case is
regular evaluation (outside of an early stopper). The following example shows how to evaluate
on the training triples on every tenth epoch

from pykeen.datasets import get_dataset
from pykeen.pipeline import pipeline

dataset = get_dataset(dataset="nations")
result = pipeline(
 dataset=dataset,
 model="mure",
 training_kwargs=dict(
 num_epochs=100,
 callbacks="evaluation",
 callback_kwargs=dict(
 evaluation_triples=dataset.training.mapped_triples,
 tracker="console",
 prefix="training",
),
),
)

For further information about different result trackers, take a look at the section on Result
Trackers.

Next Steps

The first steps tutorial taught you how to train and use a model for some of the most
common tasks. There are several other topic-specific tutorials in the section of the
documentation. You might also want to jump ahead to the Troubleshooting section in case
you’re having trouble, or look through questions and discussions that others have posted on
GitHub.

https://pykeen.readthedocs.io/en/stable/tutorial/trackers/index.html#trackers
https://pykeen.readthedocs.io/en/stable/tutorial/trackers/index.html#trackers
https://pykeen.readthedocs.io/en/stable/tutorial/troubleshooting.html#troubleshooting
https://github.com/pykeen/pykeen/issues?q=is%3Aissue+is%3Aopen+label%3Aquestion
https://github.com/pykeen/pykeen/discussions

