@ / User Guide / Chapter 7: Distributed Training / 7.4 Advanced Graph Partitioning

7.4 Advanced Graph Partitioning

The chapter covers some of the advanced topics for graph partitioning.

METIS partition algorithm

METIS is a state-of-the-art graph partitioning algorithm that can generate partitions with
minimal number of cross-partition edges, making it suitable for distributed message passing

where the amount of network communication is proportional to the number of cross-
partition edges. DGL has integrated METIS as the default partitioning algorithm in its
dgl.distributed.partition_graph() API.

Output format

Regardless of the partitioning algorithm in use, the partitioned results are stored in data files
organized as follows:

data_root_dir/

| -- graph_name.json # partition configuration file in JSON
-- parte/ # data for partition o
| -- node_feats.dgl # node features stored in binary format
|-- edge_feats.dgl # edge features stored in binary format
|-- graph.dgl # graph structure of this partition stored in binary format

|-- node_feats.dgl
|-- edge_feats.dgl

|

|

|

|

|

|-- part1/ # data for partition 1
|

|

| |-- graph.dgl
|

|--

data for other partitions

When distributed to a cluster, the metadata JSON should be copied to all the machines while
the partx folders should be dispatched accordingly.

DGL provides a dgl.distributed.load_partition() function to load one partition for inspection.

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/distributed.html
http://glaros.dtc.umn.edu/gkhome/views/metis
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.load_partition.html#dgl.distributed.load_partition

>>> import dgl
>>> # Lload partition ©
>>> part_data = dgl.distributed.load_partition('data_root_dir/graph_name.json', 0)
>>> g, nfeat, efeat, partition_book, graph_name, ntypes, etypes = part_data # unpack
>>> print(g)
Graph(num_nodes=966043, num_edges=34270118,
ndata_schemes={'orig_id': Scheme(shape=(), dtype=torch.int64),
"part_id': Scheme(shape=(), dtype=torch.int64),
' _ID': Scheme(shape=(), dtype=torch.int64),
"inner_node': Scheme(shape=(), dtype=torch.int32)}
edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64),
"inner_edge': Scheme(shape=(), dtype=torch.int8),
‘orig_id': Scheme(shape=(), dtype=torch.int64)})

As mentioned in the "ID mapping”_ section, each partition carries auxiliary information saved
as ndata or edata such as original node/edge IDs, partition IDs, etc. Each partition not only
saves nodes/edges it owns, but also includes node/edges that are adjacent to the partition
(called HALO nodes/edges). The inner node and inner edge indicate whether a node/edge
truely belongs to the partition (value is True) oris a HALO node/edge (value is ralse).

The 10ad_partition() function loads all data at once. Users can load features or the partition
book using the dgl.distributed.load_partition_feats() and

dgl.distributed.load_partition_book() APIs respectively.

Parallel METIS partitioning

For massive graphs where parallel preprocessing is desired, DGL supports ParMETIS as one of
the choices of partitioning algorithms.

Because ParMETIS does not support heterogeneous graph, users need to conduct ID
conversion before and after running ParMETIS. Check out chapter 7.5 Heterogeneous
Graph Under The Hood for explanation.

Please make sure that the input graph to ParMETIS does not have duplicate edges (or
parallel edges) and self-loop edges.

ParMETIS Installation

ParMETIS requires METIS and GKLib. Please follow the instructions here to compile and
install GKLib. For compiling and install METIS, please follow the instructions below to clone
METIS with GIT and compile it with inté64 support.

https://docs.dgl.ai/generated/dgl.distributed.load_partition.html#dgl.distributed.load_partition
https://docs.dgl.ai/generated/dgl.distributed.load_partition_feats.html#dgl.distributed.load_partition_feats
https://docs.dgl.ai/generated/dgl.distributed.load_partition_book.html#dgl.distributed.load_partition_book
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://docs.dgl.ai/guide/distributed-hetero.html#guide-distributed-hetero
https://docs.dgl.ai/guide/distributed-hetero.html#guide-distributed-hetero
https://github.com/KarypisLab/GKlib

git clone https://github.com/KarypisLab/METIS.git
make config shared=1 cc=gcc prefix=~/local i64=1
make install

For now, we need to compile and install ParMETIS manually. We clone the DGL branch of
ParMETIS as follows:

git clone --branch dgl https://github.com/KarypisLab/ParMETIS.git

Then compile and install ParMETIS.

make config cc=mpicc prefix=~/local
make install

Before running ParMETIS, we need to set two environment variables: patH and

LD_LIBRARY_PATH .

export PATH=$PATH:$HOME/local/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/lib/

Input format

As a prerequisite, read chapter guide-distributed-hetero to understand how DGL organize
heterogeneous graph for distributed training.

The input graph for ParMETIS is stored in three files with the following names: xxx_nodes.txt ,

xxx_edges.txt and xxx_stats.txt , where xxx is a graph name.

Each row in xxx_nodes.txt stores the information of a node. Row ID is also the homogeneous
ID of a node, e.g., row O is for node O; row 1 is for node 1, etc. Each row has the following
format:

<node_type_id> <node_weight_list> <type_wise node_id>

All fields are separated by whitespace:

o <node_type_id> is an integer starting from O. Each node type is mapped to an integer. For a
homogeneous graph, its value is always 0.

e <node_weight_list> are integers (separated by whitespace) that indicate the node weights
used by ParMETIS to balance graph partitions. For homogeneous graphs, the list has only
one integer while for heterogeneous graphs with 7' node types, the list should has T’
integers. If the node belongs to node type ¢, then all the integers except the tt" one are
zero; the tt" integer is the weight of that node. ParMETIS will try to balance the total
node weight of each partition. For heterogeneous graph, it will try to distribute nodes of
the same type to all partitions. The recommended node weights are 1 for balancing the
number of nodes in each partition or node degrees for balancing the number of edges in
each partition.

o <type_wise_node_id> iS an integer representing the node ID in its own type.

Below shows an example of a node file for a heterogeneous graph with two node types. Node
type O has three nodes; node type 1 has four nodes. It uses two node weights to ensure that
ParMETIS will generate partitions with roughly the same number of nodes for type O and the
same number of nodes for type 1.

0100
0101
0102
1010
1011
1012
1013

Similarly, each row in xxx_edges.txt stores the information of an edge. Row ID is also the
homogeneous ID of an edge, e.g., row O is for edge O; row 1 is for edge 1, etc. Each row has
the following format:

<src_node_id> <dst_node_id> <type_wise_edge_id> <edge_type_id>

All fields are separated by whitespace:

e <src_node_id> is the homogeneous ID of the source node.

e «dst_node_id> is the homogeneous ID of the destination node.

o <type wise edge id> is the edge ID for the edge type.

o <edge type_id> is an integer starting from O. Each edge type is mapped to an integer. For a
homogeneous graph, its value is always 0.

xxx_stats.txt stores some basic statistics of the graph. It has only one line with three fields
separated by whitespace:

<num_nodes> <num_edges> <total_node_weights>

« num_nodes stores the total number of nodes regardless of node types.
« num_edges stores the total number of edges regardless of edge types.
o total node weights stores the number of node weights in the node file.

Run ParMETIS and output format

ParMETIS contains a command called pm_dgipart , which loads the graph stored in the three
files from the machine where pm_dglpart is invoked, distributes data to all machines in the
cluster and invokes ParMETIS to partition the graph. When it completes, it generates three
files for each partition: p<part_id>-xxx_nodes.txt , p<part_id>-xxx_edges.txt , p<part_id>-

XXx_stats.txt .

ParMETIS reassigns IDs to nodes during the partitioning. After ID reassignment, the nodes
in a partition are assigned with contiguous IDs; furthermore, the nodes of the same type
are assigned with contiguous IDs.

p<part_id>-xxx_nodes.txt Stores the node data of the partition. Each row represents a node
with the following fields:

<node_id> <node_type_id> <node_weight_list> <type_wise_node_id>

o <node_id> is the homogeneous node ID after ID reassignment.

e <node_type_id> is the node type ID.

¢ <node weight list> is the node weight used by ParMETIS (copied from the input file).
o <type wise_node_id> is an integer representing the node ID in its own type.

p<part_id>-xxx_edges.txt Stores the edge data of the partition. Each row represents an edge
with the following fields:

<src_id> <dst_id> <orig_src_id> <orig_dst_id> <type_wise_edge_id> <edge_type_id>

o <«src_id> is the homogeneous ID of the source node after ID reassignment.

o «dst_id> is the homogeneous ID of the destination node after ID reassignment.
o <orig src_id> is the homogeneous ID of the source node in the input graph.

o <orig dst_id> is the homogeneous ID of the destination node in the input graph.
o <type_wise_edge_id> is the edge ID in its own type.

e <edge_type_id> is the edge type ID.

When invoking pm_dgipart , the three input files: xxx_nodes.txt , xxx_edges.txt , xxx_stats.txt
should be located in the directory where pm_dgipart runs. The following command run four
ParMETIS processes to partition the graph named xxx into eight partitions (each process
handles two partitions).

mpirun -np 4 pm_dglpart xxx 2

The output files from ParMETIS then need to be converted to the partition assignment
format to in order to run subsequent preprocessing steps.

https://docs.dgl.ai/guide/distributed-preprocessing.html#guide-distributed-prep-partition
https://docs.dgl.ai/guide/distributed-preprocessing.html#guide-distributed-prep-partition

