
 / User Guide / Chapter 7: Distributed Training / 7.4 Advanced Graph Par��oning

7.4 Advanced Graph Partitioning

The chapter covers some of the advanced topics for graph par��oning.

METIS partition algorithm

METIS is a state-of-the-art graph par��oning algorithm that can generate par��ons with
minimal number of cross-par��on edges, making it suitable for distributed message passing
where the amount of network communica�on is propor�onal to the number of cross-
par��on edges. DGL has integrated METIS as the default par��oning algorithm in its
dgl.distributed.partition_graph() API.

Output format

Regardless of the par��oning algorithm in use, the par��oned results are stored in data files
organized as follows:

When distributed to a cluster, the metadata JSON should be copied to all the machines while
the partX folders should be dispatched accordingly.

DGL provides a dgl.distributed.load_partition() func�on to load one par��on for inspec�on.

data_root_dir/
 |-- graph_name.json # partition configuration file in JSON
 |-- part0/ # data for partition 0
 | |-- node_feats.dgl # node features stored in binary format
 | |-- edge_feats.dgl # edge features stored in binary format
 | |-- graph.dgl # graph structure of this partition stored in binary format
 |
 |-- part1/ # data for partition 1
 | |-- node_feats.dgl
 | |-- edge_feats.dgl
 | |-- graph.dgl
 |
 |-- ... # data for other partitions

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/distributed.html
http://glaros.dtc.umn.edu/gkhome/views/metis
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.load_partition.html#dgl.distributed.load_partition

As men�oned in the `ID mapping`_ sec�on, each par��on carries auxiliary informa�on saved
as ndata or edata such as original node/edge IDs, par��on IDs, etc. Each par��on not only
saves nodes/edges it owns, but also includes node/edges that are adjacent to the par��on
(called HALO nodes/edges). The inner_node and inner_edge indicate whether a node/edge
truely belongs to the par��on (value is True) or is a HALO node/edge (value is False).

The load_partition() func�on loads all data at once. Users can load features or the par��on
book using the dgl.distributed.load_partition_feats() and
dgl.distributed.load_partition_book() APIs respec�vely.

Parallel METIS partitioning

For massive graphs where parallel preprocessing is desired, DGL supports ParMETIS as one of
the choices of par��oning algorithms.

 Note

Because ParMETIS does not support heterogeneous graph, users need to conduct ID
conversion before and a�er running ParMETIS. Check out chapter 7.5 Heterogeneous
Graph Under The Hood for explana�on.

 Note

Please make sure that the input graph to ParMETIS does not have duplicate edges (or
parallel edges) and self-loop edges.

ParMETIS Installation

ParMETIS requires METIS and GKLib. Please follow the instruc�ons here to compile and
install GKLib. For compiling and install METIS, please follow the instruc�ons below to clone
METIS with GIT and compile it with int64 support.

>>> import dgl
>>> # load partition 0
>>> part_data = dgl.distributed.load_partition('data_root_dir/graph_name.json', 0)
>>> g, nfeat, efeat, partition_book, graph_name, ntypes, etypes = part_data # unpack
>>> print(g)
Graph(num_nodes=966043, num_edges=34270118,
 ndata_schemes={'orig_id': Scheme(shape=(), dtype=torch.int64),
 'part_id': Scheme(shape=(), dtype=torch.int64),
 '_ID': Scheme(shape=(), dtype=torch.int64),
 'inner_node': Scheme(shape=(), dtype=torch.int32)}
 edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64),
 'inner_edge': Scheme(shape=(), dtype=torch.int8),
 'orig_id': Scheme(shape=(), dtype=torch.int64)})

https://docs.dgl.ai/generated/dgl.distributed.load_partition.html#dgl.distributed.load_partition
https://docs.dgl.ai/generated/dgl.distributed.load_partition_feats.html#dgl.distributed.load_partition_feats
https://docs.dgl.ai/generated/dgl.distributed.load_partition_book.html#dgl.distributed.load_partition_book
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://docs.dgl.ai/guide/distributed-hetero.html#guide-distributed-hetero
https://docs.dgl.ai/guide/distributed-hetero.html#guide-distributed-hetero
https://github.com/KarypisLab/GKlib

For now, we need to compile and install ParMETIS manually. We clone the DGL branch of
ParMETIS as follows:

Then compile and install ParMETIS.

Before running ParMETIS, we need to set two environment variables: PATH and
LD_LIBRARY_PATH .

Input format

 Note

As a prerequisite, read chapter guide-distributed-hetero to understand how DGL organize
heterogeneous graph for distributed training.

The input graph for ParMETIS is stored in three files with the following names: xxx_nodes.txt ,
xxx_edges.txt and xxx_stats.txt , where xxx is a graph name.

Each row in xxx_nodes.txt stores the informa�on of a node. Row ID is also the homogeneous
ID of a node, e.g., row 0 is for node 0; row 1 is for node 1, etc. Each row has the following
format:

All fields are separated by whitespace:

git clone https://github.com/KarypisLab/METIS.git
make config shared=1 cc=gcc prefix=~/local i64=1
make install

git clone --branch dgl https://github.com/KarypisLab/ParMETIS.git

make config cc=mpicc prefix=~/local
make install

export PATH=$PATH:$HOME/local/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/lib/

<node_type_id> <node_weight_list> <type_wise_node_id>

<node_type_id> is an integer star�ng from 0. Each node type is mapped to an integer. For a
homogeneous graph, its value is always 0.
<node_weight_list> are integers (separated by whitespace) that indicate the node weights

used by ParMETIS to balance graph par��ons. For homogeneous graphs, the list has only
one integer while for heterogeneous graphs with node types, the list should has
integers. If the node belongs to node type , then all the integers except the one are
zero; the integer is the weight of that node. ParMETIS will try to balance the total
node weight of each par��on. For heterogeneous graph, it will try to distribute nodes of
the same type to all par��ons. The recommended node weights are 1 for balancing the
number of nodes in each par��on or node degrees for balancing the number of edges in
each par��on.
<type_wise_node_id> is an integer represen�ng the node ID in its own type.

Below shows an example of a node file for a heterogeneous graph with two node types. Node
type 0 has three nodes; node type 1 has four nodes. It uses two node weights to ensure that
ParMETIS will generate par��ons with roughly the same number of nodes for type 0 and the
same number of nodes for type 1.

Similarly, each row in xxx_edges.txt stores the informa�on of an edge. Row ID is also the
homogeneous ID of an edge, e.g., row 0 is for edge 0; row 1 is for edge 1, etc. Each row has
the following format:

All fields are separated by whitespace:

<src_node_id> is the homogeneous ID of the source node.
<dst_node_id> is the homogeneous ID of the des�na�on node.
<type_wise_edge_id> is the edge ID for the edge type.
<edge_type_id> is an integer star�ng from 0. Each edge type is mapped to an integer. For a

homogeneous graph, its value is always 0.

xxx_stats.txt stores some basic sta�s�cs of the graph. It has only one line with three fields
separated by whitespace:

T T

t t
th

t
th

0 1 0 0
0 1 0 1
0 1 0 2
1 0 1 0
1 0 1 1
1 0 1 2
1 0 1 3

<src_node_id> <dst_node_id> <type_wise_edge_id> <edge_type_id>

num_nodes stores the total number of nodes regardless of node types.
num_edges stores the total number of edges regardless of edge types.
total_node_weights stores the number of node weights in the node file.

Run ParMETIS and output format

ParMETIS contains a command called pm_dglpart , which loads the graph stored in the three
files from the machine where pm_dglpart is invoked, distributes data to all machines in the
cluster and invokes ParMETIS to par��on the graph. When it completes, it generates three
files for each par��on: p<part_id>-xxx_nodes.txt , p<part_id>-xxx_edges.txt , p<part_id>-

xxx_stats.txt .

 Note

ParMETIS reassigns IDs to nodes during the par��oning. A�er ID reassignment, the nodes
in a par��on are assigned with con�guous IDs; furthermore, the nodes of the same type
are assigned with con�guous IDs.

p<part_id>-xxx_nodes.txt stores the node data of the par��on. Each row represents a node
with the following fields:

<node_id> is the homogeneous node ID a�er ID reassignment.
<node_type_id> is the node type ID.
<node_weight_list> is the node weight used by ParMETIS (copied from the input file).
<type_wise_node_id> is an integer represen�ng the node ID in its own type.

p<part_id>-xxx_edges.txt stores the edge data of the par��on. Each row represents an edge
with the following fields:

<src_id> is the homogeneous ID of the source node a�er ID reassignment.
<dst_id> is the homogeneous ID of the des�na�on node a�er ID reassignment.
<orig_src_id> is the homogeneous ID of the source node in the input graph.
<orig_dst_id> is the homogeneous ID of the des�na�on node in the input graph.
<type_wise_edge_id> is the edge ID in its own type.

<num_nodes> <num_edges> <total_node_weights>

<node_id> <node_type_id> <node_weight_list> <type_wise_node_id>

<src_id> <dst_id> <orig_src_id> <orig_dst_id> <type_wise_edge_id> <edge_type_id>

<edge_type_id> is the edge type ID.

When invoking pm_dglpart , the three input files: xxx_nodes.txt , xxx_edges.txt , xxx_stats.txt

should be located in the directory where pm_dglpart runs. The following command run four
ParMETIS processes to par��on the graph named xxx into eight par��ons (each process
handles two par��ons).

The output files from ParMETIS then need to be converted to the par��on assignment
format to in order to run subsequent preprocessing steps.

mpirun -np 4 pm_dglpart xxx 2

https://docs.dgl.ai/guide/distributed-preprocessing.html#guide-distributed-prep-partition
https://docs.dgl.ai/guide/distributed-preprocessing.html#guide-distributed-prep-partition

