@ / User Guide / Chapter 7: Distributed Training / 7.3 Programming APIs

7.3 Programming APIs

(FA3ZhiR)

This section covers the core python components commonly used in a training script. DGL
provides three distributed data structures and various APIs for initialization, distributed
sampling and workload split.

« DistGraph for accessing structure and feature of a distributedly stored graph.

« DistTensor for accessing node/edge feature tensor that is partitioned across machines.

» DistEmbedding for accessing learnable node/edge embedding tensor that is partitioned
across machines.

Initialization of the DGL distributed module

dgl.distributed.initialize() initializes the distributed module. If invoked by a trainer, this API
creates sampler processes and builds connections with graph servers; if invoked by graph
server, this APl starts a service loop to listen to trainer/sampler requests. The APl must be
called before torch.distributed.init_process_group() and any other dgl.distributed APIs as
shown in the order below:

dgl.distributed.initialize('ip_config.txt")
th.distributed.init_process_group(backend="gloo")

If the training script contains user-defined functions (UDFs) that have to be invoked on
the servers (see the section of DistTensor and DistEmbedding for more details), these
UDFs have to be declared before initialize() .

Distributed graph

pistGraph is a Python class to access the graph structure and node/edge features in a cluster
of machines. Each machine is responsible for one and only one partition. It loads the partition
data (the graph structure and the node data and edge data in the partition) and makes it
accessible to all trainers in the cluster. pisteraph provides a small subset of bpeLeraph APIs for
data access.

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/distributed.html
https://docs.dgl.ai/guide_cn/distributed-apis.html#guide-cn-distributed-apis
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistEmbedding
https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize
https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph

Distributed mode vs. standalone mode

pistGraph can run in two modes: distributed mode and standalone mode. When a user
executes a training script in a Python command line or Jupyter Notebook, it runs in a
standalone mode. That is, it runs all computation in a single process and does not
communicate with any other processes. Thus, the standalone mode requires the input graph
to have only one partition. This mode is mainly used for development and testing (e.g.,
develop and run the code in Jupyter Notebook). When a user executes a training script with a
launch script (see the section of launch script), pistGraph runs in the distributed mode. The
launch tool starts servers (node/edge feature access and graph sampling) behind the scene
and loads the partition data in each machine automatically. pistGraph connects with the
servers in the cluster of machines and access them through the network.

DistGraph creation

In the distributed mode, the creation of bpisteraph requires the graph name given during
graph partitioning. The graph name identifies the graph loaded in the cluster.

import dgl
g = dgl.distributed.DistGraph('graph_name")

When running in the standalone mode, it loads the graph data in the local machine.
Therefore, users need to provide the partition configuration file, which contains all
information about the input graph.

import dgl
g = dgl.distributed.DistGraph('graph_name', part_config="data/graph_name.json")

DGL only allows one single bpistcraph object. The behavior of destroying a DistGraph and
creating a new one is undefined.

Accessing graph structure

pistGraph provides a set of APIs to access the graph structure. Currently, most APIs provide
graph information, such as the number of nodes and edges. The main use case of DistGraph is
to run sampling APIs to support mini-batch training (see Distributed sampling).

print(g.num_nodes())

https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph

Access node/edge data

Like pGLGraph , DistGraph provides ndata and edata to access datain nodes and edges. The
difference is that ndata / edata in bpistGraph returns bpistTensor , instead of the tensor of the
underlying framework. Users can also assign a new bpistTensor tO DistGraph as node data or
edge data.

g.ndata['train_mask'] # <dgl.distributed.dist_graph.DistTensor at 0x7fec820937b8>
g.ndata['train_mask'][@] # tensor([1], dtype=torch.uint8)

Distributed Tensor

As mentioned earlier, DGL shards node/edge features and stores them in a cluster of
machines. DGL provides distributed tensors with a tensor-like interface to access the
partitioned node/edge features in the cluster. In the distributed setting, DGL only supports
dense node/edge features.

DistTensor Manages the dense tensors partitioned and stored in multiple machines. Right
now, a distributed tensor has to be associated with nodes or edges of a graph. In other words,
the number of rows in a DistTensor has to be the same as the number of nodes or the number
of edges in a graph. The following code creates a distributed tensor. In addition to the shape
and dtype for the tensor, a user can also provide a unique tensor name. This name is useful if
a user wants to reference a persistent distributed tensor (the one exists in the cluster even if
the pistTensor object disappears).

tensor = dgl.distributed.DistTensor((g.num_nodes(), 10), th.float32, name="test')

DistTensor creation is a synchronized operation. All trainers have to invoke the creation
and the creation succeeds only when all trainers call it.

A user can add a pistTensor to a DpistGraph oObject as one of the node data or edge data.

g.ndata['feat'] = tensor

https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph

The node data name and the tensor name do not have to be the same. The former
identifies node data from pisteraph (in the trainer process) while the latter identifies a
distributed tensor in DGL servers.

pistTensor has the same APIs as regular tensors to access its metadata, such as the shape
and dtype. It also supports indexed reads and writes but does not support computation
operators, such as sum and mean.

data = g.ndata['feat'][[1, 2, 3]]
print(data)
g.ndata['feat'][[3, 4, 5]] = data

Currently, DGL does not provide protection for concurrent writes from multiple trainers
when a machine runs multiple servers. This may result in data corruption. One way to
avoid concurrent writes to the same row of data is to run one server process on a
machine.

Distributed DistEmbedding

DGL provides pistembedding to support transductive models that require node embeddings.
Creating distributed embeddings is very similar to creating distributed tensors.

def initializer(shape, dtype):
arr = th.zeros(shape, dtype=dtype)
arr.uniform_(-1, 1)
return arr
emb = dgl.distributed.DistEmbedding(g.num_nodes(), 10, init_func=initializer)

Internally, distributed embeddings are built on top of distributed tensors, and, thus, has very
similar behaviors to distributed tensors. For example, when embeddings are created, they are
sharded and stored across all machines in the cluster. It can be uniquely identified by a name.

The initializer function is invoked in the server process. Therefore, it has to be declared
before dgl.distributed.initialize .

Because the embeddings are part of the model, a user has to attach them to an optimizer for
mini-batch training. Currently, DGL provides a sparse Adagrad optimizer sparseadagrad (DGL
will add more optimizers for sparse embeddings later). Users need to collect all distributed
embeddings from a model and pass them to the sparse optimizer. If a model has both node

https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistEmbedding
https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize

embeddings and regular dense model parameters and users want to perform sparse updates
on the embeddings, they need to create two optimizers, one for node embeddings and the
other for dense model parameters, as shown in the code below:

sparse_optimizer = dgl.distributed.SparseAdagrad([emb], 1lr=1rl)
optimizer = th.optim.Adam(model.parameters(), lr=1r2)

feats = emb(nids)

loss = model(feats)

loss.backward()

optimizer.step()

sparse_optimizer.step()

DistEmbedding does not inherit torch.nn.Module , SO we recommend using it outside of your
own NN module.

Distributed sampling

DGL provides two levels of APIs for sampling nodes and edges to generate mini-batches (see
the section of mini-batch training). The low-level APIs require users to write code to explicitly
define how a layer of nodes are sampled (e.g., using dgl.sampling.sample_neighbors()). The
high-level sampling APIs implement a few popular sampling algorithms for node classification
and link prediction tasks (e.g., NodeDataLoader and EdgeDataLoader).

The distributed sampling module follows the same design and provides two levels of sampling
APIs. For the lower-level sampling API, it provides sample_neighbors() for distributed
neighborhood sampling on bpistGraph . In addition, DGL provides a distributed DatalLoader

(pistpataLoader) for distributed sampling. The distributed DatalLoader has the same interface
as Pytorch Dataloader except that users cannot specify the number of worker processes
when creating a dataloader. The worker processes are created in dgl.distributed.initialize() .

When running dgl.distributed.sample_neighbors() ON DistGraph , the sampler cannot runin
Pytorch Dataloader with multiple worker processes. The main reason is that Pytorch
Dataloader creates new sampling worker processes in every epoch, which leads to
creating and destroying bpistGraph objects many times.

When using the low-level API, the sampling code is similar to single-process sampling. The
only difference is that users need to use dgl.distributed.sample_neighbors() and

DistDatalLoader .

https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistEmbedding
https://docs.dgl.ai/generated/dgl.sampling.sample_neighbors.html#dgl.sampling.sample_neighbors
https://docs.dgl.ai/generated/dgl.distributed.sample_neighbors.html#dgl.distributed.sample_neighbors
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistDataLoader
https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize
https://docs.dgl.ai/generated/dgl.distributed.sample_neighbors.html#dgl.distributed.sample_neighbors
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/generated/dgl.distributed.sample_neighbors.html#dgl.distributed.sample_neighbors
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistDataLoader

def sample_blocks(seeds):
seeds = th.LongTensor(np.asarray(seeds))
blocks = []
for fanout in [10, 25]:
frontier = dgl.distributed.sample_neighbors(g, seeds, fanout, replace=True)
block = dgl.to_block(frontier, seeds)
seeds = block.srcdata[dgl.NID]
blocks.insert(0, block)
return blocks
dataloader = dgl.distributed.DistDataloader(dataset=train_nid,
batch_size=batch_size,
collate_fn=sample_blocks,
shuffle=True)
for batch in dataloader:

The high-level sampling APIs (NodeDataLoader and EdgebataLoader) has distributed
counterparts (pistNodeDataLoader and pistEdgeDataLoader). The code is exactly the same as
single-process sampling otherwise.

sampler = dgl.sampling.MultilLayerNeighborSampler([10, 25])

dataloader = dgl.sampling.DistNodeDatalLoader(g, train_nid, sampler,
batch_size=batch_size, shuffle=True)

for batch in dataloader:

Split workloads

To train a model, users first need to split the dataset into training, validation and test sets. For
distributed training, this step is usually done before we invoke

dgl.distributed.partition_graph() to partition a graph. We recommend to store the data split
in boolean arrays as node data or edge data. For node classification tasks, the length of these
boolean arrays is the number of nodes in a graph and each of their elements indicates the
existence of a node in a training/validation/test set. Similar boolean arrays should be used for
link prediction tasks. dgl.distributed.partition_graph() splits these boolean arrays (because
they are stored as the node data or edge data of the graph) based on the graph partitioning
result and store them with graph partitions.

During distributed training, users need to assign training nodes/edges to each trainer.
Similarly, we also need to split the validation and test set in the same way. DGL provides
node_split() and edge_split() to split the training, validation and test set at runtime for
distributed training. The two functions take the boolean arrays constructed before graph
partitioning as input, split them and return a portion for the local trainer. By default, they
ensure that all portions have the same number of nodes/edges. This is important for
synchronous SGD, which assumes each trainer has the same number of mini-batches.

The example below splits the training set and returns a subset of nodes for the local process.

https://docs.dgl.ai/generated/dgl.dataloading.DistNodeDataLoader.html#dgl.dataloading.DistNodeDataLoader
https://docs.dgl.ai/generated/dgl.dataloading.DistEdgeDataLoader.html#dgl.dataloading.DistEdgeDataLoader
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.node_split.html#dgl.distributed.node_split
https://docs.dgl.ai/generated/dgl.distributed.edge_split.html#dgl.distributed.edge_split

train_nids = dgl.distributed.node_split(g.ndata['train_mask'])

