
 / User Guide / Chapter 7: Distributed Training / 7.3 Programming APIs

7.3 Programming APIs

(中文版)

This sec�on covers the core python components commonly used in a training script. DGL
provides three distributed data structures and various APIs for ini�aliza�on, distributed
sampling and workload split.

DistGraph for accessing structure and feature of a distributedly stored graph.
DistTensor for accessing node/edge feature tensor that is par��oned across machines.
DistEmbedding for accessing learnable node/edge embedding tensor that is par��oned

across machines.

Initialization of the DGL distributed module

dgl.distributed.initialize() ini�alizes the distributed module. If invoked by a trainer, this API
creates sampler processes and builds connec�ons with graph servers; if invoked by graph
server, this API starts a service loop to listen to trainer/sampler requests. The API must be
called before torch.distributed.init_process_group() and any other dgl.distributed APIs as
shown in the order below:

 Note

If the training script contains user-defined func�ons (UDFs) that have to be invoked on
the servers (see the sec�on of DistTensor and DistEmbedding for more details), these
UDFs have to be declared before initialize() .

Distributed graph

DistGraph is a Python class to access the graph structure and node/edge features in a cluster
of machines. Each machine is responsible for one and only one par��on. It loads the par��on
data (the graph structure and the node data and edge data in the par��on) and makes it
accessible to all trainers in the cluster. DistGraph provides a small subset of DGLGraph APIs for
data access.

dgl.distributed.initialize('ip_config.txt')
th.distributed.init_process_group(backend='gloo')

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/distributed.html
https://docs.dgl.ai/guide_cn/distributed-apis.html#guide-cn-distributed-apis
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistEmbedding
https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize
https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph

Distributed mode vs. standalone mode

DistGraph can run in two modes: distributed mode and standalone mode. When a user
executes a training script in a Python command line or Jupyter Notebook, it runs in a
standalone mode. That is, it runs all computa�on in a single process and does not
communicate with any other processes. Thus, the standalone mode requires the input graph
to have only one par��on. This mode is mainly used for development and tes�ng (e.g.,
develop and run the code in Jupyter Notebook). When a user executes a training script with a
launch script (see the sec�on of launch script), DistGraph runs in the distributed mode. The
launch tool starts servers (node/edge feature access and graph sampling) behind the scene
and loads the par��on data in each machine automa�cally. DistGraph connects with the
servers in the cluster of machines and access them through the network.

DistGraph creation

In the distributed mode, the crea�on of DistGraph requires the graph name given during
graph par��oning. The graph name iden�fies the graph loaded in the cluster.

When running in the standalone mode, it loads the graph data in the local machine.
Therefore, users need to provide the par��on configura�on file, which contains all
informa�on about the input graph.

 Note

DGL only allows one single DistGraph object. The behavior of destroying a DistGraph and
crea�ng a new one is undefined.

Accessing graph structure

DistGraph provides a set of APIs to access the graph structure. Currently, most APIs provide
graph informa�on, such as the number of nodes and edges. The main use case of DistGraph is
to run sampling APIs to support mini-batch training (see Distributed sampling).

import dgl
g = dgl.distributed.DistGraph('graph_name')

import dgl
g = dgl.distributed.DistGraph('graph_name', part_config='data/graph_name.json')

print(g.num_nodes())

https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph

Access node/edge data

Like DGLGraph , DistGraph provides ndata and edata to access data in nodes and edges. The
difference is that ndata / edata in DistGraph returns DistTensor , instead of the tensor of the
underlying framework. Users can also assign a new DistTensor to DistGraph as node data or
edge data.

Distributed Tensor

As men�oned earlier, DGL shards node/edge features and stores them in a cluster of
machines. DGL provides distributed tensors with a tensor-like interface to access the
par��oned node/edge features in the cluster. In the distributed se�ng, DGL only supports
dense node/edge features.

DistTensor manages the dense tensors par��oned and stored in mul�ple machines. Right
now, a distributed tensor has to be associated with nodes or edges of a graph. In other words,
the number of rows in a DistTensor has to be the same as the number of nodes or the number
of edges in a graph. The following code creates a distributed tensor. In addi�on to the shape
and dtype for the tensor, a user can also provide a unique tensor name. This name is useful if
a user wants to reference a persistent distributed tensor (the one exists in the cluster even if
the DistTensor object disappears).

 Note

DistTensor crea�on is a synchronized opera�on. All trainers have to invoke the crea�on
and the crea�on succeeds only when all trainers call it.

A user can add a DistTensor to a DistGraph object as one of the node data or edge data.

 Note

g.ndata['train_mask'] # <dgl.distributed.dist_graph.DistTensor at 0x7fec820937b8>
g.ndata['train_mask'][0] # tensor([1], dtype=torch.uint8)

tensor = dgl.distributed.DistTensor((g.num_nodes(), 10), th.float32, name='test')

g.ndata['feat'] = tensor

https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph

The node data name and the tensor name do not have to be the same. The former
iden�fies node data from DistGraph (in the trainer process) while the la�er iden�fies a
distributed tensor in DGL servers.

DistTensor has the same APIs as regular tensors to access its metadata, such as the shape
and dtype. It also supports indexed reads and writes but does not support computa�on
operators, such as sum and mean.

 Note

Currently, DGL does not provide protec�on for concurrent writes from mul�ple trainers
when a machine runs mul�ple servers. This may result in data corrup�on. One way to
avoid concurrent writes to the same row of data is to run one server process on a
machine.

Distributed DistEmbedding

DGL provides DistEmbedding to support transduc�ve models that require node embeddings.
Crea�ng distributed embeddings is very similar to crea�ng distributed tensors.

Internally, distributed embeddings are built on top of distributed tensors, and, thus, has very
similar behaviors to distributed tensors. For example, when embeddings are created, they are
sharded and stored across all machines in the cluster. It can be uniquely iden�fied by a name.

 Note

The ini�alizer func�on is invoked in the server process. Therefore, it has to be declared
before dgl.distributed.initialize .

Because the embeddings are part of the model, a user has to a�ach them to an op�mizer for
mini-batch training. Currently, DGL provides a sparse Adagrad op�mizer SparseAdagrad (DGL
will add more op�mizers for sparse embeddings later). Users need to collect all distributed
embeddings from a model and pass them to the sparse op�mizer. If a model has both node

data = g.ndata['feat'][[1, 2, 3]]
print(data)
g.ndata['feat'][[3, 4, 5]] = data

def initializer(shape, dtype):
 arr = th.zeros(shape, dtype=dtype)
 arr.uniform_(-1, 1)
 return arr
emb = dgl.distributed.DistEmbedding(g.num_nodes(), 10, init_func=initializer)

https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistTensor
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistEmbedding
https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize

embeddings and regular dense model parameters and users want to perform sparse updates
on the embeddings, they need to create two op�mizers, one for node embeddings and the
other for dense model parameters, as shown in the code below:

 Note

DistEmbedding does not inherit torch.nn.Module , so we recommend using it outside of your
own NN module.

Distributed sampling

DGL provides two levels of APIs for sampling nodes and edges to generate mini-batches (see
the sec�on of mini-batch training). The low-level APIs require users to write code to explicitly
define how a layer of nodes are sampled (e.g., using dgl.sampling.sample_neighbors()). The
high-level sampling APIs implement a few popular sampling algorithms for node classifica�on
and link predic�on tasks (e.g., NodeDataLoader and EdgeDataLoader).

The distributed sampling module follows the same design and provides two levels of sampling
APIs. For the lower-level sampling API, it provides sample_neighbors() for distributed
neighborhood sampling on DistGraph . In addi�on, DGL provides a distributed DataLoader
(DistDataLoader) for distributed sampling. The distributed DataLoader has the same interface
as Pytorch DataLoader except that users cannot specify the number of worker processes
when crea�ng a dataloader. The worker processes are created in dgl.distributed.initialize() .

 Note

When running dgl.distributed.sample_neighbors() on DistGraph , the sampler cannot run in
Pytorch DataLoader with mul�ple worker processes. The main reason is that Pytorch
DataLoader creates new sampling worker processes in every epoch, which leads to
crea�ng and destroying DistGraph objects many �mes.

When using the low-level API, the sampling code is similar to single-process sampling. The
only difference is that users need to use dgl.distributed.sample_neighbors() and
DistDataLoader .

sparse_optimizer = dgl.distributed.SparseAdagrad([emb], lr=lr1)
optimizer = th.optim.Adam(model.parameters(), lr=lr2)
feats = emb(nids)
loss = model(feats)
loss.backward()
optimizer.step()
sparse_optimizer.step()

https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistEmbedding
https://docs.dgl.ai/generated/dgl.sampling.sample_neighbors.html#dgl.sampling.sample_neighbors
https://docs.dgl.ai/generated/dgl.distributed.sample_neighbors.html#dgl.distributed.sample_neighbors
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistDataLoader
https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize
https://docs.dgl.ai/generated/dgl.distributed.sample_neighbors.html#dgl.distributed.sample_neighbors
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://docs.dgl.ai/generated/dgl.distributed.sample_neighbors.html#dgl.distributed.sample_neighbors
https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistDataLoader

The high-level sampling APIs (NodeDataLoader and EdgeDataLoader) has distributed
counterparts (DistNodeDataLoader and DistEdgeDataLoader). The code is exactly the same as
single-process sampling otherwise.

Split workloads

To train a model, users first need to split the dataset into training, valida�on and test sets. For
distributed training, this step is usually done before we invoke
dgl.distributed.partition_graph() to par��on a graph. We recommend to store the data split

in boolean arrays as node data or edge data. For node classifica�on tasks, the length of these
boolean arrays is the number of nodes in a graph and each of their elements indicates the
existence of a node in a training/valida�on/test set. Similar boolean arrays should be used for
link predic�on tasks. dgl.distributed.partition_graph() splits these boolean arrays (because
they are stored as the node data or edge data of the graph) based on the graph par��oning
result and store them with graph par��ons.

During distributed training, users need to assign training nodes/edges to each trainer.
Similarly, we also need to split the valida�on and test set in the same way. DGL provides
node_split() and edge_split() to split the training, valida�on and test set at run�me for

distributed training. The two func�ons take the boolean arrays constructed before graph
par��oning as input, split them and return a por�on for the local trainer. By default, they
ensure that all por�ons have the same number of nodes/edges. This is important for
synchronous SGD, which assumes each trainer has the same number of mini-batches.

The example below splits the training set and returns a subset of nodes for the local process.

def sample_blocks(seeds):
 seeds = th.LongTensor(np.asarray(seeds))
 blocks = []
 for fanout in [10, 25]:
 frontier = dgl.distributed.sample_neighbors(g, seeds, fanout, replace=True)
 block = dgl.to_block(frontier, seeds)
 seeds = block.srcdata[dgl.NID]
 blocks.insert(0, block)
 return blocks
 dataloader = dgl.distributed.DistDataLoader(dataset=train_nid,
 batch_size=batch_size,
 collate_fn=sample_blocks,
 shuffle=True)
 for batch in dataloader:
 ...

sampler = dgl.sampling.MultiLayerNeighborSampler([10, 25])
dataloader = dgl.sampling.DistNodeDataLoader(g, train_nid, sampler,
 batch_size=batch_size, shuffle=True)
for batch in dataloader:
 ...

https://docs.dgl.ai/generated/dgl.dataloading.DistNodeDataLoader.html#dgl.dataloading.DistNodeDataLoader
https://docs.dgl.ai/generated/dgl.dataloading.DistEdgeDataLoader.html#dgl.dataloading.DistEdgeDataLoader
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.node_split.html#dgl.distributed.node_split
https://docs.dgl.ai/generated/dgl.distributed.edge_split.html#dgl.distributed.edge_split

train_nids = dgl.distributed.node_split(g.ndata['train_mask'])

