
 / User Guide / Chapter 7: Distributed Training
/ 7.2 Tools for launching distributed training/inference

7.2 Tools for launching distributed
training/inference

DGL provides a launching script launch.py under dgl/tools to launch a distributed training job
in a cluster. This script makes the following assump�ons:

The par��oned data and the training script have been provisioned to the cluster or a
shared storage (e.g., NFS) accessible to all the worker machines.
The machine that invokes launch.py has passwordless ssh access to all other machines.
The launching machine must be one of the worker machines.

Below shows an example of launching a distributed training job in a cluster.

The argument specifies the workspace path, where to find the par��on metadata JSON and
machine IP configura�ons, how many trainer, sampler, and server processes to be launched
on each machine. The last argument is the command to launch which is usually the model
training/evalua�on script.

Each line of ip_config.txt is the IP address of a machine in the cluster. Op�onally, the IP
address can be followed by a network port (default is 30050). A typical example is as follows:

The workspace specified in the launch script is the working directory in the machines, which
contains the training script, the IP configura�on file, the par��on configura�on file as well as
the graph par��ons. All paths of the files should be specified as rela�ve paths to the

python3 tools/launch.py \
 --workspace /my/workspace/ \
 --num_trainers 2 \
 --num_samplers 4 \
 --num_servers 1 \
 --part_config data/mygraph.json \
 --ip_config ip_config.txt \
 "python3 my_train_script.py"

172.31.19.1
172.31.23.205
172.31.29.175
172.31.16.98

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/distributed.html
https://github.com/dmlc/dgl/tree/master/tools

workspace.

The launch script creates a specified number of training jobs (--num_trainers) on each
machine. In addi�on, users need to specify the number of sampler processes for each trainer
(--num_samplers).

Launching a Persistent Graph Server

Warning

Persistent graph server is an experimental feature. It is only available when the net_etype

argument of dgl.distributed.initialize() is "tensorpipe" .

Normally, all the server and trainer processes will be killed a�er the training is done.
However, some�mes users may wish to try out different models or training configura�ons
against the same graph data. Repe��vely loading the same graph data could be costly. To
avoid that, DGL allows users to launch a persistent graph server to be shared across mul�ple
training jobs. A persistent graph server will stay alive even all training workers have finished
and exited. Below shows an example of launching a persistent graph server:

We first launch the graph server together with the first group of training workers.

Pay a�en�on to the --keep_alive op�on, which indicates the server should stay alive a�er
workers have finished. --server_name is the given name of the server which will be referred
when launching new training jobs.

Then launch trainers as normal which will automa�cally connect to the exis�ng persistent
server.

python3 tools/launch.py \
 --workspace /my/workspace/ \
 --num_trainers 2 \
 --num_samplers 4 \
 --num_servers 1 \
 --part_config data/mygraph.json \
 --ip_config ip_config.txt \
 --keep_alive \
 --server_name long_live \
 "python3 my_train_script.py"

https://docs.dgl.ai/generated/dgl.distributed.initialize.html#dgl.distributed.initialize

There are several restric�ons when using persistent graph servers:

All the arguments for launch.py should be kept same as previous launch. And below
arguments for specific training script should be kept same as well: --graph-name , --

ip_config .
There is no data consistency control on the server side so data update must be carefully
handled. For example, it is recommended to avoid having mul�ple groups of trainers
update node/edge embeddings at the same �me.

python3 tools/launch.py \
 --workspace /my/workspace/ \
 --num_trainers 2 \
 --num_samplers 4 \
 --num_servers 1 \
 --part_config data/mygraph.json \
 --ip_config ip_config.txt \
 "python3 my_train_script.py"

