
 / User Guide / Chapter 7: Distributed Training / 7.1 Data Preprocessing

7.1 Data Preprocessing

Before launching training jobs, DGL requires the input data to be par��oned and distributed
to the target machines. In order to handle different scales of graphs, DGL provides 2
par��oning approaches:

A par��oning API for graphs that can fit in a single machine memory.
A distributed par��on pipeline for graphs beyond a single machine capacity.

7.1.1 Partitioning API

For rela�vely small graphs, DGL provides a par��oning API partition_graph() that par��ons
an in-memory DGLGraph object. It supports mul�ple par��oning algorithms such as random
par��oning and Me�s. The benefit of Me�s par��oning is that it can generate par��ons with
minimal edge cuts to reduce network communica�on for distributed training and inference.
DGL uses the latest version of Me�s with the op�ons op�mized for the real-world graphs
with power-law distribu�on. A�er par��oning, the API constructs the par��oned results in a
format that is easy to load during the training. For example,

will outputs the following data file.

import dgl

g = ... # create or load a DGLGraph object
dgl.distributed.partition_graph(g, 'mygraph', 2, 'data_root_dir')

data_root_dir/
 |-- mygraph.json # metadata JSON. File name is the given graph name.
 |-- part0/ # data for partition 0
 | |-- node_feats.dgl # node features stored in binary format
 | |-- edge_feats.dgl # edge features stored in binary format
 | |-- graph.dgl # graph structure of this partition stored in binary format
 |
 |-- part1/ # data for partition 1
 |-- node_feats.dgl
 |-- edge_feats.dgl
 |-- graph.dgl

https://docs.dgl.ai/index.html
https://docs.dgl.ai/guide/index.html
https://docs.dgl.ai/guide/distributed.html
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph
http://glaros.dtc.umn.edu/gkhome/views/metis

Chapter 7.4 Advanced Graph Par��oning covers more details about the par��on format. To
distribute the par��ons to a cluster, users can either save the data in some shared folder
accessible by all machines, or copy the metadata JSON as well as the corresponding par��on
folder partX to the X^th machine.

Using partition_graph() requires an instance with large enough CPU RAM to hold the en�re
graph structure and features, which may not be viable for graphs with hundreds of billions of
edges or large features. We describe how to use the parallel data prepara�on pipeline for such
cases next.

Load balancing

When par��oning a graph, by default, METIS only balances the number of nodes in each
par��on. This can result in subop�mal configura�on, depending on the task at hand. For
example, in the case of semi-supervised node classifica�on, a trainer performs computa�on
on a subset of labeled nodes in a local par��on. A par��oning that only balances nodes in a
graph (both labeled and unlabeled), may end up with computa�onal load imbalance. To get a
balanced workload in each par��on, the par��on API allows balancing between par��ons
with respect to the number of nodes in each node type, by specifying balance_ntypes in
partition_graph() . Users can take advantage of this and consider nodes in the training set,

valida�on set and test set are of different node types.

The following example considers nodes inside the training set and outside the training set are
two types of nodes:

In addi�on to balancing the node types, dgl.distributed.partition_graph() also allows
balancing between in-degrees of nodes of different node types by specifying balance_edges .
This balances the number of edges incident to the nodes of different types.

ID mapping

A�er par��oning, partition_graph() remap node and edge IDs so that nodes of the same
par��on are aranged together (in a consecu�ve ID range), making it easier to store
par��oned node/edge features. The API also automa�cally shuffles the node/edge features
according to the new IDs. However, some downstream tasks may want to recover the original
node/edge IDs (such as extrac�ng the computed node embeddings for later use). For such
cases, pass return_mapping=True to partition_graph() , which makes the API returns the ID
mappings between the remapped node/edge IDs and their origianl ones. For a homogeneous
graph, it returns two vectors. The first vector maps every new node ID to its original ID; the

dgl.distributed.partition_graph(g, 'graph_name', 4, '/tmp/test',
balance_ntypes=g.ndata['train_mask'])

https://docs.dgl.ai/guide/distributed-partition.html#guide-distributed-partition
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph

second vector maps every new edge ID to its original ID. For a heterogeneous graph, it
returns two dic�onaries of vectors. The first dic�onary contains the mapping for each node
type; the second dic�onary contains the mapping for each edge type.

Load partitioned graphs

DGL provides a dgl.distributed.load_partition() func�on to load one par��on for inspec�on.

As men�oned in the ID mapping sec�on, each par��on carries auxiliary informa�on saved as
ndata or edata such as original node/edge IDs, par��on IDs, etc. Each par��on not only
saves nodes/edges it owns, but also includes node/edges that are adjacent to the par��on
(called HALO nodes/edges). The inner_node and inner_edge indicate whether a node/edge
truely belongs to the par��on (value is True) or is a HALO node/edge (value is False).

The load_partition() func�on loads all data at once. Users can load features or the par��on
book using the dgl.distributed.load_partition_feats() and
dgl.distributed.load_partition_book() APIs respec�vely.

7.1.2 Distributed Graph Partitioning Pipeline

To handle massive graph data that cannot fit in the CPU RAM of a single machine, DGL
u�lizes data chunking and parallel processing to reduce memory footprint and running �me.
The figure below illustrates the pipeline:

node_map, edge_map = dgl.distributed.partition_graph(g, 'graph_name', 4, '/tmp/test',
 balance_ntypes=g.ndata['train_mask'],
 return_mapping=True)
Let's assume that node_emb is saved from the distributed training.
orig_node_emb = th.zeros(node_emb.shape, dtype=node_emb.dtype)
orig_node_emb[node_map] = node_emb

>>> import dgl
>>> # load partition 0
>>> part_data = dgl.distributed.load_partition('data_root_dir/graph_name.json', 0)
>>> g, nfeat, efeat, partition_book, graph_name, ntypes, etypes = part_data # unpack
>>> print(g)
Graph(num_nodes=966043, num_edges=34270118,
 ndata_schemes={'orig_id': Scheme(shape=(), dtype=torch.int64),
 'part_id': Scheme(shape=(), dtype=torch.int64),
 '_ID': Scheme(shape=(), dtype=torch.int64),
 'inner_node': Scheme(shape=(), dtype=torch.int32)}
 edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64),
 'inner_edge': Scheme(shape=(), dtype=torch.int8),
 'orig_id': Scheme(shape=(), dtype=torch.int64)})

https://docs.dgl.ai/generated/dgl.distributed.load_partition.html#dgl.distributed.load_partition
https://docs.dgl.ai/generated/dgl.distributed.load_partition.html#dgl.distributed.load_partition
https://docs.dgl.ai/generated/dgl.distributed.load_partition_feats.html#dgl.distributed.load_partition_feats
https://docs.dgl.ai/generated/dgl.distributed.load_partition_book.html#dgl.distributed.load_partition_book

The pipeline takes input data stored in Chunked Graph Format and produces and
dispatches data par��ons to the target machines.
Step.1 Graph Par��oning: It calculates the ownership of each par��on and saves the
results as a set of files called par��on assignment. To speedup the step, some algorithms
(e.g., ParMETIS) support parallel compu�ng using mul�ple machines.
Step.2 Data Dispatching: Given the par��on assignment, the step then physically
par��ons the graph data and dispatches them to the machines user specified. It also
converts the graph data into formats that are suitable for distributed training and
evalua�on.

The whole pipeline is modularized so that each step can be invoked individually. For example,
users can replace Step.1 with some custom graph par��on algorithm as long as it produces
par��on assignment files correctly.

Chunked Graph Format

To run the pipeline, DGL requires the input graph to be stored in mul�ple data chunks. Each
data chunk is the unit of data preprocessing and thus should fit into CPU RAM. In this
sec�on, we use the MAG240M-LSC data from Open Graph Benchmark as an example to
describe the overall design, followed by a formal specifica�on and �ps for crea�ng data in
such format.

Example: MAG240M-LSC

The MAG240M-LSC graph is a heterogeneous academic graph extracted from the Microso�
Academic Graph (MAG), whose schema diagram is illustrated below:

https://ogb.stanford.edu/docs/lsc/mag240m/

Its raw data files are organized as follows:

The graph has three node types ("paper" , "author" and "institution"), three edge
types/rela�ons ("cites" , "writes" and "affiliated_with"). The "paper" nodes have three
a�ributes ("feat" , "label" , "year"'), while other types of nodes and edges are featureless.
Below shows the data files when it is stored in DGL Chunked Graph Format:

/mydata/MAG240M-LSC/
 |-- meta.pt # # A dictionary of the number of nodes for each type saved by torch.save,
 | # as well as num_classes
 |-- processed/
 |-- author___affiliated_with___institution/
 | |-- edge_index.npy # graph, 713 MB
 |
 |-- paper/
 | |-- node_feat.npy # feature, 187 GB, (numpy memmap format)
 | |-- node_label.npy # label, 974 MB
 | |-- node_year.npy # year, 974 MB
 |
 |-- paper___cites___paper/
 | |-- edge_index.npy # graph, 21 GB
 |
 |-- author___writes___paper/
 |-- edge_index.npy # graph, 6GB

All the data files are chunked into two parts, including the edges of each rela�on (e.g., writes,
affiliates, cites) and node features. If the graph has edge features, they will be chunked into
mul�ple files too. All ID data are stored in CSV (we will illustrate the contents soon) while
node features are stored in numpy arrays.

The metadata.json stores all the metadata informa�on such as file names and chunk sizes
(e.g., number of nodes, number of edges).

/mydata/MAG240M-LSC_chunked/
 |-- metadata.json # metadata json file
 |-- edges/ # stores edge ID data
 | |-- writes-part1.csv
 | |-- writes-part2.csv
 | |-- affiliated_with-part1.csv
 | |-- affiliated_with-part2.csv
 | |-- cites-part1.csv
 | |-- cites-part1.csv
 |
 |-- node_data/ # stores node feature data
 |-- paper-feat-part1.npy
 |-- paper-feat-part2.npy
 |-- paper-label-part1.npy
 |-- paper-label-part2.npy
 |-- paper-year-part1.npy
 |-- paper-year-part2.npy

There are three parts in metadata.json :

Graph schema informa�on and chunk sizes, e.g., "node_type" , "num_nodes_per_chunk" , etc.
Edge index data under key "edges" .
Node/edge feature data under keys "node_data" and "edge_data" .

{
 "graph_name" : "MAG240M-LSC", # given graph name
 "node_type": ["author", "paper", "institution"],
 "num_nodes_per_chunk": [
 [61191556, 61191556], # number of author nodes per chunk
 [61191553, 61191552], # number of paper nodes per chunk
 [12861, 12860] # number of institution nodes per chunk
],
 # The edge type name is a colon-joined string of source, edge, and destination type.
 "edge_type": [
 "author:writes:paper",
 "author:affiliated_with:institution",
 "paper:cites:paper"
],
 "num_edges_per_chunk": [
 [193011360, 193011360], # number of author:writes:paper edges per chunk
 [22296293, 22296293], # number of author:affiliated_with:institution edges per
chunk
 [648874463, 648874463] # number of paper:cites:paper edges per chunk
],
 "edges" : {
 "author:writes:paper" : { # edge type
 "format" : {"name": "csv", "delimiter": " "},
 # The list of paths. Can be relative or absolute.
 "data" : ["edges/writes-part1.csv", "edges/writes-part2.csv"]
 },
 "author:affiliated_with:institution" : {
 "format" : {"name": "csv", "delimiter": " "},
 "data" : ["edges/affiliated_with-part1.csv", "edges/affiliated_with-part2.csv"]
 },
 "paper:cites:paper" : {
 "format" : {"name": "csv", "delimiter": " "},
 "data" : ["edges/cites-part1.csv", "edges/cites-part2.csv"]
 }
 },
 "node_data" : {
 "paper": { # node type
 "feat": { # feature key
 "format": {"name": "numpy"},
 "data": ["node_data/paper-feat-part1.npy", "node_data/paper-feat-part2.npy"]
 },
 "label": { # feature key
 "format": {"name": "numpy"},
 "data": ["node_data/paper-label-part1.npy", "node_data/paper-label-part2.npy"]
 },
 "year": { # feature key
 "format": {"name": "numpy"},
 "data": ["node_data/paper-year-part1.npy", "node_data/paper-year-part2.npy"]
 }
 }
 },
 "edge_data" : {} # MAG240M-LSC does not have edge features
}

The edge index files contain edges in the form of node ID pairs:

Specification

In general, a chunked graph data folder just needs a metadata.json and a bunch of data files.
The folder structure in the MAG240M-LSC example is not a strict requirement as long as
metadata.json contains valid file paths.

metadata.json top-level keys:

graph_name : String. Unique name used by dgl.distributed.DistGraph to load graph.
node_type : List of string. Node type names.
num_nodes_per_chunk : List of list of integer. For graphs with node types stored in

chunks, the value contains integer lists. Each list contains integers, which specify the
number of nodes in each chunk.
edge_type : List of string. Edge type names in the form of <source node type>:<relation>:

<destination node type> .
num_edges_per_chunk : List of list of integer. For graphs with edge types stored in

chunks, the value contains integer lists. Each list contains integers, which specify the
number of edges in each chunk.
edges : Dict of ChunkFileSpec . Edge index files. Dic�onary keys are edge type names in the

form of <source node type>:<relation>:<destination node type> .
node_data : Dict of ChunkFileSpec . Data files that store node a�ributes could have arbitrary

number of files regardless of num_parts . Dic�onary keys are node type names.
edge_data : Dict of ChunkFileSpec . Data files that store edge a�ributes could have arbitrary

number of files regardless of num_parts . Dic�onary keys are edge type names in the form
of <source node type>:<relation>:<destination node type> .

ChunkFileSpec has two keys:

format : File format. Depending on the format name , users can configure more details
about how to parse each data file.

"csv" : CSV file. Use the delimiter key to specify delimiter in use.
"numpy" : NumPy array binary file created by numpy.save() .
"parquet" : parquet table binary file created by pyarrow.parquet.write_table() .

data : List of string. File path to each data chunk. Support absolute path.

writes-part1.csv
0 0
0 1
0 20
0 29
0 1203
...

T P

T P

R P

R P

https://docs.dgl.ai/api/python/dgl.distributed.html#dgl.distributed.DistGraph
https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save

Tips for making chunked graph data

Depending on the raw data, the implementa�on could include:

Construct graphs out of non-structured data such as texts or tabular data.
Augment or transform the input graph struture or features. E.g., adding reverse or self-
loop edges, normalizing features, etc.
Chunk the input graph structure and features into mul�ple data files so that each one can
fit in CPU RAM for subsequent preprocessing steps.

To avoid running into out-of-memory error, it is recommended to process graph structures
and feature data separately. Processing one chunk at a �me can also reduce the maximal
run�me memory footprint. As an example, DGL provides a tools/chunk_graph.py script that
chunks an in-memory feature-less DGLGraph and feature tensors stored in numpy.memmap .

Step.1 Graph Partitioning

This step reads the chunked graph data and calculates which par��on each node should
belong to. The results are saved in a set of par��on assignment files. For example, to randomly
par��on MAG240M-LSC to two parts, run the partition_algo/random_partition.py script in the
tools folder:

, which outputs files as follows:

Each file stores the par��on assignment of the corresponding node type. The contents are
the par��on ID of each node stored in lines, i.e., line i is the par��on ID of node i.

python /my/repo/dgl/tools/partition_algo/random_partition.py
 --in_dir /mydata/MAG240M-LSC_chunked
 --out_dir /mydata/MAG240M-LSC_2parts
 --num_partitions 2

MAG240M-LSC_2parts/
 |-- paper.txt
 |-- author.txt
 |-- institution.txt

paper.txt
0
1
1
0
0
1
0
...

https://github.com/dmlc/dgl/blob/master/tools/chunk_graph.py
https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph
https://numpy.org/doc/stable/reference/generated/numpy.memmap.html#numpy.memmap

Despite its simplicity, random par��oning may result in frequent cross-machine
communica�on. Check out chapter 7.4 Advanced Graph Par��oning for more advanced
op�ons.

Step.2 Data Dispatching

DGL provides a dispatch_data.py script to physically par��on the data and dispatch par��ons
to each training machines. It will also convert the data once again to data objects that can be
loaded by DGL training processes efficiently. The en�re step can be further accelerated using
mul�-processing.

--in-dir specifies the path to the folder of the input chunked graph data produced
--partitions-dir specifies the path to the par��on assignment folder produced by Step.1.
--out-dir specifies the path to stored the data par��on on each machine.
--ip-config specifies the IP configura�on file of the cluster.

An example IP configura�on file is as follows:

As a counterpart of return_mapping=True in partition_graph() , the distributed par��oning
pipeline provides two arguments in dispatch_data.py to save the original node/edge IDs to
disk.

--save-orig-nids save original node IDs into files.
--save-orig-eids save original edge IDs into files.

Specifying the two op�ons will create two files orig_nids.dgl and orig_eids.dgl under each
par��on folder.

python /myrepo/dgl/tools/dispatch_data.py \
 --in-dir /mydata/MAG240M-LSC_chunked/ \
 --partitions-dir /mydata/MAG240M-LSC_2parts/ \
 --out-dir data/MAG_LSC_partitioned \
 --ip-config ip_config.txt

172.31.19.1
172.31.23.205

https://docs.dgl.ai/guide/distributed-partition.html#guide-distributed-partition
https://docs.dgl.ai/generated/dgl.distributed.partition_graph.html#dgl.distributed.partition_graph

The two files store the original IDs as a dic�onary of tensors, where keys are node/edge type
names and values are ID tensors. Users can use the dgl.data.load_tensors() u�lity to load
them:

During data dispatching, DGL assumes that the combined CPU RAM of the cluster is able to
hold the en�re graph data. Node ownership is determined by the result of par��oning
algorithm where as for edges the owner of the des�na�on node also owns the edge as well.

data_root_dir/
 |-- graph_name.json # partition configuration file in JSON
 |-- part0/ # data for partition 0
 | |-- orig_nids.dgl # original node IDs
 | |-- orig_eids.dgl # original edge IDs
 | |-- ... # other data such as graph and node/edge feats
 |
 |-- part1/ # data for partition 1
 | |-- orig_nids.dgl
 | |-- orig_eids.dgl
 | |-- ...
 |
 |-- ... # data for other partitions

Load the original IDs for the nodes in partition 0.
orig_nids_0 = dgl.data.load_tensors('/path/to/data/part0/orig_nids.dgl')
Get the original node IDs for node type 'user'
user_orig_nids_0 = orig_nids_0['user']

Load the original IDs for the edges in partition 0.
orig_eids_0 = dgl.data.load_tensors('/path/to/data/part0/orig_eids.dgl')
Get the original edge IDs for edge type 'like'
like_orig_eids_0 = orig_nids_0['like']

